Science.gov

Sample records for engineering structures iii

  1. Aircraft engines. III

    SciTech Connect

    Mikkelson, D.C.; Reck, G.M.

    1988-01-01

    Prospective powerplant configuration advancements for tilt-rotor subsonic flight, supersonic commercial flight, and hypersonic flight are speculated upon, with a view to possibilities for the exploitation of novel materials and of such advanced fuels as liquid methane and hydrogen. Attention is given to the foldable tilt-rotor concept, which employs a hydraulic torque converter to engage the fan stage of the high-bypass turbofan engine used in forward flight after the tilt-rotor blades have been stowed, and several advanced cycles and turbomechanical configurations for cruise in the high supersonic regime and beyond, through the hypersonic regime, and into orbital velocity.

  2. Molecular beam epitaxy engineered III-V semiconductor structures for low-power optically addressed spatial light modulators

    NASA Technical Reports Server (NTRS)

    Larsson, Anders G.; Maserjian, Joseph

    1992-01-01

    Device approaches are investigated for optically addressed SLMs based on molecular-beam epitaxy (MBE) engineered III-V materials and structures. Strong photooptic effects can be achieved in periodically delta-doped multiple-quantum-well structures, but are still insufficient for high-contrast modulation with only single- or double-pass absorption through active layers of practical thickness. The asymmetric Fabry-Perot cavity approach is employed to permit extinction of light due to interference of light reflected from the front and back surfaces of the cavity. This approach is realized with an all-MBE-grown structure consisting of GaAs/AlAs quarter-wave stack reflector grown over the GaAs substrate as the high reflectance mirror and the GaAs surface as the low reflectance mirror. High-contrast modulation is achieved using a low-power InGaAs/GaAs quantum well laser for the control signal.

  3. NIF Title III engineering plan

    SciTech Connect

    Deis, G

    1998-06-01

    The purpose of this document is to define the work that must be accomplished by the NIF Project during Title III Engineering. This definition is intended to be sufficiently detailed to provide a framework for yearly planning, to clearly identify the specific deliverables so that the Project teams can focus on them, and to provide a common set of objectives and processes across the Project. This plan has been preceded by similar documents for Title I and Title II design and complements the Site Management Plan, the Project Control Manual, the Quality Assurance Program Plan, the RM Parsons NIF Title III Configuration Control Plan, the Integrated Project Schedule, the Preliminary Safety Analysis Report, the Configuration Management Plan, and the Transition Plan.

  4. LM1500 Engine Marinization Contract. Phase III. Materials and Processes Development for Phase III Engine Components.

    DTIC Science & Technology

    The purpose of this report is to briefly document the principal difficulties encountered and the solutions which were effected in the course of manufacturing the modified Phase III test engine hardware. (Author)

  5. Structural Engineering: Overview

    NASA Technical Reports Server (NTRS)

    Castro, Edgar

    2011-01-01

    This slide presentation presents the work of the Structural Engineering Division of the Engineering Directorate. The work includes: providing technical expertise and leadership for the development, evaluation, and operation of structural, mechanical, and thermal spaceflight systems.

  6. ARIES-III divertor engineering design

    SciTech Connect

    Wong, C.P.C.; Schultz, K.R.; Cheng, E.T.; Grotz, S.; Hasan, M.A.; Najmabadi, F.; Sharafat, S.; Brooks, J.N.; Ehst, D.A.; Sze, D.K.; Herring, J.S.; Valenti, M.; Steiner, D.

    1992-01-01

    This paper reports the engineering design of the ARIES-III double- null divertor. The divertor coolant tubes are made from W-3Re alloy and cooled by subcooled flow boiling of organic coolant. A coating of 4 mm thick tungsten is plasma sprayed onto the divertor surface. This W layer can withstand the thermal deposition of a few disruptions. At a maximum surface heat flux of 5.4 MW/m{sup 2}, a conventional divertor design can be used. The divertor surface is contoured to have a constant heat flux of 5.4 MW/m{sup 2}. The net erosion of the W-surface was found to be negligible at about 0.1 mm/year. After 3 years of operation, the W-3Re alloy ARIES-III divertor can be disposed of as Class A waste. In order to control the prompt dose release at site boundary to less than 200 Rem, isotopic tailoring of the W-alloy will be needed.

  7. VIPR III VADR SPIDER Structural Design and Analysis

    NASA Technical Reports Server (NTRS)

    Li, Wesley; Chen, Tony

    2016-01-01

    In support of the National Aeronautics and Space Administration (NASA) Vehicle Integrated Propulsion Research (VIPR) Phase III team to evaluate the volcanic ash environment effects on the Pratt & Whitney F117-PW-100 turbofan engine, NASA Armstrong Flight Research Center has successfully performed structural design and analysis on the Volcanic Ash Distribution Rig (VADR) and the Structural Particulate Integration Device for Engine Research (SPIDER) for the ash ingestion test. Static and dynamic load analyses were performed to ensure no structural failure would occur during the test. Modal analysis was conducted, and the results were used to develop engine power setting avoidance zones. These engine power setting avoidance zones were defined to minimize the dwell time when the natural frequencies of the VADR/SPIDER system coincided with the excitation frequencies of the engine which was operating at various revolutions per minute. Vortex-induced vibration due to engine suction air flow during the ingestion test was also evaluated, but was not a concern.

  8. Computer Education for Engineers, Part III.

    ERIC Educational Resources Information Center

    McCullough, Earl S.; Lofy, Frank J.

    1989-01-01

    Reports the results of the third survey of computer use in engineering education conducted in the fall of 1987 in comparing with 1981 and 1984 results. Summarizes survey data on computer course credits, languages, equipment use, CAD/CAM instruction, faculty access, and computer graphics. (YP)

  9. Computer Education for Engineers, Part III.

    ERIC Educational Resources Information Center

    McCullough, Earl S.; Lofy, Frank J.

    1989-01-01

    Reports the results of the third survey of computer use in engineering education conducted in the fall of 1987 in comparing with 1981 and 1984 results. Summarizes survey data on computer course credits, languages, equipment use, CAD/CAM instruction, faculty access, and computer graphics. (YP)

  10. Structural characterization of Spinacia oleracea trypsin inhibitor III (SOTI-III).

    PubMed

    Glotzbach, Bernhard; Schmelz, Stefan; Reinwarth, Michael; Christmann, Andreas; Heinz, Dirk W; Kolmar, Harald

    2013-01-01

    In recent decades, several canonical serine protease inhibitor families have been classified and characterized. In contrast to most trypsin inhibitors, those from garden four o'clock (Mirabilis jalapa) and spinach (Spinacia oleracea) do not share sequence similarity and have been proposed to form the new Mirabilis serine protease inhibitor family. These 30-40-amino-acid inhibitors possess a defined disulfide-bridge topology and belong to the cystine-knot miniproteins (knottins). To date, no atomic structure of this inhibitor family has been solved. Here, the first structure of S. oleracea trypsin inhibitor III (SOTI-III), in complex with bovine pancreatic trypsin, is reported. The inhibitor was synthesized by solid-phase peptide synthesis on a multi-milligram scale and was assayed to test its inhibitory activity and binding properties. The structure confirmed the proposed cystine-bridge topology. The structural features of SOTI-III suggest that it belongs to a new canonical serine protease inhibitor family with promising properties for use in protein-engineering and medical applications.

  11. Composite mechanics for engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1987-01-01

    Recent research activities and accomplishments at Lewis Research Center on composite mechanics for engine structures are summarized. The activities focused mainly on developing procedures for the computational simulation of composite intrinsic and structural behavior. The computational simulation encompasses all aspects of composite mechanics, advanced three-dimensional finite-element methods, damage tolerance, composite structural and dynamic response, and structural tailoring and optimization.

  12. Composite mechanics for engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1989-01-01

    Recent research activities and accomplishments at Lewis Research Center on composite mechanics for engine structures are summarized. The activities focused mainly on developing procedures for the computational simulation of composite intrinsic and structural behavior. The computational simulation encompasses all aspects of composite mechanics, advanced three-dimensional finite-element methods, damage tolerance, composite structural and dynamic response, and structural tailoring and optimization.

  13. Composite mechanics for engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1989-01-01

    Recent research activities and accomplishments at Lewis Research Center on composite mechanics for engine structures are summarized. The activities focused mainly on developing procedures for the computational simulation of composite intrinsic and structural behavior. The computational simulation encompasses all aspects of composite mechanics, advanced three-dimensional finite-element methods, damage tolerance, composite structural and dynamic response, and structural tailoring and optimization.

  14. Engine Structural Analysis Software

    NASA Technical Reports Server (NTRS)

    McKnight, R. L.; Maffeo, R. J.; Schrantz, S.; Hartle, M. S.; Bechtel, G. S.; Lewis, K.; Ridgway, M.; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The report describes the technical effort to develop: (1) geometry recipes for nozzles, inlets, disks, frames, shafts, and ducts in finite element form, (2) component design tools for nozzles, inlets, disks, frames, shafts, and ducts which utilize the recipes and (3) an integrated design tool which combines the simulations of the nozzles, inlets, disks, frames, shafts, and ducts with the previously developed combustor, turbine blade, and turbine vane models for a total engine representation. These developments will be accomplished in cooperation and in conjunction with comparable efforts of NASA Glenn Research Center.

  15. Structural characterization of dimeric murine aminoacylase III.

    PubMed

    Ryazantsev, Sergey; Abuladze, Natalia; Newman, Debra; Bondar, Galyna; Kurtz, Ira; Pushkin, Alexander

    2007-05-01

    Aminoacylase III (AAIII) plays an important role in deacetylation of acetylated amino acids and N-acetylated S-cysteine conjugates of halogenated alkenes and alkanes. AAIII, recently cloned from mouse kidney and partially characterized, is a mixture of tetramers and dimers. In the present work, AAIII dimers were purified and shown to be enzymatically active. Limited trypsinolysis showed two domains of approximately 9 and 25 kDa. The three-dimensional structure of the dimer was studied by electron microscopy of negative stained samples and by single-particle reconstruction. A 16A resolution model of the AAIII dimer was created. It has an unusual, cage-like, structure. A realistic AAIII tetramer model was built from two dimers.

  16. Military engine computational structures technology

    NASA Technical Reports Server (NTRS)

    Thomson, Daniel E.

    1992-01-01

    Integrated High Performance Turbine Engine Technology Initiative (IHPTET) goals require a strong analytical base. Effective analysis of composite materials is critical to life analysis and structural optimization. Accurate life prediction for all material systems is critical. User friendly systems are also desirable. Post processing of results is very important. The IHPTET goal is to double turbine engine propulsion capability by the year 2003. Fifty percent of the goal will come from advanced materials and structures, the other 50 percent will come from increasing performance. Computer programs are listed.

  17. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  18. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  19. The Structure of Bis(phthalocyaninato)neodymium(III).

    DTIC Science & Technology

    1980-06-01

    synthesis of lanthanide (III) phthalocyanine complexes 1 was established by Kirin and Moskalev, many studies on their composi- 2 tions and properties have...been reported. For instance, intense attention has been directed toward electrochromism of bis(phthalocyaninato) lanthanide (III) complexes , Pc2Ln(III)H...The structural analysis of bis(phthalocyaninato) lanthanide (III) complexes would provide useful information to investigate their electo- chromuism, and

  20. Engineering Geological Structures of the Earth

    NASA Astrophysics Data System (ADS)

    Trofimov, V. T.; Averkina, T. I.

    The term "engineering geological structure" has been defined. Contents, causes, and distinguishing features and hierarchic classification of these structures and the logical set of engineering geological structures of the globe are also discussed. The regularities of spatial distribution of engineering geological super-, mega-, macro-, and meso-structures of the Earth and its continents have been described.

  1. Evolution of corundum-structured III-oxide semiconductors: Growth, properties, and devices

    NASA Astrophysics Data System (ADS)

    Fujita, Shizuo; Oda, Masaya; Kaneko, Kentaro; Hitora, Toshimi

    2016-12-01

    The recent progress and development of corundum-structured III-oxide semiconductors are reviewed. They allow bandgap engineering from 3.7 to ∼9 eV and function engineering, leading to highly durable electronic devices and deep ultraviolet optical devices as well as multifunctional devices. Mist chemical vapor deposition can be a simple and safe growth technology and is advantageous for reducing energy and cost for the growth. This is favorable for the wide commercial use of devices at low cost. The III-oxide semiconductors are promising candidates for new devices contributing to sustainable social, economic, and technological development for the future.

  2. Ribonuclease revisited: structural insights into ribonuclease III family enzymes.

    PubMed

    MacRae, Ian J; Doudna, Jennifer A

    2007-02-01

    Ribonuclease III (RNase III) enzymes occur ubiquitously in biology and are responsible for processing RNA precursors into functional RNAs that participate in protein synthesis, RNA interference and a range of other cellular activities. Members of the RNase III enzyme family, including Escherichia coli RNase III, Rnt1, Dicer and Drosha, share the ability to recognize and cleave double-stranded RNA (dsRNA), typically at specific positions or sequences. Recent biochemical and structural data have shed new light on how RNase III enzymes catalyze dsRNA hydrolysis and how substrate specificity is achieved. A major theme emerging from these studies is that accessory domains present in different RNase III enzymes are the key determinants of substrate selectivity, which in turn dictates the specialized biological function of each type of RNase III protein.

  3. The Mathematical Disposition of Structural Engineers

    ERIC Educational Resources Information Center

    Gainsburg, Julie

    2007-01-01

    This ethnographic study investigated the mathematical disposition of engineers. Structural engineers in two firms were observed in everyday practice. Observation and interview data were analyzed to elucidate the role of mathematics in solving engineering problems and the engineers' perceptions of the status of mathematics relative to other…

  4. The Mathematical Disposition of Structural Engineers

    ERIC Educational Resources Information Center

    Gainsburg, Julie

    2007-01-01

    This ethnographic study investigated the mathematical disposition of engineers. Structural engineers in two firms were observed in everyday practice. Observation and interview data were analyzed to elucidate the role of mathematics in solving engineering problems and the engineers' perceptions of the status of mathematics relative to other…

  5. Biochemical and Structural Properties of Mouse Kynurenine Aminotransferase III

    SciTech Connect

    Han, Q.; Robinson, H; Cai, T; Tagle, D; Li, J

    2009-01-01

    Kynurenine aminotransferase III (KAT III) has been considered to be involved in the production of mammalian brain kynurenic acid (KYNA), which plays an important role in protecting neurons from overstimulation by excitatory neurotransmitters. The enzyme was identified based on its high sequence identity with mammalian KAT I, but its activity toward kynurenine and its structural characteristics have not been established. In this study, the biochemical and structural properties of mouse KAT III (mKAT III) were determined. Specifically, mKAT III cDNA was amplified from a mouse brain cDNA library, and its recombinant protein was expressed in an insect cell protein expression system. We established that mKAT III is able to efficiently catalyze the transamination of kynurenine to KYNA and has optimum activity at relatively basic conditions of around pH 9.0 and at relatively high temperatures of 50 to 60C. In addition, mKAT III is active toward a number of other amino acids. Its activity toward kynurenine is significantly decreased in the presence of methionine, histidine, glutamine, leucine, cysteine, and 3-hydroxykynurenine. Through macromolecular crystallography, we determined the mKAT III crystal structure and its structures in complex with kynurenine and glutamine. Structural analysis revealed the overall architecture of mKAT III and its cofactor binding site and active center residues. This is the first report concerning the biochemical characteristics and crystal structures of KAT III enzymes and provides a basis toward understanding the overall physiological role of mammalian KAT III in vivo and insight into regulating the levels of endogenous KYNA through modulation of the enzyme in the mouse brain.

  6. Synthesis, crystal structure and magnetism of iron(III) and manganese(III) dipicolinates with pyridinemethanols

    NASA Astrophysics Data System (ADS)

    Uhrecký, Róbert; Pavlik, Ján; Růžičková, Zdeňka; Dlháň, Ľubor; Koman, Marian; Boča, Roman; Moncoľ, Ján

    2014-11-01

    Four ionic iron(III) and manganese(III) dipicolinato complexes of the formula (2-pymeH) [FeIII(dipic)2]ṡ[FeIII(H2O)2Cl(dipic)]ṡ2H2O, (3-pymeH)[MnIII(dipic)2]ṡ1.5H2O, (4-pymeH)[FeIII(dipic)2]ṡ2H2O and (4-pymeH)[MnIII(dipic)2]ṡ2H2O, where H2dipic = pyridine-2,6-dicarboxylic acid, 2-pyme = 2-pyridinemethanol, 3-pyme = 3-pyridinemethanol, 4-pyme = 4-pyridinemethanol, have been prepared and characterized by the single-crystal X-ray structure analysis, infrared spectroscopy and magnetic measurements. The magnetic data were fitted to a zero-field splitting model revealing a slight magnetic anisotropy for Mn(III) systems. The molecular field correction was consistently formulated and included in the analysis for both, magnetic susceptibility and magnetization data.

  7. Engineering Modeling Study. Volume III. CORDIVEM/Engineer Module Interface Manual.

    DTIC Science & Technology

    1982-09-01

    will tend to avoid open areas and re- quest bridges in areas with good cover. The algorithm for scoring defensibility: 1 Mobility Operations I. Scores...path. the clearing of specific obstacles. The algorithm selects locations where roads cross areas For the first version of CORDIVEM (CORDIVEM that have...mechanism to create engineer work package- 9 .~~~~ -- - - - - ---- . - -~- 3 PROGRAM STRUCTURE wide swath between the two and a link table connect

  8. America's Century III--The Engineer's Opportunity and Responsibility

    ERIC Educational Resources Information Center

    Miller, Cheryl

    1976-01-01

    Presents highlights of the addresses of Arthur G. Hansen, Robert C. Seamans, Jr., and Edward R. Kane to the plenary session of the annual conference of the American Society for Engineering Education. Topics include energy, economics, governmental regulation, and the role of minorities and women in engineering in the coming century. (SL)

  9. Nucleosome Positioning and NDR Structure at RNA Polymerase III Promoters

    NASA Astrophysics Data System (ADS)

    Helbo, Alexandra Søgaard; Lay, Fides D.; Jones, Peter A.; Liang, Gangning; Grønbæk, Kirsten

    2017-02-01

    Chromatin is structurally involved in the transcriptional regulation of all genes. While the nucleosome positioning at RNA polymerase II (pol II) promoters has been extensively studied, less is known about the chromatin structure at pol III promoters in human cells. We use a high-resolution analysis to show substantial differences in chromatin structure of pol II and pol III promoters, and between subtypes of pol III genes. Notably, the nucleosome depleted region at the transcription start site of pol III genes extends past the termination sequences, resulting in nucleosome free gene bodies. The +1 nucleosome is located further downstream than at pol II genes and furthermore displays weak positioning. The variable position of the +1 location is seen not only within individual cell populations and between cell types, but also between different pol III promoter subtypes, suggesting that the +1 nucleosome may be involved in the transcriptional regulation of pol III genes. We find that expression and DNA methylation patterns correlate with distinct accessibility patterns, where DNA methylation associates with the silencing and inaccessibility at promoters. Taken together, this study provides the first high-resolution map of nucleosome positioning and occupancy at human pol III promoters at specific loci and genome wide.

  10. Nucleosome Positioning and NDR Structure at RNA Polymerase III Promoters

    PubMed Central

    Helbo, Alexandra Søgaard; Lay, Fides D.; Jones, Peter A.; Liang, Gangning; Grønbæk, Kirsten

    2017-01-01

    Chromatin is structurally involved in the transcriptional regulation of all genes. While the nucleosome positioning at RNA polymerase II (pol II) promoters has been extensively studied, less is known about the chromatin structure at pol III promoters in human cells. We use a high-resolution analysis to show substantial differences in chromatin structure of pol II and pol III promoters, and between subtypes of pol III genes. Notably, the nucleosome depleted region at the transcription start site of pol III genes extends past the termination sequences, resulting in nucleosome free gene bodies. The +1 nucleosome is located further downstream than at pol II genes and furthermore displays weak positioning. The variable position of the +1 location is seen not only within individual cell populations and between cell types, but also between different pol III promoter subtypes, suggesting that the +1 nucleosome may be involved in the transcriptional regulation of pol III genes. We find that expression and DNA methylation patterns correlate with distinct accessibility patterns, where DNA methylation associates with the silencing and inaccessibility at promoters. Taken together, this study provides the first high-resolution map of nucleosome positioning and occupancy at human pol III promoters at specific loci and genome wide. PMID:28176797

  11. Fine structures of type III radio bursts observed by LOFAR

    NASA Astrophysics Data System (ADS)

    Magdalenic, Jasmina; Marque, Christophe; Fallows, Richard; Mann, Gottfried; Vocks, Christian

    2017-04-01

    On August 25, 2014, NOAA AR 2146 produced the M2.0 class flare (peaked at 15:11 UT). The flare was associated with a coronal dimming, a EUV wave, a halo CME and a radio event observed by LOFAR (the LOw-Frequency Array). The radio event consisted of a type II, type III and type IV radio emissions. In this study, we focus on LOFAR observations of the type III bursts, generally considered to be radio signatures of fast electron beams propagating along open or quasi open field lines. The group of type III bursts was, as usually, observed during the impulsive phase of the flare. At first hand, type III bursts show no peculiarity, but the high frequency/time resolution LOFAR observations reveal that only few of these type III bursts have a smooth emission profile. The majority of bursts is strongly fragmented. Some show a structuring similar to type IIIb bursts, but on a smaller frequency scale, and others show a non-organized patchy structure which gives indication on the possibly related turbulence processes. Although fine structures of type III bursts were already reported, the wealth of fine structures, and the fragmentation of the radio emission observed in this August 25 event is unprecedented. We show that these LOFAR observations bring completely new insight and pose a new challenge for the physics of the acceleration of electron beams and associated emission processes.

  12. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  13. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  14. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  15. Outer planet probe engineering model structural tests

    NASA Technical Reports Server (NTRS)

    Smittkamp, J. A.; Gustin, W. H.; Griffin, M. W.

    1977-01-01

    A series of proof of concept structural tests was performed on an engineering model of the Outer Planets Atmospheric Entry Probe. The tests consisted of pyrotechnic shock, dynamic and static loadings. The tests partially verified the structural concept.

  16. Extreme Band Engineering of III-Nitride Nanowire Heterostructures for Electronic and Photonic Application

    NASA Astrophysics Data System (ADS)

    Sarwar, ATM Golam

    Bottom-up nanowires are attractive for realizing semiconductor devices with extreme heterostructures because strain relaxation through the nanowire sidewalls allows the combination of highly lattice mismatched materials without creating dislocations. The resulting nanowires are used to fabricate light-emitting diodes (LEDs), lasers, solar cells, and sensors. The aim of this work is to investigate extreme heterostructures, which are impossible or very hard to realize in conventional planar films, exploiting the strain accommodation property of nanowires and engineer their band structure for novel electronic and photonic applications. To this end, in this thesis, III-Nitride semiconductor nanowires are investigated. In the first part of this work, a complete growth phase diagram of InN nanowires on silicon using plasma assisted molecular beam epitaxy is developed, and structural and optical characteristics are mapped as a function of growth parameters. Next, a novel up-side down pendeoepitaxial growth of InN forming mushroom-like microstructures is demonstrated and detail structural and optical characterizations are performed. Based on this, a method to grow strain-free large area single crystalline InN or thin film is proposed and the growth of InN on patterned GaN is investigated. The optimized growth conditions developed for InN are further used to grow InGaN nanowires graded over the whole composition range. Numerical energy band simulation is performed to better understand the effect of polarization charge on photo-carrier transport in these extremely graded nanowires. A novel photodetector device with negative differential photocurrent is demonstrated using the graded InGaN nanowires. In the second part of this thesis, polarization-induced nanowire light emitting diodes (PINLEDs) are investigated. The electrical and optical properties of the nanowire heterostructure are engineered and optimized for ultraviolet and deep ultraviolet applications. The electrical

  17. Results of Component and Engineering Unit Tests of the ACRIM III Radiometer (Invited)

    NASA Astrophysics Data System (ADS)

    Morrill, J. S.; Socker, D. G.; Thernisien, A. F.; McMullin, D. R.; Shirley, E. L.; Hanssen, L. M.; Zeng, J.; Lorentz, S. R.

    2013-12-01

    As part of a NASA-Sponsored program to understand the differences in Total Solar Irradiance (TSI) results reported by ACRIM III on ACRIMSAT and TIM on SORCE, a series of tests and modeling studies of ACRIM III instrument component as well as tests of the ACRIM III engineering unit have been conducted. The modeling effort involves estimating the contribution of diffraction on the TSI results and the measurements involve the determination of this diffraction contribution as well as contributions due to scattered light and the cavity reflectance. The tests of the engineering unit were performed at the TRF (TSI Radiometer Facility) at LASP/Univ. of Colorado and were conducted in both power and irradiance mode. In this presentation we will describe the results of these studies and how these results compare with the recent tests of ACRIM III sensors at the LASP / TRF facility. This work is sponsored by NASA Earth Science Division.

  18. Structure-function analyses of plant type III polyketide synthases.

    PubMed

    Weng, Jing-Ke; Noel, Joseph P

    2012-01-01

    Plant type III polyketide synthases (PKSs) form a superfamily of biosynthetic enzymes involved in the production of a plethora of polyketide-derived natural products important for ecological adaptations and the fitness of land plants. Moreover, tremendous interest in bioengineering of type III PKSs to produce high-value compounds is increasing. Compared to type I and type II PKSs, which form either large modular protein complexes or dissociable molecular assemblies, type III PKSs exist as smaller homodimeric proteins, technically more amenable for detailed quantitative biochemical and phylogenetic analyses. In this chapter, we summarize a collection of approaches, including bioinformatics, genetics, protein crystallography, in vitro biochemistry, and mutagenesis, together affording a comprehensive interrogation of the structure-function-evolutionary relationships in the plant type III PKS family.

  19. Engineered Magnetic Core-Shell Structures.

    PubMed

    Alavi Nikje, Mir Mohammad; Vakili, Maryam

    2015-01-01

    In recent years, engineered magnetic core-shell structures are playing an important role in the wide range of various applications. These magnetic core-shell structures have attracted considerable attention because of their unique properties and various applications. Also, the synthesis of engineered magnetic core-shell structures has attracted practical interest because of potential applications in areas such as ferrofluids, medical imaging, drug targeting and delivery, cancer therapy, separations, and catalysis. So far a large number of engineered magnetic core-shell structures have been successfully synthesized. This review article focuses on the recent progress in synthesis and characterization of engineered magnetic core-shell structures. Also, this review gives a brief description of the various application of these structures. It is hoped that this review will play some small part in helping future developments in important field.

  20. Modulating Magnetic Refrigeration through Structural Variation in Co(II/III)-Gd(III) Clusters.

    PubMed

    Sheikh, Javeed Ahmad; Clearfield, Abraham

    2017-03-06

    Three heterometallic aggregates, [(Co(II))2(Gd(III))2((t)BuPO3)2(O2C(t)Bu)2(HO2C(t)Bu)2(NO3)4]·NEt3 (1), [(Co(II))2(Co(III))2(Gd(III))3(μ3-OH)2((t)BuPO3)2(O2C(t)Bu)9(deaH)2(H2O)2] (2), and (Co(III))2(Gd(III))5(μ2-OH)(μ3-OH)2((t)BuPO3)2(O2C(t)Bu)10(HO2C(t)Bu)(deaH)2]·MeOH (3), were successfully isolated in reactions of [Co2(μ-OH2)(O2C(t)Bu)4]·(HO2C(t)Bu)4, Gd(NO3)3·6H2O, (t)Bu-PO3H2, and diethanolamine (deaH3) by varying the stoichiometry of the reactants and/or changing the solvent. The structures of the final products were profoundly affected by these minor changes in stoichiometry or a change in solvent. The metal-oxo core of these complexes displays a hemicubane or a defective dicubane-like view. Bond valence sum calculations and bond lengths indicate the presence of Co(II) centers in compound 1, mixed valent Co centers (Co(II)/Co(III)) in compound 2, and only Co(III) centers in compound 3 as required for the charge balances and supported by the magnetic measurements. Magnetic studies reveal significant magnetic entropy changes for complexes 1-3 (-ΔSm values of 28.14, 25.06, and 29.19 J kg(-1) K(-1) for 3 K and 7 T, respectively). This study shows how magnetic refrigeration can be affected by anisotropy, magnetic interactions (ferro- or antiferromagnetic), the metal/ligand ratio, and the content of Gd(III) in the molecule.

  1. Structural tailoring of engine blades (STAEBL)

    NASA Technical Reports Server (NTRS)

    Platt, C. E.; Pratt, T. K.; Brown, K. W.

    1982-01-01

    A mathematical optimization procedure was developed for the structural tailoring of engine blades and was used to structurally tailor two engine fan blades constructed of composite materials without midspan shrouds. The first was a solid blade made from superhybrid composites, and the second was a hollow blade with metal matrix composite inlays. Three major computerized functions were needed to complete the procedure: approximate analysis with the established input variables, optimization of an objective function, and refined analysis for design verification.

  2. III-Sb (001) growth surfaces: Structure and island nucleation

    SciTech Connect

    BARVOSA-CARTER,W.; BRACKER,A.S.; CULBERTSON,J.C.; NOSHO,B.Z.; SHANABROOK,B.V.; WHITMAN,L.J.; KIM,HANCHUL; MODINE,NORMAND A.; KAXIRAS,E.

    2000-04-24

    The authors have determined the reconstructions present on AlSb and GaSb(001) under conditions typical for device growth by molecular beam epitaxy. Within the range of Sb flux and temperature where the diffraction pattern is nominally (1 x 3), three distinct (4 x 3) reconstructions actually occur. The three structures are different than those previously proposed for these growth conditions, with two incorporating mixed III-V dimers on the surface. The presence of these hetero-dimers in the top Sb layer leads to an island nucleation and growth mechanism fundamentally different than for other III-V systems.

  3. Low dimensional III-V compound semiconductor structures

    NASA Astrophysics Data System (ADS)

    Kobayashi, Nobuhiko P.

    2009-08-01

    Material incompatibilities among dissimilar group III-V compound semiconductors (III-V CSs) often place limits on combining epitaxial thin films, however low-dimensional epitaxial structures (e.g., quantum dots and nanowires) demonstrate coherent growth even on incompatible surfaces. First, InAs QDs grown by molecular beam epitaxy on GaAs are described. Two-dimensional to three-dimensional morphological transition, lateral size evolution and vertical alignment of InAs QDs in a single and multiple stacks will be illustrated. Second, InP nanowires grown on non-single crystalline surfaces by metal organic chemical vapor deposition are described with the view toward applications where III-V CSs are functionally integrated onto various material platforms.

  4. Double Sided Si(Ge)/Sapphire/III-Nitride Hybrid Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2016-01-01

    One aspect of the present invention is a double sided hybrid crystal structure including a trigonal Sapphire wafer containing a (0001) C-plane and having front and rear sides. The Sapphire wafer is substantially transparent to light in the visible and infrared spectra, and also provides insulation with respect to electromagnetic radio frequency noise. A layer of crystalline Si material having a cubic diamond structure aligned with the cubic <111> direction on the (0001) C-plane and strained as rhombohedron to thereby enable continuous integration of a selected (SiGe) device onto the rear side of the Sapphire wafer. The double sided hybrid crystal structure further includes an integrated III-Nitride crystalline layer on the front side of the Sapphire wafer that enables continuous integration of a selected III-Nitride device on the front side of the Sapphire wafer.

  5. Crystal Engineering: from Structure to Function

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Mark D.

    2002-03-01

    Modern crystal engineering has emerged as a rich discipline whose success requires an iterative process of synthesis, crystallography, crystal structure analysis, and computational methods. By focusing on the molecular recognition events during nucleation and growth, chemists have uncovered new ways of controlling the internal structure and symmetry of crystals and of producing materials with useful chemical and physical properties.

  6. Structural Insights into Fibronectin Type III Domain Mediated Signaling

    PubMed Central

    Bencharit, Sompop; Cui, Cai Bin; Siddiqui, Adnan; Howard-Williams, Escher L.; Sondek, John; Zuobi-Hasona, Kheir; Aukhil, Ikramuddin

    2007-01-01

    The alternatively spliced type-III extradomain B (EIIIB) of Fibronectin (FN) is only expressed during embryogenesis, wound healing and tumorigenesis. The biological function of this domain remains unclear. We describe here the first crystal structure of the interface between alternatively-spliced domain EIIIB and its adjacent FN type-III domain 8 (FN B-8). The opened CC′ loop of EIIIB and the rotation and tilt of EIIIB domain allows good access to the FG loop of FN-8 which is normally hindered by the CC′ loop of FN-7. In addition, the AGEGIP sequence of the CC′ loop of EIIIB replaces the NGQQGN sequence of the CC′ loop of FN-7. Finally, the CC” loop of EIIIB forms an acidic groove with FN-8. These structural findings warrant future studies directed at identifying potential binding partners for FN B-8 interface, linking EIIIB to skeletal and cartilagenous development, wound healing, and tumorigenesis, respectively. PMID:17261313

  7. Biodegradable polymeric fiber structures in tissue engineering.

    PubMed

    Tuzlakoglu, Kadriye; Reis, Rui L

    2009-03-01

    Tissue engineering offers a promising new approach to create biological alternatives to repair or restore function of damaged or diseased tissues. To obtain three-dimensional tissue constructs, stem or progenitor cells must be combined with a highly porous three-dimensional scaffold, but many of the structures purposed for tissue engineering cannot meet all the criteria required by an adequate scaffold because of lack of mechanical strength and interconnectivity, as well as poor surface characteristics. Fiber-based structures represent a wide range of morphological and geometric possibilities that can be tailored for each specific tissue-engineering application. The present article overviews the research data on tissue-engineering therapies based on the use of biodegradable fiber architectures as a scaffold.

  8. Structure and engineering of celluloses.

    PubMed

    Pérez, Serge; Samain, Daniel

    2010-01-01

    This chapter collates the developments and conclusions of many of the extensive studies that have been conducted on cellulose, with particular emphasis on the structural and morphological features while not ignoring the most recent results derived from the elucidation of unique biosynthetic pathways. The presentation of structural and morphological data gathered together in this chapter follows the historical development of our knowledge of the different structural levels of cellulose and its various organizational levels. These levels concern features such as chain conformation, chain polarity, chain association, crystal polarity, and microfibril structure and organization. This chapter provides some historical landmarks related to the evolution of concepts in the field of biopolymer science, which parallel the developments of novel methods for characterization of complex macromolecular structures. The elucidation of the different structural levels of organization opens the way to relating structure to function and properties. The chemical and biochemical methods that have been developed to dissolve and further modify cellulose chains are briefly covered. Particular emphasis is given to the facets of topochemistry and topoenzymology where the morphological features play a key role in determining unique physicochemical properties. A final chapter addresses what might be considered tomorrow's goal in amplifying the economic importance of cellulose in the context of sustainable development. Selected examples illustrate the types of result that can be obtained when cellulose fibers are no longer viewed as inert substrates, and when the polyhydroxyl nature of their surfaces, as well as their entire structural complexity, are taken into account. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Synthesis and structural characterization of new dithiocarbamate complexes from Sb(III) and Bi(III)

    SciTech Connect

    Jamaluddin, Nur Amirah; Baba, Ibrahim

    2013-11-27

    Twenty new antimony and bismuth dithiocarbamate complexes which employed ten different type of amines have been successfully synthesized. The synthesized complexes with metal to dithiocarbamate ratio at 1:3. Elemental analysis of the complexes gave the general formula of MCl[S{sub 2}CNR’R”]{sub 2} where M = Sb(III), Bi(III); R’ = methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, benzyl; R” = ethanol, methyl, ethyl, propyl, isopropyl, cyclohexyl, benzyl. The complexes were analysed by IR and NMR spectroscopy. The crystal structure of five-coordinated antimony (III) complex have been determined by X-ray single crystal diffraction. Single crystal X-ray diffraction studies on SbCl[S{sub 2}CN(C{sub 4}H{sub 9})(C{sub 2}H{sub 5})]{sub 2} adopted a triclinic system with a space group P1 with a = 10.0141(8) Å, b = 10.1394(7) Å, c = 11.8665(9) Å, α = 67.960°, β =87.616°, γ = 80.172°.

  10. Strain Engineering of Epitaxially Transferred, Ultrathin Layers of III-V Semiconductor on Insulator

    DTIC Science & Technology

    2011-01-01

    patterned width of 350 nm–5 m and wet etched using a mixture of citric acid 1 g/ml in de-ionized DI H2O and hydrogen peroxide 30% at 1:20 volume...Strain engineering of epitaxially transferred, ultrathin layers of III-V semiconductor on insulator Hui Fang,1,2,3 Morten Madsen,1,2,3 Carlo Carraro...10.1063/1.3537963 III-V compound semiconductors have been extensively explored in the recent years for energy-efficient and high- speed electronics due

  11. Design and Development of Stress Engineering Techniques for III-Nitride Epitaxy on Si

    NASA Astrophysics Data System (ADS)

    Leathersich, Jeff

    III-Nitrides have been a heavily researched material system for decades. Their material properties are favorable for a number of applications, most commonly in the optoelectronic and power device industry. Currently a majority of commercialized devices are fabricated on sapphire and SiC substrates but these are expensive and limit the widespread commercialization of the technology. There is substantial ongoing research geared toward the development of GaN on Si substrates because of the significant cost saving that would be realized through the inexpensive, large wafer and maturity of Si fabrication. Significant challenges with the deposition of GaN on Si have, thus far, prevented its wide-spread commercialization specifically the large lattice mismatch and thermal expansion coefficient mismatch. Both of these issues can be overcome by engineering the stress levels in the films. In this thesis work close examination and exploration of the stress formation and evolution in GaN-on-Si is performed. Methods of improving stress levels are developed in addition to providing a deeper understanding of the stress evolution process. A commonly used methodology of engineering stress levels is to use an AlGaN multi-layer stack. The first layer in the stack is an AlN buffer layer. Typical deposition methods for AlN leaves the surface rough and not ideal for subsequent epitaxy. Here, two specific modifications to the conventional deposition process are made which yield dramatic improvement in material quality and stress levels of an overgrown GaN layer. Full width at half maximum measurements from HRXRD rocking curve of GaN grown on the modified buffers show a 2x reduction and ~0.45 GPa greater built-in compressive stress in the films. A semi-empirical model to predict stress evolution in III-Nitrides is established using both fundamentals and experimental data. The model will allow researchers determine the desired stress levels in the films in advance of Epitaxy. This will

  12. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  13. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  14. Designing, engineering, and testing wood structures

    NASA Technical Reports Server (NTRS)

    Gorman, Thomas M.

    1992-01-01

    The objective of this paper is to introduce basic structural engineering concepts in a clear, simple manner while actively involving students. This project emphasizes the fact that a good design uses materials efficiently. The test structure in this experiment can easily be built and has various design options. Even when the structure is loaded to collapsing, only one or two pieces usually break, leaving the remaining pieces intact and reusable.

  15. Interface engineering and chemistry of Hf-based high-k dielectrics on III-V substrates

    NASA Astrophysics Data System (ADS)

    He, Gang; Chen, Xiaoshuang; Sun, Zhaoqi

    2013-03-01

    Recently, III-V materials have been extensively studied as potential candidates for post-Si complementary metal-oxide-semiconductor (CMOS) channel materials. The main obstacle to implement III-V compound semiconductors for CMOS applications is the lack of high quality and thermodynamically stable insulators with low interface trap densities. Due to their excellent thermal stability and relatively high dielectric constants, Hf-based high-k gate dielectrics have been recently highlighted as the most promising high-k dielectrics for III-V-based devices. This paper provides an overview of interface engineering and chemistry of Hf-based high-k dielectrics on III-V substrates. We begin with a survey of methods developed for generating Hf-based high-k gate dielectrics. To address the impact of these hafnium based materials, their interfaces with GaAs as well as a variety of semiconductors are discussed. After that, the integration issues are highlighted, including the development of high-k deposition without Fermi level pinning, surface passivation and interface state, and integration of novel device structure with Si technology. Finally, we conclude this review with the perspectives and outlook on the future developments in this area. This review explores the possible influences of research breakthroughs of Hf-based gate dielectrics on the current and future applications for nano-MOSFET devices.

  16. The flexible pocketome engine for structural chemogenomics.

    PubMed

    Abagyan, Ruben; Kufareva, Irina

    2009-01-01

    Biological metabolites, substrates, cofactors, chemical probes, and drugs bind to flexible pockets in multiple biological macromolecules to exert their biological effect. The rapid growth of the structural databases and sequence data, including SNPs and disease-related genome modifications, complemented by the new cutting-edge 3D docking, scoring, and profiling methods has created a unique opportunity to develop a comprehensive structural map of interactions between any small molecule and biopolymers. Here we demonstrate that a comprehensive structural genomics engine can be built using multiple pocket conformations, experimentally determined or generated with a variety of modeling methods, and new efficient ensemble docking algorithms. In contrast to traditional ligand-activity-based engines trained on known chemical structures and their activities, the structural pocketome and docking engine will allow prediction of poses and activities for new, previously unknown, protein binding sites, and new, previously uncharacterized, chemical scaffolds. This de novo structure-based activity prediction engine may dramatically accelerate the discovery of potent and specific therapeutics with reduced side effects.

  17. Structural and electronic properties of monolayer group III monochalcogenides

    NASA Astrophysics Data System (ADS)

    Demirci, S.; Avazlı, N.; Durgun, E.; Cahangirov, S.

    2017-03-01

    We investigate the structural, mechanical, and electronic properties of the two-dimensional hexagonal structure of group III-VI binary monolayers, M X (M =B , Al, Ga, In and X =O , S, Se, Te) using first-principles calculations based on the density functional theory. The structural optimization calculations and phonon spectrum analysis indicate that all of the 16 possible binary compounds are thermally stable. In-plane stiffness values cover a range depending on the element types and can be as high as that of graphene, while the calculated bending rigidity is found to be an order of magnitude higher than that of graphene. The obtained electronic band structures show that M X monolayers are indirect band-gap semiconductors. The calculated band gaps span a wide optical spectrum from deep ultraviolet to near infrared. The electronic structure of oxides (M O ) is different from the rest because of the high electronegativity of oxygen atoms. The dispersions of the electronic band edges and the nature of bonding between atoms can also be correlated with electronegativities of constituent elements. The unique characteristics of group III-VI binary monolayers can be suitable for high-performance device applications in nanoelectronics and optics.

  18. Development of Cryogenic Engine for GSLV MkIII: Technological Challenges

    NASA Astrophysics Data System (ADS)

    Praveen, RS; Jayan, N.; Bijukumar, KS; Jayaprakash, J.; Narayanan, V.; Ayyappan, G.

    2017-02-01

    Cryogenic engine capable of delivering 200 kN thrust is being developed for the first time in the country by ISRO for powering the upper stage of GSLV Mk-III, the next generation launch vehicle of ISRO capable of launching four tonne class satellites to Geo-synchronous Transfer Orbit(GTO). Development of this engine started a decade ago when various sub-systems development and testing were taken up. Starting with injector element development, the design, realization and testing of the major sub-systems viz the gas generator, turbopumps, start-up system and thrust chamber have been successfully done in a phased manner before conducting a series of developmental tests in the integrated engine mode. Apart from the major sub-systems, many critical components like the igniter, control components etc were independently developed and qualified. During the development program many challenges were faced in almost all areas of propulsion engineering. Systems engineering of the engine was another key challenge in the realization. This paper gives an outlook on various technological challenges faced in the key areas related to the engine development, insight to the solutions and measures taken to overcome the challenges.

  19. 14 CFR 33.23 - Engine mounting attachments and structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine mounting attachments and structure... mounting attachments and structure. (a) The maximum allowable limit and ultimate loads for engine mounting attachments and related engine structure must be specified. (b) The engine mounting attachments and...

  20. 46 CFR 11.505 - Engineer officer structure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Engineer officer structure. 11.505 Section 11.505... OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.505 Engineer officer structure. The following diagram illustrates the engineering endorsement structure including cross over points...

  1. The Structure and Function of Type III Secretion Systems.

    PubMed

    Notti, Ryan Q; Stebbins, C Erec

    2016-02-01

    Type III secretion systems (T3SSs) afford Gram-negative bacteria an intimate means of altering the biology of their eukaryotic hosts--the direct delivery of effector proteins from the bacterial cytoplasm to that of the eukaryote. This incredible biophysical feat is accomplished by nanosyringe "injectisomes," which form a conduit across the three plasma membranes, peptidoglycan layer, and extracellular space that form a barrier to the direct delivery of proteins from bacterium to host. The focus of this chapter is T3SS function at the structural level; we will summarize the core findings that have shaped our understanding of the structure and function of these systems and highlight recent developments in the field. In turn, we describe the T3SS secretory apparatus, consider its engagement with secretion substrates, and discuss the posttranslational regulation of secretory function. Lastly, we close with a discussion of the future prospects for the interrogation of structure-function relationships in the T3SS.

  2. Structural and collisional data for Mg III and Al IV

    NASA Astrophysics Data System (ADS)

    Elabidi, Haykel

    2014-10-01

    We present in this work energy levels, oscillator strengths, radiative decay rates and fine structure collision strengths for the Mg III and Al IV ions. The 11 configurations: (1s2) 2s22p6, 2s22p53l, 2s2p63l, 2s22p54l (l⩽n-1, where n is the principal quantum number), yielding the lowest 75 levels are used. The collisional data for these two ions are missing in the literature, especially the database CHIANTI, this is the principal motivation behind the present work. Calculations have been performed using the AUTOSTRUCTURE code. AUTOSTRUCTURE treats the scattering problem in the distorted wave approach. Fine structure collision strengths are calculated for a range of electron energies from 10 Ry to 240 Ry. The atomic structure data are compared to available experimental and theoretical results.

  3. Group III-nitride based hetero and quantum structures

    NASA Astrophysics Data System (ADS)

    Monemar, B.; Pozina, G.

    2000-11-01

    The present paper attempts an overview of a presently very active research field: the III-nitrides and their interesting possibilities for a range of device applications employing heterostructures and low-dimensional quantum structures. The family of materials containing AlN, GaN, InN and the alloys between them span a range of direct bandgaps between 6.2 and 1.9 eV, with very large band offsets in type I heterojunctions, which is very favourable for a number of interesting device concepts. A very important feature of these materials is the dominant influence of strong polarisation fields (spontaneous as well as piezo-electric) on the physical properties of multilayer structures, as well as on devices. Exciton binding energies are large, and excitonic effects are therefore important at room temperature. Many alloy systems, in particular InGaN, have a high miscibility gap, leading to a strong tendency for phase separation and consequently to many novel physical properties which yet have to be explored in detail. Localization effects for carriers and excitons are very important in quantum structures based on these alloys. Devices based on III-N heterostructures cover a wide range, from optical devices (violet lasers, LEDs covering a range from UV to red, white LEDs, photodetectors, UV cameras) to high-frequency power devices, both unipolar transistors (AlGaN/GaN HEMTs) and bipolar HBTs.

  4. Magneto-Structural Analysis of Iron(III) Keggin Polyoxometalates.

    PubMed

    Bandeira, Nuno A G; Sadeghi, Omid; Woods, Toby J; Zhang, Yuan-Zhu; Schnack, Jürgen; Dunbar, Kim; Nyman, May; Bo, Carles

    2017-02-16

    A computational study and magnetic susceptibility measurements of three homonuclear Fe(III) Keggin structures are herein presented: the [FeO4@Fe12F24(μ-OCH3)12](5-) anion (1), the [Bi6{FeO4@Fe12O12(OH)12}(μ-O2CCCl3)12](+) cation (2) and its polymorph [Bi6{FeO4@Fe12O12(OH)10(H2O)2}(μ-O2CCF3)10](3+) (3). These results are contrasted with the exchange interactions present in the previously characterized [Fe6(OH)3Ge2W18O68(OH)6](11-) and [H12As4Fe8W30O120(H2O)2](4-) anions. The computational analysis shows that the most significant antiferromagnetic spin coupling takes place at the junction between each of the {Fe3O6(OH)3}/{Fe3F6(OCH3)3} framework motifs, a possibility that had been previously discarded in the literature on the basis of the Fe-Fe distances. For all the examined iron(III) Keggin structures, it is found that the magnitude of the magnetic couplings within each structural subunit follows the same trend.

  5. Electronic structure of a copper(III) compound

    NASA Astrophysics Data System (ADS)

    Klimkans, Agris; Larsson, Sven

    2001-07-01

    The singlet ground state of a potassium cuprate system (KCuO2), represented by clusters of copper(III) and oxygen, consistent of one and three copper atoms embedded in the Madelung potential of the remainder of the crystal, is calculated using the complete active space-self-consistent field method. The ground state is found to be a 3d8 state with high σ covalency. The electron structure of hole doped high-Tc superconductors with similar copper ligation is shortly discussed on the basis of our results, which do not support the "hole on oxygen" model.

  6. Structures of engineered Clostridium botulinum neurotoxin derivatives

    PubMed Central

    Masuyer, Geoffrey; Stancombe, Patrick; Chaddock, John A.; Acharya, K. Ravi

    2011-01-01

    Targeted secretion inhibitors (TSIs) are a new class of engineered biopharmaceutical molecules derived from the botulinum neurotoxins (BoNTs). They consist of the metalloprotease light chain (LC) and translocation domain (Hn) of BoNT; they thus lack the native toxicity towards motor neurons but are able to target soluble N-ethylmaleimide-sensitive fusion protein attachment receptor (SNARE) proteins. These functional fragment (LHn) derivatives are expressed as single-chain proteins and require post-translational activation into di-chain molecules for function. A range of BoNT derivatives have been produced to demonstrate the successful use of engineered SNARE substrate peptides at the LC–Hn interface that gives these molecules self-activating capabilities. Alternatively, recognition sites for specific exoproteases can be engineered to allow controlled activation. Here, the crystal structures of three LHn derivatives are reported between 2.7 and 3.0 Å resolution. Two of these molecules are derivatives of serotype A that contain a SNARE peptide. Additionally, a third structure corresponds to LHn serotype B that includes peptide linkers at the exoprotease activation site. In all three cases the added engineered segments could not be modelled owing to disorder. However, these structures highlight the strong interactions holding the LHn fold together despite the inclusion of significant polypeptide sequences at the LC–Hn interface. PMID:22139146

  7. The Structure of Galaxies. III. Two Structural Families of Ellipticals

    NASA Astrophysics Data System (ADS)

    Schombert, James M.

    2015-11-01

    Using isophotal radius correlations for a sample of Two Micron All Sky Survey ellipticals, we have constructed a series of template surface brightness profiles to describe the profile shapes of ellipticals as a function of luminosity. The templates are a smooth function of luminosity, yet are not adequately matched to any fitting function supporting the view that ellipticals are weakly nonhomologous with respect to structure. Through comparison to the templates, it is discovered that ellipticals are divided into two families: those well matched to the templates, and a second class of ellipticals with distinctly shallower profile slopes. We refer to this second type of ellipticals as D class, an old morphological designation acknowledging diffuse appearance on photographic material. D ellipticals cover the same range of luminosity, size, and kinematics as normal ellipticals, but maintain a signature of recent equal-mass dry mergers. We propose that normal ellipticals grow after an initial dissipation formation era by accretion of low-mass companions as outlined in hierarchical formation scenarios, while D ellipticals are the result of later equal-mass mergers producing shallow luminosity profiles.

  8. Biomimetic electrospun nanofibrous structures for tissue engineering

    PubMed Central

    Wang, Xianfeng; Ding, Bin; Li, Bingyun

    2013-01-01

    Biomimetic nanofibrous scaffolds mimicking important features of the native extracellular matrix provide a promising strategy to restore functions or achieve favorable responses for tissue regeneration. This review provides a brief overview of current state-of-the-art research designing and using biomimetic electrospun nanofibers as scaffolds for tissue engineering. It begins with a brief introduction of electrospinning and nanofibers, with a focus on issues related to the biomimetic design aspects. The review next focuses on several typical biomimetic nanofibrous structures (e.g. aligned, aligned to random, spiral, tubular, and sheath membrane) that have great potential for tissue engineering scaffolds, and describes their fabrication, advantages, and applications in tissue engineering. The review concludes with perspectives on challenges and future directions for design, fabrication, and utilization of scaffolds based on electrospun nanofibers. PMID:25125992

  9. Engineered biosynthesis of plant polyketides: chain length control in an octaketide-producing plant type III polyketide synthase.

    PubMed

    Abe, Ikuro; Oguro, Satoshi; Utsumi, Yoriko; Sano, Yukie; Noguchi, Hiroshi

    2005-09-14

    The chalcone synthase (CHS) superfamily of type III polyketide synthases (PKSs) produces a variety of plant secondary metabolites with remarkable structural diversity and biological activities (e.g., chalcones, stilbenes, benzophenones, acrydones, phloroglucinols, resorcinols, pyrones, and chromones). Here we describe an octaketide-producing novel plant-specific type III PKS from aloe (Aloe arborescens) sharing 50-60% amino acid sequence identity with other plant CHS-superfamily enzymes. A recombinant enzyme expressed in Escherichia coli catalyzed seven successive decarboxylative condensations of malonyl-CoA to yield aromatic octaketides SEK4 and SEK4b, the longest polyketides known to be synthesized by the structurally simple type III PKS. Surprisingly, site-directed mutagenesis revealed that a single residue Gly207 (corresponding to the CHS's active site Thr197) determines the polyketide chain length and product specificity. Small-to-large substitutions (G207A, G207T, G207M, G207L, G207F, and G207W) resulted in loss of the octaketide-forming activity and concomitant formation of shorter chain length polyketides (from triketide to heptaketide) including a pentaketide chromone, 2,7-dihydroxy-5-methylchromone, and a hexaketide pyrone, 6-(2,4-dihydroxy-6-methylphenyl)-4-hydroxy-2-pyrone, depending on the size of the side chain. Notably, the functional diversity of the type III PKS was shown to evolve from simple steric modulation of the chemically inert single residue lining the active-site cavity accompanied by conservation of the Cys-His-Asn catalytic triad. This provided novel strategies for the engineered biosynthesis of pharmaceutically important plant polyketides.

  10. Soy-Based, Water-Cooled, TC W-III Two Cycle Engine Oil

    SciTech Connect

    Scharf, Curtis R.; Miller, Mark E.

    2003-08-30

    The objective of this project was to achieve technical approval and commercial launch for a biodegradable soy oil-based, environmentally safe, TC W-III performance, water-cooled, two cycle engine oil. To do so would: (1) develop a new use for RBD soybean oil; (2) increase soybean utilization in North America in the range of 500 K-3.0 MM bushels; and (3) open up supply opportunities of 1.5-5.0 MM bushels worldwide. These goals have been successfully obtained.

  11. 1,2,4-Diazaphospholide complexes of lanthanum(iii), cerium(iii), neodymium(iii), praseodymium(iii), and samarium(iii): synthesis, X-ray structural characterization, and magnetic susceptibility studies.

    PubMed

    Zhao, Minggang; Wang, Lixia; Li, Pangpang; Ma, Jianping; Zheng, Wenjun

    2016-07-05

    A few heteroleptic, charge-separated heterobimetallic, and polymeric alkali metalate complexes of 1,2,4-diazaphospholide lanthanum(iii), cerium(iii), neodymium(iii), praseodymium(iii), and samarium(iii) were simply prepared via the metathesis reaction of MCl3 (THF)m (m = 1-2) and K[3,5-R2dp] ([3,5-R2dp](-) = 3,5-di-substituent-1,2,4-diazaphospholide; R = tBu, Ph) in a varied ratio (1 : 3, 1 : 4, and 1 : 5, respectively) at room temperature in tetrahydrofuran. All the complexes were fully characterized by (1)H, (13)C{(1)H}, (31)P{(1)H}, IR, and X-ray single crystal diffraction analysis despite their paramagnetism (excluding La(iii) complexes). The structures of the complexes were found to feature varied coordination modes. The magnetic properties of several compounds were studied by magnetic susceptibility, and the complexes presented the magnetic moments close to or lower than the theoretical values for the free ions in the trivalent oxidation states (Pr(3+), Nd(3+)).

  12. Chemistry Characterization of Jet Aircraft Engine Particulate by XPS: Results from APEX III

    NASA Technical Reports Server (NTRS)

    Vander Wal, Randy L.; Bryg, Victoria M.

    2014-01-01

    This paper reports XPS analysis of jet exhaust particulate from a B737, Lear, ERJ, and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and platforms. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20 percent or more. By lower resolution survey scans various elements including transition metals are identified along with lighter elements such as S, N, and O in the form of oxides. Burning additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their presence can be used as a tracer for identifying soots from aircraft engines as well as diagnostic for monitoring engine performance and wear.

  13. Chemistry characterization of jet aircraft engine particulate matter by XPS: Results from APEX III

    NASA Astrophysics Data System (ADS)

    Vander Wal, Randy L.; Bryg, Victoria M.; Huang, Chung-Hsuan

    2016-09-01

    This paper reports X-ray photoelectron spectroscopy (XPS) analysis of jet exhaust particulate matter (PM) from a B737, Lear, ERJ and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and powers. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20% or more. By survey scans various elements including transition metals are identified along with lighter elements such as S, N and O in the form of oxides. Additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their collective presence could serve as an environmental tracer for identifying PM originating from aircraft engines and serving as a diagnostic for engine performance and wear.

  14. The Structure and Function of Type III Secretion Systems

    PubMed Central

    Notti, Ryan Q.; Stebbins, C. Erec

    2015-01-01

    ARTICLE SUMMARY Type III secretion systems (T3SS) afford gram-negative bacteria a most intimate means of altering the biology of their eukaryotic hosts — the direct delivery of effector proteins from the bacterial cytoplasm to that of the eukaryote. This incredible biophysical feat is accomplished by nanosyringe “injectisomes,” which form a conduit across the three plasma membranes, peptidoglycan layer and extracellular space that form a barrier to the direct delivery of proteins from bacterium to host. The focus of this chapter is T3SS function at the structural level; we will summarize the core findings that have shaped our understanding of the structure and function of these systems and highlight recent developments in the field. In turn, we describe the T3SS secretory apparatus, consider its engagement with secretion substrates, and discuss the post-translational regulation of secretory function. Lastly, we close with a discussion of the future prospects for the interrogation of structure-function relationships in the T3SS. PMID:26999392

  15. Fatigue Reliability of Gas Turbine Engine Structures

    NASA Technical Reports Server (NTRS)

    Cruse, Thomas A.; Mahadevan, Sankaran; Tryon, Robert G.

    1997-01-01

    The results of an investigation are described for fatigue reliability in engine structures. The description consists of two parts. Part 1 is for method development. Part 2 is a specific case study. In Part 1, the essential concepts and practical approaches to damage tolerance design in the gas turbine industry are summarized. These have evolved over the years in response to flight safety certification requirements. The effect of Non-Destructive Evaluation (NDE) methods on these methods is also reviewed. Assessment methods based on probabilistic fracture mechanics, with regard to both crack initiation and crack growth, are outlined. Limit state modeling techniques from structural reliability theory are shown to be appropriate for application to this problem, for both individual failure mode and system-level assessment. In Part 2, the results of a case study for the high pressure turbine of a turboprop engine are described. The response surface approach is used to construct a fatigue performance function. This performance function is used with the First Order Reliability Method (FORM) to determine the probability of failure and the sensitivity of the fatigue life to the engine parameters for the first stage disk rim of the two stage turbine. A hybrid combination of regression and Monte Carlo simulation is to use incorporate time dependent random variables. System reliability is used to determine the system probability of failure, and the sensitivity of the system fatigue life to the engine parameters of the high pressure turbine. 'ne variation in the primary hot gas and secondary cooling air, the uncertainty of the complex mission loading, and the scatter in the material data are considered.

  16. Gallium(III) Tetraphenylporphyrinates Containing Hydrosulfide and Thiolate Ligands: Structural Models for Sulfur-Bound Iron(III) Hemes.

    PubMed

    Meininger, Daniel J; Chee-Garza, Max; Arman, Hadi D; Tonzetich, Zachary J

    2016-03-07

    Gallium(III) tetraphenylporphyrinates (TPP) containing anionic sulfur ligands have been prepared and characterized in the solid state and solution. The complexes serve as structural models for iron(III) heme sites containing sulfur coordination that otherwise prove challenging to synthesize due to the propensity for reduction to iron(II). The compounds prepared include the first well-characterized example of a trivalent metalloporphyrinate containing a terminal hydrosulfide ligand, [Ga(SH)(TPP)], as well as [Ga(SEt)(TPP)], [Ga(SPh)(TPP)], and [Ga(SSi(i)Pr3)(TPP)]. The stability of these compounds toward reduction has permitted an investigation of their solid-state structures and electrochemistry. The structural features and reaction chemistry of the complexes in relation to their iron(III) analogs is discussed.

  17. Structural and functional characterization of two unusual endonuclease III enzymes from Deinococcus radiodurans.

    PubMed

    Sarre, Aili; Ökvist, Mats; Klar, Tobias; Hall, David R; Smalås, Arne O; McSweeney, Sean; Timmins, Joanna; Moe, Elin

    2015-08-01

    While most bacteria possess a single gene encoding the bifunctional DNA glycosylase Endonuclease III (EndoIII) in their genomes, Deinococcus radiodurans possesses three: DR2438 (DrEndoIII1), DR0289 (DrEndoIII2) and DR0982 (DrEndoIII3). Here we have determined the crystal structures of DrEndoIII1 and an N-terminally truncated form of DrEndoIII3 (DrEndoIII3Δ76). We have also generated a homology model of DrEndoIII2 and measured activity of the three enzymes. All three structures consist of two all α-helical domains, one of which exhibits a [4Fe-4S] cluster and the other a HhH-motif, separated by a DNA binding cleft, similar to previously determined structures of endonuclease III from Escherichia coli and Geobacillus stearothermophilus. However, both DrEndoIII1 and DrEndoIII3 possess an extended HhH motif with extra helical features and an altered electrostatic surface potential. In addition, the DNA binding cleft of DrEndoIII3 seems to be less accessible for DNA interactions, while in DrEndoIII1 it seems to be more open. Analysis of the enzyme activities shows that DrEndoIII2 is most similar to the previously studied enzymes, while DrEndoIII1 seems to be more distant with a weaker activity towards substrate DNA containing either thymine glycol or an abasic site. DrEndoIII3 is the most distantly related enzyme and displays no detectable activity towards these substrates even though the suggested catalytic residues are conserved. Based on a comparative structural analysis, we suggest that the altered surface potential, shape of the substrate-binding pockets and specific amino acid substitutions close to the active site and in the DNA interacting loops may underlie the unexpected differences in activity.

  18. Assembly, structure, function and regulation of type III secretion systems.

    PubMed

    Deng, Wanyin; Marshall, Natalie C; Rowland, Jennifer L; McCoy, James M; Worrall, Liam J; Santos, Andrew S; Strynadka, Natalie C J; Finlay, B Brett

    2017-04-10

    Type III secretion systems (T3SSs) are protein transport nanomachines that are found in Gram-negative bacterial pathogens and symbionts. Resembling molecular syringes, T3SSs form channels that cross the bacterial envelope and the host cell membrane, which enable bacteria to inject numerous effector proteins into the host cell cytoplasm and establish trans-kingdom interactions with diverse hosts. Recent advances in cryo-electron microscopy and integrative imaging have provided unprecedented views of the architecture and structure of T3SSs. Furthermore, genetic and molecular analyses have elucidated the functions of many effectors and key regulators of T3SS assembly and secretion hierarchy, which is the sequential order by which the protein substrates are secreted. As essential virulence factors, T3SSs are attractive targets for vaccines and therapeutics. This Review summarizes our current knowledge of the structure and function of this important protein secretion machinery. A greater understanding of T3SSs should aid mechanism-based drug design and facilitate their manipulation for biotechnological applications.

  19. Structure of cam shaft for engine

    SciTech Connect

    Sato, M.; Nakamizo, K.; Mitadera, T.

    1989-02-21

    This patent describes the structure of a cam shaft for an engine having a crankshaft provided with a helical crank gear and a cam shaft provided with a helical cam gear meshing with the crank gear and rotatably supported at both ends thereof by journal bearing boxes, characterized inn that either one of the journal bearing boxes is communicated with a pressure oil supply passage, thereby causing the oil pressure produced within the one journal bearing box to act upon the end face of the cam shaft so that the cam shaft is normally biased in a constant axial direction.

  20. Cylinder head structure for internal combustion engines

    SciTech Connect

    Taguchi, T.; Takata, Y.; Tanaka, Y.

    1986-02-04

    This patent describes an engine cylinder head structure including a top wall formed with camshaft bearings, a bottom wall adapted to be attached to a cylinder block, and side walls connecting the top and bottom walls together. It also includes a cooling watter passage defined by the top, bottom and side walls, a transversely extending reinforcement rib formed in the top wall to project into the cooling water passage beneath each of the camshaft bearings and to extend between and interconnect the side walls.

  1. Structural Engineering Managers - Innovation Challenges for their Skills

    NASA Astrophysics Data System (ADS)

    Linkeschová, D.; Tichá, A.

    2015-11-01

    The profession of a structural engineer is highly responsible, because the consequences of a structural engineer's errors result not only in economic damage to the property and often irreversible damage to the environment, they can also lead to direct loss of lives. In the current turbulent, dynamically developing society the managerial methods of structural engineers should not stagnate at the level of the last century applications. This paper deals with the challenges which the ongoing century poses to structural engineers and managers. It compares the results of research regarding the current state of managerial skills of structural engineers in Czech building companies to the defined skills of the 21st century's managers according to the global research programme ITL Research and according to the Vision for the Future of Structural Engineering, drawn up by Structural Engineering Institute - SEI ASCE.

  2. 46 CFR 11.505 - Engineer officer structure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Engineer officer structure. 11.505 Section 11.505 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.505 Engineer officer structure...

  3. 46 CFR 11.505 - Engineer officer structure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Engineer officer structure. 11.505 Section 11.505 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.505 Engineer officer structure...

  4. 46 CFR 11.505 - Engineer officer structure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Engineer officer structure. 11.505 Section 11.505 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.505 Engineer officer structure...

  5. Band-Gap Engineering by III-V Infill in Sodalite

    NASA Astrophysics Data System (ADS)

    Trave, A.; Buda, F.; Fasolino, A.

    1996-12-01

    We study the structure of III-V clusters in sodalite by ab initio molecular dynamics (Car-Parrinello) and find strong bonding of the group III atoms to the oxygens of the cage with loss of tetrahedral order. The clusters introduce optically active states in the zeolite energy gap and turn it into a semiconductor with energy gap determined by its chemical nature rather than by quantum confinement. Within the local density approximation we find values of ~0.4 and ~1.9 eV for InAs and GaN clusters of the same size. We suggest that the growth of selected compounds in zeolite may lead to wide gap semiconductors for blue light emitting devices.

  6. Identification of protein structural elements responsible for the diversity of sequence preferences among Mini-III RNases.

    PubMed

    Głów, Dawid; Kurkowska, Małgorzata; Czarnecka, Justyna; Szczepaniak, Krzysztof; Pianka, Dariusz; Kappert, Verena; Bujnicki, Janusz M; Skowronek, Krzysztof J

    2016-12-07

    Many known endoribonucleases select their substrates based on the presence of one or a few specific nucleotides at or near the cleavage site. In some cases, selectivity is also determined by the structural features of the substrate. We recently described the sequence-specific cleavage of double-stranded RNA by Mini-III RNase from Bacillus subtilis in vitro. Here, we characterized the sequence specificity of eight other members of the Mini-III RNase family from different bacterial species. High-throughput analysis of the cleavage products of Φ6 bacteriophage dsRNA indicated subtle differences in sequence preference between these RNases, which were confirmed and characterized by systematic analysis of the cleavage kinetics of a set of short dsRNA substrates. We also showed that the sequence specificities of Mini-III RNases are not reflected by different binding affinities for cognate and non-cognate sequences, suggesting that target selection occurs predominantly at the cleavage step. We were able to identify two structural elements, the α4 helix and α5b-α6 loop that were involved in target selection. Characterization of the sequence specificity of the eight Mini-III RNases may provide a basis for better understanding RNA substrate recognition by Mini-III RNases and adopting these enzymes and their engineered derivatives as tools for RNA research.

  7. Identification of protein structural elements responsible for the diversity of sequence preferences among Mini-III RNases

    PubMed Central

    Głów, Dawid; Kurkowska, Małgorzata; Czarnecka, Justyna; Szczepaniak, Krzysztof; Pianka, Dariusz; Kappert, Verena; Bujnicki, Janusz M.; Skowronek, Krzysztof J.

    2016-01-01

    Many known endoribonucleases select their substrates based on the presence of one or a few specific nucleotides at or near the cleavage site. In some cases, selectivity is also determined by the structural features of the substrate. We recently described the sequence-specific cleavage of double-stranded RNA by Mini-III RNase from Bacillus subtilis in vitro. Here, we characterized the sequence specificity of eight other members of the Mini-III RNase family from different bacterial species. High-throughput analysis of the cleavage products of Φ6 bacteriophage dsRNA indicated subtle differences in sequence preference between these RNases, which were confirmed and characterized by systematic analysis of the cleavage kinetics of a set of short dsRNA substrates. We also showed that the sequence specificities of Mini-III RNases are not reflected by different binding affinities for cognate and non-cognate sequences, suggesting that target selection occurs predominantly at the cleavage step. We were able to identify two structural elements, the α4 helix and α5b-α6 loop that were involved in target selection. Characterization of the sequence specificity of the eight Mini-III RNases may provide a basis for better understanding RNA substrate recognition by Mini-III RNases and adopting these enzymes and their engineered derivatives as tools for RNA research. PMID:27924926

  8. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM -- PHASE III

    SciTech Connect

    Scott Chase; Daniel Olsen; Ted Bestor

    2005-03-01

    This report documents the third year's effort towards a 3-year program conducted by the Engines & Energy Conversion Laboratory (EECL) at Colorado State University (CSU) to develop micropilot ignition systems for existing pipeline compressor engines. Research activities for the overall program were conducted with the understanding that the efforts are to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. Commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. Two earlier phases of development precede this report. The objective for Phase I was to demonstrate the feasibility of retrofit micropilot ignition (RMI) systems for large bore, slow speed engines operating at low compression ratios under laboratory conditions at the EECL. The objective for Phase II was to further develop and optimize the micropilot ignition system at the EECL for large bore, slow speed engines operating at low compression ratios. These laboratory results were enhanced, then verified via a field demonstration project during Phase III of the Micropilot Ignition program. An Implementation Team of qualified engine retrofit service providers was assembled to install the retrofit micropilot ignition system for an engine operated by El Paso Pipeline Group at a compressor station near Window Rock, Arizona. Testing of this demonstration unit showed that the same benefits identified by laboratory testing at CSU, i.e., reduced fuel consumption and exhaust emissions (NOx, THC, CO, and CH2O). Installation efforts at Window Rock were completed towards the end of the budget period, which did not leave sufficient time to complete the durability testing. These efforts are ongoing, with funding provided by El Paso Pipeline Group, and the results will be documented in a report

  9. Solvation structure and thermodynamics for Pr(III), Nd(III) and Dy(III) complexes in ionic liquids evaluated by Raman spectroscopy and DFT calculation

    NASA Astrophysics Data System (ADS)

    Kuribara, Keita; Matsumiya, Masahiko; Tsunashima, Katsuhiko

    2016-12-01

    package. The bonding energy, ΔEb, was calculated as ΔEb = Etot(cluster) - Etot(RE3+) - nEtot([TFSA]-), and ΔEb ([Pr(III)(cis-TFSA)5]2-), ΔEb([Nd(III)(cis-TFSA)5]2-), and ΔEb([Dy(III)(cis-TFSA)5]2-) were calculated to be -4238.6 ± 6.8, -4362.3 ± 8.2, and -4284.2 ± 7.4 kJ mol-1, respectively. This series of structural results allows us to conclude that [Dy(III)(cis-TFSA)5]2- clusters are more stable state than the [Pr(III)(cis-TFSA)5]2- clusters in [P2225][TFSA]. Furthermore, the average atomic charges and the bond distances of these clusters were consistent with the thermodynamic properties.

  10. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH PERFORMANCE POWER SYSTEMS PHASE II AND III

    SciTech Connect

    1998-09-30

    This report presents work carried out under contract DE-AC22-95PC95144 "Engineering Development of Coal-Fired High Performance Systems Phase II and III." The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: à thermal efficiency (HHV) >47%; à NOx, SOx, and particulates <10% NSPS (New Source Performance Standard); à coal providing >65% of heat input; à all solid wastes benign; à cost of electricity <90% of present plants. Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase II, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: à Task 2.2 HITAF Air Heaters; à Task 6 HIPPS Commercial Plant Design Update.

  11. Genetically Engineered Frameshifted YopN-TyeA Chimeras Influence Type III Secretion System Function in Yersinia pseudotuberculosis

    PubMed Central

    Amer, Ayad A. A.; Costa, Tiago R. D.; Farag, Salah I.; Avican, Ummehan; Forsberg, Åke; Francis, Matthew S.

    2013-01-01

    Type III secretion is a tightly controlled virulence mechanism utilized by many gram negative bacteria to colonize their eukaryotic hosts. To infect their host, human pathogenic Yersinia spp. translocate protein toxins into the host cell cytosol through a preassembled Ysc-Yop type III secretion device. Several of the Ysc-Yop components are known for their roles in controlling substrate secretion and translocation. Particularly important in this role is the YopN and TyeA heterodimer. In this study, we confirm that Y. pseudotuberculosis naturally produce a 42 kDa YopN-TyeA hybrid protein as a result of a +1 frame shift near the 3 prime of yopN mRNA, as has been previously reported for the closely related Y. pestis. To assess the biological role of this YopN-TyeA hybrid in T3SS by Y. pseudotuberculosis, we used in cis site-directed mutagenesis to engineer bacteria to either produce predominately the YopN-TyeA hybrid by introducing +1 frame shifts to yopN after codon 278 or 287, or to produce only singular YopN and TyeA polypeptides by introducing yopN sequence from Y. enterocolitica, which is known not to produce the hybrid. Significantly, the engineered 42 kDa YopN-TyeA fusions were abundantly produced, stable, and were efficiently secreted by bacteria in vitro. Moreover, these bacteria could all maintain functionally competent needle structures and controlled Yops secretion in vitro. In the presence of host cells however, bacteria producing the most genetically altered hybrids (+1 frameshift after 278 codon) had diminished control of polarized Yop translocation. This corresponded to significant attenuation in competitive survival assays in orally infected mice, although not at all to the same extent as Yersinia lacking both YopN and TyeA proteins. Based on these studies with engineered polypeptides, most likely a naturally occurring YopN-TyeA hybrid protein has the potential to influence T3S control and activity when produced during Yersinia-host cell contact. PMID

  12. Genetically engineered frameshifted YopN-TyeA chimeras influence type III secretion system function in Yersinia pseudotuberculosis.

    PubMed

    Amer, Ayad A A; Costa, Tiago R D; Farag, Salah I; Avican, Ummehan; Forsberg, Åke; Francis, Matthew S

    2013-01-01

    Type III secretion is a tightly controlled virulence mechanism utilized by many gram negative bacteria to colonize their eukaryotic hosts. To infect their host, human pathogenic Yersinia spp. translocate protein toxins into the host cell cytosol through a preassembled Ysc-Yop type III secretion device. Several of the Ysc-Yop components are known for their roles in controlling substrate secretion and translocation. Particularly important in this role is the YopN and TyeA heterodimer. In this study, we confirm that Y. pseudotuberculosis naturally produce a 42 kDa YopN-TyeA hybrid protein as a result of a +1 frame shift near the 3 prime of yopN mRNA, as has been previously reported for the closely related Y. pestis. To assess the biological role of this YopN-TyeA hybrid in T3SS by Y. pseudotuberculosis, we used in cis site-directed mutagenesis to engineer bacteria to either produce predominately the YopN-TyeA hybrid by introducing +1 frame shifts to yopN after codon 278 or 287, or to produce only singular YopN and TyeA polypeptides by introducing yopN sequence from Y. enterocolitica, which is known not to produce the hybrid. Significantly, the engineered 42 kDa YopN-TyeA fusions were abundantly produced, stable, and were efficiently secreted by bacteria in vitro. Moreover, these bacteria could all maintain functionally competent needle structures and controlled Yops secretion in vitro. In the presence of host cells however, bacteria producing the most genetically altered hybrids (+1 frameshift after 278 codon) had diminished control of polarized Yop translocation. This corresponded to significant attenuation in competitive survival assays in orally infected mice, although not at all to the same extent as Yersinia lacking both YopN and TyeA proteins. Based on these studies with engineered polypeptides, most likely a naturally occurring YopN-TyeA hybrid protein has the potential to influence T3S control and activity when produced during Yersinia-host cell contact.

  13. Structural influences on the exchange coupling and zero-field splitting in the single-molecule magnet [Mn(III)6Mn(III)]3+.

    PubMed

    Hoeke, Veronika; Heidemeier, Maik; Krickemeyer, Erich; Stammler, Anja; Bögge, Hartmut; Schnack, Jürgen; Glaser, Thorsten

    2012-11-07

    A comprehensive synthetic, structural, mass spectrometrical, FT-IR and UV/Vis spectroscopic, electrochemical, and magnetic study on [Mn(III)(6)Mn(III)](3+) (= [{(talen(t-Bu(2)))Mn(III)(3)}(2){Mn(III)(CN)(6)}](3+)) is presented. The high stability of [Mn(III)(6)Mn(III)](3+) in solution allows the preparation of different salts and solvates: [Mn(III)(6)Mn(III)](BPh(4))(3)·3MeOH·3MeCN·3Et(2)O (), [Mn(III)(6)Mn(III)(MeOH)(4)](BPh(4))(3)·5MeOH (), [Mn(III)(6)Mn(III)(MeOH)(6)](BF(4))(3)·9MeOH (), [Mn(III)(6)Mn(III)(MeOH)(6)](PF(6))(2)(OAc)·11MeOH (), and [Mn(III)(6)Mn(III)(MeOH)(6)](lactate)(3)·5MeOH·10H(2)O (). The molecular structure of [Mn(III)(6)Mn(III)](3+) is closely related to the already published [Mn(III)(6)M(c)](3+) complexes (M(c) = Cr(III), Fe(III), Co(III)). ESI mass spectra exhibit the signal of the [{(talen(t-Bu(2)))Mn(III)(3)}(2){Mn(III)(CN)(6)}](3+) trication. FT-IR spectra show the characteristic bands of the triplesalen ligand in [Mn(III)(6)M(c)](3+) and the symmetric ν(C≡N) vibration of the [Mn(III)(CN)(6)](3-) unit at 2135 cm(-1). UV/Vis spectra are dominated by intense transitions of the trinuclear Mn(III)(3) triplesalen subunits above 20,000 cm(-1). The electrochemical studies establish the occurrence of ligand-centered oxidations at ≈1.0 V vs. Fc(+)/Fc, an oxidation of the central Mn(III) at 0.78 V, and a series of reductions of the terminal Mn(III) ions between -0.6 and -1.2 V. AC magnetic measurements indicate single-molecule magnet (SMM) behavior for all compounds. The DC magnetic data are analyzed by a full-matrix diagonalization of the appropriate spin-Hamiltonian including isotropic exchange, zero-field splitting with full consideration of the relative orientation of the D-tensors, and Zeeman interaction, taking into account the diamagnetic nature of the central Mn(III) at low temperatures as inferred from a previous ab initio study. The spin-Hamiltonian simulations indicate Mn(III)-Mn(III) interactions in the -0.37 to -0.70 cm

  14. THE CRYSTAL STRUCTURE OF ANTIMONY (III) SULFOBROMIDE, SBSBR,

    DTIC Science & Technology

    ANTIMONY COMPOUNDS, *SULFUR COMPOUNDS, CRYSTAL STRUCTURE , CRYSTAL STRUCTURE , BROMIDES, SYMMETRY(CRYSTALLOGRAPHY), FOURIER ANALYSIS, MOLECULAR STRUCTURE, CRYSTAL LATTICES, CHEMICAL BONDS, X RAY DIFFRACTION.

  15. Advanced fabrication techniques for cooled engine structures

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.

    1978-01-01

    An improved design for regeneratively cooled engine structures was identified. This design uses photochemically machined (PCM) coolant passages. It permits the braze joint to be placed in a relatively cool area, remote from the critical hot face sheet. The geometry of the passages at the face sheet also minimizes stress concentration and, therefore, enhances the low cycle fatigue performance. The two most promising alloys identified for this application are Inconel 617 and Nickel 201. Inconel 617 was selected because it has excellent creep rupture properties, while Nickel 201 was selected because of its predicted good performance under low cycle fatigue loading. The fabrication of the PCM coolant passages in both Inconel 617 and Nickel 201 was successfully developed. During fabrication of Inconel 617, undesirable characteristics were observed in the braze joints. A development program to resolve this condition was undertaken and led to definition of an isothermal solidification process for joining Inconel 617 panels. This process produced joints which approach parent metal strength and homogeneity.

  16. 1. Photographic copy of engineering drawing showing structure of Test ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photographic copy of engineering drawing showing structure of Test Stand 'B' (4215/E-16), also known as the 'Short Snorter.' California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Structural Addition - Bldg. E-12, Edwards Test Station,' drawing no. E12/1-1, 8 August 1957. - Jet Propulsion Laboratory Edwards Facility, Test Stand B, Edwards Air Force Base, Boron, Kern County, CA

  17. Investigating the Structure of the WJ-III Cognitive at School Age

    ERIC Educational Resources Information Center

    Dombrowski, Stefan C.

    2013-01-01

    During its development, the Woodcock-Johnson, Third Edition Cognitive (WJ-III Cognitive; McGrew & Woodcock, 2001) was never subjected to structural analysis using exploratory and higher order factor analyses. Instead, confirmatory factor analyses were conducted on separate sets of WJ-III correlation matrices, yielding a seven-factor model…

  18. Investigating the Structure of the WJ-III Cognitive at School Age

    ERIC Educational Resources Information Center

    Dombrowski, Stefan C.

    2013-01-01

    During its development, the Woodcock-Johnson, Third Edition Cognitive (WJ-III Cognitive; McGrew & Woodcock, 2001) was never subjected to structural analysis using exploratory and higher order factor analyses. Instead, confirmatory factor analyses were conducted on separate sets of WJ-III correlation matrices, yielding a seven-factor model…

  19. Crystal structures of salicylideneguanylhydrazinium chloride and its copper(II) and cobalt(III) chloride complexes

    SciTech Connect

    Chumakov, Yu. M. Tsapkov, V. I.; Bocelli, G.; Antosyak, B. Ya.; Shova, S. G.; Gulea, A. P.

    2006-01-15

    The crystal structures of salicylideneguanylhydrazinium chloride hydrate hemiethanol solvate (I), salicylideneguanylhydrazinium trichloroaquacuprate(II) (II), and bis(salicylideneguanylhydrazino)cobalt(III) chloride trihydrate (III) are determined using X-ray diffraction. The structures of compounds I, II, and III are solved by direct methods and refined using the least-squares procedure in the anisotropic approximation for the non-hydrogen atoms to the final factors R = 0.0597, 0.0212, and 0.0283, respectively. In the structure of compound I, the monoprotonated molecules and chlorine ions linked by hydrogen bonds form layers aligned parallel to the (010) plane. In the structure of compound II, the salicylaldehyde guanylhydrazone cations and polymer chains consisting of trichloroaquacuprate(II) anions are joined by an extended three-dimensional network of hydrogen bonds. In the structure of compound III, the [Co(LH){sub 2}]{sup +} cations, chloride ions, and molecules of crystallization water are linked together by a similar network.

  20. Engineering Encounters: Building a Spaghetti Structure

    ERIC Educational Resources Information Center

    Llewellyn, Douglas; Pray, Sandra; DeRose, Rob; Ottman, William

    2016-01-01

    This column presents ideas and techniques to enhance science teaching. In this month's issue an upper elementary Science, technology, engineering, and math (STEM) challenge brings an engineer into the classroom while emphasizing cooperation, communication, and creativity. STEM activities come in various shapes and sizes. Some are quite involved…

  1. Engineering Encounters: Building a Spaghetti Structure

    ERIC Educational Resources Information Center

    Llewellyn, Douglas; Pray, Sandra; DeRose, Rob; Ottman, William

    2016-01-01

    This column presents ideas and techniques to enhance science teaching. In this month's issue an upper elementary Science, technology, engineering, and math (STEM) challenge brings an engineer into the classroom while emphasizing cooperation, communication, and creativity. STEM activities come in various shapes and sizes. Some are quite involved…

  2. Strain-engineered novel III-N electronic devices with high quality dielectric/semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Khan, M. Asif; Shur, M. S.; Simin, G.

    2003-11-01

    over AlGaN with low interface state densities. They have then been used to demonstrate III-N insulating gate transistors (MOSHFET (SiO2) and MISHFET (Si3N4) with gate leakage currents 4-6 order less than those for conventional GaN-AlGaN HFETs. The introduction of the thin insulator layers (less then 100 Å) under the gate increases the threshold voltage by 2-3 V. In addition, it reduces the peak transconductance gm. However the unity cut-off frequency, the gain and the rf-powers remain unaffected as the gm/Cgs (gate-source capacitance) ratio remains unchanged. In addition to managing the defects and gate leakage currents we have also employed InGaN channel double heterojunction structures (AlInGaN-InGaN-GaN) to confine the carriers thereby reducing the spillover into trappings states. These InGaN based MOS-DHFETs exhibited no current-collapse, extremely low gate leakage currents (<10-10 A/mm) and 10-26 GHz rf-powers in excess of 6 W/mm. We have also demonstrated the scalability and stable operation of our new and innovative InGaN based insulating gate heterojunction field effect transistor approach. In this paper we will review the III-N heterojunction field-effect transistors progress and pioneering innovations including the excellent work from several research groups around the world. (

  3. Effect of III-V on insulator structure on quantum well intermixing

    NASA Astrophysics Data System (ADS)

    Takashima, Seiya; Ikku, Yuki; Takenaka, Mitsuru; Takagi, Shinichi

    2016-04-01

    To achieve the monolithic active/passive integration on the III-V CMOS photonics platform, quantum well intermixing (QWI) on III-V on insulator (III-V-OI) is studied for fabricating multi-bandgap III-V-OI wafers. By optimizing the QWI condition for a 250-nm-thick III-V layer, which contains a five-layer InGaAsP-based multi-quantum well (MQW) with 80-nm-thick indium phosphide (InP) cladding layers, we have successfully achieved a photoluminescence (PL) peak shift of over 100 nm on the III-V-OI wafer. We have also found that the progress of QWI on the III-V-OI wafer is slower than that on the InP bulk wafer regardless of the buried oxide (BOX) thickness, bonding interface materials, and handle wafers. We have also found that the progress of QWI on the III-V-OI wafer is slower than that on the InP bulk wafer regardless of the buried oxide (BOX) thickness, bonding interface materials, and bulk support wafers on which the III-V-OI structure is formed (handle wafers). By comparing between the measured PL shift and simulated diffusions of phosphorus vacancies and interstitials during QWI, we have found that the slow QWI progress in the III-V-OI wafer is probably attributed to the enhanced recombination of vacancies and interstitials by the diffusion blocking of vacancies and interstitials at the BOX interface.

  4. Structure of cellular ESCRT-III spirals and their relationship to HIV budding.

    PubMed

    Cashikar, Anil G; Shim, Soomin; Roth, Robyn; Maldazys, Michael R; Heuser, John E; Hanson, Phyllis I

    2014-05-30

    The ESCRT machinery along with the AAA+ ATPase Vps4 drive membrane scission for trafficking into multivesicular bodies in the endocytic pathway and for the topologically related processes of viral budding and cytokinesis, but how they accomplish this remains unclear. Using deep-etch electron microscopy, we find that endogenous ESCRT-III filaments stabilized by depleting cells of Vps4 create uniform membrane-deforming conical spirals which are assemblies of specific ESCRT-III heteropolymers. To explore functional roles for ESCRT-III filaments, we examine HIV-1 Gag-mediated budding of virus-like particles and find that depleting Vps4 traps ESCRT-III filaments around nascent Gag assemblies. Interpolating between the observed structures suggests a new role for Vps4 in separating ESCRT-III from Gag or other cargo to allow centripetal growth of a neck constricting ESCRT-III spiral.

  5. Reactions and structural characterization of gold(III) complexes with amino acids, peptides and proteins.

    PubMed

    Glišić, Biljana Đ; Rychlewska, Urszula; Djuran, Miloš I

    2012-06-21

    The present review article highlights recent findings in the field of gold(III) complexes with amino acids, peptides and proteins. The first section of this article provides an overview of the gold(III) reactions with amino acids, such as glycine, alanine, histidine, cysteine and methionine. The second part of the review is mainly focused on the results achieved in the mechanistic studies of the reactions between gold(III) and different peptides and structural characterization of gold(III)-peptide complexes as the final products in these reactions. The last section of this article deals with the reactions of gold(III) complexes with proteins as primary targets for cytotoxic gold compounds. Systematic summaries of these results contribute to the future development of gold(III) complexes as potential antitumor agents and also have importance in relation to the severe toxicity of gold-based drugs.

  6. Engineering Property Prediction Tools for Tailored Polymer Composite Structures

    SciTech Connect

    Nguyen, Ba Nghiep; Foss, Peter; Wyzgoski, Michael; Trantina, Gerry; Kunc, Vlastimil; Schutte, Carol; Smith, Mark T.

    2009-12-23

    This report summarizes our FY 2009 research activities for the project titled:"Engineering Property Prediction Tools for Tailored Polymer Composite Structures." These activities include (i) the completion of the development of a fiber length attrition model for injection-molded long-fiber thermoplastics (LFTs), (ii) development of the a fatigue damage model for LFTs and its implementation in ABAQUS, (iii) development of an impact damage model for LFTs and its implementation in ABAQUS, (iv) development of characterization methods for fatigue testing, (v) characterization of creep and fatigue responses of glass-fiber/polyamide (PA6,6) and glass-fiber/polypropylene (PP), (vi) characterization of fiber length distribution along the flow length of glass/PA6,6 and glass-fiber/PP, and (vii) characterization of impact responses of glass-fiber/PA6,6. The fiber length attrition model accurately captures the fiber length distribution along the flow length of the studied glass-fiber/PP material. The fatigue damage model is able to predict the S-N and stiffness reduction data which are valuable to the fatigue design of LFTs. The impact damage model correctly captures damage accumulation observed in experiments of glass-fiber/PA6,6 plaques.Further work includes validations of these models for representative LFT materials and a complex LFT part.

  7. Structural Basis for Substrate Binding and the Catalytic Mechanism of Type III Pantothenate Kinase

    SciTech Connect

    Yang, Kun; Strauss, Erick; Huerta, Carlos; Zhang, Hong

    2008-07-15

    Pantothenate kinase (PanK) catalyzes the first step of the universal five-step coenzyme A (CoA) biosynthetic pathway. The recently characterized type III PanK (PanK-III, encoded by the coaX gene) is distinct in sequence, structure and enzymatic properties from both the long-known bacterial type I PanK (PanK-I, exemplified by the Escherichia coli CoaA protein) and the predominantly eukaryotic type II PanK (PanK-II). PanK-III enzymes have an unusually high K{sub m} for ATP, are resistant to feedback inhibition by CoA, and are unable to utilize the N-alkylpantothenamide family of pantothenate analogues as alternative substrates, thus making type III PanK ineffective in generating CoA analogues as antimetabolites in vivo. Previously, we reported the crystal structure of the PanK-III from Thermotoga maritima and identified it as a member of the 'acetate and sugar kinase/heat shock protein 70/actin' (ASKHA) superfamily. Here we report the crystal structures of the same PanK-III in complex with one of its substrates (pantothenate), its product (phosphopantothenate) as well as a ternary complex structure of PanK-III with pantothenate and ADP. These results are combined with isothermal titration calorimetry experiments to present a detailed structural and thermodynamic characterization of the interactions between PanK-III and its substrates ATP and pantothenate. Comparison of substrate binding and catalytic sites of PanK-III with that of eukaryotic PanK-II revealed drastic differences in the binding modes for both ATP and pantothenate substrates, and suggests that these differences may be exploited in the development of new inhibitors specifically targeting PanK-III.

  8. Rhombus-shaped tetranuclear [Ln4] complexes [Ln = Dy(III) and Ho(III)]: synthesis, structure, and SMM behavior.

    PubMed

    Chandrasekhar, Vadapalli; Hossain, Sakiat; Das, Sourav; Biswas, Sourav; Sutter, Jean-Pascal

    2013-06-03

    The reaction of a new hexadentate Schiff base hydrazide ligand (LH3) with rare earth(III) chloride salts in the presence of triethylamine as the base afforded two planar tetranuclear neutral complexes: [{(LH)2Dy4}(μ2-O)4](H2O)8·2CH3OH·8H2O (1) and [{(LH)2Ho4}(μ2-O)4](H2O)8·6CH3OH·4H2O (2). These neutral complexes possess a structure in which all of the lanthanide ions and the donor atoms of the ligand remain in a perfect plane. Each doubly deprotonated ligand holds two Ln(III) ions in its two distinct chelating coordination pockets to form [LH(Ln)2](4+) units. Two such units are connected by four [μ2-O](2-) ligands to form a planar tetranuclear assembly with an Ln(III)4 core that possesses a rhombus-shaped structure. Detailed static and dynamic magnetic analysis of 1 and 2 revealed single-molecule magnet (SMM) behavior for complex 1. A peculiar feature of the χM" versus temperature curve is that two peaks that are frequency-dependent are revealed, indicating the occurrence of two relaxation processes that lead to two energy barriers (16.8 and 54.2 K) and time constants (τ0 = 1.4 × 10(-6) s, τ0 = 7.2 × 10(-7) s). This was related to the presence of two distinct geometrical sites for Dy(III) in complex 1.

  9. Distinct molecular structures of nuclear class I, II, and III DNA-dependent RNA polymerases.

    PubMed

    Sklar, V E; Schwartz, L B; Roeder, R G

    1975-01-01

    Class III RNA polymerases purified from the murine plasmacytoma MOPC 315 and from Xenopus laevis ovaries were compared. The subunit structures of the chromatographically distinct murine enzymes IIIA and IIIB were indistinguishable and were remarkably similar to that of the amphibian enzyme III. The plasmacytoma class III RNA polymerases were also compared with purified plasmacytoma RNA polymerases I and II. Sedimentation studies indicated that RNA polymerase III si significantly larger than RNA polymerase II, which is slightly larger than RNA polymerase I. Structural analyses showed that the molecular weights of the large subunits present in the class III enzymes (138,000 and 155,000) differ from those of the class II enzymes (140,000 and either 170,000, 205,000, or 240,000) and from those of the class I enzymes (117,000 and 195,000). Some low-molecular-weight subunits are also unique to each enzyme class. These results clearly distinguish the class I, II, and III enzymes on a structural basis. In addition, polypeptides of molecular weight 29,000 and 19,000 were found in all enzyme classes, a polypeptide of molecular weight 52,000 was found only in class I and III enzymes, and a polypeptide of molecular weight 41,000 was found only in class II and III enzymes. These findings are discussed in terms of the function and regulation of the RNA polymerases.

  10. Structures of restriction endonuclease HindIII in complex with its cognate DNA and divalent cations.

    PubMed

    Watanabe, Nobuhisa; Takasaki, Yozo; Sato, Chika; Ando, Shoji; Tanaka, Isao

    2009-12-01

    The three-dimensional crystal structures of HindIII bound to its cognate DNA with and without divalent cations were solved at 2.17 and 2.00 A resolution, respectively. HindIII forms a dimer. The structures showed that HindIII belongs to the EcoRI-like (alpha-class) subfamily of type II restriction endonucleases. The cognate DNA-complex structures revealed the specific DNA-recognition mechanism of HindIII by which it recognizes the palindromic sequence A/AGCTT. In the Mg(2+) ion-soaked structure the DNA was cleaved and two ions were bound at each active site, corresponding to the two-metal-ion mechanism.

  11. Effects of Humidity on Non-Hermetically Packaged III-V Structures and Devices

    NASA Technical Reports Server (NTRS)

    Leon, R.; Martin, S.; Lee, T.; Okuno, J.; Ruiz, R.; Gauldin, R.; Gaidis, M.; Smith, R.

    1999-01-01

    High humidity and temperature test (known as 85/85 tests) were performed on various III-V devices and structures to determine environmental effects in non-hermetically packaged GaAs membrane mixer diodes.

  12. Structure and interactions of fish type III antifreeze protein in solution.

    PubMed

    Salvay, Andrés G; Gabel, Frank; Pucci, Bernard; Santos, Javier; Howard, Eduardo I; Ebel, Christine

    2010-07-21

    It has been suggested that above a critical protein concentration, fish Type III antifreeze protein (AFP III) self-assembles to form micelle-like structures that may play a key role in antifreeze activity. To understand the complex activity of AFP III, a comprehensive description of its association state and structural organization in solution is necessary. We used analytical ultracentrifugation, analytical size-exclusion chromatography, and dynamic light scattering to characterize the interactions and homogeneity of AFP III in solution. Small-angle neutron scattering was used to determine the low-resolution structure in solution. Our results clearly show that at concentrations up to 20 mg mL(-1) and at temperatures of 20 degrees C, 6 degrees C, and 4 degrees C, AFP III is monomeric in solution and adopts a structure compatible with that determined by crystallography. Surface tension measurements show a propensity of AFP III to localize at the air/water interface, but this surface activity is not correlated with any aggregation in the bulk. These results support the hypothesis that each AFP III molecule acts independently of the others, and that specific intermolecular interactions between monomers are not required for binding to ice. The lack of attractive interactions between monomers may be functionally important, allowing for more efficient binding and covering of the ice surface.

  13. Structure and Interactions of Fish Type III Antifreeze Protein in Solution

    PubMed Central

    Salvay, Andrés G.; Gabel, Frank; Pucci, Bernard; Santos, Javier; Howard, Eduardo I.; Ebel, Christine

    2010-01-01

    Abstract It has been suggested that above a critical protein concentration, fish Type III antifreeze protein (AFP III) self-assembles to form micelle-like structures that may play a key role in antifreeze activity. To understand the complex activity of AFP III, a comprehensive description of its association state and structural organization in solution is necessary. We used analytical ultracentrifugation, analytical size-exclusion chromatography, and dynamic light scattering to characterize the interactions and homogeneity of AFP III in solution. Small-angle neutron scattering was used to determine the low-resolution structure in solution. Our results clearly show that at concentrations up to 20 mg mL−1 and at temperatures of 20°C, 6°C, and 4°C, AFP III is monomeric in solution and adopts a structure compatible with that determined by crystallography. Surface tension measurements show a propensity of AFP III to localize at the air/water interface, but this surface activity is not correlated with any aggregation in the bulk. These results support the hypothesis that each AFP III molecule acts independently of the others, and that specific intermolecular interactions between monomers are not required for binding to ice. The lack of attractive interactions between monomers may be functionally important, allowing for more efficient binding and covering of the ice surface. PMID:20643081

  14. Lanthanide ion probes of structure in biology. Environmentally sensitive fine structure in laser-induced terbium(III) luminescence.

    PubMed

    Sudnick, D R; Horrocks, W D

    1979-05-23

    The 488 nm line of the CW argon ion laser provides a convenient visible source for the direct excitation of the emissive 5D4 state of the Tb(III) ion. Room temperature emission spectra of Tb(III) in a variety of environments have been examined under relatively high resolution. The samples studied include structurally well-characterized crystalline solids, model chelate complexes in solution and Tb(III) bound to the enzyme thermolysin and the protein parvalbumin. The fine structure in the emissions is caused by ligand field splittings of both ground and excited state J manifolds. These spectra provide signatures sensitive to the immediate coordination environment of the Tb(III) ion. Solid state/solution state structural comparisons are made. The emission fine structure reveal differences between the EF side calcium-binding sites of parvalbumin and the calcium site 1 of thermolysin.

  15. Effects of Structural Flexibility on Aircraft-Engine Mounts

    NASA Technical Reports Server (NTRS)

    Phillips, W. H.

    1986-01-01

    Analysis extends technique for design of widely used type of vibration-isolating mounts for aircraft engines, in which rubber mounting pads located in plane behind center of gravity of enginepropeller combination. New analysis treats problem in statics. Results of simple approach useful in providing equations for design of vibrationisolating mounts. Equations applicable in usual situation in which engine-mount structure itself relatively light and placed between large mass of engine and other heavy components of airplane.

  16. Genetically engineered T cells to target EGFRvIII expressing glioblastoma

    PubMed Central

    Bullain, Szofia S.; Sahin, Ayguen; Szentirmai, Oszkar; Sanchez, Carlos; Lin, Ning; Baratta, Elizabeth; Waterman, Peter; Weissleder, Ralph; Mulligan, Richard C.

    2009-01-01

    Glioblastoma remains a significant therapeutic challenge, warranting further investigation of novel therapies. We describe an immunotherapeutic strategy to treat glioblastoma based on adoptive transfer of genetically modified T-lymphocytes (T cells) redirected to kill EGFRvIII expressing gliomas. We constructed a chimeric immune receptor (CIR) specific to EGFRvIII, (MR1-ζ). After in vitro selection and expansion, MR1-ζ genetically modified primary human T-cells specifically recognized EGFRvIII-positive tumor cells as demonstrated by IFN-γ secretion and efficient tumor lysis compared to control CIRs defective in EGFRvIII binding (MRB-ζ) or signaling (MR1-delζ). MR1-ζ expressing T cells also inhibited EGFRvIII-positive tumor growth in vivo in a xenografted mouse model. Successful targeting of EGFRvIII-positive tumors via adoptive transfer of genetically modified T cells may represent a new immunotherapy strategy with great potential for clinical applications. PMID:19387557

  17. Molecular tectonics: crystal engineering of mixed valence Fe(II)/Fe(III) solid solutions.

    PubMed

    Dechambenoit, Pierre; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2010-02-14

    Based on isostructurality between crystals formed upon combining the dicationic tecton 2 with either M(3)Fe(III)(CN)(6) or M(4)Fe(II)(CN)(6) (M = Cs), a rare example of an H-bonded mixed valence Fe(ii)-Fe(iii) solid solution ((Cs(2)2(3)-[Fe(II)(CN)(6)](2))(0.83)(2(3)-[Fe(III)(CN)(6)](2))(0.17))) and curious necklace-like composite crystals were generated.

  18. Flight Investigation of the Cooling Characteristics of a Two-row Radial Engine Installation III : Engine Temperature Distribution

    NASA Technical Reports Server (NTRS)

    Rennak, Robert M; Messing, Wesley E; Morgan, James E

    1946-01-01

    The temperature distribution of a two-row radial engine in a twin-engine airplane has been investigated in a series of flight tests. The test engine was operated over a wide range of conditions at density altitudes of 5000 and 20,000 feet; quantitative results are presented showing the effects of flight and engine variables upon average engine temperature and over-all temperature spread. Discussions of the effect of the variables on the shape of the temperature patterns and on the temperature distribution of individual cylinders are also included. The results indicate that, for the tests conducted, the temperature distribution patterns were chiefly determined by the fuel-air ratio and cooling-air distributions. It was possible to calculate individual cylinder temperature, on the assumption of equal power distribution among cylinders, to within an average of plus or minus 14 degrees F. of the actual temperature. A considerable change occurred in either the spread or the thrust axis, the average engine fuel-air ratio, the engine speed, the power, or the blower ratio. Smaller effects on the temperature pattern were noticed with a change in cowl-flap opening and altitude. In most of the tests, a change in conditions affected the temperature of the barrels less than that of the heads. The variation of flight and engine variables had a negligible effect on the temperature distributions of the individual cylinders. (author)

  19. Head structure for OHC type internal combustion engine

    SciTech Connect

    Arakawa, T.; Kato, M.; Watanabe, K.

    1987-04-28

    A head structure is described for an OHC type internal combustion engine, comprising, a cam case fixed to a cylinder head for the engine, a bearing portions provided on the cam case for rotatably supporting a valve operating camshaft, a rocker shaft for rockably supporting valve rocker arms, and the rocker shaft being fixed to the bearing portions by bolts.

  20. Spectroelectrochemical insights into structural and redox properties of immobilized endonuclease III and its catalytically inactive mutant.

    PubMed

    Moe, Elin; Rollo, Filipe; Silveira, Célia M; Sezer, Murat; Hildebrandt, Peter; Todorovic, Smilja

    2018-01-05

    Endonuclease III is a Fe-S containing bifunctional DNA glycosylase which is involved in the repair of oxidation damaged DNA. Here we employ surface enhanced IR spectroelectrochemistry and electrochemistry to study the enzyme from the highly radiation- and desiccation-resistant bacterium Deinococcus radiodurans (DrEndoIII2). The experiments are designed to shed more light onto specific parameters that are currently proposed to govern damage search and recognition by endonucleases III. We demonstrate that electrostatic interactions required for the redox activation of DrEndoIII2 may result in high electric fields that alter its structural and thermodynamic properties. Analysis of inactive DrEndoIII2 (K132A/D150A double mutant) interacting with undamaged DNA, and the active enzyme interacting with damaged DNA also indicate that the electron transfer is modulated by subtle differences in the protein-DNA complex. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Syntheses, structures, and spectroscopic properties of plutonium and americium phosphites and the redetermination of the ionic radii of Pu(III) and Am(III).

    PubMed

    Cross, Justin N; Villa, Eric M; Wang, Shuao; Diwu, Juan; Polinski, Matthew J; Albrecht-Schmitt, Thomas E

    2012-08-06

    A series of isotypic rare earth phosphites (RE = Ce(III), Pr(III), Nd(III), Pu(III), or Am(III)) with the general formulas RE(2)(HPO(3))(3)(H(2)O) along with a Pu(IV) phosphite, Pu[(HPO(3))(2)(H(2)O)(2)], have been prepared hydrothermally via reactions of RECl(3) with phosphorous acid. The structure of RE(2)(HPO(3))(3)(H(2)O) features a face-sharing interaction of eight- and nine-coordinate rare earth polyhedra. By use of the crystallographic data from the isotypic series along with data from previously reported isotypic series, the ionic radii for higher coordinate Pu(III) and Am(III) were calculated. The (VIII)Pu(III) radius was calculated as 1.112 ± 0.004 Å, and the (IX)Pu(III) radius was calculated to be 1.165 ± 0.002 Å. The (VIII)Am(III) radius was calculated as 1.108 ± 0.004 Å, and the (IX)Am(III) radius was calculated as 1.162 ± 0.002 Å.

  2. 15. Photocopy of Engineering Drawing, Structural Steel Details (from City ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopy of Engineering Drawing, Structural Steel Details (from City of Norton Shores) - William S. Antisdale Memorial State Reward Bridge, Spanning Mona Lake at Henry Street, Norton Shores, Muskegon County, MI

  3. Information and telecommunication system for monitoring of hydraulic engineering structures

    NASA Astrophysics Data System (ADS)

    Pavlycheva, Nadezhda K.; Akhmetgaleeva, Railia R.; Muslimov, Eduard R.; Murav'eva, Elena V.; Peplov, Artem A.; Sibgatulina, Dina S.

    2016-03-01

    In this article, we present the information and telecommunications system that allows to carry out real-time monitoring of the quality and quantity of hydraulic engineering structures in order to reduce the risk of emergencies caused by environmental damage.

  4. Fabrication of novel III-N and III-V modulator structures by ECR plasma etching

    SciTech Connect

    Pearton, S.J.; Abernathy, C.R.; MacKenzie, J.D.

    1995-12-01

    Quantum well microdisk laser structures have been fabricated in the GaN/InGaN, GaAs/AlGaAs and GaAs/InGaP systems using a combination of ECR dry etching (Cl{sub 2}/CH{sub 4}/H{sub 2}/Ar, BCl{sub 3}/Ar or CH{sub 4}/H{sub 2}/Ar plasma chemistries respectively) and subsequent wet chemical etching of a buffer layer underlying the quantum wells. While wet etchants such as HF/H{sub 2}O and HCl/HNO{sub 3}/H{sub 2} O are employed for AlGaAs and InGaP, respectively, a new KOH based solution has been developed for AlN which is completely selective over both GaN and InGaN. Typical mask materials include PR or SiN{sub x}, while the high surface recombination velocity of exposed AlGaAs ({approximately} 10{sup 5} cm{center_dot}sec {sup {minus}1}) requires encapsulation with ECR-CVD SiN{sup x} to stabilize the optical properties of the modulators.

  5. Quantum engineering of superconducting structures: Principles, promise and problems

    NASA Astrophysics Data System (ADS)

    Zagoskin, Alexandre

    2017-07-01

    Quantum technologies went through an explosive development since the beginning of the century. The progress in the field of superconducting quantum structures was especially fast. As the result, the design and characterization of large quantum coherent structures became an engineering problem. We will discuss the current status of the emerging discipline of quantum engineering and possible ways of meeting its main challenge, the fundamental impossibility of an efficient modelling of a quantum system using classical means.

  6. Aero/structural tailoring of engine blades (AERO/STAEBL)

    NASA Technical Reports Server (NTRS)

    Brown, K. W.

    1988-01-01

    This report describes the Aero/Structural Tailoring of Engine Blades (AERO/STAEBL) program, which is a computer code used to perform engine fan and compressor blade aero/structural numerical optimizations. These optimizations seek a blade design of minimum operating cost that satisfies realistic blade design constraints. This report documents the overall program (i.e., input, optimization procedures, approximate analyses) and also provides a detailed description of the validation test cases.

  7. Structural dynamic analysis of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Scott, L. P.; Jamison, G. T.; Mccutcheon, W. A.; Price, J. M.

    1981-01-01

    This structural dynamic analysis supports development of the SSME by evaluating components subjected to critical dynamic loads, identifying significant parameters, and evaluating solution methods. Engine operating parameters at both rated and full power levels are considered. Detailed structural dynamic analyses of operationally critical and life limited components support the assessment of engine design modifications and environmental changes. Engine system test results are utilized to verify analytic model simulations. The SSME main chamber injector assembly is an assembly of 600 injector elements which are called LOX posts. The overall LOX post analysis procedure is shown.

  8. A model of the molecular structure of toxin III from Anemonia sulcata.

    PubMed

    Smythies, J R

    1981-06-01

    A Chou and Fasman analysis of the Toxin III from Anemonia sulcata reveals that this short polypeptide (27 residues) probably is mostly made up of a nearly continuous beta-turn structure (7 beta-turns). This structure allows only one possible solution of disulfide bond formation (3-23, 4-17, 6-17). The resulting rigid structure has very few degrees of freedom. Molecular models indicate that one side of the molecule bearing tyr(7), trp(8), pro(25), glu(20) and lys(20) is very similar in its three-dimensional structure to that part of the molecule of variant III toxin from Centruroides sculpturatus as revealed by x-ray crystallography, bearing tyr(4), trp(47), gly(3), glu(2) and lys(1), all of which are invariant or allow only very conservative substitutions. This analysis, therefore, suggests a specific conformation for Toxin III.

  9. Parameter identification of civil engineering structures

    NASA Technical Reports Server (NTRS)

    Juang, J. N.; Sun, C. T.

    1980-01-01

    This paper concerns the development of an identification method required in determining structural parameter variations for systems subjected to an extended exposure to the environment. The concept of structural identifiability of a large scale structural system in the absence of damping is presented. Three criteria are established indicating that a large number of system parameters (the coefficient parameters of the differential equations) can be identified by a few actuators and sensors. An eight-bay-fifteen-story frame structure is used as example. A simple model is employed for analyzing the dynamic response of the frame structure.

  10. Structure and dynamics of the fibronectin-III domains of Aplysia californica cell adhesion molecules.

    PubMed

    Kelly, Catherine M; Muzard, Julien; Brooks, Bernard R; Lee, Gil U; Buchete, Nicolae-Viorel

    2015-04-21

    Due to their homophilic and heterophilic binding properties, cell adhesion molecules (CAMs) such as integrin, cadherin and the immunoglobulin superfamily CAMs are of primary importance in cell-cell and cell-substrate interactions, signalling pathways and other crucial biological processes. We study the molecular structures and conformational dynamics of the two fibronectin type III (Fn-III) extracellular domains of the Aplysia californica CAM (apCAM) protein, by constructing and probing an atomically-detailed structural model based on apCAM's homology with other CAMs. The stability and dynamic properties of the Fn-III domains, individually and in tandem, are probed and analysed using all-atom explicit-solvent molecular dynamics (MD) simulations and normal mode analysis of their corresponding elastic network models. The refined structural model of the Fn-III tandem of apCAM reveals a specific pattern of amino acid interactions that controls the stability of the β-sheet rich structure and could affect apCAM's response to physical or chemical changes of its environment. It also exposes the important role of several specific charged residues in modulating the structural properties of the linker segment connecting the two Fn-III domains, as well as of the inter-domain interface.

  11. Faculty Perceptions of Students: Structure of Faculty Characterizations, Part III.

    ERIC Educational Resources Information Center

    Davis, Junius A.

    The structure of characterizations of college students by faculty members, particularly observable and significant dimensions or trait patterns, were investigated. Student ratings by faculty members on 80 bi-polar traits, together with Scholastic Aptitude Test (SAT) scores and high school and college freshman average grades, were obtained.…

  12. (Porphyrinato)bis(phthalocyaninato)dilanthanide(III) complexes presenting a sandwich triple-decker-like structure

    SciTech Connect

    Moussavi, M.; De Cian, A.; Fischer, J.; Weiss, R.

    1986-06-18

    Bis(phthalocyaninato)lanthanide(III) derivatives presenting a sandwich-type structure have been known for many years. These complexes are still intensively studied due to their semi-conductor and electrochromic properties. The synthesis and properties of bis(porphyrinato) and tris(porphyrinato)lanthanide(III) derivatives have also been reported. X-ray structural studies have shown that bis(porphyrinato) complexes have geometries that are similar to those displayed by the LnPc/sub 2/ complexes (Ln = lanthanide; Pc = phthalocyanine) whereas the tris(porphyrinato) derivatives present structures in which two lanthanide(III) metal cations are sandwiched between three macrocyclic rings in triple-decker-like geometry. Structural, magnetic, and spectroscopic properties of the green form of lutetium(III) bis(phthalocyanate) have shown that this complex is in a nonprotonated, one-electron-oxidized ligand form, Ln (Pc/sup 2 -/) (Pc..pi..). In such a molecule, the unpaired spin could be either located on one phthalocyanine ring or delocalized over both rings. In order to force the localization of the unpaired spin on one ring, the authors have tried to synthesize a dissymmetric mixed-ligand, porphyrin (Por) phthalocyanine (Pc), lanthanide sandwich Ln(Por)(Pc). However, under the conditions used, the authors obtained dilanthanide sandwich-triple-decker-like complexes. (Por(Ln)Pc(Ln)Pc) in which the two metal cations are sandwiched between three macrocyclic rings. They report the synthesis and spectral properties of such derivatives obtained with Ln = Nd(III), Eu(III), and Gd(III) and with meso-tetrakis(4-methoxyphenyl) porphyrin (H/sub 2/T(4-OCH/sub 3/)PP) and phthalocyanine (H/sub 2/Pc). The X-ray structure of the neodymim complex is also reported.

  13. Structural Probability Concepts Adapted to Electrical Engineering

    NASA Technical Reports Server (NTRS)

    Steinberg, Eric P.; Chamis, Christos C.

    1994-01-01

    Through the use of equivalent variable analogies, the authors demonstrate how an electrical subsystem can be modeled by an equivalent structural subsystem. This allows the electrical subsystem to be probabilistically analyzed by using available structural reliability computer codes such as NESSUS. With the ability to analyze the electrical subsystem probabilistically, we can evaluate the reliability of systems that include both structural and electrical subsystems. Common examples of such systems are a structural subsystem integrated with a health-monitoring subsystem, and smart structures. Since these systems have electrical subsystems that directly affect the operation of the overall system, probabilistically analyzing them could lead to improved reliability and reduced costs. The direct effect of the electrical subsystem on the structural subsystem is of secondary order and is not considered in the scope of this work.

  14. Structural probability concepts adapted to electrical engineering

    NASA Astrophysics Data System (ADS)

    Steinberg, Eric P.; Chamis, Christos C.

    1994-03-01

    Through the use of equivalent variable analogies, the authors demonstrate how an electrical subsystem can be modeled by an equivalent structural subsystem. This allows the electrical subsystem to be probabilistically analyzed by using available structural reliability computer codes such as NESSUS. With the ability to analyze the electrical subsystem probabilistically, we can evaluate the reliability of systems that include both structural and electrical subsystems. Common examples of such systems are a structural subsystem integrated with a health-monitoring subsystem, and smart structures. Since these systems have electrical subsystems that directly affect the operation of the overall system, probabilistically analyzing them could lead to improved reliability and reduced costs. The direct effect of the electrical subsystem on the structural subsystem is of secondary order and is not considered in the scope of this work.

  15. Theoretical discovery of stable structures of group III-V monolayers: The materials for semiconductor devices

    SciTech Connect

    Suzuki, Tatsuo

    2015-11-23

    Group III-V compounds are very important as the materials of semiconductor devices. Stable structures of the monolayers of group III-V binary compounds have been discovered by using first-principles calculations. The primitive unit cell of the discovered structures is a rectangle, which includes four group-III atoms and four group-V atoms. A group-III atom and its three nearest-neighbor group-V atoms are placed on the same plane; however, these connections are not the sp{sup 2} hybridization. The bond angles around the group-V atoms are less than the bond angle of sp{sup 3} hybridization. The discovered structure of GaP is an indirect transition semiconductor, while the discovered structures of GaAs, InP, and InAs are direct transition semiconductors. Therefore, the discovered structures of these compounds have the potential of the materials for semiconductor devices, for example, water splitting photocatalysts. The discovered structures may become the most stable structures of monolayers which consist of other materials.

  16. Molecular and structural basis of ESCRT-III recruitment to membranes during archaeal cell division.

    PubMed

    Samson, Rachel Y; Obita, Takayuki; Hodgson, Ben; Shaw, Michael K; Chong, Parkson Lee-Gau; Williams, Roger L; Bell, Stephen D

    2011-01-21

    Members of the crenarchaeal kingdom, such as Sulfolobus, divide by binary fission yet lack genes for the otherwise near-ubiquitous tubulin and actin superfamilies of cytoskeletal proteins. Recent work has established that Sulfolobus homologs of the eukaryotic ESCRT-III and Vps4 components of the ESCRT machinery play an important role in Sulfolobus cell division. In eukaryotes, several pathways recruit ESCRT-III proteins to their sites of action. However, the positioning determinants for archaeal ESCRT-III are not known. Here, we identify a protein, CdvA, that is responsible for recruiting Sulfolobus ESCRT-III to membranes. Overexpression of the isolated ESCRT-III domain that interacts with CdvA results in the generation of nucleoid-free cells. Furthermore, CdvA and ESCRT-III synergize to deform archaeal membranes in vitro. The structure of the CdvA/ESCRT-III interface gives insight into the evolution of the more complex and modular eukaryotic ESCRT complex.

  17. RNA structure-dependent uncoupling of substrate recognition and cleavage by Escherichia coli ribonuclease III

    PubMed Central

    Calin-Jageman, Irina; Nicholson, Allen W.

    2003-01-01

    Members of the ribonuclease III superfamily of double-strand-specific endoribonucleases participate in diverse RNA maturation and decay pathways. Ribonuclease III of the gram-negative bacterium Escherichia coli processes rRNA and mRNA precursors, and its catalytic action can regulate gene expression by controlling mRNA translation and stability. It has been proposed that E.coli RNase III can function in a non-catalytic manner, by binding RNA without cleaving phosphodiesters. However, there has been no direct evidence for this mode of action. We describe here an RNA, derived from the T7 phage R1.1 RNase III substrate, that is resistant to cleavage in vitro by E.coli RNase III but retains comparable binding affinity. R1.1[CL3B] RNA is recognized by RNase III in the same manner as R1.1 RNA, as revealed by the similar inhibitory effects of a specific mutation in both substrates. Structure-probing assays and Mfold analysis indicate that R1.1[CL3B] RNA possesses a bulge– helix–bulge motif in place of the R1.1 asymmetric internal loop. The presence of both bulges is required for uncoupling. The bulge–helix–bulge motif acts as a ‘catalytic’ antideterminant, which is distinct from recognition antideterminants, which inhibit RNase III binding. PMID:12711683

  18. Engineering structure and function using thermoresponsive biopolymers.

    PubMed

    Pastuszka, Martha K; MacKay, J Andrew

    2016-01-01

    Self-assembly enables exquisite control at the smallest scale and generates order among macromolecular-building blocks that remain too small to be manipulated individually. Environmental cues, such as heating, can trigger the organization of these materials from individual molecules to multipartixcle assemblies with a variety of compositions and functions. Synthetic as well as biological polymers have been engineered for these purposes; however, biological strategies can offer unparalleled control over the composition of these macromolecular-building blocks. Biologic polymers are macromolecules composed of monomeric units that can be precisely tailored at the genetic level; furthermore, they can often utilize endogenous biodegradation pathways, which may enhance their potential clinical applications. DNA (nucleotides), polysaccharides (carbohydrates), and proteins (amino acids) have all been engineered to self-assemble into nanostructures in response to a change in temperature. This focus article reviews the growing body of literature exploring temperature-dependent nano-assembly of these biological macromolecules, summarizes some of their physical properties, and discusses future directions. © 2015 Wiley Periodicals, Inc.

  19. Computer applications for engineering/structural analysis

    SciTech Connect

    Zaslawsky, M.; Samaddar, S.K.

    1991-01-01

    Analysts and organizations have a tendency to lock themselves into specific codes with the obvious consequences of not addressing the real problem and thus reaching the wrong conclusion. This paper discusses the role of the analyst in selecting computer codes. The participation and support of a computation division in modifying the source program, configuration management, and pre- and post-processing of codes are among the subjects discussed. Specific examples illustrating the computer code selection process are described in the following problem areas: soil structure interaction, structural analysis of nuclear reactors, analysis of waste tanks where fluid structure interaction is important, analysis of equipment, structure-structure interaction, analysis of the operation of the superconductor supercollider which includes friction and transient temperature, and 3D analysis of the 10-meter telescope being built in Hawaii. Validation and verification of computer codes and their impact on the selection process are also discussed.

  20. Structural Requirements for the Space Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin K.

    2006-01-01

    In January 2004, the National Aeronautics and Space Administration (NASA) was given a vision for Space Exploration by President Bush, setting our sight on a bold new path to go back to the Moon, then to Mars and beyond. As NASA gets ready to meet the vision set by President Bush, failures are not an option. Reliability of the propulsion engine systems will play an important role in establishing an overall safe and reliable operation of these new space systems. A new standard, NASA-STD-5012, Strength and Life Assessment for Space Propulsion System Engines, has been developed to provide structural requirements for assessment of the propulsion systems engine. This standard is a complement to the current NASA-wide standard NASA-STD-5001, Structural Design and Test Factors of Safety for Spaceflight Hardware, which excluded the requirement for the engine systems (rotatory structures) along with pressure vessels. As developed, this document builds on the heritage of the multiple industrial standards related to strength and life assessment of the structures. For assuring a safe and reliable operation of a product and/or mission, establishing a set of structural assessment requirements is a key ingredient. Hence, a concentrated effort was made to improve the requirements where there are known lessons learned during the design, test, and operation phases of the Space Shuttle Main Engine (SSME) and other engine development programs. Requirements delineated in this standard are also applicable for the reusable and/or human missions. It shall be noted that "reliability of a system cannot be tested and inspected but can only be achieved if it is first designed into a system." Hence, these strength and life assessment requirements for the space propulsion system engines shall be used along with other good engineering practices, requirements, and policies.

  1. Upgrading of Existing Structures. Phase III. Shelter Design Options.

    DTIC Science & Technology

    1981-05-01

    concrete. ,TT 3-24 0 1 L Fig. 3-19. Loading Configuration, Base Case, 8-inch Slab, Test No. 5. 3-25 440 " 4w 4W F-FF - UFA a1, a Z. 0 4. 0! 90 19 .. 0...simply supported and shored at midspan. The two tests differed in the type and method of shoring. In Test No. 6, the shore consisted of a structural... methods , and the correlation of the tests and results with work performed by others. This first series was also instrumental in providing data to assist

  2. Crystal structure of hexa-aqua-dichlorido-ytterbium(III) chloride.

    PubMed

    Knopf, Kevin M; Crundwell, Guy; Westcott, Barry L

    2015-06-01

    The crystal structure of the title compound, [YbCl2(H2O)6]Cl, was determined at 110 K. Samples were obtained from evaporated aceto-nitrile solutions containing the title compound, which consists of a [YbCl2(H2O)6](+) cation and a Cl(-) anion. The cations in the title compound sit on a twofold axis and form O-H⋯Cl hydrogen bonds with the nearby Cl(-) anion. The coordination geometry around the metal centre forms a distorted square anti-prism. The ytterbium complex is isotypic with the europium complex [Tambrornino et al. (2014 ▶). Acta Cryst. E70, i27].

  3. Fabrication and structural studies of opal-III nitride nanocomposites

    NASA Astrophysics Data System (ADS)

    Davydov, V. Yu; Golubev, V. G.; Kartenko, N. F.; Kurdyukov, D. A.; Pevtsov, A. B.; Sharenkova, N. V.; Brogueira, P.; Schwarz, R.

    2000-12-01

    In this paper, regular three-dimensional systems of GaN, InN and InGaN nanoclusters have been fabricated for the first time in a void sublattice of artificial opal. The opal consisted of 220 nm diameter close packed amorphous silica spheres and had a regular sublattice of voids accessible to filling by other substances. GaN, InN and InGaN were synthesized directly in the opal voids from precursors such as metal salts and nitrogen hydrides. The composites' structures have been characterized using x-ray diffraction, Raman spectroscopy, atomic force microscopy and optical measurements.

  4. Physics and Technology of III-V Pseudomorphic Structures

    DTIC Science & Technology

    1991-03-01

    otR1tstk 1- An 0^13 DAT E 4. -r ln- 90 -30 Sevt. 91 Physics and Technology of 111-V Pseudomorphic P613 Structures R&T#4 14s002 6. AUTHOR(S) I C.W. Tu 1...tightens its grip on the fiber optic cable. The able gain from I to 5 for the incoming signal from each of electrical RHEED signals leave the phototransistor...box via the two phototransistors. The variable gain allows match- BNC connectors, and the 15 V dc required by the pho- ing of the noise levels of the

  5. Cyanido-Bridged {Ln(III)W(V)} Heterobinuclear Complexes: Synthesis and Magneto-Structural Study.

    PubMed

    Alexandru, Maria-Gabriela; Visinescu, Diana; Shova, Sergiu; Lloret, Francesc; Julve, Miguel

    2017-09-27

    A new series of cyanido-bridged {Ln(III)W(V)} heterobinuclear complexes of formula [Ln(III)(pyim)2(i-PrOH)(H2O)2(μ-CN)W(V)(CN)7]·2H2O [Ln = Gd (1), Tb (2), Dy (3), Ho (4), and Er (5); pyim = 2-(1H-imidazol-2-yl)-pyridine) and i-PrOH = isopropyl alcohol] were synthesized by one-pot reaction between (NH3Bu)3[W(CN)8] and [Ln(pyim)2](2+) complexes (generated in situ by mixing the corresponding Ln(III) ions and the pyim ligand). Compounds 1-5 are isomorphous and crystallize in the monoclinic system P21/n space group. Their crystal structure consists of binuclear units in which the octacyanotungstate(V) anion coordinates to the corresponding Ln(III) ion through a single cyanide ligand. The tungsten(V) and lanthanide(III) ions are eight-coordinated, in distorted square antiprism (W(V)) and distorted trigonal dodecahedron (Ln(III)) geometries, respectively. The direct-current (dc) magnetic properties for 1-5 reveal the occurrence of weak antiferromagnetic interactions between W(V) and Ln(III) cation, with (8)S7/2, (7)F6, (6)H15/2, (5)I8, and (4)I15/2 as ground terms for Gd(III), Tb(III), Dy(III) Ho(III), and Er(III), respectively [JWLn = -1.19(1) (1), -1.02(2) (2), -1.10(2) (3), -1.30(2) (4), and -1.50(3) cm(-1) (5), the spin Hamiltonian being defined as H = -JWLn SW·SLn]. The fit of the χMT data of 2-4 points out a positive value for the energy gap between the ML components (Δ). This feature is corroborated by their Q-band electron paramagnetic resonance spectra at low temperature, which clearly show MJ = 0 (2 and 4) and ±1/2 (3 and 5). Incipient frequency-dependent alternating-current magnetic susceptibility signals are observed for 3 and 5 under applied dc fields supporting the presence of slow magnetic relaxation behavior, the blocking temperatures being below 2.0 K. This new series of {Ln(III)W(V)} heterobinuclear compounds provides more insights into the exchange magnetic interaction between 5d and 4f centers via the cyanide-bridge, for which scarce information

  6. Structure and activity of the anticaking agent iron(III) meso-tartrate.

    PubMed

    Bode, Arno A C; Granneman, Sanne J C; Feiters, Martin C; Verwer, Paul; Jiang, Shanfeng; Meijer, Jan A M; van Enckevort, Willem J P; Vlieg, Elias

    2016-04-21

    Iron(III) meso-tartrate, a metal-organic complex, is a new anticaking agent for sodium chloride. A molecular structure in solution is proposed, based on a combination of experimental and molecular modelling results. We show that the active complex is a binuclear iron(iii) complex with two bridging meso-tartrate ligands. The iron atoms are antiferromagnetically coupled, resulting in a reduced paramagnetic nature of the solution. In solution, a water molecule coordinates to each iron atom as a sixth ligand, resulting in an octahedral symmetry around each iron atom. When the water molecule is removed, a flat and charged site is exposed, matching the charge distribution of the {100} sodium chloride crystal surface. This charge distribution is also found in the iron(iii) citrate complex, another anticaking agent. This gives a possible adsorption geometry on the crystal surface, which in turn explains the anticaking activity of the iron(III) meso-tartrate complex.

  7. Effective band structure of random III-V alloys

    NASA Astrophysics Data System (ADS)

    Popescu, Voicu; Zunger, Alex

    2010-03-01

    Random substitutional alloys have no long range order (LRO) or translational symmetry so rigorously speaking they have no E(k) band structure or manifestations thereof. Yet, many experiments on alloys are interpreted using the language of band theory, e.g. inferring Van Hove singularities, band dispersion and effective masses. Many standard alloy theories (VCA- or CPA-based) have the LRO imposed on the alloy Hamiltonian, assuming only on-site disorder, so they can not be used to judge the extent of LRO that really exists. We adopt the opposite way, by using large (thousand atom) randomly generated supercells in which chemically identical alloy atoms are allowed to have different local environments (a polymorphous representation). This then drives site-dependent atomic relaxation as well as potential fluctuations. The eigenstates from such supercells are then mapped onto the Brillouin zone (BZ) of the primitive cell, producing effective band dispersion. Results for (In,Ga)X show band-like behaviour only near the centre and faces of the BZ but rapidly lose such characteristics away from γ or for higher bands. We further analyse the effects of stoichiometry variation, internal relaxation, and short-range order on the alloy band structure.

  8. Structure and evolutionary history of the solar system. III.

    NASA Technical Reports Server (NTRS)

    Alfven, H.; Arrhenius, G.

    1973-01-01

    Analysis of the plasma processes and the hydromagnetic aspects involved in the evolution of the solar system. In order to reduce the speculative element as far as possible, the present analysis tries to connect the cosmogonic processes as directly as possible to laboratory plasma physics and to space phenomena actually observed today. Models of the Laplacian type have been made obsolete by magnetohydrodynamics. Furthermore they are in conflict with observations. A new model is suggested. A plasma surrounding a rotating central body may attain a state of partial corotation which is determined by the balance between gravitation and the centrifugal force acting on a plasma in a dipole field. Condensation from a partially corotating plasma results in grains orbiting in ellipses with e = 1/3 and finally accreting to bodies at 2/3 of the central distance of the point of condensation. An application of the theory of the Saturnian rings and to the asteroidal belt shows that the fall-down ratio 2/3 (derived from the geometry of a dipole field) is essential for the understanding of their structure. The structure of the groups of planets and satellites is also discussed, but only in a preliminary way.

  9. Structural Characteristics of University Engineering Students' Conceptions of Energy.

    ERIC Educational Resources Information Center

    Liu, Xiufeng; Ebenezer, Jazlin; Fraser, Duncan M.

    2002-01-01

    Examines structural characteristics of university engineering students' conceptions of energy elicited through paragraph writing and their relations with categories of their conceptions specific to energy in solution processes identified through interviews. Reports that structures of students' conceptions are characterized primarily by…

  10. The Structure-Mapping Engine: Algorithm and Examples.

    ERIC Educational Resources Information Center

    Falkenhainer, Brian; And Others

    This description of the Structure-Mapping Engine (SME), a flexible, cognitive simulation program for studying analogical processing which is based on Gentner's Structure-Mapping theory of analogy, points out that the SME provides a "tool kit" for constructing matching algorithms consistent with this theory. This report provides: (1) a…

  11. Structural Characteristics of University Engineering Students' Conceptions of Energy.

    ERIC Educational Resources Information Center

    Liu, Xiufeng; Ebenezer, Jazlin; Fraser, Duncan M.

    2002-01-01

    Examines structural characteristics of university engineering students' conceptions of energy elicited through paragraph writing and their relations with categories of their conceptions specific to energy in solution processes identified through interviews. Reports that structures of students' conceptions are characterized primarily by…

  12. Engineering intelligent structures for energy efficiency

    NASA Astrophysics Data System (ADS)

    Strojnik, M.; Garcia-Torales, G.; Scholl, M. K.; Kranjc, T.

    2016-09-01

    The current philosophy of designing intelligent buildings emphasizes the use of materials whose performance is compatible with thermal environment that changes daily and seasonally. Ideally, engineering designs should incorporate features to reflect as much energy as feasible and store excess thermal energy. This may be for usage during periods when thermal energy is needed for heating. We show that current construction design methods may be improved for energy efficiency, by incorporating an attic as an transitional space for energy storage during summer, and by employing roof materials with high reflectivity in the visible and in the near IR (up to about 1.9 μm). Thus, traditional red or pink brick roofs, potentially glazed or covered with low reflectivity coating, would likely remain (become again) the preferred construction material.

  13. Synthesis, crystal structure and magnetic properties of a novel heterobimetallic rhenium(IV)-dysprosium(III) chain.

    PubMed

    Pejo, Carolina; Guedes, Guilherme P; Novak, Miguel A; Speziali, Nivaldo L; Chiozzone, Raúl; Julve, Miguel; Lloret, Francesc; Vaz, Maria G F; González, Ricardo

    2015-06-08

    The use of the mononuclear rhenium(IV) precursor [ReBr5 (H2 pydc)](-) (H2 pydc=3,5-pyridinedicarboxylic acid) as a metalloligand towards dysprosium(III) afforded the first heterobimetallic Re(IV) -Dy(III) complex. Crystal structures and static and dynamic magnetic properties of both rhenium-containing species are reported herein. The 5d-4f compound shows an extended 1D structure and the AC magnetic measurements reveal frequency dependence at low temperature suggesting slow relaxation of the magnetization.

  14. Elucidation of the Fe(III) Gallate Structure in Historical Iron Gall Ink.

    PubMed

    Ponce, Aldo; Brostoff, Lynn B; Gibbons, Sarah K; Zavalij, Peter; Viragh, Carol; Hooper, Joseph; Alnemrat, Sufian; Gaskell, Karen J; Eichhorn, Bryan

    2016-05-17

    Synthetic, structural, spectroscopic and aging studies conclusively show that the main colorant of historical iron gall ink (IGI) is an amorphous form of Fe(III) gallate·xH2O (x = ∼1.5-3.2). Comparisons between experimental samples and historical documents, including an 18th century hand-written manuscript by George Washington, by IR and Raman spectroscopy, XRD, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy confirm the relationship between the model and authentic samples. These studies settle controversy in the cultural heritage field, where an alternative structure for Fe(III) gallate has been commonly cited.

  15. Synthesis and Crystal Structures of the First Antimony(III) Aziridinides.

    PubMed

    Harmgarth, Nicole; Liebing, Phil; Zörner, Florian; Silinskas, Mindaugas; Burte, Edmund P; Edelmann, Frank T

    2017-04-17

    The first antimony(III) aziridinyl derivatives are reported. Treatment of anhydrous SbCl3 with N-lithioaziridine Li(Azn) (Azn = NC2H4) afforded the structurally unique heterobimetallic lithium/antimony(III) amide complex [Li3Sb(μ3-Cl)2(μ-Azn)4(THF)2]∞ (1). Homoleptic Sb2(Azn)6 (2) has become available for the first time through an amide group exchange reaction between Sb(NMe2)3 and 3 equiv of aziridine. The low-melting Sb2(Azn)6 exhibits a "weak dimer" structure in the crystal.

  16. Simultaneous analysis and design. [in structural engineering

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.

    1985-01-01

    Optimization techniques are increasingly being used for performing nonlinear structural analysis. The development of element by element (EBE) preconditioned conjugate gradient (CG) techniques is expected to extend this trend to linear analysis. Under these circumstances the structural design problem can be viewed as a nested optimization problem. There are computational benefits to treating this nested problem as a large single optimization problem. The response variables (such as displacements) and the structural parameters are all treated as design variables in a unified formulation which performs simultaneously the design and analysis. Two examples are used for demonstration. A seventy-two bar truss is optimized subject to linear stress constraints and a wing box structure is optimized subject to nonlinear collapse constraints. Both examples show substantial computational savings with the unified approach as compared to the traditional nested approach.

  17. Simultaneous analysis and design. [in structural engineering

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.

    1985-01-01

    Optimization techniques are increasingly being used for performing nonlinear structural analysis. The development of element by element (EBE) preconditioned conjugate gradient (CG) techniques is expected to extend this trend to linear analysis. Under these circumstances the structural design problem can be viewed as a nested optimization problem. There are computational benefits to treating this nested problem as a large single optimization problem. The response variables (such as displacements) and the structural parameters are all treated as design variables in a unified formulation which performs simultaneously the design and analysis. Two examples are used for demonstration. A seventy-two bar truss is optimized subject to linear stress constraints and a wing box structure is optimized subject to nonlinear collapse constraints. Both examples show substantial computational savings with the unified approach as compared to the traditional nested approach.

  18. Situated learning methodologies and assessment in civil engineering structures education

    NASA Astrophysics Data System (ADS)

    Bertz, Michael Davis

    This thesis describes an overarching study of civil engineering undergraduate structural education through student performance in recalling and applying basic structural engineering knowledge, and the viability of alternative situated learning environments for more effectively supporting the learning of this knowledge. To properly ground this study, a thorough investigation of related work in assessment, cognitive science, educational technology, and design education was completed, with connections and applications to civil engineering education highlighted. The experimental work of the thesis is organized into three parts: an assessment of civil engineering undergraduates' fundamental structural engineering knowledge and abilities; the development and testing of a software support environment for situated learning, the Civil Engineering Learning Library (CELL); and, the implementation and evaluation of the design studio, a pedagogical model for situated learning in the classroom. The results of the assessment study indicate that civil engineering seniors (and also students earlier in the curriculum) have difficulty retaining and applying basic knowledge of structural behavior, especially doing so in a flexible fashion in design situations. The survey also suggests that visualization plays an important role in understanding structural behavior. Tests with the CELL system show that a cognitively-flexible multimedia environment can support structural learning, but were inconclusive about whether the computer-based system helped the students to learn better than conventional classroom lecture. Two trial implementations of the design studio indicate that the studio model can serve as a powerful situated learning environment, and that it can be scaled up to reasonable class sizes. Significant requirements are associated with this model, however, primarily in faculty involvement, but also in physical resources and student time. In addition to these conclusions about the

  19. Inspection of the Engineering Condition of Underwater Concrete Structures

    DTIC Science & Technology

    1989-04-01

    information, bulletins, and reports of work accomplished and planned on the evaluation and repair of concrete structures. Research Needs 159. Risse! et al...43-85-01 O&M, Port Hueneme, CA. Hansen, W. C. 1965 (May). "Twenty-Year Report on the Long-Term Study of Cement Performance in Concrete ," Research ...REPAIR, EVALUATION, MAINTENANCE, AND REHABILITATION RESEARCH PROGRAM TECHNICAL REPORT REMR-CS-9 INSPECTION OF THE ENGINE~:RING CONDITION OF

  20. The role of strain in the surface structures of III-V alloyed semiconductor films

    NASA Astrophysics Data System (ADS)

    Bickel, Jessica E.

    As length scales continue to decrease, it is vital to understand the fundamental physical parameters governing surfaces and surface interactions. In semiconductors particularly, surface reconstructions are known to impact film growth, bulk atomic ordering and the development of interfacial structure, all of which can drastically impact device growth. While the parameters that determine surface reconstructions in homoepitaxially grown films are well known and understood, those that impact alloy film growth are less studied. This work examines the impact of strain on alloy surface reconstructions, using the III-V semiconductors as a model system for any covalently bonded crystal structure. The presence of surface reconstruction coexistence in both mixed cation and mixed anion systems suggests that localized strain fields on alloy surfaces stabilize elastic relaxation at boundaries, resulting in more complex surface structures than those seen on binary, unstrained films. Atomic size mismatch strain is shown to induce an ordering in alloyed surface reconstructions that is not seen in the non-alloyed constituent surfaces. Lattice mismatch strain is shown to both stabilize new reconstructions not common to the homoepitaxial system and to induce surface reconstruction coexistence on alloy surfaces. The supplied flux of material is shown to affect the kinetics of transformation between the two coexisting surface reconstructions and an incorporation model for material on the alloy surface is developed. The effects of strained surface reconstructions on subsequent film growth is explored and it is shown that identical films grown on two different surfaces have very different strain relaxation profiles, surface topographies and defect structures. The strain fields of surface reconstructions and defects are also shown to interact which may have an impact on the insertion of dislocations in these films. Combined together, this deep understanding of the role that alloy induced

  1. Effect of bimaxillary rotational setback surgery on upper airway structure in skeletal class III deformities.

    PubMed

    Hsieh, Yuh-Jia; Chen, Yi-Chieh; Chen, Yin-An; Liao, Yu-Fang; Chen, Yu-Ray

    2015-02-01

    Upper airway narrowing has been a concern of mandibular setback. The aims of this study were (1) to evaluate the effect of bimaxillary rotational setback surgery on upper airway structure in patients with skeletal class III deformities, and (2) to compare the preoperative and postoperative upper airways of class III patients with age- and sex-matched class I control subjects. The upper airways of 36 adults who consecutively underwent bimaxillary rotational setback surgery for skeletal class III deformities were assessed by means of cone-beam computed tomography before and at least 6 months after surgery. Results were compared with those of age- and sex-matched control subjects with skeletal class I structure. Before surgery, the class III patients had significantly larger velopharyngeal, oropharyngeal, and hypopharyngeal volumes than did the control subjects (all p < 0.01). The velopharyngeal, oropharyngeal, and hypopharynx volumes decreased significantly after surgery (all p < 0.01). The postoperative airways of class III patients were similar with regard to velopharyngeal, oropharyngeal, and hypopharyngeal volume (all p > 0.01) compared to control subjects. The postoperative velopharyngeal and oropharyngeal airway volumes were associated with the baseline airway volume (p < 0.001) and horizontal movement of the soft palate (p < 0.01). These results suggest that upper airway volume is decreased after bimaxillary rotational setback surgery for skeletal class III deformities, but is not smaller than in normal controls, and the postoperative upper airway volume is related to airway volume at baseline and changes in the surrounding structures. Therapeutic, III.

  2. Cyanide-bridged Mn(III)-Fe(III) bimetallic complexes based on the pentacyano(1-methylimidazole)ferrate(III) building block: structure and magnetic characterizations.

    PubMed

    Ni, Wei-Wei; Ni, Zhong-Hai; Cui, Ai-Li; Liang, Xin; Kou, Hui-Zhong

    2007-01-08

    Seven cyanide-bridged bimetallic complexes have been synthesized by the reaction of [Fe(1-CH3im)(CN)5]2- with Mn(III) Schiff base complexes. Their crystal structure and magnetic properties have been characterized. Five complexes, [Mn2(5-Brsalen)2Fe(CN)5(1-CH3im)] x H2O (1), [Mn2(5-Clsalen)2(H2O)2Fe(CN)5(1-CH3im)] x H2O (2), [Mn2(5-Clsaltn)2(H2O)2Fe(CN)5(1-CH3im)] (3), [Mn2(5-Clsaltmen)2(H2O)2Fe(CN)5(1-CH3im)] x H2O (4), and [Mn2(5-Brsaltmen)2(H2O)2Fe(CN)5(1-CH3im)] x CH3OH (5), are neutral and trinuclear with two [Mn(SB)]+ (SB2- = Schiff base ligands) and one [Fe(1-CH3im)(CN)5]2-. Complex {[Et4N][Mn(acacen)Fe(CN)5(1-CH3im)]}n x 6nH2O (6) is one-dimensional with alternate [Mn(acacen)]+ and [Fe(CN)5(1-CH3im)]2- units. The two-dimensional complex {[Mn4(saltmen)4Fe(CN)5(1-CH3im)]}n[ClO4]2n x 9nH2O (7) consists of Mn4Fe units which are further connected by the phenoxo oxygen atoms. Magnetic studies show the presence of ferromagnetic Mn(III)-Fe(III) coupling in the trinuclear compounds with the magnetic coupling constant (J) ranging from 4.5 to 6.0 cm-1, based on the Hamiltonian H = -2JSFe(SMn(1) + SMn(2)). Antiferromagnetic interaction has been observed in complex 6, whereas ferromagnetic coupling occurs in complex 7. Complexes 6 and 7 exhibit long-range magnetic ordering with a TN value of 4.0 K for 6 and Tc of 4.8 K for 7. Complex 6 shows metamagnetic behavior at 2 K, and complex 7 possesses a hysteresis loop with a coercive field of 500 Oe, typical of a soft ferromagnet.

  3. Educating next-generation civil engineers about smart structures technology

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng

    2005-05-01

    The implementation of smart structures technology in the design, construction and maintenance of civil and mechanical systems have been shown beneficial to the performance enhancement, operating efficiency and reliability of structural systems. However, most of today's engineering students are unaware of the remarkable properties of smart sensors and many applications of smart structures technology. It is thus desirable to prepare the future engineers of the society for the cutting-edge technologies in smart structures, for which they may see broad application in their generation. Pioneering work in incorporating smart structures technologies into civil engineering curriculum has been done by the writer at Lehigh University and is described in this paper. In particular, a graduate-level course entitled "Smart Structural Systems" has been taught in the Spring Semester of Year 2004 at Lehigh University. To better convey the course material to students, a smart structures test-bed, which is used not only to showcase various technological aspects of a smart structural system but also offer students an opportunity to gain hands-on experience by doing experiments has been under development at Lehigh University. The hands-on experience that could be developed with the smart structures test-bed is believed being essential for students to have a good understanding and mastering of the smart structures technologies.

  4. Structure and electrical characterization of gallium arsenide nanowires with different V/III ratio growth parameters

    SciTech Connect

    Muhammad, R.; Ahamad, R.; Ibrahim, Z.; Othaman, Z.

    2014-03-05

    Gallium arsenide (GaAs) nanowires were grown vertically on GaAs(111)B substrate by gold-assisted using metal-organic chemical vapour deposition. Field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and conductivity atomic force microscopy (CAFM) analysis were carried out to investigate the effects of V/III ratio on structural properties and current-voltage changes in the wires. Results show that GaAs NWs grow preferably in the wurtzite crystal structure than zinc blende crystal structure with increasing V/III ratio. Additionally, CAFM studies have revealed that zincblende nanowires indicate ohmic characteristic compared to oscillation current occurred for wurtzite structures. The GaAs NWs with high quality structures are needed in solar cells technology for trapping energy that directly converts of sunlight into electricity with maximum capacity.

  5. Structure of cellular ESCRT-III spirals and their relationship to HIV budding

    PubMed Central

    Cashikar, Anil G; Shim, Soomin; Roth, Robyn; Maldazys, Michael R; Heuser, John E; Hanson, Phyllis I

    2014-01-01

    The ESCRT machinery along with the AAA+ ATPase Vps4 drive membrane scission for trafficking into multivesicular bodies in the endocytic pathway and for the topologically related processes of viral budding and cytokinesis, but how they accomplish this remains unclear. Using deep-etch electron microscopy, we find that endogenous ESCRT-III filaments stabilized by depleting cells of Vps4 create uniform membrane-deforming conical spirals which are assemblies of specific ESCRT-III heteropolymers. To explore functional roles for ESCRT-III filaments, we examine HIV-1 Gag-mediated budding of virus-like particles and find that depleting Vps4 traps ESCRT-III filaments around nascent Gag assemblies. Interpolating between the observed structures suggests a new role for Vps4 in separating ESCRT-III from Gag or other cargo to allow centripetal growth of a neck constricting ESCRT-III spiral. DOI: http://dx.doi.org/10.7554/eLife.02184.001 PMID:24878737

  6. A NdIII enantiomeric pair: Synthesis, crystal structures and near-infrared luminescent properties

    NASA Astrophysics Data System (ADS)

    Li, Feng-Cai; Li, Xi-Li; Hu, Ming; Zhang, Xue-Li; Chen, Conghui; Zhu, Cancan

    2016-08-01

    Based on enantiopure bis-bidentate N-donor ligands (-)/(+)-2,5-bis(4,5-pinene- 2-pyridyl)pyrazine (LR/LS), a new pair of NdIII enantiomers with the formula Nd(dbm)3LR/S·2H2O (R-1 and S-1 being the isomers containing the LR and LS ligands, respectively, and dbm = dibenzoylmethanate) have been isolated and characterized by X-ray crystallography and spectroscopic methods. Notably, unlike our previously reported homodinuclear EuIII and DyIII complexes based on the identical ligands (LR and LS), the dinuclear NdIII congener have not been obtained by controlling the ligand-to-metal ratio as expected, the reason of which was elucidated in this work. The crystal structure analyses of R-1 and S-1 reveal that they are mononuclear NdIII complexes and crystallize in chiral space group P212121 of the orthorhombic system. Circular dichroic (CD) spectra confirmed their chiroptical activities and enantiomeric nature. The photoluminescence investigations showed that they display characteristic near-infrared (NIR) emissions of the NdIII ions with notable emitting lifetime value.

  7. Structures, performance, benefit, cost study. [gas turbine engines

    NASA Technical Reports Server (NTRS)

    Feder, E.

    1981-01-01

    Aircraft engine structures were studied to identify the advanced structural technologies that would provide the most benefits to future aircraft operations. A series of studies identified engine systems with the greatest potential for improvements. Based on these studies, six advanced generic structural concepts were selected and conceptually designed. The benefits of each concept were quantitatively assessed in terms of thrust specific fuel consumption, weight, cost, maintenance cost, fuel burned and direct operating cost plus interest. The probability of success of each concept was also determined. The concepts were ranked and the three most promising were selected for further study which consisted of identifying and comprehensively outlining the advanced technologies required to develop these concepts for aircraft engine application. Analytic, fabrication, and test technology developments are required. The technology programs outlined emphasize the need to provide basic, fundamental understanding of technology to obtain the benefit goals.

  8. Afghanistan Security Forces Fund Phase III-U.S. Army Corps of Engineers Real Property Accountability

    DTIC Science & Technology

    2009-04-14

    None A.1., B.1. Commander, U.S. Army Corps of Engineers, Afghanistan Engineer District None A.1., A.2., B.1., B.2., B.3. ii Table of Contents...requirement for an oxygen supply system at NMH. The NMH phase II contract, awarded on August 1, 2006, included option 0016 to replace the oxygen supply...Proposals (RFP). The Kabul NMH phase II contract file did not document that this planning coordination took place. AED exercised this contract

  9. Structure Based Formal Methods for Software Engineering

    DTIC Science & Technology

    1989-07-27

    9 3.4 The Initial PegaSys Prototype ....... ...................... 9 4 Related Research 11 References 12 Accession For NI T 1... PegaSys - that uses pictures as for- mal documentation. To our knowledge, PegaSys is the first system to manipu- late nontrivial design structures in...The Initial PegaSys Prototype PegaSys is a display-oriented, interactive environment that uses intuitive graphical pictures as formal documentation to

  10. Engineering Structurally Interacting RNA (sxRNA)

    PubMed Central

    Doyle, Francis; Lapsia, Sameer; Spadaro, Salvatore; Wurz, Zachary E.; Bhaduri-McIntosh, Sumita; Tenenbaum, Scott A.

    2017-01-01

    RNA-based three-way junctions (3WJs) are naturally occurring structures found in many functional RNA molecules including rRNA, tRNA, snRNA and ribozymes. 3WJs are typically characterized as resulting from an RNA molecule folding back on itself in cis but could also form in trans when one RNA, for instance a microRNA binds to a second structured RNA, such as a mRNA. Trans-3WJs can influence the final shape of one or both of the RNA molecules and can thus provide a means for modulating the availability of regulatory motifs including potential protein or microRNA binding sites. Regulatory 3WJs generated in trans represent a newly identified regulatory category that we call structurally interacting RNA or sxRNA for convenience. Here we show that they can be rationally designed using familiar cis-3WJ examples as a guide. We demonstrate that an sxRNA “bait” sequence can be designed to interact with a specific microRNA “trigger” sequence, creating a regulatable RNA-binding protein motif that retains its functional activity. Further, we show that when placed downstream of a coding sequence, sxRNA can be used to switch “ON” translation of that sequence in the presence of the trigger microRNA and the amount of translation corresponded with the amount of microRNA present. PMID:28350000

  11. Engineering Structurally Interacting RNA (sxRNA).

    PubMed

    Doyle, Francis; Lapsia, Sameer; Spadaro, Salvatore; Wurz, Zachary E; Bhaduri-McIntosh, Sumita; Tenenbaum, Scott A

    2017-03-28

    RNA-based three-way junctions (3WJs) are naturally occurring structures found in many functional RNA molecules including rRNA, tRNA, snRNA and ribozymes. 3WJs are typically characterized as resulting from an RNA molecule folding back on itself in cis but could also form in trans when one RNA, for instance a microRNA binds to a second structured RNA, such as a mRNA. Trans-3WJs can influence the final shape of one or both of the RNA molecules and can thus provide a means for modulating the availability of regulatory motifs including potential protein or microRNA binding sites. Regulatory 3WJs generated in trans represent a newly identified regulatory category that we call structurally interacting RNA or sxRNA for convenience. Here we show that they can be rationally designed using familiar cis-3WJ examples as a guide. We demonstrate that an sxRNA "bait" sequence can be designed to interact with a specific microRNA "trigger" sequence, creating a regulatable RNA-binding protein motif that retains its functional activity. Further, we show that when placed downstream of a coding sequence, sxRNA can be used to switch "ON" translation of that sequence in the presence of the trigger microRNA and the amount of translation corresponded with the amount of microRNA present.

  12. Molecular structure of yeast RNA polymerase III: demonstration of the tripartite transcriptive system in lower eukaryotes.

    PubMed Central

    Valenzuela, P; Hager, G L; Weinberg, F; Rutter, W J

    1976-01-01

    Homogeneous RNA polymerase III (RNA nucleotidyltransferase III) has been obtained from yeast. The subunit composition of the enzyme was examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme is composed of 12 putative subunits with molecular weights 160,000, 128,000, 82,000, 41,000, 40,500, 37,000, 34,000, 28,000, 24,000, 20,000, 14,500, and 11,000. The high-molecular-weight subunits and several of the smaller subunits of yeast RNA polymerase III are clearly different from those of enzymes I and II, indicating a distinct molecular structure. However, the molecular weights of some of the small subunits (41,000, 28,000, 24,000, and 14,500) appear to be identical to those of polymerases I and II. Thus, it is possible that the three classes of enzymes in yeast have some common subunits. As in other eukaryotes, yeast polymerase II is inhibited by relatively low concentrations of alpha-amanitin; however, contrary to what has been found in higher eukaryotes, yeast polymerase III is resistant (up to 2 mg/ml) to alpha-amanitin, while yeast polymerase I is sensitive to high concentrations of the drug (50% inhibition at 0.3 mg/ml). These results establish the existence of RNA polymerase III in yeast and provide a structural basis for the discrimination of the three functional polymerases in eukaryotes. Images PMID:772675

  13. Crystal structure of hydrazine iron(III) phosphate, the first transition metal phosphate containing hydrazine.

    PubMed

    David, Renald

    2015-12-01

    The title compound, poly[(μ2-hydrazine)(μ4-phosphato)iron(III)], [Fe(PO4)(N2H4)] n , was prepared under hydro-thermal conditions. Its asymmetric unit contains one Fe(III) atom located on an inversion centre, one P atom located on a twofold rotation axis, and two O, one N and two H atoms located on general positions. The Fe(III) atom is bound to four O atoms of symmetry-related PO4 tetra-hedra and to two N atoms of two symmetry-related hydrazine ligands, resulting in a slightly distorted FeO4N2 octa-hedron. The crystal structure consists of a three-dimensional hydrazine/iron phoshate framework whereby each PO4 tetra-hedron bridges four Fe(III) atoms and each hydrazine ligand bridges two Fe(III) atoms. The H atoms of the hydrazine ligands are also involved in moderate N-H⋯O hydrogen bonding with phosphate O atoms. The crystal structure is isotypic with the sulfates [Co(SO4)(N2H4)] and [Mn(SO4)(N2H4)].

  14. Molecular structure of yeast RNA polymerase III: demonstration of the tripartite transcriptive system in lower eukaryotes.

    PubMed

    Valenzuela, P; Hager, G L; Weinberg, F; Rutter, W J

    1976-04-01

    Homogeneous RNA polymerase III (RNA nucleotidyltransferase III) has been obtained from yeast. The subunit composition of the enzyme was examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme is composed of 12 putative subunits with molecular weights 160,000, 128,000, 82,000, 41,000, 40,500, 37,000, 34,000, 28,000, 24,000, 20,000, 14,500, and 11,000. The high-molecular-weight subunits and several of the smaller subunits of yeast RNA polymerase III are clearly different from those of enzymes I and II, indicating a distinct molecular structure. However, the molecular weights of some of the small subunits (41,000, 28,000, 24,000, and 14,500) appear to be identical to those of polymerases I and II. Thus, it is possible that the three classes of enzymes in yeast have some common subunits. As in other eukaryotes, yeast polymerase II is inhibited by relatively low concentrations of alpha-amanitin; however, contrary to what has been found in higher eukaryotes, yeast polymerase III is resistant (up to 2 mg/ml) to alpha-amanitin, while yeast polymerase I is sensitive to high concentrations of the drug (50% inhibition at 0.3 mg/ml). These results establish the existence of RNA polymerase III in yeast and provide a structural basis for the discrimination of the three functional polymerases in eukaryotes.

  15. Crystal structure of hydrazine iron(III) phosphate, the first transition metal phosphate containing hydrazine

    PubMed Central

    David, Renald

    2015-01-01

    The title compound, poly[(μ2-hydrazine)(μ4-phosphato)iron(III)], [Fe(PO4)(N2H4)]n, was prepared under hydro­thermal conditions. Its asymmetric unit contains one FeIII atom located on an inversion centre, one P atom located on a twofold rotation axis, and two O, one N and two H atoms located on general positions. The FeIII atom is bound to four O atoms of symmetry-related PO4 tetra­hedra and to two N atoms of two symmetry-related hydrazine ligands, resulting in a slightly distorted FeO4N2 octa­hedron. The crystal structure consists of a three-dimensional hydrazine/iron phoshate framework whereby each PO4 tetra­hedron bridges four FeIII atoms and each hydrazine ligand bridges two FeIII atoms. The H atoms of the hydrazine ligands are also involved in moderate N—H⋯O hydrogen bonding with phosphate O atoms. The crystal structure is isotypic with the sulfates [Co(SO4)(N2H4)] and [Mn(SO4)(N2H4)]. PMID:26870399

  16. Amide I'-II' 2D IR spectroscopy provides enhanced protein secondary structural sensitivity.

    PubMed

    Deflores, Lauren P; Ganim, Ziad; Nicodemus, Rebecca A; Tokmakoff, Andrei

    2009-03-11

    We demonstrate how multimode 2D IR spectroscopy of the protein amide I' and II' vibrations can be used to distinguish protein secondary structure. Polarization-dependent amide I'-II' 2D IR experiments on poly-l-lysine in the beta-sheet, alpha-helix, and random coil conformations show that a combination of amide I' and II' diagonal and cross peaks can effectively distinguish between secondary structural content, where amide I' infrared spectroscopy alone cannot. The enhanced sensitivity arises from frequency and amplitude correlations between amide II' and amide I' spectra that reflect the symmetry of secondary structures. 2D IR surfaces are used to parametrize an excitonic model for the amide I'-II' manifold suitable to predict protein amide I'-II' spectra. This model reveals that the dominant vibrational interaction contributing to this sensitivity is a combination of negative amide II'-II' through-bond coupling and amide I'-II' coupling within the peptide unit. The empirically determined amide II'-II' couplings do not significantly vary with secondary structure: -8.5 cm(-1) for the beta sheet, -8.7 cm(-1) for the alpha helix, and -5 cm(-1) for the coil.

  17. Reverse engineering chemical structures from molecular descriptors : how many solutions?

    SciTech Connect

    Brown, William Michael; Martin, Shawn Bryan; Faulon, Jean-Loup Michel

    2005-06-01

    Physical, chemical and biological properties are the ultimate information of interest for chemical compounds. Molecular descriptors that map structural information to activities and properties are obvious candidates for information sharing. In this paper, we consider the feasibility of using molecular descriptors to safely exchange chemical information in such a way that the original chemical structures cannot be reverse engineered. To investigate the safety of sharing such descriptors, we compute the degeneracy (the number of structure matching a descriptor value) of several 2D descriptors, and use various methods to search for and reverse engineer structures. We examine degeneracy in the entire chemical space taking descriptors values from the alkane isomer series and the PubChem database. We further use a stochastic search to retrieve structures matching specific topological index values. Finally, we investigate the safety of exchanging of fragmental descriptors using deterministic enumeration.

  18. Enhanced non-radiative energy transfer in hybrid III-nitride structures

    SciTech Connect

    Smith, R. M.; Athanasiou, M.; Bai, J.; Liu, B.; Wang, T.

    2015-09-21

    The effect of surface states has been investigated in hybrid organic/inorganic white light emitting structures that employ high efficiency, nearfield non-radiative energy transfer (NRET) coupling. The structures utilize blue emitting InGaN/GaN multiple quantum well (MQW) nanorod arrays to minimize the separation with a yellow emitting F8BT coating. Surface states due to the exposed III-nitride surfaces of the nanostructures are found to reduce the NRET coupling rate. The surface states are passivated by deposition of a silicon nitride layer on the III-nitride nanorod surface leading to reduced surface recombination. A low thickness surface passivation is shown to increase the NRET coupling rate by 4 times compared to an un-passivated hybrid structure. A model is proposed to explain the increased NRET rate for the passivated hybrid structures based on the reduction in surface electron depletion of the passivated InGaN/GaN MQW nanorods surfaces.

  19. Sixty years from discovery to solution: crystal structure of bovine liver catalase form III.

    PubMed

    Foroughi, Leila M; Kang, You Na; Matzger, Adam J

    2011-09-01

    The crystallization and structural characterization of bovine liver catalase (BLC) has been intensively studied for decades. Forms I and II of BLC have previously been fully characterized using single-crystal X-ray diffraction. Form III has previously been analyzed by electron microscopy, but owing to the thinness of this crystal form an X-ray crystal structure had not been determined. Here, the crystal structure of form III of BLC is presented in space group P2(1)2(1)2(1), with unit-cell parameters a = 68.7, b = 173.7, c = 186.3 Å. The asymmetric unit is composed of the biological tetramer, which is packed in a tetrahedron motif with three other BLC tetramers. This higher resolution structure has allowed an assessment of the previously published electron-microscopy studies.

  20. Sixty years from discovery to solution: crystal structure of bovine liver catalase form III

    SciTech Connect

    Foroughi, Leila M.; Kang, You-Na; Matzger, Adam J.

    2012-03-27

    The crystallization and structural characterization of bovine liver catalase (BLC) has been intensively studied for decades. Forms I and II of BLC have previously been fully characterized using single-crystal X-ray diffraction. Form III has previously been analyzed by electron microscopy, but owing to the thinness of this crystal form an X-ray crystal structure had not been determined. Here, the crystal structure of form III of BLC is presented in space group P212121, with unit-cell parameters a = 68.7, b = 173.7, c = 186.3 {angstrom}. The asymmetric unit is composed of the biological tetramer, which is packed in a tetrahedron motif with three other BLC tetramers. This higher resolution structure has allowed an assessment of the previously published electron-microscopy studies.

  1. Enhanced non-radiative energy transfer in hybrid III-nitride structures

    NASA Astrophysics Data System (ADS)

    Smith, R. M.; Athanasiou, M.; Bai, J.; Liu, B.; Wang, T.

    2015-09-01

    The effect of surface states has been investigated in hybrid organic/inorganic white light emitting structures that employ high efficiency, nearfield non-radiative energy transfer (NRET) coupling. The structures utilize blue emitting InGaN/GaN multiple quantum well (MQW) nanorod arrays to minimize the separation with a yellow emitting F8BT coating. Surface states due to the exposed III-nitride surfaces of the nanostructures are found to reduce the NRET coupling rate. The surface states are passivated by deposition of a silicon nitride layer on the III-nitride nanorod surface leading to reduced surface recombination. A low thickness surface passivation is shown to increase the NRET coupling rate by 4 times compared to an un-passivated hybrid structure. A model is proposed to explain the increased NRET rate for the passivated hybrid structures based on the reduction in surface electron depletion of the passivated InGaN/GaN MQW nanorods surfaces.

  2. Extraction and structural studies of an unexplored monoamide, N,N'-dioctyl, α-hydroxy acetamide with lanthanide(III) and actinide(III) ions.

    PubMed

    Kannan, Shanmugaperumal; Vats, Bal Govind; Pius, Illipparambil C; Noronha, Donald M; Dhami, Prem S; Naik, Prashant W; Kumar, Mukesh

    2014-04-14

    A monoamide, N,N'-dioctyl, α-hydroxy acetamide, shows unusual extraction properties towards trivalent lanthanide and actinide ions above 3 M HNO3. The extracted ions could be quantitatively back extracted using 0.5 M HNO3. This amide shows negligible extraction towards Sr(II) and Ru(III) ions, making it advantageous over other reported extractants. The structures of Sm(III) and Eu(III) nitrate compounds show that the metal ion is surrounded by three of the ligands, one nitrate and one water molecule. The ligand acts as a neutral bidentate ligand and bonds through the amido and hydroxyl oxygen atoms.

  3. Structural studies of lanthanide(III) 1,2-ethylene-diphosphonic acid complexes

    SciTech Connect

    McIlwraith, H.; Zhang, J.; Rogers, R.D.

    1995-12-31

    1,2-Ethylenediphosphonic acid can be classified in a class of extractants known as thermally unstable complexants (TUCS). Extraction accomplished using TUCS ligands can be followed by thermal degradation of the extractant. Despite their proposed utility in separation, few structures of lanthanide(III)/TUCS complexes are known. Structural studies can help us to understand the extraction mechanism and the interaction between metal ions and the ligand.

  4. Structural Optimization Methodology for Rotating Disks of Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Armand, Sasan C.

    1995-01-01

    In support of the preliminary evaluation of various engine technologies, a methodology has been developed for structurally designing the rotating disks of an aircraft engine. The structural design methodology, along with a previously derived methodology for predicting low-cycle fatigue life, was implemented in a computer program. An interface computer program was also developed that gathers the required data from a flowpath analysis program (WATE) being used at NASA Lewis. The computer program developed for this study requires minimum interaction with the user, thus allowing engineers with varying backgrounds in aeropropulsion to successfully execute it. The stress analysis portion of the methodology and the computer program were verified by employing the finite element analysis method. The 10th- stage, high-pressure-compressor disk of the Energy Efficient Engine Program (E3) engine was used to verify the stress analysis; the differences between the stresses and displacements obtained from the computer program developed for this study and from the finite element analysis were all below 3 percent for the problem solved. The computer program developed for this study was employed to structurally optimize the rotating disks of the E3 high-pressure compressor. The rotating disks designed by the computer program in this study were approximately 26 percent lighter than calculated from the E3 drawings. The methodology is presented herein.

  5. Polarization engineering and approaches for high-performance III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Arif, Ronald A.

    Light emitting diodes (LEDs) have been increasingly integrated into mainstream lighting. In all applications requiring single-colored light, LEDs have outperformed filtered incandescent lamps. However, there are two major challenges. First is the issue of cost. High-performance nitride-based white LEDs cost roughly two orders of magnitude more expensive than incandescent lamps. The second challenge is color rendering---quantified by Color Rendering Index (CRI). Today's nitride white light LEDs still rely on the mixing of blue light from blue InGaN LEDs and yellow phosphor, and the CRI is relatively low. The best white LEDs to date have a CRI of 70--80, in comparison to traditional lamps, which generally have a CRI close to 100, and able to represent the true color of an object. An ideal way to improve the CRI is by mixing the luminescence of primary color LEDs. However, in order to make this approach viable, all the LEDs have to be based on a single materials platform. AlInGaN is the only materials system to date with the potential to fulfill this, since the bandgap of this nitride compound (with varying amount of Al, In, and Ga) can be varied from UV to IR range. There is still a lot of room for improvement in the efficiencies of nitride blue and green LEDs, while nitride-based active region emitting in the red wavelength (lambda ˜ 650-nm) regime is not realizable yet. In this dissertation, methods to increase internal quantum efficiency by polarization field engineering have been proposed. Two novel structures based on (1) staggered InGaN QW and (2) type-II InGaN-GaNAs QW have been investigated. Staggered InGaN QWs have shown improvement in the photoluminescence, cathodoluminescence, and LED output power, which agree well with numerical model prediction. All materials and devices in this work have been designed, grown and fabricated in-house. For the LED fabrication, a method based on selective area epitaxy---which bypasses dry-etching---has been utilized. In

  6. Type III Radio Bursts and the Structure of the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.

    2003-12-01

    Type III solar radio bursts provide important information on the origin, acceleration, and propagation of particles associated with solar flares and coronal shocks. Since these radio emissions are generated by the plasma emission mechanism, observations of these solar radio transients also provide remote sensing of the plasma conditions in the corona and of the magnetic and plasma structure of the inner heliosphere. In this talk I will review the progress of type III research from their discovery in the late 40s to the most recent advances from low-frequency spacecraft observations, primarily from ISEE-3, Wind and Ulysses.

  7. Phylogeny, topology, structure and functions of membrane-bound class III peroxidases in vascular plants.

    PubMed

    Lüthje, Sabine; Meisrimler, Claudia-Nicole; Hopff, David; Möller, Benjamin

    2011-07-01

    Peroxidases are key player in the detoxification of reactive oxygen species during cellular metabolism and oxidative stress. Membrane-bound isoenzymes have been described for peroxidase superfamilies in plants and animals. Recent studies demonstrated a location of peroxidases of the secretory pathway (class III peroxidases) at the tonoplast and the plasma membrane. Proteomic approaches using highly enriched plasma membrane preparations suggest organisation of these peroxidases in microdomains, a developmentally regulation and an induction of isoenzymes by oxidative stress. Phylogenetic relations, topology, putative structures, and physiological function of membrane-bound class III peroxidases will be discussed.

  8. Crystal structure of the Yersinia type III secretion protein YscE

    SciTech Connect

    Phan, Jason; Austin, Brian P.; Waugh, David S.

    2010-12-06

    The plague-causing bacterium Yersinia pestis utilizes a contact-dependent (type III) secretion system (T3SS) to transport virulence factors from the bacterial cytosol directly into the interior of mammalian cells where they interfere with signal transduction pathways that mediate phagocytosis and the inflammatory response. The type III secretion apparatus is composed of 20-25 different Yersinia secretion (Ysc) proteins. We report here the structure of YscE, the smallest Ysc protein, which is a dimer in solution. The probable mode of oligomerization is discussed.

  9. Electrical transport engineering of semiconductor superlattice structures

    NASA Astrophysics Data System (ADS)

    Shokri, Aliasghar

    2014-04-01

    We investigate the influence of doping concentration on band structures of electrons and electrical transmission in a typical aperiodic semiconductor superlattice consisting of quantum well and barrier layers, theoretically. For this purpose, we assume that each unit cell of the superlattice contains alternately two types of material GaAs (as a well) and GaAlAs (as a barrier) with six sublayers of two materials. Our calculations are based on the generalized Kronig-Penny (KP) model and the transfer matrix method within the framework of the parabolic conductance band effective mass approximation in the coherent regime. This model reduces the numerical calculation time and enables us to use the transfer matrix method to investigate transport in the superlattices. We show that by varying the doping concentration and geometrical parameters, one can easily block the transmission of the electrons. The numerical results may be useful in designing of nanoenergy filter devices.

  10. The joint WAIS-III and WMS-III factor structure: development and cross-validation of a six-factor model of cognitive functioning.

    PubMed

    Tulsky, David S; Price, Larry R

    2003-06-01

    During the standardization of the Wechsler Adult Intelligence Scale (3rd ed.; WAIS-III) and the Wechsler Memory Scale (3rd ed.; WMS-III) the participants in the normative study completed both scales. This "co-norming" methodology set the stage for full integration of the 2 tests and the development of an expanded structure of cognitive functioning. Until now, however, the WAIS-III and WMS-III had not been examined together in a factor analytic study. This article presents a series of confirmatory factor analyses to determine the joint WAIS-III and WMS-III factor structure. Using a structural equation modeling approach, a 6-factor model that included verbal, perceptual, processing speed, working memory, auditory memory, and visual memory constructs provided the best model fit to the data. Allowing select subtests to load simultaneously on 2 factors improved model fit and indicated that some subtests are multifaceted. The results were then replicated in a large cross-validation sample (N = 858).

  11. Density functional theory studies of actinide(III) motexafins (An-Motex2+, An = Ac, Cm, Lr). Structure, stability, and comparison with lanthanide(III) motexafins.

    PubMed

    Cao, Xiaoyan; Li, Quansong; Moritz, Anna; Xie, Zhizhong; Dolg, Michael; Chen, Xuebo; Fang, Weihai

    2006-04-17

    Newly developed relativistic energy-consistent 5f-in-core actinide pseudopotentials and corresponding (7s6p5d1f)/[5s4p3d1f] basis sets in the segmented contraction scheme, combined with density functional theory methods, have been used to study the molecular structure and chemical properties of selected actinide(III) motexafins (An-Motex2+, An = Ac, Cm, Lr). Structure and stability are discussed, and a comparison to the lanthanide(III) motexafins (Ln-Motex2+, Ln = La, Gd, Lu) is made. The actinide element is found to reside above the mean N5 motexafin plane, and the larger the cation, the greater the observed out-of-plane displacement. It is concluded that the actinium(III), curium(III), and lawrencium(III) cations are tightly bound to the macrocyclic skeleton, yielding stable structures. However, the calculated metal-ligand gas-phase binding energy for An-Motex2+ is about 1-2 eV lower than that of Ln-Motex2+, implying a lower stability of An-Motex2+ compared to Ln-Motex2+. Results including solvent effects imply that Ac-Motex2+ is the most stable complex in aqueous solution and should be the best candidate for experimentalists to get stable actinide(III) motexafin complexes.

  12. Evaluation of engineering plastic for rollover protective structure (ROPS) mounting.

    PubMed

    Comer, R S; Ayers, P D; Liu, J

    2007-04-01

    Agriculture has one of the highest fatality rates of any industry in America. Tractor rollovers are a significant contributor to the high death rate. Rollover protective structures (ROPS) have helped lower these high fatality rates on full-size tractors. However, a large number of older tractors still do not use ROPS due to the difficulty of designing and creating a mounting structure. To help reduce this difficulty, engineering plastics were evaluated for use in a ROPS mounting structure on older tractors. The use of engineering plastics around axle housings could provide a uniform mounting configuration as well as lower costs for aftermarket ROPS. Various plastics were examined through shear testing, scale model testing, and compressive strength testing. Once a material was chosen based upon strength and cost, full-scale testing of the plastic's strength on axle housings was conducted. Finally, a mounting structure was tested in static ROPS tests, and field upset tests were performed in accordance with SAE Standard J2194. Initial tests revealed that the ROPS mounting structure and axle housing combination had higher torsional strength with less twisting than the axle housing alone. An engineering plastic ROPS mounting structure was easily successful in withstanding the forces applied during the static longitudinal and lateral ROPS tests. Field upset testing revealed that the mounting structure could withstand the impact loads seen during actual upsets without a failure. During both static testing and field upset testing, no permanent twisting of the mounting structure was found. Engineering plastic could therefore be a viable option for a universal ROPS mounting structure for older tractors.

  13. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri

    USGS Publications Warehouse

    Liu, D.; Dong, Hailiang H.; Bishop, M.E.; Wang, Hongfang; Agrawal, A.; Tritschler, S.; Eberl, D.D.; Xie, S.

    2011-01-01

    Clay minerals and methanogens are ubiquitous and co-exist in anoxic environments, yet it is unclear whether methanogens are able to reduce structural Fe(III) in clay minerals. In this study, the ability of methanogen Methanosarcina barkeri to reduce structural Fe(III) in iron-rich smectite (nontronite NAu-2) and the relationship between iron reduction and methanogenesis were investigated. Bioreduction experiments were conducted in growth medium using three types of substrate: H2/CO2, methanol, and acetate. Time course methane production and hydrogen consumption were measured by gas chromatography. M. barkeri was able to reduce structural Fe(III) in NAu-2 with H2/CO2 and methanol as substrate, but not with acetate. The extent of bioreduction, as measured by the 1,10-phenanthroline method, was 7-13% with H2/CO2 as substrate, depending on nontronite concentration (5-10g/L). The extent was higher when methanol was used as a substrate, reaching 25-33%. Methanogenesis was inhibited by Fe(III) reduction in the H2/CO2 culture, but enhanced when methanol was used. High charge smectite and biogenic silica formed as a result of bioreduction. Our results suggest that methanogens may play an important role in biogeochemical cycling of iron in clay minerals and may have important implications for the global methane budget. ?? 2010 Elsevier Ltd.

  14. MAPLE deposition of Mn(III) metalloporphyrin thin films: Structural, topographical and electrochemical investigations

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Popescu, C.; Popescu, A. C.; Grigorescu, S.; Mihailescu, I. N.; Ciucu, A. A.; Iordache, S.; Andronie, A.; Stamatin, I.; Fagadar-Cosma, E.; Chrisey, D. B.

    2011-04-01

    We report the deposition by MAPLE of metallized nanostructured (5,10,15,20-tetraphenyl)porphinato manganese(III) chloride thin films onto gold screen-printed electrodes, or <1 1 1> Si substrates. The deposited nanostructures were characterized by atomic force microscopy and exhibited globular structures with average diameters decreasing with laser fluence. Raman spectroscopy showed that no major decomposition appeared. We have investigated the Mn(III)-metalloporphyrin thin films by cyclic voltammetry in order to evaluate the potential bio/chemosensing activity on dopamine neurotransmitter analyte. We have found that the manganese(III)-porphyrin is appropriate as a single mediator for dopamine sensing in the specific case of gold screen-printed electrodes.

  15. Structure determination by multiple-wavelength anomalous dispersion (MAD) at the Pr L III edge

    PubMed Central

    Puehringer, Sandra; Hellmig, Michael; Liu, Sunbin; Weiss, Manfred S.; Wahl, Markus C.; Mueller, Uwe

    2012-01-01

    The use of longer X-ray wavelengths in macromolecular crystallography has grown significantly over the past few years. The main reason for this increased use of longer wavelengths has been to utilize the anomalous signal from sulfur, providing a means for the experimental phasing of native proteins. Here, another possible application of longer X-ray wavelengths is presented: MAD at the L III edges of various lanthanide compounds. A first experiment at the L III edge of Pr was conducted on HZB MX beamline BL14.2 and resulted in the successful structure determination of the C-terminal domain of a spliceosomal protein. This experiment demonstrates that L III edges of lanthanides constitute potentially attractive targets for long-wavelength MAD experiments. PMID:22869138

  16. Homoleptic trimethylsilylacetylide complexes of chromium(III), iron(II), and cobalt(III): syntheses, structures, and ligand field parameters.

    PubMed

    Berben, Louise A; Long, Jeffrey R

    2005-11-14

    A straightforward method for synthesizing soluble homoleptic trimethylsilylacetylide complexes of first-row transition metal ions is presented. Reaction of anhydrous CrCl2 with an excess of LiCCSiMe3 in THF at -25 degrees C affords orange Li3[Cr(CCSiMe3)6].6THF (1), while analogous reactions employing M(CF3SO3)2 (M = Fe or Co) generate pale yellow Li4[Fe(CCSiMe3)6].4LiCCSiMe3.4Et2O (2) and colorless Li3[Co(CCSiMe3)6].6THF (3). Slightly modified reaction conditions lead to Li8[Cr2O4(CCSiMe3)6].6LiCCSiMe3.4glyme (4), featuring a bis-mu-oxo-bridged binuclear complex, and Li3[Co(CCSiMe3)5(CCH)].LiCF3SO3.8THF (5). The crystal structures of 1-3 show the trimethylsilylacetylide complexes to display an octahedral coordination geometry, with M-C distances of 2.077(3), 1.917(7)-1.935(7), and 1.908(3) angstroms for M = Cr(III), Fe(II), and Co(III), respectively, and nearly linear M-C[triple bond]C angles. The UV-visible absorption spectrum of [Cr(CCSiMe3)6]3- in hexanes exhibits one spin-allowed d-d transition (4T2g <-- 4A1g) and three lower-energy spin-forbidden d-d transitions. The spectra of [Fe(CCSiMe3)6]4- and [Co(CCSiMe3)6]3- in acetonitrile display high-intensity charge-transfer bands, which obscure all d-d transitions except for the lowest-energy spin-allowed band (1T1g <-- 1A1g) of the latter complex. Time-dependent density functional theory (TD-DFT) calculations were employed as an aide in assigning the observed transitions. Taken together, the results are most consistent with the ligand field parameters delta(o) = 20,200 cm(-1) and B = 530 cm(-1) for [Cr(CCSiMe3)6]3-, delta(o) = 32 450 cm(-1) and B = 460 cm(-1) for [Fe(CCSiMe3)6]4- and delta(o) = 32 500 cm(-1) and B = 516 cm(-1) for [Co(CCSiMe3)6]3-. Ground-state DFT calculations support the conclusion that trimethylsilylacetylide acts as a pi-donor ligand.

  17. Geometric and Electronic Structure of a Peroxomanganese(III) Complex Supported by a Scorpionate Ligand

    PubMed Central

    Colmer, Hannah E.; Geiger, Robert A.; Leto, Domenick F.; Wijeratne, Gayan B.; Day, Victor W.; Jackson, Timothy A.

    2014-01-01

    A monomeric MnII complex has been prepared with the facially-coordinating TpPh2 ligand, (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate). The X-ray crystal structure shows three coordinating solvent molecules resulting in a six-coordinate complex with Mn-ligand bond lengths that are consistent with a high-spin MnII ion. Treatment of this MnII complex with excess KO2 at room temperature resulted in the formation of a MnIII-O2 complex that is stable for several days at ambient conditions, allowing for the determination of the X-ray crystal structure of this intermediate. The electronic structure of this peroxomanganese(III) adduct was examined by using electronic absorption, electron paramagnetic resonance (EPR), low-temperature magnetic circular dichroism (MCD), and variable-temperature variable-field (VTVH) MCD spectroscopies. Density functional theory (DFT), time-dependent (TD)-DFT, and multireference ab initio CASSCF/NEVPT2 calculations were used to assign the electronic transitions and further investigate the electronic structure of the peroxomanganese(III) species. The lowest ligand-field transition in the electronic absorption spectrum of the MnIII-O2 complex exhibits a blue shift in energy compared to other previously characterized peroxomanganese(III) complexes that results from a large axial bond elongation, reducing the metal-ligand covalency and stabilizing the σ-antibonding Mn dz2 MO that is the donor MO for this transition. PMID:25312785

  18. A New Degree Programme in Structural Engineering and Architecture.

    ERIC Educational Resources Information Center

    Davison, J. B.; Popovic, O.; Tyas, A.

    Structural engineers and architects are educated completely independently. Although both play a major part in designing and building a nation's infrastructure, they are not encouraged to fully understand the work of each other which can result in a lack of collaboration and co-operation, often to the detriment of a project. This divide between the…

  19. Abstraction and Concreteness in the Everyday Mathematics of Structural Engineers.

    ERIC Educational Resources Information Center

    Gainsburg, Julie

    The everyday mathematics processes of structural engineers were studied and analyzed in terms of abstraction. A main purpose of the study was to explore the degree to which the notion of a gap between school and everyday mathematics holds when the scope of practices considered "everyday" is extended. J. Lave (1988) promoted a methodology…

  20. Optical Engineering for Children--A Structured Approach

    ERIC Educational Resources Information Center

    McCarthy, John; Moore, R. A.

    2006-01-01

    The present paper focuses on the application of a structured template, maximum impact flow (MIF), in order to encourage young students in the area of optics and optical engineering. MIF introduces a template in terms of individual steps and linked functionality and is shown to fuse separate learning tools together into a cohesive unit.…

  1. CAL Packages for Civil Engineering Hydraulics and Structural Design.

    ERIC Educational Resources Information Center

    Moss, W. D.; And Others

    1979-01-01

    Describes computer assisted learning (CAL) packages written in FORTRAN IV and developed for use in a degree course in civil engineering dealing with hydraulics and structures. All are used in the interactive mode through a terminal with a keyboard and visual display unit. (Author/CMV)

  2. Production of fine structures in type III solar radio bursts due to turbulent density profiles

    SciTech Connect

    Loi, Shyeh Tjing; Cairns, Iver H.; Li, Bo

    2014-07-20

    Magnetic reconnection events in the corona release energetic electron beams along open field lines, and the beams generate radio emission at multiples of the electron plasma frequency f{sub p} to produce type III solar radio bursts. Type III bursts often exhibit irregularities in the form of flux modulations with frequency and/or local temporal advances and delays, and a type IIIb burst represents the extreme case where a type III burst is fragmented into a chain of narrowband features called striae. Remote and in situ spacecraft measurements have shown that density turbulence is ubiquitous in the corona and solar wind, and often exhibits a Kolmogorov power spectrum. In this work, we numerically investigate the effects of one-dimensional macroscopic density turbulence (along the beam direction) on the behavior of type III bursts, and find that this turbulence produces stria-like fine structures in the dynamic spectra of both f{sub p} and 2 f{sub p} radiation. Spectral and temporal fine structures in the predicted type III emission are produced by variations in the scattering path lengths and group speeds of radio emission, and in the locations and sizes of emitting volumes. Moderate turbulence levels yield flux enhancements with much broader half-power bandwidths in f{sub p} than 2 f{sub p} emission, possibly explaining the often observed type IIIb-III harmonic pairs as being where intensifications in 2 f{sub p} radiation are not resolved observationally. Larger turbulence levels producing trough-peak regions in the plasma density profile may lead to broader, resolvable intensifications in 2 f{sub p} radiation, which may account for the type IIIb-IIIb pairs that are sometimes observed.

  3. Complex quantum networks as structured environments: engineering and probing

    NASA Astrophysics Data System (ADS)

    Nokkala, Johannes; Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina; Piilo, Jyrki

    2016-05-01

    We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity.

  4. Complex quantum networks as structured environments: engineering and probing

    PubMed Central

    Nokkala, Johannes; Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina; Piilo, Jyrki

    2016-01-01

    We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity. PMID:27230125

  5. Purification and Subunit Structure of DNA-dependent RNA Polymerase III from Wheat Germ 1

    PubMed Central

    Jendrisak, Jerry

    1981-01-01

    A rapid and simple, large-scale method for the purification of DNA-dependent RNA polymerase III (EC 2.7.7.6) from wheat germ is presented. The method involves enzyme extraction at low ionic strength, polyethyleneimine fractionation, (NH4)2SO4 precipitation, and chromatography on DEAE-Sepharose CL-6B, DEAE-cellulose, and heparin agarose. Milligram quantities of highly purified enzyme can be obtained from kilogram quantities of starting material in 2 to 3 days. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that RNA polymerase III contains 14 subunits with molecular weights of: 150,000; 130,000; 94,000; 55,000; 38,000; 30,000; 28,000; 25,000; 24,500; 20,500; 20,000; 19,500; 17,800; and 17,000. Subunit structure comparison of wheat germ RNA polymerases I, II, and III indicates that all three enzymes may contain common subunits with molecular weights 20,000, 17,800, and 17,000. In addition, RNA polymerases II and III may contain a common subunit with a molecular weight of 25,000, and RNA polymerases I and III may contain a common subunit with a molecular weight of 38,000. Images PMID:16661690

  6. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT III, MAINTAINING THE FUEL SYSTEM--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM. TOPICS ARE (1) PURPOSE OF THE FUEL SYSTEM, (2) TRACING THE FUEL FLOW, (3) MINOR COMPONENTS OF THE FUEL SYSTEM, (4) MAINTENANCE TIPS, (5) CONSTRUCTION AND FUNCTION OF THE FUEL INJECTORS, AND (6)…

  7. Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases

    PubMed Central

    Eichman, Brandt F.; O’Rourke, Eyleen J.; Radicella, J.Pablo; Ellenberger, Tom

    2003-01-01

    DNA glycosylases catalyze the excision of chemically modified bases from DNA. Although most glycosylases are specific to a particular base, the 3-methyladenine (m3A) DNA glycosylases include both highly specific enzymes acting on a single modified base, and enzymes with broader specificity for alkylation-damaged DNA. Our structural understanding of these different enzymatic specificities is currently limited to crystal and NMR structures of the unliganded enzymes and complexes with abasic DNA inhibitors. Presented here are high-resolution crystal structures of the m3A DNA glycosylase from Helicobacter pylori (MagIII) in the unliganded form and bound to alkylated bases 3,9-dimethyladenine and 1,N6-ethenoadenine. These are the first structures of a nucleobase bound in the active site of a m3A glycosylase belonging to the helix–hairpin–helix superfamily. MagIII achieves its specificity for positively-charged m3A not by direct interactions with purine or methyl substituent atoms, but rather by stacking the base between two aromatic side chains in a pocket that excludes 7-methylguanine. We report base excision and DNA binding activities of MagIII active site mutants, together with a structural comparison of the HhH glycosylases. PMID:14517230

  8. Crystal structure of class III chitinase from pomegranate provides the insight into its metal storage capacity.

    PubMed

    Masuda, Taro; Zhao, Guanghua; Mikami, Bunzo

    2015-01-01

    Chitinase hydrolyzes the β-1,4-glycosidic bond in chitin. In higher plants, this enzyme has been regarded as a pathogenesis-related protein. Recently, we identified a class III chitinase, which functions as a calcium storage protein in pomegranate (Punica granatum) seed (PSC, pomegranate seed chitinase). Here, we solved a crystal structure of PSC at 1.6 Å resolution. Although its overall structure, including the structure of catalytic site and non-proline cis-peptides, was closely similar to those of other class III chitinases, PSC had some unique structural characteristics. First, there were some metal-binding sites with coordinated water molecules on the surface of PSC. Second, many unconserved aspartate residues were present in the PSC sequence which rendered the surface of PSC negatively charged. This acidic electrostatic property is in contrast to that of hevamine, well-characterized plant class III chitinase, which has rather a positively charged surface. Thus, the crystal structure provides a clue for metal association property of PSC.

  9. Structural-Engineering Rationales of Gold Nanoparticles for Cancer Theranostics.

    PubMed

    Chen, Wenwen; Zhang, Shaohua; Yu, Yangyang; Zhang, Huisheng; He, Qianjun

    2016-10-01

    Personalized theranostics of cancer is increasingly desired, and can be realized by virtue of multifunctional nanomaterials with possible high performances. Gold nanoparticles (GNPs) are a type of especially promising candidate for cancer theranostics, because their synthesis and modification are facile, their structures and physicochemical properties are flexibly controlled, and they are also biocompatible. Especially, the localized surface plasmon resonance and multivalent coordination effects on the surface endow them with NIR light-triggered photothermal imaging and therapy, controlled drug release, and targeted drug delivery. Although the structure, properties, and theranostic application of GNPs are considerably plentiful, no expert review systematically explains the relationships among their structure, property. and application and induces the engineering rationales of GNPs for cancer theranostics. Hence, there are no clear rules to guide the facile construction of optimal GNP structures aiming at a specific theranostic application. A series of structural-engineering rationales of GNPs for cancer theranostics is proposed through digging out the deep relationships between the structure and properties of GNPs. These rationales will be inspiring for guiding the engineering of specific and advanced GNPs for personalized cancer theranostics.

  10. Electronic Band Structures of the Highly Desirable III-V Semiconductors: TB-mBJ DFT Studies

    NASA Astrophysics Data System (ADS)

    Rehman, Gul; Shafiq, M.; Saifullah; Ahmad, Rashid; Jalali-Asadabadi, S.; Maqbool, M.; Khan, Imad; Rahnamaye-Aliabad, H.; Ahmad, Iftikhar

    2016-07-01

    The correct band gaps of semiconductors are highly desirable for their effective use in optoelectronic and other photonic devices. However, the experimental and theoretical results of the exact band gaps are quite challenging and sometimes tricky. In this article, we explore the electronic band structures of the highly desirable optical materials, III-V semiconductors. The main reason of the ineffectiveness of the theoretical band gaps of these compounds is their mixed bonding character, where large proportions of electrons reside outside atomic spheres in the intestinal regions, which are challenging for proper theoretical treatment. In this article, the band gaps of the compounds are revisited and successfully reproduced by properly treating the density of electrons using the recently developed non-regular Tran and Blaha's modified Becke-Johnson (nTB-mBJ) approach. This study additionally suggests that this theoretical scheme could also be useful for the band gap engineering of the III-V semiconductors. Furthermore, the optical properties of these compounds are also calculated and compared with the experimental results.

  11. Crystal structures of two cross-bridged chromium(III) tetra­aza­macrocycles

    PubMed Central

    Prior, Timothy J.; Maples, Danny L.; Maples, Randall D.; Hoffert, Wesley A.; Parsell, Trenton H.; Silversides, Jon D.; Archibald, Stephen J.; Hubin, Timothy J.

    2014-01-01

    The crystal structure of di­chlorido­(4,10-dimethyl-1,4,7,10-tetra­aza­bicyclo­[5.5.2]tetra­deca­ne)chromium(III) hexa­fluorido­phosphate, [CrCl2(C12H26N4)]PF6, (I), has monoclinic symmetry (space group P21/n) at 150 K. The structure of the related di­chlorido­(4,11-dimethyl-1,4,8,11-tetra­aza­bicyclo­[6.6.2]hexa­deca­ne)chromium(III) hexa­fluorido­phosphate, [CrCl2(C14H30N4)]PF6, (II), also displays monoclinic symmetry (space group P21/c) at 150 K. In each case, the CrIII ion is hexa­coordinate with two cis chloride ions and two non-adjacent N atoms bound cis equatorially and the other two non-adjacent N atoms bound trans axially in a cis-V conformation of the macrocycle. The extent of the distortion from the preferred octa­hedral coordination geometry of the CrIII ion is determined by the parent macrocycle ring size, with the larger cross-bridged cyclam ring in (II) better able to accommodate this preference and the smaller cross-bridged cyclen ring in (I) requiring more distortion away from octa­hedral geometry. PMID:25309165

  12. Structure of type I and type III heterotypic collagen fibrils: an X-ray diffraction study.

    PubMed

    Cameron, G J; Alberts, I L; Laing, J H; Wess, T J

    2002-01-01

    The molecular packing arrangement within collagen fibrils has a significant effect on the tensile properties of tissues. To date, most studies have focused on homotypic fibrils composed of type I collagen. This study investigates the packing of type I/III collagen molecules in heterotypic fibrils of colonic submucosa using a combination of X-ray diffraction data, molecular model building, and simulated X-ray diffraction fibre diagrams. A model comprising a 70-nm-diameter D- (approximately 65 nm) axial periodic structure containing type I and type III collagen chains was constructed from amino acid scattering factors organised in a liquid-like lateral packing arrangement simulated using a classical Lennard-Jones potential. The models that gave the most accurate correspondence with diffraction data revealed that the structure of the fibril involves liquid-like lateral packing combined with a constant helical inclination angle for molecules throughout the fibril. Combinations of type I:type III scattering factors in a ratio of 4:1 gave a reasonable correspondence with the meridional diffraction series. The attenuation of the meridional intensities may be explained by a blurring of the electron density profile of the D period caused by nonspecific or random interactions between collagen types I and III in the heterotypic fibril. (c) 2002 Elsevier Science (USA).

  13. A structural role for the PHP domain in E. coli DNA polymerase III.

    PubMed

    Barros, Tiago; Guenther, Joel; Kelch, Brian; Anaya, Jordan; Prabhakar, Arjun; O'Donnell, Mike; Kuriyan, John; Lamers, Meindert H

    2013-05-14

    In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive. Genomic searches show that the loss of metal-coordinating residues in polymerase PHP domains is likely to have coevolved with the presence of a separate proofreading exonuclease that works with the polymerase. Although the E. coli Pol III PHP domain has lost metal-coordinating residues, the structure of the domain has been conserved to a remarkable degree when compared to that of metal-binding PHP domains. This is demonstrated by our ability to restore metal binding with only three point mutations, as confirmed by the metal-bound crystal structure of this mutant determined at 2.9 Å resolution. We also show that Pol III, a large multi-domain protein, unfolds cooperatively and that mutations in the degenerate metal-binding site of the PHP domain decrease the overall stability of Pol III and reduce its activity. While the presence of a PHP domain in replicative bacterial polymerases is strictly conserved, its ability to coordinate metals and to perform proofreading exonuclease activity is not, suggesting additional non-enzymatic roles for the domain. Our results show that the PHP domain is a major structural element in Pol III and its integrity modulates both the stability and activity of the polymerase.

  14. A structural role for the PHP domain in E. coli DNA polymerase III

    PubMed Central

    2013-01-01

    Background In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive. Results Genomic searches show that the loss of metal-coordinating residues in polymerase PHP domains is likely to have coevolved with the presence of a separate proofreading exonuclease that works with the polymerase. Although the E. coli Pol III PHP domain has lost metal-coordinating residues, the structure of the domain has been conserved to a remarkable degree when compared to that of metal-binding PHP domains. This is demonstrated by our ability to restore metal binding with only three point mutations, as confirmed by the metal-bound crystal structure of this mutant determined at 2.9 Å resolution. We also show that Pol III, a large multi-domain protein, unfolds cooperatively and that mutations in the degenerate metal-binding site of the PHP domain decrease the overall stability of Pol III and reduce its activity. Conclusions While the presence of a PHP domain in replicative bacterial polymerases is strictly conserved, its ability to coordinate metals and to perform proofreading exonuclease activity is not, suggesting additional non-enzymatic roles for the domain. Our results show that the PHP domain is a major structural element in Pol III and its integrity modulates both the stability and activity of the polymerase. PMID:23672456

  15. Structural characterization of CFA/III and Longus type IVb pili from enterotoxigenic Escherichia coli.

    PubMed

    Kolappan, Subramaniapillai; Roos, Justin; Yuen, Alex S W; Pierce, Owen M; Craig, Lisa

    2012-05-01

    The type IV pili are helical filaments found on many Gram-negative pathogenic bacteria, with multiple diverse roles in pathogenesis, including microcolony formation, adhesion, and twitching motility. Many pathogenic enterotoxigenic Escherichia coli (ETEC) isolates express one of two type IV pili belonging to the type IVb subclass: CFA/III or Longus. Here we show a direct correlation between CFA/III expression and ETEC aggregation, suggesting that these pili, like the Vibrio cholerae toxin-coregulated pili (TCP), mediate microcolony formation. We report a 1.26-Å resolution crystal structure of CofA, the major pilin subunit from CFA/III. CofA is very similar in structure to V. cholerae TcpA but possesses a 10-amino-acid insertion that replaces part of the α2-helix with an irregular loop containing a 3(10)-helix. Homology modeling suggests a very similar structure for the Longus LngA pilin. A model for the CFA/III pilus filament was generated using the TCP electron microscopy reconstruction as a template. The unique 3(10)-helix insert fits perfectly within the gap between CofA globular domains. This insert, together with differences in surface-exposed residues, produces a filament that is smoother and more negatively charged than TCP. To explore the specificity of the type IV pilus assembly apparatus, CofA was expressed heterologously in V. cholerae by replacing the tcpA gene with that of cofA within the tcp operon. Although CofA was synthesized and processed by V. cholerae, no CFA/III filaments were detected, suggesting that the components of the type IVb pilus assembly system are highly specific to their pilin substrates.

  16. Electronic structure engineering of various structural phases of phosphorene.

    PubMed

    Kaur, Sumandeep; Kumar, Ashok; Srivastava, Sunita; Tankeshwar, K

    2016-07-21

    We report the tailoring of the electronic structures of various structural phases of phosphorene (α-P, β-P, γ-P and δ-P) based homo- and hetero-bilayers through in-plane mechanical strains, vertical pressure and transverse electric field by employing density functional theory. In-plane biaxial strains have considerably modified the electronic bandgap of both homo- and hetero-bilayers while vertical pressure induces metallization in the considered structures. The γ-P homo-bilayer structure showed the highest ultimate tensile strength (UTS ∼ 6.21 GPa) upon in-plane stretching. Upon application of a transverse electric field, the variation in the bandgap of hetero-bilayers was found to be strongly dependent on the polarity of the applied field which is attributed to the counterbalance between the external electric field and the internal field induced by different structural phases and heterogeneity in the arrangements of atoms of each surface of the hetero-bilayer system. Our results demonstrate that the electronic structures of the considered hetero- and homo-bilayers of phosphorene could be modified by biaxial strain, pressure and electric field to achieve the desired properties for future nano-electronic devices.

  17. Structural tailoring of engine blades (STAEBL) user's manual

    NASA Technical Reports Server (NTRS)

    Brown, K. W.

    1985-01-01

    This User's Manual contains instructions and demonstration case to prepare input data, run, and modify the Structural Tailoring of Engine Blades (STAEBL) computer code. STAEBL was developed to perform engine fan and compressor blade numerical optimizations. This blade optimization seeks a minimum weight or cost design that satisfies realistic blade design constraints, by tuning one to twenty design variables. The STAEBL constraint analyses include blade stresses, vibratory response, flutter, and foreign object damage. Blade design variables include airfoil thickness at several locations, blade chord, and construction variables: hole size for hollow blades, and composite material layup for composite blades.

  18. Structural tailoring of engine blades (STAEBL) theoretical manual

    NASA Technical Reports Server (NTRS)

    Brown, K. W.

    1985-01-01

    This Theoretical Manual includes the theories included in the Structural Tailoring of Engine Blades (STAEBL) computer program which was developed to perform engine fan and compressor blade numerical optimizations. These blade optimizations seek a minimum weight or cost design that satisfies practical blade design constraints, by controlling one to twenty design variables. The STAEBL constraint analyses include blade stresses, vibratory response, flutter, and foreign object damage. Blade design variables include airfoil thickness at several locations, blade chord, and construction variables: hole size for hollow blades, and composite material layup for composite blades.

  19. Interdisciplinary and multilevel optimum design. [in aerospace structural engineering

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1987-01-01

    Interactions among engineering disciplines and subsystems in engineering system design are surveyed and specific instances of such interactions are described. Examination of the interactions that a traditional design process in which the numerical values of major design variables are decided consecutively is likely to lead to a suboptimal design. Supporting numerical examples are a glider and a space antenna. Under an alternative approach introduced, the design and its sensitivity data from the subsystems and disciplines are generated concurrently and then made available to the system designer enabling him to modify the system design so as to improve its performance. Examples of a framework structure and an airliner wing illustrate that approach.

  20. Interdisciplinary and multilevel optimum design. [in aerospace structural engineering

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1987-01-01

    Interactions among engineering disciplines and subsystems in engineering system design are surveyed and specific instances of such interactions are described. Examination of the interactions that a traditional design process in which the numerical values of major design variables are decided consecutively is likely to lead to a suboptimal design. Supporting numerical examples are a glider and a space antenna. Under an alternative approach introduced, the design and its sensitivity data from the subsystems and disciplines are generated concurrently and then made available to the system designer enabling him to modify the system design so as to improve its performance. Examples of a framework structure and an airliner wing illustrate that approach.

  1. Centrifugal Modelling of Soil Structures. Part III. The Stability of River Banks and Flood Embankments.

    DTIC Science & Technology

    1978-10-01

    CENTRIFUGAL MODELLING OF SOIL STRUCTURES. PART I1. THE STARILI--ETC(U) OCT T8 C J PADFIELD. A N SCHOFIELD DA-ERO-76GO-00U C L A S IF I E n N L...ASIIIIIIIII E]lllllEEEEEEE mEEEEEEmhhEEEE EEEEEEEEmhhEEI HhIL~ 222 LEVELA!>1 ; CENTRIFUGAL MODELLING OF SOIL STRUCTURES PART III THE STABILITY OF RIVER...8217WM 1. R NUMBER GOVI ACCESSION NO). 3. R ~CI PIENT . CATALOG NUMNL H .. PERIODCO RED Centrifugal Modelling of soil StructuresPrt = Final Technical The

  2. On the 1s24d Fine Structures of B III and Ne VIII

    NASA Astrophysics Data System (ADS)

    Wang, Zhiwen; Z, W. Wang; Kwong, T. Chung; Zhu, Xiaowei

    1995-01-01

    The fine structure of lithium-like 1s24d states in the literature behaves irregularly as a function of Z. The fine structures of the B III and Ne VIII fall well below the isoelectronic curve. The term energies of these two systems in the data tables also give worse agreement with the theoretical prediction. In this work, we show that the reason for this unusual situation is caused by a misidentification in the original spectra. When the correct identifications are made, the fine structures of both systems fall on the isoelectronic curve and the agreement between theory and experiment is excellent.

  3. Calcium ions stabilize a protein structure of hemolytic lectin CEL-III from marine invertebrate Cucumaria echinata.

    PubMed

    Sallay, I; Tojo, S; Nomiyama, K; Kouzuma, Y; Kimura, M; Yamasaki, N

    2001-06-01

    CEL-III, a galactose/N-acetylgalactosamine (Gal/GalNAc)-specific lectin purified from a marine invertebrate, Cucumaria echinata, has a strong hemolytic activity, especially toward human and rabbit erythrocytes in the presence of Ca2+. We evaluated the role of Ca2+ in hemagglutinating and hemolytic activities of CEL-III. We found that Ca2+ is closely associated with both activities of CEL-III. The fluorescence spectra of CEL-III upon binding to Ca2+ were measured. The result showed a structural change of CEL-III in the presence of Ca2+. The structural change of CEL-III upon Ca2+ binding was further demonstrated by stabilization against urea denaturation and by insusceptibility to protease digestions. CEL-III was completely unfolded at a low concentration of 2 M urea, while CEL-III complexed with Ca2+ was stable in 6 M urea. As for protease digestions, CEL-III monomer and oligomer were readily digested by trypsin, chymotrypsin, and papain in the absence of Ca2+, while they were insusceptible to the three proteases in the presence of Ca2+. The papain digestion of the decalcified oligomer produced a large C-terminal peptide, suggestting that the C-terminal region of CEL-III may participate in oligomerization of CEL-III as a core domain.

  4. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly

    PubMed Central

    Caillat, Christophe; Macheboeuf, Pauline; Wu, Yuanfei; McCarthy, Andrew A.; Boeri-Erba, Elisabetta; Effantin, Gregory; Göttlinger, Heinrich G.; Weissenhorn, Winfried; Renesto, Patricia

    2015-01-01

    The vacuolar protein sorting 4 AAA–ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly. PMID:26632262

  5. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly

    NASA Astrophysics Data System (ADS)

    Caillat, Christophe; Macheboeuf, Pauline; Wu, Yuanfei; McCarthy, Andrew A.; Boeri-Erba, Elisabetta; Effantin, Gregory; Göttlinger, Heinrich G.; Weissenhorn, Winfried; Renesto, Patricia

    2015-12-01

    The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly.

  6. Correlation Between Structural, Spectroscopic, and Reactivity Properties Within a Series of Structurally Analogous Metastable Manganese(III)-Alkylperoxo Complexes

    PubMed Central

    Coggins, Michael K.; Martin-Diaconescu, Vlad; DeBeer, Serena; Kovacs, Julie A.

    2013-01-01

    Manganese–peroxos are proposed as key intermediates in a number of important biochemical and synthetic transformations. Our understanding of the structural, spectroscopic, and reactivity properties of these metastable species is limited, however, and correlations between these properties have yet to be established experimentally. Herein we report the crystallographic structures of a series of structurally related metastable Mn(III)–OOR compounds, and examine their spectroscopic and reactivity properties. The four reported Mn(III)–OOR compounds extend the number of known end-on Mn(III)–(η1-peroxos) to six. The ligand backbone is shown to alter the metal–ligand distances and modulate the electronic properties key to bonding and activation of the peroxo. The mechanism of thermal decay of these metastable species is examined via variable-temperature kinetics. Strong correlations between structural (O–O and Mn⋯Npy,quin distances), spectroscopic (E(πv*(O–O) → Mn CT band), νO–O), and kinetic (ΔH‡ and ΔS‡) parameters for these complexes provide compelling evidence for rate-limiting O–O bond cleavage. Products identified in the final reaction mixtures of Mn(III)–OOR decay are consistent with homolytic O–O bond scission. The N-heterocyclic amines and ligand backbone (Et vs Pr) are found to modulate structural and reactivity properties, and O–O bond activation is shown, both experimentally and theoretically, to track with metal ion Lewis acidity. The peroxo O–O bond is shown to gradually become more activated as the N-heterocyclic amines move closer to the metal ion causing a decrease in π-donation from the peroxo πv*(O–O) orbital. The reported work represents one of very few examples of experimentally verified relationships between structure and function. PMID:23432090

  7. Band structure engineering at heterojunction interfaces via the piezotronic effect.

    PubMed

    Shi, Jian; Starr, Matthew B; Wang, Xudong

    2012-09-04

    Engineering the electronic band structure using the piezopotential is an important aspect of piezotronics, which describes the coupling between the piezoelectric property and semiconducting behavior and functionalities. The time-independent band structure change under short-circuit condition is believed to be due to the remnant piezopotential present at the interface, a result of the finite charge-screening depth at the interface. A series of materials, including metals, semiconductors and electrolytes, are selected to investigate the interfacial band structure engineered by remnant piezopotential when they are in contact with a strained piezoelectric semiconductor. The remnant piezopotential at the interface can switch the junction between Ohmic and Schottky characters, enhance charge combination/separation, regulate barrier height, and modulate reaction kinetics. The difference between the regular time-dependent, pulse-type piezopotential and constant remnant piezopotential is also discussed in detail using a ZnO-based photoelectrochemical anode as an example. The piezotronic effect offers a new pathway for engineering the interface band structure without altering the interface structure or chemical composition, which is promising for improving the performance of many electronics, optoelectronics, and photovoltaic devices.

  8. Can Cr( iii ) substitute for Al( iii ) in the structure of boehmite?

    SciTech Connect

    Chatterjee, Sayandev; Conroy, Michele A.; Smith, Frances N.; Jung, Hee-Joon; Wang, Zheming; Peterson, Reid A.; Huq, Ashfia; Burtt, David G.; Ilton, Eugene S.; Buck, Edgar C.

    2016-01-01

    The dissolution of boehmite is a technical issue for the Al industry because of its recalcitrant nature. In fact, a similar problem exists with boehmite in nuclear waste sludge at the Hanford site in eastern Washington State, USA. Dissolution of Al phases is required to reduce the waste loadings in the final borosilicate glass waste form. Although not the most common Al-bearing species in the sludge, boehmite may become a rate limiting step in the processing of the wastes. Hanford boehmite is an order of magnitude more resistant to dissolution in hot caustic solutions than expected from surface-normalized rates. We are exploring potential intrinsic and extrinsic effects that may limit boehmite reactivity; one clue comes from microstructural analyses that indicate an association of Cr with Al in the Hanford nuclear waste. Hence, in this first paper, we investigated the potential role of chromium on the reactivity of boehmite in caustic solution. An important finding was that irrespective of the synthesis pathway, amount of Cr(III), or the resultant morphology, there was no evidence for Cr incorporation in the bulk structure, in agreement with QM calculations. In fact, electron microscopic (EM) and spectroscopic analyses showed that Cr was enriched at the (101) edges of the boehmite. However, Cr had no measurable effect on the morphology during the synthesis step. In contrast, comparison of the morphologies of the synthetic Cr-doped and pure boehmite samples after exposure to caustic solutions provided evidence that Cr inhibited the corrosion. TEM showed that Cr was not homogeneously distributed at the surface. Consequently, Cr may have partially passivated the surface by blocking discrete energetic sites on the lateral surfaces of boehmite.

  9. Engineering the Electronic Band Structure for Multiband Solar Cells

    SciTech Connect

    Lopez, N.; Reichertz, L.A.; Yu, K.M.; Campman, K.; Walukiewicz, W.

    2010-07-12

    Using the unique features of the electronic band structure of GaNxAs1-x alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the Band Anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications.

  10. Engineering the electronic band structure for multiband solar cells.

    PubMed

    López, N; Reichertz, L A; Yu, K M; Campman, K; Walukiewicz, W

    2011-01-14

    Using the unique features of the electronic band structure of GaN(x)As(1-x) alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the band anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications.

  11. Structurally compliant rocket engine combustion chamber: Experimental and analytical validation

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Arya, Vinod K.; Kazaroff, John M.; Halford, Gary R.

    1994-01-01

    A new, structurally compliant rocket engine combustion chamber design has been validated through analysis and experiment. Subscale, tubular channel chambers have been cyclically tested and analytically evaluated. Cyclic lives were determined to have a potential for 1000 percent increase over those of rectangular channel designs, the current state of the art. Greater structural compliance in the circumferential direction gave rise to lower thermal strains during hot firing, resulting in lower thermal strain ratcheting and longer predicted fatigue lives. Thermal, structural, and durability analyses of the combustion chamber design, involving cyclic temperatures, strains, and low-cycle fatigue lives, have corroborated the experimental observations.

  12. Nontronite (NAu-1) Structure Associated with Microbial Fe(III) Reduction in Various Redox Conditions

    NASA Astrophysics Data System (ADS)

    Koo, T.; Kim, S.; Kim, J.

    2011-12-01

    Shewanella oneidensis MR-1 respires the structural Fe(III) of smectite and promotes illite formation in O2-free environment (Kostka et al., 1996, Kim et al., 2004). Since S. oneidensis is a facultative iron reducing bacterium, it is crucial to understand the structural changes induced by bio-reduction of structural Fe(III) in various redox conditions. Furthermore, the changes in cation exchange capacity (CEC) of bio-reduced nontronite upon the modification of mineral structure has not been extensively studied in terms of Fe-cycling. In this present study, we reported the evolution of nontronite structure at various time points in various redox conditions and corresponding CEC upon reduction and re-oxidation. S. oneidensis MR-1 was incubated in M1 medium with Na-lactate as the electron donor and Fe in nontronite (NAu-1) as the sole electron acceptor at pH 7 in anaerobic chamber for 3 hrs, 12 hrs, 1 day, 2 days, 4 days, 7 days, 14 days, and 21 days. O2 gas bubbling was then applied to the sample at each time point for 24 hours for re-oxidation. The triplet samples at each time point for both reduction and re-oxidation experiments were prepared. The extent of Fe(III) reduction measured by 1,10-phenanthroline method (Stucki and Anderson, 1981) indicated that the structural Fe(III) was reduced up to 8.8% of total Fe(III) within 21 days. XRD data with various treatments such as air dried, glycolated and lithium-saturated showed that K-nontronite may be formed because no discrete 10-Å illite peak was observed in Li-saturated sample upon glycolation. The CEC increased from 747 meg/kg to 1145 meg/kg during Fe(III) reduction and decreased to 954 meg/kg upon re-oxidation, supporting the possible formation of K-nontronite. The direct observation by electron microscopy verified the structural changes in nontonite in various redox conditions. The long-term experiment for 6 months, is in progress in anaerobic chamber, and results will be discussed. Kim, J. W., Dong, H., Seabaugh

  13. The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export

    PubMed Central

    Minamino, Tohru; Morimoto, Yusuke V.; Hara, Noritaka; Aldridge, Phillip D.; Namba, Keiichi

    2016-01-01

    The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+–protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF) in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration. PMID:26943926

  14. The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export.

    PubMed

    Minamino, Tohru; Morimoto, Yusuke V; Hara, Noritaka; Aldridge, Phillip D; Namba, Keiichi

    2016-03-01

    The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+-protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF) in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration.

  15. Neurotypic cell attachment and growth on III-nitride lateral polarity structures.

    PubMed

    Bain, L E; Kirste, R; Johnson, C A; Ghashghaei, H T; Collazo, R; Ivanisevic, A

    2016-01-01

    III-nitride materials have recently received increasing levels of attention for their potential to successfully interface with, and sense biochemical interactions in biological systems. Expanding on available sensing schemes (including transistor-based devices,) a III-N lateral polarity structure capable of introducing quasi-phase matching through a periodic polarity grating presents a novel platform for second harmonic generation. This platform constitutes a non-linear optical phenomenon with exquisite sensitivity to the chemical state of a surface or interface. To characterize the response of a biological system to the nanostructured lateral polarity structures, we cultured neurotypic PC12 cells on AlGaN with varying ratios of Al:Ga - 0, 0.4, 0.6, and 1 - and on surfaces of varying pitch to the III-polar vs. N-polar grating - 5, 10, 20 and 50 μm. While some toxicity associated with increasing Al is observed, we documented and quantified trends in cell responses to the local material polarity and nanoscale roughness. The nitrogen-polar material has a significantly higher nanoscale roughness than III-polar regions, and a 80-200 nm step height difference between the III-polar and N-polar materials in the lateral polarity configuration generates adequate changes in topography to influence cell growth, improves cell adhesion and promotes cell migration along the direction of the features. As the designed material configuration is further explored for biochemical sensing, the lateral polarity scheme may provide a route in assessing the non-specific protein adsorption to this varying nano-topography that drives the subsequent cell response.

  16. Hydrogen effects in dilute III-N-V alloys: From defect engineering to nanostructuring

    SciTech Connect

    Pettinari, G.; Felici, M.; Capizzi, M.; Polimeni, A.; Trotta, R.

    2014-01-07

    The variation of the band gap energy of III-N-V semiconductors induced by hydrogen incorporation is the most striking effect that H produces in these materials. A special emphasis is given here to the combination of N-activity passivation by hydrogen with H diffusion kinetics in dilute nitrides. Secondary ion mass spectrometry shows an extremely steep (smaller than 5 nm/decade) forefront of the H diffusion profile in Ga(AsN) under appropriate hydrogenation conditions. This discovery prompts the opportunity for an in-plane nanostructuring of hydrogen incorporation and, hence, for a modulation of the material band gap energy at the nanoscale. The properties of quantum dots fabricated by a lithographically defined hydrogenation are presented, showing the zero-dimensional character of these novel nanostructures. Applicative prospects of this nanofabrication method are finally outlined.

  17. Synthesis, structure and physical properties of luminescent Pr(III) β-diketonate complexes

    NASA Astrophysics Data System (ADS)

    Pereira, V. M.; Costa, A. L.; Feldl, J.; Maria, T. M. R.; Seixas de Melo, J. S.; Martín-Ramos, P.; Martín-Gil, J.; Ramos Silva, M.

    2017-02-01

    Near infrared lanthanide(III)-based light conversion molecular devices (LCMDs) are emerging as a promising class of materials for organic light-emitting diodes (OLEDs) in some niche technologies. Three of these molecular materials -two highly coordinated Pr3+β-diketonate monomers and a dimer- are presented and their structure and properties are discussed. Particular emphasis is placed on the solid-to-solid transformation observed for the homodinuclear compound.

  18. Synthesis, Structure and Antitumour Properties of a New 1,2-Propylenediaminetetraacetate-Ruthenium(III) Compound.

    PubMed

    Vilaplana, R; Romero, M A; Quirós, M; Salas, J M; González-Vílchez, F

    1995-01-01

    A novel complex formed by ruthenium (III) and the sequestering ligand 1,2-propylenediaminetetraacetic acid (PDTA) has been synthetized and characterized. The structure of the monomeric compound, studied by X-ray diffraction , shows an almost symmetric octahedral geometry around the metal ion, with two chlorine atoms in a cis conformation. The antitumour activity against a variety of murine and human cancers is reported.

  19. Synthesis, Structure and Antitumour Properties of a New 1,2-Propylenediaminetetraacetate-Ruthenium(III) Compound

    PubMed Central

    Vilaplana, R.; Romero, M. A.; Quirós, M.; Salas, J. M.

    1995-01-01

    A novel complex formed by ruthenium (III) and the sequestering ligand 1,2-propylenediaminetetraacetic acid (PDTA) has been synthetized and characterized. The structure of the monomeric compound, studied by X-ray diffraction , shows an almost symmetric octahedral geometry around the metal ion, with two chlorine atoms in a cis conformation. The antitumour activity against a variety of murine and human cancers is reported. PMID:18472768

  20. Crystal structure of Pedobacter heparinus heparin lyase Hep III with the active site in a deep cleft.

    PubMed

    Hashimoto, Wataru; Maruyama, Yukie; Nakamichi, Yusuke; Mikami, Bunzo; Murata, Kousaku

    2014-02-04

    Pedobacter heparinus (formerly known as Flavobacterium heparinum) is a typical glycosaminoglycan-degrading bacterium that produces three heparin lyases, Hep I, Hep II, and Hep III, which act on heparins with 1,4-glycoside bonds between uronate and amino sugar residues. Being different from Hep I and Hep II, Hep III is specific for heparan sulfate. Here we describe the crystal structure of Hep III with the active site located in a deep cleft. The X-ray crystallographic structure of Hep III was determined at 2.20 Å resolution using single-wavelength anomalous diffraction. This enzyme comprised an N-terminal α/α-barrel domain and a C-terminal antiparallel β-sheet domain as its basic scaffold. Overall structures of Hep II and Hep III were similar, although Hep III exhibited an open form compared with the closed form of Hep II. Superimposition of Hep III and heparin tetrasaccharide-bound Hep II suggested that an active site of Hep III was located in the deep cleft at the interface between its two domains. Three mutants (N240A, Y294F, and H424A) with mutations at the active site had significantly reduced enzyme activity. This is the first report of the structure-function relationship of P. heparinus Hep III.

  1. Challenges in engineering osteochondral tissue grafts with hierarchical structures.

    PubMed

    Gadjanski, Ivana; Vunjak-Novakovic, Gordana

    2015-01-01

    A major hurdle in treating osteochondral (OC) defects is the different healing abilities of two types of tissues involved - articular cartilage and subchondral bone. Biomimetic approaches to OC-construct engineering, based on recapitulation of biological principles of tissue development and regeneration, have potential for providing new treatments and advancing fundamental studies of OC tissue repair. This review on state of the art in hierarchical OC tissue graft engineering is focused on tissue engineering approaches designed to recapitulate the native milieu of cartilage and bone development. These biomimetic systems are discussed with relevance to bioreactor cultivation of clinically sized, anatomically shaped human cartilage/bone constructs with physiologic stratification and mechanical properties. The utility of engineered OC tissue constructs is evaluated for their use as grafts in regenerative medicine, and as high-fidelity models in biological research. A major challenge in engineering OC tissues is to generate a functionally integrated stratified cartilage-bone structure starting from one single population of mesenchymal cells, while incorporating perfusable vasculature into the bone, and in bone-cartilage interface. To this end, new generations of advanced scaffolds and bioreactors, implementation of mechanical loading regimens and harnessing of inflammatory responses of the host will likely drive the further progress.

  2. Cabin-fuselage-wing structural design concept with engine installation

    NASA Technical Reports Server (NTRS)

    Ariotti, Scott; Garner, M.; Cepeda, A.; Vieira, J.; Bolton, D.

    1993-01-01

    The purpose of this project is to provide a fuselage structural assembly and wing structural design that will be able to withstand the given operational parameters and loads provided by Federal Aviation Regulation Part 23 (FAR 23) and the Statement of Work (SOW). The goal is to provide a durable lightweight structure that will transfer the applied loads through the most efficient load path. Areas of producibility and maintainability of the structure will also be addressed. All of the structural members will also meet or exceed the desired loading criteria, along with providing adequate stiffness, reliability, and fatigue life as stated in the SOW. Considerations need to be made for control system routing and cabin heating/ventilation. The goal of the wing structure and carry through structure is also to provide a simple, lightweight structure that will transfer the aerodynamic forces produced by the wing, tailboom, and landing gear. These forces will be channeled through various internal structures sized for the pre-determined loading criteria. Other considerations were to include space for flaps, ailerons, fuel tanks, and electrical and control system routing. The difficulties encountered in the fuselage design include expanding the fuselage cabin to accept a third occupant in a staggered configuration and providing ample volume for their safety. By adding a third person the CG of aircraft will move forward so the engine needs to be moved aft to compensate for the difference in the moment. This required the provisions of a ring frame structure for the new position of the engine mount. The difficulties encountered in the wing structural design include resizing the wing for the increased capacity and weight, and compensating for a large torsion produced by the tail boom by placing a great number of stiffeners inside the boom, which will result in the relocation of the fuel tank. Finally, an adequate carry through structure for the wing and fuselage interface will be

  3. Impacts of engineered nanomaterials on microbial community structure and function in natural and engineered ecosystems.

    PubMed

    Mohanty, Anee; Wu, Yichao; Cao, Bin

    2014-10-01

    In natural and engineered environments, microorganisms often exist as complex communities, which are key to the health of ecosystems and the success of bioprocesses in various engineering applications. With the rapid development of nanotechnology in recent years, engineered nanomaterials (ENMs) have been considered one type of emerging contaminants that pose great potential risks to the proper function of microbial communities in natural and engineered ecosystems. The impacts of ENMs on microorganisms have attracted increasing research attentions; however, most studies focused on the antimicrobial activities of ENMs at single cell and population level. Elucidating the influence of ENMs on microbial communities represents a critical step toward a comprehensive understanding of the ecotoxicity of ENMs. In this mini-review, we summarize and discuss recent research work on the impacts of ENMs on microbial communities in natural and engineered ecosystems, with an emphasis on their influences on the community structure and function. We also highlight several important research topics which may be of great interest to the research community.

  4. Ice Protection of Turbojet Engines by Inertia Separation of Water III : Annular Submerged Inlets

    NASA Technical Reports Server (NTRS)

    Von Glahn, Uwe

    1948-01-01

    Aerodynamic and icing studies were conducted on a one-half-scale model of an annular submerged inlet for use with axial-flow turbojet engines. Pressure recoveries, screen radial-velocity profiles, circumferential mass-flow variations, and icing characteristics were determined at the compressor inlet. In order to be effective in maintaining water-free induction air, the inlet gap must be extremely small and ram-pressure recoveries consequently are low, the highest achieved being 65 percent at inlet-velocity ratio of 0.86. All inlets exhibited considerable screen icing. Severe mass-flow shifts occurred at angles of attack.

  5. Lutetium(iii) aqua ion: On the dynamical structure of the heaviest lanthanoid hydration complex

    NASA Astrophysics Data System (ADS)

    Sessa, Francesco; Spezia, Riccardo; D'Angelo, Paola

    2016-05-01

    The structure and dynamics of the lutetium(iii) ion in aqueous solution have been investigated by means of a polarizable force field molecular dynamics (MD). An 8-fold square antiprism (SAP) geometry has been found to be the dominant configuration of the lutetium(iii) aqua ion. Nevertheless, a low percentage of 9-fold complexes arranged in a tricapped trigonal prism (TTP) geometry has been also detected. Dynamic properties have been explored by carrying out six independent MD simulations for each of four different temperatures: 277 K, 298 K, 423 K, 632 K. The mean residence time of water molecules in the first hydration shell at room temperature has been found to increase as compared to the central elements of the lanthanoid series in agreement with previous experimental findings. Water exchange kinetic rate constants at each temperature and activation parameters of the process have been determined from the MD simulations. The obtained structural and dynamical results suggest that the water exchange process for the lutetium(iii) aqua ion proceeds with an associative mechanism, in which the SAP hydration complex undergoes temporary structural changes passing through a 9-fold TTP intermediate. Such results are consistent with the water exchange mechanism proposed for heavy lanthanoid atoms.

  6. Structure and function of the ESCRT II-III interface in multivesicular body biogenesis

    PubMed Central

    Im, Young Jun; Wollert, Thomas; Boura, Evzen; Hurley, James H.

    2009-01-01

    SUMMARY The ESCRT-II-ESCRT-III interaction coordinates the sorting of ubiquitinated cargo with the budding and scission of intralumenal vesicles into multivesicular bodies. The interacting regions of these complexes were mapped to the second winged-helix domain of human ESCRT-II subunit VPS25 and the first helix of ESCRT-III subunit VPS20. The crystal structure of this complex was determined at 2.0 Å resolution. Residues involved in structural interactions explain the specificity of ESCRT-II for Vps20, and are critical for cargo sorting in vivo. ESCRT-II directly activates ESCRT-III driven vesicle budding and scission in vitro via these structural interactions. VPS20 and ESCRT-II bind membranes with nanomolar affinity, explaining why binding to ESCRT-II is dispensable for the recruitment of Vps20 to membranes. Docking of the ESCRT-II -VPS202 supercomplex reveals a convex membrane-binding surface, suggesting a hypothesis for negative membrane curvature induction in the nascent intralumenal vesicle. PMID:19686684

  7. Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis

    SciTech Connect

    Im, Young Jun; Wollert, Thomas; Boura, Evzen; Hurley, James H.

    2009-09-08

    The ESCRT-II-ESCRT-III interaction coordinates the sorting of ubiquitinated cargo with the budding and scission of intralumenal vesicles into multivesicular bodies. The interacting regions of these complexes were mapped to the second winged helix domain of human ESCRT-II subunit VPS25 and the first helix of ESCRT-III subunit VPS20. The crystal structure of this complex was determined at 2.0 {angstrom} resolution. Residues involved in structural interactions explain the specificity of ESCRT-II for Vps20, and are critical for cargo sorting in vivo. ESCRT-II directly activates ESCRT-III-driven vesicle budding and scission in vitro via these structural interactions. VPS20 and ESCRT-II bind membranes with nanomolar affinity, explaining why binding to ESCRT-II is dispensable for the recruitment of Vps20 to membranes. Docking of the ESCRT-II-VPS202 supercomplex reveals a convex membrane-binding surface, suggesting a hypothesis for negative membrane curvature induction in the nascent intralumenal vesicle.

  8. The factor structure of the DSM-III-R and ICD-10 concepts of alcohol dependence.

    PubMed

    Caetano, R

    1990-01-01

    This paper describes the factor structure of the concept of alcohol dependence as proposed in two psychiatric classifications, the DSM-III-R and the ICD-10. Subjects are 219 men and 162 women who were interviewed while in treatment for alcohol-related problems in nine different treatment programs in Contra Costa county, California. Tests of hypotheses supporting a single factor and a dual factor structure of dependence were rejected by confirmatory factor analysis. Results from exploratory factor analysis show a four factor structure for the concept of dependence in DSM-III-R. For ICD-10 there is a four factor solution among men and a three factor solution among women. The item composition of these factors vary by gender and across the two classifications. However, there is good agreement between dependence as measured by DSM-III-R and ICD-10 criteria. Since work on DSM-IV is now under way, the present research aims to provide some empirical base for how future changes should be made.

  9. Lutetium(iii) aqua ion: On the dynamical structure of the heaviest lanthanoid hydration complex.

    PubMed

    Sessa, Francesco; Spezia, Riccardo; D'Angelo, Paola

    2016-05-28

    The structure and dynamics of the lutetium(iii) ion in aqueous solution have been investigated by means of a polarizable force field molecular dynamics (MD). An 8-fold square antiprism (SAP) geometry has been found to be the dominant configuration of the lutetium(iii) aqua ion. Nevertheless, a low percentage of 9-fold complexes arranged in a tricapped trigonal prism (TTP) geometry has been also detected. Dynamic properties have been explored by carrying out six independent MD simulations for each of four different temperatures: 277 K, 298 K, 423 K, 632 K. The mean residence time of water molecules in the first hydration shell at room temperature has been found to increase as compared to the central elements of the lanthanoid series in agreement with previous experimental findings. Water exchange kinetic rate constants at each temperature and activation parameters of the process have been determined from the MD simulations. The obtained structural and dynamical results suggest that the water exchange process for the lutetium(iii) aqua ion proceeds with an associative mechanism, in which the SAP hydration complex undergoes temporary structural changes passing through a 9-fold TTP intermediate. Such results are consistent with the water exchange mechanism proposed for heavy lanthanoid atoms.

  10. Structural and pharmacological characterization of the crotamine isoforms III-4 (MYX4_CROCu) and III-7 (MYX7_CROCu) isolated from the Crotalus durissus cumanensis venom.

    PubMed

    Ponce-Soto, Luis Alberto; Martins-de-Souza, Daniel; Marangoni, Sergio

    2010-07-01

    Two major crotamine isoforms (III-4 and III-7) were obtained combining two chromatographic steps on molecular exclusion chromatography (Sephadex G-75) and ion-exchange column (Protein Pack SP 5PW) of the rattlesnake Crotalus durissus cumanensis venom. The "in vivo" myotoxic effect of the venom, its "in vitro" cytotoxicity in myoblasts and myotubes (C2C12) and the neurotoxic and edema-forming activity were characterized. The molecular masses of the crotamine isoforms were 4907.94 Da (III-4) and 4985.02 Da (III-7) and, as determined by mass spectrometry, both contained six Cys residues. Enzymatic hydrolysis followed by de novo sequencing through tandem mass spectrometry was used to determine the primary structure of both isoforms. III-4 and III-7 isoforms presented a 42-amino acid residues sequence and showed high molecular amino acid sequence identity with other crotamine-like proteins from Crotalus durissus terrificus. In vivo, both crotamine isoforms induced myotoxicty and a systemic interleukin-6 response upon intramuscular injection. These new crotamine isoforms induced low cytotoxicity in skeletal muscle myoblasts and myotubes (C2C12) and both induced a facilitatory effect on neuromuscular transmission in young chick biventer cervicis preparation. Edema-forming activity was also analyzed by injection of the crotamine isoforms into the right paw, since both crotamine isoforms exert a strong pro-inflammatory effect.

  11. Three-dimensional structure in solution of neurotoxin III from the sea anemone Anemonia sulcata.

    PubMed

    Manoleras, N; Norton, R S

    1994-09-20

    The three-dimensional structure in aqueous solution of the 27-residue polypeptide neurotoxin Anemonia sulcata toxin III (ATX III) has been determined from 1H NMR data. As ATX III self-associates in the millimolar concentration range, causing a marked concentration dependence for the chemical shifts of several residues [Norton, R. S., Cross, K., Braach-Maksvytis, V., & Wachter, E. (1993) Biochem. J. 293, 545-551], it was necessary to record NOESY spectra over a range of concentrations in order to eliminate any intermolecular interactions from the NOE restraint set. The pairings of the six half-cystine residues were also unknown and had to be determined (as 3-17, 4-11, and 6-22) from preliminary structure calculations performed using both upper bound distance restraints from NOESY data and a substantial number of lower bound restraints inferred from the absence of NOESY cross-peaks. Final structures were determined, using the program X-PLOR, from interproton distance restraints inferred from NOEs, backbone and side chain dihedral angle restraints from spin-spin coupling measurements, and a smaller number of lower bound restraints. Stereospecific assignments for 11 beta-methylene pairs were also included. The final set of 28 structures had an average pairwise RMS difference of 1.32 A over the backbone heavy atoms (N, C alpha, and C) and 2.18 A over all heavy atoms. For the well-defined region encompassing residues 3-22, the corresponding values were 0.62 and 1.28 A, respectively. ATX III adopts a compact structure containing four reverse turns (a distorted type I beta-turn at residues 6-9, a type I beta-turn at residues 8-11, and inverse gamma-turns at residues 12-14 and 15-17) and two other chain reversals, but no regular alpha-helix or beta-sheet. Several of the residues most affected by aggregation are located on the surface of the molecule, forming a hydrophobic patch which may constitute part of the sodium channel binding surface. Possible relationships between

  12. Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments.

    PubMed

    Tang, Shaogeng; Henne, W Mike; Borbat, Peter P; Buchkovich, Nicholas J; Freed, Jack H; Mao, Yuxin; Fromme, J Christopher; Emr, Scott D

    2015-12-15

    The endosomal sorting complexes required for transport (ESCRTs) constitute hetero-oligomeric machines that catalyze multiple topologically similar membrane-remodeling processes. Although ESCRT-III subunits polymerize into spirals, how individual ESCRT-III subunits are activated and assembled together into a membrane-deforming filament remains unknown. Here, we determine X-ray crystal structures of the most abundant ESCRT-III subunit Snf7 in its active conformation. Using pulsed dipolar electron spin resonance spectroscopy (PDS), we show that Snf7 activation requires a prominent conformational rearrangement to expose protein-membrane and protein-protein interfaces. This promotes the assembly of Snf7 arrays with ~30 Å periodicity into a membrane-sculpting filament. Using a combination of biochemical and genetic approaches, both in vitro and in vivo, we demonstrate that mutations on these protein interfaces halt Snf7 assembly and block ESCRT function. The architecture of the activated and membrane-bound Snf7 polymer provides crucial insights into the spatially unique ESCRT-III-mediated membrane remodeling.

  13. Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments

    PubMed Central

    Tang, Shaogeng; Henne, W Mike; Borbat, Peter P; Buchkovich, Nicholas J; Freed, Jack H; Mao, Yuxin; Fromme, J Christopher; Emr, Scott D

    2015-01-01

    The endosomal sorting complexes required for transport (ESCRTs) constitute hetero-oligomeric machines that catalyze multiple topologically similar membrane-remodeling processes. Although ESCRT-III subunits polymerize into spirals, how individual ESCRT-III subunits are activated and assembled together into a membrane-deforming filament remains unknown. Here, we determine X-ray crystal structures of the most abundant ESCRT-III subunit Snf7 in its active conformation. Using pulsed dipolar electron spin resonance spectroscopy (PDS), we show that Snf7 activation requires a prominent conformational rearrangement to expose protein-membrane and protein-protein interfaces. This promotes the assembly of Snf7 arrays with ~30 Å periodicity into a membrane-sculpting filament. Using a combination of biochemical and genetic approaches, both in vitro and in vivo, we demonstrate that mutations on these protein interfaces halt Snf7 assembly and block ESCRT function. The architecture of the activated and membrane-bound Snf7 polymer provides crucial insights into the spatially unique ESCRT-III-mediated membrane remodeling. DOI: http://dx.doi.org/10.7554/eLife.12548.001 PMID:26670543

  14. Structure, Evolution, and Functions of Bacterial Type III Toxin-Antitoxin Systems

    PubMed Central

    Goeders, Nathalie; Chai, Ray; Chen, Bihe; Day, Andrew; Salmond, George P. C.

    2016-01-01

    Toxin-antitoxin (TA) systems are small genetic modules that encode a toxin (that targets an essential cellular process) and an antitoxin that neutralises or suppresses the deleterious effect of the toxin. Based on the molecular nature of the toxin and antitoxin components, TA systems are categorised into different types. Type III TA systems, the focus of this review, are composed of a toxic endoribonuclease neutralised by a non-coding RNA antitoxin in a pseudoknotted configuration. Bioinformatic analysis shows that the Type III systems can be classified into subtypes. These TA systems were originally discovered through a phage resistance phenotype arising due to a process akin to an altruistic suicide; the phenomenon of abortive infection. Some Type III TA systems are bifunctional and can stabilise plasmids during vegetative growth and sporulation. Features particular to Type III systems are explored here, emphasising some of the characteristics of the RNA antitoxin and how these may affect the co-evolutionary relationship between toxins and cognate antitoxins in their quaternary structures. Finally, an updated analysis of the distribution and diversity of these systems are presented and discussed. PMID:27690100

  15. Appurtenance Influence on Type III Hanford Single-Shell Tank Structural Integrity

    SciTech Connect

    Sanborn, Scott E.; Larsen, Brian M.; Julyk, Larry J.; Johnson, Kenneth I.

    2012-02-26

    The interim stabilized Hanford Single Shell Tanks (SSTs) are currently undergoing a state of the art analysis to assess the structural integrity of the waste storage tanks, for cleanup and closure operations, considering their adverse thermal histories and an updated seismic hazard for the Hanford Site near Richland, Washington. The SSTs contain a variety of ancillary pits, piping, piping supports, risers, equipment, and penetrations known as appurtenances. These appurtenances may alter the structural response and ultimately could affect the structural integrity of the SSTs. An important challenge to the structural analysis of the SSTs is determining the impact of these appurtenances on structural integrity. To achieve this, the various appurtenances were reviewed and bounding appurtenance configurations for SST Types II and III tank designs were analyzed using finite element software. The bounding configurations for the Type II tanks considered four heavy offset pits with a central pit with and without a 36-inch diameter central post-construction penetration and four 42-inch diameter offset penetrations. The bounding configuration for the Type III tanks is a tank with two heavy offset pits and one heavy central pit. For each bounding configuration two finite element models are developed: a seismic analysis model and a thermal and operating loads analysis (TOLA) model. The TOLA models include a Type II or III thermal history, concrete cracking and thermal degradation, reinforcement yielding, and soil plasticity. Additionally, operating loads such as internal waste pressure and concentrated and distributed soil surface loads are applied to the TOLA model. The seismic model treats the tank concrete as linear elastic based on the present day degraded concrete properties. Also, in the seismic model the soil is treated as linear elastic while special techniques are used in the soil above the tank dome and along the tank wall to avoid soil arching and achieve the proper

  16. Performance of J33 turbojet engine with shaft-power extraction III : turbine performance

    NASA Technical Reports Server (NTRS)

    Huppert, M C; Nettles, J C

    1949-01-01

    The performance of the turbine component of a J33 turbojet engine was determined over a range of turbine speeds from 8000 to 11,500 rpm.Turbine-inlet temperature was varied from the minimum required to drive the compressor to a maximum of approximately 2000 degrees R at each of several intermediate turbine speeds. Data are presented that show the horsepower developed by the turbine per pound of gas flow. The relation between turbine-inlet stagnation pressure, turbine-outlet stagnation pressure, and turbine-outlet static pressure was established. The turbine-weight-flow parameter varied from 39.2 to 43.6. The maximum turbine efficiency measured was 0.86 at a pressure ratio of 3.5 and a ratio of blade speed to theoretical nozzle velocity of 0.39. A generalized performance map of the turbine-horsepower parameter plotted against the turbine-speed parameter indicated that the best turbine efficiency is obtained when the turbine power is 10 percent greater than the compressor horsepower. The variation of efficiency with the ratio of blade speed to nozzle velocity indicated that the turbine operates at a speed above that for maximum efficiency when the engine is operated normally with the 19-inch-diameter jet nozzle.

  17. Ab initio studies on the structure of and atomic interactions in cellulose III(I) crystals.

    PubMed

    Ishikawa, Tetsuya; Hayakawa, Daichi; Miyamoto, Hitomi; Ozawa, Motoyasu; Ozawa, Tomonaga; Ueda, Kazuyoshi

    2015-11-19

    The crystal structure of cellulose III(I)was analyzed using first-principles density functional theory (DFT). The geometry was optimized using variable-cell relaxation, as implemented in Quantum ESPRESSO. The Perdew-Burke-Ernzerhof (PBE) functional with a correction term for long-range van der Waals interactions (PBE-D) reproduced the experimental structure well. By using the optimized crystal structure, the interactions existed among the cellulose chains in the crystal were precisely investigated using the NBO analysis. The results showed that the weak bonding nature of CH/O and the hydrogen bonding occur among glucose molecules in the optimized crystal structure. To investigate the strength of interaction, dimeric and trimeric glucose units were extracted from the crystal, and analyzed using MP2 ab initio counterpoise methods with BSSE correction. The results estimated the strength of the interactions. That is, the packed chains along with a-axis interacts with weak bonding nature of CH/O and dispersion interactions by -7.50 kcal/mol, and two hydrogen bonds of O2HO2…O6 and O6HO6…O2 connect the neighboring packed chains with -11.9 kcal/mol. Moreover, FMO4 calculation was also applied to the optimized crystal structure to estimate the strength of the interactions. These methods can well estimate the interactions existed in the crystal structure of cellulose III(I). Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Structural integrity and containment aspects of small gas turbine engines

    NASA Astrophysics Data System (ADS)

    Gupta, S. S.; Gomuc, R.

    1994-03-01

    Structural integrity of rotating components in gas turbine engines is very crucial since their failure implies high impact energy, which, if uncontained, could mean damage to aircraft structures, controls, and so forth, and, in the worst scenario, even loss of lives. This final consequence has led to very stringent airworthiness regulations for engine/aircraft certifications. This paper discusses the historical statistics of noncontainment events in turbofans, turboprops, and turboshafts and shows how the damage severity varies between different applications and how changes to regulations are continuing in order to improve the reliability of aircraft/rotorcraft. The paper also presents design challenges resulting from the analysis complexity of containment/noncontainment event and the way Pratt & Whitney Canada design/analysis/test system caters to all the requirements. The weight and cost impact of possible changes to current regulations are also presented.

  19. Fatty acid biosynthesis revisited: Structure elucidation and metabolic engineering

    SciTech Connect

    Beld, Joris; Lee, D. John; Burkart, Michael D.

    2014-10-20

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. Lastly, in this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.

  20. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering.

    PubMed

    Beld, Joris; Lee, D John; Burkart, Michael D

    2015-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.

  1. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering

    PubMed Central

    Beld, Joris; Lee, D. John

    2014-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases’ many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  2. Phytases: crystal structures, protein engineering and potential biotechnological applications.

    PubMed

    Yao, M-Z; Zhang, Y-H; Lu, W-L; Hu, M-Q; Wang, W; Liang, A-H

    2012-01-01

    Phytases are a group of enzymes capable of releasing phosphates from phytates, one of the major forms of phosphorus (P) in animal feeds of plant origin. These enzymes have been widely used in animal feed to improve phosphorus nutrition and to reduce phosphorus pollution in animal waste. This review covers the basic nomenclature and crystal structures of phytases and emphasizes both the protein engineering strategies used for the development of new, effective phytases with improved properties and the potential biotechnological applications of phytases.

  3. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1985-01-01

    Advanced stress analysis methods applicable to turbine engine structures are investigated. Constructions of special elements which containing traction-free circular boundaries are investigated. New versions of mixed variational principle and version of hybrid stress elements are formulated. A method is established for suppression of kinematic deformation modes. semiLoof plate and shell elements are constructed by assumed stress hybrid method. An elastic-plastic analysis is conducted by viscoplasticity theory using the mechanical subelement model.

  4. Structured electron beams from nano-engineered cathodes

    NASA Astrophysics Data System (ADS)

    Lueangaramwong, A.; Mihalcea, D.; Andonian, G.; Piot, P.

    2017-03-01

    The ability to engineer cathodes at the nano-scale have opened new possibilities such as enhancing quantum efficiency via surface-plasmon excitation, forming ultra-low-emittance beams, or producing structured electron beams. In this paper, we present numerical investigations of the beam dynamics associated with this class of cathode in the weak- and strong-field regimes. We finally discuss the possible applications of some of the achievable cathode patterns when coupled with other phase space manipulations.

  5. III-V strain layer superlattice based band engineered avalanche photodiodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ghosh, Sid

    2015-08-01

    Laser detection and ranging (LADAR)-based systems operating in the Near Infrared (NIR) and Short Wave Infrared (SWIR) have become popular optical sensors for remote sensing, medical, and environmental applications. Sophisticated laser-based radar and weapon systems used for long-range military and astronomical applications need to detect, recognize, and track a variety of targets under a wide spectrum of atmospheric conditions. Infrared APDs play an important role in LADAR systems by integrating the detection and gain stages in a single device. Robust silicon-APDs are limited to visible and very near infrared region (< 1 um), while InGaAs works well up to wavelengths of about 1.5um. Si APDs have low multiplication or excess noise but are limited to below 1um due very poor quantum efficiency above 0.8um. InGaAs and Ge APDs operate up to wavelengths of 1.5um but have poor multiplication or excess noise due to a low impact ionization coefficient ratio between electrons and holes. For the past several decades HgCdTe has been traditionally used in longer wavelength (> 3um) infrared photon detection applications. Recently, various research groups (including Ghosh et. al.) have reported SWIR and MWIR HgCdTe APDs on CdZnTe and Si substrates. However, HgCdTe APDs suffer from low breakdown fields due to material defects, and excess noise increases significantly at high electric fields. During the past decade, InAs/GaSb Strain Layer Superlattice (SLS) material system has emerged as a potential material for the entire infrared spectrum because of relatively easier growth, comparable absorption coefficients, lower tunneling currents and longer Auger lifetimes resulting in enhanced detectivities (D*). Band engineering in type II SLS allows us to engineer avalanche properties of electrons and holes. This is a great advantage over bulk InGaAs and HgCdTe APDs where engineering avalanche properties is not possible. The talk will discuss the evolution of superlattice based avalanche

  6. 1D cerium(III) coordination polymer with pivalate bridges: Synthesis, structure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Akhtar, Muhammad Nadeem; Mateen, Muhammad; Sadakiyo, Masaaki; Warsi, Muhammad Farooq; AlDamen, Murad A.; Song, You

    2017-08-01

    In the present work, synthesis, characterization, and properties of a new 1D-polymeric chain of [Ce(piv)3(MeOH)2]n (1D-Ce) are described. This polymeric structure was synthesized via reaction of Ce(NO3)3·6H2O with pivalic acid in presence of triethylamine. Crystal structure consists of cerium coordinated to eight oxygen atoms from five pivalate and two methanol moieties. Magnetic studies on the complex revealed a strong antiferromagnetic interaction between CeIII ions in the 1D chain.

  7. Appurtenance Influence on Type III Hanford Single-Shell Tank Structural Integrity - 12255

    SciTech Connect

    Sanborn, Scott E.; Johnson, Kenneth I.; Larsen, Brian M.; Julyk, Larry J.

    2012-07-01

    The interim stabilized Hanford Single-Shell Tanks (SSTs) are currently undergoing a state of the art analysis to assess the structural integrity of the waste storage tanks, for cleanup and closure operations, considering their adverse thermal histories and an updated seismic hazard for the Hanford Site near Richland, Washington. The SSTs contain a variety of ancillary pits, piping, piping supports, risers, equipment, and penetrations known as appurtenances. These appurtenances may alter the structural response and ultimately could affect the structural integrity of the SSTs. An important challenge to the structural analysis of the SSTs is to determine the impact of these appurtenances on structural integrity. To achieve this, the various appurtenances were reviewed and a bounding appurtenance configuration for the SST Type III tanks was analyzed using finite element models for both thermal and operating loads as well as seismic loads. Tank structural demands from the finite element analyses were evaluated according to American Concrete Institute (ACI-349) code requirements to determine the tank structural integrity. The appurtenances configuration is found to increase the demand to capacity ratios in local regions near the appurtenances. Away from the appurtenances the influence on structural integrity is minor. The ACI-349-06 evaluation of the Type III SST bounding appurtenance configuration shows the tank is still structurally sound under all evaluated load combinations. When the appurtenance model D/C ratios were compared to those from the baseline axisymmetric model it was found that there were significant differences in the results, particularly under seismic loading conditions. This indicates that the effect of appurtenances on tank structural integrity should at least be considered in all SST AORs. (authors)

  8. Structural characterization, tissue distribution, and functional expression of murine aminoacylase III.

    PubMed

    Pushkin, Alexander; Carpenito, Gerardo; Abuladze, Natalia; Newman, Debra; Tsuprun, Vladimir; Ryazantsev, Sergey; Motemoturu, Srilakshmi; Sassani, Pakan; Solovieva, Nadezhda; Dukkipati, Ramnath; Kurtz, Ira

    2004-04-01

    Many xenobiotics are detoxified through the mercapturate metabolic pathway. The final product of the pathway, mercapturic acids (N-acetylcysteine S-conjugates), are secreted predominantly by renal proximal tubules. Mercapturic acids may undergo a transformation mediated by aminoacylases and cysteine S-conjugate beta-lyases that leads to nephrotoxic reactive thiol formation. The deacetylation of cysteine S-conjugates of N-acyl aromatic amino acids is thought to be mediated by an aminoacylase whose molecular identity has not been determined. In the present study, we cloned aminoacylase III, which likely mediates this process in vivo, and characterized its function and structure. The enzyme consists of 318 amino acids and has a molecular mass (determined by SDS-PAGE) of approximately 35 kDa. Under nondenaturing conditions, the molecular mass of the enzyme is approximately 140 kDa as determined by size-exclusion chromatography, which suggests that it is a tetramer. In agreement with this hypothesis, transmission electron microscopy and image analysis of aminoacylase III showed that the monomers of the enzyme are arranged with a fourfold rotational symmetry. Northern analysis demonstrated an approximately 1.4-kb transcript that was expressed predominantly in kidney and showed less expression in liver, heart, small intestine, brain, lung, testis, and stomach. In kidney, aminoacylase III was immunolocalized predominantly to the apical domain of S1 proximal tubules and the cytoplasm of S2 and S3 proximal tubules. The data suggest that in kidney proximal tubules, aminoacylase III plays an important role in deacetylating mercapturic acids. The predominant cytoplasmic localization of aminoacylase III may explain the greater sensitivity of the proximal straight tubule to the nephrotoxicity of mercapturic acids.

  9. The structure of the hydrated gallium(III), indium(III), and chromium(III) ions in aqueous solution. A large angle X-ray scattering and EXAFS study

    SciTech Connect

    Lindqvist-Reis, P.; Pattanaik, S.; Sandstroem, M.; Munoz-Paez, A.; Diaz-Moreno, S.; Persson, I.

    1998-12-28

    The structure of the hydrated gallium(III), indium(III), and chromium(III) ions has been determined in aqueous perchlorate and nitrate solutions by means of the large-angle X-ray scattering (LAXS) and extended X-ray absorption fine structure (EXAFS) techniques. The EXAFS studies have been performed over a wide concentration range, 0.005--1.0 mol/dm{sup 3} (2.6 mol/dm{sup 3} for chromium(III)), while the LAXS studies are restricted to concentrated solutions, ca. 1.5 mol/dm{sup 3}. All three metal ions were found to coordinate six water molecules, each of which are hydrogen bonded to two water molecules in a second hydration sphere. Analyses of the Ga, In, and Cr K-edge EXAFS data of the aqueous perchlorate and nitrate solutions showed no influence on the first shell M{single_bond}O distance by a change of concentration or anion. The minor contribution from the second sphere M{hor_ellipsis}O distance is obscured by multiple scattering within the tightly bonded first shell. EXAFS data for the alum salts CsM(SO{sub 4}){sub 2}{center_dot}12H{sub 2}O, M = Ga or In, showed the M-O bond length of the hexahydrated gallium(III) and indium(III) ions to be 1.957(2) and 2.122(2) {angstrom}, respectively.

  10. Applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures

    NASA Astrophysics Data System (ADS)

    Zou, Tao; Kaminski, Miroslaw Lech

    2016-09-01

    In design and operation of floating offshore structures, one has to avoid fatigue failures caused by action of ocean waves. The aim of this paper is to investigate the applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures. The applicability was investigated for Bluewaters' FPSO (Floating Production, Storage and Offloading) which had been turret moored at Sable field for half a decade. The waves were predicted as sea-state time series consisting of one wind sea and one swell. The predicted waves were compared with wave data obtained from ERA-interim and buoy measurements. Furthermore, the fatigue calculations were also carried out for main deck and side shell locations. It has been concluded that predicted fatigue damages of main deck using WaveWatch-III are in a very good agreement regardless of differences in predicted wind waves and swells caused by differences in wave system partitioning. When compared to buoy measurements, the model underestimates fatigue damages of side shell by approximately 30 %. The reason for that has been found in wider directional spreading of actual waves. The WaveWatch-III wave model has been found suitable for the fatigue assessment. However, more attention should be paid on relative wave directionality, wave system partitioning and uncertainty analysis in further development.

  11. Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B

    SciTech Connect

    Yang, Dong; Rimanchi, Neggy; Renvoise, Benoit; Lippincott-Schwartz, Jennifer; Blackstone, Craig; Hurley, James H.

    2009-01-15

    The endosomal sorting complex required for transport (ESCRT) machinery, including ESCRT-III, localizes to the midbody and participates in the membrane-abscission step of cytokinesis. The ESCRT-III protein charged multivesicular body protein 1B (CHMP1B) is required for recruitment of the MIT domain-containing protein spastin, a microtubule-severing enzyme, to the midbody. The 2.5-{angstrom} structure of the C-terminal tail of CHMP1B with the MIT domain of spastin reveals a specific, high-affinity complex involving a noncanonical binding site between the first and third helices of the MIT domain. The structural interface is twice as large as that of the MIT domain of the VPS4-CHMP complex, consistent with the high affinity of the interaction. A series of unique hydrogen-bonding interactions and close packing of small side chains discriminate against the other ten human ESCRT-III subunits. Point mutants in the CHMP1B binding site of spastin block recruitment of spastin to the midbody and impair cytokinesis.

  12. Three-Coordinate Terminal Imidoiron(III) Complexes: Structure, Spectroscopy, and Mechanism of Formation

    PubMed Central

    Cowley, Ryan E.; DeYonker, Nathan J.; Eckert, Nathan A.; Cundari, Thomas R.; DeBeer, Serena; Bill, Eckhard; Ottenwaelder, Xavier; Flaschenriem, Christine; Holland, Patrick L.

    2010-01-01

    Reaction of 1-adamantyl azide with iron(I) diketiminate precursors gives metastable but isolable imidoiron(III) complexes LFe=NAd (L = bulky β-diketiminate ligand; Ad = 1-adamantyl). This paper addresses: (1) the spectroscopic and structural characterization of the Fe=N multiple bond in these interesting three-coordinate iron imido complexes, and (2) the mechanism through which the imido complexes form. The iron(III) imido complexes have been examined by 1H NMR and EPR spectroscopies and temperature-dependent magnetic susceptibility (SQUID), and structurally characterized by crystallography and/or X-ray absorption (EXAFS) measurements. These data show that the imido complexes have quartet ground states and short (1.68 ± 0.01 Å) iron-nitrogen bonds. The formation of the imido complexes proceeds through unobserved iron–RN3 intermediates, which are indicated by QM/MM computations to be best described as iron(II) with an RN3 radical anion. The radical character on the organoazide bends its NNN linkage to enable easy N2 loss and imido complex formation. The product distribution between imidoiron(III) products and hexazene-bridged diiron(II) products is solvent-dependent, and the solvent dependence can be explained by coordination of certain solvents to the iron(I) precursor prior to interaction with the organoazide. PMID:20524625

  13. Structural Role of the Vps4-Vta1 Interface in ESCRT-III Recycling

    SciTech Connect

    Yang, Dong; Hurley, James H.

    2010-09-27

    The ESCRT complexes are required for multivesicular body biogenesis, macroautophagy, cytokinesis, and the budding of HIV-1. The final step in the ESCRT cycle is the disassembly of the ESCRT-III lattice by the AAA+ ATPase Vps4. Vps4 assembles on its membrane-bound ESCRT-III substrate with its cofactor, Vta1. The crystal structure of the dimeric VSL domain of yeast Vta1 with the small ATPase and the {beta}domains of Vps4 was determined. Residues involved in structural interactions are conserved and are required for binding in vitro and for Cps1 sorting in vivo. Modeling of the Vta1 complex in complex with the lower hexameric ring of Vps4 indicates that the two-fold axis of the Vta1 VSL domain is parallel to within {approx}20 degrees of the six-fold axis of the hexamer. This suggests that Vta1 might not crosslink the two hexameric rings of Vps4, but rather stabilizes an array of Vps4-Vta1 complexes for ESCRT-III disassembly.

  14. Structural dynamic testing of the Engineering Test Satellite-IV

    NASA Astrophysics Data System (ADS)

    Shiraki, K.; Mitsuma, H.; Matsushita, T.; Izumi, H.

    The Engineering Test Satellite-IV (ETS-IV) was the first large scale spacecraft developed and launched successfully in Japan on a new N-II launch vehicle. This paper presents an approach taken for the structural development of the ETS-IV. Extensive structural tests were performed to demonstrate that the ETS-IV spacecraft meets all design requirements and will survive all critical environments. Details of the static load test, vibration tests, acoustic test, and pyrotechnic shock test were described. The test results were compared with analyses and measured flight data.

  15. Active Narrow-Band Vibration Isolation of Large Engineering Structures

    NASA Technical Reports Server (NTRS)

    Rahman, Zahidul; Spanos, John

    1994-01-01

    We present a narrow-band tracking control method using a variant of the Least Mean Squares (LMS) algorithm to isolate slowly changing periodic disturbances from engineering structures. The advantage of the algorithm is that it has a simple architecture and is relatively easy to implement while it can isolate disturbances on the order of 40-50 dB over decades of frequency band. We also present the results of an experiment conducted on a flexible truss structure. The average disturbance rejection achieved is over 40 dB over the frequency band of 5 Hz to 50 Hz.

  16. Ferroelectric domain engineering and micro-structuring of lithium niobate

    NASA Astrophysics Data System (ADS)

    Mailis, Sakellaris

    2010-11-01

    This paper discusses a number of recently developed all optical and optically assisted methods for ferroelectric domain engineering in lithium niobate and their impact on the micro-structuring of this optical ferroelectric crystal. Optical radiation is used to change the response of lithium niobate crystals to externally applied electric field encouraging or inhibiting ferroelectric domain inversion in a simultaneous or latent manner. Optically assisted poling processes have the advantage of producing ferroelectric domains with arbitrary shapes free from crystal symmetry restrictions which is very important for fabricating surface micro/nano-structures in this material.

  17. Active Narrow-Band Vibration Isolation of Large Engineering Structures

    NASA Technical Reports Server (NTRS)

    Rahman, Zahidul; Spanos, John

    1994-01-01

    We present a narrow-band tracking control method using a variant of the Least Mean Squares (LMS) algorithm to isolate slowly changing periodic disturbances from engineering structures. The advantage of the algorithm is that it has a simple architecture and is relatively easy to implement while it can isolate disturbances on the order of 40-50 dB over decades of frequency band. We also present the results of an experiment conducted on a flexible truss structure. The average disturbance rejection achieved is over 40 dB over the frequency band of 5 Hz to 50 Hz.

  18. Harnessing natural product assembly lines: structure, promiscuity, and engineering

    PubMed Central

    Ladner, Christopher C; Williams, Gavin J

    2015-01-01

    Many therapeutically relevant natural products are biosynthesized by the action of giant mega-enzyme assembly lines. By leveraging the specificity, promiscuity, and modularity of assembly lines, a variety of strategies have been developed that enable the biosynthesis of modified natural products. This review briefly summarizes recent structural advances related to natural product assembly lines, discusses chemical approaches to probing assembly line structures in the absence of traditional biophysical data, and surveys efforts that harness the inherent or engineered promiscuity of assembly lines for the synthesis of non-natural polyketides and nonribosomal peptide analogues. PMID:26527577

  19. Synthesis, structure, luminescent, and magnetic properties of carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2] (Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato).

    PubMed

    Ehama, Kiyomi; Ohmichi, Yusuke; Sakamoto, Soichiro; Fujinami, Takeshi; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Tsuchimoto, Masanobu; Re, Nazzareno

    2013-11-04

    Carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2]·solvent were synthesized through atmospheric CO2 fixation reaction of [Zn(II)L(n)(H2O)2]·xH2O, Ln(III)(NO3)3·6H2O, and triethylamine, where Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato. Each Zn(II)2Ln(III)2 structure possessing an inversion center can be described as two di-μ-phenoxo-bridged {Zn(II)L(n)Ln(III)(NO3)} binuclear units bridged by two carbonato CO3(2-) ions. The Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of L(n) and one oxygen atom of a bridging carbonato ion at the axial site. Ln(III) ion is coordinated by nine oxygen atoms consisting of four from the deprotonated Schiff-base L(n), two from a chelating nitrate, and three from two carbonate groups. The temperature-dependent magnetic susceptibilities in the range 1.9-300 K, field-dependent magnetization from 0 to 5 T at 1.9 K, and alternating current magnetic susceptibilities under the direct current bias fields of 0 and 1000 Oe were measured. The magnetic properties of the Zn(II)2Ln(III)2 complexes are analyzed on the basis of the dicarbonato-bridged binuclear Ln(III)-Ln(III) structure, as the Zn(II) ion with d(10) electronic configuration is diamagnetic. ZnGd1 (L(1)) and ZnGd2 (L(2)) show a ferromagnetic Gd(III)-Gd(III) interaction with J(Gd-Gd) = +0.042 and +0.028 cm(-1), respectively, on the basis of the Hamiltonian H = -2J(Gd-Gd)ŜGd1·ŜGd2. The magnetic data of the Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) were analyzed by a spin Hamiltonian including the crystal field effect on the Ln(III) ions and the Ln(III)-Ln(III) magnetic interaction. The Stark splitting of the ground state was so evaluated, and the energy pattern indicates a strong easy axis (Ising type) anisotropy. Luminescence spectra of Zn(II)2Tb(III)2 complexes were observed, while those

  20. Investigating the Structure of the WJ-III Cognitive in Early School Age through Two Exploratory Bifactor Analysis Procedures

    ERIC Educational Resources Information Center

    Dombrowski, Stefan C.

    2014-01-01

    Two exploratory bifactor methods (e.g., Schmid-Leiman [SL] and exploratory bifactor analysis [EBFA]) were used to investigate the structure of the Woodcock-Johnson III (WJ-III) Cognitive in early school age (age 6-8). The SL procedure is recognized by factor analysts as a preferred method for EBFA. Jennrich and Bentler recently developed an…

  1. Investigating the Structure of the WJ-III Cognitive in Early School Age through Two Exploratory Bifactor Analysis Procedures

    ERIC Educational Resources Information Center

    Dombrowski, Stefan C.

    2014-01-01

    Two exploratory bifactor methods (e.g., Schmid-Leiman [SL] and exploratory bifactor analysis [EBFA]) were used to investigate the structure of the Woodcock-Johnson III (WJ-III) Cognitive in early school age (age 6-8). The SL procedure is recognized by factor analysts as a preferred method for EBFA. Jennrich and Bentler recently developed an…

  2. Structural integrity of engineering composite materials: a cracking good yarn.

    PubMed

    Beaumont, Peter W R; Soutis, Costas

    2016-07-13

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a 'fracture safe design' is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).

  3. Structural integrity of engineering composite materials: a cracking good yarn

    PubMed Central

    Beaumont, Peter W. R.

    2016-01-01

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a ‘fracture safe design’ is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242293

  4. The Structured Clinical Interview for DSM-III-R (SCID). I: History, rationale, and description.

    PubMed

    Spitzer, R L; Williams, J B; Gibbon, M; First, M B

    1992-08-01

    The history, rationale, and development of the Structured Clinical Interview for DSM-III-R (SCID) is described. The SCID is a semistructured interview for making the major Axis I DSM-III-R diagnoses. It is administered by a clinician and includes an introductory overview followed by nine modules, seven of which represent the major axis I diagnostic classes. Because of its modular construction, it can be adapted for use in studies in which particular diagnoses are not of interest. Using a decision tree approach, the SCID guides the clinician in testing diagnostic hypotheses as the interview is conducted. The output of the SCID is a record of the presence or absence of each of the disorders being considered, for current episode (past month) and for lifetime occurrence.

  5. Structure and Management of an Engineering Senior Design Course.

    PubMed

    Tanaka, Martin L; Fischer, Kenneth J

    2016-07-01

    The design of products and processes is an important area in engineering. Students in engineering schools learn fundamental principles in their courses but often lack an opportunity to apply these methods to real-world problems until their senior year. This article describes important elements that should be incorporated into a senior capstone design course. It includes a description of the general principles used in engineering design and a discussion of why students often have difficulty with application and revert to trial and error methods. The structure of a properly designed capstone course is dissected and its individual components are evaluated. Major components include assessing resources, identifying projects, establishing teams, understanding requirements, developing conceptual designs, creating detailed designs, building prototypes, testing performance, and final presentations. In addition to the course design, team management and effective mentoring are critical to success. This article includes suggested guidelines and tips for effective design team leadership, attention to detail, investment of time, and managing project scope. Furthermore, the importance of understanding business culture, displaying professionalism, and considerations of different types of senior projects is discussed. Through a well-designed course and proper mentoring, students will learn to apply their engineering skills and gain basic business knowledge that will prepare them for entry-level positions in industry.

  6. Structural and electronic dependence of the single-molecule-magnet behavior of dysprosium(III) complexes.

    PubMed

    Campbell, Victoria E; Bolvin, Hélène; Rivière, Eric; Guillot, Regis; Wernsdorfer, Wolfgang; Mallah, Talal

    2014-03-03

    We investigate and compare the magnetic properties of two isostructural Dy(III)-containing complexes. The Dy(III) ions are chelated by hexadentate ligands and possess two apical bidendate nitrate anions. In dysprosium(III) N,N'-bis(imine-2-yl)methylene-1,8-diamino-3,6-dioxaoctane (1), the ligand's donor atoms are two alkoxo, two pyridine, and two imine nitrogen atoms. Dysprosium(III) N,N'-bis(amine-2-yl)methylene-1,8-diamino-3,6-dioxaoctane (2) is identical with 1 except for one modification: the two imine groups have been replaced by amine groups. This change has a minute effect on the structure and a larger effect the magnetic behavior. The two complexes possess slow relaxation of the magnetization in the presence of an applied field of 1000 Oe but with a larger barrier for reorientation of the magnetization for 1 (Ueff/kB = 50 K) than for 2 (Ueff/kB = 34 K). First-principles calculations using the spin-orbit complete active-space self-consistent-field method were performed and allowed to fit the experimental magnetization data. The calculations gave the energy spectrum of the 2J + 1 sublevels issued from the J = 15/2 free-ion ground state. The lowest-lying sublevels were found to have a large contribution of MJ = ±15/2 for 1, while for 2, MJ = ±13/2 was dominant. The observed differences were attributed to a synergistic effect between the electron density of the ligand and the small structural changes provoked by a slight alteration of the coordination environment. It was observed that the stronger ligand field (imine) resulted in complex 1 with a larger energy barrier for reorientation of the magnetization than 2.

  7. From Geometry to Diagnosis: Experiences of Geomatics in Structural Engineering

    NASA Astrophysics Data System (ADS)

    Riveiro, B.; Arias, P.; Armesto, J.; Caamaño, J. C.; Solla, M.

    2012-07-01

    Terrestrial photogrammetry and laser scanning are technologies that have been successfully used for metric surveying and 3D modelling in many different fields (archaeological and architectural documentation, industrial retrofitting, mining, structural monitoring, road surveying, etc.). In the case of structural applications, these techniques have been successfully applied to 3D modelling and sometimes monitoring; but they have not been sufficiently implemented to date, as routine tools in infrastructure management systems, in terms of automation of data processing and integration in the condition assessment procedures. In this context, this paper presents a series of experiences in the usage of terrestrial photogrammetry and laser scanning in the context of dimensional and structural evaluation of structures. These experiences are particularly focused on historical masonry structures, but modern prestressed concrete bridges are also investigated. The development of methodological procedures for data collection, and data integration in some cases, is tackled for each particular structure (with access limitations, geometrical configuration, range of measurement, etc.). The accurate geometrical information provided by both terrestrial techniques motivates the implementation of such results in the complex, and sometimes slightly approximated, geometric scene that is frequently used in structural analysis. In this sense, quantitative evaluating of the influence of real and accurate geometry in structural analysis results must be carried out. As main result in this paper, a series of experiences based on the usage of photogrammetric and laser scanning to structural engineering are presented.

  8. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect

    1999-01-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input; all solid wastes benign; cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  9. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect

    1999-04-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input, all solid wastes benign, and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  10. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect

    1998-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard), coal providing {ge} 65% of heat input, all solid wastes benign cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAF Combustor; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  11. On the design and structural analysis of jet engine fan blade structures

    NASA Astrophysics Data System (ADS)

    Amoo, Leye M.

    2013-07-01

    Progress in the design and structural analysis of commercial jet engine fan blades is reviewed and presented. This article is motivated by the key role fan blades play in the performance of advanced gas turbine jet engines. The fundamentals of the associated physics are emphasized. Recent developments and advancements have led to an increase and improvement in fan blade structural durability, stability and reliability. This article is intended as a high level review of the fan blade environment and current state of structural design to aid further research in developing new and innovative fan blade technologies.

  12. Structural Basis for Cyclization Specificity of Two Azotobacter Type III Polyketide Synthases

    PubMed Central

    Satou, Ryutaro; Miyanaga, Akimasa; Ozawa, Hiroki; Funa, Nobutaka; Katsuyama, Yohei; Miyazono, Ken-ichi; Tanokura, Masaru; Ohnishi, Yasuo; Horinouchi, Sueharu

    2013-01-01

    Type III polyketide synthases (PKSs) show diverse cyclization specificity. We previously characterized two Azotobacter type III PKSs (ArsB and ArsC) with different cyclization specificity. ArsB and ArsC, which share a high sequence identity (71%), produce alkylresorcinols and alkylpyrones through aldol condensation and lactonization of the same polyketomethylene intermediate, respectively. Here we identified a key amino acid residue for the cyclization specificity of each enzyme by site-directed mutagenesis. Trp-281 of ArsB corresponded to Gly-284 of ArsC in the amino acid sequence alignment. The ArsB W281G mutant synthesized alkylpyrone but not alkylresorcinol. In contrast, the ArsC G284W mutant synthesized alkylresorcinol with a small amount of alkylpyrone. These results indicate that this amino acid residue (Trp-281 of ArsB or Gly-284 of ArsC) should occupy a critical position for the cyclization specificity of each enzyme. We then determined crystal structures of the wild-type and G284W ArsC proteins at resolutions of 1.76 and 1.99 Å, respectively. Comparison of these two ArsC structures indicates that the G284W substitution brings a steric wall to the active site cavity, resulting in a significant reduction of the cavity volume. We postulate that the polyketomethylene intermediate can be folded to a suitable form for aldol condensation only in such a relatively narrow cavity of ArsC G284W (and presumably ArsB). This is the first report on the alteration of cyclization specificity from lactonization to aldol condensation for a type III PKS. The ArsC G284W structure is significant as it is the first reported structure of a microbial resorcinol synthase. PMID:24100027

  13. Crystal Structure and Regulation of the Citrus Pol III Repressor MAF1 by Auxin and Phosphorylation.

    PubMed

    Soprano, Adriana Santos; Giuseppe, Priscila Oliveira de; Shimo, Hugo Massayoshi; Lima, Tatiani Brenelli; Batista, Fernanda Aparecida Heleno; Righetto, Germanna Lima; Pereira, José Geraldo de Carvalho; Granato, Daniela Campos; Nascimento, Andrey Fabricio Ziem; Gozzo, Fabio Cesar; de Oliveira, Paulo Sérgio Lopes; Figueira, Ana Carolina Migliorini; Smetana, Juliana Helena Costa; Paes Leme, Adriana Franco; Murakami, Mario Tyago; Benedetti, Celso Eduardo

    2017-09-05

    MAF1 is the main RNA polymerase (Pol) III repressor that controls cell growth in eukaryotes. The Citrus ortholog, CsMAF1, was shown to restrict cell growth in citrus canker disease but its role in plant development and disease is still unclear. We solved the crystal structure of the globular core of CsMAF1, which reveals additional structural elements compared with the previously available structure of hMAF1, and explored the dynamics of its flexible regions not present in the structure. CsMAF1 accumulated in the nucleolus upon leaf excision, and this translocation was inhibited by auxin and by mutation of the PKA phosphorylation site, S45, to aspartate. Additionally, mTOR phosphorylated recombinant CsMAF1 and the mTOR inhibitor AZD8055 blocked canker formation in normal but not CsMAF1-silenced plants. These results indicate that the role of TOR on cell growth induced by Xanthomonas citri depends on CsMAF1 and that auxin controls CsMAF1 interaction with Pol III in citrus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Interaction of curcumin with Al(III) and its complex structures based on experiments and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Jiang, Teng; Wang, Long; Zhang, Sui; Sun, Ping-Chuan; Ding, Chuan-Fan; Chu, Yan-Qiu; Zhou, Ping

    2011-10-01

    Curcumin has been recognized as a potential natural drug to treat the Alzheimer's disease (AD) by chelating baleful metal ions, scavenging radicals and preventing the amyloid β (Aβ) peptides from the aggregation. In this paper, Al(III)-curcumin complexes with Al(III) were synthesized and characterized by liquid-state 1H, 13C and 27Al nuclear magnetic resonance (NMR), mass spectroscopy (MS), ultraviolet spectroscopy (UV) and generalized 2D UV-UV correlation spectroscopy. In addition, the density functional theory (DFT)-based UV and chemical shift calculations were also performed to view insight into the structures and properties of curcumin and its complexes. It was revealed that curcumin could interact strongly with Al(III) ion, and form three types of complexes under different molar ratios of [Al(III)]/[curcumin], which would restrain the interaction of Al(III) with the Aβ peptide, reducing the toxicity effect of Al(III) on the peptide.

  15. Synthesis, crystal structure and magnetic characterization of two Mn(III) chains with Schiff-base ligands

    NASA Astrophysics Data System (ADS)

    Zhang, Cong-Ming; Gao, Xi-Feng; Zhu, Mei; Li, Yun-Gai; Wang, Qing-Lun; Li, Li-Cun

    2013-02-01

    Two new one-dimensional manganese(III) complexes [Mn2III(L1)4(piv)2] (1) and [MnIII(L2)(bix)]·2H2OṡClO4 (2) (H2L1 = N-(2-hydroxyethyl)-3-methoxysalicylaldimine, H2L2 = N,N'-bis(salicylidene)phenylenediamine, bix = 1,4-bis-(imidazol-1-ylmethyl)benzene, piv = pivalate) have been synthesized and characterized by X-ray crystallography and magnetic measurements. Crystal structure studies reveal that complex 1 consists one-dimensional manganese(III) chains linked by L12- ligand in η1:η1:η1:μ2 mode. In complex 2, the Mn(III) ion is coordinated by the tetradentate L22- ligand in the equatorial plane, whereas bix ligand acts as bridge in the axial direction. Magnetic studies show that both complexes exhibit weak antiferromagnetic exchange coupling between Mn(III) ions.

  16. Lanthanide(III) Complexes of Tripodal N-Donor Ligands: Structural Models for the Species Involved in Solvent Extraction of Actinides(III).

    PubMed

    Wietzke, Raphaël; Mazzanti, Marinella; Latour, Jean-Marc; Pécaut, Jacques; Cordier, Pierre-Yves; Madic, Charles

    1998-12-28

    The complexation of lanthanides(III) by the tripodal ligands tpa (tris[(2-pyridyl)methyl]amine) and tpza (tris[(2-pyrazinyl)methyl]amine) has been investigated by solution NMR studies and by X-ray crystallography. The crystallographic studies show that both tpa and the new ligand tpza form complexes with a 1:1 metal:ligand ratio in which the tripodal amine acts as a tetradentate ligand. For the tpa complexes the remaining coordination sites are occupied by chloride counterions to give 7-coordination (Eu, Tb, Lu) or by chloride counterions and a methanol molecule to give 8-coordination (Nd). In [Nd(tpza)(H(2)O)(3)(CH(3)CN)(3)](ClO(4))(3).3H(2)O the remaining coordination sites are occupied by water and acetonitrile molecules to give 10-coordination while the perchlorate counterions remain non coordinating. Tpza complexes have been isolated from acetonitrile solution and dissociate completely in methanol, while the complexes of the more basic tpa can be isolated from methanol and exist in water in equilibrium with the free ligand. Solvent extraction studies of lanthanides(III) and actinides(III) from nitric acid solutions show that the new ligand tpza is, unlike tpa, a selective complexant of actinides(III). Considering their structural analogy, this difference could be explained in terms of the electronic differences between the two ligands resulting in a stronger affinity of actinides(III) for the softer donor tpza.

  17. Structural engineering of three-dimensional phononic crystals

    NASA Astrophysics Data System (ADS)

    Delpero, Tommaso; Schoenwald, Stefan; Zemp, Armin; Bergamini, Andrea

    2016-02-01

    Artificially-structured materials are attracting the research interest of a growing community of scientists for the possibility to develop novel materials with advantageous properties that arise from the ability to tailor the propagation of elastic waves, and thus energy, through them. In this work, we propose a three-dimensional phononic crystal whose unit cell has been engineered to obtain a strong wave-attenuation band in the middle of the acoustic frequency range. The combination of its acoustic properties with the dimensions of the unit cell and its static mechanical properties makes it an interesting material for possibly several applications in civil and mechanical engineering, for instance as the core of an acoustically insulating sandwich panel. A sample of this crystal has been manufactured and experimentally tested with respect to its acoustic transmissibility. The performance of the phononic crystal core is remarkable both in terms of amplitude reduction in the transmissibility and width of the attenuation band. A parametric study has been finally conducted on selected geometrical parameters of the unit cell and on their effect on the macroscopic properties of the crystal. This work represents an application-oriented example of how the macroscopic properties of an artificially-structured material can be designed, according to specific needs, by a conventional engineering of its unit cell.

  18. Structures and Luminescent Properties of Two 2D Coordination Polymers Containing Tb(III) or Dy(III) Ions.

    PubMed

    An, Xiaoping; Wang, Hongsheng; Li, Gongchun

    2014-03-01

    Two 2D rare earth terbium and dysprosium coordination polymers with 2,4-pyridinedicarboxylate and oxalate anions have been synthesized by hydrothermal method, the formula is {[RE(pda)(ox)0.5(H2O)4]·2H2O}n (RE = Tb (1) and Dy (2); H2pda = 2,4-pyridinedicarboxylic acid; ox = oxalate anion). The two complexes are isomorphic and crystallized in monoclinic system, P21/c space group. Each pda anion connects two rare earth ions with 2- carboxyl group and the nitrogen atom but the 4- carboxyl group does not coordinate with rare earth ions. Each ox anion connects two rare earth ions by μ 2-bridge way. Both the complexes exhibit intense characteristic luminescence of Tb(III) or Dy(III) ion with excitation of UV-rays.

  19. NCN-chelated organoantimony(III) and organobismuth(III) phosphates: synthesis and solid-state and solution structures.

    PubMed

    Svoboda, Tomáš; Dostál, Libor; Jambor, Roman; Růžička, Aleš; Jirásko, Robert; Lyčka, Antonín

    2011-07-18

    .Organoantimony(III) and organobismuth(III) phosphates (LM)(3)(PO(4))(2) [M = Sb (3) and Bi (4)], containing the NCN-chelating ligand L [L = 2,6-(CH(2)NMe(2))(2)C(6)H(3)], were prepared by the simple treatment of parent oxides 1 and 2 with H(3)PO(4). Both compounds were characterized by elemental analysis, electrospray ionization mass spectrometry, and IR and NMR spectroscopy and in the case of 3 by X-ray diffraction techniques. Compound 3 has an interesting behavior in solution, i.e., the formation of two possible conformational isomers, which was studied by (1)H, (13)C, and (31)P NMR spectroscopy.

  20. Engineered Biosynthesis of Plant Polyketides: Structure-Based and Precursor-Directed Approach

    NASA Astrophysics Data System (ADS)

    Abe, Ikuro

    Pentaketide chromone synthase (PCS) and octaketide synthase (OKS) are novel plant-specific type III polyketide synthases (PKSs) obtained from Aloe arborescens. Recombinant PCS expressed in Escherichia coli catalyzes iterative condensations of five molecules of malonyl-CoA to produce a pentaketide 5,7-dihydroxy-2-methylchromone, while recombinant OKS carries out sequential condensations of eight molecules of malonyl-CoA to yield octaketides SEK4 and SEK4b, the longest polyketides produced by the structurally simple type III PKS. The amino acid sequences of PCS and OKS are 91% identical, sharing 50-60% identity with those of other chalcone synthase (CHS) superfamily type III PKSs of plant origin. One of the most characteristic features is that the conserved active-site Thr197 of CHS (numbering in Medicago sativa CHS) is uniquely replaced with Met207 in PCS and with Gly207 in OKS, respectively. Site-directed mutagenesis and X-ray crystallographic analyses demonstrated that the chemically inert single residue lining the active-site cavity controls the polyketide chain length and the product specificity depending on the steric bulk of the side chain. On the basis of the crystal structures, an F80A/Y82A/M207G triple mutant of the pentaketide-producing PCS was constructed and shown to catalyze condensations of nine molecules of malonyl-CoA to produce an unnatural novel nonaketide naphthopyrone, whereas an N222G mutant of the octaketides-producing OKS yielded a decaketide benzophenone SEK15 from ten molecules of malonyl-CoA. On the other hand, the type III PKSs exhibited broad substrate specificities and catalytic potential. OKS accepted p-coumaroyl-CoA as a starter substrate to produce an unnatural novel C19 hexaketide stilbene and a C21 heptaketide chalcone. Remarkably, the C21 chalcone-forming activity was dramatically increased in the structure-guided OKS N222G mutant. In addition, OKS N222G mutant also yielded unnatural novel polyketides from phenylacetyl-CoA and

  1. Engineered biosynthesis of plant polyketides: structure-based and precursor-directed approach.

    PubMed

    Abe, Ikuro

    2010-01-01

    Pentaketide chromone synthase (PCS) and octaketide synthase (OKS) are novel plant-specific type III polyketide synthases (PKSs) obtained from Aloe arborescens. Recombinant PCS expressed in Escherichia coli catalyzes iterative condensations of five molecules of malonyl-CoA to produce a pentaketide 5,7-dihydroxy-2-methylchromone, while recombinant OKS carries out sequential condensations of eight molecules of malonyl-CoA to yield octaketides SEK4 and SEK4b, the longest polyketides produced by the structurally simple type III PKS. The amino acid sequences of PCS and OKS are 91% identical, sharing 50-60% identity with those of other chalcone synthase (CHS) superfamily type III PKSs of plant origin. One of the most characteristic features is that the conserved active-site Thr197 of CHS (numbering in Medicago sativa CHS) is uniquely replaced with Met207 in PCS and with Gly207 in OKS, respectively. Site-directed mutagenesis and X-ray crystallographic analyses demonstrated that the chemically inert single residue lining the active-site cavity controls the polyketide chain length and the product specificity depending on the steric bulk of the side chain. On the basis of the crystal structures, an F80A/Y82A/M207G triple mutant of the pentaketide-producing PCS was constructed and shown to catalyze condensations of nine molecules of malonyl-CoA to produce an unnatural novel nonaketide naphthopyrone, whereas an N222G mutant of the octaketides-producing OKS yielded a decaketide benzophenone SEK15 from ten molecules of malonyl-CoA. On the other hand, the type III PKSs exhibited broad substrate specificities and catalytic potential. OKS accepted p-coumaroyl-CoA as a starter substrate to produce an unnatural novel C19 hexaketide stilbene and a C21 heptaketide chalcone. Remarkably, the C21 chalcone-forming activity was dramatically increased in the structure-guided OKS N222G mutant. In addition, OKS N222G mutant also yielded unnatural novel polyketides from phenylacetyl-CoA and

  2. Coupled multidisciplinary simulation of composite engine structures in propulsion environment

    SciTech Connect

    Chamis, C.C. ); Singhal, S.N. )

    1993-04-01

    A computational simulation procedure is described for the coupled response of multilayered multimaterial composite engine structural components that are subjected to simultaneous multidisciplinary thermal, structural, vibration, and acoustic loading including the effect of hostile environments. The simulation is based on a three-dimensional finite element analysis technique in conjunction with structural mechanics codes and with the acoustic analysis methods. The composite material behavior is assessed at the various composite scales, i.e., the laminate/ply/fiber and matrix constituents, via a nonlinear material characterization model. Sample cases exhibiting nonlinear geometric, material, loading, and environmental behavior of aircraft engine fan blades are presented. Results for deformed shape, vibration frequencies, mode shapes, and acoustic noise emitted from the fan blade are discussed for their coupled effect in hot and humid environments. Results such as acoustic noise for coupled composite-mechanics/heat transfer/structural/vibration/acoustic analyses demonstrate the effectiveness of coupled multidisciplinary computational simulation and the various advantages of composite materials compared to metals.

  3. Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering.

    PubMed

    Parker, Kevin K; Ingber, Donald E

    2007-08-29

    The spatial and temporal scales of cardiac organogenesis and pathogenesis make engineering of artificial heart tissue a daunting challenge. The temporal scales range from nanosecond conformational changes responsible for ion channel opening to fibrillation which occurs over seconds and can lead to death. Spatial scales range from nanometre pore sizes in membrane channels and gap junctions to the metre length scale of the whole cardiovascular system in a living patient. Synchrony over these scales requires a hierarchy of control mechanisms that are governed by a single common principle: integration of structure and function. To ensure that the function of ion channels and contraction of muscle cells lead to changes in heart chamber volume, an elegant choreography of metabolic, electrical and mechanical events are executed by protein networks composed of extracellular matrix, transmembrane integrin receptors and cytoskeleton which are functionally connected across all size scales. These structural control networks are mechanoresponsive, and they process mechanical and chemical signals in a massively parallel fashion, while also serving as a bidirectional circuit for information flow. This review explores how these hierarchical structural networks regulate the form and function of living cells and tissues, as well as how microfabrication techniques can be used to probe this structural control mechanism that maintains metabolic supply, electrical activation and mechanical pumping of heart muscle. Through this process, we delineate various design principles that may be useful for engineering artificial heart tissue in the future.

  4. Simulation of Aircraft Engine Blade-Out Structural Dynamics. Revised

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2001-01-01

    A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.

  5. Simulation of Aircraft Engine Blade-Out Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2001-01-01

    A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.

  6. Tunable Polarity in a III-V Nanowire by Droplet Wetting and Surface Energy Engineering.

    PubMed

    Yuan, Xiaoming; Caroff, Philippe; Wong-Leung, Jennifer; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati

    2015-10-28

    Controllable axial switching of polarity in GaAs nanowires with minimal tapering and perfect twin-free ZB structure based on the fundamental understanding of nanowire growth and kinking mechanism is presented. The polarity of the bottom segment is confirmed to be (111)A by atomically resolved scanning transmission electron microscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Cylinder head cover structure for a V-type engine

    SciTech Connect

    Okada, M.; Nishida, M.; Hokazono, K.

    1988-11-15

    This patent describes a cylinder head cover structure for a cylinder engine having first and second cylinder heads for forming first and second cylinder banks, each cylinder head being provided, in an inner side wall thereof, with intake ports each communicating with a cylinder formed in the cylinder bank, at least one camshaft provided in each cylinder bank above intake and exhaust valves to drive the valves in synchronization with rotation of the engine and supported for rotation by a plurality of bearings, discrete intake passages each of which is connected to one of the intake ports of one of the cylinder banks and extends above the other cylinder bank, and cylinder head covers mounted on the respective cylinder heads, characterized in that recessed portions are formed in each of the cylinder head covers at corresponding portions of the camshaft and respective the discrete intake passages extend through corresponding ones of the recessed portions.

  8. Fourier Analysis and Structure Determination--Part III: X-ray Crystal Structure Analysis.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Discussed is single crystal X-ray crystal structure analysis. A common link between the NMR imaging and the traditional X-ray crystal structure analysis is reported. Claims that comparisons aid in the understanding of both techniques. (MVL)

  9. Integration of III-V compound semiconductors on silicon MEMS structures

    NASA Astrophysics Data System (ADS)

    Wang, Yan

    2000-09-01

    We have exploited several technologies to integrating III-V compound semiconductors on silicon-based MEMS structures. They included utilizing silicon nano-structures as compliant substrates to improve the quality of heteroeptaxial III-V semiconductors on silicon; building optical active devices on MEMS; and using a MEMS micro-instrument for testing the optical properties of OMVPE thin films. A light emitting tip-array has been fabricated by selectively growing high quality GaInP on Si filed emission tips through OMVPE. The unique sharp tip structure with a small dielectric aperture relieves the lattice and thermal mismatch problems encountered in the heteroepitaxial growth and makes growing a single crystal GaInP on a silicon tip top possible. This technique produces a high yield of working tips. An individual tip-structure is about 0.4mum in size, and the spacing between tips can be as small as 3mum. Test results and theoretical analysis suggest a very narrow depletion region in the p-n junction and a high carrier injection efficiency. The tips begin emitting light even on an indirect GaInP crystal at bias as low as 2 volts. Besides offering a method to make a high resolution flat panel display that works at atmospheric pressure, this process can be easily integrated into MEMS structures to make active MEMS optical devices. Methods to extend the above tip technology to wedges and thin membranes have been studied. If we call a nano-tip as a 0-dimensional structure, a wedge and a membrane can be called 1-dimensional and 2-dimensional structure accordingly. By moving from 0-dimension to higher dimensions, more constraints are added to epitaxial films, and the same difficulties plaguing the conventional III-V on silicon growth once again occur. They are analyzed in this thesis and possible solutions are addressed. We have also demonstrated a micro-loading machine to measure the energy band gap changes of a GaN epitaxial film with a uniaxial stress in the c-plane. The

  10. Syntheses, structures, and magnetic properties of a family of heterometallic heptanuclear [Cu5Ln2] (Ln = Y(III), Lu(III), Dy(III), Ho(III), Er(III), and Yb(III)) complexes: observation of SMM behavior for the Dy(III) and Ho(III) analogues.

    PubMed

    Chandrasekhar, Vadapalli; Dey, Atanu; Das, Sourav; Rouzières, Mathieu; Clérac, Rodolphe

    2013-03-04

    Sequential reaction of the multisite coordination ligand (LH3) with Cu(OAc)2·H2O, followed by the addition of a rare-earth(III) nitrate salt in the presence of triethylamine, afforded a series of heterometallic heptanuclear complexes containing a [Cu5Ln2] core {Ln = Y(1), Lu(2), Dy(3), Ho(4), Er(5), and Yb(6)}. Single-crystal X-ray crystallography reveals that all the complexes are dicationic species that crystallize with two nitrate anions to compensate the charge. The heptanuclear aggregates in 1-6 are centrosymmetrical complexes, with a hexagonal-like arrangement of six peripheral metal ions (two rare-earth and four copper) around a central Cu(II) situated on a crystallographic inversion center. An all-oxygen environment is found to be present around the rare-earth metal ions, which adopt a distorted square-antiprismatic geometry. Three different Cu(II) sites are present in the heptanuclear complexes: two possess a distorted octahedral coordination sphere while the remaining one displays a distorted square-pyramidal geometry. Detailed static and dynamic magnetic properties of all the complexes have been studied and revealed the single-molecule magnet behavior of the Dy(III) and Ho(III) derivatives.

  11. Crystal structures of two ytterbium(III) complexes comprising alkynylamidinate ligands

    PubMed Central

    Wang, Sida; Sroor, Farid M.; Liebing, Phil; Lorenz, Volker; Hilfert, Liane; Edelmann, Frank T.

    2016-01-01

    Two ytterbium(III) complexes comprising alkynylamidinate ligands, namely bis­(η5-cyclo­penta­dien­yl)(3-cyclo­propyl-N,N′-diiso­propyl­propynamidinato-κ2 N,N′)ytterbium(III), [Yb(C5H5)2(C12H19N2)] or Cp2Yb[(iPr2N)2C—C≡C—c-C3H5] (1) and tris­(3-phenyl-N,N′-di­cyclo­hexyl­propynamidinato-κ2 N,N′)ytterbium(III), [Yb(C21H27N2)3] or Yb[(CyN)2C—C≡C—Ph]3 (Cy = cyclo­hex­yl) (2) have been synthesized and structurally characterized. Both complexes are monomers; for complex 2, the contribution to the scattering from highly disordered toluene solvent molecules in these voids was removed with the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The stated crystal data for Mr, μ etc. do not take these into account. PMID:27920904

  12. Crystal structures of two ytterbium(III) complexes comprising alkynylamidinate ligands.

    PubMed

    Wang, Sida; Sroor, Farid M; Liebing, Phil; Lorenz, Volker; Hilfert, Liane; Edelmann, Frank T

    2016-09-01

    Two ytterbium(III) complexes comprising alkynylamidinate ligands, namely bis-(η(5)-cyclo-penta-dien-yl)(3-cyclo-propyl-N,N'-diiso-propyl-propynamidinato-κ(2)N,N')ytterbium(III), [Yb(C5H5)2(C12H19N2)] or Cp2Yb[( (i) Pr2N)2C-C≡C-c-C3H5] (1) and tris-(3-phenyl-N,N'-di-cyclo-hexyl-propynamidinato-κ(2)N,N')ytterbium(III), [Yb(C21H27N2)3] or Yb[(CyN)2C-C≡C-Ph]3 (Cy = cyclo-hex-yl) (2) have been synthesized and structurally characterized. Both complexes are monomers; for complex 2, the contribution to the scattering from highly disordered toluene solvent molecules in these voids was removed with the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9-18] in PLATON. The stated crystal data for Mr, μ etc. do not take these into account.

  13. New lipophilic 3-hydroxy-4-pyridinonate iron(III) complexes: synthesis and EXAFS structural characterisation.

    PubMed

    Schlindwein, Walkiria; Waltham, Emma; Burgess, John; Binsted, Norman; Nunes, Ana; Leite, Andreia; Rangel, Maria

    2006-03-14

    New tris-iron(III) chelates of 3-hydroxy-4-pyridinone ligands derived from maltol (3-hydroxy-2-methyl-4-pyrone) or ethylmaltol (2-ethyl-3-hydroxy-4-pyrone), including a variety of N-aryl (phenyl, 4'-tolyl, 4'-(n-butyl)phenyl, 4'-(n-hexyl)phenyl) and N-benzyl (4'-methylbenzyl, 4'-fluorobenzyl and 4'-(trifluoromethyl)benzylamine) substituents on the nitrogen atom of the pyridinone ring, have been prepared. Characterization by C,H,N elemental analysis and thermogravimetric measurements indicates that most of the complexes are obtained as hydrates of general formula ML3.xH2O. Structural characterization of these difficult to crystallize lipophilic complexes has been achieved by EXAFS spectroscopy. Solutions of iron(III) complexes of maltol, ethylmaltol, 1,2-dimethyl-3-hydroxy-4-pyridinone and 1-phenyl-2-methyl-3-hydroxy-4-pyridinone in methanol-water mixtures were also examined by EXAFS. Distances from the central atom to ligand atoms, within 6 A of the metal, have been determined in the solid and solution samples and the results show that the structure observed in the powder is maintained in solution. The local structure around the metal centre, bond distances and bond angles, does not change significantly with variable lipophilicity, thus indicating that ligands may be tailored according to specific needs without altering their chelation properties. EXAFS data analysis for this set of tris-iron(III) compounds illustrates the important contribution of both intra-ligand and inter-ligand multiple scattering pathways through the metal centre to a peak observed in the FT spectrum at twice the metal ligand distance (approximately 4 A). The present results demonstrate that EXAFS features at twice the metal-ligand distance are valuable in the assignment of molecular geometry and that location of hydration water molecules, by EXAFS analysis, is limited by the geometry of the complexes, in particular for those in which ligands containing phenyl rings are present.

  14. Structural peculiarities of the O-specific polysaccharides of Azospirillum bacteria of serogroup III.

    PubMed

    Fedonenko, Yu P; Boiko, A S; Zdorovenko, E L; Konnova, S A; Shashkov, A S; Ignatov, V V; Knirel, Yu A

    2011-07-01

    Lipopolysaccharides and O-specific polysaccharides were isolated from the outer membrane of bacterial cells of three strains belonging to two Azospirillum species, and their structures were established by monosaccharide analysis including determination of the absolute configurations, methylation analysis, and one- and two-dimensional NMR spectroscopy. It was shown that while having the identical composition, the O-polysaccharides have different branched tetrasaccharide repeating units. Two neutral polysaccharides were found in the lipopolysaccharide of A. brasilense 54, and the structure for the predominant O-polysaccharide was determined. The structural data, together with results of serological studies, enabled assignment of strains examined to a novel serogroup, III. The chemical basis for the serological relatedness among the azospirilla of this serogroup is presumably the presence of a common →3)-α-L-Rhap-(1→2)-α-L-Rhap-(1→3)-α-L-Rhap-(1→ oligosaccharide motif in their O-polysaccharides.

  15. Electronic structure and transport properties of III-V core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Viñas, Florinda; Leijnse, Martin

    We have modeled electron structure and low-temperature transport in III-V core/shell nanowires to establish a relationship between electron-hole hybridization and signatures in thermoelectrical measurements. Nanowires with a GaSb core and an InAs shell (and inverted) are interesting for studies of hybridization effects due to the bulk broken band gap alignment at the material interface. By varying the core radius and shell thickness of such wires we can modify the size of the band gap and create wires with band structures that exhibit hole-electron hybridization states. The band structures are obtained using 8-band k . p theory together with the envelope function approximation. The calculated energy dispersions are used as input to the Boltzmann equation to study thermoelectric transport quantities such as the Seebeck coefficient, in the diffusive limit.

  16. Structural Evaluation of Exo-Skeletal Engine Fan Blades

    NASA Technical Reports Server (NTRS)

    Kuguoglu, Latife; Abumeri, Galib; Chamis, Christos C.

    2003-01-01

    The available computational simulation capability is used to demonstrate the structural viability of composite fan blades of innovative Exo-Skeletal Engine (ESE) developed at NASA Glenn Research Center for a subsonic mission. Full structural analysis and progressive damage evaluation of ESE composite fan blade is conducted through the NASA in-house computational simulation software system EST/BEST. The results of structural assessment indicate that longitudinal stresses acting on the blade are in compression. At a design speed of 2000 rpm, pressure and suction surface outer most ply stresses in longitudinal, transverse and shear direction are much lower than the corresponding composite ply strengths. Damage is initiated at 4870 rpm and blade fracture takes place at rotor speed of 7735 rpm. Damage volume is 51 percent. The progressive damage, buckling, stress and strength results indicate that the design at hand is very sound because of the factor of safety, damage tolerance, and buckling load of 6811 rpm.

  17. Homogeneous sound-absorbing structures for aircraft engine ducts

    NASA Astrophysics Data System (ADS)

    Sobolev, A. F.; Ushakov, V. G.; Filippova, R. D.

    2009-11-01

    As applied to the ducts of aircraft engines, a new method is studied for extending the frequency range of sound absorption by using special homogeneous materials of a rigid structure. A through- or blind-hole perforation of such a homogeneous material is for the first time suggested with a view to substantially extend its capabilities. A theory is developed for sound-absorbing structures of perforated homogeneous material that allows for computing their wave parameters and impedance on the basis of those of the starting material. Based on this theory, one can calculate the impedance of any, no matter how complex a structure built up of several layers differing in thickness and perforation percentage and diameter. The results of calculations made for the impedance and sound absorption coefficient of single and multiple layer samples show good agreement with experimental data.

  18. Structural characteristics of university engineering students' conceptions of energy

    NASA Astrophysics Data System (ADS)

    Liu, Xiufeng; Ebenezer, Jazlin; Fraser, Duncan M.

    2002-05-01

    This study examined structural characteristics of university engineering students' conceptions of energy elicited through paragraph writing and their relations with categories of their conceptions specific to energy in solution processes identified through interviews. We found that structures of students' conceptions are characterized primarily by characteristic, example-of/type-of, and lead-to types of relations, and these relations correspond with categories of students' conceptions. More specifically, categories of students' conceptions are exclusively related to energy transformation, and students failed to apply the notion of energy conservation demonstrated in structures of their conceptions to explain the temperature change in solution processes. It is concluded that although paragraph writing and interviews solicit different student conceptions, the conceptions identified from the two sources are related and paragraph writing tends to provide a more holistic picture of students' conceptions. This conclusion has clear implications for science curriculum development and instruction.

  19. Band-structure engineering in conjugated 2D polymers.

    PubMed

    Gutzler, Rico

    2016-10-26

    Conjugated polymers find widespread application in (opto)electronic devices, sensing, and as catalysts. Their common one-dimensional structure can be extended into the second dimension to create conjugated planar sheets of covalently linked molecules. Extending π-conjugation into the second dimension unlocks a new class of semiconductive polymers which as a consequence of their unique electronic properties can find usability in numerous applications. In this article the theoretical band structures of a set of conjugated 2D polymers are compared and information on the important characteristics band gap and valence/conduction band dispersion is extracted. The great variance in these characteristics within the investigated set suggests 2D polymers as exciting materials in which band-structure engineering can be used to tailor sheet-like organic materials with desired electronic properties.

  20. Engineering hybrid Co-picene structures with variable spin coupling

    SciTech Connect

    Zhou, Chunsheng; Shan, Huan; Li, Bin E-mail: adzhao@ustc.edu.cn; Zhao, Aidi E-mail: adzhao@ustc.edu.cn; Wang, Bing

    2016-04-25

    We report on the in situ engineering of hybrid Co-picene magnetic structures with variable spin coupling using a low-temperature scanning tunneling microscope. Single picene molecules adsorbed on Au(111) are manipulated to accommodate individual Co atoms one by one, forming stable artificial hybrid structures with magnetism introduced by the Co atoms. By monitoring the evolution of the Kondo effect at each site of Co atom, we found that the picene molecule plays an important role in tuning the spin coupling between individual Co atoms, which is confirmed by theoretical calculations based on the density-functional theory. Our findings indicate that the hybrid metal-molecule structures with variable spin coupling on surfaces can be artificially constructed in a controlled manner.

  1. Structure of Salmonella FlhE, conserved member of a flagellar Type III secretion operon

    DOE PAGES

    Lee, Jaemin; Monzingo, Arthur F.; Keatinge-Clay, Adrian T.; ...

    2014-12-26

    In this paper, the bacterial flagellum is assembled by a multicomponent transport apparatus categorized as a type III secretion system. The secretion of proteins that assemble into the flagellum is driven by the proton motive force. The periplasmic protein FlhE is a member of the flhBAE operon in the majority of bacteria where FlhE is found. FlhA and FlhB are established components of the flagellar type III secretion system. The absence of FlhE results in a proton leak through the flagellar system, inappropriate secretion patterns, and cell death, indicating that FlhE regulates an important aspect of proper flagellar biosynthesis. Wemore » isolated FlhE from the periplasm of Salmonella and solved its structure to 1.5 Å resolution. The structure reveals a β-sandwich fold, with no close structural homologs. Finally, possible roles of FlhE, including that of a chaperone, are discussed.« less

  2. Synthesis, Structural and Spectroscopic Characterization, and Reactivities of Mononuclear Cobalt(III)-Peroxo Complexes

    PubMed Central

    Cho, Jaeheung; Sarangi, Ritimukta; Kang, Hye Yeon; Lee, Jung Yoon; Kubo, Minoru; Ogura, Takashi; Solomon, Edward I.; Nam, Wonwoo

    2010-01-01

    Metal-dioxygen adducts are key intermediates detected in the catalytic cycles of dioxygen activation by metalloenzymes and biomimetic compounds. In this study, mononuclear cobalt(III)- peroxo complexes bearing tetraazamacrocyclic ligands, [Co(12-TMC)(O2)]+ and [Co(13-TMC)(O2)]+, were synthesized by reacting [Co(12-TMC)(CH3CN)]2+ and [Co(13-TMC)(CH3CN)]2+, respectively, with H2O2 in the presence of triethylamine. The mononuclear cobalt(III)-peroxo intermediates were isolated and characterized by various spectroscopic techniques and X-ray crystallography, and the structural and spectroscopic characterization demonstrated unambiguously that the peroxo ligand is bound in a side-on η2 fashion. The O-O bond stretching frequency of [Co(12-TMC)(O2)]+ and [Co(13- TMC)(O2)]+ was determined to be 902 cm−1 by resonance Raman spectroscopy. The structural properties of the CoO2 core in both complexes are nearly identical; the O-O bond distances of [Co(12-TMC)(O2)]+ and [Co(13-TMC)(O2)]+ were 1.4389(17) Å and 1.438(6) Å, respectively. The cobalt(III)-peroxo complexes showed reactivities in the oxidation of aldehydes and O2-transfer reactions. In the aldehyde oxidation reactions, the nucleophilic reactivity of the cobalt-peroxo complexes was significantly dependent on the ring size of the macrocyclic ligands, with the reactivity of [Co(13-TMC)(O2)]+ > [Co(12-TMC)(O2)]+. In the O2-transfer reactions, the cobalt(III)-peroxo complexes transferred the bound peroxo group to a manganese(II) complex, affording the corresponding cobalt(II) and manganese(III)- peroxo complexes. The reactivity of the cobalt-peroxo complexes in O2-transfer was also significantly dependent on the ring size of tetraazamacrocycles, and the reactivity order in the O2-transfer reactions was the same as that observed in the aldehyde oxidation reactions. PMID:21062059

  3. Nitroxylcob(III)Alamin: Synthesis And X-Ray Structural Characterization

    SciTech Connect

    Hannibal, L.; Smith, C.A.; Jacobsen, D.W.; Brasch, N.E.

    2009-06-01

    The long-elusive crystal structure of nitrosylcobalamin (NOCbl) reveals that the Co-N-O angle is 117.4-121.4{sup o}; hence, NOCbl is best described as nitroxylcob(III)alamin in the solid state (see picture: Co purple, N blue, O red, P orange, C gray, H white). The length of the Co-N bond trans to the NO ligand is typical of those seen when strong {beta}-axial ligands are positioned trans to the 5,6-dimethylbenzimidazole group.

  4. Biology of Budding Bacteria III. Fine Structure of Rhodomicrobium and Hyphomicrobium spp

    PubMed Central

    Conti, S. F.; Hirsch, Peter

    1965-01-01

    Conti, S. F. (Dartmouth Medical School, Hanover, N.H.), and Peter Hirsch. Biology of budding bacteria. III. Fine structure of Rhodomicrobium and Hyphomicrobium spp. J. Bacteriol. 89:503–512. 1965.—The ultrastructure of 14 strains of hyphomicrobia, and of Rhodomicrobium vannielii, was investigated by means of electron microscopy of thin sections. The majority of the strains of hyphomicrobia possessed a well-developed internal membrane system, which appeared to be derived by invagination from the cytoplasmic membrane. The subcellular organization of the hyphomicrobia and R. vannielii was investigated. Images PMID:14255720

  5. Chiroptical spectra of a series of tetrakis((+)–3–heptafluorobutylyrylcamphorato)lanthanide(III) with an encapsulated alkali metal ion: circularly polarized luminescence and absolute chiral structures for the Eu(III) and Sm(III) complexes

    PubMed Central

    Lunkley, Jamie L.; Shirotani, Dai; Yamanari, Kazuaki; Kaizaki, Sumio; Muller, Gilles

    2011-01-01

    The luminescence and circularly polarized luminescence (CPL) spectra of MI[Eu((+)–hfbc)4] show a similar behavior to the exciton CD in the intraligand π–π* transitions when the alkali metal ions and solvents are manipulated. There is a difference in susceptibility in solvation toward the alkali metal ions but not toward the Eu(III) ion, as in the case of axially symmetric DOTA–type compounds. The remarkable CPL in the 4f–4f transitions provide much more information on stereospecific formation of chiral Eu(III) complexes, since CPL spectroscopy is limited to luminescent species and reflects selectively toward helicity of the local structural environment around the lanthanide(III). While in comparison, exciton CD reveals the chiral structural information from the helical arrangement of the four bladed chelates. Of special importance, the observation of the highest CPL activities measured to date for lanthanide(III)–containing compounds (i.e. Eu and Sm) in solution supports that the chirality of Lanthanide(III) in the excited state corresponds to that in the ground state, which was derived from the exciton CD. PMID:22074461

  6. Remote online monitoring and measuring system for civil engineering structures

    NASA Astrophysics Data System (ADS)

    Kujawińska, Malgorzata; Sitnik, Robert; Dymny, Grzegorz; Karaszewski, Maciej; Michoński, Kuba; Krzesłowski, Jakub; Mularczyk, Krzysztof; Bolewicki, Paweł

    2009-06-01

    In this paper a distributed intelligent system for civil engineering structures on-line measurement, remote monitoring, and data archiving is presented. The system consists of a set of optical, full-field displacement sensors connected to a controlling server. The server conducts measurements according to a list of scheduled tasks and stores the primary data or initial results in a remote centralized database. Simultaneously the server performs checks, ordered by the operator, which may in turn result with an alert or a specific action. The structure of whole system is analyzed along with the discussion on possible fields of application and the ways to provide a relevant security during data transport. Finally, a working implementation consisting of a fringe projection, geometrical moiré, digital image correlation and grating interferometry sensors and Oracle XE database is presented. The results from database utilized for on-line monitoring of a threshold value of strain for an exemplary area of interest at the engineering structure are presented and discussed.

  7. Synthesis and crystal structure of Ru III-supported tungstoantimonate [Sb 2W 20Ru III2(H 2O) 2(dmso) 6O 68] 4-

    NASA Astrophysics Data System (ADS)

    Bi, Li-Hua; Li, Bao; Bi, Shuai; Wu, Li-Xin

    2009-06-01

    The first Ru III-supported tungstoantimonate [Ru II(bpy) 3] 2[Sb 2W 20Ru III2(H 2O) 2(dmso) 6O 68]·3dmso (bpy=bi-pyridine) ( 1a) has been successfully isolated as [Ru(bpy) 3] 2+ (Rubpy) salt by routine synthetic reaction in mixed solutions with dmso and water. Single-crystal X-ray analysis was carried out on 1a, which crystallizes in the triclinic system space group P-1 with a=16.804 (6), b=16.988 (6), c=17.666 (6) Å, α=107.397 (13)°, β=106.883 (13)°, γ=103.616 (12)°. V=4309 (3) Å 3, Z=1 with R1=0.0773. The compound 1a reveals the following features: (1) Rubpy is firstly used as an alternative ruthenium-source for the synthesis of Ru-substituted heteropolytungstate; (2) the structure of 1a consists of four Ru III-O-S(CH 3) 2 and two W-O-S(CH 3) 2 bonds resulting in an assembly with C2 symmetry; (3) the Ru III ions are linked to two dmso groups via two Ru III-O-S(CH 3) 2 bonds, which represents the other dmso-coordination mode to Ru III in POM chemistry. The cyclic voltammetry studies of 1a in dmso/H 2SO 4 (3/1 v/v) at pH 2.5 medium using the glassy carbon electrode as a working electrode show the respective electrochemical behaviors of the W-centers and the Ru-centers within 1a, which could be separated clearly. In addition, the compound 1a exhibits photoluminescence arising from π*- t2g ligand-to-metal transition of Rubpy.

  8. Structural and Machine Design Using Piezoceramic Materials: A Guide for Structural Design Engineers

    NASA Technical Reports Server (NTRS)

    Inman, Daniel J.; Cudney, Harley H.

    2000-01-01

    Using piezoceramic materials is one way the design engineer can create structures which have an ability to both sense and respond to their environment. Piezoceramic materials can be used to create structural sensors and structural actuators. Because piezoceramic materials have transduction as a material property, their sensing or actuation functions are a result of what happens to the material. This is different than discrete devices we might attach to the structure. For example, attaching an accelerometer to a structure will yield an electrical signal proportional to the acceleration at the attachment point on the structure. Using a electromagnetic shaker as an actuator will create an applied force at the attachment point. Active material elements in a structural design are not easily modeled as providing transduction at a point, but rather they change the physics of the structure in the areas where they are used. Hence, a designer must not think of adding discrete devices to a structure to obtain an effect, but rather must design a structural system which accounts for the physical principles of all the elements in the structure. The purpose of this manual is to provide practicing engineers the information necessary to incorporate piezoelectric materials in structural design and machine design. First, we will review the solid-state physics of piezoelectric materials. Then we will discuss the physical characteristics of the electrical-active material-structural system. We will present the elements of this system which must be considered as part of the design task for a structural engineer. We will cover simple modeling techniques and review the features and capabilities of commercial design tools that are available. We will then cover practical how-to elements of working with piezoceramic materials. We will review sources of piezoceramic materials and built-up devices, and their characteristics. Finally, we will provide two design examples using piezoceramic

  9. Grain boundary engineering for structure materials of nuclear reactors

    SciTech Connect

    Tan, Lizhen; Allen, Todd R.; Busby, Jeremy T.

    2013-03-29

    Grain boundary engineering (GBE), primarily implemented by thermomechanical processing, is an effective and economical method of enhancing the properties of polycrystalline materials. Among the factors affecting grain boundary character distribution, literature data showed definitive effect of grain size and texture. GBE is more effective for austenitic stainless steels and Ni-base alloys compared to other structural materials of nuclear reactors, such as refractory metals, ferritic and ferritic–martensitic steels, and Zr alloys. Furthermore, GBE has shown beneficial effects on improving the strength, creep strength, and resistance to stress corrosion cracking and oxidation of austenitic stainless steels and Ni-base alloys.

  10. Engineering band structure in nanoscale quantum-dot supercrystals.

    PubMed

    Baimuratov, Anvar S; Rukhlenko, Ivan D; Fedorov, Anatoly V

    2013-07-01

    Supercrystals made of periodically arranged semiconductor quantum dots (QDs) are promising structures for nanophotonics applications due to almost unlimited degrees of freedom enabling fine tuning of their optical responses. Here we demonstrate broad engineering opportunities associated with the possibility of tailoring the energy bands of excitons in two-dimensional quantum-dot supercrystals through the alteration in the QD arrangement. These opportunities offer an unprecedented control over the optical properties of the supercrystals, which may be used as a versatile material base for advanced photonics devices on the nanoscale.

  11. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, Theodore H. H.

    1991-01-01

    The following tasks on the study of advanced stress analysis methods applicable to turbine engine structures are described: (1) constructions of special elements which contain traction-free circular boundaries; (2) formulation of new version of mixed variational principles and new version of hybrid stress elements; (3) establishment of methods for suppression of kinematic deformation modes; (4) construction of semiLoof plate and shell elements by assumed stress hybrid method; and (5) elastic-plastic analysis by viscoplasticity theory using the mechanical subelement model.

  12. Overview of Lightweight Structures for Rotorcraft Engines and Drivetrains

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.

    2011-01-01

    This is an overview presentation of research being performed in the Advanced Materials Task within the NASA Subsonic Rotary Wing Project. This research is focused on technology areas that address both national goals and project goals for advanced rotorcraft. Specific technology areas discussed are: (1) high temperature materials for advanced turbines in turboshaft engines; (2) polymer matrix composites for lightweight drive system components; (3) lightweight structure approaches for noise and vibration control; and (4) an advanced metal alloy for lighter weight bearings and more reliable mechanical components. An overview of the technology in each area is discussed, and recent accomplishments are presented.

  13. Acoustic Detection of Faults and Degradation in a High-Bypass Turbofan Engine during VIPR Phase III Testing

    NASA Technical Reports Server (NTRS)

    Boyle, Devin K.

    2017-01-01

    The Vehicle Integrated Propulsion Research (VIPR) Phase III project was executed at Edwards Air Force Base, California, by the National Aeronautics and Space Administration and several industry, academic, and government partners in the summer of 2015. One of the research objectives was to use external radial acoustic microphone arrays to detect changes in the noise characteristics produced by the research engine during volcanic ash ingestion and seeded fault insertion scenarios involving bleed air valves. Preliminary results indicate the successful acoustic detection of suspected degradation as a result of cumulative exposure to volcanic ash. This detection is shown through progressive changes, particularly in the high-frequency content, as a function of exposure to greater cumulative quantities of ash. Additionally, detection of the simulated failure of the 14th stage stability bleed valve and, to a lesser extent, the station 2.5 stability bleed valve, to their fully-open fail-safe positions was achieved by means of spectral comparisons between nominal (normal valve operation) and seeded fault scenarios.

  14. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... they are capable of withstanding the effects of a fire. Engine vibration isolators must incorporate...

  15. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... they are capable of withstanding the effects of a fire. Engine vibration isolators must incorporate...

  16. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... they are capable of withstanding the effects of a fire. Engine vibration isolators must incorporate...

  17. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... they are capable of withstanding the effects of a fire. Engine vibration isolators must incorporate...

  18. Engineered fetal cartilage: structural and functional analysis in vitro.

    PubMed

    Fuchs, Julie R; Terada, Shinichi; Hannouche, Didier; Ochoa, Erin R; Vacanti, Joseph P; Fauza, Dario O

    2002-12-01

    This study was aimed at characterizing the structure and function of engineered fetal cartilage in vitro. Chondrocytes from ovine specimens of fetal elastic, fetal hyaline, and adult elastic cartilage were expanded in culture and their growth rates determined. Cells were seeded onto synthetic scaffolds, which were then maintained in a bioreactor. Matrix deposition was determined by specific staining and quantitative assays for glycosaminoglycans (GAG), type II collagen (CII), and elastin, as well as compared with native tissue. Statistical analysis was by analysis of variance (ANOVA) and Students' t test, with significance set at P less than.01. Fetal elastic chondrocytes grew significantly faster than all other cell types. All fetal constructs resembled hyaline cartilage, regardless of the cell source. There were significantly higher levels of GAG and CII in fetal versus adult constructs, but no significant difference between fetal constructs from different sources. Unlike their adult counterparts, fetal constructs had GAG and CII levels similar to native tissues. Fetal chondrocytes can be rapidly expanded in culture. Compared with adult constructs, matrix deposition is enhanced in engineered fetal cartilage, which closely resembles native tissue, regardless of the cell source. Engineered fetal cartilage may be a preferable option during surgical reconstruction of select congenital anomalies. Copyright 2002, Elsevier Science (USA). All rights reserved.

  19. Note: Comparison of grazing incidence small angle x-ray scattering of a titania sponge structure at the beamlines BW4 (DORIS III) and P03 (PETRA III)

    SciTech Connect

    Rawolle, M.; Koerstgens, V.; Ruderer, M. A.; Metwalli, E.; Guo, S.; Mueller-Buschbaum, P.; Herzog, G.; Benecke, G.; Schwartzkopf, M.; Buffet, A.; Perlich, J.; Roth, S. V.

    2012-10-15

    Grazing incidence small angle x-ray scattering (GISAXS) is a powerful technique for morphology investigation of nanostructured thin films. GISAXS measurements at the newly installed P03 beamline at the storage ring PETRA III in Hamburg, Germany, are compared to the GISAXS data from the beamline BW4 at the storage ring DORIS III, which had been used extensively for GISAXS investigations in the past. As an example, a titania thin film sponge structure is investigated. Compared to BW4, at beamline P03 the resolution of larger structures is slightly improved and a higher incident flux leads to a factor of 750 in scattered intensity. Therefore, the acquisition time in GISAXS geometry is reduced significantly at beamline P03.

  20. Synthesis, structural characterization and photoluminescence properties of a novel La(III) complex

    NASA Astrophysics Data System (ADS)

    Köse, Muhammet; Ceyhan, Gökhan; Atcı, Emine; McKee, Vickie; Tümer, Mehmet

    2015-05-01

    In this study, a novel La(III) complex [La(H2L)2(NO3)3(MeOH)] of a Schiff base ligand was synthesized and characterized by spectroscopic and analytical methods. Single crystals of the complex suitable for X-ray diffraction study were obtained by slow diffusion of diethyl ether into a MeOH solution of the complex which was found to crystallise as [La(H2L)2(NO3)3(MeOH)]ṡ2MeOHṡH2O. The structure was solved in monoclinic crystal system, P21/n space group with unit cell parameters a = 10.5641(11), b = 12.6661(16), c = 16.0022(17) Å, α = 67.364(2), β = 83.794(2)°, γ = 70.541(2)°, V = 1862.9(4) Å3 and Z = 2 with R final value of 0.526. In the complex, the La(III) ion is ten-coordinated by O atoms, five of which come from three nitrate ions, four from the two Schiff base ligands and one from MeOH oxygen atom. The Schiff base ligands in the structure are in a zwitter ion form with the phenolic H transferred to the imine N atom. Thermal properties of the La(III) complex were examined by thermogravimetric analysis and the complex was found to be thermally stable up to 310 °C. The Schiff base ligand and its La(II) complex were screened for their in vitro antimicrobial activity against Bacillus megaterium, Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus (Gram positive bacteria), Klebsiella pneumonia, Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa (Gram negative bacteria), Candida albicans,Yarrowia lipolytica (fungus) and Saccharomyces cerevisiae (yeast). The complex shows more antimicrobial activity than the free ligand.

  1. Intrinsic acidity of aluminum, chromium (III) and iron (III) μ 3-hydroxo functional groups from ab initio electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Rustad, James R.; Dixon, David A.; Felmy, Andrew R.

    2000-05-01

    Density functional calculations are performed on M 3(OH) 7(H 2O) 62+ and M 3O(OH) 6(H 2O) 6+ clusters for MAl, Cr(III), and Fe(III), allowing determination of the relative acidities of the μ 3-hydroxo and aquo functional groups. Contrary to previous predictions and rationalizations, Fe 3OH and Al 3OH groups have nearly the same intrinsic acidity, while Cr 3OH groups are significantly more acidic. The gas-phase acidity of the Fe 3OH site is in good agreement with the value predicted by the molecular mechanics model previously used to estimate the relative acidities of surface sites on iron oxides. [ J. R. Rustad et al. (1996)Geochim. Cosmochim. Acta 60, 1563]. Acidities of aquo functional groups were also computed for Al and Cr. The AlOH 2 site is more acidic than the Al 3OH site, whereas the Cr 3OH site is more acidic than the CrOH 2 site. These findings predict that the surface charging behavior of chromium oxides/oxyhydroxides should be distinguishable from their Fe, Al counterparts. The calculations also provide insight into why the lepidocrocite/boehmite polymorph is not observed for CrOOH.

  2. Synthesis and structural characterization of new bismuth (III) nano coordination polymer: A precursor to produce pure phase nano-sized bismuth (III) oxide

    NASA Astrophysics Data System (ADS)

    Hanifehpour, Younes; Mirtamizdoust, Babak; Hatami, Masoud; Khomami, Bamin; Joo, Sang Woo

    2015-07-01

    A novel bismuth (III) nano coordination polymer, {[Bi (pcih)(NO3)2]ṡMeOH}n (1), ("pcih" is the abbreviations of 2-pyridinecarbaldehyde isonicotinoylhydrazoneate) were synthesized by a sonochemical method. The new nano-structure was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray powder diffraction, elemental analyses and IR spectroscopy. Single crystalline material was obtained using a heat gradient applied to a solution of the reagents. Compound 1 was structurally characterized by single crystal X-ray diffraction. The determination of the structure by single crystal X-ray crystallography shows that the complex forms a zig-zag one dimensional polymer in the solid state and the coordination number of BiIII ions is seven, (BiN3O4), with three N-donor and one O-donor atoms from two "pcih" and three O-donors from nitrate anions. It has a hemidirected coordination sphere. The supramolecular features in these complexes are guided and controlled by weak directional intermolecular interactions. The chains interact with each other through π-π stacking interactions creating a 3D framework. After thermolysis of 1 at 230 °C with oleic acid, pure phase nano-sized bismuth (III) oxide was produced. The morphology and size of the prepared Bi2O3 samples were further observed using SEM.

  3. Synthesis and structures of a pincer-type rhodium(iii) complex: reactivity toward biomolecules.

    PubMed

    Milutinović, Milan M; Bogojeski, Jovana V; Klisurić, Olivera; Scheurer, Andreas; Elmroth, Sofi K C; Bugarčić, Živadin D

    2016-10-04

    A novel rhodium(iii) complex [Rh(III)(H2L(tBu))Cl3] (1) (H2L(tBu) = 2,6-bis(5-tert-butyl-1H-pyrazol-3-yl)pyridine) containing a pincer type, tridentate nitrogen-donor chelate system was synthesized. Single crystal X-ray structure analysis revealed that 1 crystallizes in the orthorhombic space group Pbcn with a = 20.7982(6), b = 10.8952(4), c = 10.9832(4) Å, V = 2488.80(15) Å(3), and eight molecules in the unit cell. The rhodium center in the complex [Rh(III)(H2L(tBu))Cl3] (1) is coordinated in a slightly distorted octahedral geometry by the tridentate N,N,N-donor and three chloro ligands, adopting a mer arrangement with an essentially planar ligand skeleton. Due to the tridentate coordination of the N,N,N-donor, the central nitrogen atom N1 is located closer to the Rh(III) center. The reactivity of the synthesized complex toward small biomolecules (l-methionine (l-Met), guanosine-5'-monophosphate (5'-GMP), l-histidine (l-His) and glutathione (GSH)) and to a series of duplex DNAs and RNA was investigated. The order of reactivity of the studied small biomolecules is: 5'-GMP > GSH > l-Met > l-His. Duplex RNA reacts faster with the [Rh(III)(H2L(tBu))Cl3] complex than duplex DNA, while shorter duplex DNA (15mer GG) reacts faster compared with 22mer GG duplex DNA. In addition, a higher reactivity is achieved with a DNA duplex with a centrally located GG-sequence than with a 22GTG duplex DNA, in which the GG-sequence is separated by a T base. Furthermore, the interaction of this metal complex 1 with calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) was examined by absorption (UV-Vis) and emission spectral studies (EthBr displacement studies). Overall, the studied complex exhibited good DNA and BSA interaction ability.

  4. Crystal structure of 8-iodo-quinolinium tetra-chlorido-aurate(III).

    PubMed

    Onserio, Benard O; Tamang, Sem Raj; Hoefelmeyer, James D

    2015-12-01

    The structure of the title salt, (C9H7IN)[AuCl4], is comprised of planar 8-iodo-quinolinium cations (r.m.s. deviation = 0.05 Å) and square-planar tetra-chlorido-aurate(III) anions. The asymmetric unit contains one 8-iodo-quinolinium cation and two halfs of [AuCl4](-) anions, in each case with the central Au(III) atom located on an inversion center. Inter-molecular halogen-halogen contacts were found between centrosymmetric pairs of I [3.6178 (4) Å] and Cl atoms [3.1484 (11), 3.3762 (13), and 3.4935 (12) Å]. Inter-molecular N-H⋯Cl and C-H⋯Cl hydrogen bonding is also found in the structure. These inter-actions lead to the formation of a three-dimensional network. Additionally, there is an intra-molecular N-H⋯I hydrogen bond between the aromatic iminium and iodine. There are no aurophilic inter-actions or short contacts between I and Au atoms, and there are no notable π-stacking inter-actions between the aromatic cations.

  5. Magnetic coupling in discrete cyano-bridged Mn(III)-Fe(III) motifs: synthesis, crystal structure, magnetic properties and theoretical study.

    PubMed

    Visinescu, Diana; Toma, Luminita Marilena; Cano, Joan; Fabelo, Oscar; Ruiz-Pérez, Catalina; Labrador, Ana; Lloret, Francesc; Julve, Miguel

    2010-05-28

    The preparation, crystal structures and magnetic properties of the heterobimetallic complexes of formula [Mn(III)(n-MeOsalen)(H(2)O)(mu-CN)Fe(III)(bpym)(CN)(3)]·mH(2)O with n = m = 3 (1) and n = 4 and m = 2 (2) [n-MeOsalen(2-) = N,N'-ethylenebis(n-methoxysalicylideneiminate) dianion and bpym = 2,2'-bipyrimidine] are reported. 1 and 2 are dinuclear neutral species where the cyano-bearing low-spin unit [Fe(III)(bpym)(CN)(4)](-) acts as a monodentate ligand towards the [Mn(III)(SB)(solv)(x)](+) entity (SB = tetradentate Schiff-base) through one of its four cyano groups. Adjacent heterobimetallic units are interlinked through hydrogen bonds involving the coordinated water molecule of one dinuclear unit and the phenolate oxygen atoms of the neighbouring one to afford pairs of dimers with values of the interdimer Mn···Mn distance of 4.925(20) (1) and 5.0508(25) Å (2). The analysis of the magnetic data of 1 and 2 in the temperature range 1.9-300 K shows the coexistence of weak ferro- [J = +2.95 (1) and +3.88 cm(-1) (2)] and antiferromagnetic interactions [j = -1.91 (1) and -0.70 cm(-1) (2)] through the single cyano bridge and hydrogen bonds, respectively (the Hamiltonian being of the type Ĥ = J[Ŝ(Fe)·Ŝ(Mn) + Ŝ(Fe')·Ŝ(Mn')] -jŜ(Mn)·Ŝ(Mn')). Theoretical calculations using methods based on density functional theory (DFT) have been used to substantiate the nature and magnitude of the magnetic coupling observed in 1 and 2 and also to analyze the dependence of the magnetic coupling on the structural parameters for the Fe-C-N-Mn skeleton. An extension of the calculations to selected examples of heterobimetallic Fe(III)-C-N-Mn(III) compounds with a different number of cyano groups on the low-spin iron(III) precursor has been carried out allowing us to illustrate the influence of the symmetry of the magnetic orbital of the iron center on the magnetic coupling in this heterobimetallic unit.

  6. Distinct Structural Elements Dictate the Specificity of the Type III Pentaketide Synthase from Neurospora crassa

    SciTech Connect

    Rubin-Pitel, Sheryl B.; Zhang, Houjin; Vu, Trang; Brunzelle, Joseph S.; Zhao, Huimin; Nair, Satish K.

    2009-01-15

    The fungal type III polyketide synthase 2'-oxoalkylresorcyclic acid synthase (ORAS) primes with a range of acyl-Coenzyme A thioesters (C{sub 4}--C{sub 20}) and extends using malonyl-Coenzyme A to produce pyrones, resorcinols, and resorcylic acids. To gain insight into this unusual substrate specificity and product profile, we have determined the crystal structures of ORAS to 1.75 {angstrom} resolution, the Phe-252{yields}Gly site-directed mutant to 2.1 {angstrom} resolution, and a binary conplex of ORAS with eicosanoic acid to 2.0 {angstrom} resolution. The structures reveal a distinct rearrangement of structural elements near the active site that allows accomodation of long-chain fatty acid esters and a reorientation of the gating mechanism that controls cyclization and polyketide chain length. The roles of these structural elements are further elucidated by characterization of various structure-based site-directed variants. These studies establish an unexpected plasticity to the PKS fold, unanticipated from structural studies of other members of this enzyme family.

  7. Modeling of the electrical carrier transport in III-V on silicon tandem solar cell structures

    NASA Astrophysics Data System (ADS)

    Maiti, T. K.; Cheong, Dan; Yang, Jingfeng; Kleiman, R. N.

    2011-08-01

    The electrical carrier transport of a tandem cell structure was evaluated by investigating the band alignment of and carrier transport through a tunnel junction. The modeling structure of a tandem cell consists of a III-V (or II-VI) top cell layer, a Si bottom cell layer and tunnel junction layers in-between which connect the top and the bottom cells. The values of energy bandgap and electron affinity of each layer were varied to investigate their effect on the energy barrier height at the interface between Si and compound semiconductors of interest. The contour plots of barrier heights for majority and minority carriers at the hetero-interface are used as a starting point to define the successful regions for electrical carrier transport through the tunnel junctions.

  8. Advanced fabrication techniques for hydrogen-cooled engine structures

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.; Arefian, V. V.; Warren, H. A.; Vuigner, A. A.; Pohlman, M. J.

    1985-01-01

    Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

  9. Nonlinear constitutive theory for turbine engine structural analysis

    NASA Technical Reports Server (NTRS)

    Thompson, R. L.

    1982-01-01

    A number of viscoplastic constitutive theories and a conventional constitutive theory are evaluated and compared in their ability to predict nonlinear stress-strain behavior in gas turbine engine components at elevated temperatures. Specific application of these theories is directed towards the structural analysis of combustor liners undergoing transient, cyclic, thermomechanical load histories. The combustor liner material considered in this study is Hastelloy X. The material constants for each of the theories (as a function of temperature) are obtained from existing, published experimental data. The viscoplastic theories and a conventional theory are incorporated into a general purpose, nonlinear, finite element computer program. Several numerical examples of combustor liner structural analysis using these theories are given to demonstrate their capabilities. Based on the numerical stress-strain results, the theories are evaluated and compared.

  10. Band structure engineered layered metals for low-loss plasmonics

    PubMed Central

    Gjerding, Morten N.; Pandey, Mohnish; Thygesen, Kristian S.

    2017-01-01

    Plasmonics currently faces the problem of seemingly inevitable optical losses occurring in the metallic components that challenges the implementation of essentially any application. In this work, we show that Ohmic losses are reduced in certain layered metals, such as the transition metal dichalcogenide TaS2, due to an extraordinarily small density of states for scattering in the near-IR originating from their special electronic band structure. On the basis of this observation, we propose a new class of band structure engineered van der Waals layered metals composed of hexagonal transition metal chalcogenide-halide layers with greatly suppressed intrinsic losses. Using first-principles calculations, we show that the suppression of optical losses lead to improved performance for thin-film waveguiding and transformation optics. PMID:28436432

  11. Band structure engineered layered metals for low-loss plasmonics.

    PubMed

    Gjerding, Morten N; Pandey, Mohnish; Thygesen, Kristian S

    2017-04-24

    Plasmonics currently faces the problem of seemingly inevitable optical losses occurring in the metallic components that challenges the implementation of essentially any application. In this work, we show that Ohmic losses are reduced in certain layered metals, such as the transition metal dichalcogenide TaS2, due to an extraordinarily small density of states for scattering in the near-IR originating from their special electronic band structure. On the basis of this observation, we propose a new class of band structure engineered van der Waals layered metals composed of hexagonal transition metal chalcogenide-halide layers with greatly suppressed intrinsic losses. Using first-principles calculations, we show that the suppression of optical losses lead to improved performance for thin-film waveguiding and transformation optics.

  12. Fatty acid biosynthesis revisited: Structure elucidation and metabolic engineering

    DOE PAGES

    Beld, Joris; Lee, D. John; Burkart, Michael D.

    2014-10-20

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understandingmore » of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. Lastly, in this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.« less

  13. Engineering structured light with Vogel spiral arrays of nanoparticles

    NASA Astrophysics Data System (ADS)

    Lawrence, Nate; Trevino, Jacob; Dal Negro, Luca

    2013-03-01

    We present a general analytical model for light scattering by arbitrary Vogel spiral arrays of circular apertures uniformly illuminated at normal incidence. This model suffices to unveil the fundamental mathematical structure of their complex Fraunhofer diffraction patterns and enables the engineering of optical beams carrying multiple values of orbital angular momentum (OAM). By performing analytical Fourier-Hankel decomposition of spiral arrays and far field patterns, we rigorously demonstrate the ability to encode specific numerical sequences onto the OAM values of diffracted optical beams. In particular, we show that these OAM values are determined by the rational approximations of the continued fraction expansions of the irrational angles utilized to generate Vogel spirals. Finally, we experimentally demonstrate structured light carrying multiple values of OAM in the far-field scattering region of Vogel spiral arrays of metallic nanoparticles. Using Fourier-Hankel mode decomposition analysis and interferometric reconstruction of the complex amplitude of scattered waves, we show the ability to encode well-defined numerical sequences, determined by the aperiodic spiral geometry, into azimuthal OAM values, in excellent agreement with analytical scattering theory. The generation of sequences of OAM values by light scattering from engineered aperiodic surfaces is relevant to a number of device applications for secure optical communication, classical and quantum cryptography.

  14. Cabin fuselage structural design with engine installation and control system

    NASA Technical Reports Server (NTRS)

    Balakrishnan, Tanapaal; Bishop, Mike; Gumus, Ilker; Gussy, Joel; Triggs, Mike

    1994-01-01

    Design requirements for the cabin, cabin system, flight controls, engine installation, and wing-fuselage interface that provide adequate interior volume for occupant seating, cabin ingress and egress, and safety are presented. The fuselage structure must be sufficient to meet the loadings specified in the appropriate sections of Federal Aviation Regulation Part 23. The critical structure must provide a safe life of 10(exp 6) load cycles and 10,000 operational mission cycles. The cabin seating and controls must provide adjustment to account for various pilot physiques and to aid in maintenance and operation of the aircraft. Seats and doors shall not bind or lockup under normal operation. Cabin systems such as heating and ventilation, electrical, lighting, intercom, and avionics must be included in the design. The control system will consist of ailerons, elevator, and rudders. The system must provide required deflections with a combination of push rods, bell cranks, pulleys, and linkages. The system will be free from slack and provide smooth operation without binding. Environmental considerations include variations in temperature and atmospheric pressure, protection against sand, dust, rain, humidity, ice, snow, salt/fog atmosphere, wind and gusts, and shock and vibration. The following design goals were set to meet the requirements of the statement of work: safety, performance, manufacturing and cost. To prevent the engine from penetrating the passenger area in the event of a crash was the primary safety concern. Weight and the fuselage aerodynamics were the primary performance concerns. Commonality and ease of manufacturing were major considerations to reduce cost.

  15. Glucoamylase: structure/function relationships, and protein engineering.

    PubMed

    Sauer, J; Sigurskjold, B W; Christensen, U; Frandsen, T P; Mirgorodskaya, E; Harrison, M; Roepstorff, P; Svensson, B

    2000-12-29

    Glucoamylases are inverting exo-acting starch hydrolases releasing beta-glucose from the non-reducing ends of starch and related substrates. The majority of glucoamylases are multidomain enzymes consisting of a catalytic domain connected to a starch-binding domain by an O-glycosylated linker region. Three-dimensional structures have been determined of free and inhibitor complexed glucoamylases from Aspergillus awamori var. X100, Aspergillus niger, and Saccharomycopsis fibuligera. The catalytic domain folds as a twisted (alpha/alpha)(6)-barrel with a central funnel-shaped active site, while the starch-binding domain folds as an antiparallel beta-barrel and has two binding sites for starch or beta-cyclodextrin. Certain glucoamylases are widely applied industrially in the manufacture of glucose and fructose syrups. For more than a decade mutational investigations of glucoamylase have addressed fundamental structure/function relationships in the binding and catalytic mechanisms. In parallel, issues of relevance for application have been pursued using protein engineering to improve the industrial properties. The present review focuses on recent findings on the catalytic site, mechanism of action, substrate recognition, the linker region, the multidomain architecture, the engineering of specificity and stability, and roles of individual substrate binding subsites.

  16. Recent Advances In Optimization Of Aerospace Structures And Engines

    NASA Astrophysics Data System (ADS)

    Rao*, J. S.

    Optimization theories have been well advanced during the last few decades; however when it came to handle real life engineering structures it has been always time consuming and approximate when the structure geometry is highly complex. Design of Experiments has helped in understanding the influence of size and shape parameters on achieving a specified objective function with required constraints and a suitable analysis platform, but has its limitations in arriving at the final optimal solution. There are several commercial codes that addressed this need to handle large size structures subjected to dynamic loads. Most advanced tools in this category are Altair OptiStruct and Altair HyperStudy available in Altair HyperWorks suite. Application of these tools in achieving optimum solutions for linear advanced aircraft structures for minimization of weight are first explained. The application of these tools for globally elastic and locally plastic nonlinear structures to reduce local plastic strains and achieve higher life under dynamic loads will then be discussed.

  17. Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures.

    PubMed

    Klabunde, T; Sträter, N; Fröhlich, R; Witzel, H; Krebs, B

    1996-06-21

    Purple acid phosphatase is a widely distributed non-specific phosphomonoesterase. X-ray structures of the dimeric 111-kDa Fe(III)-Zn(II) kidney bean purple acid phosphatase (kbPAP) complexed with phosphate, the product of the reaction, and with tungstate, a strong inhibitor of the phosphatase activity, were determined at 2.7 and 3.0 angstroms resolution, respectively. Furthermore the resolution of the unligated enzyme, recently solved at 2.9 angstroms could be extended to 2.65 angstroms with completely new data. The binding of both oxoanions is not accompanied by larger conformational changes in the enzyme structure. Small movements with a maximal coordinate shift of 1 angstroms are only observed for the active site residues His295 and His296. In the inhibitor complex as well as in the product complex, the oxoanion binds in a bidentate bridging mode to the two metal ions, replacing two of the presumed solvent ligands present in the unligated enzyme form. As also proposed for the unligated structure a bridging hydroxide ion completes the coordination spheres of both metal ions to octahedral arrangements. All three structures reported herein support a mechanism of phosphate ester hydrolysis involving interaction of the substrate with Zn(II) followed by a nucleophilic attack on the phosphorus by an Fe(III)-coordinated hydroxide ion. The negative charge evolving at the pentacoordinated transition state is probably stabilized by interactions with the divalent zinc and the imidazole groups of His202, His295, and His296, the latter protonating the leaving alcohol group.

  18. Molecular structure of starches from maize mutants deficient in starch synthase III.

    PubMed

    Zhu, Fan; Bertoft, Eric; Källman, Anna; Myers, Alan M; Seetharaman, Koushik

    2013-10-16

    Molecular structures of starches from dull1 maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were characterized and compared with the wild type. Amylose content with altered structure was higher in the nonwaxy mutants (25.4-30.2%) compared to the wild type maize (21.5%) as revealed by gel permeation chromatography. Superlong chains of the amylopectin component were found in all nonwaxy samples. Unit chain length distribution of amylopectins and their φ,β-limit dextrins (reflecting amylopectin internal structure) from dull1 mutants were also characterized by anion-exchange chromatography after debranching. Deficiency of SSIII led to an increased amount of short chains (DP ≤36 in amylopectin), whereas the content of long chains decreased from 8.4% to between 3.1 and 3.7% in both amylopectin and φ,β-limit dextrins. Moreover, both the external and internal chain lengths decreased, suggesting a difference in their cluster structures. Whereas the molar ratio of A:B-chains was similar in all samples (1.1-1.2), some ratios of chain categories were affected by the absence of SSIII, notably the ratio of "fingerprint" A-chains to "clustered" A-chains. This study highlighted the relationship between SSIII and the internal molecular structure of maize starch.

  19. Formation of III-V-on-insulator structures on Si by direct wafer bonding

    NASA Astrophysics Data System (ADS)

    Yokoyama, Masafumi; Iida, Ryo; Ikku, Yuki; Kim, Sanghyeon; Takagi, Hideki; Yasuda, Tetsuji; Yamada, Hisashi; Ichikawa, Osamu; Fukuhara, Noboru; Hata, Masahiko; Takenaka, Mitsuru; Takagi, Shinichi

    2013-09-01

    We have studied the formation of III-V-compound-semiconductors-on-insulator (III-V-OI) structures with thin buried oxide (BOX) layers on Si wafers by using developed direct wafer bonding (DWB). In order to realize III-V-OI MOSFETs with ultrathin body and extremely thin body (ETB) InGaAs-OI channel layers and ultrathin BOX layers, we have developed an electron-cyclotron resonance (ECR) O2 plasma-assisted DWB process with ECR sputtered SiO2 BOX layers and a DWB process based on atomic-layer-deposition Al2O3 (ALD-Al2O3) BOX layers. It is essential to suppress micro-void generation during wafer bonding process to achieve excellent wafer bonding. We have found that major causes of micro-void generation in DWB processes with ECR-SiO2 and ALD-Al2O3 BOX layers are desorption of Ar and H2O gas, respectively. In order to suppress micro-void generation in the ECR-SiO2 BOX layers, it is effective to introduce the outgas process before bonding wafers. On the other hand, it is a possible solution for suppressing micro-void generation in the ALD-Al2O3 BOX layers to increase the deposition temperature of the ALD-Al2O3 BOX layers. It is also another possible solution to deposit ALD-Al2O3 BOX layers on thermally oxidized SiO2 layers, which can absorb the desorption gas from ALD-Al2O3 BOX layers.

  20. Structure of 4-hydrophenylpyruvic acid dioxygenase (HPD) gene and its mutation in tyrosinemic mouse strain III

    SciTech Connect

    Awata, H.; Endo, F.; Matsuda, I.

    1994-09-01

    4-Hydroxphenylpyruvic acid dioxygenase (HPD) is an important enzyme in tyrosine catabolism in most organisms. The activity of this enzyme is expressed mainly in the liver and is developmentally regulated in mammals. A genetic deficiency of the enzyme in man and mouse leads to hereditary tyrosinemia type 3. Using human HPD cDNA as a probe, a chromosomal gene related to HPD was isolated from human and mouse gene libraries. The human HPD gene is over 30 kilo-bases long and is split into 14 exons. Analysis of the 5{prime} flanking sequence of the gene suggests that expression of the gene is regulated by hepatocyte-specific and liver-enriched transcription factors, as well as by hormones. These features of the 5{prime} flanking region of the gene are similar to those of other genes which are specifically expressed in hepatocytes and which are developmentally regulated. The gene for mouse HPD has a similar structure and we obtained evidence for a nucleotide substitution which generates a termination codon in exon 7 of the HPD gene in III mice. This mutation associates a partial exon skipping and most of the mRNA lacks sequences corresponding to exon 7. The partial exon skipping apparently is the result of a nonsense mutation in the exon. Thus, mouse strain III can serve as a genetic model for human tyrosinemia type 3. Ongoing studies are expected to elucidate the disease process involved in hereditary tyrosinemia type 1 and to shed light on mechanisms that mediate developmental regulation of HPD gene expression. In addition, mouse strain III together with recently established models for tyrosinemia type 1 will facilitate studies on hereditary tyrosinemias.

  1. Dynamical structure of solar radio burst type III as evidence of energy of solar flares

    NASA Astrophysics Data System (ADS)

    Hamidi, Zety Sharizat Binti

    2013-11-01

    Observations of low frequency solar type III radio bursts associated with the ejection of plasma oscillations localized disturbance is due to excitation atoms in the plasma frequency incoherent radiations play a dominant role at the meter and decimeter wavelengths. Here, we report the results of the dynamical structure of solar flare type III that occurred on 9th March 2012 at National Space Centre, Sg Lang, Selangor, Malaysia by using the CALLISTO system. These bursts are associated with solar flare type M6 which suddenly ejected in the active region AR 1429 starting at 03:32 UT and ending at 05:00 UT with the peak at 04:12 UT. The observation showed an initial strong burst occurred due to strong signal at the beginning of the phase. We also found that both solar burst and flares tend to be a numerous on the same day and probability of chance coincidence is high. It is clearly seen that an impulsive lace burst was detected at 4:24 UT and it is more plausible that the energies are confined to the top of the loop when we compared with X-ray results. Associated with this event was type II with velocities 1285 km/s and type IV radio sweeps along with a full halo Coronal Mass Ejections (CMEs) first seen in SOHO/LASCO C2 imagery at 09/0426 Z. We concluded that the significance of study solar burst type III lies in the fact that the emission at decimetric wavelength comes from the role of magnetic field in active region that may provide the key to the energy release mechanism in a flare.

  2. Structural engineering masters level education framework of knowledge for the needs of initial professional practice

    NASA Astrophysics Data System (ADS)

    Balogh, Zsuzsa Enriko

    For at least the last decade, engineering, civil engineering, along with structural engineering as a profession within civil engineering, have and continue to face an emerging need for "Raising the Bar" of preparedness of young engineers seeking to become practicing professional engineers. The present consensus of the civil engineering profession is that the increasing need for broad and in-depth knowledge should require the young structural engineers to have at least a Masters-Level education. This study focuses on the Masters-Level preparedness in the structural engineering area within the civil engineering field. It follows much of the methodology used in the American Society of Civil Engineers (ASCE) Body of Knowledge determination for civil engineering and extends this type of study to better define the portion of the young engineers preparation beyond the undergraduate program for one specialty area of civil engineering. The objective of this research was to create a Framework of Knowledge for the young engineer which identifies and recognizes the needs of the profession, along with the profession's expectations of how those needs can be achieved in the graduate-level academic setting, in the practice environment, and through lifelong learning opportunities with an emphasis on the initial five years experience past completion of a Masters program in structural engineering. This study applied a modified Delphi method to obtain the critical information from members of the structural engineering profession. The results provide a Framework of Knowledge which will be useful to several groups seeking to better ensure the preparedness of the future young structural engineers at the Masters-Level.

  3. Importance of ligand structure in DNA/protein binding, mutagenicity, excision repair and nutritional aspects of chromium(III) complexes.

    PubMed

    Vaidyanathan, V G; Asthana, Yamini; Nair, Balachandran Unni

    2013-02-21

    Chromium is extensively used in leather, chrome plating and refining industries. On one hand the occupational exposure to chromium leads to cancer, whereas on the contrary certain Cr(III) compounds have been proposed as nutritional supplements for Type II diabetes and as muscle building agents. Despite the positive outlook of chromium as a bio-essential element, there is increasing concern over the therapeutic application of Cr(III) based supplements, its bioavailability and toxicity profile. In this perspective, we discuss the role of ligand structure in mediating the interaction of chromium(III) complexes with DNA/protein, their mutagenic outcomes, adduct reparability and as nutritional supplements.

  4. Structural and phase transformation of A{sup III}B{sup V}(100) semiconductor surface in interaction with selenium

    SciTech Connect

    Bezryadin, N. N.; Kotov, G. I. Kuzubov, S. V.

    2015-03-15

    Surfaces of GaAs(100), InAs(100), and GaP(100) substrates thermally treated in selenium vapor have been investigated by transmission electron microscopy and electron probe X-ray microanalysis. Some specific features and regularities of the formation of A{sub 3}{sup III}B{sub 4}{sup VI} (100)c(2 × 2) surface phases and thin layers of gallium or indium selenides A{sub 2}{sup III}B{sub 3}{sup VI} (100) on surfaces of different A{sup III}B{sup V}(100) semiconductors are discussed within the vacancy model of surface atomic structure.

  5. Passive and active structural monitoring experience: Civil engineering applications

    NASA Astrophysics Data System (ADS)

    Thompson, L. D.; Westermo, B. D.; Crum, D. B.; Law, W. R.; Trombi, R. G.

    2000-05-01

    State Departments of Transportation and regional city government officials are beginning to view the long-term monitoring of infrastructure as being beneficial for structural damage accumulation assessment, condition based maintenance, life extension, and post-earthquake or -hurricane (-tornado, -typhoon, etc.) damage assessment. Active and passive structural monitoring systems were installed over the last few years to monitor concerns in a wide range of civil infrastructure applications. This paper describes the monitoring technologies and systems employed for such applications. Bridge system applications were directed at monitoring corrosion damage accumulation, composite reinforcements for life extension, general service cracking damage related to fatigue and overloads, and post-earthquake damage. Residential system applications were directed primarily at identifying damage accumulation and post-earthquake damage assessment. A professional sports stadium was monitored for isolated ground instability problems and for post-earthquake damage assessment. Internet-based, remote, data acquisition system experience is discussed with examples of long-term passive and active system data collected from many of the individual sites to illustrate the potential for both passive and active structural health monitoring. A summary of system-based operating characteristics and key engineering recommendations are provided to achieve specific structural monitoring objectives for a wide range of civil infrastructure applications.

  6. Probabilistic structural analysis methods for improving Space Shuttle engine reliability

    NASA Technical Reports Server (NTRS)

    Boyce, L.

    1989-01-01

    Probabilistic structural analysis methods are particularly useful in the design and analysis of critical structural components and systems that operate in very severe and uncertain environments. These methods have recently found application in space propulsion systems to improve the structural reliability of Space Shuttle Main Engine (SSME) components. A computer program, NESSUS, based on a deterministic finite-element program and a method of probabilistic analysis (fast probability integration) provides probabilistic structural analysis for selected SSME components. While computationally efficient, it considers both correlated and nonnormal random variables as well as an implicit functional relationship between independent and dependent variables. The program is used to determine the response of a nickel-based superalloy SSME turbopump blade. Results include blade tip displacement statistics due to the variability in blade thickness, modulus of elasticity, Poisson's ratio or density. Modulus of elasticity significantly contributed to blade tip variability while Poisson's ratio did not. Thus, a rational method for choosing parameters to be modeled as random is provided.

  7. Engineering robust and tunable spatial structures with synthetic gene circuits

    PubMed Central

    Kong, Wentao; Blanchard, Andrew E.; Liao, Chen; Lu, Ting

    2017-01-01

    Controllable spatial patterning is a major goal for the engineering of biological systems. Recently, synthetic gene circuits have become promising tools to achieve the goal; however, they need to possess both functional robustness and tunability in order to facilitate future applications. Here we show that, by harnessing the dual signaling and antibiotic features of nisin, simple synthetic circuits can direct Lactococcus lactis populations to form programmed spatial band-pass structures that do not require fine-tuning and are robust against environmental and cellular context perturbations. Although robust, the patterns are highly tunable, with their band widths specified by the external nisin gradient and cellular nisin immunity. Additionally, the circuits can direct cells to consistently generate designed patterns, even when the gradient is driven by structured nisin-producing bacteria and the patterning cells are composed of multiple species. A mathematical model successfully reproduces all of the observed patterns. Furthermore, the circuits allow us to establish predictable structures of synthetic communities and controllable arrays of cellular stripes and spots in space. This study offers new synthetic biology tools to program spatial structures. It also demonstrates that a deep mining of natural functionalities of living systems is a valuable route to build circuit robustness and tunability. PMID:27899571

  8. Acoustic-Structure Interaction in Rocket Engines: Validation Testing

    NASA Technical Reports Server (NTRS)

    Davis, R. Benjamin; Joji, Scott S.; Parks, Russel A.; Brown, Andrew M.

    2009-01-01

    While analyzing a rocket engine component, it is often necessary to account for any effects that adjacent fluids (e.g., liquid fuels or oxidizers) might have on the structural dynamics of the component. To better characterize the fully coupled fluid-structure system responses, an analytical approach that models the system as a coupled expansion of rigid wall acoustic modes and in vacuo structural modes has been proposed. The present work seeks to experimentally validate this approach. To experimentally observe well-coupled system modes, the test article and fluid cavities are designed such that the uncoupled structural frequencies are comparable to the uncoupled acoustic frequencies. The test measures the natural frequencies, mode shapes, and forced response of cylindrical test articles in contact with fluid-filled cylindrical and/or annular cavities. The test article is excited with a stinger and the fluid-loaded response is acquired using a laser-doppler vibrometer. The experimentally determined fluid-loaded natural frequencies are compared directly to the results of the analytical model. Due to the geometric configuration of the test article, the analytical model is found to be valid for natural modes with circumferential wave numbers greater than four. In the case of these modes, the natural frequencies predicted by the analytical model demonstrate excellent agreement with the experimentally determined natural frequencies.

  9. Engineering robust and tunable spatial structures with synthetic gene circuits.

    PubMed

    Kong, Wentao; Blanchard, Andrew E; Liao, Chen; Lu, Ting

    2017-01-25

    Controllable spatial patterning is a major goal for the engineering of biological systems. Recently, synthetic gene circuits have become promising tools to achieve the goal; however, they need to possess both functional robustness and tunability in order to facilitate future applications. Here we show that, by harnessing the dual signaling and antibiotic features of nisin, simple synthetic circuits can direct Lactococcus lactis populations to form programmed spatial band-pass structures that do not require fine-tuning and are robust against environmental and cellular context perturbations. Although robust, the patterns are highly tunable, with their band widths specified by the external nisin gradient and cellular nisin immunity. Additionally, the circuits can direct cells to consistently generate designed patterns, even when the gradient is driven by structured nisin-producing bacteria and the patterning cells are composed of multiple species. A mathematical model successfully reproduces all of the observed patterns. Furthermore, the circuits allow us to establish predictable structures of synthetic communities and controllable arrays of cellular stripes and spots in space. This study offers new synthetic biology tools to program spatial structures. It also demonstrates that a deep mining of natural functionalities of living systems is a valuable route to build circuit robustness and tunability. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. STRUCTURE OF THE TYPE III PANTOTHENATE KINASE FROM Bacillus anthracis AT 2.0 Å RESOLUTION

    PubMed Central

    Nicely, Nathan I.; Parsonage, Derek; Paige, Carleitta; Newton, Gerald L.; Fahey, Robert C.; Leonardi, Roberta; Jackowski, Suzanne; Mallett, T. Conn; Claiborne, Al

    2008-01-01

    Coenzyme A (CoASH) is the major low-molecular weight thiol in Staphylococcus aureus and a number of other bacteria; the crystal structure of the S. aureus coenzyme A-disulfide reductase (CoADR), which maintains the reduced intracellular state of CoASH, has recently been reported [Mallett, T.C., Wallen, J.R., Karplus, P.A., Sakai, H., Tsukihara, T., and Claiborne, A. (2006) Biochemistry 45, 11278-11289]. In this report we demonstrate that CoASH is the major thiol in Bacillus anthracis; a bioinformatics analysis indicates that three of the four proteins responsible for the conversion of pantothenate (Pan) to CoASH in Escherichia coli are conserved in B. anthracis. In contrast, a novel type III pantothenate kinase (PanK) catalyzes the first committed step in the biosynthetic pathway in B. anthracis; unlike the E. coli type I PanK, this enzyme is not subject to feedback inhibition by CoASH. The crystal structure of B. anthracis PanK (BaPanK), solved using multiwavelength anomalous dispersion data and refined at a resolution of 2.0 Å, demonstrates that BaPanK is a new member of the Acetate and Sugar Kinase/Hsc70/Actin (ASKHA) superfamily. The Pan and ATP substrates have been modeled into the active-site cleft; in addition to providing a clear rationale for the absence of CoASH inhibition, analysis of the Pan-binding pocket has led to the development of two new structure-based motifs (the PAN and INTERFACE motifs). Our analyses also suggest that the type III PanK in the spore-forming B. anthracis plays an essential role in the novel thiol/disulfide redox biology of this category A biodefense pathogen. PMID:17323930

  11. Engineering NK Cells Modified With an EGFRvIII-specific Chimeric Antigen Receptor to Overexpress CXCR4 Improves Immunotherapy of CXCL12/SDF-1α-secreting Glioblastoma.

    PubMed

    Müller, Nadja; Michen, Susanne; Tietze, Stefanie; Töpfer, Katrin; Schulte, Alexander; Lamszus, Katrin; Schmitz, Marc; Schackert, Gabriele; Pastan, Ira; Temme, Achim

    2015-06-01

    Natural killer (NK) cells are promising effector cells for adjuvant immunotherapy of cancer. So far, several preclinical studies have shown the feasibility of gene-engineered NK cells, which upon expression of chimeric antigen receptors (CARs) are redirected to otherwise NK cell-resistant tumors. Yet, we reasoned that the efficiency of an immunotherapy using CAR-modified NK cells critically relies on efficient migration to the tumor site and might be improved by the engraftment of a receptor specific for a chemokine released by the tumor. On the basis of the DNAX-activation protein 12 (DAP12), a signaling adapter molecule involved in signal transduction of activating NK cell receptors, we constructed an epidermal growth factor variant III (EGFRvIII)-CAR, designated MR1.1-DAP12 which confers specific cytotoxicity of NK cell towards EGFRvIII glioblastoma cells in vitro and to established subcutaneous U87-MG tumor xenografts. So far, infusion of NK cells with expression of MR1.1-DAP12 caused a moderate but significantly delayed tumor growth and increased median survival time when compared with NK cells transduced with an ITAM-defective CAR. Notably, the further genetic engineering of these EGFRvIII-specific NK cells with the chemokine receptor CXCR4 conferred a specific chemotaxis to CXCL12/SDF-1α secreting U87-MG glioblastoma cells. Moreover, the administration of such NK cells resulted in complete tumor remission in a number of mice and a significantly increased survival when compared with the treatment of xenografts with NK cells expressing only the EGFRvIII-specific CAR or mock control. We conclude that chemokine receptor-engineered NK cells with concomitant expression of a tumor-specific CAR are a promising tool to improve adoptive tumor immunotherapy.

  12. Assessment and economic analysis of the MOD III Stirling-engine driven chiller system. Final report, October 1989-July 1990

    SciTech Connect

    Moryl, J.

    1990-07-01

    The Stirling engine is an inherently clean and efficient engine. With the requirements for environmentally benign emissions and high energy efficiency, the Stirling engine is an attractive alternative to both internal combustion (IC) engines and electric motors. The study evaluated a Stirling-engine-driven chiller package. Technically, the Stirling engine is a good selection as a compressor drive, with inherently low vibrations, quiet operation, long life, and low maintenance. Exhaust emissions are below the projected 1995 stringent California standards. Economically, the Stirling-engine-driven chiller is a viable alternative to both IV-engine and electric-driven chillers, trading off slightly higher installed cost against lower total operating expenses. The penetration of a small portion of the projected near-term stationary engine market opportunity will provide the volume production basis to achieve competitively priced engines.

  13. The synthesis, structure, magnetic and luminescent properties of a new tetranuclear dysprosium (III) cluster

    SciTech Connect

    Chen, Yen-Han; Tsai, Yun-Fan; Lee, Gene-Hsian; Yang, En-Che

    2012-01-15

    The synthesis and characterization of [Dy{sub 4}(dhampH{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}){sub 2} (1), a new tetranuclear dysprosium (III) complex, is described. The compound was characterized by its X-ray structure, magnetic properties as well as the luminescent spectra. The compound crystallizes in a P1-bar space group with a zig-zag linear form of geometry. The ac magnetic susceptibilities of the molecule indicate that it is a magnetic molecule with a slow magnetization relaxation. The molecule also exhibits an emission spectrum that was confirmed to be ligand based. These results indicate that this molecule has both a slow magnetization relaxation (that could be potentially a SMM) and luminescent properties. - Graphical Abstract: A new tetranuclear dysprosium (III) complex [Dy{sub 4}(dhampH{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}){sub 2} is synthesized and reported in this paper. This molecule has luminescence and can potentially act as a SMM. Highlights: Black-Right-Pointing-Pointer A new designed ligand (dhampH{sub 5}) was syntheisized. Black-Right-Pointing-Pointer A new tetra-dysprosium cluster [Dy{sub 4}(dhampH{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}){sub 2} was made. Black-Right-Pointing-Pointer Slow magnetization relaxation phenomenon was observed. Black-Right-Pointing-Pointer Ligand-based luminescence was observed.

  14. Crystal Structure of the Cytosolic C2a-C2b Domains of Synaptotagmin III

    PubMed Central

    Sutton, R. Bryan; Ernst, James A.; Brunger, Axel T.

    1999-01-01

    Synaptotagmins are synaptic vesicle-associated, phospholipid-binding proteins most commonly associated with Ca+2-dependent exocytotic and Ca+2- independent endocytotic events. Synaptotagmin III is a 63.2-kD member of the synaptotagmin homology group; one of its characteristic properties is the ability to bind divalent cations and accessory proteins promiscuously. In the cytosolic portion of this protein, a flexible seven–amino acid linker joins two homologous C2 domains. The C2A domain binds to phospholipid membranes and other accessory proteins in a divalent cation-dependent fashion. The C2B domain promotes binding to other C2B domains, as well as accessory proteins independent of divalent cations. The 3.2 Å crystal structure of synaptotagmin III, residues 295–566, which includes the C2A and C2B domains, exhibits differences in the shape of the Ca+2-binding pocket, the electrostatic surface potential, and the stoichiometry of bound divalent cations for the two domains. These observations may explain the disparate binding properties of the two domains. The C2A and the C2B domains do not interact; synaptotagmin, therefore, covalently links two independent C2 domains, each with potentially different binding partners. A model of synaptotagmin's involvement in Ca+2-dependent regulation of membrane fusion through its interaction with the SNARE complex is presented. PMID:10545502

  15. Recent progress in III-V based ferromagnetic semiconductors: Band structure, Fermi level, and tunneling transport

    SciTech Connect

    Tanaka, Masaaki; Ohya, Shinobu Nam Hai, Pham

    2014-03-15

    Spin-based electronics or spintronics is an emerging field, in which we try to utilize spin degrees of freedom as well as charge transport in materials and devices. While metal-based spin-devices, such as magnetic-field sensors and magnetoresistive random access memory using giant magnetoresistance and tunneling magnetoresistance, are already put to practical use, semiconductor-based spintronics has greater potential for expansion because of good compatibility with existing semiconductor technology. Many semiconductor-based spintronics devices with useful functionalities have been proposed and explored so far. To realize those devices and functionalities, we definitely need appropriate materials which have both the properties of semiconductors and ferromagnets. Ferromagnetic semiconductors (FMSs), which are alloy semiconductors containing magnetic atoms such as Mn and Fe, are one of the most promising classes of materials for this purpose and thus have been intensively studied for the past two decades. Here, we review the recent progress in the studies of the most prototypical III-V based FMS, p-type (GaMn)As and its heterostructures with focus on tunneling transport, Fermi level, and bandstructure. Furthermore, we cover the properties of a new n-type FMS, (In,Fe)As, which shows electron-induced ferromagnetism. These FMS materials having zinc-blende crystal structure show excellent compatibility with well-developed III-V heterostructures and devices.

  16. Structure-property relations in engineered semiconductor nanomaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jennifer A.; Htoon, Han

    2016-09-01

    Particle-size or `quantum-confinement' effects have been used for decades to tune semiconductor opto-electronic properties. More recently, particle size control as the primary means for properties control has been succeeded by nanoscale hetero-structuring. In this case, the nanosized particle is modified to include internal, nanoscale interfaces, generally defined by compositional variations that induce additional changes to semiconductor properties. These changes can entail enhancements to the size-induced properties as well as unexpected or `emergent' behaviors. Common structural motifs include enveloping a spherical semiconductor nanocrystal, i.e., a quantum dot, within a shell of a different composition. In this talk, I will discuss how solution-phase synthesis can be used to create these structures with precisely `engineered' complexity. Most notably, I will review our experiences with so-called `giant' quantum dots that, due to their internal nanoscale structure, exhibit a range of novel behaviors, including being non-blinking and non-photobleaching (Chen et al. J. Am. Chem. Soc. 2008, 130, 5026; Ghosh et al. J. Am. Chem. Soc. 2012, 134, 9634; Dennis et al. Nano Lett. 2012 12, 5545; Acharya et al. J. Am. Chem. Soc. 2015, 137, 3755), and remarkably efficient emitters of `multi-excitons' due to extreme suppression of Auger recombination (Mangum et al. Nanoscale 2014, 6, 3712; Gao et al. Adv. Optical Mater. 2015, 3, 39). I will discuss recent work extending non-blinking behavior to the blue/green and "dual-color" emission, and show how correlated optical/structural characterization can reveal new information regarding structure-property relations to guide new nanomaterials development (Orfield et al. ACS Nano, Article ASAP).

  17. CAR-Engineered NK Cells Targeting Wild-Type EGFR and EGFRvIII Enhance Killing of Glioblastoma and Patient-Derived Glioblastoma Stem Cells

    PubMed Central

    Han, Jianfeng; Chu, Jianhong; Keung Chan, Wing; Zhang, Jianying; Wang, Youwei; Cohen, Justus B.; Victor, Aaron; Meisen, Walter H.; Kim, Sung-hak; Grandi, Paola; Wang, Qi-En; He, Xiaoming; Nakano, Ichiro; Chiocca, E. Antonio; Glorioso III, Joseph C.; Kaur, Balveen; Caligiuri, Michael A.; Yu, Jianhua

    2015-01-01

    Glioblastoma (GB) remains the most aggressive primary brain malignancy. Adoptive transfer of chimeric antigen receptor (CAR)-modified immune cells has emerged as a promising anti-cancer approach, yet the potential utility of CAR-engineered natural killer (NK) cells to treat GB has not been explored. Tumors from approximately 50% of GB patients express wild-type EGFR (wtEGFR) and in fewer cases express both wtEGFR and the mutant form EGFRvIII; however, previously reported CAR T cell studies only focus on targeting EGFRvIII. Here we explore whether both wtEGFR and EGFRvIII can be effectively targeted by CAR-redirected NK cells to treat GB. We transduced human NK cell lines NK-92 and NKL, and primary NK cells with a lentiviral construct harboring a second generation CAR targeting both wtEGFR and EGFRvIII and evaluated the anti-GB efficacy of EGFR-CAR-modified NK cells. EGFR-CAR-engineered NK cells displayed enhanced cytolytic capability and IFN-γ production when co-cultured with GB cells or patient-derived GB stem cells in an EGFR-dependent manner. In two orthotopic GB xenograft mouse models, intracranial administration of NK-92-EGFR-CAR cells resulted in efficient suppression of tumor growth and significantly prolonged the tumor-bearing mice survival. These findings support intracranial administration of NK-92-EGFR-CAR cells represents a promising clinical strategy to treat GB. PMID:26155832

  18. CAR-Engineered NK Cells Targeting Wild-Type EGFR and EGFRvIII Enhance Killing of Glioblastoma and Patient-Derived Glioblastoma Stem Cells.

    PubMed

    Han, Jianfeng; Chu, Jianhong; Keung Chan, Wing; Zhang, Jianying; Wang, Youwei; Cohen, Justus B; Victor, Aaron; Meisen, Walter H; Kim, Sung-hak; Grandi, Paola; Wang, Qi-En; He, Xiaoming; Nakano, Ichiro; Chiocca, E Antonio; Glorioso, Joseph C; Kaur, Balveen; Caligiuri, Michael A; Yu, Jianhua

    2015-07-09

    Glioblastoma (GB) remains the most aggressive primary brain malignancy. Adoptive transfer of chimeric antigen receptor (CAR)-modified immune cells has emerged as a promising anti-cancer approach, yet the potential utility of CAR-engineered natural killer (NK) cells to treat GB has not been explored. Tumors from approximately 50% of GB patients express wild-type EGFR (wtEGFR) and in fewer cases express both wtEGFR and the mutant form EGFRvIII; however, previously reported CAR T cell studies only focus on targeting EGFRvIII. Here we explore whether both wtEGFR and EGFRvIII can be effectively targeted by CAR-redirected NK cells to treat GB. We transduced human NK cell lines NK-92 and NKL, and primary NK cells with a lentiviral construct harboring a second generation CAR targeting both wtEGFR and EGFRvIII and evaluated the anti-GB efficacy of EGFR-CAR-modified NK cells. EGFR-CAR-engineered NK cells displayed enhanced cytolytic capability and IFN-γ production when co-cultured with GB cells or patient-derived GB stem cells in an EGFR-dependent manner. In two orthotopic GB xenograft mouse models, intracranial administration of NK-92-EGFR-CAR cells resulted in efficient suppression of tumor growth and significantly prolonged the tumor-bearing mice survival. These findings support intracranial administration of NK-92-EGFR-CAR cells represents a promising clinical strategy to treat GB.

  19. Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure.

    PubMed Central

    Thayer, M M; Ahern, H; Xing, D; Cunningham, R P; Tainer, J A

    1995-01-01

    The 1.85 A crystal structure of endonuclease III, combined with mutational analysis, suggests the structural basis for the DNA binding and catalytic activity of the enzyme. Helix-hairpin-helix (HhH) and [4Fe-4S] cluster loop (FCL) motifs, which we have named for their secondary structure, bracket the cleft separating the two alpha-helical domains of the enzyme. These two novel DNA binding motifs and the solvent-filled pocket in the cleft between them all lie within a positively charged and sequence-conserved surface region. Lys120 and Asp138, both shown by mutagenesis to be catalytically important, lie at the mouth of this pocket, suggesting that this pocket is part of the active site. The positions of the HhH motif and protruding FCL motif, which contains the DNA binding residue Lys191, can accommodate B-form DNA, with a flipped-out base bound within the active site pocket. The identification of HhH and FCL sequence patterns in other DNA binding proteins suggests that these motifs may be a recurrent structural theme for DNA binding proteins. Images PMID:7664751

  20. Structure of thallium(III) chloride, bromide, and cyanide complexes in aqueous solution

    SciTech Connect

    Blixt, J.; Glaser, J.; Sandstroem, M.; Mink, J. |; Persson, I.; Persson, P.

    1995-05-10

    The structures of the hydrated thallium(III) halide and pseudohalide complexes, [TlX{sub n}(OH{sub 2}){sub m}]{sup (3-d)+}, X = Cl, Br, CN, in aqueous solution have been studied by a combination of X-ray absorption fine structure spectroscopy (XAFS), large-angle X-ray scattering (LAXS), and vibrational spectroscopic (Raman and IR) techniques including far-infrared studies of aqueous solutions and some solid phases with known structures. The vibrational Tl-X frequencies of all complexes are reported, force constants are calculated using normal coordinate analysis, and assignments are given. The structural results are consistent with octahedral six-coordination for the cationic complexes Tl(OH{sub 2}){sub 6}{sup 3$PLU}, TlX(OH{sub 2}){sub 5}{sup 2+}, and trans-TlX{sub 2}(OH{sub 2}){sub 4}{sup +}. The coordination geometry changes to trigonal bipyramidal for the neutral TlBr{sub 3}(OH{sub 2}){sub 2} complex and possibly also for TlCl{sub 3}(OH{sub 2}){sub 2}. The TlX{sub 4}{sup -} complexes are all tetrahedral. Higher chloride complexes, TlCl{sub 5}(OH{sub 2}){sup 2-} and TlCl{sub 6}{sup 3-}, are formed and have again octahedral coordination geometry. 65 refs., 7 figs., 5 tabs.

  1. MoSi2-Base Structural Composite Passed Engine Test

    NASA Technical Reports Server (NTRS)

    Nathal, Michael V.; Hebsur, Mohan G.

    1999-01-01

    The intermetallic compound molybdenum disilicide (MoSi2) is an attractive high-temperature structural material for advanced engine applications. It has excellent oxidation resistance, a high melting point, relatively low density, and high thermal conductivity; and it is easily machined. Past research at the NASA Lewis Research Center has resulted in the development of a hybrid composite consisting of a MoSi2 matrix reinforced with silicon nitride (Si3N4) particulate and silicon carbide (SiC) fibers. This composite has demonstrated attractive strength, toughness, thermal fatigue, and oxidation resistance, including resistance to "pest" oxidation. These properties attracted the interest of the Office of Naval Research and Pratt & Whitney, and a joint NASA/Navy/Pratt & Whitney effort was developed to continue to mature the MoSi2 composite technology. A turbine blade outer air seal, which was part of the Integrated High Performance Turbine Engine Technology (IHPTET) program, was chosen as a first component on which to focus.

  2. Cylinder head structure for V-type engine

    SciTech Connect

    Okada, M.; Asanomi, K.; Choshi, M.; Abe, R.

    1988-03-08

    A cylinder head structure for a V-type engine having a pair of cylinder banks is described comprising a pair of cylinder head members which are the same in shape and oriented in opposite directions and which are provided in each of the front and rear end wall portions with an opening, and camshaft supported for rotation in the respective cylinder head members so that the respective one ends of the camshafts project outside through the openings on the same end of the engine. A cam pulley is mounted on the projecting portion of each cam shaft, a transmission belt means is for transmitting the driving force off the crankshaft to the cam pulley on each camshaft, a pair of first cover members are mounted on the end wall portions of the respective cylinder head members through which the camshafts project to form closed cross section spaces together with the corresponding cylinder head members for covering the transmission belt means, and second cover members are mounted on the end wall portions of the respective cylinder heads opposite to the end wall portions through which the camshafts project to cover the openings therein.

  3. Digital microelectromechanical sensor with an engineered polydimethylsiloxane (PDMS) bridge structure.

    PubMed

    Meng, Lingju; Fan, Shicheng; Mahpeykar, Seyed Milad; Wang, Xihua

    2017-01-19

    Functional electronic devices integrated on flexible substrates are of great interest in both academia and industry for their potential applications in wearable technologies. Recently, there have been an increasing number of investigations on developing new materials for flexible strain sensors and pressure sensors, with the aim of achieving better sensitivity and detection ranges. However, the analog signal outputs of these sensors are accompanied with challenges regarding device reproducibility and reliability. Here we designed and fabricated a new class of sensors-digital microelectromechanical (MEM) sensors for wearable technologies. Our digital MEM sensors were implemented with the polydimethysiloxane (PDMS) bridge on flexible substrates, and provided digital signal outputs based on electrical insulating-to-conducting transitions. By engineering the PDMS bridge structure, we could tune the sensitivity of the digital MEM sensor for various applications. These digital MEM sensors were used in bending tests: they were integrated on glove fingers and used to detect gestures. These sensors were also used as force sensors: they were used on human wrists to monitor heart rates. The device was experimentally found to maintain its performance level even after 10 000 cycles of bending or pressing. The digital output of our devices allows a higher tolerance for device fabrication to be set. Furthermore, our devices can be engineered for desired specifications in various potential applications.

  4. Crystal structure of new complexes of praseodymium(III) nitrate and ytterbium(III) nitrate with 2,2': 6,2''-terpyridine

    SciTech Connect

    Charushnikova, I. A. Auwer, C. Den

    2006-12-15

    The crystal structure of new complexes of praseodymium(III) and ytterbium(III) (elements from the initial and final parts of the lanthanide series), namely, [Pr(NO{sub 3}){sub 3} (Terpy)((CH{sub 3}){sub 2}CO)] (I) and [Yb(NO{sub 3}){sub 2}(Terpy)(H{sub 2}O){sub 2}]NO{sub 3} . 2H{sub 2}O (II), is investigated. The structure of compound I consists of [Pr(NO{sub 3}){sub 3}(Terpy)((CH{sub 3}){sub 2}CO)] neutral complexes. The coordination number of the praseodymium atom is 10. The coordination polyhedron of the praseodymium atom can be described as a distorted bicapped tetragonal antiprism. The structure of compound II is composed of [Yb(NO{sub 3}){sub 2}(Terpy)(H{sub 2}O){sub 2}]{sup +} cationic complexes, nitrate anions, and molecules of crystallization water. The structural components are joined together via a three-dimensional system of hydrogen bonds. The coordination polyhedron of the ytterbium atom can be represented as a distorted tricapped trigonal prism. The coordination number of the ytterbium atom is 9.

  5. Hydrogencyanamide-bridged one-dimensional polymers built on Mn(III)-Schiff base fragments: synthesis, structure, and magnetism.

    PubMed

    Yuan, Mei; Zhao, Fei; Zhang, Wen; Pan, Feng; Wang, Zhe-Ming; Gao, Song

    2007-01-01

    The ability of NCNH(-) to construct transition metal coordination polymers and to transmit magnetic coupling was investigated. By introduction of various tetradentate Schiff base ligands (L) and different solvents (S), nine NCNH(-)-bridged manganese(III) coordination complexes were obtained. Their structures can be divided into three types: I) NCNH-bridged chains built on mononuclear [Mn(III)(L)] units, [Mn(III)(L)(mu(1,3)-NCNH)](n) (L=5-Brsalen (1), 5-Clsalen (2)); II) NCNH-bridged chains built on dinuclear [Mn(III) (2)(L)(2)] units, complexes 3-8, [Mn(III) (2)(L)(2)(mu(1,3)-NCNH)]ClO(4)S (L=salen, 5-Fsalen, 5-Clsalen, 5-OCH(3)salen; S=CH(3)OH or C(2)H(5)OH); III) NCNH-bridged Mn(III) dimers linked by hydrogen bonds into a 1D polymer, {[Mn(III)(3-OCH(3)salen)(H(2)O)](2)(mu(1,3)-NCNH)}ClO(4) x 0.5 H(2)O (9, salen=N,N'-bis(salicylidene)-1,2-diaminoethane). In these complexes, the N[triple chemical bond]C--NH(-) resonance structure dominates the bonding mode of the NCNH(-) ligand adopting the mu(1,3)-bridging mode. Magnetic characterization shows that the asymmetric NCNH(-) bridge transmits antiferromagnetic interaction between Mn(III) ions and often favors the weak ferromagnetism caused by spin canting in these one-dimensional chains. However, these complexes exhibit different magnetic behaviors at low temperatures.

  6. Synthesis, characterization, crystal structure and electrochemical studies of ionic iron(III) dipicolinato complex

    NASA Astrophysics Data System (ADS)

    Ghasemi, Fatemeh; Ghasemi, Khaled; Rezvani, Ali Reza; Rosli, Mohd Mustaqim; Razak, Ibrahim Abdul

    2017-09-01

    The new complex (NH4)[Fe(dipic)2] (1) (dipicH2 = 2,6-pyridinedicarboxylic acid), was synthesized and characterized by elemental analysis, FTIR and UV-Vis spectroscopy and single crystal X-ray method. The crystal system is tetragonal with space group I41/a. The FeIII ion and the N atom of the ammonium cation are located on a crystallographic fourfold rotoinversion axis (4 bar). The Nsbnd H⋯O and Csbnd H⋯O intermolecular hydrogen bonding and π⋯π stacking interactions play an important role in the formation of a 3-dimensional anion-cation network and stabilization of the crystal structure. The redox behavior of the complex was also investigated by cyclic voltammetry.

  7. Structure and Function of the Type III Secretion System of Pseudomonas aeruginosa

    PubMed Central

    Galle, Marlies; Carpentier, Isabelle; Beyaert, Rudi

    2012-01-01

    Pseudomonas aeruginosa is a dangerous pathogen particularly because it harbors multiple virulence factors. It causes several types of infection, including dermatitis, endocarditis, and infections of the urinary tract, eye, ear, bone, joints and, of particular interest, the respiratory tract. Patients with cystic fibrosis, who are extremely susceptible to Pseudomonas infections, have a bad prognosis and high mortality. An important virulence factor of P. aeruginosa, shared with many other gram-negative bacteria, is the type III secretion system, a hollow molecular needle that transfers effector toxins directly from the bacterium into the host cell cytosol. This complex macromolecular machine works in a highly regulated manner and can manipulate the host cell in many different ways. Here we review the current knowledge of the structure of the P. aeruginosa T3SS, as well as its function and recognition by the immune system. Furthermore, we describe recent progress in the development and use of therapeutic agents targeting the T3SS. PMID:23305368

  8. Crystal structure of tris-(ethyl-enedi-ammonium) hexasulfatopraseodymium(III) hexa-hydrate.

    PubMed

    Held, Peter

    2014-10-01

    In the title salt, (C2H10N2)3[Pr2(SO4)6]·6H2O, the Pr(III) cation is surrounded ninefold by five sulfate groups (two monodentate and three chelating) and by one water mol-ecule [range of Pr-O bond lengths 2.383 (3) to 2.582 (3) Å]. The [Pr(SO4)5(H2O)] groups are arranged in sheets parallel to (010). Two crystal water mol-ecules and two ethyl-enedi-ammonium cations (one with point group symmetry -1) connect the sheets via O-H⋯O and N-H⋯O hydrogen bonds from weak up to medium strength into a three-dimensional framework structure.

  9. Engineering the shape and structure of materials by fractal cut

    PubMed Central

    Cho, Yigil; Shin, Joong-Ho; Costa, Avelino; Kim, Tae Ann; Kunin, Valentin; Li, Ju; Lee, Su Yeon; Yang, Shu; Han, Heung Nam; Choi, In-Suk; Srolovitz, David J.

    2014-01-01

    In this paper we discuss the transformation of a sheet of material into a wide range of desired shapes and patterns by introducing a set of simple cuts in a multilevel hierarchy with different motifs. Each choice of hierarchical cut motif and cut level allows the material to expand into a unique structure with a unique set of properties. We can reverse-engineer the desired expanded geometries to find the requisite cut pattern to produce it without changing the physical properties of the initial material. The concept was experimentally realized and applied to create an electrode that expands to >800% the original area with only very minor stretching of the underlying material. The generality of our approach greatly expands the design space for materials so that they can be tuned for diverse applications. PMID:25422433

  10. Band structure engineering in topological insulator based heterostructures.

    PubMed

    Menshchikova, T V; Otrokov, M M; Tsirkin, S S; Samorokov, D A; Bebneva, V V; Ernst, A; Kuznetsov, V M; Chulkov, E V

    2013-01-01

    The ability to engineer an electronic band structure of topological insulators would allow the production of topological materials with tailor-made properties. Using ab initio calculations, we show a promising way to control the conducting surface state in topological insulator based heterostructures representing an insulator ultrathin films on the topological insulator substrates. Because of a specific relation between work functions and band gaps of the topological insulator substrate and the insulator ultrathin film overlayer, a sizable shift of the Dirac point occurs resulting in a significant increase in the number of the topological surface state charge carriers as compared to that of the substrate itself. Such an effect can also be realized by applying the external electric field that allows a gradual tuning of the topological surface state. A simultaneous use of both approaches makes it possible to obtain a topological insulator based heterostructure with a highly tunable topological surface state.

  11. Engineering metal oxide structures for efficient photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Concina, Isabella; Selopal, Gurpreet S.; Milan, Riccardo; Vomiero, Alberto; Sberveglieri, Giorgio

    2014-03-01

    Metal oxide-based photoanodes are critical components of dye sensitized solar cells (DSSCs), which are photoelectrochemical cells for the conversion of solar energy, promising to have several benefits as compared with their traditional counterparts. A careful engineering of the wide band gap metal oxide composing the photoanode, as well as their process design, is strategic for improving device performances and for planning a near future production scale up, especially devoted to reducing the environmental impact of the device fabrication. Herein, we present the application of ZnO hierarchical structures as efficient materials to be applied as photoanodes in DSSC, in the perspective of looking for alternative to TiO2 nanoparticles, currently the most exploited metal oxide in these devices.

  12. Nebraska School Facilities: Educational Adequacy of Class III School District Structures

    ERIC Educational Resources Information Center

    Weidner, John M., Sr.

    2009-01-01

    In 2009, a replication of the Pool study was conducted. This study, however, focused on the school systems classified as Class III districts. Nebraska has 252 Class III districts. Compared with Class II (21), Class IV (1), and Class V(1) districts, the Class III districts offer a wide array of school settings, from urban to extremely rural, and…

  13. Applications of Substrate Integrated Waveguide (SIW) Structure in Microwave Engineering

    NASA Astrophysics Data System (ADS)

    Shen, Zhi

    This thesis is focused on some applications of the Substrate Integrated Waveguide (SIW) structure in microwave engineering. It is mainly divided into two parts, covering a dual-band high Q filter and a broadband high gain ring slot antenna, both of which are based on SIW resonators. This work indicates strong potential of SIW structure in communication system and discusses its unique advantages in detail. In the first part of the thesis, a dual-band high Q second order filter is designed to work at around 10 GHz and 14 GHz. SIW cavities are chosen in order to fulfill the low loss requirements. Two kinds of perturbation theories are applied in this structure to make two second order pass bands. Transmission lines of proper length are designed to connect the cavities together and make them work efficiently. In the second part of the thesis, a broadband high gain SIW ring slot antenna working at around 18 GHz is discussed. The bandwidth of the antenna is approximately 12.7% and the gain is around 7 dB. The cavity mode is properly chosen to reach the high antenna gain requirement. The working mechanism of its broadband property is discussed in detail to reach a reasonable argument.

  14. Structural Studies and Protein Engineering of Inositol Phosphate Multikinase*

    PubMed Central

    Endo-Streeter, Stuart; Tsui, Man-Kin Marco; Odom, Audrey R.; Block, Jeremy; York, John D.

    2012-01-01

    Inositol phosphates (IPs) regulate vital processes in eukaryotes, and their production downstream of phospholipase C activation is controlled through a network of evolutionarily conserved kinases and phosphatases. Inositol phosphate multikinase (IPMK, also called Ipk2 and Arg82) accounts for phosphorylation of IP3 to IP5, as well as production of several other IP molecules. Here, we report the structure of Arabidopsis thaliana IPMKα at 2.9 Å and find it is similar to the yeast homolog Ipk2, despite 17% sequence identity, as well as the active site architecture of human IP3 3-kinase. Structural comparison and substrate modeling were used to identify a putative basis for IPMK selectivity. To test this model, we re-engineered binding site residues predicted to have restricted substrate specificity. Using steady-state kinetics and in vivo metabolic labeling studies in modified yeast strains, we observed that K117W and K117W:K121W mutants exhibited nearly normal 6-kinase function but harbored significantly reduced 3-kinase activity. These mutants complemented conditional nutritional growth defects observed in ipmk null yeast and, remarkably, suppressed lethality observed in ipmk null flies. Our data are consistent with the hypothesis that IPMK 6-kinase activity and production of Ins(1,4,5,6)P4 are critical for cellular signaling. Overall, our studies provide new insights into the structure and function of IPMK and utilize a synthetic biological approach to redesign inositol phosphate signaling pathways. PMID:22896696

  15. Structurally embedded fiber Bragg gratings: civil engineering applications

    NASA Astrophysics Data System (ADS)

    Nellen, Philipp M.; Broennimann, Rolf; Frank, Andreas; Mauron, Pascal; Sennhauser, Urs J.

    1999-12-01

    In civil engineering it is of interest to monitor long-term performance of structures made of new lightweight materials like glass or carbon fiber reinforced polymers (GFRP/CFRP). In contrast to surface applied optical fiber sensors, embedded sensors are expected to be better protected against rough handling and harsh environmental conditions. We report on two recently done fiber optical sensor applications in civil engineering. Both include structurally embedded fiber Bragg grating (BG) arrays but have different demands with respect to their operation. For the first application fiber BGs were embedded in GFRP rockbolts of 3 - 5 m in length either of 3, 8, or 22 mm diameter. The sensor equipped rockbolts are made for distributed measurements of boulder motion during tunnel construction and operation and should withstand strain up to 1.6%. Rockbolt sensors were field tested in a tunnel near Sargans in Switzerland. For a second application fiber BGs were embedded in CFRP wires of 5 mm diameter used for the pre- stressing cables of a 56 m long bridge near Lucerne in Switzerland. The permanent load on the cable corresponds to 0.8% strain. Due to the embedded sensors, strain decay inside the cable anchoring heads could be measured for the first time during loading and operation of the cables. For both applications mechanical and thermal loading tests were performed to assess the function of these new elements. Also, temperature and strain sensitivity were calibrated. Reliability studies with respect to stress transfer, fiber mechanical failure, and wavelength shift caused by thermal BG decay as well as monitoring results of both applications are presented.

  16. Neutron structure of type-III antifreeze protein allows the reconstruction of AFP-ice interface.

    PubMed

    Howard, Eduardo I; Blakeley, Matthew P; Haertlein, Michael; Petit-Haertlein, Isabelle; Mitschler, Andre; Fisher, Stuart J; Cousido-Siah, Alexandra; Salvay, Andrés G; Popov, Alexandre; Muller-Dieckmann, Christoph; Petrova, Tatiana; Podjarny, Alberto

    2011-01-01

    Antifreeze proteins (AFPs) inhibit ice growth at sub-zero temperatures. The prototypical type-III AFPs have been extensively studied, notably by X-ray crystallography, solid-state and solution NMR, and mutagenesis, leading to the identification of a compound ice-binding surface (IBS) composed of two adjacent ice-binding sections, each which binds to particular lattice planes of ice crystals, poisoning their growth. This surface, including many hydrophobic and some hydrophilic residues, has been extensively used to model the interaction of AFP with ice. Experimentally observed water molecules facing the IBS have been used in an attempt to validate these models. However, these trials have been hindered by the limited capability of X-ray crystallography to reliably identify all water molecules of the hydration layer. Due to the strong diffraction signal from both the oxygen and deuterium atoms, neutron diffraction provides a more effective way to determine the water molecule positions (as D(2) O). Here we report the successful structure determination at 293 K of fully perdeuterated type-III AFP by joint X-ray and neutron diffraction providing a very detailed description of the protein and its solvent structure. X-ray data were collected to a resolution of 1.05 Å, and neutron Laue data to a resolution of 1.85 Å with a "radically small" crystal volume of 0.13 mm(3). The identification of a tetrahedral water cluster in nuclear scattering density maps has allowed the reconstruction of the IBS-bound ice crystal primary prismatic face. Analysis of the interactions between the IBS and the bound ice crystal primary prismatic face indicates the role of the hydrophobic residues, which are found to bind inside the holes of the ice surface, thus explaining the specificity of AFPs for ice versus water.

  17. Solvothermal syntheses and structures of indium(III)-binaphthalenyl dicarboxylate complexes with yellow/blue luminescence

    SciTech Connect

    Gao Qiang; Jiang Feilong; Wu Mingyan; Huang Yougui; Chen Lian; Wei Wei; Hong Maochun

    2009-06-15

    Two novel In(III) complexes, [In(bna)(Hbna)]{sub n} (1) and [In{sub 2}(bna){sub 2}(mu{sub 2}-OH){sub 2}]{sub n}.4nH{sub 2}O (2) (H{sub 2}bna=2,2'-dihydroxy-1,1'-binaphthyl-3,3'-dicarboxylate acid), have been reported. Complex 1 adopts a 2D layer structure, where each layer composed from homochiral ligands is chiral while the ligands in two neighboring layers are enantiomer. Complex 2 is constructed by individual -In-O-In- chains, which are further connected by bna{sup 2-} into a 3D honeycomb framework. As a derivative of H{sub 2}bna ligand, dmbna (3) was recrystallized for structurally comparison with 1-2 (dmbna=dimethyl 2,2'-dihydroxy-1,1'-binaphthyl-3,3'-dicarboxylate). X-ray powder diffractions (XRD) and thermogravimetric analyses (TGA) for 1-2 show that they are highly thermally stable in the solid state. Complexes 1 and 2 exhibit the intense yellow luminescence at 573 nm and blue luminescence at 459 nm at room temperature, respectively. And an astonishing blue shift of 105 nm is observed for complex 1 when it is measured at 10 K. - Graphical abstract: Two indium(III)-bna compounds were solvothermally synthesized. 1 adopts an unprecedented 2D chiral layer. 2 is constructed by -In-O-In- chains, which are further connected by bna{sup 2-} into a 3D honeycomb framework.

  18. New Insights into Structure and Luminescence of EuIII and SmIII Complexes of the 3,4,3-LI(1,2-HOPO) Ligand

    DOE PAGES

    Daumann, Lena J.; Tatum, David S.; Snyder, Benjamin E. R.; ...

    2015-01-21

    We report the preparation and new insight into photophysical properties of luminescent hydroxypyridonate complexes [MIIIL]- (M = Eu or Sm) of the versatile 3,4,3-LI(1,2-HOPO) ligand (L). We report the crystal structure of this ligand with EuIII as well as insights into the coordination behavior and geometry in solution by using magnetic circular dichroism. In addition TD-DFT calculations were used to examine the excited states of the two different chromophores present in the 3,4,3-LI(1,2-HOPO) ligand. We find that the EuIII and SmIII complexes of this ligand undergo a transformation after in situ preparation to yield complexes with higher quantum yield (QY)more » over time. We propose that the lower QY in the in situ complexes is not only due to water quenching but could also be due to a lower degree of f-orbital overlap (in a kinetic isomer) as indicated by magnetic circular dichroism measurements.« less

  19. New Insights into Structure and Luminescence of EuIII and SmIII Complexes of the 3,4,3-LI(1,2-HOPO) Ligand

    PubMed Central

    2016-01-01

    We report the preparation and new insight into photophysical properties of luminescent hydroxypyridonate complexes [MIIIL]− (M = Eu or Sm) of the versatile 3,4,3-LI(1,2-HOPO) ligand (L). We report the crystal structure of this ligand with EuIII as well as insights into the coordination behavior and geometry in solution by using magnetic circular dichroism. In addition TD-DFT calculations were used to examine the excited states of the two different chromophores present in the 3,4,3-LI(1,2-HOPO) ligand. We find that the EuIII and SmIII complexes of this ligand undergo a transformation after in situ preparation to yield complexes with higher quantum yield (QY) over time. It is proposed that the lower QY in the in situ complexes is not only due to water quenching but could also be due to a lower degree of f-orbital overlap (in a kinetic isomer) as indicated by magnetic circular dichroism measurements. PMID:25607882

  20. Biochemical and Structural Characterization of Germicidin Synthase: Analysis of a Type III Polyketide Synthase That Employs Acyl-ACP as a Starter Unit Donor

    SciTech Connect

    Chemler, Joseph A.; Buchholz, Tonia J.; Geders, Todd W.; Akey, David L.; Rath, Christopher M.; Chlipala, George E.; Smith, Janet L.; Sherman, David H.

    2012-08-10

    Germicidin synthase (Gcs) from Streptomyces coelicolor is a type III polyketide synthase (PKS) with broad substrate flexibility for acyl groups linked through a thioester bond to either coenzyme A (CoA) or acyl carrier protein (ACP). Germicidin synthesis was reconstituted in vitro by coupling Gcs with fatty acid biosynthesis. Since Gcs has broad substrate flexibility, we directly compared the kinetic properties of Gcs with both acyl-ACP and acyl-CoA. The catalytic efficiency of Gcs for acyl-ACP was 10-fold higher than for acyl-CoA, suggesting a strong preference toward carrier protein starter unit transfer. The 2.9 {angstrom} germicidin synthase crystal structure revealed canonical type III PKS architecture along with an unusual helical bundle of unknown function that appears to extend the dimerization interface. A pair of arginine residues adjacent to the active site affect catalytic activity but not ACP binding. This investigation provides new and surprising information about the interactions between type III PKSs and ACPs that will facilitate the construction of engineered systems for production of novel polyketides.

  1. Structure of a bacterial type III secretion system in contact with a host membrane in situ

    NASA Astrophysics Data System (ADS)

    Nans, Andrea; Kudryashev, Mikhail; Saibil, Helen R.; Hayward, Richard D.

    2015-12-01

    Many bacterial pathogens of animals and plants use a conserved type III secretion system (T3SS) to inject virulence effector proteins directly into eukaryotic cells to subvert host functions. Contact with host membranes is critical for T3SS activation, yet little is known about T3SS architecture in this state or the conformational changes that drive effector translocation. Here we use cryo-electron tomography and sub-tomogram averaging to derive the intact structure of the primordial Chlamydia trachomatis T3SS in the presence and absence of host membrane contact. Comparison of the averaged structures demonstrates a marked compaction of the basal body (4 nm) occurs when the needle tip contacts the host cell membrane. This compaction is coupled to a stabilization of the cytosolic sorting platform-ATPase. Our findings reveal the first structure of a bacterial T3SS from a major human pathogen engaged with a eukaryotic host, and reveal striking `pump-action' conformational changes that underpin effector injection.

  2. Structural, Hirshfeld surface and spectroscopic studies of the noncentrosymmetric 1-ethylpiperazinediium pentachloroantimonate (III) monohydrate

    NASA Astrophysics Data System (ADS)

    Soudani, S.; Zeller, M.; Jelsch, C.; Lefebvre, F.; Ben Nasr, Cherif

    2016-08-01

    1-Ethylpiperazinediium pentachloroantimonate (III) monohydrate, C6H16N2SbCl5·H2O, has been synthesized by the reaction of antimony trioxide (Sb2O3) and 1-ethylpiperazine in an aqueous solution of hydrochloric acid. The structure crystallizes in orthorhombic system, in the non-centrosymmetric space group Pca21 and consists of isolated [C6H16N2]2+ cations, square pyramidal [SbCl5]2- anions and lattice water molecules. Osbnd H⋯Cl hydrogen bonds link the [SbCl5]2- anions and water molecules to form double chains stretching along the [101] direction. The chains in turn are linked to the organic cations via Nsbnd H⋯Cl, Csbnd H⋯Cl, Csbnd H⋯O and Nsbnd H⋯O hydrogen bonds to form a three-dimensional network. This structure presents an example of a general square pyramidal complex ion containing a stereo-chemically active lone pair of electrons. Solid state 13C and 15N CP-MAS NMR spectra are in agreement with the X-ray structure, and vibrational absorption bands were identified by infrared spectroscopy. DFT calculations allowed the attribution of the NMR peaks and IR absorption bands. The interactions variability of the two independent cations and ten chloride atoms is analyzed via Hirshfeld surface analysis.

  3. Characterization of capture cross sections of interface states in dielectric/III-nitride heterojunction structures

    NASA Astrophysics Data System (ADS)

    Matys, M.; Stoklas, R.; Kuzmik, J.; Adamowicz, B.; Yatabe, Z.; Hashizume, T.

    2016-05-01

    We performed, for the first time, quantitative characterization of electron capture cross sections σ of the interface states at dielectric/III-N heterojunction interfaces. We developed a new method, which is based on the photo-assisted capacitance-voltage measurements using photon energies below the semiconductor band gap. The analysis was carried out for AlGaN/GaN metal-insulator-semiconductor heterojunction (MISH) structures with Al2O3, SiO2, or SiN films as insulator deposited on the AlGaN layers with Al content (x) varying over a wide range of values. Additionally, we also investigated an Al2O3/InAlN/GaN MISH structure. Prior to insulator deposition, the AlGaN and InAlN surfaces were subjected to different treatments. We found that σ for all these structures lies in the range between 5 × 10 - 19 and 10 - 16 cm2. Furthermore, we revealed that σ for dielectric/AlxGa1-xN interfaces increases with increasing x. We showed that both the multiphonon-emission and cascade processes can explain the obtained results.

  4. Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane.

    PubMed

    Jeong, Sanghyun; Cho, Kyungjin; Jeong, Dawoon; Lee, Seockheon; Leiknes, TorOve; Vigneswaran, Saravanamuthu; Bae, Hyokwan

    2017-11-01

    Four dual media filters (DMFs) were operated in a biofiltration mode with different engineered environments (DMF I and II: coagulation with/without acidification and DMF III and IV: without/with chlorination). Designed biofilm enrichment reactors (BERs) containing the removable reverse osmosis (RO) coupons, were connected at the end of the DMFs in parallel to analyze the biofilm on the RO membrane by DMF effluents. Filtration performances were evaluated in terms of dissolved organic carbon (DOC) and assimilable organic carbon (AOC). Organic foulants on the RO membrane were also quantified and fractionized. The bacterial community structures in liquid (seawater and effluent) and biofilm (DMF and RO) samples were analyzed using 454-pyrosequencing. The DMF IV fed with the chlorinated seawater demonstrated the highest reductions of DOC including LMW-N as well as AOC among the other DMFs. The DMF IV was also effective in reducing organic foulants on the RO membrane surface. The bacterial community structure was grouped according to the sample phase (i.e., liquid and biofilm samples), sampling location (i.e., DMF and RO samples), and chlorination (chlorinated and non-chlorinated samples). In particular, the biofilm community in the DMF IV differed from the other DMF treatments, suggesting that chlorination exerted as stronger selective pressure than pH adjustment or coagulation on the biofilm community. In the DMF IV, several chemoorganotrophic chlorine-resistant biofilm-forming bacteria such as Hyphomonas, Erythrobacter, and Sphingomonas were predominant, and they may enhance organic carbon degradation efficiency. Diverse halophilic or halotolerant organic degraders were also found in other DMFs (i.e., DMF I, II, and III). Various kinds of dominant biofilm-forming bacteria were also investigated in RO membrane samples; the results provided possible candidates that cause biofouling when DMF process is applied as the pretreatment option for the RO process. Copyright

  5. Engineering and Design: Stability Criteria for Existing Concrete Navigation Structures on Rock Foundations

    DTIC Science & Technology

    2007-11-02

    Engineering and Design STABILITY CRITERIA FOR EXISTING CONCRETE NAVIGATION STRUCTURES ON ROCK FOUNDATIONS Distribution Restriction Statement Approved...Title and Subtitle Engineering and Design: Stability Criteria for Existing Concrete Navigation Structures on Rock Foundations Contract Number Grant... CONCRETE NAVIGATION STRUCTURES ON ROCK FOUNDATIONS 1. Purpose. The purpose of this letter is to provide interim criteria and procedures for analyzing

  6. Structural design of Stirling engine with free pistons

    NASA Astrophysics Data System (ADS)

    Matusov, Jozef; Gavlas, Stanislav; Malcho, Milan

    2014-08-01

    Stirling engine is a device that converts thermal energy to mechanical work, which is mostly used to drive a generator of electricity. Advantage of Stirling engine is that it works with closed-cycle, where working medium is regularly cooled and heated, which acts on the working piston. This engine can be made in three modifications - alpha, beta, gamma. This paper discusses the design of the gamma Stirling engine with free pistons.

  7. Magnetic Structures of Heterometallic M(II)-M(III) Formate Compounds.

    PubMed

    Mazzuca, Lidia; Cañadillas-Delgado, Laura; Rodríguez-Velamazán, J Alberto; Fabelo, Oscar; Scarrozza, Marco; Stroppa, Alessandro; Picozzi, Silvia; Zhao, Jiong-Peng; Bu, Xian-He; Rodríguez-Carvajal, Juan

    2017-01-03

    A study of the magnetic structure of the [NH2(CH3)2]n[Fe(III)M(II)(HCOO)6]n niccolite-like compounds, with M(II) = Co(II) (2) and Mn(II) (3) ions, has been carried out using neutron diffraction and compared with the previously reported Fe(II)-containing compound (1). The inclusion of two different metallic atoms into the niccolite-like structure framework leads to the formation of isostructural compounds with very different magnetic behaviors due to the compensation or not of the different spins involved in each lattice. Below TN, the magnetic order in these compounds varies from ferrimagnetic behavior for 1 and 2 to an antiferromagnetic behavior with a weak spin canting for 3. Structure refinements of 2 and 3 at low temperature (45 K) have been carried out combining synchrotron X-ray and high-resolution neutron diffraction in a multipattern approach. The magnetic structures have been determined from the difference patterns between the neutron data in the paramagnetic and the magnetically ordered regions. These difference patterns have been analyzed using a simulated annealing protocol and symmetry analysis techniques. The obtained magnetic structures have been further rationalized by means of ab initio DFT calculations. The direction of the magnetic moment of each compound has been determined. The easy axis of the M(II) for compound 1 (Fe(II)) is along the c axis; for compound 2 (Co(II)), the moments are mainly within the ab plane; finally, for compound 3 (Mn(II)), the calculations show that the moments have components both in the ab plane and along the c axis.

  8. Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III

    SciTech Connect

    Hlouchova, Klara; Barinka, Cyril; Konvalinka, Jan; Lubkowski, Jacek

    2009-10-23

    Glutamate carboxypeptidase III (GCPIII) is a metalloenzyme that belongs to the transferrin receptor/glutamate carboxypeptidase II (GCPII; EC 3.4.17.21) superfamily. GCPIII has been studied mainly because of its evolutionary relationship to GCPII, an enzyme involved in a variety of neuropathologies and malignancies, such as glutamatergic neurotoxicity and prostate cancer. Given the potential functional and pharmacological overlap between GCPIII and GCPII, studies addressing the structural and physiological properties of GCPIII are crucial for obtaining a deeper understanding of the GCPII/GCPIII system. In the present study, we report high-resolution crystal structures of the human GCPIII ectodomain in a 'pseudo-unliganded' state and in a complex with: (a) L-glutamate (a product of hydrolysis); (b) a phosphapeptide transition state mimetic, namely (2S,3'S)-{l_brace}[(3'-amino-3'-carboxy-propyl)-hydroxyphosphinoyl]methyl{r_brace}-pentanedioic acid; and (c) quisqualic acid, a glutamate biostere. Our data reveal the overall fold and quaternary arrangement of the GCPIII molecule, define the architecture of the GCPIII substrate-binding cavity, and offer an experimental evidence for the presence of Zn{sup 2+} ions in the bimetallic active site. Furthermore, the structures allow us to detail interactions between the enzyme and its ligands and to characterize the functional flexibility of GCPIII, which is essential for substrate recognition. A comparison of these GCPIII structures with the equivalent GCPII complexes reveals differences in the organization of specificity pockets, in surface charge distribution, and in the occupancy of the co-catalytic zinc sites. The data presented here provide information that should prove to be essential for the structurally-aided design of GCPIII-specific inhibitors and might comprise guidelines for future comparative GCPII/GCPIII studies.

  9. Time-resolved pump and probe x-ray absorption fine structure spectroscopy at beamline P11 at PETRA III

    SciTech Connect

    Göries, D. Roedig, P.; Stübe, N.; Meyer, J.; Warmer, M.; Weckert, E.; Meents, A.; Dicke, B.; Naumova, M.; Rübhausen, M.; Galler, A.; Gawelda, W.; Geßler, P.; Sotoudi Namin, H.; Beckmann, A.; Britz, A.; Bressler, C.; Schlie, M.

    2016-05-15

    We report about the development and implementation of a new setup for time-resolved X-ray absorption fine structure spectroscopy at beamline P11 utilizing the outstanding source properties of the low-emittance PETRA III synchrotron storage ring in Hamburg. Using a high intensity micrometer-sized X-ray beam in combination with two positional feedback systems, measurements were performed on the transition metal complex fac-Tris[2-phenylpyridinato-C2,N]iridium(III) also referred to as fac-Ir(ppy){sub 3}. This compound is a representative of the phosphorescent iridium(III) complexes, which play an important role in organic light emitting diode (OLED) technology. The experiment could directly prove the anticipated photoinduced charge transfer reaction. Our results further reveal that the temporal resolution of the experiment is limited by the PETRA III X-ray bunch length of ∼103 ps full width at half maximum (FWHM).

  10. Engineer Company Force Structure Force Modularization in Support of Decisive Action. Does the Corps of Engineers Need to Re-Structure Engineer Construction Companies Again in order to Support Decisive Actions?

    DTIC Science & Technology

    2012-05-16

    Point ATN Army Training Network AUTL Army Universal Task List BCT Brigade Combat Team BEB Brigade Combat Team Engineer Battalion BSO Battle...Additionally some measures of effectiveness are suggested for better tracking the progress of the engineer transformation and for structuring the engineer...

  11. Tuning intracellular homeostasis of human uroporphyrinogen III synthase by enzyme engineering at a single hotspot of congenital erythropoietic porphyria.

    PubMed

    ben Bdira, Fredj; González, Esperanza; Pluta, Paula; Laín, Ana; Sanz-Parra, Arantza; Falcon-Perez, Juan Manuel; Millet, Oscar

    2014-11-01

    Congenital erythropoietic porphyria (CEP) results from a deficiency in uroporphyrinogen III synthase enzyme (UROIIIS) activity that ultimately stems from deleterious mutations in the uroS gene. C73 is a hotspot for these mutations and a C73R substitution, which drastically reduces the enzyme activity and stability, is found in almost one-third of all reported CEP cases. Here, we have studied the structural basis, by which mutations in this hotspot lead to UROIIIS destabilization. First, a strong interdependency is observed between the volume of the side chain at position 73 and the folded protein. Moreover, there is a correlation between the in vitro half-life of the mutated proteins and their expression levels in eukaryotic cell lines. Molecular modelling was used to rationalize the results, showing that the mutation site is coupled to the hinge region separating the two domains. Namely, mutations at position 73 modulate the inter-domain closure and ultimately affect protein stability. By incorporating residues capable of interacting with R73 to stabilize the hinge region, catalytic activity was fully restored and a moderate increase in the kinetic stability of the enzyme was observed. These results provide an unprecedented rationale for a destabilizing missense mutation and pave the way for the effective design of molecular chaperones as a therapy against CEP.

  12. βIII Spectrin Regulates the Structural Integrity and the Secretory Protein Transport of the Golgi Complex*

    PubMed Central

    Salcedo-Sicilia, Laia; Granell, Susana; Jovic, Marko; Sicart, Adrià; Mato, Eugenia; Johannes, Ludger; Balla, Tamas; Egea, Gustavo

    2013-01-01

    A spectrin-based cytoskeleton is associated with endomembranes, including the Golgi complex and cytoplasmic vesicles, but its role remains poorly understood. Using new generated antibodies to specific peptide sequences of the human βIII spectrin, we here show its distribution in the Golgi complex, where it is enriched in the trans-Golgi and trans-Golgi network. The use of a drug-inducible enzymatic assay that depletes the Golgi-associated pool of PI4P as well as the expression of PH domains of Golgi proteins that specifically recognize this phosphoinositide both displaced βIII spectrin from the Golgi. However, the interference with actin dynamics using actin toxins did not affect the localization of βIII spectrin to Golgi membranes. Depletion of βIII spectrin using siRNA technology and the microinjection of anti-βIII spectrin antibodies into the cytoplasm lead to the fragmentation of the Golgi. At ultrastructural level, Golgi fragments showed swollen distal Golgi cisternae and vesicular structures. Using a variety of protein transport assays, we show that the endoplasmic reticulum-to-Golgi and post-Golgi protein transports were impaired in βIII spectrin-depleted cells. However, the internalization of the Shiga toxin subunit B to the endoplasmic reticulum was unaffected. We state that βIII spectrin constitutes a major skeletal component of distal Golgi compartments, where it is necessary to maintain its structural integrity and secretory activity, and unlike actin, PI4P appears to be highly relevant for the association of βIII spectrin the Golgi complex. PMID:23233669

  13. Core-sheath differentially biodegradable nanofiber structures for tissue engineering

    NASA Astrophysics Data System (ADS)

    Moghe, Ajit Keshav

    In recent years, it has been shown that the nanofiber structures prepared using electrospinning can serve as near ideal substrates for engineering tissues. Various biodegradable polymers of natural and synthetic origins have been used to construct the nanofiber scaffolds. The use of natural polymers is important in that they contain specific cell recognition sites that are capable of binding cells. Synthetic biodegradable polymers, on the other hand, can provide the necessary mechanical properties and their degradation rate can be controlled positively. When used alone, however, neither can provide an ideal structure for long-term development of tissues. This is because the regenerated natural polymers, although greatly biocompatible, are weak and degrade rapidly and uncontrollably, while the synthetic polymers, although mechanically more stable, are not as biocompatible. The focus of the current investigation was, therefore, to combine natural and synthetic polymers and to produce materials that have novel hybrid properties at the nano level. An optimum structure proposed was a differentially biodegradable bicomponent nanofiber with the sheath of natural and the core of synthetic polymers. Co-axial electrospinning was used to prepare the proposed core-sheath nanofibers. A major objective of the current research was to develop and optimize the technology to produce uniform bicomponent nanofibers of predictable morphologies by understanding the effects of various material and process variables such as solution concentration, solvent type, solution flow rate, and applied voltage. Two natural polymers (collagen and gelatin) and one synthetic biodegradable polymer (PCL) were used to develop the proposed structures. The factors that affected the bicomponent fiber formation were: interfacial tension between sheath and core solutions, volatility of the solvent, and applied voltage. By minimizing the interfacial tension, selecting the solvents with low vapor pressure, and

  14. Development and fabrication of structural components for a scramjet engine

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.

    1990-01-01

    A program broadly directed toward design and development of long-life (100 hours and 1,000 cycles with a goal of 1,000 hours and 10,000 cycles) hydrogen-cooled structures for application to scramjets is presented. Previous phases of the program resulted in an overall engine design and analytical and experimental characterization of selected candidate materials and concepts. The latter efforts indicated that the basic life goals for the program can be reached with available means. The main objective of this effort was an integrated, experimental evaluation of the results of the previous program phases. The fuel injection strut was selected for this purpose, including fabrication development and fabrication of a full-scale strut. Testing of the completed strut was to be performed in a NASA-Langley wind tunnel. In addition, conceptual designs were formulated for a heat transfer test unit and a flat panel structural test unit. Tooling and fabrication procedures required to fabricate the strut were developed, and fabrication and delivery to NASA of all strut components, including major subassemblies, were completed.

  15. Structural analysis of a specialized type III secretion system peptidoglycan-cleaving enzyme.

    PubMed

    Burkinshaw, Brianne J; Deng, Wanyin; Lameignère, Emilie; Wasney, Gregory A; Zhu, Haizhong; Worrall, Liam J; Finlay, B Brett; Strynadka, Natalie C J

    2015-04-17

    The Gram-negative bacterium enteropathogenic Escherichia coli uses a syringe-like type III secretion system (T3SS) to inject virulence or "effector" proteins into the cytoplasm of host intestinal epithelial cells. To assemble, the T3SS must traverse both bacterial membranes, as well as the peptidoglycan layer. Peptidoglycan is made of repeating N-acetylmuramic acid and N-acetylglucosamine disaccharides cross-linked by pentapeptides to form a tight mesh barrier. Assembly of many macromolecular machines requires a dedicated peptidoglycan lytic enzyme (PG-lytic enzyme) to locally clear peptidoglycan. Here we have solved the first structure of a T3SS-associated PG-lytic enzyme, EtgA from enteropathogenic E. coli. Unexpectedly, the active site of EtgA has features in common with both lytic transglycosylases and hen egg white lysozyme. Most notably, the β-hairpin region resembles that of lysozyme and contains an aspartate that aligns with lysozyme Asp-52 (a residue critical for catalysis), a conservation not observed in other previously characterized lytic transglycosylase families to which the conserved T3SS enzymes had been presumed to belong. Mutation of the EtgA catalytic glutamate, Glu-42, conserved across lytic transglycosylases and hen egg white lysozyme, and this differentiating aspartate diminishes type III secretion in vivo, supporting its essential role in clearing the peptidoglycan for T3SS assembly. Finally, we show that EtgA forms a 1:1 complex with the building block of the polymerized T3SS inner rod component, EscI, and that this interaction enhances PG-lytic activity of EtgA in vitro, collectively providing the necessary strict localization and regulation of the lytic activity to prevent overall cell lysis.

  16. Structural Analysis of a Specialized Type III Secretion System Peptidoglycan-cleaving Enzyme*

    PubMed Central

    Burkinshaw, Brianne J.; Deng, Wanyin; Lameignère, Emilie; Wasney, Gregory A.; Zhu, Haizhong; Worrall, Liam J.; Finlay, B. Brett; Strynadka, Natalie C.J.

    2015-01-01

    The Gram-negative bacterium enteropathogenic Escherichia coli uses a syringe-like type III secretion system (T3SS) to inject virulence or “effector” proteins into the cytoplasm of host intestinal epithelial cells. To assemble, the T3SS must traverse both bacterial membranes, as well as the peptidoglycan layer. Peptidoglycan is made of repeating N-acetylmuramic acid and N-acetylglucosamine disaccharides cross-linked by pentapeptides to form a tight mesh barrier. Assembly of many macromolecular machines requires a dedicated peptidoglycan lytic enzyme (PG-lytic enzyme) to locally clear peptidoglycan. Here we have solved the first structure of a T3SS-associated PG-lytic enzyme, EtgA from enteropathogenic E. coli. Unexpectedly, the active site of EtgA has features in common with both lytic transglycosylases and hen egg white lysozyme. Most notably, the β-hairpin region resembles that of lysozyme and contains an aspartate that aligns with lysozyme Asp-52 (a residue critical for catalysis), a conservation not observed in other previously characterized lytic transglycosylase families to which the conserved T3SS enzymes had been presumed to belong. Mutation of the EtgA catalytic glutamate, Glu-42, conserved across lytic transglycosylases and hen egg white lysozyme, and this differentiating aspartate diminishes type III secretion in vivo, supporting its essential role in clearing the peptidoglycan for T3SS assembly. Finally, we show that EtgA forms a 1:1 complex with the building block of the polymerized T3SS inner rod component, EscI, and that this interaction enhances PG-lytic activity of EtgA in vitro, collectively providing the necessary strict localization and regulation of the lytic activity to prevent overall cell lysis. PMID:25678709

  17. Completion Report on the Corps of Engineers Structural Engineering Conference Held in Portland, Oregon on 23-28 June 1985.

    DTIC Science & Technology

    1986-03-01

    would induce liquifaction of soil and consequently the caissons would lose lateral support from the ground line to a depth of 60 ft. A cow- promise...Construction Sequence -------------------- 68 Integrated Structural Engineering Support for the FEMA Key Worker Blast Shelter Program...69 Dynamic Soil-Structure Interaction Effects on and P Reinforcement Details for Blast -Shelter Design -------------------- 70

  18. Engine-induced structural-borne noise in a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.; Pomerening, D. J.

    1979-01-01

    Structural borne interior noise in a single engine general aviation aircraft was studied to determine the importance of engine induced structural borne noise and to determine the necessary modeling requirements for the prediction of structural borne interior noise. Engine attached/detached ground test data show that engine induced structural borne noise is a primary interior noise source for the single engine test aircraft, cabin noise is highly influenced by responses at the propeller tone, and cabin acoustic resonances can influence overall noise levels. Results from structural and acoustic finite element coupled models of the test aircraft show that wall flexibility has a strong influence on fundamental cabin acoustic resonances, the lightweight fuselage structure has a high modal density, and finite element analysis procedures are appropriate for the prediction of structural borne noise.

  19. Synthesis, crystal structures, and properties of oxovanadium(IV)-lanthanide(III) heteronuclear complexes.

    PubMed

    Shi, Wei; Chen, Xiao-Yan; Zhao, Yan-Nan; Zhao, Bin; Cheng, Peng; Yu, Ao; Song, Hai-Bin; Wang, Hong-Gen; Liao, Dai-Zheng; Yan, Shi-Ping; Jiang, Zong-Hui

    2005-08-19

    A new series of oxovanadium(IV)-lanthanide(III) heteronuclear complexes [Yb(H2O)8]2[(VO)2(TTHA)](3)21 H2O (1), {[Ho(H2O)7(VO)2(TTHA)][(VO)2(TTHA)](0.5)} 8.5 H2O (2), {[Gd(H2O)7(VO)2(TTHA)][(VO)2(TTHA)](0.5)}8.5 H2O (3), {[Eu(H2O)7][(VO)2(TTHA)](1.5)} 10.5 H2O (4), and [Pr2(H2O)6(SO4)2][(VO)2(TTHA)] (5) (H6TTHA=triethylenetetraaminehexaacetic acid) were prepared by using the bulky flexible organic acid H(6)TTHA as structure-directing agent. X-ray crystallographic studies reveal that they contain the same [(VO)2(TTHA)]2- unit as building block, but the Ln3+ ion lies in different coordination environments. Although the lanthanide ions always exhibit similar chemical behavior, the structures of the complexes are not homologous. Compound 1 is composed of a [Yb(H2O)8]3+ ion and a [(VO)2(TTHA)]2- ion. Compounds 2 and 3 are isomorphous; both contain a trinuclear [Ln(H2O)7(VO)2(TTHA)]+ (Ln=Ho for 2 and Gd for 3) ion and a [(VO)2(TTHA)]2- ion. Compound 4 is an extended one-dimensional chain, in which each Eu3+ ion links two [(VO)2(TTHA)]2- ions. For 5, the structure is further assembled into a three-dimensional network with an interesting framework topology comprising V2Pr2 and V4Pr2 heterometallic lattices. Moreover, 4 and 5 are the first oxovanadium(IV)-lanthanide(III) coordination polymers and thus enlarge the realm of 3d-4f complexes. The IR, UV/Vis, and EPR spectra and the magnetic properties of the heterometallic complexes were studied. Notably, 2 shows unusual ferromagnetic interactions between the VO2+ and Ho3+ ions.

  20. Engineering High-Energy Interfacial Structures for High-Performance Oxygen-Involving Electrocatalysis.

    PubMed

    Guo, Chunxian; Zheng, Yao; Ran, Jingrun; Xie, Fangxi; Jaroniec, Mietek; Qiao, Shi-Zhang

    2017-07-10

    Engineering high-energy interfacial structures for high-performance electrocatalysis is achieved by chemical coupling of active CoO nanoclusters and high-index facet Mn3 O4 nano-octahedrons (hi-Mn3 O4 ). A thorough characterization, including synchrotron-based near edge X-ray absorption fine structure, reveals that strong interactions between both components promote the formation of high-energy interfacial Mn-O-Co species and high oxidation state CoO, from which electrons are drawn by Mn(III) -O present in hi-Mn3 O4 . The CoO/hi-Mn3 O4 demonstrates an excellent catalytic performance over the conventional metal oxide-based electrocatalysts, which is reflected by 1.2 times higher oxygen evolution reaction (OER) activity than that of Ru/C and a comparable oxygen reduction reaction (ORR) activity to that of Pt/C as well as a better stability than that of Ru/C (95 % vs. 81 % retained OER activity) and Pt/C (92 % vs. 78 % retained ORR activity after 10 h running) in alkaline electrolyte. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The structure of an As(III) S-adenosylmethionine methyltransferase: insights into the mechanism of arsenic biotransformation

    PubMed Central

    Ajees, A. Abdul; Marapakala, Kavitha; Packianathan, Charles; Sankaran, Banumathi; Rosen, Barry P.

    2012-01-01

    Enzymatic methylation of arsenic is a detoxification process in microorganisms but in humans may activate the metalloid to more carcinogenic species. We describe the first structure of an As(III) S-adenosylmethionine methyltransferase by x-ray crystallography that reveals a novel As(III) binding domain. The structure of the methyltransferase from the thermophilic eukarotic alga Cyanidioschyzon merolae reveals the relationship of the arsenic and S-adenosylmethionine binding sites to a final resolution of ~1.6 Å. As(III) binding causes little change in conformation, but binding of SAM reorients helix α4 and a loop (residues 49 to 80) toward the As(III) binding domain, positioning the methyl group for transfer to the metalloid. There is no evidence for a reductase domain. These results are consistent with previous suggestions that arsenic remains trivalent during the catalytic cycle. A homology model of human As(III) S-adenosylmethionine methyltransferase with the location of known polymorphisms was constructed. The structure provides insights into the mechanism of substrate binding and catalysis. PMID:22712827

  2. Blue light emission from cyclometallated iridium (III) cyano complexes: Syntheses, crystal structures, and photophysical properties

    SciTech Connect

    Sanner, Robert D.; Cherepy, Nerine J.; Young, Jr., Victor G.

    2015-11-02

    In this study, we describe the synthesis and crystal structures of four iridium compounds containing the 2-(4,6-difluorophenyl)pyridyl ligand. Cleavage of dichloro-bridged iridium(III) dimers with phosphorus ligands leads to (46dfppy)2Ir(L)(Cl) where L = PPh3 or P(OPh)3. Treatment of the chloro compounds with cyanide forms the cyano complexes (46dfppy)2Ir(L)(CN). All complexes exhibit a trans effect in their molecular structures due to the phosphorus ligands, with the phosphite having a greater effect than the phosphine. With L = PPh3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.24), quantum yield of 0.66 ± 0.15 and 4.5 ± 0.5 μs decay time is measured. For L = P(OPh)3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.21), quantum yield of 0.65 ± 0.15 and 2.9 ± 0.3 μs decay time is measured.

  3. Blue light emission from cyclometallated iridium (III) cyano complexes: Syntheses, crystal structures, and photophysical properties

    DOE PAGES

    Sanner, Robert D.; Cherepy, Nerine J.; Young, Jr., Victor G.

    2015-11-02

    In this study, we describe the synthesis and crystal structures of four iridium compounds containing the 2-(4,6-difluorophenyl)pyridyl ligand. Cleavage of dichloro-bridged iridium(III) dimers with phosphorus ligands leads to (46dfppy)2Ir(L)(Cl) where L = PPh3 or P(OPh)3. Treatment of the chloro compounds with cyanide forms the cyano complexes (46dfppy)2Ir(L)(CN). All complexes exhibit a trans effect in their molecular structures due to the phosphorus ligands, with the phosphite having a greater effect than the phosphine. With L = PPh3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.24), quantum yield of 0.66 ± 0.15 and 4.5 ± 0.5 μs decay timemore » is measured. For L = P(OPh)3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.21), quantum yield of 0.65 ± 0.15 and 2.9 ± 0.3 μs decay time is measured.« less

  4. Solution thermodynamics and structures of biscatecholamide complexes of Fe(III) and U(VI)

    SciTech Connect

    Gohdes, J.W.; Reilly, S.D.; Pecha, A.W.; Neu, M.P.

    1996-12-31

    We have studied the solution and solid-state complexes of a bis-catecholamide ligand, 2-LICAMS, with Fe(III) and U(VI). The first protonation constant was found to be pK{sub al} = 14.2(3) using {sup 1}H NMR titrations. Subsequent protonation constants were determined by potentiometric titration in 0.1 M TMAOTf at 25{degrees}C to be pK{sub a2} = 11.2(1), pK{sub 13} =6.5(1), pK{sub a4}= 5.9(1). Ligand-metal formation constants, {Beta}{sub mlh}, were found to be log {beta}{sub 110} = 31.4(2), log {beta}{sub 111} = 31.7(2), log {beta}{sub 112} = 34.9(2), and log {beta}11.1 = 18.0(1) for uranium(VI). To discriminate between monomeric or dimeric species models which both fit the potentiometric titration data, we isolated the hydroxide species and determined its single-crystal X-ray structure and EXAFS. The structure consists of a dimeric, bis-hydroxide bridged iron core which is spanned by two ligands. This study of solution equilibria indicates a higher stability for iron complexes of 2-LICAMS relative to uranyl complexes.

  5. Automated output-only dynamic identification of civil engineering structures

    NASA Astrophysics Data System (ADS)

    Rainieri, C.; Fabbrocino, G.

    2010-04-01

    Modal-based damage detection algorithms are well-known techniques for structural health assessment, but they are not commonly used due to the lack of automated modal identification and tracking procedures. Development of such procedures is not a trivial task since traditional modal identification requires extensive interaction from an expert user. Nevertheless, computational efforts have to be carefully considered. If fast on-line data processing is crucial for quickly varying in time systems (such as a rocket burning fuel), a number of vibration-based condition monitoring applications are performed at very different time scales, resulting in satisfactory time steps for on-line data analysis. Moreover, promising results in the field of automated modal identification have been recently achieved. In the present paper, a literature review on this topic is presented and recent developments concerning fully automated output-only modal identification procedures are described. Some case studies are also reported in order to validate the approach. They are characterized by different levels of complexity, in terms of mode coupling, dynamic interaction effects and level of vibration. Advantages and drawbacks of the proposed approach will be pointed out with reference to available experimental results. The final objective is the implementation of a fully automated system for vibration-based structural health monitoring of civil engineering structures and identification of adequate requirements about sensor number and layout, record duration and hardware characteristics able to ensure a reliable low-cost health assessment of constructions. Results of application of the proposed methodology to modal parameter estimation in operational conditions and during ground motions induced by the recent L'Aquila earthquake will be finally presented and discussed.

  6. Volatilization of Arsenic from Polluted Soil by Pseudomonas putida Engineered for Expression of the arsM Arsenic(III) S-Adenosine Methyltransferase Gene

    PubMed Central

    2015-01-01

    Even though arsenic is one of the most widespread environmental carcinogens, methods of remediation are still limited. In this report we demonstrate that a strain of Pseudomonas putida KT2440 endowed with chromosomal expression of the arsM gene encoding the As(III) S-adenosylmethionine (SAM) methyltransfase from Rhodopseudomonas palustris to remove arsenic from contaminated soil. We genetically engineered the P. putida KT2440 with stable expression of an arsM-gfp fusion gene (GE P. putida), which was inserted into the bacterial chromosome. GE P. putida showed high arsenic methylation and volatilization activity. When exposed to 25 μM arsenite or arsenate overnight, most inorganic arsenic was methylated to the less toxic methylated arsenicals methylarsenate (MAs(V)), dimethylarsenate (DMAs(V)) and trimethylarsine oxide (TMAs(V)O). Of total added arsenic, the species were about 62 ± 2.2% DMAs(V), 25 ± 1.4% MAs(V) and 10 ± 1.2% TMAs(V)O. Volatilized arsenicals were trapped, and the predominant species were dimethylarsine (Me2AsH) (21 ± 1.0%) and trimethylarsine (TMAs(III)) (10 ± 1.2%). At later times, more DMAs(V) and volatile species were produced. Volatilization of Me2AsH and TMAs(III) from contaminated soil is thus possible with this genetically engineered bacterium and could be instrumental as an agent for reducing the inorganic arsenic content of soil and agricultural products. PMID:25122054

  7. Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM Arsenic(III) S-adenosine methyltransferase gene.

    PubMed

    Chen, Jian; Sun, Guo-Xin; Wang, Xiao-Xue; Lorenzo, Víctor de; Rosen, Barry P; Zhu, Yong-Guan

    2014-09-02

    Even though arsenic is one of the most widespread environmental carcinogens, methods of remediation are still limited. In this report we demonstrate that a strain of Pseudomonas putida KT2440 endowed with chromosomal expression of the arsM gene encoding the As(III) S-adenosylmethionine (SAM) methyltransfase from Rhodopseudomonas palustris to remove arsenic from contaminated soil. We genetically engineered the P. putida KT2440 with stable expression of an arsM-gfp fusion gene (GE P. putida), which was inserted into the bacterial chromosome. GE P. putida showed high arsenic methylation and volatilization activity. When exposed to 25 μM arsenite or arsenate overnight, most inorganic arsenic was methylated to the less toxic methylated arsenicals methylarsenate (MAs(V)), dimethylarsenate (DMAs(V)) and trimethylarsine oxide (TMAs(V)O). Of total added arsenic, the species were about 62 ± 2.2% DMAs(V), 25 ± 1.4% MAs(V) and 10 ± 1.2% TMAs(V)O. Volatilized arsenicals were trapped, and the predominant species were dimethylarsine (Me2AsH) (21 ± 1.0%) and trimethylarsine (TMAs(III)) (10 ± 1.2%). At later times, more DMAs(V) and volatile species were produced. Volatilization of Me2AsH and TMAs(III) from contaminated soil is thus possible with this genetically engineered bacterium and could be instrumental as an agent for reducing the inorganic arsenic content of soil and agricultural products.

  8. Structural and functional analysis of the rat metallothionein III genomic locus.

    PubMed

    Chapman, G A; Kay, J; Kille, P

    1999-06-09

    Metallothionein III (MT III) has been reported to suppress neuronal growth in a rat in vitro model system. The protein and its specific mRNA are detected predominantly in the brain, differentiating MT III from the well-characterised archetypal metallothioneins. Isolation, sequencing and functional analysis of the rat MT III genomic locus indicated that, although the organisation of the gene was conserved between MT III and the more conventional metallothioneins, the 5' flanking region of the MT III gene was distinct. Within this region, a number of putative regulatory elements were identified, including the metal regulatory elements (MREs) characteristic of metallothionein promoters. However, despite their conservation in sequence with active elements, the MREs of MT III were unresponsive to zinc. A 'silencing element' was revealed within a 250 bp section of the MT III promoter which suppressed gene expression in two brain cell lines. The operation of this silencing region in conjunction with the inactive MREs may explain the distinct expression profile observed for MT III within the central nervous system and during neuronal development.

  9. Unmasking Snake Venom of Bothrops leucurus: Purification and Pharmacological and Structural Characterization of New PLA2 Bleu TX-III

    PubMed Central

    Marangoni, Fábio André; Ponce-Soto, Luis Alberto; Marangoni, Sergio; Landucci, Elen Cristina Teizem

    2013-01-01

    Bleu TX-III was isolated from Bothrops leucurus snake venom on one-step analytical chromatography reverse phase HPLC, was homogeneous on SDS-PAGE, and was confirmed by Q-Tof Ultima API ESI/MS (TOF MS mode) mass spectrometry in 14243.8 Da. Multiple alignments of Bleu TX-III show high degree of homology with basic PLA2 myotoxins from other Bothrops venoms. Our studies on local and systemic myotoxicity “in vivo” reveal that Bleu TX-III is myotoxin with local but not systemic action due to the decrease in the plasmatic CK levels when Bleu TX-III is administrated by intravenous route in mice (dose 1 and 5 μg). And at a dose of 20 μg myotoxin behaves like a local and systemic action. Bleu TX-III induced moderate marked paw edema, evidencing the local increase in vascular permeability. The inflammatory events induced in the mice (I.M.) were investigated. The increase in the levels of IL-1, IL-6, and TNF-α was observed in the plasma. It is concluded that Bleu TX-III induces inflammatory events in this model. The enzymatic phospholipid hydrolysis may be relevant to these phenomena. Bothrops leucurus venom is still not extensively explored, and the knowledge of its toxins separately through the study of structure/function will contribute for a better understanding of its action mechanism. PMID:23509815

  10. Domain structure of antithrombin III. Tentative localization of the heparin binding region using /sup 1/H NMR spectroscopy

    SciTech Connect

    Gettins, P.; Wooten, E.W.

    1987-07-14

    The denaturation of human and bovine antithrombin III by guanidine hydrochloride has been followed by /sup 1/H NMR spectroscopy. The same unfolding transition seen previously from circular dichroism studies at low denaturant concentration was detected here by discontinuous changes in the chemical shifts of the C(2) protons of two of the five histidines in human antithrombin III and of three of the six histidines in bovine antithrombin III. These two histidines in human antithrombin III are assigned to residue 1 and, more tentatively, to residue 65. Two of the three histidines similarly affected in the bovine protein appear to be homologous to residues in the human protein. This supports the proposal of similar structures for the two proteins. In the presence of heparin, the discontinuous titration behavior of these histidine resonances is shifted to higher denaturant concentration, reflecting the stabilization of the easily unfolded first domain of the protein by bound heparin. From the tentative assignment of one of these resonances to histidine-1, it is proposed that the heparin binding site of antithrombin III is located in the N-terminal region and that this region forms a separate domain from the rest of the protein. The pattern of disulfide linkages is such that this domain may well extend from residue 1 to at least residue 128. Thermal denaturation also leads to major perturbation of these two histidine resonances in human antithrombin III, though stable intermediates in the unfolding were not detected.

  11. Evidence for alternative quaternary structure in a bacterial Type III secretion system chaperone

    SciTech Connect

    Barta, Michael L.; Zhang, Lingling; Picking, Wendy L.; Geisbrecht, Brian V.

    2010-10-05

    Type III secretion systems are a common virulence mechanism in many Gram-negative bacterial pathogens. These systems use a nanomachine resembling a molecular needle and syringe to provide an energized conduit for the translocation of effector proteins from the bacterial cytoplasm to the host cell cytoplasm for the benefit of the pathogen. Prior to translocation specialized chaperones maintain proper effector protein conformation. The class II chaperone, Invasion plasmid gene (Ipg) C, stabilizes two pore forming translocator proteins. IpgC exists as a functional dimer to facilitate the mutually exclusive binding of both translocators. In this study, we present the 3.3 {angstrom} crystal structure of an amino-terminally truncated form (residues 10-155, denoted IpgC10-155) of the class II chaperone IpgC from Shigella flexneri. Our structure demonstrates an alternative quaternary arrangement to that previously described for a carboxy-terminally truncated variant of IpgC (IpgC{sup 1-151}). Specifically, we observe a rotationally-symmetric 'head-to-head' dimerization interface that is far more similar to that previously described for SycD from Yersinia enterocolitica than to IpgC1-151. The IpgC structure presented here displays major differences in the amino terminal region, where extended coil-like structures are seen, as opposed to the short, ordered alpha helices and asymmetric dimerization interface seen within IpgC{sup 1-151}. Despite these differences, however, both modes of dimerization support chaperone activity, as judged by a copurification assay with a recombinant form of the translocator protein, IpaB. Conclusions: From primary to quaternary structure, these results presented here suggest that a symmetric dimerization interface is conserved across bacterial class II chaperones. In light of previous data which have described the structure and function of asymmetric dimerization, our results raise the possibility that class II chaperones may transition between

  12. Spiky Fine Structure of Type III-like Radio Bursts in Absorption

    NASA Astrophysics Data System (ADS)

    Chernov, G. P.; Yan, Y. H.; Tan, C. M.; Chen, B.; Fu, Q. J.

    2010-03-01

    An uncommon fine structure in the radio spectrum consisting of bursts in absorption was observed with the Chinese Solar Broadband Radiospectrometer (SBRS) in the frequency range of 2.6 - 3.8 GHz during an X3.4/4B flare on 13 December 2006 in active region NOAA 10930 (S05W33). Usual fine structures in emission such as spikes, zebra stripes, and drifting fibers were observed at the peak of every new flare brightening. Within an hour at the decay phase of the event we observed bursts consisting of spikes in absorption, which pulsated periodically in frequency. Their instantaneous frequency bandwidths were found to be in the 75 MHz range. Moreover, in the strongest Type III-like bursts in absorption, the spikes showed stripes of the zebra-pattern (ZP) that drifted to higher frequencies. All spikes had the duration as short as down to the limit of the instrument resolution of ≈8 ms. The TRACE 195 Å images indicate that the magnetic reconnection at this moment occurred in the western edge of the flare loop arcade. Taking into account the presence of the reverse-drifting bursts in emission, in the course of the restoration of the magnetic structures in the corona, the acceleration of the beams of fast particles must have occurred both upward and downward at different heights. The upward beams will be captured by the magnetic trap, where the loss-cone distribution of fast particles (responsible for the emission of continuum and ZP) were formed. An additional injection of fast particles will fill the loss-cone later, breaking the loss-cone distribution. Therefore, the generation of continuum will be quenched at these moments, which was evidenced by the formation of bursts in absorption.

  13. Innovative tissue engineering structures through advanced manufacturing technologies.

    PubMed

    Ciardelli, Gianluca; Chiono, Valeria; Cristallini, Caterina; Barbani, Niccoletta; Ahluwalia, Arti; Vozzi, Giovanni; Previti, Antonino; Tantussi, Giovanni; Giusti, Paolo

    2004-04-01

    Awide range of rapid prototyping (RP) techniques for the construction of three-dimensional (3-D) scaffolds for tissue engineering has been recently developed. In this study, we report and compare two methods for the fabrication of poly-(epsilon-caprolactone) and poly-(epsilon-caprolactone)-poly-(oxyethylene)-poly-(epsilon-caprolactone) copolymer scaffolds. The first technique is based on the use of a microsyringe and a computer-controlled three-axis micropositioner, which regulates motor speed and position. Polymer solutions are extruded through the needle of the microsyringe by the application of a constant pressure of 10-300 mm Hg, resulting in controlled polymer deposition of 5-600 microm lateral dimensions. The second method utilises the heating energy of a laser beam to sinter polymer microparticles according to computer-guided geometries. Materials may be fed either as dry powder or slurry of microparticles. Both powder granulometry and laser working parameters influence resolution (generally 300 microm x 700 microm), accuracy of sintering and surface and bulk properties of the final structures. The two RP methods allow the fabrication of 3-D scaffolds with a controlled architecture, providing a powerful means to study cell response to an environment similar to that found

  14. Genetically engineered immunoglobulins reveal structural features controlling segmental flexibility.

    PubMed

    Schneider, W P; Wensel, T G; Stryer, L; Oi, V T

    1988-04-01

    We have carried out nanosecond fluorescence polarization studies of genetically engineered immunoglobulins to determine the structural features controlling their segmental flexibility. The proteins studied were hybrids of a relatively rigid isotype (mouse IgG1) and a relatively flexible one (mouse IgG2a). They have identical light chains and heavy chain variable regions and have the same combining sites for epsilon-dansyl-L-lysine, a fluorescent hapten. The fluorescence of the bound dansyl chromophore was excited at 348 nm with subnanosecond laser pulses, and the emission in the nanosecond time range was measured with a single-photon-counting apparatus. The emission anisotropy kinetics of the hybrid antibodies revealed that segmental flexibility is controlled by the heavy chain constant region 1 (CH1) as well as by the hinge. In contrast, the CH2 and CH3 domains did not influence segmental flexibility. The hinge and CH1 domains must be properly matched to allow facile movement of the Fab units. Studies of hybrids of IgG1 and IgG2a within CH1 showed that the loop formed by residues 131-139 is important in controlling segmental flexibility. X-ray crystallographic studies by others of human IgG1 have shown that this loop makes several van der Waals contacts with the hinge.

  15. Structure of a Eukaryotic RNase III Post-Cleavage Complex Reveals a Double- Ruler Mechanism for Substrate Selection

    PubMed Central

    Liang, Yu-He; Lavoie, Mathieu; Comeau, Marc-Andre; Elela, Sherif Abou; Ji, Xinhua

    2014-01-01

    SUMMARY RNase III represents a family of dsRNA-specific endoribonucleases required for RNA maturation and gene regulation. The mechanism of action has been well characterized for the bacterial enzyme, but is not clear for eukaryotic RNase IIIs. Here, we describe the structure of Saccharomyces cerevisiae RNase III (Rnt1p) post-cleavage complex and explain the basis of its affinity for RNA stems capped with an NGNN tetraloop. The structure shows specific interactions between a new structural motif located at the end of Rnt1p dsRNA-binding domain (dsRBD) and the guanine nucleotide in the second position of the loop. Strikingly, structural and biochemical analyses indicate that the dsRBD and N-terminal domain function as two rulers measuring the distance between the tetraloop and the cleavage site. This unusual mechanism of substrate selectivity represents an example of the evolution of substrate selectivity and provides a framework for understanding the mechanism of action of eukaryotic RNase IIIs. PMID:24703949

  16. Optical coherent sensor for monitoring and measurement of engineering structures

    NASA Astrophysics Data System (ADS)

    Łukaszewski, Dariusz; Sałbut, Leszek; Dziuban, Jan A.

    2010-05-01

    Among many coherent optical methods one should distinguished Grating Interferometry (GI) which allows accurate in-plane displacement measurements and Digital Speckle Pattern Interferometry (DSPI) used for in-plane and out-of-plane measurements. Development of sensors based on both methods mentioned above as complementary ones will provide user universal group of sensors from which depending on measurement requirements such as measuring range, object surface profile and measurement conditions the most appropriate can be chosen. In-plane displacement measurements are of interested of different branches of industry - from micro (i.e.: characterization of MEMS or MOEMS) to civil engineering (i.e.: Structural Health Monitoring systems). In the paper the new optical coherent sensor for in-plane displacement and strain measurements is presented. The sensor combines GI and DSPI methods in one device which can be used for testing of objects with different types of surfaces. GI requires the specimen grating attached at the surface but provides very good measurement accuracy however DSPI can be applied for testing of objects with rough surfaces but due to higher noise gives lower accuracy. The sensor can work in three modes: as GI only, DSPI only and both GI and DSPI simultaneously. The third mode can by useful when the specimen grating is attached on the part of object under test only. In the paper the theoretical background of the sensor is presented. For confirmation of GI/DSPI sensor possibilities the specially designed demonstrator is described and the exemplary results obtained during its laboratory tests are shown. Successful application of proposed sensor is possible due to its miniaturization, simplicity of operation by user (compact structure and automation of measurement procedure) and low cost. The last mentioned condition will be possible due to low cost replication techniques with usage of silicon technology.

  17. Forensic engineering of advanced polymeric materials. Part III - Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions.

    PubMed

    Musioł, Marta; Sikorska, Wanda; Adamus, Grazyna; Janeczek, Henryk; Richert, Jozef; Malinowski, Rafal; Jiang, Guozhan; Kowalczuk, Marek

    2016-06-01

    This paper presents a forensic engineering study on the biodegradation behaviour of prototype packaging thermoformed from PLA-extruded film and plain PLA film under industrial composting conditions. Hydrolytic degradation in water was conducted for reference. The effects of composting duration on changes in molar mass, glass transition temperature and degree of crystallinity of the polymeric material were monitored using gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The chemical structure of water soluble degradation products of the polymeric material was determined using nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (ESI-MS). The results show that the biodegradation process is less dependent on the thermoforming process of PLA and more dependent on the composting/degradation conditions that are applied. The increase in the dispersity index, leading to the bimodal molar mass distribution profile, suggests an autocatalytic hydrolysis effect at the early stage of the composting process, during which the bulk hydrolysis mechanism dominantly operates. Both the prototype PLA-packaging and PLA rigid film samples were shown to have a gradual increase in opacity due to an increase in the degree of crystallinity.

  18. Structure of putrescine aminotransferase from Escherichia coli provides insights into the substrate specificity among class III aminotransferases.

    PubMed

    Cha, Hyung Jin; Jeong, Jae-Hee; Rojviriya, Catleya; Kim, Yeon-Gil

    2014-01-01

    YgjG is a putrescine aminotransferase enzyme that transfers amino groups from compounds with terminal primary amines to compounds with an aldehyde group using pyridoxal-5'-phosphate (PLP) as a cofactor. Previous biochemical data show that the enzyme prefers primary diamines, such as putrescine, over ornithine as a substrate. To better understand the enzyme's substrate specificity, crystal structures of YgjG from Escherichia coli were determined at 2.3 and 2.1 Å resolutions for the free and putrescine-bound enzymes, respectively. Sequence and structural analyses revealed that YgjG forms a dimer that adopts a class III PLP-dependent aminotransferase fold. A structural comparison between YgjG and other class III aminotransferases revealed that their structures are similar. However, YgjG has an additional N-terminal helical structure that partially contributes to a dimeric interaction with the other subunit via a helix-helix interaction. Interestingly, the YgjG substrate-binding site entrance size and charge distribution are smaller and more hydrophobic than other class III aminotransferases, which suggest that YgjG has a unique substrate binding site that could accommodate primary aliphatic diamine substrates, including putrescine. The YgjG crystal structures provide structural clues to putrescine aminotransferase substrate specificity and binding.

  19. Optical Absorption, Emission, and Modulation in Iii-V Semiconductor Quantum Well Structures

    NASA Astrophysics Data System (ADS)

    Shank, Steven Marc

    An experimental study of topics relating to optical absorption, emission, and modulation in III-V semiconductor GaAs/AlGaAs quantum well structures is presented. Several novel quantum well structures are examined and evaluated for use in electrooptic modulators, laser diodes, and monolithically integrated laser diodes and passive waveguides. The design of the epitaxial structures, the molecular beam epitaxy growth, the optical characterization of the wafers, the fabrication of the wafers into basic optoelectronic devices (electrooptic waveguides, laser diodes, and segmented laser diodes), and the characterization of these devices are described. The quantum confined Stark effect and its influence on the electrooptic properties of quantum wells are described. In particular, electroabsorption and electrobirefringence in (111)B quantum wells are investigated. This quantum well system is chosen due to the larger heavy hole effective mass compared to standard (100) quantum wells. It is demonstrated that electroabsorption and electrobirefringence are enhanced in (111)B quantum wells, which agrees with theoretical predictions based on the heavy hole mass anisotropy. Computer simulations of the quantum confined Stark effect in asymmetric quantum well structures are described. It is demonstrated that asymmetric quantum wells can exhibit enhanced red shifts of the absorption edge, and blue shifts of the absorption edge under an applied reverse bias. An experimental investigation of laser diodes with asymmetric quantum well active regions is described. An evaluation of the blue shift effect on the interband absorption at the laser wavelength is made and related to the efficiency of these structures for monolithic integration with passive waveguides. The optical properties of n-type modulation doped quantum wells are described. It is shown that the interband absorption at the spontaneous emission peak can be greatly reduced compared to undoped quantum wells. N-type modulation

  20. Assembly and stoichiometry of the core structure of the bacterial flagellar type III export gate complex.

    PubMed

    Fukumura, Takuma; Makino, Fumiaki; Dietsche, Tobias; Kinoshita, Miki; Kato, Takayuki; Wagner, Samuel; Namba, Keiichi; Imada, Katsumi; Minamino, Tohru

    2017-08-01

    The bacterial flagellar type III export apparatus, which is required for flagellar assembly beyond the cell membranes, consists of a transmembrane export gate complex and a cytoplasmic ATPase complex. FlhA, FlhB, FliP, FliQ, and FliR form the gate complex inside the basal body MS ring, although FliO is required for efficient export gate formation in Salmonella enterica. However, it remains unknown how they form the gate complex. Here we report that FliP forms a homohexameric ring with a diameter of 10 nm. Alanine substitutions of conserved Phe-137, Phe-150, and Glu-178 residues in the periplasmic domain of FliP (FliPP) inhibited FliP6 ring formation, suppressing flagellar protein export. FliO formed a 5-nm ring structure with 3 clamp-like structures that bind to the FliP6 ring. The crystal structure of FliPP derived from Thermotoga maritia, and structure-based photo-crosslinking experiments revealed that Phe-150 and Ser-156 of FliPP are involved in the FliP-FliP interactions and that Phe-150, Arg-152, Ser-156, and Pro-158 are responsible for the FliP-FliO interactions. Overexpression of FliP restored motility of a ∆fliO mutant to the wild-type level, suggesting that the FliP6 ring is a functional unit in the export gate complex and that FliO is not part of the final gate structure. Copurification assays revealed that FlhA, FlhB, FliQ, and FliR are associated with the FliO/FliP complex. We propose that the assembly of the export gate complex begins with FliP6 ring formation with the help of the FliO scaffold, followed by FliQ, FliR, and FlhB and finally FlhA during MS ring formation.

  1. Resonance assignments and secondary structure prediction of the As(III) metallochaperone ArsD in solution

    PubMed Central

    Ye, Jun; He, Yanan; Skalicky, Jack; Rosen, Barry P.; Stemmler, Timothy L.

    2012-01-01

    ArsD is a metallochaperone that delivers As(III) to the ArsA ATPase, the catalytic subunit of the ArsAB pump encoded by the arsRDABC operon of Escherichia coli plasmid R773. Conserved ArsD cysteine residues (Cys12, Cys13 and Cys18) construct the As(III) binding site of the protein, however a global structural understanding of this arsenic binding remains unclear. We have obtained NMR assignments for ArsD as a starting point for probing structural changes on the protein that occur in response to metalloid binding and upon formation of a complex with ArsA. The predicted solution structure of ArsD is in agreement with recently published crystallographic structural results. PMID:21063813

  2. Octanuclear [Ni(II)₄Ln(III)₄] complexes. Synthesis, crystal structures and magnetocaloric properties.

    PubMed

    Pasatoiu, Traian D; Ghirri, Alberto; Madalan, Augustin M; Affronte, Marco; Andruh, Marius

    2014-06-28

    Two original heterooctanuclear [Ni(II)4Ln(III)4] complexes (Ln(III) = Sm(III), Gd(III)) have been obtained starting from the [Ni(II)(valpn)(H2O)2] mononuclear precursor [H2valpn = 1,3-propanediylbis(2-iminomethylene-6-methoxy-phenol)] and the corresponding lanthanide nitrates, in the presence of azide anions, through slow capture of atmospheric CO2. Three weak and competitive exchange interactions, J(GdGd), J(GdNi), J(NiNi), make the ground state of this magnetic system degenerate at cryogenic temperature and zero field. This, along with the high spin of Gd(III), lead to a significant magnetocaloric effect spread in the temperature range 1 to 20 K (ΔSm[0-7 T, 3.5 K] = 19 J kg(-1) K(-1)).

  3. Type III phosphatidylinositol 4 kinases: structure, function, regulation, signalling and involvement in disease.

    PubMed

    Dornan, Gillian L; McPhail, Jacob A; Burke, John E

    2016-02-01

    Many important cellular functions are regulated by the selective recruitment of proteins to intracellular membranes mediated by specific interactions with lipid phosphoinositides. The enzymes that generate lipid phosphoinositides therefore must be properly positioned and regulated at their correct cellular locations. Phosphatidylinositol 4 kinases (PI4Ks) are key lipid signalling enzymes, and they generate the lipid species phosphatidylinositol 4-phosphate (PI4P), which plays important roles in regulating physiological processes including membrane trafficking, cytokinesis and organelle identity. PI4P also acts as the substrate for the generation of the signalling phosphoinositides phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). PI4Ks also play critical roles in a number of pathological processes including mediating replication of a number of pathogenic RNA viruses, and in the development of the parasite responsible for malaria. Key to the regulation of PI4Ks is their regulation by a variety of both host and viral protein-binding partners. We review herein our current understanding of the structure, regulatory interactions and role in disease of the type III PI4Ks.

  4. The structural and optical properties of type III human collagen biosynthetic corneal substitutes

    PubMed Central

    Hayes, Sally; Lewis, Phillip; Islam, M. Mirazul; Doutch, James; Sorensen, Thomas; White, Tomas; Griffith, May; Meek, Keith M.

    2015-01-01

    The structural and optical properties of clinically biocompatible, cell-free hydrogels comprised of synthetically cross-linked and moulded recombinant human collagen type III (RHCIII) with and without the incorporation of 2-methacryloyloxyethyl phosphorylcholine (MPC) were assessed using transmission electron microscopy (TEM), X-ray scattering, spectroscopy and refractometry. These findings were examined alongside similarly obtained data from 21 human donor corneas. TEM demonstrated the presence of loosely bundled aggregates of fine collagen filaments within both RHCIII and RHCIII-MPC implants, which X-ray scattering showed to lack D-banding and be preferentially aligned in a uniaxial orientation throughout. This arrangement differs from the predominantly biaxial alignment of collagen fibrils that exists in the human cornea. By virtue of their high water content (90%), very fine collagen filaments (2–9 nm) and lack of cells, the collagen hydrogels were found to transmit almost all incident light in the visible spectrum. They also transmitted a large proportion of UV light compared to the cornea which acts as an effective UV filter. Patients implanted with these hydrogels should be cautious about UV exposure prior to regrowth of the epithelium and in-growth of corneal cells into the implants. PMID:26159106

  5. Structural chemistry of Au(III)-substituted Ba2YCu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Gaier, J. R.; Pouch, J. J.; Hambourger, P. D.

    1988-01-01

    A series of gold-substituted perovskite superconductors Ba2Y(Cu/1-x/Aux)3O(7-delta)(x = 0-0.1) was synthesized. For x = 0.1, there was no change in the a and b lattice parameters (a = 3.826 A and b = 3.889 A), but a 0.06 A c-axis expansion to 11.75 A was observed. Substituted gold was found to be trivalent by X-ray photoelectron spectroscopy. Replacing Cu(1) in the copper oxide chain with a slight reordering of oxygen is consistent with c-axis expansion. The formal charge of the site remains trivalent, while remaining Cu in the chains is reduced to Cu(I), resulting in an oxygen stoichiometry of less than 7. Finally, no large effect on Tc is observed (Tc = 89 K for x = 0.10), in contrast to the effect of a number of other metal ion dopants. These results are discussed relative to the chemistry of Au(III) and to the use of the metal in structures containing gold and ceramic superconductors.

  6. Structural chemistry of Au(III)-substituted Ba2YCu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Gaier, J. R.; Pouch, J. J.; Hambourger, P. D.

    1988-01-01

    A series of gold-substituted perovskite superconductors Ba2Y(Cu/1-x/Aux)3O(7-delta)(x = 0-0.1) was synthesized. For x = 0.1, there was no change in the a and b lattice parameters (a = 3.826 A and b = 3.889 A), but a 0.06 A c-axis expansion to 11.75 A was observed. Substituted gold was found to be trivalent by X-ray photoelectron spectroscopy. Replacing Cu(1) in the copper oxide chain with a slight reordering of oxygen is consistent with c-axis expansion. The formal charge of the site remains trivalent, while remaining Cu in the chains is reduced to Cu(I), resulting in an oxygen stoichiometry of less than 7. Finally, no large effect on Tc is observed (Tc = 89 K for x = 0.10), in contrast to the effect of a number of other metal ion dopants. These results are discussed relative to the chemistry of Au(III) and to the use of the metal in structures containing gold and ceramic superconductors.

  7. Synthesis and structure of dinuclear complexes of terbium(III) with 4-acetalbispyrazolone

    SciTech Connect

    Luqin Yang; Rudong Yang

    1994-12-01

    Two novel dinuclear complexes of terbium(III) with 1,5-bis(1`-phenyl-3`-methyl-5`-pyrazolone-4`)-1,5- pentanedione (H{sub 2}L), Tb{sub 2}L{sub 3}{center_dot}6H{sub 2}, Tb{sub 2}L{sub 3}{center_dot}5DMF, have been synthesized. The crystal structure of Tb{sub 2}L{sub 3}{center_dot}5DMF was determined by X-ray diffraction methods. Crystals are triclinic, space group P{rvec 1} with a = 16.957(5), b = 17.877(7), c = 18.269(2){Angstrom}, a = 110.35(2), {beta} = 101.29(2), {gamma} = 111.02(2){degrees}, V = 4511(6){Angstrom}{sup 3}, Mr = 2010.76 Z = 2, Dx = 1.48 g cm{sup -3}, {mu} = 16.45 cm{sub -1} F(000) = 2,052, R = 0.058 with 6574 reflections used in refinement. In the complex, L acts as a bridging ligand and bonds two terbium atoms with its two {beta}-diketone groups. Each terbium ion bonds to two DMF solvent molecules. The coordination number of the two terbium ions is eight. The eight oxygen atoms around the terbium make a distorted square antiprismatic coordination polyhedron.

  8. Weibull-Based Design Methodology for Rotating Aircraft Engine Structures

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin; Hendricks, Robert C.; Soditus, Sherry

    2002-01-01

    The NASA Energy Efficient Engine (E(sup 3)-Engine) is used as the basis of a Weibull-based life and reliability analysis. Each component's life and thus the engine's life is defined by high-cycle fatigue (HCF) or low-cycle fatigue (LCF). Knowing the cumulative life distribution of each of the components making up the engine as represented by a Weibull slope is a prerequisite to predicting the life and reliability of the entire engine. As the engine Weibull slope increases, the predicted lives decrease. The predicted engine lives L(sub 5) (95 % probability of survival) of approximately 17,000 and 32,000 hr do correlate with current engine maintenance practices without and with refurbishment. respectively. The individual high pressure turbine (HPT) blade lives necessary to obtain a blade system life L(sub 0.1) (99.9 % probability of survival) of 9000 hr for Weibull slopes of 3, 6 and 9, are 47,391 and 20,652 and 15,658 hr, respectively. For a design life of the HPT disks having probable points of failure equal to or greater than 36,000 hr at a probability of survival of 99.9 %, the predicted disk system life L(sub 0.1) can vary from 9,408 to 24,911 hr.

  9. Measuring Displacements in Engineering Structures by Means of a Coordinate Laser Station

    NASA Astrophysics Data System (ADS)

    Sztubecki, Jacek; Bujarkiewicz, Adam; Sztubecka, Małgorzata

    2016-12-01

    The application of geodetic methods to examine structures consists in the determination of their displacements relative to an established geodetic reference datum or in the definition of the geometry of their individual components. Such examinations form a picture of changes happening between specific points in time. Modern measurement technologies used in geodetic engineering enable undertaking more and more challenging measurements with increasing accuracy. The purpose of this article is to present a measurement technique involving a Leica TDRA 6000 total station to measure displacements in engineering structures. The station features a direct drive technology to achieve an accuracy of 0.25 mm in 3-dimensional measurements. Supported by appropriate software, the unit makes a perfect instrument for the monitoring of civil engineering structures. The article presents the results of measurement of static and dynamic displacements in a few engineering structures. The measurements were carried out both in laboratory conditions and on actual, operated civil engineering structures.

  10. Partitioning the effects of an ecosystem engineer: kangaroo rats control community structure via multiple pathways.

    PubMed

    Prugh, Laura R; Brashares, Justin S

    2012-05-01

    1. Ecosystem engineers impact communities by altering habitat conditions, but they can also have strong effects through consumptive, competitive and other non-engineering pathways. 2. Engineering effects can lead to fundamentally different community dynamics than non-engineering effects, but the relative strengths of these interactions are seldom quantified. 3. We combined structural equation modelling and exclosure experiments to partition the effects of a keystone engineer, the giant kangaroo rat (Dipodomys ingens), on plants, invertebrates and vertebrates in a semi-arid California grassland. 4. We separated the effects of burrow creation from kangaroo rat density and found that kangaroo rats increased the diversity and abundance of other species via both engineering and non-engineering pathways. 5. Engineering was the primary factor structuring plant and small mammal communities, whereas non-engineering effects structured invertebrate communities and increased lizard abundance. 6. These results highlight the importance of the non-engineering effects of ecosystem engineers and shed new light on the multiple pathways by which strong-interactors shape communities. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  11. Spectroscopic and quantum chemical study of the structure of a new paramagnetic dimeric palladium(II,III) complex with creatine

    NASA Astrophysics Data System (ADS)

    Mitewa, Mariana; Enchev, Venelin; Bakalova, Tatyana

    2002-05-01

    The structure and coordination mode of the newly synthesized dimeric paramagnetic Pd(II,III) complex are studied using magneto-chemical, EPR and IR spectroscopic methods. In order to perform reliable assignment of the IR bands, the structure and IR spectrum of the free creatine were calculated using ab initio method. For calculation of the configuration of its deprotonated and doubly deprotonated forms the semiempirical AM1 method was used.

  12. Structure and conformation of (dibenzyldiaza-18-crown-6)-Nd(III) and Eu(III) thiocyanates: infrared spectroscopic and X-ray crystallographic studies

    NASA Astrophysics Data System (ADS)

    Saleh, Muhammad Idiris; Salhin, Abdussalam; Saad, Bahruddin; Fun, Hoong-Kun

    1999-01-01

    Dibenzyldiaza-18-crown-6 was utilised as a host to accommodate Nd(III) and Eu(III) metal ions together with thiocyanate as counter ion. The crystalline complexes formed were studied for their absorption in the infrared region and their crystalline structure by X-ray diffraction. The coordination of the metal ions to the counter ion and also to the donor atoms of the crown ether was clearly seen from the shift of the absorption band of the pure compound by up to nearly 15 cm -1. From these absorption it was found that each lanthanide ion was coordinated to six donor atoms (2 N and 4 O) from crown ether and three donor atoms, N from NCS -. This nine coordination number complex was found to have the stoichiometry of 1:1:3 (crown ether:lanthanide; NCS -). This ratio was further confirmed by X-ray crystallographic method. The lanthanide thiocyanate salts existed as an isolated (separate) entity in the center of the macrocyclic cavity. The three N atoms surrounded the Ln cation in a nearly planar trigonal arrangement with Ln ion being slightly out of plane. The trigonal plane was perpendicular to and bisects the plane of the macrocycle.

  13. Solution structure and behavior of dimeric uranium(III) metallocene halides

    SciTech Connect

    Lukens, W.W. Jr.; Beshouri, S.M.; Stuart, A.L.; Andersen, R.A.

    1999-03-29

    The variable-temperature {sup 1}H NMR behavior of the uranium(III) dimers [Cp{double_prime}{sub 2}UX]{sub 2} and [Cp{sup {double_dagger}}{sub 2}UX]{sub 2}, where X is F, Cl, Br, or I, Cp{double_prime} is 1,3-(Me{sub 3}Si){sub 2}C{sub 5}H{sub 3}, and Cp{sup {double_dagger}} is 1,3-(Me{sub 3}C){sub 2}C{sub 5}H{sub 3}, has been examined. At low temperature, the number of inequivalent CMe{sub 3} or SiMe{sub 3} groups implies that the solution structure is the same as the solid-state structure in all of these complexes. The barriers to ring rotation in the Cp{double_prime} series are strongly dependent upon the U-X distance, but all of the barriers to ring rotation in the Cp{sup {double_dagger}} series are the same. The trends in ring rotation barriers are explained by the different conformations of the Cp ligands in the dimers. In addition to the homo-halide dimers, the variable-temperature NMR behavior of the hetero-halide dimers Cp{prime}{sub 4}({mu}-X)({mu}-Y), where Cp{prime} is Cp{double_prime} or Cp{sup {double_dagger}} and X and Y are halides where X {ne} Y, was examined. Above room temperature, the halide atoms exchange sites rapidly on the NMR time scale.

  14. Structural investigations of PuIII phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Popa, Karin; Raison, Philippe E.; Martel, Laura; Martin, Philippe M.; Prieur, Damien; Solari, Pier L.; Bouëxière, Daniel; Konings, Rudy J. M.; Somers, Joseph

    2015-10-01

    PuPO4 was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β- decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state 31P NMR agrees with the XANES results and the presence of a solid-solution.

  15. (Nitro)Iron(III) Porphyrins. EPR Detection of a Transient Low-Spin Iron(III) Complex and Structural Characterization of an O Atom Transfer Product.

    PubMed

    Munro, Orde Q.; Scheidt, W. Robert

    1998-05-04

    The reaction of BF(3).OEt(2) with the bis(nitro) complex of iron(III) picket-fence porphyrin, [K(18C6)(OH(2))][Fe(TpivPP)(NO(2))(2)], leads to the formation of a transient porphyrin intermediate, assigned on the basis of its rhombic low-spin EPR spectrum as the five-coordinate N-bound mono(nitro) iron(III) derivative, [Fe(TpivPP)(NO(2))]. This species is reactive and readily undergoes oxygen atom transfer to form [Fe(III)(TpivPP)(NO(3))] and [Fe(II)(TpivPP)(NO)]. The reactions have been followed by EPR and IR spectroscopy. [Fe(TpivPP)(NO(2))] has a rhombic EPR spectrum (g = 2.60, 2.35, and 1.75) in chlorobenzene and CH(2)Cl(2) and is spectroscopically distinct from the bis(nitro) starting material (g = 2.70, 2.50, and 1.57). Oxidation of the nitrosyl species to [Fe(TpivPP)(NO(3))] proceeds via an intermediate assigned as [Fe(TpivPP)(NO(2))] on the basis of its EPR spectrum. The crystal structure of one of the reaction products, [Fe(TpivPP)(NO(3))], has been determined. The nitrate ion of [Fe(TpivPP)(NO(3))] is bound to the iron(III) ion in a "symmetric" bidentate fashion within the ligand-binding pocket of the porphyrin pickets. Individual Fe-O distances are 2.123(3) and 2.226(3) Å. The dihedral angle between the plane of the nitrate ion and the closest N(p)-Fe-N(p) plane is 10.0 degrees. The Fe-N(p) bonds (and trans N(p)-Fe-N(p) angles) perpendicular and parallel to the plane of the axial ligand average to 2.060(5) Å (154.84(9) degrees ) and 2.083(3) Å (146.14(9) degrees ), respectively. Crystal data for [Fe(TpivPP)(NO(3))]: a = 23.530(2) Å, b = 10.0822(5) Å, c = 48.748(3) Å, beta = 92.145(5) degrees, monoclinic, space group I2/a, V = 11556.4(14) Å(3), Z = 8, FeN(9)O(7)C(64)H(64), 8798 observed data, R(1) = 0.0606, wR(2) = 0.1313, all observations at 127(2) K.

  16. Synthesis, structure, and properties of low-spin manganese(III)-poly(pyrazolyl)borate complexes.

    PubMed

    Hossain, Ferdaus; Rigsby, Matthew A; Duncan, Cole T; Milligan, Paul L; Lord, Richard L; Baik, Mu-Hyun; Schultz, Franklin A

    2007-04-02

    The manganese(III)-bis[poly(pyrazolyl)borate] complexes, Mn(pzb)2SbF6, where pzb- = tetrakis(pyrazolyl)borate (pzTp) (1), hydrotris(pyrazolyl)borate (Tp) (2), or hydrotris(3,5-dimethylpyrazolyl)borate (Tp*) (3), have been synthesized by oxidation of the corresponding Mn(pzb)2 compounds with NOSbF6. The Mn(III) complexes are low-spin in solution and the solid state (microeff = 2.9-3.8 microB). X-ray crystallography confirms their uncommon low-spin character. The close conformity of mean Mn-N distances of 1.974(4), 1.984(5), and 1.996(4) A in 1, 2, and 3, respectively, indicates absence of the characteristic Jahn-Teller distortion of a high-spin d4 center. N-Mn-N bite angles of slightly less than 90 degrees within the facially coordinated pzb- ligands produce a small trigonal distortion and effective D3d symmetry in 1 and 2. These angles increase to 90.0(4)degrees in 3, yielding an almost perfectly octahedral disposition of N donors in Mn(Tp*)2+. Examination of structural data from 23 metal-bis(pzb) complexes reveals systematic changes within the metal-(pyrazolyl)borate framework as the ligand is changed from pzTp to Tp to Tp*. These deformations consist of significant increases in M-N-N, N-B-N, and N-N-B angles and a minimal increase in Mn-N distance as a consequence of the steric demands of the 3-methyl groups. Less effective overlap of pyrazole lone pairs with metal atom orbitals resulting from the M-N-N angular displacement is suggested to contribute to the lower ligand field strength of Tp* complexes. Mn(pzb)2+ complexes undergo electrochemical reduction and oxidation in CH3CN. The electrochemical rate constant (ks,h) for reduction of t2g4 Mn(pzb)2+ to t2g3eg2 Mn(pzb)2 (a coupled electron-transfer and spin-crossover reaction) is 1-2 orders of magnitude smaller than that for oxidation of t2g4 Mn(pzb)2+ to t2g3 Mn(pzb)22+. ks,h values decrease as Tp* > pzTp > Tp for the Mn(pzb)2+/0 electrode reactions, which contrasts with the behavior of the comparable Fe(pzb)2

  17. Fabrication and photonics properties of III-V semiconductor nanowire structures

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-ging

    III-V semiconductor nanowires (NWs) have shown great potential to be building blocks for optical, optoelectronic, and electronic devices due to their special transverse confinement of electrons and photons along the nanowire axis. In addition, semiconductor nanowires with subwavelength structures exhibit strong optical Mie resonance, making them ideal platforms for realizing novel optical devices, such as extreme solar energy absorbers and broadband light trapping devices. This special 1D optical Mie resonance can be enhanced by using semiconductor-core dielectric-shell (CS) and metal-core semiconductor-shell dielectric-outer shell (CSS) nanowire heterostructures. Those advantages can be even leveraged up by utilizing nanowire arrays, attributing to the increasing optical inter-wire interaction between incident light and nanostructures. However, to form a very thin, vertical IIIV nanowire array is challenging for both conventional top-down and bottom-up approaches due to the limitation of the resolution of lithographically defined masks and thermodynamic limits of growth direction and diameter of nanowires, respectively. By employing nanoscale self-mask effects, those limitations can be circumvented. In this dissertation, we presented a novel top-down etching method to fabricate very thin, high aspect ratio and vertical III-V nanowire arrays without lithographically defined masks. The mechanism of the formation of nanowire arrays was proposed and verified by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in this work. Optical characterizations, such as optical reflectance and Raman spectroscopy, were also performed on those nanowire arrays. By employing those nanowire arrays, broadband light trapping can be achieved. Besides, the effects of contact electrodes, such as indium tin oxide (ITO), silver, and copper, on semiconductor nanowire solar cell devices with different bandgaps were also investigated with a focus on optical

  18. Insights into the Replisome from the Structure of a Ternary Complex of the DNA Polymerase III [alpha]-Subunit

    SciTech Connect

    Wing, R.A.; Bailey, S.; Steitz, T.A.

    2009-03-27

    The crystal structure of the catalytic {alpha}-subunit of the DNA polymerase III (PolIII{alpha}) holoenzyme bound to primer-template DNA and an incoming deoxy-nucleoside 5{prime}-triphosphate has been determined at 4.6-{angstrom} resolution. The polymerase interacts with the sugar-phosphate backbone of the DNA across its minor groove, which is made possible by significant movements of the thumb, finger, and {beta}-binding domains relative to their orientations in the unliganded polymerase structure. Additionally, the DNA and incoming nucleotide are bound to the active site of PolIII{alpha} nearly identically as they are in their complex with DNA polymerase {beta}, thereby proving that the eubacterial replicating polymerase, but not the eukaryotic replicating polymerase, is homologous to DNA polymerase {beta}. Finally, superimposing a recent structure of the clamp bound to DNA on this PolIII{alpha} complex with DNA places a loop of the {beta}-binding domain into the appropriate clamp cleft and supports a mechanism of polymerase switching.

  19. Geometric and electronic structures of boron(III)-cored dyes tailored by incorporation of heteroatoms into ligands.

    PubMed

    Sun, Lin; Zhang, Fan; Wang, Xinyang; Qiu, Feng; Xue, Minzhao; Tregnago, Giulia; Cacialli, Franco; Osella, Silvio; Beljonne, David; Feng, Xinliang

    2015-03-01

    Complexation of a boron atom with a series of bidentate heterocyclic ligands successfully gives rise to corresponding BF2-chelated heteroarenes, which could be considered as novel boron(III)-cored dyes. These dye molecules exhibit planar structures and expanded π-conjugated backbones due to the locked conformation with a boron center. The geometric and electronic structures of these BF2 complexes can be tailored by embedding heteroatoms in the unique modes to form positional isomer and isoelectronic structures. The structure-property relationship is further elucidated by studying the photophysical properties, electrochemical behavior and quantum-chemical calculations.

  20. Structure and Stability of Hexa-Aqua V(III) Cations in Vanadium Redox Flow Battery Electrolytes

    SciTech Connect

    Vijayakumar, M.; Li, Liyu; Nie, Zimin; Yang, Zhenguo; Hu, Jian Z.

    2012-05-09

    The Vanadium (III) cation structure in mixed acid based electrolyte solution from vanadium redox flow batteries were studied by 17O and 35/37Cl Nuclear Magnetic Resonance (NMR) spectroscopy, electronic spectroscopy and density functional theory (DFT) based computational modeling. Both computational and experimental results reveals that the V(III) species can complex with counter anions (sulfate/chlorine) 10 depend on the composition of its solvation sphere. By analyzing the powder precipitate it was found that the formation of sulfate complexed V(III) species is the crucial process in the precipitation reaction. The precipitation occurs through nucleation of neutral species formed through deprotonation and ion-pair formation process. However, the powder precipitate shows a multiphase nature which warrants multiple reaction pathways for precipitation reaction.

  1. Structure and stability of hexa-aqua V(III) cations in vanadium redox flow battery electrolytes.

    PubMed

    Vijayakumar, M; Li, Liyu; Nie, Zimin; Yang, Zhenguo; Hu, JianZhi

    2012-08-07

    The vanadium(III) cation structure in mixed acid based electrolyte solution from vanadium redox flow batteries is studied by (17)O and (35/37)Cl nuclear magnetic resonance (NMR) spectroscopy, electronic spectroscopy and density functional theory (DFT) based computational modelling. Both computational and experimental results reveal that the V(III) species can complex with counter anions (sulfate/chlorine) depending on the composition of its solvation sphere. By analyzing the powder precipitate it was found that the formation of sulfate complexed V(III) species is the crucial process in the precipitation reaction. The precipitation occurs through nucleation of neutral species formed through deprotonation and ion-pair formation process. However, the powder precipitate shows a multiphase nature which warrants multiple reaction pathways for precipitation reaction.

  2. Spectroscopic, structural characterizations and antioxidant capacity of the chromium (III) niacinamide compound as a diabetes mellitus drug model.

    PubMed

    Refat, Moamen S; El-Megharbel, Samy M; Hussien, M A; Hamza, Reham Z; Al-Omar, Mohamed A; Naglah, Ahmed M; Afifi, Walid M; Kobeasy, Mohamed I

    2017-02-15

    New binuclear chromium (III) niacinamide compound with chemical formula [Cr2(Nic)(Cl)6(H2O)4]·H2O was obtained upon the reaction of chromium (III) chloride with niacinamide (Nic) in methanol solvent at 60°C. The proposed structure was discussed with the help of microanalytical analyses, conductivity, spectroscopic (FT-IR and UV-vis.), magnetic calculations, thermogravimetric analyses (TG/TGA), and morphological studies (X-ray of solid powder and scan electron microscopy. The infrared spectrum of free niacinamide in comparison with its chromium (III) compound indicated that the chelation mode occurs via both nitrogen atoms of pyridine ring and primary -NH2 group. The efficiency of chromium (III) niacinamide compound in decreasing of glucose level of blood and HbA1c in case of diabetic rats was checked. The ameliorating gluconeogenic enzymes, lipid profile and antioxidant defense capacities are considered as an indicator of the efficiency of new chromium (III) compound as antidiabetic drug model.

  3. Spectroscopic, structural characterizations and antioxidant capacity of the chromium (III) niacinamide compound as a diabetes mellitus drug model

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Megharbel, Samy M.; Hussien, M. A.; Hamza, Reham Z.; Al-Omar, Mohamed A.; Naglah, Ahmed M.; Afifi, Walid M.; Kobeasy, Mohamed I.

    2017-02-01

    New binuclear chromium (III) niacinamide compound with chemical formula [Cr2(Nic)(Cl)6(H2O)4]·H2O was obtained upon the reaction of chromium (III) chloride with niacinamide (Nic) in methanol solvent at 60 °C. The proposed structure was discussed with the help of microanalytical analyses, conductivity, spectroscopic (FT-IR and UV-vis.), magnetic calculations, thermogravimetric analyses (TG/TGA), and morphological studies (X-ray of solid powder and scan electron microscopy. The infrared spectrum of free niacinamide in comparison with its chromium (III) compound indicated that the chelation mode occurs via both nitrogen atoms of pyridine ring and primary -NH2 group. The efficiency of chromium (III) niacinamide compound in decreasing of glucose level of blood and HbA1c in case of diabetic rats was checked. The ameliorating gluconeogenic enzymes, lipid profile and antioxidant defense capacities are considered as an indicator of the efficiency of new chromium (III) compound as antidiabetic drug model.

  4. Multiple structures of adeno-associated virus DNA: analysis of terminally labeled molecules with endonuclease R-Hae III.

    PubMed

    Denhardt, D T; Eisenberg, S; Bartok, K; Carter, B J

    1976-05-01

    The double-stranded form of adeno-associated virus (AAV) DNA has about 20 sites sensitive to endonuclease R.Hae III from Haemophilus aegypitus; the fragments produced fall into about 13 size classes, 8 of which contain single fragments. The location of the Hae III-produced AAV fragments relative to the three EcoR1 fragments was determined. Using revised figures for the molecular weights of the Hae III cleavage products of phiX174 replicative form DNA, we calculated that AAV DNA contains about 4,000 nucleotides. After Hae III digestiion of duplex DNA terminally labeled with 32P using polynucleotide kinase, the majority of fragments containing a 5' 32P label were about 40 nucleotides in length, and fragments of similar size were generated from each end, suggesting that the Hae site closest to the end is within the terminal repetition. Two more-slowly-migrating cleavage products also bore 5' 32P end label. These three terminally labeled species were also generated from single-stranded AAV DNA by digestion with Hae III, and evidence that one may have a nonlinear ("rabbit-ear") structure is presented. The predominant 5' terminal base was identified as thymine for both the plus and minus strands of AAV. Single-stranded AAV molecules could not be efficiently covalently circularized by incubation with polynucleotide ligase or ligase plus T4 DNA polymerase.

  5. Structural and optical properties of II-VI and III-V compound semiconductors

    NASA Astrophysics Data System (ADS)

    Huang, Jingyi

    This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some fundamental issues regarding compositional fluctuations and microstructure in GaInNAs and InAlN alloys. In the first part, the microstructure of (001) InP scratched in an atomic force microscope with a small diamond tip has been studied as a function of applied normal force and crystalline direction in order to understand at the nanometer scale the deformation mechanisms in the zinc-blende structure. TEM images show deeper dislocation propagation for scratches along <110> compared to <100>. High strain fields were observed in <100> scratches, indicating hardening due to locking of dislocations gliding on different slip planes. Reverse plastic flow have been observed in <110> scratches in the form of pop-up events that result from recovery of stored elastic strain. In a separate study, nanoindentation-induced plastic deformation has been studied in c-, a-, and m-plane ZnO single crystals and c-plane GaN respectively, to study the deformation mechanism in wurtzite hexagonal structures. TEM results reveal that the prime deformation mechanism is slip on basal planes and in some cases, on pyramidal planes, and strain built up along particular directions. No evidence of phase transformation or cracking was observed in both materials. CL imaging reveals quenching of near band-edge emission by dislocations. In the second part, compositional inhomogeneity in quaternary GaInNAs and ternary InAlN alloys has been studied using TEM. It is shown that exposure to antimony during growth of GaInNAs results in uniform chemical composition in the epilayer, as antimony suppresses the surface mobility of adatoms that otherwise leads to two-dimensional growth and

  6. Homometallic Dy(III) Complexes of Varying Nuclearity from 2 to 21: Synthesis, Structure, and Magnetism.

    PubMed

    Biswas, Sourav; Das, Sourav; Acharya, Joydev; Kumar, Vierandra; van Leusen, Jan; Kögerler, Paul; Herrera, Juan Manuel; Colacio, Enrique; Chandrasekhar, Vadapalli

    2017-04-11

    The synthesis, structure, and magnetic properties of four Dy(III) coordination compounds isolated as [Dy2 (LH2 )2 (μ2 -η(1) :η(1) -Piv)]Cl⋅2 MeOH⋅H2 O (1), [Dy4 (LH)2 (μ3 -OH)2 (Piv)4 (MeOH)2 ]⋅4 MeOH⋅2 H2 O (2), [Dy6 (LH2 )3 (tfa)3 (O3 PtBu)(Cl)3 ]Cl4 ⋅15.5 H2 O⋅4 MeOH⋅5 CHCl3 (3) and [Dy21 (L)7 (LH)7 (tfa)7 ]Cl7 ⋅15 H2 O⋅7 MeOH⋅12 CHCl3 (4) are reported (Piv=pivalate, tfa=1,1,1-trifluoroacetylacetone, O3 PtBu=tert-butylphosphonate). Among these, 3 displays an equilateral triangle topology with a side length of 9.541 Å and a rare pentagonal-bipyramidal Dy(3+) environment, whereas complex 4 exhibits a single-stranded nanowheel structure with the highest nuclearity known for a homometallic lanthanide cluster structure. A tentative model of the dc magnetic susceptibility and the low-temperature magnetization of compounds 1 and 2 indicates that the former exhibits weak ferromagnetic intramolecular exchange interaction between the Dy(3+) ions, whereas in the latter both intramolecular ferromagnetic and antiferromagnetic magnetic exchange interactions are present. Compounds 1, 3, and 4 exhibit frequency-dependent ac signals below 15 K at zero bias field, but without exhibiting any maximum above 2 K at frequencies up to 1400 Hz. The observed slow relaxation of the magnetization suggests that these compounds could exhibit single molecule magnet (SMM) behavior with either a thermal energy barrier for the reversal of the magnetization that is not high enough to block the magnetization above 2 K, or there exists quantum tunneling of the magnetization (QTM).

  7. Assessment of DSM-III personality structure in a general-population survey.

    PubMed

    Nestadt, G; Eaton, W W; Romanoski, A J; Garrison, R; Folstein, M F; McHugh, P R

    1994-01-01

    The object of this study is to assess the internal validity of DSM-III personality constructs and to explore whether the constituent elements are better explained by an alternate internally coherent classification. A two-stage stratified random sample of subjects identified at the Baltimore site of the Epidemiologic Catchment Area (ECA) program were examined by psychiatrists for DSM-III personality attributes using a semistructured instrument. Dichotomous factor analysis was used in the confirmatory mode to test whether a single factor explained each of the 11 DSM-III personality disorders. This approach rejected a single explanatory factor for all but compulsive personality disorder. Exploratory factor analysis showed that these DSM-III personality features are parsimoniously described by a five-factor model. These factors are warmth, animation, timidity, trust, and scrupulousness.

  8. Structured system engineering methodologies used to develop a nuclear thermal propulsion engine

    NASA Technical Reports Server (NTRS)

    Corban, R.; Wagner, R.

    1993-01-01

    To facilitate the development of a space nuclear thermal propulsion engine for manned flights to Mars, requirements must be established early in the technology development cycle. The long lead times for the acquisition of the engine system and nuclear test facilities demands that the engine system size, performance and safety goals be defined at the earliest possible time. These systems are highly complex and require a large multidisciplinary systems engineering team to develop and track requirements, and to ensure that the as-built system reflects the intent of the mission. A methodology has been devised which uses sophisticated computer tools to effectively develop and interpret functional requirements, and furnish these to the specification level for implementation.

  9. Synthesis, structures, and magnetic properties of tetranuclear CuII-LnIII complexes.

    PubMed

    Costes, Jean-Pierre; Auchel, Magali; Dahan, Françoise; Peyrou, Viviane; Shova, Sergiu; Wernsdorfer, Wolfgang

    2006-03-06

    The copper(II)-gadolinium(III) and copper(II)-terbium(III) complexes studied in this report derive from disymmetric trianionic ligands abbreviated H3Li (i = 4-6). These ligands are obtained through reaction of different aldehydes with "half-units" having an amide function, the latter resulting from the monocondensation of different diamines with phenyl 2-hydroxy-3-methoxybenzoate. Upon deprotonation, the Li ligands (i = 4-10) possess an inner N2O2 coordination site with one amido, one imine, and two phenoxo functions, an outer O2O2 or O2O coordination site, and an amido oxygen atom positioned out of these two sites. The trianionic character of such ligands yields original anionic complexes in the presence of copper(II) or nickel(II) ions, with a 1/1 L/M stoichiometry. The crystal and molecular structures of four complexes, two 3d (1, 5) and two 3d-4f (12, 13) complexes, have been determined. Complex 1 crystallizes in the monoclinic space group C2/c: a = 27.528(2) A, b = 7.0944(7) A, c = 22.914(2) A, beta = 92.130(6) degrees , V = 4471.9(7) A(3), Z = 8 for C(21.5)H(27)CuKN(2)O(6.5). Complex 5 crystallizes in the monoclinic space group P2(1)/n (No. 14): a = 11.0760(9) A, b = 21.454(2) A, c = 15.336(1) A, beta = 101.474(1) degrees , V = 3571.5(5) A(3), Z = 4. Complex 12 crystallizes in the triclinic space group P (No. 2): a = 8.682(2) A, b = 11.848(2) A, c = 11.928(2) A, alpha = 81.77(3) degrees , beta = 89.17(3) degrees , gamma = 85.49(3) degrees , V = 1210.6(4) A(3), Z = 2 for C20H22CuN5O11Tb. Complex 13 belongs to the monoclinic space group C2/c: a = 25.475(5)A, b = 12.934(3)A, c = 15.023(3) A, beta = 91.06(3) degrees , V = 4949.02A3, Z = 8 for C21H25CuN4O12Tb. The structural determinations confirm that the dinuclear entities involved in 12 and 13 are disposed in a head-to-tail arrangement to give tetranuclear complexes in which the copper and lanthanide ions are positioned at the vertexes of a rectangle. In the [Cu-Gd]2 species, there are two different

  10. Structural Basis of Chaperone Recognition of Type III Secretion System Minor Translocator Proteins*

    PubMed Central

    Job, Viviana; Matteï, Pierre-Jean; Lemaire, David; Attree, Ina; Dessen, Andréa

    2010-01-01

    The type III secretion system (T3SS) is a complex nanomachine employed by many Gram-negative pathogens, including the nosocomial agent Pseudomonas aeruginosa, to inject toxins directly into the cytoplasm of eukaryotic cells. A key component of all T3SS is the translocon, a proteinaceous channel that is inserted into the target membrane, which allows passage of toxins into target cells. In most bacterial species, two distinct membrane proteins (the “translocators”) are involved in translocon formation, whereas in the bacterial cytoplasm, however, they remain associated to a common chaperone. To date, the strategy employed by a single chaperone to recognize two distinct translocators is unknown. Here, we report the crystal structure of a complex between the Pseudomonas translocator chaperone PcrH and a short region from the minor translocator PopD. PcrH displays a 7-helical tetratricopeptide repeat fold that harbors the PopD peptide within its concave region, originally believed to be involved in recognition of the major translocator, PopB. Point mutations introduced into the PcrH-interacting region of PopD impede translocator-chaperone recognition in vitro and lead to impairment of bacterial cytotoxicity toward macrophages in vivo. These results indicate that T3SS translocator chaperones form binary complexes with their partner molecules, and the stability of their interaction regions must be strictly maintained to guarantee bacterial infectivity. The PcrH-PopD complex displays homologs among a number of pathogenic strains and could represent a novel, potential target for antibiotic development. PMID:20385547

  11. Structural basis of chaperone recognition of type III secretion system minor translocator proteins.

    PubMed

    Job, Viviana; Matteï, Pierre-Jean; Lemaire, David; Attree, Ina; Dessen, Andréa

    2010-07-23

    The type III secretion system (T3SS) is a complex nanomachine employed by many Gram-negative pathogens, including the nosocomial agent Pseudomonas aeruginosa, to inject toxins directly into the cytoplasm of eukaryotic cells. A key component of all T3SS is the translocon, a proteinaceous channel that is inserted into the target membrane, which allows passage of toxins into target cells. In most bacterial species, two distinct membrane proteins (the "translocators") are involved in translocon formation, whereas in the bacterial cytoplasm, however, they remain associated to a common chaperone. To date, the strategy employed by a single chaperone to recognize two distinct translocators is unknown. Here, we report the crystal structure of a complex between the Pseudomonas translocator chaperone PcrH and a short region from the minor translocator PopD. PcrH displays a 7-helical tetratricopeptide repeat fold that harbors the PopD peptide within its concave region, originally believed to be involved in recognition of the major translocator, PopB. Point mutations introduced into the PcrH-interacting region of PopD impede translocator-chaperone recognition in vitro and lead to impairment of bacterial cytotoxicity toward macrophages in vivo. These results indicate that T3SS translocator chaperones form binary complexes with their partner molecules, and the stability of their interaction regions must be strictly maintained to guarantee bacterial infectivity. The PcrH-PopD complex displays homologs among a number of pathogenic strains and could represent a novel, potential target for antibiotic development.

  12. Solution and solid state structures and magnetism of a series of linear trinuclear compounds with a hexacoordinate Ln(III) and two terminal Ni(II) centers.

    PubMed

    Comba, Peter; Enders, Markus; Großhauser, Michael; Hiller, Markus; Müller, Dennis; Wadepohl, Hubert

    2016-12-20

    Reported are the syntheses, structures and magnetic properties, also by NMR spectroscopy in solution, of a series of 13 linear trinuclear 3d-4f compounds with a lanthanide(iii) surrounded by two Ni(II) ions, NiLn(III), where the central Ln(III) is hexacoordinate. For three of the crystal structures, an additional H2O molecule is coordinated to the central Ln(III) ion, leading to a monocapped trigonal prismatic structure. However, NMR spectroscopy indicates that in solution, these complexes also have a hexacoordinate Ln(III) center. The solution magnetic anisotropies, determined by NMR spectroscopy, indicate that the axial components of the anisotropies are relatively small and that the Dy(III) derivative might therefore not exhibit single molecule magnetism. The axial anisotropies determined by NMR spectroscopy are in good agreement with the expectations based on the distorted trigonal prismatic ligand field.

  13. Crystal structure of the coordination polymer [Fe(III) 2{Pt(II)(CN)4}3].

    PubMed

    Seredyuk, Maksym; Muñoz, M Carmen; Real, José A; Iskenderov, Turganbay S

    2015-01-01

    The title complex, poly[dodeca-μ-cyanido-diiron(III)triplat-inum(II)], [Fe(III) 2{Pt(II)(CN)4}3], has a three-dimensional polymeric structure. It is built-up from square-planar [Pt(II)(CN)4](2-) anions (point group symmetry 2/m) bridging cationic [Fe(III)Pt(II)(CN)4](+) ∞ layers extending in the bc plane. The Fe(II) atoms of the layers are located on inversion centres and exhibit an octa-hedral coordination sphere defined by six N atoms of cyanide ligands, while the Pt(II) atoms are located on twofold rotation axes and are surrounded by four C atoms of the cyanide ligands in a square-planar coordination. The geometrical preferences of the two cations for octa-hedral and square-planar coordination, respectively, lead to a corrugated organisation of the layers. The distance between neighbouring [Fe(III)Pt(II)(CN)4](+) ∞ layers corresponds to the length a/2 = 8.0070 (3) Å, and the separation between two neighbouring Pt(II) atoms of the bridging [Pt(II)(CN)4](2-) groups corresponds to the length of the c axis [7.5720 (2) Å]. The structure is porous with accessible voids of 390 Å(3) per unit cell.

  14. Orthogonal higher order structure and confirmatory factor analysis of the French Wechsler Adult Intelligence Scale (WAIS-III).

    PubMed

    Golay, Philippe; Lecerf, Thierry

    2011-03-01

    According to the most widely accepted Cattell-Horn-Carroll (CHC) model of intelligence measurement, each subtest score of the Wechsler Intelligence Scale for Adults (3rd ed.; WAIS-III) should reflect both 1st- and 2nd-order factors (i.e., 4 or 5 broad abilities and 1 general factor). To disentangle the contribution of each factor, we applied a Schmid-Leiman orthogonalization transformation (SLT) to the standardization data published in the French technical manual for the WAIS-III. Results showed that the general factor accounted for 63% of the common variance and that the specific contributions of the 1st-order factors were weak (4.7%-15.9%). We also addressed this issue by using confirmatory factor analysis. Results indicated that the bifactor model (with 1st-order group and general factors) better fit the data than did the traditional higher order structure. Models based on the CHC framework were also tested. Results indicated that a higher order CHC model showed a better fit than did the classical 4-factor model; however, the WAIS bifactor structure was the most adequate. We recommend that users do not discount the Full Scale IQ when interpreting the index scores of the WAIS-III because the general factor accounts for the bulk of the common variance in the French WAIS-III. The 4 index scores cannot be considered to reflect only broad ability because they include a strong contribution of the general factor.

  15. Engineering, construction, and operations in space - III: Space '92; Proceedings of the 3rd International Conference, Denver, CO, May 31-June 4, 1992. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    Sadeh, Willy Z. (Editor); Sture, Stein (Editor); Miller, Russell J. (Editor)

    1992-01-01

    The present volume on engineering, construction, and operations in space discusses surface structures on the moon and Mars, surface equipment, construction, and transportation on the moon and Mars, in situ materials use and processing, and space energy. Attention is given to such orbital structures as LEO and the space station, space mining and excavation, space materials, space automation and robotics, and space life support systems. Topics addressed include lunar-based astronomy, space systems integration, terrestrial support for space functions, and space education. Also discussed are space plans, policy, and history, space science and engineering, geoengineering and space exploration, and the construction and development of a human habitat on Mars.

  16. Materials and structural aspects of advanced gas-turbine helicopter engines

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Acurio, J.

    1979-01-01

    The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.

  17. Structural characterization of a family of cytochromes c{sub 7} involved in Fe(III) respiration by Geobacter sulfurreducens.

    SciTech Connect

    Pokkuluri, P. R.; Londer, Y. Y.; Yang, X.; Duke, N. E. C.; Erickson, J.; Orshonsky, V.; Johnson, G.; Schiffer, M.; Biosciences Division

    2010-02-01

    Periplasmic cytochromes c{sub 7} are important in electron transfer pathway(s) in Fe(III) respiration by Geobacter sulfurreducens. The genome of G. sulfurreducens encodes a family of five 10-kDa, three-heme cytochromes c{sub 7}. The sequence identity between the five proteins (designated PpcA, PpcB, PpcC, PpcD, and PpcE) varies between 45% and 77%. Here, we report the high-resolution structures of PpcC, PpcD, and PpcE determined by X-ray diffraction. This new information made it possible to compare the sequences and structures of the entire family. The triheme cores are largely conserved but are not identical. We observed changes, due to different crystal packing, in the relative positions of the hemes between two molecules in the crystal. The overall protein fold of the cytochromes is similar. The structure of PpcD differs most from that of the other homologs, which is not obvious from the sequence comparisons of the family. Interestingly, PpcD is the only cytochrome c{sub 7} within the family that has higher abundance when G. sulfurreducens is grown on insoluble Fe(III) oxide compared to ferric citrate. The structures have the highest degree of conservation around 'heme IV'; the protein surface around this heme is positively charged in all of the proteins, and therefore all cytochromes c{sub 7} could interact with similar molecules involving this region. The structures and surface characteristics of the proteins near the other two hemes, 'heme I' and 'heme III', differ within the family. The above observations suggest that each of the five cytochromes c{sub 7} could interact with its own redox partner via an interface involving the regions of heme I and/or heme III; this provides a possible rationalization for the existence of five similar proteins in G. sulfurreducens.

  18. Structural characterization of a family of cytochromes c(7) involved in Fe(III) respiration by Geobacter sulfurreducens.

    PubMed

    Pokkuluri, P R; Londer, Y Y; Yang, X; Duke, N E C; Erickson, J; Orshonsky, V; Johnson, G; Schiffer, M

    2010-02-01

    Periplasmic cytochromes c(7) are important in electron transfer pathway(s) in Fe(III) respiration by Geobacter sulfurreducens. The genome of G. sulfurreducens encodes a family of five 10-kDa, three-heme cytochromes c(7). The sequence identity between the five proteins (designated PpcA, PpcB, PpcC, PpcD, and PpcE) varies between 45% and 77%. Here, we report the high-resolution structures of PpcC, PpcD, and PpcE determined by X-ray diffraction. This new information made it possible to compare the sequences and structures of the entire family. The triheme cores are largely conserved but are not identical. We observed changes, due to different crystal packing, in the relative positions of the hemes between two molecules in the crystal. The overall protein fold of the cytochromes is similar. The structure of PpcD differs most from that of the other homologs, which is not obvious from the sequence comparisons of the family. Interestingly, PpcD is the only cytochrome c(7) within the family that has higher abundance when G. sulfurreducens is grown on insoluble Fe(III) oxide compared to ferric citrate. The structures have the highest degree of conservation around "heme IV"; the protein surface around this heme is positively charged in all of the proteins, and therefore all cytochromes c(7) could interact with similar molecules involving this region. The structures and surface characteristics of the proteins near the other two hemes, "heme I" and "heme III", differ within the family. The above observations suggest that each of the five cytochromes c(7) could interact with its own redox partner via an interface involving the regions of heme I and/or heme III; this provides a possible rationalization for the existence of five similar proteins in G. sulfurreducens. 2009 Elsevier B.V. All rights reserved.

  19. Purification, crystal structure determination and functional characterization of type III antifreeze proteins from the European eelpout Zoarces viviparus.

    PubMed

    Wilkens, Casper; Poulsen, Jens-Christian N; Ramløv, Hans; Lo Leggio, Leila

    2014-08-01

    Antifreeze proteins (AFPs) are essential components of many organisms adaptation to cold temperatures. Fish type III AFPs are divided into two groups, SP isoforms being much less active than QAE1 isoforms. Two type III AFPs from Zoarces viviparus, a QAE1 (ZvAFP13) and an SP (ZvAFP6) isoform, are here characterized and their crystal structures determined. We conclude that the higher activity of the QAE1 isoforms cannot be attributed to single residues, but rather a combination of structural effects. Furthermore both ZvAFP6 and ZvAFP13 crystal structures have water molecules around T18 equivalent to the tetrahedral-like waters previously identified in a neutron crystal structure. Interestingly, ZvAFP6 forms dimers in the crystal, with a significant dimer interface. The presence of ZvAFP6 dimers was confirmed in solution by native electrophoresis and gel filtration. To our knowledge this is the first report of dimerization of AFP type III proteins.

  20. A one-dimensional azido-bridged manganese(III) complex with bidentate Schiff base: Crystal structure and magnetic properties

    SciTech Connect

    Li Wei; Li Zongwei; Li Licun Liao Daizheng; Jiang Zonghui

    2007-10-15

    The synthesis, structural characterization, and magnetic behavior of a novel one-dimensional azido-bridged manganese(III) complex of formula [Mn(L){sub 2}N{sub 3}] (1) is reported, where HL is the bidentate Schiff base obtained from the condensation of salicylaldehyde with 4-methoxy aniline. Complex 1 crystallizes in the monoclinic system, space group P2{sub 1}/n, with a=11.743(4) A, b=24.986(9) A, c=13.081(5) A, {beta}=95.387(7){sup o} and Z=2. The complex is of one-dimensional chain structure with single end-to-end azido bridges and the manganese(III) ion has an elongated octahedral geometry. Magnetic studies show that the weak antiferromagnetic interaction is mediated by the single end-to-end azido bridge with the exchange parameter J=-5.84 cm{sup -1}. - Graphical abstract: A novel azido-bridged manganese(III) complex with bidentate Schiff base ligands has been prepared and characterized structurally and magnetically. The complex is of one-dimensional chain structure with single end-to-end azido bridges in axial positions. Two bidentate Schiff base ligands coordinate in the equatorial mode. The magnetic measurements show that the complex exhibits weak antiferromagnetic interaction.

  1. Quantum mechanical treatment of As(3+)-thiol model compounds: implication for the core structure of As(III)-metallothionein.

    PubMed

    Garla, Roobee; Kaur, Narinder; Bansal, Mohinder Pal; Garg, Mohan Lal; Mohanty, Biraja Prasad

    2017-03-01

    Exposure to inorganic arsenic (As) is one of the major health concerns in several regions around the world. Binding of As(III) with thiols is central to the mechanisms related to its toxicity, detoxification, and therapeutic effects. Due to its high thiol content, metallothionein (MT) is presumed to play an important role in case of arsenic toxicity. Consequences of these As-thiol interactions are not yet clear due to various difficulties in the characterization of arsenic bound proteins by spectroscopic techniques. Computational modeling can be a reliable approach in predicting the molecular structures of such complexes. This paper presents the results of a systematic study on different As(III)-thiol model compounds conducted by both ab initio and DFT methods with different Gaussian type basis sets. Proficiency of these theoretical methods has been evaluated in terms of bond lengths, bond angles, free energy, partial atomic charges, computational cost, and comparison with the experimental data. It has been demonstrated that the DFT-B3LYP/6-311+G(3df) functional offers better accuracy in predicting the structure and the UV absorption spectra of As(III)-thiol complexes. The results of the present study also helps in defining the boundaries for the core of arsenic bound MT so that quantum mechanical/molecular mechanical (QM/MM) methods can be employed to predict the structural and functional aspects of the protein. Graphical Abstract Optimized structural parameters of As(3+)-thiol model compounds.

  2. Role of structural noise in aircraft pressure cockpit from vibration action of new-generation engines

    NASA Astrophysics Data System (ADS)

    Baklanov, V. S.

    2016-07-01

    The evolution of new-generation aircraft engines is transitioning from a bypass ratio of 4-6 to an increased ratio of 8-12. This is leading to substantial broadening of the vibration spectrum of engines with a shift to the low-frequency range due to decreased rotation speed of the fan rotor, in turn requiring new solutions to decrease structural noise from engine vibrations to ensure comfort in the cockpits and cabins of aircraft.

  3. The System Engineering Approach: Taiwan Navy Incorporation of Mobile Devices (Smartphone) into Its Force Structure

    DTIC Science & Technology

    2015-06-01

    ENGINEERING APPROACH: TAIWAN NAVY INCORPORATION OF MOBILE DEVICES (SMARTPHONE) INTO ITS FORCE STRUCTURE by Wei-yang Lee June 2015 Thesis Advisor...June 2015 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE THE SYSTEM ENGINEERING APPROACH: TAIWAN NAVY INCORPORATION OF...Taiwan navy’s maneuverability and capability in the information age. This thesis uses a system engineering approach to research various mobile security

  4. Structural effects on the photophysical properties of mono-β-diketonate and bis-β-diketonate Eu(III) complexes.

    PubMed

    Zhu, Tianyu; Chen, Peng; Li, Hongfeng; Sun, Wenbin; Gao, Ting; Yan, Pengfei

    2015-06-28

    Two ligands, mono-β-diketone (p-methoxylbenzoyl)trifluoroacetone (MBTF) and bis-β-diketone 1,2-bis(4,4'-bis(4,4,4-trifluoro-1,3-dioxobutyl))phenoxyl ethane (BTPE) with similar chemical structures, have been designed and prepared for the purpose of building the relationship between the structures and luminescence properties of Eu(iii) complexes. Structures of the Eu(iii) complexes [Eu(MBTF)3(DMSO)(H2O)] and [Eu2(BTPE)3(DMSO)4] have been defined by single crystal X-ray crystallography. The mono-β-diketone complex [Eu(MBTF)3(DMSO)(H2O)] is a mononuclear structure, the central Eu(iii) ion is coordinated by eight oxygen atoms from three ligands and two solvents, in a distorted trigonal-dodecahedral (8-TDH) geometry. Whereas, the bis-β-diketone complex [Eu2(BTPE)3(DMSO)4] adopts a triple-stranded dinuclear structure in which the two Eu(iii) ions are helically wrapped by three bis-bidentate ligands, and each Eu(iii) ion is eight-coordinated by six oxygen atoms from the ligands and two oxygen atoms from the coordinated DMSO molecules, in a distorted square-antiprismatic (8-SAP) geometry. The photophysical properties related to the electronic transition are characterized by the absorbance spectra, the emission spectra, the emission quantum yields, the emission lifetimes, and the radiative (kr) and nonradiative rate constants (knr). The mono-β-diketone complex [Eu(MBTF)3(DMSO)(H2O)] offers a relatively high emission quantum yield (38%, in solid) compared to that observed in the bis-β-diketone complex [Eu2(BTPE)3(DMSO)4] (25%, in solid). This enhancement of emission quantum yield in the mono-β-diketone complex can be attributed to its lower site symmetry around the Eu(iii) ion, lower non-radiative rate constant and higher energy transfer efficiency from the ligand to the metal ion.

  5. Thermal and structural assessments of a ceramic wafer seal in hypersonic engine

    NASA Technical Reports Server (NTRS)

    Tong, Mike; Steinetz, Bruce

    1991-01-01

    The thermal and structural performances of a ceramic wafer seal in a simulated hypersonic engine environment are numerically assessed. The effects of aerodynamic heating, surface contact conductance between the seal and its adjacent surfaces, flow of purge coolant gases, and leakage of hot engine flow path gases on the seal temperature were investigated from the engine inlet back to the entrance region of the combustion chamber. Finite element structural analyses, coupled with Weibull failure analyses, were performed to determine the structural reliability of the wafer seal.

  6. Thermal and structural assessments of a ceramic wafer seal in hypersonic engines

    NASA Technical Reports Server (NTRS)

    Tong, Mike T.; Steinetz, Bruce M.

    1991-01-01

    The thermal and structural performances of a ceramic wafer seal in a simulated hypersonic engine environment are numerically assessed. The effects of aerodynamic heating, surface contact conductance between the seal and its adjacent surfaces, flow of purge coolant gases, and leakage of hot engine flow path gases on the seal temperature were investigated from the engine inlet back to the entrance region of the combustion chamber. Finite element structural analyses, coupled with Weibull failure analyses, were performed to determine the structural reliability of the wafer seal.

  7. Thermal and structural assessments of a ceramic wafer seal in hypersonic engine

    NASA Technical Reports Server (NTRS)

    Tong, Mike; Steinetz, Bruce

    1991-01-01

    The thermal and structural performances of a ceramic wafer seal in a simulated hypersonic engine environment are numerically assessed. The effects of aerodynamic heating, surface contact conductance between the seal and its adjacent surfaces, flow of purge coolant gases, and leakage of hot engine flow path gases on the seal temperature were investigated from the engine inlet back to the entrance region of the combustion chamber. Finite element structural analyses, coupled with Weibull failure analyses, were performed to determine the structural reliability of the wafer seal.

  8. Crystal structure of the hemolytic lectin CEL-III isolated from the marine invertebrate Cucumaria echinata: implications of domain structure for its membrane pore-formation mechanism.

    PubMed

    Uchida, Tatsuya; Yamasaki, Takayuki; Eto, Seiichiro; Sugawara, Hajime; Kurisu, Genji; Nakagawa, Atsushi; Kusunoki, Masami; Hatakeyama, Tomomitsu

    2004-08-27

    CEL-III is a Ca(2+)-dependent and galactose-specific lectin purified from the sea cucumber, Cucumaria echinata, which exhibits hemolytic and hemagglutinating activities. Six molecules of CEL-III are assumed to oligomerize to form an ion-permeable pore in the cell membrane. We have determined the crystal structure of CELIII by using single isomorphous replacement aided by anomalous scattering in lead at 1.7 A resolution. CEL-III consists of three distinct domains as follows: the N-terminal two carbohydrate-binding domains (1 and 2), which adopt beta-trefoil folds such as the B-chain of ricin and are members of the (QXW)(3) motif family; and domain 3, which is a novel fold composed of two alpha-helices and one beta-sandwich. CEL-III is the first Ca(2+)-dependent lectin structure with two beta-trefoil folds. Despite sharing the structure of the B-chain of ricin, CEL-III binds five Ca(2+) ions at five of the six subdomains in both domains 1 and 2. Considering the relatively high similarity among the five subdomains, they are putative binding sites for galactose-related carbohydrates, although it remains to be elucidated whether bound Ca(2+) is directly involved in interaction with carbohydrates. The paucity of hydrophobic interactions in the interfaces between the domains and biochemical data suggest that these domains rearrange upon carbohydrate binding in the erythrocyte membrane. This conformational change may be responsible for oligomerization of CEL-III molecules and hemolysis in the erythrocyte membranes.

  9. Terbium(III) and yttrium(III) complexes with pyridine-substituted nitronyl nitroxide radical and different β-diketonate ligands. Crystal structures and magnetic and luminescence properties.

    PubMed

    Lannes, Anthony; Intissar, Mourad; Suffren, Yan; Reber, Christian; Luneau, Dominique

    2014-09-15

    A terbium(III) complex of nitronyl nitroxide free radical 2-(2-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro1H-imidazolyl-1-oxy-3-oxide (NIT2Py), [Tb(acac)3NIT2Py]·0.5H2O (3) (acac = acetylacetonate), was synthesized for comparison with the previously reported [Tb(hfac)3NIT2Py]·0.5C7H16 (1) (hfac = hexafluoroacetylacetonate), together with their yttrium analogues [Y(hfac)3NIT2Py]·0.5C7H16 (2) and [Y(acac)3NIT2Py]·0.5H2O (4). The crystal structures show that in all complexes the nitronyl nitroxide radical acts as a chelating ligand. Magnetic studies show that 3 like 1 exhibits slow relaxation of magnetization at low temperature, suggesting single-molecule magnet behavior. The luminescence spectra show resolved vibronic structure with the main interval decreasing from 1600 cm(-1) to 1400 cm(-1) between 80 and 300 K. This effect is analyzed quantitatively using experimental Raman frequencies.

  10. Fundamentals of the Control of Gas-Turbine Power Plants for Aircraft. Part III Control of Jet Engines. Part 3; Control of Jet Engines

    NASA Technical Reports Server (NTRS)

    Kuehl, H.

    1947-01-01

    The basic principles of the control of TL ongincs are developed on .the basis of a quantitative investigation of the behavior of these behavior under various operating conditions with particular consideration of the simplifications pormissible in each case. Various possible means of control of jet engines are suggested and are illustrated by schematic designs.

  11. Engineering method to build the composite structure ply database

    NASA Astrophysics Data System (ADS)

    Shi, Qinghua; Zhao, Shiwei

    In this paper, a new method to build a composite ply database with engineering design constraints is proposed. This method has two levels: the core stacking sequence design and the whole stacking sequence design. The core stacking sequences are obtained by the full permutation algorithm considering the ply ratio requirement and the dispersion character which characterizes the dispersion of ply angles. The whole stacking sequences are the combinations of the core stacking sequences. By excluding the ply sequences which do not meet the engineering requirements, the final ply database is obtained. One example with the constraints that the total layer number is 100 and the ply ratio is 30:60:10 is presented to validate the method. This method provides a new way to set up the ply database based on the engineering requirements without adopting intelligent optimization algorithms.

  12. V/III ratio effects on high quality InAlAs for quantum cascade laser structures

    NASA Astrophysics Data System (ADS)

    Demir, Ilkay; Elagoz, Sezai

    2017-04-01

    In this study we report the V/III ratio effects on growth, structural, optical and doping characteristics of low growth rate (∼1 Å/s) heteroepitaxial Metal Organic Chemical Vapor Deposition (MOCVD) grown InxAl1-xAs layers, a part of Quantum Cascade Laser (QCL) structures, on InP substrate. Especially photoluminescence (PL) properties of InAlAs-InP interface show strong dependence on AsH3 overpressure. We have shown that the V/III ratio with fixed metalorganic precursor flow is a crucial parameter on InxAl1-xAs layers to have a good material quality in terms of crystallinity, optical and electrical characteristics with and without doping.

  13. Crystal structures of type III{sub H} NAD-dependent D-3-phosphoglycerate dehydrogenase from two thermophiles

    SciTech Connect

    Kumar, S.M.; Pampa, K.J.; Manjula, M.; Hemantha Kumar, G.; Kunishima, Naoki; Lokanath, N.K.

    2014-08-15

    Highlights: • Determined the crystal structures of PGDH from two thermophiles. • Monomer is composed of nucleotide binding domain and substrate binding domain. • Crystal structures of type III{sub H} PGDH. - Abstract: In the L-Serine biosynthesis, D-3-phosphoglycerate dehydrogenase (PGDH) catalyzes the inter-conversion of D-3-phosphoglycerate to phosphohydroxypyruvate. PGDH belongs to 2-hydroxyacid dehydrogenases family. We have determined the crystal structures of PGDH from Sulfolobus tokodaii (StPGDH) and Pyrococcus horikoshii (PhPGDH) using X-ray diffraction to resolution of 1.77 Å and 1.95 Å, respectively. The PGDH protomer from both species exhibits identical structures, consisting of substrate binding domain and nucleotide binding domain. The residues and water molecules interacting with the NAD are identified. The catalytic triad residues Glu-His-Arg are highly conserved. The residues involved in the dimer interface and the structural features responsible for thermostability are evaluated. Overall, structures of PGDHs with two domains and histidine at the active site are categorized as type III{sub H} and such PGDHs structures having this type are reported for the first time.

  14. Quantitative study of Au(III) and Pd(II) ion biosorption on genetically engineered Tobacco mosaic virus.

    PubMed

    Lim, Jung-Sun; Kim, Seung-Min; Lee, Sang-Yup; Stach, Eric A; Culver, James N; Harris, Michael T

    2010-02-15

    One major obstacle in the mineralization of metal onto biologically derived templates is the lack of fundamental information pertaining to the relationship between metal ion loading and overall metal deposition onto the biotemplate. This study focuses on Au(III) and Pd(II) biosorption on the genetically-modified model biological template Tobacco mosaic virus (TMV1Cys). Metal ion (Au(III) or Pd(II)) loading on the TMV1Cys template was measured as a function of the equilibrium concentration of Au(III) or Pd(II) ions in solution at several temperatures. In addition, the Pd(II) loading on the TMV-wild (wild-type TMV) and TMV1Cys were compared to estimate the improvement of metal ion loading by genetic modification of the biotemplate. The gold or palladium coatings on the TMV1Cys were prepared using various metal ion loadings. Results show, for a range of metal ion loadings, a positive correlation existed between the concentration of the metal ions and the coating density of the metals deposited on the virus surface.

  15. Cylinder head fastening structure for internal combustion engines

    SciTech Connect

    Futakuchi, Y.; Oshiro, N.

    1988-01-26

    In a construction for an overhead cam internal combustion engine comprising a cylinder head adapted to be affixed to another component of the engine by at least one fastener having a tool receiving portion for tightening thereof and having a bearing cap affixed to the cylinder head and rotatably journaling the overhead camshaft, the improvement is described comprising the bearing cap having a portion overlying the fastener tool receiving portion, and means defining an access opening passing through the bearing cap and adapted to pass a tool for tightening of the fastener without removal of the bearing cap.

  16. Solution structure and dynamics of lanthanide complexes of the macrocyclic polyamino carboxylate DTPA-dien. NMR study and crystal structures of the lanthanum(III) and europium(III) complexes

    SciTech Connect

    Franklin, S.J.; Raymond, K.N.

    1994-12-07

    An 18-membered macrocyclic DTPA-bis(amide) ligand (DTPA = diethylenetriaminepentaacetic acid) containing a heteroatom in the amide link has been prepared via the condensation of DTPA-dianhydride and diethylenetriamine. The solution structures of the two isomeric pairs present in the Ln(III) complexes of DTPA-dien have been investigated by {sup 1}H NMR. The structures of the lanthanum(III) and europium(III) DTPA-dien complexes have been determined by X-ray analysis. [La(DTPA-dienH{sup +})H{sub 2}O]{sub 2}(CF{sub 3}SO{sub 3}{sup -}){sub 2}{center_dot}18H{sub 2}O (I) crystallizes as a carboxylate-bridged dimer about a center of inversion in the orthorhombic space group Pbca with a = 12.626(2) {angstrom}, b = 21.405(3) {angstrom}, c = 26.422(9) {angstrom}, and Z = 8. Each lanthanum ion is 11-coordinate with octadentate ligand coordination, an {eta}{sup 2} bridging carboxylate, and one water. [Eu(DTPA-dienH{sup +})]{sub 4}(CF{sub 3}SO{sub 3}{sup -}){sub 4}{center_dot}6NaCF{sub 3}SO{sub 3}{center_dot}20H{sub 2}O (II) crystallizes as a carboxylate-bridged tetramer with two crystallographically independent Eu(III) positions (Z = 8 for each) in the monoclinic space group C2/c: a = 30.94(1) {angstrom}, b = 23.456(3) {angstrom}, c = 22.611(4) {angstrom}, {beta} = 105.78(2){degrees}. The coordination geometries about Eu1 and Eu2 are nearly identical and are described as a nine-coordinate tricapped trigonal prism with octadentate ligand coordination plus an {eta}{sup 1} bridging carboxylate. The tendency to oligomerize is attributed to the constraints imposed by the macrocycle and the hydrogen bonding available with the link heteroatom. The structural differences between the two complexes are attributed to a difference in La(III) and Eu(III) ionic size.

  17. Pre-Service Science Teachers' Cognitive Structures Regarding Science, Technology, Engineering, Mathematics (STEM) and Science Education

    ERIC Educational Resources Information Center

    Hacioglu, Yasemin; Yamak, Havva; Kavak, Nusret

    2016-01-01

    The aim of this study is to reveal pre-service science teachers' cognitive structures regarding Science, Technology, Engineering, Mathematics (STEM) and science education. The study group of the study consisted of 192 pre-service science teachers. A Free Word Association Test (WAT) consisting of science, technology, engineering, mathematics and…

  18. Effect of structural flexibility on the design of vibration-isolating mounts for aircraft engines

    NASA Technical Reports Server (NTRS)

    Phillips, W. H.

    1984-01-01

    Previous analyses of the design of vibration-isolating mounts for a rear-mounted engine to decouple linear and rotational oscillations are extended to take into account flexibility of the engine-mount structure. Equations and curves are presented to allow the design of mount systems and to illustrate the results for a range of design conditions.

  19. NMR study of lanthanide(III) nitrate-CMPO extraction system (I) structure of extracted chemical species

    SciTech Connect

    Nakamura, Takashi; Miyake, Chie )

    1994-10-01

    NMR measurements carried out to study the coordination structure of lanthanide(III)-CMPO complexes indicate that the CMPO molecule is located in the equatorial region with respect to the principal magnetic Z axis. NMR longitudinal relaxation time measurements suggest that CMPO coordinates to the central Ce[sup 3+] ion in a bidentate manner with the phosphoryl and carbonyl groups. Further, it was observed that a rapid intramolecular interconversion occurs at a higher temperature region. 14 refs., 10 figs., 3 tabs.

  20. Role of phospholipids of subunit III in the regulation of structural rearrangements in cytochrome c oxidase of Rhodobacter sphaeroides.

    PubMed

    Alnajjar, Khadijeh S; Cvetkov, Teresa; Prochaska, Lawrence

    2015-02-03

    Subunit III of cytochrome c oxidase possesses structural domains that contain conserved phospholipid binding sites. Mutations within these domains induce a loss of phospholipid binding, coinciding with decreased electron transfer activity. Functional and structural roles for phospholipids in the enzyme from Rhodobacter sphaeroides have been investigated. Upon the removal of intrinsic lipids using phospholipase A2, electron transfer activity was decreased 30-50%. Moreover, the delipidated enzyme exhibited turnover-induced, suicide inactivation, which was reversed by the addition of exogenous lipids, most specifically by cardiolipin. Cardiolipin exhibited two sites of interaction with the delipidated enzyme, a high-affinity site (Km = 0.14 μM) and a low-affinity site (Km = 26 μM). Subunit I of the delipidated enzyme exhibited a faster digestion rate when it was treated with α-chymotrypsin compared to that of the wild-type enzyme, suggesting that lipid removal induces a conformational change to expose the digestion sites further. Upon reaction of subunit III of the enzyme with a fluorophore (AEDANS), fluorescence anisotropy showed an increased rotational rate of the fluorophore in the absence of lipids, indicating increased flexibility of subunit III within the enzyme's tertiary structure. Additionally, Förster resonance energy transfer between AEDANS and a fluorescently labeled cardiolipin revealed that cardiolipin binds in the v-shaped cleft of subunit III in the delipidated enzyme and that it moves closer to the active site in subunit I upon a change in the redox state of the enzyme. In conclusion, these results show that the phospholipids regulate events occurring during electron transfer activity by maintaining the structural integrity of the enzyme at the active site.