Interests and attitudes of engineering students
NASA Astrophysics Data System (ADS)
Rutherford, Brian
2007-12-01
Engineering programs have been less successful than other professions in achieving gender equity. Analyses of gender differences in the attitudes and interests of engineering students may help illuminate ways to combat the underrepresentation of women in engineering. This study examined data collected from 863 engineering students who attended 15 American universities from fall 2005 through spring 2006 using an online survey. The survey was designed to understand the backgrounds, academic preparation, motivation, interests, and attitudes of engineering students. To determine whether males and females received different academic preparation prior to entering engineering, the survey examined participants' mathematics, science, and technical coursework taken in high school. The questions probed students' comfort and interest level in mathematics, science, and technology/engineering and investigated student interest in the three fundamental engineering activities by asking 49 design, build, and analyze questions on topics covering a variety of engineering disciplines. A combination of question formats was used including pre-categorized demographic information, 5-point Likert scales, and open-ended responses. Gender similarities and differences were identified and their implications were considered for the recruitment and retention of engineers. Female engineering students in this study were equally or better prepared than males to major in engineering based on the number and types of science and mathematics classes taken in high school. However, statistically significant gender differences were found in the attitudes and interests of engineering students. The difference in the comfort level, interest in learning, being able to demonstrate, or in performing stem skills depended on the question topic rather than gender. The areas with the highest comfort and interest level were often different for females and males. Several topics and curriculum areas of high interest to both genders related to engineering education in several engineering disciplines were identified. It appears that females and males were motivated to choose engineering as a career for different reasons. Analysis revealed that female engineering students are generally more altruistic and less interested in "things" than male engineering students. This study also found that females were comfortable in mathematics or science, but were less comfortable using computers, tools, and machines---all essential engineering skills.
NASA Astrophysics Data System (ADS)
Howell Smith, Michelle C.
Given the increasing complexity of technology in our society, the United States has a growing demand for a more highly educated technical workforce. Unfortunately, the proportion of United States citizens earning a PhD in engineering has been declining and there is concern about meeting the economic, national security and quality of life needs of our country. This mixed methods sequential exploratory instrument design study identified factors that facilitate or inhibit interest in engineering PhD programs among domestic engineering undergraduate students in the United States. This study developed a testable theory for how domestic students become interested in engineering PhD programs and a measure of that process, the Exploring Engineering Interest Inventory (EEII). The study was conducted in four phases. The first phase of the study was a qualitative grounded theory exploration of interest in the engineering PhD. Qualitative data were collected from domestic engineering students, engineering faculty and industry professional who had earned a PhD in engineering. The second phase, instrument development, developed the Exploring Engineering Interest Inventory (EEII), a measurement instrument designed with good psychometric properties to test a series of preliminary hypotheses related to the theory generated in the qualitative phase. In the third phase of the study, the EEII was used to collect data from a larger sample of junior and senior engineering majors. The fourth phase integrated the findings from the qualitative and quantitative phases. Four factors were identified as being significant influences of interest in the engineering PhD: Personal characteristics, educational environment, misperceptions of the economic and personal costs, and misperceptions of engineering work. Recommendations include increasing faculty encouragement of students to pursue an engineering PhD and programming to correct the misperceptions of the costs of the engineering PhD and the nature of the work that PhD engineers do. The tested model provides engineering educators with information to help them prioritize their efforts to increase interest in the engineering PhD among domestic students.
Brazile, Tiffany; Hostetter Shoop, Glenda; McDonough, Christine M; Van Citters, Douglas W
2018-01-30
Addressing current healthcare challenges requires innovation and collaboration. Current literature provides limited guidance in promoting these skills in medical school. One approach involves transdisciplinary training in which students from different disciplines work together toward a shared goal. We assessed the need for such a curriculum at Dartmouth College. We surveyed medical and engineering students' educational values; learning experiences; professional goals; and interest in transdisciplinary education and innovation. Data were analyzed using descriptive statistics. Shared values among student groups included leadership development, innovation, collaboration, and resource sharing. Medical students felt their curriculum inadequately addressed creativity and innovation relative to their engineering counterparts (p < 0.05). Medical students felt less prepared for entrepreneurial activities (p < 0.05), while engineering students indicated a need for basic medical knowledge and patient-oriented design factors. Despite strong interest, collaboration was less than 50% of indicated interest. Medical and engineering students share an interest in the innovation process and need a shared curriculum to facilitate collaboration. A transdisciplinary course that familiarizes students with this process has the potential to promote physicians and engineers as leaders and innovators who can effectively work across industry lines. A transdisciplinary course was piloted in Spring 2017.
ERIC Educational Resources Information Center
Xiao, Manlin; Zhang, Jianglin
2016-01-01
The phenomenon that engineering students have little interest in theoretical knowledge learning is more and more apparent. Therefore, most students fail to understand and apply theories to solve practical problems. To solve this problem, the importance of improving students' interest in the learning theoretical course is discussed firstly in this…
ERIC Educational Resources Information Center
McIntyre, Joseph S.
2011-01-01
The effectiveness of three case studies and associated teamwork to stimulate interest of college freshman in engineering was investigated by observing students. Case studies were assigned as laboratory team exercises in an introduction to engineering course at Auburn University. Student interest in the case studies was evaluated qualitatively…
Influence of internship toward entrepreneurship interest for mechanical engineering students
NASA Astrophysics Data System (ADS)
Sunyoto, Nugroho, Agus; Ulum, Miftakhul
2017-03-01
This study was aimed to determine the influence of internship toward students' entrepreneurship interest. Mechanical Engineering Education students from 2013 Batch who had the internship from Engineering Faculty at Semarang State University are the subject of this study. Data was collected through questionnaire and analyzed by simple regression analysis method. The internship subject score and entrepreneurship are categorized in very good level in which the average is 87.08% and 85.61%. However, the influence of internship toward students' interest is categorized in low level in which the average score is 7.9%. Internship section shall encourage students to study entrepreneurship aspects during the internship for entrepreneurship interest improvement and the students' preparation once they graduated. Description scoring standard is needed for scoring the students although they conduct their internship at different locations and companies. The students are highly recommended to conduct an an internship at entrepreneurship-based companies.
ERIC Educational Resources Information Center
Lent, Robert W.; Brown, Steven D.; Sheu, Hung-Bin; Schmidt, Janet; Brenner, Bradley R.; Gloster, Clay S.; Wilkins, Gregory; Schmidt, Linda C.; Lyons, Heather
2005-01-01
This study examined the utility of social cognitive career theory (SCCT; R. W. Lent, S. D. Brown, & G. Hackett, 1994) in predicting engineering interests and major choice goals among women and men and among students at historically Black and predominantly White universities. Participants (487 students in introductory engineering courses at 3…
Selected Engagement Factors and Academic Learning Outcomes of Undergraduate Engineering Students
ERIC Educational Resources Information Center
Justice, Patricia J.
2009-01-01
The concept of student engagement and its relationship to successful student performance and learning outcomes has a long history in higher education (Kuh, 2007). Attention to faculty and student engagement has only recently become of interest to the engineering education community. This interest can be attributed to long-standing research by…
Improving Student Interest in Engineering Curricula--Exciting Students about Their Classes
ERIC Educational Resources Information Center
Khalid, Adeel
2013-01-01
In this paper, we explore what events, activities, and teaching styles invoke student interest in engineering courses. The research is based on inputs from some of the best and award winning faculty members across disciplines. The activities that professors use to keep students engaged are highlighted. Similarly, the actions that professors take…
Minority engineering scholarships renewal, 2011.
DOT National Transportation Integrated Search
2012-08-01
Scholarships for Minority Students Studying Engineering and Science : Support will make scholarships available to minority students : interested in engineering and science and will increase significantly the number of minority students that Missouri ...
Minority engineering scholarships, 2012.
DOT National Transportation Integrated Search
2014-02-01
Scholarships for Minority Students Studying Engineering and Science: Support will make scholarships available to minority students : interested in engineering and science and will increase significantly the number of minority students that Missouri S...
NASA Astrophysics Data System (ADS)
Weber, Katherine
Society has become increasingly technological, demanding that all citizens have a level of technological literacy. In order for this to occur, both males and females must participate in technology-related activities to achieve an adequate level of technological literacy. Despite individual and organizational efforts, females continue to be underrepresented in STEM-related occupations. This is especially true in many engineering-related fields. Jolly, Campbell and Perlman (2004) devised the Engagement, Capacity, and Continuity (ECC) Trilogy. With each factor of the trilogy in place, Jolly et al. found that female representation increased in STEM. The purpose of this study was to identify whether Jolly, Campbell, and Perlman's (2004) Engagement, Capacity, and Continuity Trilogy could be utilized by teachers in technology and engineering program settings to examine their students' interest (engagement), perceived personal capacity (capacity), as well as participation in technology and engineering-related activities (continuity). This descriptive study surveyed 556 female and male middle school and high school students enrolled in Technology and Engineering classes. The results of this study revealed that when students indicated a high interest and a high perceived personal capacity, and when they participated in technology and engineering-related activities, they also indicated an interest in pursuing a career in engineering. The results also revealed that the male students continued to be encouraged by technology and engineering teachers, parents, and counselors to pursue a career in engineering more than female students. This startling finding should draw some concern; both males and females should be equally encouraged to consider engineering as a career. Technology and engineering teachers should implement activities that appeal to both males and females. Parents should encourage their daughters to participate in informal learning opportunities to nurture their daughters' interest in STEM-related areas. Counselors should gain an awareness of the scope and diversity of different engineering fields so they can advise both male and female students to consider careers in engineering. In order for the United States to be competitive and innovative at the global level, female representation and contributions in STEM fields must increase. Key Words: GENDER, ENGAGEMENT, INTEREST, PERCEIVED PERSONAL CAPACITY, TECHNOLOGY AND ENGINEERING ACTIVITIES, WISCONSIN, STEM, AFTERSCHOOL ACTIVITIES.
Results of Summer Enrichment Program to Promote High School Students' Interest in Engineering
ERIC Educational Resources Information Center
Hart, Brenda; McAnulty, Kate
2014-01-01
For more than thirty years, personnel from the University of Louisville J.B. Speed School of Engineering have presented a summer program targeting high school students historically underrepresented in engineering fields. INSPIRE provides these students with an introduction to careers in engineering and assists the students in planning their…
Social Cognitive Predictors of Academic Interests and Goals in South Korean Engineering Students
ERIC Educational Resources Information Center
Kim, Min Sun; Seo, Young Seok
2014-01-01
The purpose of this study was to investigate the applicability of social cognitive career theory (SCCT) in a cross-cultural setting by examining the relationships between the social cognitive variables of South Korean engineering students and their engineering interests and major choice goals across university type and gender. Participants (N =…
Biomedical and Biochemical Engineering for K-12 Students
ERIC Educational Resources Information Center
Madihally, Sundararajan V.; Maase, Eric L.
2006-01-01
REACH (Reaching Engineering and Architectural Career Heights) is a weeklong summer academy outreach program for high school students interested in engineering, architecture, or technology. Through module-based instruction, students are introduced to various engineering fields. This report describes one of the modules focused on introducing…
Student Self-Selection for Specializations in Engineering.
ERIC Educational Resources Information Center
Izraeli, Dafna; And Others
1979-01-01
Tests the hypothesis that students self-selecting themselves for different occupational fields differ in relevant values and interests. Industrial engineers have different work values and images of their subfield than other engineering specialists. In terms of type of student selecting engineering, the profession cannot be treated as an…
Ansari, Ali Uddin; Jafari, Ashfaque; Mirzana, Ishrat Meera; Imtiaz, Zulfia; Lukacs, Heather
2003-07-01
A recent initiative at Muffakham Jah College of Engineering and Technology, Hyderabad, India, has resulted in setting up a program called Centre for Environment Studies and Socioresponsive Engineering which seeks to involve undergraduate students in studying and solving environmental problems in and around the city of Hyderabad, India. Two pilot projects have been undertaken--one focusing on design and construction of an eco-friendly house, The Natural House, and another directed at improving environmental and general living conditions in a slum area. The paper describes our attempts and experience of motivating our students to take interest in such projects. In an interesting development we invited a member of a student-faculty team at Massachusetts Institute of Technology (M.I.T.) that is doing a project in Nepal on safe drinking water. We report in our paper how the presentation by the guest from M.I.T. served as a catalyst for generating interest among civil and mechanical engineering students in our own projects. The paper includes contributions from one of our students and the M.I.T. staff member, reporting on their experiences related to the slum development project. We also discuss the Natural House project and its international and educational significance as a means of inculcating sensitivity and interest in nature among engineering students. We propose a pledge for engineers similar to the Hippocratic Oath for medical professionals.
ERIC Educational Resources Information Center
Ing, Marsha; Aschbacher, Pamela R.; Tsai, Sherry M.
2014-01-01
This longitudinal study analyzes survey responses in seventh, eighth, and ninth grade from diverse public school students (n = 482) to explore gender differences in engineering and science career preferences. Females were far more likely to express interest in a science career (31%) than an engineering career (13%), while the reverse was true for…
Retention, Success, and Satisfaction of Engineering Students Based on the First-Year Experience
ERIC Educational Resources Information Center
Prendergast, Lydia Q.
2013-01-01
A project-based course for first-year engineering students, called Engineering Exploration, was created an implemented with the goals of increasing retention, providing professional skills, increasing interest about engineering, and to aide in choosing an engineering major. Over 100 students have taken the course since its inception in Fall 2009.…
Beyond Blackboards: Engaging Underserved Middle School Students in Engineering.
Blanchard, Sarah; Judy, Justina; Muller, Chandra; Crawford, Richard H; Petrosino, Anthony J; White, Christina K; Lin, Fu-An; Wood, Kristin L
Beyond Blackboards is an inquiry-centered, after-school program designed to enhance middle school students' engagement with engineering through design-based experiences focused on the 21 st Century Engineering Challenges. Set within a predominantly low-income, majority-minority community, our study aims to investigate the impact of Beyond Blackboards on students' interest in and understanding of engineering, as well as their ability to align their educational and career plans. We compare participants' and nonparticipants' questionnaire responses before the implementation and at the end of the program's first academic year. Statistically significant findings indicate a school-wide increase in students' interest in engineering careers, supporting a shift in school culture. However, only program participants showed increased enjoyment of design-based strategies, understanding of what engineers do, and awareness of the steps for preparing for an engineering career. These quantitative findings are supported by qualitative evidence from participant focus groups highlighting the importance of mentors in shaping students' awareness of opportunities within engineering.
Mathematics and online learning experiences: a gateway site for engineering students
NASA Astrophysics Data System (ADS)
Masouros, Spyridon D.; Alpay, Esat
2010-03-01
This paper focuses on the preliminary design of a multifaceted computer-based mathematics resource for undergraduate and pre-entry engineering students. Online maths resources, while attractive in their flexibility of delivery, have seen variable interest from students and teachers alike. Through student surveys and wide consultations, guidelines have been developed for effectively collating and integrating learning, support, application and diagnostic tools to produce an Engineer's Mathematics Gateway. Specific recommendations include: the development of a shared database of engineering discipline-specific problems and examples; the identification of, and resource development for, troublesome mathematics topics which encompass ideas of threshold concepts and mastery components; the use of motivational and promotional material to raise student interest in learning mathematics in an engineering context; the use of general and lecture-specific concept maps and matrices to identify the needs and relevance of mathematics to engineering topics; and further exploration of the facilitation of peer-based learning through online resources.
ERIC Educational Resources Information Center
Dika, Sandra L.; Alvarez, Jaquelina; Santos, Jeannette; Suárez, Oscar Marcelo
2016-01-01
Interest in engineering at early stages of the educational career is one important precursor to choosing to study engineering in college, and engineering-related clubs are designed to foster such interest and diversify the engineering pipeline. In this study, the researchers employed a social cognitive career theory framework to examine level of…
Black Engineering Students' Motivation for PhD Attainment: Passion Plus Purpose
ERIC Educational Resources Information Center
McGee, Ebony O.; White, Devin T.; Jenkins, Akailah T.; Houston, Stacey; Bentley, Lydia C.; Smith, William J.; Robinson, William H.
2016-01-01
Purpose: Much of the extant research, practice and policy in engineering education has focused on the limited persistence, waning interest and lack of preparation among Black students to continue beyond the post-secondary engineering pipeline. However, this research suggests that many Black PhD students persist and succeed in engineering, fueled…
The Intersection of Gender and Race: Exploring Chemical Engineering Students' Attitudes
ERIC Educational Resources Information Center
Goodwin, Allison; Verdín, Dina; Kirn, Adam; Satterfield, Derrick
2018-01-01
We surveyed 342 first-year engineering students at four U.S. institutions interested in a chemical engineering career about their feelings of belonging in engineering, motivation, and STEM identities. We compared these students by both gender and race/ethnicity on these attitudinal factors. We found several significant differences in…
NASA Astrophysics Data System (ADS)
Julianto, Eko Nugroho; Salamah, Ummu
2017-03-01
On the 2012 curriculum, Vocational Education Program Universitas Negeri Semarang allowed the students to choose subjects for their specialization according to their ability. The subject specialization was given at the 6th semester to provide students in performing field work experience. Each course has its own enthusiasts specialization, students have certain considerations in selecting the course. The consideration of each of them is different from one another because they have their own talents, interests, aspirations and perceptions or a different view in assessing a subject specialization offered by Construction Engineering Vocational Education Program. The purpose of this study was to determine the amount of interest caused by intrinsic and extrinsic factors on 2012 and 2013 students' cohort in selecting subjects of specialization. This research is descriptive with quantitative approach, which is carried out to determine the magnitude of the interest students in choosing courses of specialization. Research conducted at the Civil Engineering Department Universitas Negeri Semarang, with research subjects that students PTB forces in 2012 and 2013, with a total sample of 87 students. The results showed that the interest of the student of 2012 and 2013 in selecting subjects of specialization is equal to 68.06% with the criteria are interested in contributions from intrinsic factors indicate the yield at 35.48% and 64.52% extrinsic factors.
NASA Astrophysics Data System (ADS)
Killingsworth, John
Low degree completion in technical and engineering degrees is a growing concern for policymakers and educators in the United States. This study was an examination of the behaviors of adolescents specific to career decisions related to technology and engineering. The central research question for this study was: do rural, Midwestern high school technical and engineering curricula serve to engage students sufficiently to encourage them to persist through high school while sustaining their interests in technology and engineering careers? Engaging students in technology and engineering fields is the challenge for educators throughout the country and the Midwest. Rural schools have the additional challenge of meeting those issues because of resource limitations. Students in three Midwestern schools were surveyed to determine the level of interest in technology and engineering. The generalized likelihood ratio test was used to overcome concerns for small sample sizes. Accounting for dependent variables, multiple independent variables are examined using descriptive statistics to determine which have greater influence on career decisions, specifically those related to technology and engineering. A typical science curriculum is defined for rural Midwestern high schools. This study concludes that such curriculum achieves the goal of maintaining or increasing student interest and engagement in STEM careers. Furthermore, those schools that incorporate contextual and experiential learning activities into the curriculum demonstrate increased results in influencing student career choices toward technology and engineering careers. Implications for parents, educators, and industry professionals are discussed.
Women in science & engineering and minority engineering scholarships : year 5.
DOT National Transportation Integrated Search
2011-06-01
Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...
Women in science & engineering and minority engineering scholarships : year 4.
DOT National Transportation Integrated Search
2010-04-01
Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...
The Development of the STEM Career Interest Survey (STEM-CIS)
NASA Astrophysics Data System (ADS)
Kier, Meredith W.; Blanchard, Margaret R.; Osborne, Jason W.; Albert, Jennifer L.
2014-06-01
Internationally, efforts to increase student interest in science, technology, engineering, and mathematics (STEM) careers have been on the rise. It is often the goal of such efforts that increased interest in STEM careers should stimulate economic growth and enhance innovation. Scientific and educational organizations recommend that efforts to interest students in STEM majors and careers begin at the middle school level, a time when students are developing their own interests and recognizing their academic strengths. These factors have led scholars to call for instruments that effectively measure interest in STEM classes and careers, particularly for middle school students. In response, we leveraged the social cognitive career theory to develop a survey with subscales in science, technology, engineering, and mathematics. In this manuscript, we detail the six stages of development of the STEM Career Interest Survey. To investigate the instrument's reliability and psychometric properties, we administered this 44-item survey to over 1,000 middle school students (grades 6-8) who primarily were in rural, high-poverty districts in the southeastern USA. Confirmatory factor analyses indicate that the STEM-CIS is a strong, single factor instrument and also has four strong, discipline-specific subscales, which allow for the science, technology, engineering, and mathematics subscales to be administered separately or in combination. This instrument should prove helpful in research, evaluation, and professional development to measure STEM career interest in secondary level students.
CURRICULUM: A Chemical Engineering Course for Liberal Arts Students--Indigo: A World of Blues
ERIC Educational Resources Information Center
Piergiovanni, Polly R.
2012-01-01
Sophomore liberal arts and engineering students enrolled in a course to learn and practice some basic chemical engineering side by side. The course was developed around the theme of indigo dyeing, which has an interesting history, fascinating chemistry and is accessible to all students. The students participated in a variety of active learning…
DOT National Transportation Integrated Search
2008-08-01
Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...
DOT National Transportation Integrated Search
2009-05-01
Support made scholarships available to minority and women students interested in engineering and science and significantly increased : the number of minority and female students that Missouri S&T can recruit to its science and engineering programs. R...
Middle-and High-School Students' Interest in Nanoscale Science and Engineering Topics and Phenomena
ERIC Educational Resources Information Center
Hutchinson, Kelly; Bodner, George M.; Lynn, Bryan
2011-01-01
Research has shown that an increase in students' interest in science and engineering can have a positive effect on their achievement (Baird, 1986; Eccles & Wigfield, 2002; French, Immekus & Oakes, 2005; Schiefele, Krapp, & Winteler, 1992; Schwartz Bloom & Haplin, 2003; Weinburgh, 1995). Whereas many NSF-funded programs in materials…
Authentic scientific research in an international setting as a path toward higher education
NASA Astrophysics Data System (ADS)
Mladenov, N.; Palomo, M.; Casad, B.; Pietruschka, B.; Buckley, C.
2016-12-01
Studies have shown that undergraduate research opportunities foster student interest in research, encourage minority students to seek advanced degrees, and put students on a path toward higher education. It has been further suggested that engineering projects in international settings address issues of sustainability and promote a connection between engineering and social welfare that may compel students to seek future research opportunities. In this study, we explored the role that authentic research experiences in an international setting play in promoting higher education for students from groups typically under-represented in engineering and sciences. We hypothesized that the international context of the research experiences will provide undergraduate and graduate students with a global perspective of water reuse challenges and promote increased interest in pursuing a higher degree in engineering. Through the Sustainable Sanitation International Research Experiences for Students (IRES) Program, US students conducting research in Durban, South Africa in 2015 and 2016, were tasked with leading 6-week long research projects, collaborating with partners at the University of KwaZulu Natal, and producing papers and presentations for regional and international scientific conferences. All undergraduate participants were from groups under-represented in the sciences. Pre- and post-program survey results revealed that, after completing the program, participants of Cohort 1 had 1) greater research skills, 2) greater identification as an engineer, and 3) stronger intentions to pursue a PhD in engineering. Survey data were also used to evaluate comfort with cultural diversity before and after the international program and the effect of pairing US with South African student researchers. Our results indicate that students' awareness of societal needs and engineering challenges faced in Durban resulted in a positive impact on each student. The benefits gained from the international research experience have important implications for environmental engineering and other scientific fields in terms of inducing greater self-efficacy and fostering an interest in higher education for students from groups traditionally under-represented in the sciences.
Finding a Home in Engineering: Examining Students' Choice of Engineering Discipline
ERIC Educational Resources Information Center
Ngambeki, Ida Busiime
2012-01-01
The decision to major in engineering and the selection of a discipline within engineering are two separate choices. Students who choose an engineering discipline that makes the best use of their skills and abilities, engages their interest, and aligns with their values, are more likely to thrive in the discipline of engineering they choose.…
Engineering Students' Sustainability Approaches
ERIC Educational Resources Information Center
Haase, S.
2014-01-01
Sustainability issues are increasingly important in engineering work all over the world. This article explores systematic differences in self-assessed competencies, interests, importance, engagement and practices of newly enrolled engineering students in Denmark in relation to environmental and non-environmental sustainability issues. The…
First-Year Students' Attitudes towards the Grand Challenges and Nanotechnology
ERIC Educational Resources Information Center
Lakin, Joni M.; Han, Yi; Davis, Edward
2016-01-01
The "Grand Challenges" for Engineering are an effort to portray engineering as a field that has profound impacts on society. This study explores the level of interest first-year engineering students had in various "Grand Challenges" and in nanotechnology topics. We administered a survey to a large sample of students enrolled in…
Student diversity programs : sponsored items and events for 2013-2014.
DOT National Transportation Integrated Search
2014-07-01
Support made scholarships available to minority and women students interested in engineering and science and increased significantly : the number of minority and female students that Missouri S&T can recruit to its science and engineering programs. R...
ERIC Educational Resources Information Center
Udoaka, Vicky L.
2017-01-01
School systems across the United States have launched the Science, Technology, Engineering and Math recruitment initiatives to interest students in related majors and careers. While an overall interest of high school students in Science, Technology, Engineering and Math majors and careers has increased by over twenty-five percent in the past two…
Graduate Women in Engineering.
ERIC Educational Resources Information Center
Goldberg, Julie L.; Sedlacek, William E.
The transition from undergraduate to graduate school is a point when female students may lose interest in pursuing engineering degrees, and the percentage of women enrolled in engineering graduate programs is small in comparison to that of males. To attempt to mitigate the potential isolation of women graduate engineering students, the Women in…
Women in science & engineering scholarships and summer camp outreach programs : year 6.
DOT National Transportation Integrated Search
2012-08-01
Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...
Anatomy for Biomedical Engineers
ERIC Educational Resources Information Center
Carmichael, Stephen W.; Robb, Richard A.
2008-01-01
There is a perceived need for anatomy instruction for graduate students enrolled in a biomedical engineering program. This appeared especially important for students interested in and using medical images. These students typically did not have a strong background in biology. The authors arranged for students to dissect regions of the body that…
STEM Learning through Engineering Design: Impact on Middle Secondary Students' Interest towards STEM
ERIC Educational Resources Information Center
Shahali, Edy Hafizan Mohd; Halim, Lilia; Rasul, Mohamad Sattar; Osman, Kamisah; Zulkifeli, Mohd Afendi
2017-01-01
The purpose of this study was to identify students' changes of (i) interest toward STEM subjects and (ii) interest to pursuing STEM career after participating in non-formal integrated STEM education programme. The programme exposed students with integrated STEM education through project based learning involving the application of five phases…
Preparing University Students to Lead K-12 Engineering Outreach Programmes: A Design Experiment
ERIC Educational Resources Information Center
Anthony, Anika B.; Greene, Howard; Post, Paul E.; Parkhurst, Andrew; Zhan, Xi
2016-01-01
This paper describes an engineering outreach programme designed to increase the interest of under-represented youth in engineering and to disseminate pre-engineering design challenge materials to K-12 educators and volunteers. Given university students' critical role as facilitators of the outreach programme, researchers conducted a two-year…
NASA Astrophysics Data System (ADS)
Swan, Amy K.
2011-12-01
This qualitative study explored the experiential and contextual factors that shaped female students' pathways into introductory project-based engineering classes at two community colleges and one four-year institution, as well as female students' experiences within and outside of these classes. The study was framed by Social Cognitive Career Theory (SCCT) (Lent, Brown & Hackett, 1996) and Bronfenbrenner's (1979) ecological systems theory. Findings were based on analyses of data gathered through multiple methods: observations; individual interviews with female students; focus group interviews with project teams; and document collection. The findings of this study revealed that while positive experiences with math or science were a likely pre-cursor to engineering interest, experiential learning appeared to be a more powerful force in fostering students' engineering interest. Specifically, participants developed an interest in engineering through academic, professional, and extracurricular engineering- and design-related activities that familiarized them with the tasks and skills involved in engineering work and helped them develop a sense of selfefficacy with regard to this work. Interest and self-efficacy, in turn, played a role in students' postsecondary educational decision-making processes, as did contextual factors including families and finances. This study's findings also showed that participants' project teams were a critically important microsystem within participants' ecological environments. Within this sometimes "chilly" microsystem, female students negotiated intrateam processes, which were in some cases affected by gender norms. Intrateam processes that influenced female students' project-based learning experiences included: interpersonal dynamics; leadership; and division of labor. This study also identified several ways in which the lived experiences of participants at the community colleges were different from, or similar to, those of participants at the four-year institution. In the classroom, similarities and differences were related to projects, learning outcomes, language and time, while outside of the classroom they were primarily linked to time and peer support. This study's findings suggest a need for expanded access to experiential learning opportunities and ongoing attention to the role of community colleges in engineering education. Study findings also point toward ways that engineering educators might attend to the intrateam processes identified, and better accommodate the needs of all students in project-based introductory courses.
Chesler, Naomi C; Ruis, A R; Collier, Wesley; Swiecki, Zachari; Arastoopour, Golnaz; Williamson Shaffer, David
2015-02-01
Engineering virtual internships are a novel paradigm for providing authentic engineering experiences in the first-year curriculum. They are both individualized and accommodate large numbers of students. As we describe in this report, this approach can (a) enable students to solve complex engineering problems in a mentored, collaborative environment; (b) allow educators to assess engineering thinking; and (c) provide an introductory experience that students enjoy and find valuable. Furthermore, engineering virtual internships have been shown to increase students'-and especially women's-interest in and motivation to pursue engineering degrees. When implemented in first-year engineering curricula more broadly, the potential impact of engineering virtual internships on the size and diversity of the engineering workforce could be dramatic.
Optics in engineering education: stimulating the interest of first-year students
NASA Astrophysics Data System (ADS)
Blanco-García, Jesús; Vazquez-Dorrío, Benito
2014-07-01
The work here presented deals with stimulating the interest for optics in first-year students of an Engineering School, which are not specifically following Optical Engineering studies. Optic-based technologies are nowadays wide spread, and growing, in almost all the engineering fields (from non destructive testing or alignments to power laser applications, fiber optic communications, memory devices, etc.). In general, the first year curriculum doesn't allow a detailed review of the main light properties, least its technical applications. We present in this paper our experience in showing some basic optic concepts and related technologies to the students of our school. Based on the fact that they have a very basic training in this branch of physics, we have designed a series of experimental demonstrations with the dual purpose of making them understand the basic principles of these technologies, and to know the potential of applications to engineering they offer. We assembled these experiments in the laboratory and invited students to pass to get to know them, giving them an explanation in which we focused on the possible range of application of each technique. The response was very good, not only by the number of students who attended the invitation but also by the interest demonstrated by their questions and opinions.
ERIC Educational Resources Information Center
Holmes, Stephanie; Redmond, Adrienne; Thomas, Julie; High, Karen
2012-01-01
Current data suggest fewer females than males continue to be interested in engineering and that this gender gap is first evidenced during middle school years. One might expect that female engineering role models would encourage adolescent girls to pursue future careers in engineering and thereby increase the girls' interests in and attitudes…
Situational Interest in Engineering Design Activities
NASA Astrophysics Data System (ADS)
Bonderup Dohn, Niels
2013-08-01
The aim of the present mixed-method study was to investigate task-based situational interest of sixth grade students (n = 46), between 12 and 14 years old, during an eight-week engineering design programme in a Science & Technology-class. Students' interests were investigated by means of a descriptive interpretative analysis of qualitative data from classroom observations and informal interviews. The analysis was complemented by a self-report survey to validate findings and determine prevalence. The analysis revealed four main sources of interest: designing inventions, trial-and-error experimentation, achieved functionality of invention, and collaboration. These sources differ in terms of stimuli factors, such as novelty, autonomy (choice), social involvement, self-generation of interest, and task goal orientation. The study shows that design tasks stimulated interest, but only to the extent that students were able to self-regulate their learning strategies.
Some developing concepts of engineering education
NASA Technical Reports Server (NTRS)
Perkins, C. D.
1975-01-01
An analysis of the circumstances which have created a shortage of aeronautical engineering undergraduate students in the universities is presented. Suggestions for motivating students to enter aeronautical engineering are examined. The support of the aeronautical industry for graduate education funding is recommended. Examples of actions taken by governmental agencies to promote increased interest in aeronautical engineering are included.
A Project-Based Engineering and Leadership Workshop for High School Students
ERIC Educational Resources Information Center
Ryder, Linda Sue; Pegg, Jerine; Wood, Nathan
2012-01-01
Summer outreach programs provide pre-college participants an introduction to college life and exposure to engineering in an effort to raise the level of interest and bring more students into engineering fields. The Junior Engineering, Mathematics, and Science (JEMS) program is a project-based summer workshop in which teams of high school students…
Student research laboratory for optical engineering
NASA Astrophysics Data System (ADS)
Tolstoba, Nadezhda D.; Saitgalina, Azaliya; Abdula, Polina; Butova, Daria
2015-10-01
Student research laboratory for optical engineering is comfortable place for student's scientific and educational activity. The main ideas of laboratory, process of creation of laboratory and also activity of laboratory are described in this article. At ITMO University in 2013-2014 were formed a lot of research laboratories. SNLO is a student research (scientific) laboratory formed by the Department of Applied and computer optics of the University ITMO (Information Technologies of Mechanics and Optics). Activity of laboratory is career guidance of entrants and students in the field of optical engineering. Student research laboratory for optical engineering is a place where student can work in the interesting and entertaining scientific atmosphere.
ERIC Educational Resources Information Center
Brown, Eleese V.
1975-01-01
A student teacher introduced his elementary school students, both boys and girls, to a subject generally held to be a male province. Students drew their own conceptions of automobile engines and their accompanying parts and learned that anything can be interesting and hold their attention if introduced well. (Author/RK)
Shaking up Pre-Calculus: Incorporating Engineering into K-12 Curricula
ERIC Educational Resources Information Center
Sabo, Chelsea; Burrows, Andrea; Childers, Lois
2014-01-01
Projects highlighting Science, Technology, Engineering, and Mathematics (STEM) education in high schools have promoted student interest in engineering-related fields and enhanced student understanding of mathematics and science concepts. The Science and Technology Enhancement Program (Project STEP), funded by a NSF GK-12 grant at the University of…
UCS-PROMOVE: The Engineer of the Future
ERIC Educational Resources Information Center
Villas-Boas, V.
2010-01-01
The Universidade de Caxias do Sul (UCS) elaborated the cooperative project called "The engineer of the future", with the objective of promoting science and engineering among high school teachers and students. This project aims to improve the quality of the teaching and to increase the interest of students in technological areas, leading…
Advancing the "E" in K-12 STEM Education
ERIC Educational Resources Information Center
Rockland, Ronald; Bloom, Diane S.; Carpinelli, John; Burr-Alexander, Levelle; Hirsch, Linda S.; Kimmel, Howard
2010-01-01
Technological fields, like engineering, are in desperate need of more qualified workers, yet not enough students are pursuing studies in science, technology, engineering, or mathematics (STEM) that would prepare them for technical careers. Unfortunately, many students have no interest in STEM careers, particularly engineering, because they are not…
ERIC Educational Resources Information Center
Blackburn, J. Joey; Robinson, J. Shane
2017-01-01
The purpose of this study was to determine if selected factors influenced the ability of students in school-based agricultural education programs to generate a correct hypothesis when troubleshooting small gasoline engines. Variables of interest included students' cognitive style, age, GPA, and content knowledge in small gasoline engines. Kirton's…
NASA Astrophysics Data System (ADS)
Dettinger, Karen Marie
This study used grounded theory in a case study at a large public research university to develop a theory about how the culture in engineering education affects students with varying interests and backgrounds. According to Career Preference Theory, the engineering education system has evolved to meet the needs of one type of student, the Physical Scientist. While this educational process serves to develop the next generation of engineering faculty members, the majority of engineering undergraduates go on to work as practicing engineers, and are far removed from working as physical scientists. According to Career Preference Theory, students with a history of success in mathematics and sciences, and a focus on career, enter engineering. These students, who actually have a wide range of interests and values, each begin seeking an identity as a practicing engineer. Career Preference Theory is developed around a concept, Career Identity Type, that describes five different types of engineering students: Pragmatic, Physical Scientist, "Social" Scientist, Designer, and Educator. According to the theory, each student must develop an identity within the engineering education system if they are to persist in engineering. However, the current undergraduate engineering education system has evolved in such a way that it meets only the needs of the Physical Scientist. Pragmatic students are also likely to succeed because they tend to be extremely goal-focused and maintain a focus on the rewards they will receive once they graduate with an engineering degree. However, "Social" Scientists, who value interpersonal relationships and giving back to society; Designers, who value integrating ideas across disciplines to create aesthetically pleasing and useful products; and Educators, who have a strong desire to give back to society by working with young people, must make some connection between these values and a future engineering career if they are to persist in engineering. According to Career Preference Theory, "Social" Scientists, Designers, and Educators are likely to leave engineering, while Pragmatics and Physical Scientists are likely to persist.
Engineering students' sustainability approaches
NASA Astrophysics Data System (ADS)
Haase, S.
2014-05-01
Sustainability issues are increasingly important in engineering work all over the world. This article explores systematic differences in self-assessed competencies, interests, importance, engagement and practices of newly enrolled engineering students in Denmark in relation to environmental and non-environmental sustainability issues. The empirical base of the article is a nation-wide, web-based survey sent to all newly enrolled engineering students in Denmark commencing their education in the fall term 2010. The response rate was 46%. The survey focused on a variety of different aspects of what can be conceived as sustainability. By means of cluster analysis, three engineering student approaches to sustainability are identified and described. The article provides knowledge on the different prerequisites of engineering students in relation to the role of sustainability in engineering. This information is important input to educators trying to target new engineering students and contribute to the provision of engineers equipped to meet sustainability challenges.
ERIC Educational Resources Information Center
Yelamarthi, Kumar
2016-01-01
Many interesting research and design questions occur at the intersections of traditional disciplines, yet most coursework and research programs for undergraduate engineering students are focused on one discipline. This leads to underutilization of the potential in better preparing students through multidisciplinary projects. Identifying this…
A Flipped First-Year Digital Circuits Course for Engineering and Technology Students
ERIC Educational Resources Information Center
Yelamarthi, Kumar; Drake, Eron
2015-01-01
This paper describes a flipped and improved first-year digital circuits (DC) course that incorporates several active learning strategies. With the primary objective of increasing student interest and learning, an integrated instructional design framework is proposed to provide first-year engineering and technology students with practical knowledge…
NASA Astrophysics Data System (ADS)
St-Jacques, J. M.; McGee, S.; Janze, R.; Longman, M.; Pete, S.; Starblanket, N.
2016-12-01
Canadian Indigenous people are an extremely poorly represented group in STEM today due to major barriers in obtaining a high school and then a university education. Approximately 10% of the undergraduate student population out of a total 12,600 students at the University of Regina, Regina, Saskatchewan, is First Nations, Métis or Inuit. The university is located in a catchment region where 30% of the population is First Nations or Métis. Approximately 100 students majoring in the sciences, mathematics and engineering have self-declared themselves to be Indigenous. For the past two years, we have been running a pilot project, the Initiative to Support and Increase the Number of Indigenous Students in the Sciences, Mathematics and Engineering at the Aboriginal Student Centre, with financial support from the Deans of Science and Engineering. We provide student networking lunches, Indigenous scientist and engineer speakers and mentors and supplemental tutoring. Our program is actively supported and guided by Elder Noel Starblanket, former president of the National Indian Brotherhood (now the Assembly of First Nations). Our students are greatly interested in the health and environmental sciences (particularly water quality), with a sprinkling of physics, mathematics and engineering majors. Our students have gone on to graduate work with prestigious scholarships and a paid internship in engineering. We report here on various lessons learned: the involvement of elders is key, as is the acceptance of non-traditional academic paths, and any STEM support program must respect Indigenous culture. There is great interest in science and engineering on the part of these students, if scientists and engineers are willing to listen and learn to talk with these students on their own terms.
ERIC Educational Resources Information Center
Habash, Riadh W. Y.; Suurtamm, Christine
2010-01-01
If we aim to enhance the interest of students in engineering and therefore produce the best engineers, it is essential to strengthen the pipeline to high school education. This paper discusses several outreach activities undertaken by the Faculty of Engineering and Faculty of Education, University of Ottawa (UO), Ottawa, ON, Canada, to help the…
Hands-on curriculum teaches biomedical engineering concepts to home-schooled students.
Sagstetter, Ann M; Nimunkar, Amit J; Tompkins, Willis J
2009-01-01
University level outreach has increased over the last decade to stimulate K-12 student interest in engineering related fields. Home schooling students are one of the groups that are valued for engineering admissions due to diligent study habits and high achievement scores. However, home schooled students have inadequate access to science, math, and engineering related resources, which precludes the development of interdisciplinary teaching methods. To address this problem, we have developed a hands-on, STEM based curriculum as a safe and comprehensive supplement to current home schooling curricula. The ultimate goal is to stimulate university-student relations and subsequently increase engineering recruitment opportunities. Our pre and post workshop survey comparisons demonstrate that integrating disciplines, via the manner presented in this study, provides a K-12 student-friendly engineering learning method.
Learning Styles of Mexican Food Science and Engineering Students
ERIC Educational Resources Information Center
Palou, Enrique
2006-01-01
People have different learning styles that are reflected in different academic strengths, weaknesses, skills, and interests. Given the almost unlimited variety of job descriptions within food science and engineering, it is safe to say that students with every possible learning style have the potential to succeed as food scientists and engineers.…
Science and Engineering Technician Curriculum Development Project. Final Report.
ERIC Educational Resources Information Center
Mowery, Donald R.; Wolf, Lawrence J.
Project SET (Science and Engineering for Technicians) developed a series of study guides designed to teach generic science and engineering skills to students interested in becoming technicians. An entire 2-year curriculum is encompassed by these guides, geared for 2-year college students. Described in this final report are the project's rationale,…
Motivations, interests and retention of female minority engineering students
NASA Astrophysics Data System (ADS)
Syed, Naila
In an effort to potentially increase low enrollment of females, particularly minorities, in Engineering programs, this study used a survey to determine motivations, interests and retention of current female Engineering students. A total of 82 participants from varied ethnic (non-Hispanic white, Euro-American, African American, Hispanic American, Asian American, South Asian, Arab American, and Native American participants) and education (high school senior, undergraduate, graduate, and in-service Engineers) backgrounds filled out the survey. With approximately half of the participants being non-minorities (non-Hispanic white or Euro-American), they served as the `control' group for the data, and the comparison group was the minority participants. Notable differences between the two groups were: student participation in female community groups, and extra-curricular activities like sports and arts (writing, drama and band) clubs. Increasing female-minority participation in these clubs and other extra-curricular activities may potentially increase their enrollment numbers in Engineering programs.
Careers in STEM Begin with Elementary Student Interest in Mathematics
ERIC Educational Resources Information Center
Brimmer, Linda Ertrachter
2017-01-01
I investigated why math capable students are not entering science, technology, engineering, and math (STEM) careers. To research the problem, I explored how highly effective elementary math teachers (HEMT) create student interest in mathematics using the self- efficacy (SE) theory and information and communication technology (ICT). The purpose of…
Understanding the Changing Dynamics of the Gender Gap in Undergraduate Engineering Majors: 1971-2011
ERIC Educational Resources Information Center
Sax, Linda J.; Kanny, M. Allison; Jacobs, Jerry A.; Whang, Hannah; Weintraub, Dayna S.; Hroch, Amber
2016-01-01
In this paper we examine the level and determinants of entering college students' plans to major in engineering. While the overall level of interest in engineering has fluctuated between 1971 and 2011, a very large gender gap in freshman interest remains. We find that the percent of first-year women who plan to major in engineering is roughly the…
ERIC Educational Resources Information Center
Hayden, Katherine; Ouyang, Youwen; Scinski, Lidia; Olszewski, Brandon; Bielefeldt, Talbot
2011-01-01
The iQUEST (investigations for Quality Understanding and Engagement for Students and Teachers) project is designed to promote student interest and attitudes toward careers in science, technology, engineering, and mathematics (STEM). The project targets seventh- and eighth-grade science classrooms that serve high percentages of Hispanic students.…
Secondary Students' Conceptual Understanding of Engineering as a Field
ERIC Educational Resources Information Center
Montfort, Devlin B.; Brown, Shane; Whritenour, Victoria
2013-01-01
Researchers have long been interested in how to recruit and retain more and more diverse students into engineering programs. One consistent challenge in this research is understanding the impacts of interventions from the point of view of the student, and how their preconceptions may influence that effectiveness. This study investigated how…
Enhancing Student Learning in Food Engineering Using Computational Fluid Dynamics Simulations
ERIC Educational Resources Information Center
Wong, Shin Y.; Connelly, Robin K.; Hartel, Richard W.
2010-01-01
The current generation of students coming into food science and engineering programs is very visually oriented from their early experiences. To increase their interest in learning, new and visually appealing teaching materials need to be developed. Two diverse groups of students may be identified based on their math skills. Food science students…
Undergraduate Research Participation and STEM Graduate Degree Aspirations among Students of Color
ERIC Educational Resources Information Center
Strayhorn, Terrell L.
2010-01-01
Increasing the number of students who complete advanced degrees in science, technology, engineering, and mathematics (STEM) fields is a compelling national interest. Although college science and engineering degree completion rates have improved considerably over the past few decades, significant gaps persist among women and students of color. Gaps…
ERIC Educational Resources Information Center
Bosman, Lisa; Chelberg, Kelli; Winn, Ryan
2017-01-01
Many barriers exist for American Indian students pursuing STEM degree programs. However, federally recognized Tribal Colleges and Universities (TCUs) are uniquely suited to overcome these barriers because of their shared mission to provide 21st Century educational opportunities for American Indian students. Qualitative and quantitative findings…
Students Designing Video Games about Immunology: Insights for Science Learning
ERIC Educational Resources Information Center
Khalili, Neda; Sheridan, Kimberly; Williams, Asia; Clark, Kevin; Stegman, Melanie
2011-01-01
Exposing American K-12 students to science, technology, engineering, and math (STEM) content is a national initiative. Game Design Through Mentoring and Collaboration targets students from underserved communities and uses their interest in video games as a way to introduce science, technology, engineering, and math topics. This article describes a…
NASA Astrophysics Data System (ADS)
Bennett, Sean T.
This study examines African American student perceptions of persistence in engineering. The research design is methodologically qualitative using a purposefully selected population of engineering students. Semi-structured interviews were designed to develop an in-depth understanding of what completion of the engineering degree means to African American engineering students. This research seeks insight into the linkages between African American student perceptions of persistence as it relates to both the academic and social culture of the engineering department. Vincent Tinto's model of Institutional Departure (1975, 1987) is one of the most commonly cited models of persistence in higher education (Braxton, Milem, Sullivan, 2000). Tinto's model was leveraged in this study to understand perceptions obtained through student interviews. Tinto suggests that exploration of student goal commitment and perceptions of institutional commitment are key to understanding student persistence. Results of this study suggest that African American students have perceptions about the university that may influence the decision to persist in engineering. Ultimately, this study may prove useful to researchers and administrators interested in improving access and success for African American engineering students.
ERIC Educational Resources Information Center
Swan, Amy
2015-01-01
This qualitative study explores the formation of educational and vocational goals among female first-year engineering students at two community colleges and one four-year institution, as well as contextual influences on this process. Participants' pathways to college are also explored, as well as their pathways into engineering. The findings…
NASA Astrophysics Data System (ADS)
Sethy, Satya Sundar
2017-11-01
'Professional Ethics' has been offered as a compulsory course to undergraduate engineering students in a premier engineering institution of India. It was noticed that students' perceptions and attitudes were frivolous and ornamental towards this course. Course instructors and institution authorities were motivated to find out the factors contributing to this awkwardness. For this purpose, a questionnaire was prepared and administrated to 336 students registered for the July-November 2014 semester. The study found two factors contributing to students' indifference towards the Professional Ethics course. First, most of the students did not have self-interest to join the engineering programme, and while pursuing their study, they decided to switch to a different field upon completion of their engineering study. Second, students who desired to be engineers in their future believed that engineering code of ethics is not really referred to in most of the engineering jobs, and therefore Professional Ethics course is only meant for classroom discussions.
ERIC Educational Resources Information Center
Mohr-Schroeder, Margaret J.; Jackson, Christa; Miller, Maranda; Walcott, Bruce; Little, David L.; Speler, Lydia; Schooler, William; Schroeder, D. Craig
2014-01-01
It is a well-known fact that, in general, many students have a lack of interest and proficiency in mathematics and science. Therefore, it is imperative that we prepare and inspire all students, specifically students of underrepresented populations, to learn science, technology, engineering, and mathematics (STEM) content. Now in its fourth year,…
Calling STEM Experts: How Can Experts Contribute to Students' Increased STEM Engagement?
ERIC Educational Resources Information Center
Gamse, Beth C.; Martinez, Alina; Bozzi, Laurie
2017-01-01
Encouraging student interest in science, technology, engineering, and math (STEM) is an urgent priority in the USA and abroad. How most effectively to generate and sustain student interest in and preparation for STEM education and careers remains a vexing question, as the content areas, target ages, instructional approaches, and specific purposes…
Science, Engineering, Mathematics and Aerospace Academy
NASA Technical Reports Server (NTRS)
1996-01-01
The Science, Engineering, Mathematics and Aerospace Academy (SEMAA) was established in September, 1993, by Cuyahoga Community College and the NASA Lewis Research Center. Funding for SEMAA was provided by NASA Headquarters' Office of Equal Employment Opportunities. SEMAA brought together five preexisting youth programs at Cuyahoga Community College. All the programs shared the common goals of 1) Increasing the participation of underrepresented/underserved groups in science, mathematics and engineering and technology careers. 2) Increasing "success" rates of all students interested in science and mathematics. 3) Developing partnerships to recognize and support students interested in these fields. 4) Supporting continued success of highly successful students. The framework for each preexisting program allowed SEMAA to have a student population ranging from kindergarten through the twelfth-grade. This connectivness was the foundation for the many decisions which would make SEMAA a truly innovative program.
ERIC Educational Resources Information Center
Aryee, Michael
2017-01-01
The lack of students' persistence (or student's effort to continue their academic studies until degree completion) in Science, Technology, Engineering, and Mathematics (STEM) and the attrition of STEM students as well as the shortage of STEM workers have gathered much attention from policy makers, governmental agencies, higher education…
Charge It! Translating Electric Vehicle Research Results to Engage 7th and 8th Grade Girls
NASA Astrophysics Data System (ADS)
Egbue, Ona; Long, Suzanna; Ng, Ean-Harn
2015-10-01
Despite attempts to generate interest in science and technology careers, US students continue to show reduced interest in science, technology, engineering and mathematics (STEM) majors at the collegiate level. If girls are not engaged in STEM learning by the middle school level, studies show that they are even less likely to choose a science- or engineering-related major. This article presents results from a workshop for 7th and 8th grade girls designed to promote knowledge building in the area of sustainability and alternative energy use in transportation and to stimulate greater interest in STEM subjects. The workshop based on research conducted at University X focused on basic concepts of electric vehicles and electric vehicles' batteries. Tests were conducted to evaluate the students' knowledge and perceptions of electric vehicles and to determine the impact of the workshop. Early exposure to meaningful engineering experiences for these young girls may boost interest and the eventual pursuit of engineering and technology education paths.
ERIC Educational Resources Information Center
Aschbacher, Pamela R.; Li, Erika; Roth, Ellen J.
2010-01-01
This study follows an ethnically and economically diverse sample of 33 high school students to explore why some who were once very interested in science, engineering, or medicine (SEM) majors or careers decided to leave the pipeline in high school while others persisted. Through longitudinal interviews and surveys, students shared narratives about…
Student Perspectives on the Flipped-Classroom Approach and Collaborative Problem-Solving Process
ERIC Educational Resources Information Center
Karabulut-Ilgu, Aliye; Yao, Suhan; Savolainen, Peter; Jahren, Charles
2018-01-01
The flipped-classroom approach has gained increasing popularity and interest in engineering education. The purpose of this study was to investigate (a) student perspectives on the flipped-classroom approach in a transportation-engineering course and (b) how students used the in-class time dedicated to collaborative problem solving. To this end,…
Engineering Design Education Program for Graduate School
NASA Astrophysics Data System (ADS)
Ohbuchi, Yoshifumi; Iida, Haruhiko
The new educational methods of engineering design have attempted to improve mechanical engineering education for graduate students in a way of the collaboration in education of engineer and designer. The education program is based on the lecture and practical exercises concerning the product design, and has engineering themes and design process themes, i.e. project management, QFD, TRIZ, robust design (Taguchi method) , ergonomics, usability, marketing, conception etc. At final exercise, all students were able to design new product related to their own research theme by applying learned knowledge and techniques. By the method of engineering design education, we have confirmed that graduate students are able to experience technological and creative interest.
ERIC Educational Resources Information Center
Ayar, Mehmet C.
2015-01-01
The purpose of this study is to present students' experiences, interest in engineering, and personal narratives while participating in a robotics summer camp in a metropolitan city in Turkey. In this study, I used qualitative data collection methods such as interviews, field notes, and observations. I used the four principles of Engle and Conant…
Qualifying Examination Intended to Promote Students‧ Interest in Basic Engineering Course
NASA Astrophysics Data System (ADS)
Yamada, Kenji
In order to develop self-affirmation and confidence, all the third year students in the Department of Electronics and Information Engineering at Ishikawa National College of Technology have been assigned to take a qualifying examination : the Digital Technology Certificate Examination, which is supported by the Ministry of Education, Culture, Sports, Science and Technology. The students who have passed it have gained self-assurance, while the unsuccessful candidates need close attention. This paper discusses the effects of the examination, which was introduced as an incentive for the students to have interest in the specialized course.
How do STEM-interested students pursue multiple interests in their higher educational choice?
NASA Astrophysics Data System (ADS)
Vulperhorst, Jonne Pieter; Wessels, Koen Rens; Bakker, Arthur; Akkerman, Sanne Floor
2018-05-01
Interest in science, technology, engineering and mathematics (STEM) has lately received attention in research due to a gap between the number of STEM students and the needs of the labour market. As interest seems to be one of the most important factors in deciding what to study, we focus in the present study on how STEM-interested students weigh multiple interests in making educational choices. A questionnaire with both open-ended and closed-ended items was administered to 91 STEM-interested students enrolled in a STEM programme of a Dutch University for secondary school students. Results indicate that students find it important that a study programme allows them to pursue multiple interests. Some students pursued multiple interests by choosing to enrol in two programmes at the same time. Most students chose one programme that enabled them to combine multiple interests. Combinations of pursued interests were dependent on the disciplinary range of interests of students. Students who were interested in diverse domains combined interests in an educational programme across academic and non-academic domains, whilst students who were mainly interested in STEM combined only STEM-focused interests. Together these findings stress the importance of taking a multiple interest perspective on interest development and educational choice.
Chemical Engineering Education Revisited.
ERIC Educational Resources Information Center
Theodore, Louis
1978-01-01
The opinion is presented that chemical engineering education seems to emphasize the professor's research and/or professional interests with little regard for the real needs of the student who intends to become a practicing engineer. (BB)
NASA Astrophysics Data System (ADS)
Williams, Brian Anthony
Many educational researchers are concerned with the apparent poor performance of different racial and ethnic groups in the fields of science, engineering, and mathematics in the United States. Despite improvements in the performance of African Americans, Hispanic Americans, and Native Americans in these areas over the past decade, these groups are still less likely to enroll in advanced math and science courses or score at or above the proficient level in mathematics. Furthermore, these groups continue to be underrepresented in the nation's technical and scientific workforce. The purpose of this study was to identify the critical elements related to the success of African Americans in science, engineering, and mathematics. Specifically, this study was designed to answer the following questions as they pertained to African American graduate students: What factors were perceived to have contributed to the students' initial interest in science, engineering, or mathematics? What factors were perceived to have contributed to the students' decisions to continue their studies in their specific areas of interest? What factors, associated with the K--12 schooling experience, were perceived to have contributed to the students' success in science, engineering, or mathematics? The data for the study were acquired from interviews with 32 African American students (16 males and 16 females) who were engaged in graduate work in science, engineering, or mathematics. Four major themes emerged from the analysis of the interview data. The first was that all students were involved in experiences that allowed a significant level of participation in science, engineering, and mathematics. Second, all of the students experienced some form of positive personal intervention by another person. Third, all students possessed perceptions of these fields that involved some sort of positive outcome. Finally, all of the of the students believed they possessed intrinsic qualities that qualified and prepared them for their involvement with science, engineering, and mathematics. These four themes exhibited themselves in different ways during the course of the students' lives. As a result, the discussion of the results of the study was divided among the three developmental periods: the interest-building phase, the knowledge-acquisition phase, and the careerbuilding phase. The study's findings provide valuable information to schools, educators, policy makers, and researchers on how to prepare effectively all children for a science and technology driven society, and for some, induction into tomorrow's scientific community.
Knowledge Integration and Wise Engineering
ERIC Educational Resources Information Center
Chiu, Jennifer L.; Linn, M. C.
2011-01-01
Recent efforts in engineering education focus on introducing engineering into secondary math and science courses to improve science, technology, engineering, and math (STEM) education (NAS, 2010). Infusing engineering into secondary classrooms can increase awareness of and interest in STEM careers, help students see the relevance of science and…
Selected engagement factors and academic learning outcomes of undergraduate engineering students
NASA Astrophysics Data System (ADS)
Justice, Patricia J.
The concept of student engagement and its relationship to successful student performance and learning outcomes has a long history in higher education (Kuh, 2007). Attention to faculty and student engagement has only recently become of interest to the engineering education community. This interest can be attributed to long-standing research by George Kuh's, National Survey of Student Engagement (NSSE) at the Indiana University Center for Postsecondary Research. In addition, research projects sponsored by the National Science Foundation, the Academic Pathway Study (APS) at the Center for the Advancement of Engineering Education (CAEE) and the Center for the Advancement of Scholarship on Engineering Education (CASEE), Measuring Student and Faculty Engagement in Engineering Education, at the National Academy of Engineering. These research studies utilized the framework and data from the Engineering Change study by the Center for the Study of Higher Education, Pennsylvania State, that evaluated the impact of the new Accreditation Board of Engineering and Technology (ABET) EC2000 "3a through k" criteria identify 11 learning outcomes expected of engineering graduates. The purpose of this study was to explore the extent selected engagement factors of 1. institution, 2. social, 3. cognitive, 4. finance, and 5. technology influence undergraduate engineering students and quality student learning outcomes. Through the descriptive statistical analysis indicates that there maybe problems in the engineering program. This researcher would have expected at least 50% of the students to fall in the Strongly Agree and Agree categories. The data indicated that the there maybe problems in the engineering program problems in the data. The problems found ranked in this order: 1). Dissatisfaction with faculty instruction methods and quality of instruction and not a clear understanding of engineering majors , 2). inadequate Engineering faculty and advisors availability especially applicable to career paths, 4) engineering program objectives not aligned with student learning outcomes, 5. lack of encouragement to join engineering association for professional development. This study determined statistically that the factors having the most significant influence on undergraduate engineering student and learning outcome is the role that faculty plays inside and outside the classroom. The satisfaction of students regarding faculty on availability and feedback was negative. Engineering programs appear to have issues with alignment of ABET learning outcomes from a student perspective on knowledge, ability of engineering skills and ability acquired at the time of this study. The researcher believes that the findings are valid viewing the maturity of the majority of responses were from upper-class juniors and seniors. In addition, gender and racial/ethnicity disparity were found with low number of females compared to males. The racial/ ethnicity disparity was especially noted for Hispanic and Native American students.
Women in biomedical engineering and health informatics.
McGregor, Carolyn; Frize, Monique
2008-01-01
A valuable session for anyone whether student or not, interested in learning more about Biomedical Engineering and Health Informatics as a career choice for women. Prominent women within the domains Biomedical Engineering and Health Informatics will present their research and their humanitarian interests that motivate them. Utilise the fantastic networking opportunity that will conclude this session to build and establish new professional networks with other women interested in your fields of expertise. Bring your contact details and be ready to make new contacts that are relevant for you.
ERIC Educational Resources Information Center
Scarbrough, Will J.; Case, Jennifer M.
2006-01-01
A new module in a first year mechanical drawing course was designed with the primary goal of exciting chemical engineering students about mechanical things. Other goals included increasing student ability and confidence to explain how things work. A variety of high intensity, hands-on, facilitated group activities using pumps and valves were…
ERIC Educational Resources Information Center
Dubetz, Terry A.; Wilson, Jo Ann
2013-01-01
Girls in Engineering, Mathematics and Science (GEMS) is a science and math outreach program for middle-school female students. The program was developed to encourage interest in math and science in female students at an early age. Increased scientific familiarity may encourage girls to consider careers in science and mathematics and will also help…
ERIC Educational Resources Information Center
Guzey, S. Selcen; Harwell, Michael; Moore, Tamara
2014-01-01
There is a need for more students to be interested in science, technology, engineering, and mathematics (STEM) careers to advance U.S. competitiveness and economic growth. A consensus exists that improving STEM education is necessary for motivating more students to pursue STEM careers. In this study, a survey to measure student (grades 4-6)…
Engagement in Science and Engineering through Animal-Based Curricula
ERIC Educational Resources Information Center
Mueller, Megan Kiely; Byrnes, Elizabeth M.; Buczek, Danielle; Linder, Deborah E.; Freeman, Lisa M.; Webster, Cynthia R. L.
2018-01-01
One of the persistent challenges in science, technology, engineering, and math (STEM) education is increasing interest, learning, and retention, particularly with regard to girls and students in underserved areas. Educational curricula that promote process and content knowledge development as well as interest and engagement in STEM are critical in…
Southwell's Relaxation Search in Computer Aided Advising: An Intelligent Information System.
ERIC Educational Resources Information Center
Song, Xueshu
1992-01-01
Describes the development and validation of a microcomputer software system that enhances undergraduate students' interests in becoming engineering graduate students. The development of a database with information on engineering graduate programs is discussed, and a model that matches individual and institutional needs using Southwell's Relaxation…
ERIC Educational Resources Information Center
Garrison, Lari; Stevens, Reed; Sabin, Portia; Jocuns, Andrew
2007-01-01
Gaining entry to a college of engineering is something that most people who eventually become engineers must do. However, for some this is not the straight-forward process for which a prospective student might hope, and because of this the authors are interested in how students navigate the process of admissions. In this study the authors are…
The Transformative Experience in Engineering Education
NASA Astrophysics Data System (ADS)
Goodman, Katherine Ann
This research evaluates the usefulness of transformative experience (TE) in engineering education. With TE, students 1) apply ideas from coursework to everyday experiences without prompting (motivated use); 2) see everyday situations through the lens of course content (expanded perception); and 3) value course content in new ways because it enriches everyday affective experience (affective value). In a three-part study, we examine how engineering educators can promote student progress toward TE and reliably measure that progress. For the first study, we select a mechanical engineering technical elective, Flow Visualization, that had evidence of promoting expanded perception of fluid physics. Through student surveys and interviews, we compare this elective to the required Fluid Mechanics course. We found student interest in fluids fell into four categories: complexity, application, ubiquity, and aesthetics. Fluid Mechanics promotes interest from application, while Flow Visualization promotes interest based in ubiquity and aesthetics. Coding for expanded perception, we found it associated with students' engineering identity, rather than a specific course. In our second study, we replicate atypical teaching methods from Flow Visualization in a new design course: Aesthetics of Design. Coding of surveys and interviews reveals that open-ended assignments and supportive teams lead to increased ownership of projects, which fuels risk-taking, and produces increased confidence as an engineer. The third study seeks to establish parallels between expanded perception and measurable perceptual expertise. Our visual expertise experiment uses fluid flow images with both novices and experts (students who had passed fluid mechanics). After training, subjects sort images into laminar and turbulent categories. The results demonstrate that novices learned to sort the flow stimuli in ways similar to subjects in prior perceptual expertise studies. In contrast, the experts' significantly better results suggest they are accessing conceptual fluids knowledge to perform this new, visual task. The ability to map concepts onto visual information is likely a necessary step toward expanded perception. Our findings suggest that open-ended aesthetic experiences with engineering content unexpectedly support engineering identity development, and that visual tasks could be developed to measure conceptual understanding, promoting expanded perception. Overall, we find TE a productive theoretical framework for engineering education research.
Preparing university students to lead K-12 engineering outreach programmes: a design experiment
NASA Astrophysics Data System (ADS)
Anthony, Anika B.; Greene, Howard; Post, Paul E.; Parkhurst, Andrew; Zhan, Xi
2016-11-01
This paper describes an engineering outreach programme designed to increase the interest of under-represented youth in engineering and to disseminate pre-engineering design challenge materials to K-12 educators and volunteers. Given university students' critical role as facilitators of the outreach programme, researchers conducted a two-year design experiment to examine the programme's effectiveness at preparing university students to lead pre-engineering activities. Pre- and post-surveys incorporated items from the Student Engagement sub-scale of the Teacher Sense of Efficacy Scale. Surveys were analysed using paired-samples t-test. Interview and open-ended survey data were analysed using discourse analysis and the constant comparative method. As a result of participation in the programme, university students reported a gain in efficacy to lead pre-engineering activities. The paper discusses programme features that supported efficacy gains and concludes with a set of design principles for developing learning environments that effectively prepare university students to facilitate pre-engineering outreach programmes.
ERIC Educational Resources Information Center
Dancz, Claire L. A.; Ketchman, Kevin J.; Burke, Rebekah D.; Hottle, Troy A.; Parrish, Kristen; Bilec, Melissa M.; Landis, Amy E.
2017-01-01
While many institutions express interest in integrating sustainability into their civil engineering curriculum, the engineering community lacks consensus on established methods for infusing sustainability into curriculum and verified approaches to assess engineers' sustainability knowledge. This paper presents the development of a sustainability…
Reaching New Heights in Middle School Science: Straw Tower Competition Builds Student Interest
ERIC Educational Resources Information Center
Pliskow, Tia
2008-01-01
Science educators face the challenge of piquing students' interest in subjects whose concepts are often entirely foreign to them. The author wanted to give her students a hands-on, "real world" experience rooted in scientific concepts. What evolved was an engineering design competition. The point of the project was two-fold: to work on real-world…
ERIC Educational Resources Information Center
Radunzel, Justine; Mattern, Krista; Westrick, Paul
2017-01-01
As new initiatives and programs are being increasingly implemented to promote STEM (Science, Technology, Engineering, and Mathematics) interest and participation among U.S. students, the percentage of students who declare a STEM-related major in college continues to lag behind what would be expected based on students' intentions. Such findings…
ERIC Educational Resources Information Center
Koyunlu Unlu, Zeynep; Dokme, Ilbilge; Unlu, Veli
2016-01-01
Problem Statement: Science, technology, engineering, and mathematics (STEM) education has recently become a remarkable research topic, especially in developed countries as a result of the skilled workforce required in the fields of the STEM. Considering that professional tendencies are revealed at early ages, determining students' interest in STEM…
Cognition and thinking on Applied Optics course's reformation and innovation
NASA Astrophysics Data System (ADS)
Chen, Jingjing; Ji, Feng; Liu, Zhijian; Xia, Haojie; Shu, Shuangbao
2017-08-01
The course of "Applied Optics" is professional and foundational for the specialty of photo-electric information and engineering. According to the characteristics of the specialty, the teaching contents, teaching means, innovations and appraisal methods are mainly discussed in this paper. Firstly, one of the most difficult part to comprehend, the Fermat principle is taken as an example in the teaching content. By using the development history of optics and interesting natural phenomenon, students' understanding of the optical knowledge can be enhanced. Secondly, in various means of teaching art, ZEMAX provides students with a platform of training innovative consciousness and engineering capacity, and it make high cohesion in teaching and scientific research. Thirdly, in the teaching innovation, photoelectric contest can stimulate students' innovative thinking, innovation awareness, and cultivate undergraduate students' optics, mechanics, electricity, numerology integrated design capabilities. Lastly, the reform in the appraisal methods guide students from focusing on the examination results to pay attention to the learning process. Eventually, students' study interest has improved, demand of the engineering practice has adapted, and the well teaching effect has realized.
The Association between Science Summer Camps and Career Interest in Science and Engineering
ERIC Educational Resources Information Center
Kong, Xiaoqing; Dabney, Katherine P.; Tai, Robert H.
2014-01-01
This study addresses the association between middle-school students' reported participation in science summer programmes and their reported expectation of a career in science and engineering. Data were collected on 1,580 students from eight middle schools in five states, applying an accelerated longitudinal design. Two consecutive cohorts were…
ERIC Educational Resources Information Center
Wheeler, Lindsay B.; Whitworth, Brooke A.; Gonczi, Amanda L.
2014-01-01
The number of students majoring in science, technology, engineering, and math (STEM) is declining due in part to a lack of student interest (Fairweather 2008; NRC 2012; PCAST 2010). One reason may be the difference between how science is done in school and how it is done in the field (Osborne, Simon, and Collins 2003). An interdisciplinary…
Preparing Your Students for Careers in Science and Engineering: How Is Your State Doing?
NASA Astrophysics Data System (ADS)
White, Susan; Cottle, Paul
2011-10-01
With one glance at the starting salaries of new bachelor's degree recipients in Fig. 1, a teacher or parent can see the career fields to which their high school students interested in the best economic opportunities might aspire: several engineering fields (chemical, electrical, mechanical), computer science, physics, and mathematics.
Preparing Your Students for Careers in Science and Engineering: How Is Your State Doing?
ERIC Educational Resources Information Center
White, Susan; Cottle, Paul
2011-01-01
With one glance at the starting salaries of new bachelor's degree recipients in Fig. 1, a teacher or parent can see the career fields to which their high school students interested in the best economic opportunities might aspire: several engineering fields (chemical, electrical, mechanical), computer science, physics, and mathematics.
Expo IGNITES Interest in Manufacturing Careers
ERIC Educational Resources Information Center
Wilhelm, Karen
2009-01-01
On a pleasant September day, 400 high school students and 40 teachers converged on the Careers in Technology, Engineering, and Manufacturing Day at the IGNITE manufacturing industry trade show, held in Grand Rapids, Michigan, and sponsored by the Society of Manufacturing Engineers (SME). These weren't students getting out of school for a day to go…
Freshman Engineering Retention: A Holistic Look
ERIC Educational Resources Information Center
Honken, Nora; Ralston, Patricia A. S.
2013-01-01
The ability to increase the number of engineering graduates depends on many factors including our country's P-16+ educational system, the job market and the engineering professions. Students need to be prepared for the rigorous math and science components of engineering programs, but they also must have interest in engineering as a profession,…
NASA's Student Launch Projects: A Government Education Program for Science and Engineering
NASA Technical Reports Server (NTRS)
Shepherd, Christena C.
2009-01-01
Among the many NASA education activities, the Student Launch projects are examples of how one agency has been working with students to inspire math, science and engineering interest. There are two Student Launch projects: Student Launch Initiative (SLI) for middle and high school students and the University Student Launch Initiative (USLI) for college students. The programs are described and website links are provided for further information. This document presents an example of how an agency can work with its unique resources in partnership with schools and communities to bring excitement to the classroom.
ERIC Educational Resources Information Center
Lubrica, Joel V.; Abiasen, Jovalson T.; Dolipas, Bretel B.; Ramos, Jennifer Lyn S.
2017-01-01
In this article, we present results of our endeavours as physics educators to facilitate and support pedagogical change and development in the educational system of a developing country, the Philippines. We have discovered that the interaction of junior high school (years 7-10) students with physics apparatus can influence students' interest in…
Byars-Winston, Angela; Estrada, Yannine; Howard, Christina; Davis, Dalelia; Zalapa, Juan
2010-04-01
This study investigated the academic interests and goals of 223 African American, Latino/a, Southeast Asian, and Native American undergraduate students in two groups: biological science and engineering (S/E) majors. Using social cognitive career theory (Lent, Brown, & Hackett, 1994), we examined the relationships of social cognitive variables (math/science academic self-efficacy, math/science outcome expectations), along with the influence of ethnic variables (ethnic identity, other-group orientation) and perceptions of campus climate to their math/science interests and goal commitment to earn an S/E degree. Path analysis revealed that the hypothesized model provided good overall fit to the data, revealing significant relationships from outcome expectations to interests and to goals. Paths from academic self-efficacy to S/E goals and from interests to S/E goals varied for students in engineering and biological science. For both groups, other-group orientation was positively related to self-efficacy and support was found for an efficacy-mediated relationship between perceived campus climate and goals. Theoretical and practical implications of the study's findings are considered as well as future research directions.
Byars-Winston, Angela; Estrada, Yannine; Howard, Christina; Davis, Dalelia; Zalapa, Juan
2010-01-01
This study investigated the academic interests and goals of 223 African American, Latino/a, Southeast Asian, and Native American undergraduate students in two groups: biological science and engineering (S/E) majors. Using social cognitive career theory (Lent, Brown, & Hackett, 1994), we examined the relationships of social cognitive variables (math/science academic self-efficacy, math/science outcome expectations), along with the influence of ethnic variables (ethnic identity, other-group orientation) and perceptions of campus climate to their math/science interests and goal commitment to earn an S/E degree. Path analysis revealed that the hypothesized model provided good overall fit to the data, revealing significant relationships from outcome expectations to interests and to goals. Paths from academic self-efficacy to S/E goals and from interests to S/E goals varied for students in engineering and biological science. For both groups, other-group orientation was positively related to self-efficacy and support was found for an efficacy-mediated relationship between perceived campus climate and goals. Theoretical and practical implications of the study’s findings are considered as well as future research directions. PMID:20495610
NASA Astrophysics Data System (ADS)
Lubrica, Joel V.; Abiasen, Jovalson T.; Dolipas, Bretel B.; Ramos, Jennifer Lyn S.
2017-01-01
In this article, we present results of our endeavours as physics educators to facilitate and support pedagogical change and development in the educational system of a developing country, the Philippines. We have discovered that the interaction of junior high school (years 7-10) students with physics apparatus can influence students’ interest in pursuing a career in science, technology, engineering and mathematics (STEM). This assertion stems from self-reports of students who gave their views immediately after their exposure to interactive apparatus in their own school, outside of their usual lessons. Participants claimed that their interest in following a STEM career path was ‘greatly increased’ due to their exposure to these apparatus. This was true even for students who were intending to take a non-STEM career path. Thus, we recommend that, in settings that have constraints involving access to practical equipment, ways to introduce school level interactive physics apparatus to secondary school students be conducted in order to attract more students towards STEM courses. Possibly, policies encouraging this type of exposure should also be formulated.
Explore engineering with solar energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, J.H.
1995-11-01
An outreach program was initiated at the University of Minnesota by faculty and student members of the Society of Women Engineers in the spring of 1994 to interest students in 3rd through 9th grade, particularly girls, in careers in engineering. Interaction with elementary and junior high students focuses on hands-on experiences with portable solar devices. This paper reports progress of the program including descriptions of the solar devices, their use in visits to local schools, day visits to the University, and week-long summer camps, and continuing education programs for elementary and secondary school teachers.
Effective Engineering Outreach through an Undergraduate Mentoring Team and Module Database
ERIC Educational Resources Information Center
Young, Colin; Butterfield, Anthony E.
2014-01-01
The rising need for engineers has led to increased interest in community outreach in engineering departments nationwide. We present a sustainable outreach model involving trained undergraduate mentors to build ties with K-12 teachers and students. An associated online module database of chemical engineering demonstrations, available to educators…
Examination of Factors Predicting Secondary Students' Interest in Tertiary STEM Education
ERIC Educational Resources Information Center
Chachashvili-Bolotin, Svetlana; Milner-Bolotin, Marina; Lissitsa, Sabina
2016-01-01
Based on the Social Cognitive Career Theory (SCCT), the study aims to investigate factors that predict students' interest in pursuing science, technology, engineering, and mathematics (STEM) fields in tertiary education both in general and in relation to their gender and socio-economic background. The results of the analysis of survey responses of…
Implementing a Cooperative Learning Model in Universities
ERIC Educational Resources Information Center
Yi, Zeng; LuXi, Zhang
2012-01-01
In the past few years, many students have begun to lose interest in science and information and engineering technology courses because they find them too boring and hard to learn. To strengthen this field of education and stimulate students' motivation and interest in learning, this study introduces a theoretical pedagogical framework based on…
ERIC Educational Resources Information Center
Sánchez-Martín, Jesús; Álvarez-Gragera, García J.; Dávila-Acedo, M. Antonia; Mellado, Vicente
2017-01-01
The interest on engineering and scientific studies can be raised up even from the early years of academic instructional process. This vocation may be linked to emotions and aptitudes towards technological education. Particularly, students get in touch with these technological issues (namely STEM) during the Compulsory Secondary Education in Spain…
NASA Astrophysics Data System (ADS)
Sahin, Alpaslan; Gulacar, Ozcan; Stuessy, Carol
2015-12-01
Social cognitive theory guided the design of a survey to investigate high school students' perceptions of factors affecting their career contemplations and beliefs regarding the influence of their participation in the international Science Olympiad on their subject interests and twenty-first century skills. In addition, gender differences in students' choice of competition category were studied. Mixed methods analysis of survey returns from 172 Olympiad participants from 31 countries showed that students' career aspirations were affected most by their teachers, personal interests, and parents, respectively. Students also indicated that they believed that their participation in the Olympiad reinforced their plan to choose a science, technology, engineering, and mathematics (STEM) major at college and assisted them in developing and improving their twenty-first century skills. Furthermore, female students' responses indicated that their project choices were less likely to be in the engineering category and more likely to be in the environment or energy categories. Findings are discussed in the light of increasing the awareness of the role and importance of Science Olympiads in STEM career choice and finding ways to attract more female students into engineering careers.
Assessing the Higher National Diploma Chemical Engineering programme in Ghana: students' perspective
NASA Astrophysics Data System (ADS)
Boateng, Cyril D.; Cudjoe Bensah, Edem; Ahiekpor, Julius C.
2012-05-01
Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering programme is being migrated from a subject-based to a competency-based curriculum. This paper evaluates the programme from the point of view of students. Data were drawn from a survey conducted in the department and were analysed using SPSS. The survey involved administering questionnaires to students at all levels in the department. Analysis of the responses indicated that the majority of the students had decided to pursue chemical engineering due to the career opportunities available. Their knowledge of the programme learning outcomes was, however, poor. The study revealed that none of the students was interested in developing indigenous industries.
ERIC Educational Resources Information Center
Tomas, Louisa; Jackson, Cliff; Carlisle, Karen
2014-01-01
In 2012, the Australian Academy of Technological Sciences and Engineering (ATSE) piloted the "Wonder of Science Challenge" with a view to enhance school students' interest in Science, Technology, Engineering and Mathematics (STEM). Students in 15 schools across northern Queensland were provided with an inquiry-based research problem and…
ERIC Educational Resources Information Center
Blotnicky, Karen A.; Franz-Odendaal, Tamara; French, Frederick; Joy, Phillip
2018-01-01
Background: A sample of 1448 students in grades 7 and 9 was drawn from public schools in Atlantic Canada to explore students' knowledge of science and mathematics requirements for science, technology, engineering, and mathematics (STEM) careers. Also explored were their mathematics self-efficacy (MSE), their future career interests, their…
Teaching Chemical Engineers about Teaching
ERIC Educational Resources Information Center
Heath, Daniel E.; Hoy, Mary; Rathman, James F.; Rohdieck, Stephanie
2013-01-01
The Chemical and Biomolecular Engineering Department at The Ohio State University in collaboration with the University Center for the Advancement of Teaching developed the Chemical Engineering Mentored Teaching Experience. The Mentored Teaching Experience is an elective for Ph.D. students interested in pursuing faculty careers. Participants are…
ERIC Educational Resources Information Center
Engelbrecht, Johann; Bergsten, Christer; Kågesten, Owe
2017-01-01
The research interest underpinning this paper concerns the type of mathematical knowledge engineering students may acquire during their specialised education in terms of the conceptual and procedural dimensions of doing and using mathematics. This study draws on interviews with 25 qualified engineers from South Africa and Sweden regarding their…
Attracting Prospective Engineering Students in the Emerging European Space for Higher Education
ERIC Educational Resources Information Center
Lopez-Martin, Antonio J.
2010-01-01
A set of outreach activities implemented by the College of Engineering of the Public University of Navarra, Spain, is described. They represent different initiatives aimed to improve recruitment of young engineers in the difficult context of declining interest in engineering and the educational changes Europe is facing nowadays. The initiatives…
Pipeline or Personal Preference: Women in Engineering
ERIC Educational Resources Information Center
Schreuders, P. D.; Mannon, S. E.; Rutherford, B.
2009-01-01
Although the number of women in the engineering field has increased since the 1960s, those increases have largely stagnated over the last few years. This paper re-examines the pipeline for bringing women into engineering and, based on survey data, examines the attitudes, motivations, and interests of 969 male and female engineering students.…
Scholarship program to benefit future engineers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-02-01
ASDSO this year launched a new scholarship program for undergraduate students interested in dam safety engineering as a career. Two scholarships of $2,500 each will be granted to one junior and one senior, beginning with the 1993 school year. Students taking a full college course load and majoring in civil or agricultural engineering, geology, or a related field, were elgible. ASDSO, which plans to name the recipients by May 1993, received about two dozen applications for the scholarships.
ERIC Educational Resources Information Center
da Silva Cardoso, Elizabeth; Dutta, Alo; Chiu, Chung-Yi; Johnson, Ebonee T.; Kundu, Madan; Chan, Fong D.
2013-01-01
Objective: To examine the relations of science, technology, engineering, and mathematics's (STEM) self-efficacy, outcome expectations, interests, and contextual supports and barriers to STEM educational goals in college students with disabilities from racial and ethnic minority backgrounds. Design: Quantitative descriptive research design using…
Comparison of Science Process Skills with STEM Career Interests of Middle School Students
ERIC Educational Resources Information Center
Zorlu, Fulya; Zorlu, Yusuf
2017-01-01
This study was aimed to examine the relation between the STEM (Science, Technology, Engineering and Mathematics) career interests and science process skills of middle school seventh grade students. Method of this study was the relational survey method. The study was conducted on the basis of voluntariness and participants were 133 seventh grade…
ERIC Educational Resources Information Center
Business-Higher Education Forum (NJ1), 2011
2011-01-01
Efforts by federal and state governments to increase the STEM (science, technology, engineering and mathematics) workforce in support of innovation and competitiveness are frustrated by a shortage of adequately prepared and interested students. Less than half of 12th graders meet the math proficiency benchmark that indicates college readiness.…
ERIC Educational Resources Information Center
Ocumpaugh, Jaclyn; San Pedro, Maria Ofelia; Lai, Huei-yi; Baker, Ryan S.; Borgen, Fred
2016-01-01
Research suggests that trajectories toward careers in science, technology, engineering, and mathematics (STEM) emerge early and are influenced by multiple factors. This paper presents a longitudinal study, which uses data from 76 high school students to explore how a student's vocational self-efficacy and interest are related to his or her middle…
NASA Astrophysics Data System (ADS)
Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.
2015-04-01
The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about children's earliest identification with engineering. The purpose of this study was to examine the extent to which engineering identity differed among preadolescents across gender and grade, when exposing students to engineering design-based science learning activities. Five hundred fifty preadolescent participants completed the Engineering Identity Development Scale (EIDS), a recently developed measure with validity evidence that characterizes children's conceptions of engineering and potential career aspirations. Data analyses of variance among four factors (i.e., gender, grade, and group) indicated that elementary school students who engaged in the engineering design-based science learning activities demonstrated greater improvements on the EIDS subscales compared to those in the comparison group. Specifically, students in the lower grade levels showed substantial increases, while students in the higher grade levels showed decreases. Girls, regardless of grade level and participation in the engineering learning activities, showed higher scores in the academic subscale compared to boys. These findings suggest that the integration of engineering practices in the science classroom as early as grade one shows potential in fostering and sustaining student interest, participation, and self-concept in engineering and science.
ERIC Educational Resources Information Center
Byars-Winston, Angela; Estrada, Yannine; Howard, Christina; Davis, Dalelia; Zalapa, Juan
2010-01-01
In this study we investigated the academic interests and goals of 223 African American, Latino/a, Southeast Asian, and Native American undergraduate students in 2 groups: biological science (BIO) and engineering (ENG) majors. Using social cognitive career theory (Lent, Brown, & Hackett, 1994), we examined the relationships of social cognitive…
Assessing Changes in Teachers' Attitudes toward Interdisciplinary STEM Teaching
ERIC Educational Resources Information Center
Al Salami, Mubarak K.; Makela, Carole J.; de Miranda, Michael A.
2017-01-01
Integrating engineering and technology concepts into K-12 science and math curricula through engineering design project-based learning has been found to increase students' interest in science, technology, engineering, and mathematics (STEM), however preparing teachers to shift to interdisciplinary teaching remains a significant challenge.…
ERIC Educational Resources Information Center
Jennings, Sybillyn; McIntyre, Julie Guay; Butler, Sarah E.
2015-01-01
To explore young adolescents' interest in engineering as a future career, we examined the influence of gender and grade level on participants' (N = 197, aged 10-13) views of engineering. One group (107 students) viewed a brief engineering video and wrote why they felt the same or different about engineering following the video. Qualitative…
Examining elementary students' perceptions of engineers
NASA Astrophysics Data System (ADS)
Oware, Euridice A.
There has been a national focus on improving K-12 Science, Technology, Engineering, and Mathematics (STEM) education. The integration of engineering education from kindergarten through high school (K-12) has been identified as key to sustaining the U.S. economy and standard of living. Misconceptions about the nature of engineering may deter children from even considering this profession. Currently, there are few research studies on young children's perceptions of engineers, and such research can be used to support children along STEM pathways. The purpose of this research was to investigate elementary students' perceptions of engineers for children enrolled in a gifted and talented outreach program. Participants included students enrolled in two structural engineering classes: one for 3rd and 4th graders and another for 5th and 6th grade students. Participants represented an age group that is not typically exposed to engineering. This research was framed within a constructivist theoretical framework, and qualitative research methods were utilized to develop a rich understanding of the perspectives of students enrolled in the engineering classes. Data collection included student pre- and post-questionnaires, Draw-an-Engineer tasks, and semi-structured interviews. Data analysis entailed the use of open and axial coding. Trustworthiness of data was determined through triangulation of multiple data sources. Results demonstrated how children describe the work of engineers, objects associated with engineering, tools used or created by engineers, and professional characteristics of engineers. In addition, images of engineers were discussed and influences on students' perceptions of engineers were identified. The findings of this study have implications for the development of formal and informal K-12 curricula and programs that focus on improving students' understanding and engagement in engineering. Implications for researchers interested in studying children's perceptions were also discussed.
Interest in STEM is contagious for students in biology, chemistry, and physics classes.
Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D; Godwin, Allison; Scott, Tyler D; Klotz, Leidy
2017-08-01
We report on a study of the effect of peers' interest in high school biology, chemistry, and physics classes on students' STEM (science, technology, engineering, and mathematics)-related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students' experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students' STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students' intentions toward STEM careers while enhancing or maintaining course performance.
Bringing Engineering Design into High School Science Classrooms: The Heating/Cooling Unit
ERIC Educational Resources Information Center
Apedoe, Xornam S.; Reynolds, Birdy; Ellefson, Michelle R.; Schunn, Christian D.
2008-01-01
Infusing engineering design projects in K-12 settings can promote interest and attract a wide range of students to engineering careers. However, the current climate of high-stakes testing and accountability to standards leaves little room to incorporate engineering design into K-12 classrooms. We argue that design-based learning, the combination…
How to Retain Postgraduate Students in Engineering Programmes: A Practical Perspective
ERIC Educational Resources Information Center
Le, Khoa N.; Tam, Vivian W. Y.
2008-01-01
Six factors for pursuing an engineering postgraduate programme at Griffith University including (i) programme quality; (ii) employment prospects; (iii) practicality; (iv) personal interest; (v) popularity; and (vi) reputation; and 11 factors for not pursuing this engineering programme including (i) employment prospects; (ii) degree of difficulty;…
Incorporating Six Sigma Methodology Training into Chemical Engineering Education
ERIC Educational Resources Information Center
Dai, Lenore L.
2007-01-01
Six Sigma is a buzz term in today's technology and business world and there has been increasing interest to initiate Six Sigma training in college education. We have successfully incorporated Six Sigma methodology training into a traditional chemical engineering course, Engineering Experimentation, at Texas Tech University. The students have…
Applied aerodynamics experience for secondary science teachers and students
NASA Technical Reports Server (NTRS)
Abbitt, John D., III; Carroll, Bruce F.
1992-01-01
The Department of Aerospace Engineering, Mechanics & Engineering Science at the University of Florida in conjunction with the Alachua County, Florida School Board has embarked on a four-year project of university-secondary school collaboration designed to enhance mathematics and science instruction in secondary school classrooms. The goals are to provide teachers with a fundamental knowledge of flight sciences, and to stimulate interest among students, particularly women and minorities, toward careers in engineering, mathematics, and science. In the first year of the project, all thirteen of the eighth grade physical science teachers and all 1200 of the eighth grade physical science students in the county participated. The activities consisted of a three-day seminar taught at the college level for the teachers, several weeks of classroom instruction for all the students, and an airport field trip for a subgroup of about 430 students that included an orientation flight in a Cessna 172 aircraft. The project brought together large numbers of middle school students, teachers, undergraduate and graduate engineering students, school board administrators, and university engineering faculty.
NASA Astrophysics Data System (ADS)
Berthoud, L.; Gliddon, J.
2018-03-01
In today's global Aerospace industry, virtual workspaces are commonly used for collaboration between geographically distributed multidisciplinary teams. This study investigated the use of wikis to look at communication, collaboration and engagement in 'Capstone' team design projects at the end of an engineering degree. Wikis were set up for teams of engineering students from different disciplinary backgrounds and years. The students' perception of the usefulness of the tool were surveyed and the user contribution statistics and content categorisation were analysed for a case study wiki. Recommendations and lessons learned for the deployment of wikis are provided for interested academic staff from other institutions. Wikis were found to be of limited use to investigate levels of communication and collaboration in this study, but may be of interest in other contexts. Wikis were considered a potentially useful tool to track engagement for Capstone design projects in engineering subjects.
Howard University Energy Expert Systems Institute Summer Program (EESI)
NASA Technical Reports Server (NTRS)
Momoh, James A.; Chuku, Arunsi; Abban, Joseph
1996-01-01
Howard University, under the auspices of the Center for Energy Systems and Controls runs the Energy Expert Systems Institute (EESI) summer outreach program for high school/pre-college minority students. The main objectives are to introduce precollege minority students to research in the power industry using modern state-of-the-art technology such as Expert Systems, Fuzzy Logic and Artificial Neural Networks; to involve minority students in space power management, systems and failure diagnosis; to generate interest in career options in electrical engineering; and to experience problem-solving in a teamwork environment consisting of faculty, senior research associates and graduate students. For five weeks the students are exposed not only to the exciting experience of college life, but also to the inspiring field of engineering, especially electrical engineering. The program consists of lectures in the fundamentals of engineering, mathematics, communication skills and computer skills. The projects are divided into mini and major. Topics for the 1995 mini projects were Expert Systems for the Electric Bus and Breast Cancer Detection. Topics on the major projects include Hybrid Electric Vehicle, Solar Dynamics and Distribution Automation. On the final day, designated as 'EESI Day' the students did oral presentations of their projects and prizes were awarded to the best group. The program began in the summer of 1993. The reaction from the students has been very positive. The program also arranges field trips to special places of interest such as the NASA Goddard Space Center.
The women in science and engineering scholars program
NASA Technical Reports Server (NTRS)
Falconer, Etta Z.; Guy, Lori Ann
1989-01-01
The Women in Science and Engineering Scholars Program provides scientifically talented women students, including those from groups underrepresented in the scientific and technical work force, with the opportunity to pursue undergraduate studies in science and engineering in the highly motivating and supportive environment of Spelman College. It also exposes students to research training at NASA Centers during the summer. The program provides an opportunity for students to increase their knowledge of career opportunities at NASA and to strengthen their motivation through exposure to NASA women scientists and engineers as role models. An extensive counseling and academic support component to maximize academic performance supplements the instructional and research components. The program is designed to increase the number of women scientists and engineers with graduate degrees, particularly those with an interest in a career with NASA.
Examining Gender Inequality In A High School Engineering Course.
Riegle-Crumb, Catherine; Moore, Chelsea
2013-01-01
This paper examines gender inequality within the context of an upper-level high school engineering course recently offered in Texas. Data was collected from six high schools that serve students from a variety of backgrounds. Among the almost two hundred students who enrolled in this challenge-based engineering course, females constituted a clear minority, comprising only a total of 14% of students. Quantitative analyses of surveys administered at the beginning of the school year (Fall 2011) revealed statistically significant gender gaps in personal attitudes towards engineering and perceptions of engineering climate. Specifically, we found that compared to males, females reported lower interest in and intrinsic value for engineering, and expressed less confidence in their engineering skills. Additionally, female students felt that the classroom was less inclusive and viewed engineering occupations as less progressive. Gender disparities on all of these measures did not significantly decrease by the end of the school year (Spring 2012). Findings suggest that efforts to increase the representation of women in the engineering pipeline via increasing exposure in secondary education must contend not only with obstacles to recruiting high school girls into engineering courses, but must also work to remedy gender differences in engineering attitudes within the classroom.
Examining Gender Inequality In A High School Engineering Course
Moore, Chelsea
2014-01-01
This paper examines gender inequality within the context of an upper-level high school engineering course recently offered in Texas. Data was collected from six high schools that serve students from a variety of backgrounds. Among the almost two hundred students who enrolled in this challenge-based engineering course, females constituted a clear minority, comprising only a total of 14% of students. Quantitative analyses of surveys administered at the beginning of the school year (Fall 2011) revealed statistically significant gender gaps in personal attitudes towards engineering and perceptions of engineering climate. Specifically, we found that compared to males, females reported lower interest in and intrinsic value for engineering, and expressed less confidence in their engineering skills. Additionally, female students felt that the classroom was less inclusive and viewed engineering occupations as less progressive. Gender disparities on all of these measures did not significantly decrease by the end of the school year (Spring 2012). Findings suggest that efforts to increase the representation of women in the engineering pipeline via increasing exposure in secondary education must contend not only with obstacles to recruiting high school girls into engineering courses, but must also work to remedy gender differences in engineering attitudes within the classroom. PMID:25568814
NASA Astrophysics Data System (ADS)
Kersten, Jennifer Anna
In recent years there has been increasing interest in engineering education at the K-12 level, which has resulted in states adopting engineering standards as a part of their academic science standards. From a national perspective, the basis for research into engineering education at the K-12 level is the belief that it is of benefit to student learning, including to "improve student learning and achievement in science and mathematics; increase awareness of engineering and the work of engineers; boost youth interest in pursuing engineering as a career; and increase the technological literacy of all students" (National Research Council, 2009a, p. 1). The above has led to a need to understand how teachers are currently implementing engineering education in their classrooms. High school physics teachers have a history of implementing engineering design projects in their classrooms, thus providing an appropriate setting to look for evidence of quality engineering education at the high school level. Understanding the characteristics of quality engineering integration can inform curricular and professional development efforts for teachers asked to implement engineering in their classrooms. Thus, the question that guided this study is: How, and to what extent, do physics teachers represent quality engineering in a physics unit focused on engineering? A case study research design was implemented for this project. Three high school physics teachers were participants in this study focused on the integration of engineering education into the physics classroom. The data collected included observations, interviews, and classroom documents that were analyzed using the Framework for Quality K-12 Engineering Education (Moore, Glancy et al., 2013). The results provided information about the areas of the K-12 engineering framework addressed during these engineering design projects, and detailed the quality of these lesson components. The results indicate that all of the design projects contained components of the indicators central to engineering education, although with varied degrees of success. In addition, each design project contained aspects important to the development of students' understanding of engineering and that promote important professional skills used by engineers. The implications of this work are discussed at the teacher, school, professional development, and policy levels.
An Option in Applied Microbiology.
ERIC Educational Resources Information Center
Lee, William E., III
1988-01-01
Describes a program option for undergraduate chemical engineering students interested in biotechnology. Discusses how this program is deployed at the University of Southern Florida. Lists courses which apply to this program. Discusses the goals of teaching applied microbiology to engineering majors. (CW)
Teaching Statistics in Labor, Social, Juridical or Economic Studies
ERIC Educational Resources Information Center
Navarrete-Alvarez, Esteban; Rosales-Moreno, Maria Jesus; Huete-Morales, Maria Dolores
2010-01-01
Statistics teaching should not be carried out in the same way for all kinds of university students. Instead, teaching statistics should take into account the different fields of study that students have chosen. For example, students of sciences or engineering have different interests and backgrounds compared to students of any social or juridical…
NASA Astrophysics Data System (ADS)
Sultan, A. Z.; Hamzah, N.; Rusdi, M.
2018-01-01
The implementation of concept attainment method based on simulation was used to increase student’s interest in the subjects Engineering of Mechanics in second semester of academic year 2016/2017 in Manufacturing Engineering Program, Department of Mechanical PNUP. The result of the implementation of this learning method shows that there is an increase in the students’ learning interest towards the lecture material which is summarized in the form of interactive simulation CDs and teaching materials in the form of printed books and electronic books. From the implementation of achievement method of this simulation based concept, it is noted that the increase of student participation in the presentation and discussion as well as the deposit of individual assignment of significant student. With the implementation of this method of learning the average student participation reached 89%, which before the application of this learning method only reaches an average of 76%. And also with previous learning method, for exam achievement of A-grade under 5% and D-grade above 8%. After the implementation of the new learning method (simulation based-concept attainment method) the achievement of Agrade has reached more than 30% and D-grade below 1%.
NASA Astrophysics Data System (ADS)
Santiago, Marisol Mercado
Culturally responsive teaching has been argued to be effective in the education of Indigenous youth. This approach emphasizes the legitimacy of a group's cultural heritage, helps to associate abstract academic knowledge with the group's sociocultural context, seeks to incorporate a variety of strategies to engage students who have different learning styles, and strives to integrate multicultural information in the educational contents, among other considerations. In this work, I explore the outcomes of a culturally responsive introductory engineering short course that I developed and taught to Tibetan students at Tibetan Children's Village of Selakui (in Uttarakhand, India). Based on my ethnographic research in Tibetan communities in northern India, I examine two research questions: (a) What are the processes to develop and implement a pre-college culturally responsive introductory engineering course? and (b) How do Tibetan culture and Buddhism influence the engineering design and teamwork of the pre-college Tibetan students who took the course? I designed then taught the course that featured elementary lectures on sustainability, introductory engineering design, energy alternatives, and manufacturing engineering. The course also included a pre-college engineering design project through which Tibetan high school students investigated a problem at the school and designed a possible solution to it. Drawing from postcolonial studies, engineering studies, engineering and social justice, Buddhist studies, and Tibetan studies, I provide an analysis of my findings. Based on my findings, I conclude that my culturally responsive approach of teaching was an effective method to help students feel that their cultural background was respected and included in a pre-college engineering course; however, some students felt resistance toward the teaching approach. In addition, the culturally relevant content that connected with their ways of living in their school, Tibetan communities, and surroundings helped the students to relate to abstract concepts in familiar settings. Lastly, they appreciated that I brought to the course relevant information about technology and society in India (their host country), engineers' work in industry, technologies used in other contexts as well, and projects that show how engineers can help to alleviate poverty. The findings of my research can inform (a) educators who are interested in integrating culturally responsive activities in their teaching methods, (b) researchers or teachers in ethnic minority schools abroad, (c) educators interested in developing engineering activities or courses for underrepresented ethnic minorities, ethnic diasporas or refugee youth in the United States, and (d) facilitators at multicultural engineering summer camps in the United States.
Examination of factors predicting secondary students' interest in tertiary STEM education
NASA Astrophysics Data System (ADS)
Chachashvili-Bolotin, Svetlana; Milner-Bolotin, Marina; Lissitsa, Sabina
2016-02-01
Based on the Social Cognitive Career Theory (SCCT), the study aims to investigate factors that predict students' interest in pursuing science, technology, engineering, and mathematics (STEM) fields in tertiary education both in general and in relation to their gender and socio-economic background. The results of the analysis of survey responses of 2458 secondary public school students in the fifth-largest Israeli city indicate that STEM learning experience positively associates with students' interest in pursuing STEM fields in tertiary education as opposed to non-STEM fields. Moreover, studying advanced science courses at the secondary school level decreases (but does not eliminate) the gender gap and eliminates the effect of family background on students' interest in pursuing STEM fields in the future. Findings regarding outcome expectations and self-efficacy beliefs only partially support the SCCT model. Outcome expectations and self-efficacy beliefs positively correlate with students' entering tertiary education but did not differentiate between their interests in the fields of study.
"Dirt Cheap" Project Teaches Soils Engineering
ERIC Educational Resources Information Center
Roman, Harry T.
2010-01-01
This article describes a soil-testing activity that enables students to learn some interesting and useful things about how soil behaves under varied conditions. It offers a great way to give them a practical pre-engineering experience and will show them how engineers think about construction and how local soils influence building design. The…
Integrating Engineering into K-6 Curriculum: Developing Talent in the STEM Disciplines
ERIC Educational Resources Information Center
Mann, Eric L.; Mann, Rebecca L.; Strutz, Michele L.; Duncan, Daphne; Yoon, So Yoon
2011-01-01
The fields of gifted and engineering education share many common interests, and their students share many common attributes. Infusing and making engineering implicit in the K-6 education programs creates opportunities to develop concepts, skills, and habits of the mind that are valuable in all disciplines while providing opportunities to discover…
Developing Tomorrows Engineers: A Case Study in Instrument Engineering
ERIC Educational Resources Information Center
McDonnell, Liam; O'Neill, Donal
2009-01-01
Purpose: The purpose of this case study is to outline the challenges facing industry and educational institutions in educating and training instrument engineers against a backdrop of declining interest by secondary school students in mathematics and physics. This case study cites the experience and strategies of the Kentz Group and Cork Institute…
Building International Experiences into an Engineering Curriculum--A Design Project-Based Approach
ERIC Educational Resources Information Center
Maldonado, Victor; Castillo, Luciano; Carbajal, Gerardo; Hajela, Prabhat
2014-01-01
This paper is a descriptive account of how short-term international and multicultural experiences can be integrated into early design experiences in an aerospace engineering curriculum. Such approaches are considered as important not only in fostering a student's interest in the engineering curriculum, but also exposing them to a multicultural…
Student Interest in Engineering Design-Based Science
ERIC Educational Resources Information Center
Selcen Guzey, S.; Moore, Tamara J.; Morse, Gillian
2016-01-01
Current reform efforts in science education around the world call on teachers to use integrated approaches to teach science. As a part of such reform efforts in the United States, engineering practices and engineering design have been identified in K-12 science education standards. However, there is relatively little is known about effective ways…
ERIC Educational Resources Information Center
Mohan, Marguerite A.; May, Nicole; Assaf-Anid, Nada M.; Castaldi, Marco J.
2006-01-01
The ever-increasing global demand for energy has sparked renewed interest within the engineering community in the study of sustainable alternative energy sources. This paper discusses a power generation system which uses biomass as "fuel" to illustrate the concepts taught to students taking a graduate level chemical engineering process…
The University of Connecticut Biomedical Engineering Mentoring Program for high school students.
Enderle, John D; Liebler, Christopher M; Haapala, Stephenic A; Hart, James L; Thonakkaraparayil, Naomi T; Romonosky, Laura L; Rodriguez, Francisco; Trumbower, Randy D
2004-01-01
For the past four years, the Biomedical Engineering Program at the University of Connecticut has offered a summer mentoring program for high school students interested in biomedical engineering. To offer this program, we have partnered with the UConn Mentor Connection Program, the School of Engineering 2000 Program and the College of Liberal Arts and Sciences Summer Laboratory Apprentice Program. We typically have approximately 20-25 high school students learning about biomedical engineering each summer. The mentoring aspect of the program exists at many different levels, with the graduate students mentoring the undergraduate students, and these students mentoring the high school students. The program starts with a three-hour lecture on biomedical engineering to properly orient the students. An in-depth paper on an area in biomedical engineering is a required component, as well as a PowerPoint presentation on their research. All of the students build a device to record an EKG on a computer using LabView, including signal processing to remove noise. The students learn some rudimentary concepts on electrocardiography and the physiology and anatomy of the heart. The students also learn basic electronics and breadboarding circuits, PSpice, the building of a printed circuit board, PIC microcontroller, the operation of Multimeters (including the oscilloscope), soldering, assembly of the EKG device and writing LabView code to run their device on a PC. The students keep their EKG device, LabView program and a fully illustrated booklet on EKG to bring home with them, and hopefully bring back to their high school to share their experiences with other students and teachers. The students also work on several other projects during this summer experience as well as visit Hartford Hospital to learn about Clinical Engineering.
The Development of the STEM Career Interest Survey (STEM-CIS)
ERIC Educational Resources Information Center
Kier, Meredith W.; Blanchard, Margaret R.; Osborne, Jason W.; Albert, Jennifer L.
2014-01-01
Internationally, efforts to increase student interest in science, technology, engineering, and mathematics (STEM) careers have been on the rise. It is often the goal of such efforts that increased interest in STEM careers should stimulate economic growth and enhance innovation. Scientific and educational organizations recommend that efforts to…
ERIC Educational Resources Information Center
Hunsu, Nathaniel J.; Adesope, Olusola; Van Wie, Bernard J.
2017-01-01
Instructors often try out innovative interventions (INTRs) in their classrooms to promote student engagement and learning interest. While such efforts are commendable, thinking through how individual and environmental characteristics influence interest development in learners is crucial to meeting such teaching objectives. In this study, we…
Short educational programs in optical design and engineering
NASA Astrophysics Data System (ADS)
Voznesenskaya, Anna; Romanova, Galina; Bakholdin, Alexey; Tolstoba, Nadezhda; Ezhova, Kseniia
2016-09-01
Globalization and diversification of education in optical engineering causes a number of new phenomena in students' learning paths. Many students have an interest to get some courses in other universities, to study in international environment, to broaden not only professional skills but social links and see the sights as well etc. Participation in short educational programs (e.g. summer / winter schools, camps etc.) allows students from different universities to learn specific issues in their or in some neighbor field and also earn some ECTS for the transcript of records. ITMO University provides a variety of short educational programs in optical design and engineering oriented for different background level, such are: Introduction into optical engineering, Introduction into applied and computer optics, Optical system design, Image modeling and processing, Design of optical devices and components. Depending on students' educational background these programs are revised and adopted each time. Usually the short educational programs last 4 weeks and provide 4 ECTS. The short programs utilize a set of out-of date educational technologies like problem-based learning, case-study and distance-learning and evaluation. Practically, these technologies provide flexibility of the educational process and intensive growth of the learning outcomes. Students are satisfied with these programs very much. In their feedbacks they point a high level of practical significance, experienced teaching staff, scholarship program, excellent educational environment, as well as interesting social program and organizational support.
ERIC Educational Resources Information Center
Peterman, Karen; Kermish-Allen, Ruth; Knezek, Gerald; Christensen, Rhonda; Tyler-Wood, Tandra
2016-01-01
This article describes Energy for ME and Going Green! Middle Schoolers Out to Save the World, two Science, Technology, Engineering, and Mathematics (STEM) education programs with the common goal of improving students' attitudes about scientific careers. The authors represent two project teams, each with funding from the National Science…
NASA Technical Reports Server (NTRS)
Fertis, D. G.
1983-01-01
On June 1, 1980, the University of Akron and the NASA Lewis Research Center (LERC) established a Graduate Cooperative Fellowship Program in the specialized areas of Engine Structural Analysis and Dynamics, Computational Mechanics, Mechanics of Composite Materials, and Structural Optimization, in order to promote and develop requisite technologies in these areas of engine technology. The objectives of this program are consistent with those of the NASA Engine Structure Program in which graduate students of the University of Akron participate by conducting research at Lewis. This report is the second on this grant and summarizes the second and third year research effort, which includes the participation of five graduate students where each student selects one of the above areas as his special field of interest. Each student is required to spend 30 percent of his educational training time at the NASA Lewis Research Center and the balance at the University of Akron. His course work is judiciously selected and tailored to prepare him for research work in his field of interest. A research topic is selected for each student while in residence at the NASA Lewis Research Center, which is also approved by the faculty of the University of Akron as his thesis topic for a Master's and/or a Ph.D. degree.
Using the domain identification model to study major and career decision-making processes
NASA Astrophysics Data System (ADS)
Tendhar, Chosang; Singh, Kusum; Jones, Brett D.
2018-03-01
The purpose of this study was to examine the extent to which (1) a domain identification model could be used to predict students' engineering major and career intentions and (2) the MUSIC Model of Motivation components could be used to predict domain identification. The data for this study were collected from first-year engineering students. We used a structural equation model to test the hypothesised relationship between variables in the partial domain identification model. The findings suggested that engineering identification significantly predicted engineering major intentions and career intentions and had the highest effect on those two variables compared to other motivational constructs. Furthermore, results suggested that success, interest, and caring are plausible contributors to students' engineering identification. Overall, there is strong evidence that the domain identification model can be used as a lens to study career decision-making processes in engineering, and potentially, in other fields as well.
NASA Astrophysics Data System (ADS)
Riihimaki, C. A.; Sealfon, C. D.; Paine, E. N.; O'Donnell, F. C.; Caylor, K. K.; Wilcove, D. S.
2012-12-01
The Science and Engineering Education Initiative at Princeton University aims to inspire and prepare all undergraduates, irrespective of their majors, to become scientifically and technologically literate citizens and decision-makers. Launched by the faculty on the Council on Science and Technology in September 2011, the initiative involves revising and creating science and engineering courses that emphasize the role of science in society. The course "Fundamentals of Environmental Studies" will serve as a model course for the initiative starting with revisions to the course in Fall 2012. Given the general interest undergraduates have for sustainability topics and the obvious connections between sustainability and society, this course should generate ample interest from students across the campus. We have begun the Initiative by defining student-centered learning goals and surveying students' attitudes towards science and engineering. Course by course, we are also gradually applying research-based teaching methods to better align course activities with learning goals, assessing learning gains, and creating a repository of successful methods and courses. Among the changes to "Fundamentals of Environmental Studies" will be a greater emphasis on science communication, such as incorporating an assignment in which students track the evolution of communicating a research project, from journal article to newspaper coverage to editorials.
Translating University Biosensor Research to a High School Laboratory Experience
ERIC Educational Resources Information Center
Heldt, Caryn L.; Bank, Alex; Turpeinen, Dylan; King, Julia A.
2016-01-01
The need to increase science, technology, engineering, and mathematics (STEM) graduates is great. To interest more students into STEM degrees, we made our graphene biosensor research portable, inexpensive, and safe to demonstrate technology development to high school students. The students increased their knowledge of biosensors and proteins, and…
Exciting Students through VEX Robotic Competitions
ERIC Educational Resources Information Center
Robinson, Trevor P.; Stewardson, Gary A.
2012-01-01
Robotic competitions continue to gain popularity in the educational community as a way to engage students in hands-on learning that can raise a student's interest in science, technology, engineering, and mathematics. In 1992, For Inspiration and Recognition of Science and Technology (FIRST) held its first competition and presented a style of…
Developing Creative Behavior in Elementary School Students with Robotics
ERIC Educational Resources Information Center
Nemiro, Jill; Larriva, Cesar; Jawaharlal, Mariappan
2017-01-01
The School Robotics Initiative (SRI), a problem-based robotics program for elementary school students, was developed with the objective of reaching students early on to instill an interest in Science, Technology, Engineering, and Math disciplines. The purpose of this exploratory, observational study was to examine how the SRI fosters student…
Comparative analysis of positive and negative attitudes toward statistics
NASA Astrophysics Data System (ADS)
Ghulami, Hassan Rahnaward; Ab Hamid, Mohd Rashid; Zakaria, Roslinazairimah
2015-02-01
Many statistics lecturers and statistics education researchers are interested to know the perception of their students' attitudes toward statistics during the statistics course. In statistics course, positive attitude toward statistics is a vital because it will be encourage students to get interested in the statistics course and in order to master the core content of the subject matters under study. Although, students who have negative attitudes toward statistics they will feel depressed especially in the given group assignment, at risk for failure, are often highly emotional, and could not move forward. Therefore, this study investigates the students' attitude towards learning statistics. Six latent constructs have been the measurement of students' attitudes toward learning statistic such as affect, cognitive competence, value, difficulty, interest, and effort. The questionnaire was adopted and adapted from the reliable and validate instrument of Survey of Attitudes towards Statistics (SATS). This study is conducted among engineering undergraduate engineering students in the university Malaysia Pahang (UMP). The respondents consist of students who were taking the applied statistics course from different faculties. From the analysis, it is found that the questionnaire is acceptable and the relationships among the constructs has been proposed and investigated. In this case, students show full effort to master the statistics course, feel statistics course enjoyable, have confidence that they have intellectual capacity, and they have more positive attitudes then negative attitudes towards statistics learning. In conclusion in terms of affect, cognitive competence, value, interest and effort construct the positive attitude towards statistics was mostly exhibited. While negative attitudes mostly exhibited by difficulty construct.
NASA Astrophysics Data System (ADS)
Herman, Rhett; Ballowe, Abigail; Ashley, Joe
2017-11-01
Two students in a recent thermodynamics/statistical mechanics course needed to complete a course-related project to receive honors credit for the class. Such courses are typically theoretical, without an accompanying laboratory, although there are existing related hands-on exercises. The choice of the project was influenced by one student's desire to become a mechanical engineer after graduating while the other wanted a project that was "fun" without "just doing more calculations." The choice of this particular project was further refined by the future engineer's interest in the thermodynamics of car engines.
Paired peer learning through engineering education outreach
NASA Astrophysics Data System (ADS)
Fogg-Rogers, Laura; Lewis, Fay; Edmonds, Juliet
2017-01-01
Undergraduate education incorporating active learning and vicarious experience through education outreach presents a critical opportunity to influence future engineering teaching and practice capabilities. Engineering education outreach activities have been shown to have multiple benefits; increasing interest and engagement with science and engineering for school children, providing teachers with expert contributions to engineering subject knowledge, and developing professional generic skills for engineers such as communication and teamwork. This pilot intervention paired 10 pre-service teachers and 11 student engineers to enact engineering outreach in primary schools, reaching 269 children. A longitudinal mixed methods design was employed to measure change in attitudes and Education Outreach Self-Efficacy in student engineers; alongside attitudes, Teaching Engineering Self-Efficacy and Engineering Subject Knowledge Confidence in pre-service teachers. Highly significant improvements were noted in the pre-service teachers' confidence and self-efficacy, while both the teachers and engineers qualitatively described benefits arising from the paired peer mentor model.
Smith, Jessica M; McClelland, Carrie J; Smith, Nicole M
2017-12-01
The mining and energy industries present unique challenges to engineers, who must navigate sometimes competing responsibilities and codes of conduct, such as personal senses of right and wrong, professional ethics codes, and their employers' corporate social responsibility (CSR) policies. Corporate social responsibility (CSR) is the current dominant framework used by industry to conceptualize firms' responsibilities to their stakeholders, yet has it plays a relatively minor role in engineering ethics education. In this article, we report on an interdisciplinary pedagogical intervention in a petroleum engineering seminar that sought to better prepare engineering undergraduate students to critically appraise the strengths and limitations of CSR as an approach to reconciling the interests of industry and communities. We find that as a result of the curricular interventions, engineering students were able to expand their knowledge of the social, rather than simply environmental and economic dimensions of CSR. They remained hesitant, however, in identifying the links between those social aspects of CSR and their actual engineering work. The study suggests that CSR may be a fruitful arena from which to illustrate the profoundly sociotechnical dimensions of the engineering challenges relevant to students' future careers.
UAF Space Systems Engineering Program: Engaging Students through an Apprenticeship Model
NASA Astrophysics Data System (ADS)
Thorsen, D.
2017-12-01
Learning by doing has been the mantra of engineering education for decades, however, the constraints of semester length courses limits the types and size of experiences that can be offered to students. The Space Systems Engineering Program (SSEP) at the University of Alaska Fairbanks provides interdisciplinary engineering and science students with hands-on experience in all aspects of space systems engineering through a design, build, launch paradigm applied to balloon and rocket payloads and small satellites. The program is structured using an apprenticeship model such that students, freshmen through graduate, can participate in multi-year projects thereby gaining experiences appropriate to their level in college. Students enter the lab in a trainee position and receive training on lab processes and design software. Depending on the student's interests they learn how to use specific lab equipment and software design tools. Trainees provide support engineering under guidance of an upper classman. As the students' progress in their degree program and gain more expertise, they typically become part of a specific subsystem team, where they receive additional training in developing design documents and in writing requirements and test documents, and direct their efforts to meeting specific objectives. By the time the student reaches their senior year, they have acquired the leadership role for a specific subsystem and/or a general leadership role in the lab. If students stay to pursue graduate degrees, they assume the responsibility of training and mentoring other undergraduates in their areas of expertise. Throughout the program upper class students mentor the newer students. The Space Systems Engineering Program strives to reinforce a student's degree program through these large scale projects that place engineering in context.
NASA Astrophysics Data System (ADS)
Balasubramanian, S.; Koloutsou-Vakakis, S.
2014-12-01
There is a need for environment engineers and sustainability managers to address global environmental, energy and health challenges. Environmental literacy programs at K-12 level provide a unique opportunity in motivating young minds in joining STEM and also provide additional value in learning about "saving planet earth". The Women in Engineering at the University of Illinois organize an annual week long camp, for female high school students with tracks corresponding to different fields of Engineering. The Environmental Engineering and Sustainability (EES) track is organized by faculty and graduate students of the Civil and Environmental Engineering department and introduces students to concepts in sustainability and systems thinking in connection with air and water quality, climate change and renewable energy. This study is a preliminary assessment of the relevance of the EES outreach track conducted in July 2014 in student learning. Specific goals include assessing (a) demographics of participants and their motivation to join this camp, (b) educational and enjoyability quotients of the modules and (c) learning and motivational outcomes using the Likert scale. A pre-camp survey indicated keen interest in learning about environmental engineering (4.56/5.0) and expected this camp to be a venue to learn about related career choices (4.9/5.0). Five days of instruction were divided thematically and included a mix of lectures, activity based learning, demonstrations and field visits. Overall modules were rated as educational (4.4/5.0) and enjoyable (4.5/5.0). Modules with hands-on learning were best received (4.67/5.0) and rated unique (4.7/5.0). Post camp, participants acknowledged the important contribution of environmental engineers to society (4.8/5.0) and could relate the different modules to the role engineer's play (4.06/5.0) for sustainability. On an average, the participants evinced interest in engineering as a career choice (4.0/5.0) but there was a broader range of responses regarding environmental engineering as their career choice (3.13/5.0).
NASA Astrophysics Data System (ADS)
Lamont, L. A.; Chaar, L.; Toms, C.
2010-03-01
Interactive learning is beneficial to students in that it allows the continual development and testing of many skills. An interactive approach enables students to improve their technical capabilities, as well as developing both verbal and written communicative ability. Problem solving and communication skills are vital for engineering students; in the workplace they will be required to communicate with people of varying technical abilities and from different linguistic and engineering backgrounds. In this paper, a case study is presented that discusses how the traditional method of teaching control systems can be improved. 'Control systems' is a complex engineering topic requiring students to process an extended amount of mathematical formulae. MATLAB software, which enables students to interactively compare a range of possible combinations and analyse the optimal solution, is used to this end. It was found that students became more enthusiastic and interested when given ownership of their learning objectives. As well as improving the students' technical knowledge, other important engineering skills are also improved by introducing an interactive method of teaching.
Creating meaningful learning experiences: Understanding students' perspectives of engineering design
NASA Astrophysics Data System (ADS)
Aleong, Richard James Chung Mun
There is a societal need for design education to prepare holistic engineers with the knowledge, skills, and attitudes to innovate and compete globally. Design skills are paramount to the espoused values of higher education, as institutions of higher learning strive to develop in students the cognitive abilities of critical thinking, problem solving, and creativity. To meet these interests from industry and academia, it is important to advance the teaching and learning of engineering design. This research aims to understand how engineering students learn and think about design, as a way for engineering educators to optimize instructional practice and curriculum development. Qualitative research methodology was used to investigate the meaning that engineering students' ascribe to engineering design. The recruitment of participants and corresponding collection of data occurred in two phases using two different data collection techniques. The first phase involved the distribution of a one-time online questionnaire to all first year, third year, and fourth year undergraduate engineering students at three Canadian Universities. After the questionnaire, students were asked if they would be willing to participate in the second phase of data collection consisting of a personal interview. A total of ten students participated in interviews. Qualitative data analysis procedures were conducted on students' responses from the questionnaire and interviews. The data analysis process consisted of two phases: a descriptive phase to code and categorize the data, followed by an interpretative phase to generate further meaning and relationships. The research findings present a conceptual understanding of students' descriptions about engineering design, structured within two educational orientations: a learning studies orientation and a curriculum studies orientation. The learning studies orientation captured three themes of students' understanding of engineering design: awareness, relevance, and transfer. With this framework of student learning, engineering educators can enhance learning experiences by engaging all three levels of students' understanding. The curriculum studies orientation applied the three holistic elements of curriculum---subject matter, society, and the individual---to conceptualize design considerations for engineering curriculum and teaching practice. This research supports the characterization of students' learning experiences to help educators and students optimize their teaching and learning of design education.
Graduate student recruiting into critical transportation infrastructure areas of interest.
DOT National Transportation Integrated Search
2013-01-01
This report presents the results of a three-year, intensive recruiting and mentoring program in : the University of Oklahomas (OU) College of Engineering (CoE). Highly qualified and diverse : graduate students were sought to pursue degrees in tran...
Perfectionism and Performance among STEM Students
ERIC Educational Resources Information Center
Rice, Kenneth G.; Lopez, Frederick G.; Richardson, Clarissa M. E.
2013-01-01
We examined perfectionistic personality characteristics and their association with science self-efficacy beliefs and academic performance among college students in science, technology, engineering, and mathematics (STEM). We were especially interested in gender differences in effects given that women remain significantly underrepresented in…
NASA Astrophysics Data System (ADS)
Sicardi-Segade, A.; Campos-Mejía, A.; Solano, C.
2016-09-01
Innovation through science and technology will be essential to solve important challenges humanity will have to face in the years to come, regarding clean energies, food quality, medicine, communications, etc. To deal with these important issues, it is necessary to promote STEM (Science, Technology, Engineering and Mathematics) education in children. In this work, we present the results of the strategies that we have implemented to increase the elementary and middle school students interest in science and technology by means of activities that allow them to use and develop their creativity, team work, critical thinking, and the use of the scientific method and the engineering design process.
Project-based learning in a high school engineering program: A case study
NASA Astrophysics Data System (ADS)
France, Todd
Generating greater student interest in science, technology, engineering, and mathematics (STEM) has been a major topic of discussion among educators, policymakers, and researchers in recent years, as increasing the number of graduates in these fields is widely considered a necessary step for sustaining the progress of today's society. Fostering this interest must occur before students reach college, and substantial efforts have been made to engage students at K-12 levels in STEM-focused learning. Attempts to involve students in engineering, a vital and growing profession, yet one in which students often have little experience, have frequently emphasized the design and construction of physical products, a practice supported by project-based learning. This thesis examines the environment of an engineering high school course that employed the project-based model. The course is part of a dedicated curricular program which aims to provide students with positive experiences in engineering-related activities while also preparing them for the rigors of college. A case study was conducted to provide insight into the benefits and drawbacks of the learning model. The study's outcomes are intended to provide guidance to educators participating in the design and/or facilitation of project-based activities, particularly those involved with engineering education. The research was performed using a qualitative approach. Long-term engagement with course participants was deemed critical to gaining a comprehensive understanding of the interactions and events that transpired on a daily basis. Nine educators involved with the program were interviewed, as were nineteen of the course's thirty-nine students. A wealth of other relevant data -- including surveys, field notes, and evaluations of student work -- was compiled for analysis as well. The study findings suggest that experiences in problem solving and teamwork were the central benefits of the course. Limitations existed due to a high focus on hands-on work, which infringed upon the significance of math and science content as well as the utilization of disciplined inquiry. In addition, group projects failed to hold individuals accountable, leading to assessment challenges. Program-wide, a number of issues hindered the teachers' abilities to institute changes, most notably a commitment to serve students of all abilities.
Increasing Interest of Young Women in Engineering
ERIC Educational Resources Information Center
Hinterlong, Diane; Lawrence, Branson; DeVol, Purva
2014-01-01
The internationally recognized Illinois Mathematics and Science Academy (IMSA) develops creative, ethical leaders in science, technology, engineering and mathematics. As a teaching and learning laboratory created by the State of Illinois, IMSA enrolls academically talented Illinois students in grades 10 through 12 in its advanced, residential…
ERIC Educational Resources Information Center
Conrad, Shawn; Clarke-Midura, Jody; Klopfer, Eric
2014-01-01
Educational games offer an opportunity to engage and inspire students to take interest in science, technology, engineering, and mathematical (STEM) subjects. Unobtrusive learning assessment techniques coupled with machine learning algorithms can be utilized to record students' in-game actions and formulate a model of the students' knowledge…
Increasing Middle School Student Interest in STEM Careers with Videos of Scientists
ERIC Educational Resources Information Center
Wyss, Vanessa L.; Heulskamp, Diane; Siebert, Cathy J.
2012-01-01
Students are making choices in middle school that will impact their desire and ability to pursue STEM careers. Providing middle school students with accurate information about STEM (Science, Technology, Engineering, Mathematics) careers enables them to make more knowledgeable choices about courses of study and career paths. Practical ways of…
Graduate Student Support and Manpower Resources in Graduate Science Education, Fall 1970.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
Current data on graduate student support and manpower resources in graduate science education are important to science administrators, educators, and others concerned with the education of highly qualified scientists and engineers and other related manpower issues. They are also of interest to prospective graduate students, vocational counselors,…
The Role of Teachers at University: What Do High Achiever Students Look for?
ERIC Educational Resources Information Center
Monteiro, Silvia; Almeida, Leandro S.; Vasconcelos, Rosa M.
2012-01-01
The perceptions of students about their teachers have interested the academic and scientific community, regarding the improvement of the quality of higher education. This paper presents data obtained from interviews conducted with ten high achiever engineering students and focuses on the characteristics of teachers that are highly valued by the…
An Introduction to Dynamic Systems and Feedback.
ERIC Educational Resources Information Center
Rabins, Michael J.
This introduction to dynamic systems is intended for freshman and sophomore students in engineering, physical science, or social science. Material has been class tested and has led to increased student interest in further work in systems analysis and operations research. Notes are written for the student and are self-contained. Material can be…
Impact of Fab Lab Tulsa on Student Self-Efficacy toward STEM Education
ERIC Educational Resources Information Center
Dubriwny, Nicholas; Pritchett, Nathan; Hardesty, Michelle; Hellman, Chan M.
2016-01-01
Student self-confidence is important to any attempt to increase interest and achievement in Science, Technology, Engineering, and Math (STEM) education. This study presents a longitudinal examination of Fab Lab Tulsa's impact on attitude and self-efficacy toward STEM education among middle-school aged students. Paired samples t-test showed a…
The Effects of Motivation on Student Performance on Science Assessments
ERIC Educational Resources Information Center
Glenn, Tina Heard
2013-01-01
Academic achievement of public school students in the United States has significantly fallen behind other countries. Students' lack of knowledge of, or interest in, basic science and math has led to fewer graduates of science, technology, engineering, and math-related fields (STEM), a factor that may affect their career success and will certainly…
NASA Astrophysics Data System (ADS)
Oon, Pey-Tee; Subramaniam, R.
2015-01-01
This study explored an under-researched area in science education-the university programmes preferred by high school students who take physical science subjects and the reasons that matter in their preferences. A total of 1,071 upper secondary and pre-university students in Singapore, who take physical science subjects among their range of subjects, participated in this study. A survey method was adopted and the Rasch model was used to analyse the data. Overall, Business Studies was ranked as the predominant choice; nonetheless, scientific programmes such as Science, Engineering, and Mathematics are generally still well liked by the students. When gender differences were examined, we found that students largely followed gender-typical programme preferences, in which males tend to incline towards Engineering while females tend to incline towards Arts and Social Sciences. Students prefer a university programme based on their individual interest and ability, with career aspiration and remuneration coming next. Interestingly, females place greater emphasis on career aspiration than males. Some implications of the study are discussed.
Case study: use of problem-based learning to develop students' technical and professional skills
NASA Astrophysics Data System (ADS)
Warnock, James N.; Mohammadi-Aragh, M. Jean
2016-03-01
Problem-based learning (PBL) is a pedagogy that has attracted attention for many biomedical engineering curricula. The aim of the current study was to address the research question, 'Does PBL enable students to develop desirable professional engineering skills?' The desirable skills identified were communication, teamwork, problem solving and self-directed learning. Forty-seven students enrolled in a biomedical materials course participated in the case study. Students worked in teams to complete a series of problems throughout the semester. The results showed that students made significant improvements in their problem-solving skills, written communication and self-directed learning. Students also demonstrated an ability to work in teams and communicate orally. In conclusion, this case study provides empirical evidence of the efficacy of PBL on student learning. We discuss findings from our study and provide observations of student performance and perceptions that could be useful for faculty and researchers interested in PBL for biomedical engineering education.
NASA Astrophysics Data System (ADS)
Bickel, Malte; Strack, Micha; Bögeholz, Susanne
2015-06-01
Modern knowledge-based societies, especially their younger members, have largely lost their bonds to farming. However, learning about agriculture and its interrelations with environmental issues may be facilitated by students' individual interests in agriculture. To date, an adequate instrument to investigate agricultural interests has been lacking. Research has infrequently considered students' interest in agricultural content areas as well as influencing factors on students' agricultural interests. In this study, a factorial design of agricultural interests was developed combining five agricultural content areas and four components of individual interest. The instrument was validated with German fifth and sixth graders ( N = 1,085) using a variance decomposition confirmatory factor analysis model. The results demonstrated a second-order factor of general agricultural interest, with animal husbandry, arable farming, vegetable and fruit cropping, primary food processing, and agricultural engineering as discrete content areas of agricultural interest. Multiple regression analyses demonstrated that prior knowledge, garden experience, and disgust sensitivity are predictors of general agricultural interest. In addition, gender influenced interest in four of the five agricultural content areas. Implications are directed at researchers, teachers, and environmental educators concerning how to trigger and develop pupils' agricultural interests.
ERIC Educational Resources Information Center
Holmes, Kathryn; Gore, Jennifer; Smith, Max; Lloyd, Adam
2018-01-01
Declining enrolments in science, technology, engineering and mathematics (STEM) disciplines and a lack of interest in STEM careers are concerning at a time when society is becoming more reliant on complex technologies. We examine student aspirations for STEM careers by drawing on surveys conducted annually from 2012 to 2015. School students in…
Biomedical engineering and society: policy and ethics.
Flexman, J A; Lazareck, L
2007-01-01
Biomedical engineering impacts health care and contributes to fundamental knowledge in medicine and biology. Policy, such as through regulation and research funding, has the potential to dramatically affect biomedical engineering research and commercialization. New developments, in turn, may affect society in new ways. The intersection of biomedical engineering and society and related policy issues must be discussed between scientists and engineers, policy-makers and the public. As a student, there are many ways to become engaged in the issues surrounding science and technology policy. At the University of Washington in Seattle, the Forum on Science Ethics and Policy (FOSEP, www.fosep.org) was started by graduate students and post-doctoral fellows interested in improving the dialogue between scientists, policymakers and the public and has received support from upper-level administration. This is just one example of how students can start thinking about science policy and ethics early in their careers.
NASA Astrophysics Data System (ADS)
Hinton, Tracy Barger
With the large expected growth in STEM-related careers in American industries, there are not enough graduates to fill these positions (United States Department of Labor, 2015). Increased efforts are being made to reform STEM education from early childhood to college level studies, mainly through increased efforts to incorporate new technologies and project-based learning activities (Hegedorn & Purnamasari, 2012). At the middle school level, a robotics educational platform can be a worthwhile activity that provides hands-on learning as students learn basic programming and engineering skills (Grubbs, 2013). Based on the popularity of LEGO toys, LEGO Education developed an engaging and effective way to learn about computer programming and basic engineering concepts (Welch & Huffman, 2011). LEGO MINDSTORMS offers a project-based learning environment that engages students in real-life, problem-solving challenges. The purpose of this qualitative study was to investigate the instructional use of a robotics educational curriculum on middle school students' attitudes toward and interests in STEM and their experiences with LEGO Robotics activities. Participants included 23 seventh grade students who were enrolled in a Career Cluster Technologies I class in a suburban middle school. Data for the study were collected from three focus group interviews, open-ended surveys, classroom observations, and the Career Cruising program. Findings revealed that the robotics activities led to an increased interest and higher self-efficacy in STEM tasks. If students continue to nurture and develop their STEM interests, it is possible that many of them may develop higher confidence and eventually set personal goals related to STEM classes and careers. While other studies have been conducted on similar topics, this qualitative research is unique because it contributed to the gap in research that investigates the impact of an in-class robotics curriculum on middle school students' attitudes and interests in STEM. Throughout the robotics unit, students exhibited positive reactions, including much excitement and enjoyment as they solved the robotics challenges. In addition, students demonstrated a greater interest in STEM courses and careers as a result of this hands-on activity. Middle school teachers should incorporate STEM-based activities such as robotics to help students gain hands-on STEM skills.
NASA Astrophysics Data System (ADS)
Carr, Bruce Henry
The purpose of the study was to examine the relationships of social cognitive factors and their influence on the academic performance of first-year engineering students. The nine social cognitive variables identified were under the groupings of personal support, occupational self-efficacy, academic self-efficacy, vocational interests, coping, encouragement, discouragement, outcome expectations, and perceived stress. The primary student participants in this study were first-year engineering students from underrepresented groups which include African American, Hispanic American students and women. With this in mind, the researcher sought to examine the interactive influence of race/ethnicity and gender based on the aforementioned social cognitive factors. Differences in academic performance (university GPA of first-year undergraduate engineering students) were analyzed by ethnicity and gender. There was a main effect for ethnicity only. Gender was found not to be significant. Hispanics were not found to be significantly different in their GPAs than Whites but Blacks were found to have lower GPAs than Whites. Also, Pearson correlation coefficients were used to examine the relationship between and among the nine identified social cognitive variables. The data from the analysis uncovered ten significant correlations which were as follows: occupational self-efficacy and academic self-efficacy, occupational self-efficacy and vocational interest, occupational self-efficacy and perceived stress, academic self-efficacy and encouragement, academic self-efficacy and outcome expectations, academic self-efficacy and perceived stress, vocational interest and outcome expectations, discouragement and encouragement, coping and perceived stress, outcome expectations and perceived stress. Next, a Pearson correlation coefficient was utilized to examine the relationship between academic performance (college GPA) of first-year undergraduate engineering students and the nine identified social cognitive variables. The data analysis revealed three significant correlations which were as follows academic performance and occupational self-efficacy, academic performance and academic self-efficacy, and academic performance and encouragement. Finally, a Pearson correlation coefficient was used to examine the relationship between high school GPA and the nine identified social cognitive variables. The Pearson correlational coefficient indicated that there was one statistically significant correlation which was high school GPA and academic self-efficacy. Recommendations for further study included (a) future research involving investigations that compare a variety of institutions in different regions of the country; (b) further investigations utilizing open-ended responses from engineering students based on interviews; (c) a replicated study in 5 to 10 years to evaluate whether differences emerged relating to ethnicity and gender due to possible societal or cultural changes; and (d) a study involving a pretest and posttest of students' self-efficacy beliefs. Finally, the researcher recommends a qualitative study specifically involving interview questions aimed at students with moderate level grades and SAT scores who exhibited above average academic performance. (Abstract shortened by UMI.).
ERIC Educational Resources Information Center
MacClintic, Scott D.; Nelson, Genevieve M.
Bacterial transformation is a commonly used technique in genetic engineering that involves transferring a gene of interest into a bacterial host so that the bacteria can be used to produce large quantities of the gene product. Although several kits are available for performing bacterial transformation in the classroom, students do not always…
Wind energy curriculum development at GWU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Stephen M
A wind energy curriculum has been developed at the George Washington University, School of Engineering and Applied Science. Surveys of student interest and potential employers expectations were conducted. Wind industry desires a combination of mechanical engineering training with electrical engineering training. The curriculum topics and syllabus were tested in several graduate/undergraduate elective courses. The developed curriculum was then submitted for consideration.
Acclimating international graduate students to professional engineering ethics.
Newberry, Byron; Austin, Katherine; Lawson, William; Gorsuch, Greta; Darwin, Thomas
2011-03-01
This article describes the education portion of an ongoing grant-sponsored education and research project designed to help graduate students in all engineering disciplines learn about the basic ethical principles, rules, and obligations associated with engineering practice in the United States. While the curriculum developed for this project is used for both domestic and international students, the educational materials were designed to be sensitive to the specific needs of international graduate students. In recent years, engineering programs in the United States have sought to develop a larger role for professional ethics education in the curriculum. Accreditation requirements, as well as pressures from the private sector, have helped facilitate this shift in focus. Almost half of all engineering graduate students in the U.S. are international students. Further, research indicates that the majority of these students will remain in the U.S. to work post-graduation. It is therefore in the interest of the profession that these students, coming from diverse backgrounds, receive some formal exposure to the professional and ethical expectations and norms of the engineering profession in the United States to help ensure that they have the knowledge and skills--non-technical as well as technical--required in today's engineering profession. In becoming acculturated to professional norms in a host country, international students face challenges that domestic students do not encounter; such as cultural competency, language proficiency, and acculturation stress. Mitigating these challenges must be a consideration in the development of any effective education materials. The present article discusses the project rationale and describes the development of on-line instructional materials aimed at helping international engineering graduate students acclimate to professional engineering ethics standards in the United States. Finally, a brief data summary of students' perceptions of the usefulness of the content and instructional interface is provided to demonstrate the initial effectiveness of the materials and to present a case for project sustainability.
ERIC Educational Resources Information Center
Abdul-Razzaq, W.; Bushey, R.; Winn, G.
2011-01-01
Physics is essential for students who want to succeed in science and engineering. Excitement and interest in the content matter contribute to enhancing this success. We have developed a laboratory experiment that takes advantage of microwave ovens to demonstrate important physical concepts and increase interest in physics. This experiment…
ERIC Educational Resources Information Center
Filippi, Alyssa; Agarwal, Dipali
2017-01-01
There is a need for individuals in science, technology, engineering, and mathematics (STEM) careers to drive the innovation and research potential of Europe. Yet, there is expected to be a decrease in the number of STEM professionals, as there is less student interest in STEM fields of the study. Studies show that STEM classes that focus on…
Arts and Crafts as Adjuncts to STEM Education to Foster Creativity in Gifted and Talented Students
ERIC Educational Resources Information Center
Root-Bernstein, Robert
2015-01-01
Studies have found little correlation between creativity and being gifted or talented, but do show that creative people are more broadly trained, have more avocational interests, and display more ability in these interests than the average person. In the sciences, technology, engineering and mathematics (STEM) fields, the avocational interests of…
Maintaining the competitive edge; Use of computers for undergraduate instruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurley, F.; Miller, M.; Podlo, A.L.
1991-11-01
There is a revolution in U.S. undergraduate engineering curricula, one marked by a renaissance of interest in liberal arts education, re-emphasis on basic education, and a new emphasis on computer training. The Dept. of Petroleum Engineering at the U. of Texas recognized its weaknesses and in Sept. 1987 designed and implemented new curricula incorporating computer and technical communications skills for undergraduate students. This paper provides details of the curricula changes. The results of this 4-year program demonstrate that problem-solving skills of petroleum engineering students are sharpened through computerized education and proficient communication.
Preparing Students for Middle School Through After-School STEM Activities
NASA Astrophysics Data System (ADS)
Moreno, Nancy P.; Tharp, Barbara Z.; Vogt, Gregory; Newell, Alana D.; Burnett, Christopher A.
2016-12-01
The middle school years are a crucial time for cultivating students' interest in and preparedness for future STEM careers. However, not all middle school children are provided opportunities to engage, learn and achieve in STEM subject areas. Engineering, in particular, is neglected in these grades because it usually is not part of science or mathematics curricula. This study investigates the effectiveness of an engineering-integrated STEM curriculum designed for use in an after-school environment. The inquiry-based activities comprising the unit, Think Like an Astronaut, were intended to introduce students to STEM careers—specifically engineering and aerospace engineering—and enhance their skills and knowledge applicable related to typical middle school science objectives. Results of a field test with a diverse population of 5th grade students in nine schools revealed that Think Like an Astronaut lessons are appropriate for an after-school environment, and may potentially help increase students' STEM-related content knowledge and skills.
Academic satisfaction among Latino/a and White men and women engineering students.
Flores, Lisa Y; Navarro, Rachel L; Lee, Hang Shim; Addae, Dorothy A; Gonzalez, Rebecca; Luna, Laura L; Jacquez, Ricardo; Cooper, Sonya; Mitchell, Martha
2014-01-01
The current study tests a model of academic satisfaction in engineering based on Lent, Brown, and Hackett's (1994, 2000) social cognitive career theory among a sample of 527 engineering majors attending a Hispanic serving institution. The findings indicated that (a) an alternative bidirectional model fit the data for the full sample; (b) all of the hypothesized relations were significant for the full sample, except the path from engineering interests to goals; (c) social cognitive career theory predictors accounted for a significant amount of variance in engineering goals (26.6%) and academic satisfaction (45.1%); and (d) the model parameters did not vary across men and women or across Latino/a and White engineering undergraduate students. Implications for research and practice are discussed in relation to persistence in engineering among women and Latinos/as. (c) 2014 APA, all rights reserved.
ERIC Educational Resources Information Center
Ward, Lauren; Lyden, Sarah; Fitzallen, Noleine
2016-01-01
Context based learning (CBL) is a powerful tool that utilises areas of student interest framed in meaningful contexts to foster development of new skills and understanding. For middle school students, engineering activities that relate to real-world problems provide suitable CBL contexts for acquiring conceptual scientific and mathematical…
ERIC Educational Resources Information Center
Miner, Brenda
2006-01-01
The Area Vo-Tech Center (AVTC) in Russellville, Arkansas, recently hosted its first TechnoCamp to encourage enrollment based on the aptitude and interest level of the students enrolling in the various programs. The center currently offers student enrollment in auto technology, computer engineering, cosmetology, construction technology, drafting…
Do we need more famous fluid dynamicists?
NASA Astrophysics Data System (ADS)
Reckinger, Shanon; Brinkman, Bethany; Fenner, Raenita; London, Mara
2015-11-01
One of the main reasons students do not join the STEM fields is that they lack interest in technical topics. But do people (young students, the general public, or even our own engineering students) know what an engineer is and/or does? In this talk, results from a recent study on the perceptions of different professions will be presented. The study was designed based off of ``draw-an-engineer'' and ``draw-a-scientist'' tests used on elementary schools kids. The idea is to have participants visualize professionals (engineers, lawyers, and medical doctors were chosen for this study), and determine if there are any patterns within different demographic groups. The demographics that were focused on include gender, race, age, college major, highest level of education, and profession. One of the main findings of this survey was that participants had the most difficult time visualizing an engineer compared to a lawyer or a medical doctor. Therefore, maybe we need more famous engineers (and fluid dynamicists)?
UCS-PROMOVE: The engineer of the future
NASA Astrophysics Data System (ADS)
Villas-Boas, V.
2010-06-01
The Universidade de Caxias do Sul (UCS) elaborated the cooperative project called 'The engineer of the future', with the objective of promoting science and engineering among high school teachers and students. This project aims to improve the quality of the teaching and to increase the interest of students in technological areas, leading to a future career in engineering. The activities of this project were planned to give meaning and foundation to the teaching-learning process of science and for the application of theory in the solution of real problems, while articulating scientific, economic, environmental, social and political aspects and also to reinforce the important role of engineering in society. Amongst the activities to be offered to high school teachers and students are a specialisation course for teachers based upon new educational methodologies, workshops in different areas of science and technology, a programme entitled 'Encouraging girls in technology, science and engineering', science fairs and visits to the industries of the region. Activities with the engineering instructors of UCS are also being developed in order to help them to incorporate in their classes more effective pedagogical strategies for educating the engineer-to-be.
NASA Astrophysics Data System (ADS)
Shabani, R.; Massi, L.; Zhai, L.; Seal, S.; Cho, H. J.
2011-05-01
In order to address the challenges and restrictions given by a traditional classroom lecture environment, the top-down and bottom-up nanotechnology teaching modules were developed, implemented and evaluated. Then based on the hypothesis that instructors could further develop students' interest in this emerging area through the introduction of the teaching modules and a career module, an early stage evaluation of the effectiveness of the modules in selected engineering courses was conducted. The data suggested that adoption of modular lectures in regular engineering courses influenced attitude towards nanotechnology - overall, the teaching modules did a better job of piquing student's interest (albeit in the short term) in the subject, but there were also positive gains in interest in nanotechnology as a career. There was some evidence that the hands-on demonstration teaching modules with visual elements and the career module were more effective than traditional lecture presentations in the classroom.
Structural and Functional Model of Organization of Geometric and Graphic Training of the Students
ERIC Educational Resources Information Center
Poluyanov, Valery B.; Pyankova, Zhanna A.; Chukalkina, Marina I.; Smolina, Ekaterina S.
2016-01-01
The topicality of the investigated problem is stipulated by the social need for training competitive engineers with a high level of graphical literacy; especially geometric and graphic training of students and its projected results in a competence-based approach; individual characteristics and interests of the students, as well as methodological…
An Assessment of Factors Relating to High School Students' Science Self-Efficacy
ERIC Educational Resources Information Center
Gibson, Jakeisha Jamice
2017-01-01
This mixed-methods case study examined two out-of-school (OST) Science, Technology, Engineering and Math (STEM) programs at a science-oriented high school on students' Self-Efficacy. Because STEM is a key for future innovation and economic growth, Americans have been developing a variety of approaches to increase student interest in science within…
NASA Astrophysics Data System (ADS)
Sulaiman, Munir
Science, technology, engineering, and mathematics (STEM) programs in higher education institutions, particularly engineering programs, face challenges related to recruitment, retention, and graduation rates. The purpose of this study was to determine whether there are significant relationships among students' major preference, academic skills, nonacademic characteristics and perceptions, and retention to year 2 among students in electronic engineering, other STEM, and non STEM majors. The academic skills considered were study habits, intellectual interest, verbal and writing confidence, and academic assistance. The non-academic factors included academic support, family support, financial support, and student social integration into the campus environment. Tinto's theory of retention served as the theoretical framework. The research design was quantitative with a general linear method of analysis using responses to the College Student Inventory (CSI) survey as secondary data to determine the relationships among the independent variables (major and academic and non-academic factors) and dependent variable (retention). Participants were 3,575 first year undergraduate full-time students from three entering classes, 2012 to 2014. Findings suggested that student major and non-academic factors had no effect on student retention, but student study habits and seeking academic assistance were predictors of retention in each of the three groups of majors: engineering, other STEM majors, and nonSTEM majors. Strategies to help increase undergraduate students' study skills and help seeking behaviors may contribute to positive social change at HBCU institutions.
Educational Technologies for Precollege Engineering Education
ERIC Educational Resources Information Center
Riojas, M.; Lysecky, S.; Rozenblit, J.
2012-01-01
Numerous efforts seek to increase awareness, interest, and participation in scientific and technological fields at the precollege level. Studies have shown these students are at a critical age where exposure to engineering and other related fields such as science, mathematics, and technology greatly impact their career goals. A variety of advanced…
Knowledge Engineering for Young Scholars. Evaluation Report.
ERIC Educational Resources Information Center
Nye, Gloria T.
The Knowledge Engineering for Young Scholars (KEYS) Program was a National Science Foundation (NSF) program conducted at Louisiana State University during 1989 and 1990. The program's goals were to increase 8th-12th grade students' exposure to science, acquaint them with university research, stimulate interest in science, and build their…
Science & Engineering Indicators--1993.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. National Science Board.
This report provides policymakers in both the public and private sectors with a broad base of quantitative information about U.S. science and engineering (S&E) research and education and U.S. technology in a global context. Chapter 1, "Elementary and Secondary Science and Mathematics Education," discusses the student's achievement, interest,…
Biomedical Engineering Education: A Conservative Approach
ERIC Educational Resources Information Center
Niemi, Eugene E., Jr.
1973-01-01
Describes the demand for graduates from biomedical engineering programs as being not yet fully able to absorb the supply. Suggests small schools interested in entering the field consider offering their programs at the undergraduate level via a minor or an option. Examples of such options and student projects are included. (CC)
The Impact of New Learning Environments in an Engineering Design Course
ERIC Educational Resources Information Center
Dinsmore, Daniel L.; Alexander, Patricia A.; Loughlin, Sandra M.
2008-01-01
In this study, we investigated the effects of students' participation in a collaborative, project-based engineering design course on their domain knowledge, interests, and strategic processing. Participants were 70 college seniors working in teams on a design project of their choosing. Their declarative, procedural, and principled knowledge, along…
iSTEM: Learning Mathematics through Minecraft
ERIC Educational Resources Information Center
Bos, Beth; Wilder, Lucy; Cook, Marcelina; O'Donnell, Ryan
2014-01-01
The Common Core State Standards can be taught with Minecraft, an interactive creative Lego®-like game. Integrating Science, Technology, Engineering, and Mathematics (iSTEM) authors share ideas and activities that stimulate student interest in the integrated fields of science, technology, engineering, and mathematics (STEM) in K-grade 6 classrooms.
Artistic Ways of Knowing in Gifted Education: Encouraging Every Student to Think Like an Artist
ERIC Educational Resources Information Center
Haroutounian, Joanne
2017-01-01
After decades of fluctuating presence in gifted education, the arts are surprisingly establishing themselves in academic classrooms, spurred by arts integration with science, technology, engineering, and mathematics (STEM) curricula or science, technology, engineering, art, and mathematics (STEAM). This renewed interest provides the opportunity to…
Digitizing Images for Curriculum 21: Phase II.
ERIC Educational Resources Information Center
Walker, Alice D.
Although visual databases exist for the study of art, architecture, geography, health care, and other areas, readily accessible sources of quality images are not available for engineering faculty interested in developing multimedia modules or for student projects. Presented here is a brief review of Phase I of the Engineering Visual Database…
Engaging High School Girls in Native American Culturally Responsive STEAM Enrichment Activities
ERIC Educational Resources Information Center
Kant, Joanita M.; Burckhard, Suzette R.; Meyers, Richard T.
2018-01-01
Providing science, technology, engineering, art, and mathematics (STEAM) culturally responsive enrichment activities is one way of promoting more interest in science, technology, engineering, and mathematics (STEM) studies and careers among indigenous students. The purpose of the study was to explore the impact, if any, of STEAM culturally…
The Need for Plastics Education.
ERIC Educational Resources Information Center
Society of Plastics Engineers, Inc., Stamford, CT.
In view of a lack of trained personnel in the industry, the Plastics Education Foundation proposes that educators (1) add more plastics programs, (2) establish plastics engineering degrees at appropriate 4-year institutions, (3) add plastics processing technology to current engineering curricula, and (4) interest younger students in courses and/or…
Tour Through the Solar System: A Hands-On Planetary Geology Course for High School Students
NASA Astrophysics Data System (ADS)
Sherman, S. B.; Gillis-Davis, J. J.
2011-09-01
We have developed a course in planetary geology for high school students, the primary goals of which are to help students learn how to learn, to reduce the fear and anxiety associated with learning science and math, and to encourage an interest in science, technology, engineering, and mathematics (STEM) fields. Our emphasis in this course is on active learning in a learner-centered environment. All students scored significantly higher on the post-knowledge survey compared with the pre-knowledge survey, and there is a good correlation between the post-knowledge survey and the final exam. Student evaluations showed an increased interest in STEM fields as a result of this course.
Competitive Science Events: Gender, Interest, Science Self-Efficacy, and Academic Major Choice
NASA Astrophysics Data System (ADS)
Forrester, Jennifer Harris
Understanding present barriers to choosing a STEM major is important for science educators so that we may better prepare and inspire future generations of scientists and engineers. This study examined the relationships between participation in competitive science events, gender, race, science self-efficacy, interest in science, and choosing a STEM discipline as a college major. The participants included 1,488 freshman students at a large southeastern public university. Students completed a survey of pre-college experiences with science events, science interests, and college major, as well as, an assessment of science self-efficacy. A subsample of sixty students (30 STEM; 30 non-STEM majors) were interviewed about their participation and academic major choice. Results showed that science, engineering, and non-STEM disciplines were the most frequently reported academic majors. Significant gender differences were found for science self-efficacy and academic major choice. There were significant race differences for participation in specific types of science competitions. Study participants also reported being motivated to participate in a competitive science event as a result of their teacher or parents' encouragement.
Materials and Manufacturing, Drafting 3: 9257.03.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
Designed for students interested in engineering fields pertaining to mechanical and electronic drafting, the course covers several types of drawings in the mechanical and electronic drafting field and many types of machine shop operations. The student will become familiar with stress, loading, safety factors, and manufacturing processes. The…
Evaluative Assessment for NASA/GSFC Equal Opportunity Programs Office Sponsored Programs
NASA Technical Reports Server (NTRS)
Jarrell, H. Judith
1995-01-01
The purpose of PREP (Pre-College Minority Engineering Program) is to upgrade skills of minority students who have shown an interest in pursuing academic degrees in electrical engineering. The goal is to upgrade skills needed for successful completion of the rigorous curriculum leading to a Bachelor of Science degree in engineering through a comprehensive upgrade of academic, study and interpersonal skills.
NASA Astrophysics Data System (ADS)
Genoways, Sharon K.
STEM (Science, Technology, Engineering and Math) education creates critical thinkers, increases science literacy, and enables the next generation of innovators, which leads to new products and processes that sustain our economy (Hossain & Robinson, 2012). We have been hearing the warnings for several years, that there simply are not enough young scientists entering into the STEM professional pathways to replace all of the retiring professionals (Brown, Brown, Reardon, & Merrill, 2011; Harsh, Maltese, & Tai, 2012; Heilbronner, 2011; Scott, 2012). The problem is not necessarily due to a lack of STEM skills and concept proficiency. There also appears to be a lack of interest in these fields. Recent evidence suggests that many of the most proficient students, especially minority students and women, have been gravitating away from science and engineering toward other professions. (President's Council of Advisors on Science and Technology, 2010). The purpose of this qualitative research study was an attempt to determine how high schools can best prepare and encourage young women for a career in engineering or computer science. This was accomplished by interviewing a pool of 21 women, 5 recent high school graduates planning to major in STEM, 5 college students who had completed at least one full year of coursework in an engineering or computer science major and 11 professional women who had been employed as an engineer or computer scientist for at least one full year. These women were asked to share the high school courses, activities, and experiences that best prepared them to pursue an engineering or computer science major. Five central themes emerged from this study; coursework in physics and calculus, promotion of STEM camps and clubs, teacher encouragement of STEM capabilities and careers, problem solving, critical thinking and confidence building activities in the classroom, and allowing students the opportunity to fail and ask questions in a safe environment. These themes may be implemented by any instructor, in any course, who wishes to provide students with the means to success in their quest for a STEM career.
Science in action: An interdisciplinary science education program
NASA Technical Reports Server (NTRS)
Horton, Linda L.
1992-01-01
Science in Action is an education outreach program for pre-collegiate students. It is based on the concept that, in order to interest students in science, they must see science and scientists at work. The program encompasses the full range of scientific disciplines - the core sciences, engineering, and mathematics. A unique aspect of the program is the involvement and support of scientists and engineers representing local professional societies, industries, business, and academic institutions. An outline of the program is given.
2017-01-01
This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals’ pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers. PMID:28178270
Roach, Michael
2017-01-01
This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals' pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers.
Using FIRST LEGO League Robotics Competitions to Engage Middle School Students in Physics
NASA Astrophysics Data System (ADS)
Rosen, Jeffrey
2009-11-01
As the nation and world grapple with looming crises in sectors such as energy, health care and the environment, it is critical that we keep today's youth interested in careers in science, technology, engineering and math (STEM). Studies indicate that many students lose interest in the sciences by ages 10-13, when they are in grades 4-8 in the U.S. educational system. Many of the interventions to counteract this trend focus on boosting interest in STEM in secondary schools and universities. However the case can be made that the greater need is actually earlier in the education of the child. How can we work with this age group in an exciting way that will promote the study of science? Student robotics competitions might be one effective answer. Programs are currently being run around the country and the world that engage young people in the study of science through robotic competition. Many of these programs rely on mentors to guide the students through the process, which in the most effective programs includes the study of physic concepts through engineering design. During this presentation we will discuss the options for participating in programs that help the students and teachers better understand the science, specifically the physics, which underlies robotics. In particular, we will focus on the international program called FIRST LEGO League (FLL), in which students ages 9-14 are challenged every year to construct a LEGO robot that can navigate and complete a course of theme-related missions. The FLL program is currently operating in almost every state in the U.S. and relies on recruiting qualified mentors and judges who want to impact young people's interest in STEM. Physics professionals can make a tremendous difference in the lives of these eager middle school students.
NASA Astrophysics Data System (ADS)
Mills, Leila A.
This study examines middle school students' perceptions of a future career in a science, math, engineering, or technology (STEM) career field. Gender, grade, predispositions to STEM contents, and learner dispositions are examined for changing perceptions and development in career-related choice behavior. Student perceptions as measured by validated measurement instruments are analyzed pre and post participation in a STEM intervention energy-monitoring program that was offered in several U.S. middle schools during the 2009-2010, 2010-2011 school years. A multiple linear regression (MLR) model, developed by incorporating predictors identified by an examination of the literature and a hypothesis-generating pilot study for prediction of STEM career interest, is introduced. Theories on the career choice development process from authors such as Ginzberg, Eccles, and Lent are examined as the basis for recognition of career concept development among students. Multiple linear regression statistics, correlation analysis, and analyses of means are used to examine student data from two separate program years. Study research questions focus on predictive ability, RSQ, of MLR models by gender/grade, and significance of model predictors in order to determine the most significant predictors of STEM career interest, and changes in students' perceptions pre and post program participation. Analysis revealed increases in the perceptions of a science career, decreases in perceptions of a STEM career, increase of the significance of science and mathematics to predictive models, and significant increases in students' perceptions of creative tendencies.
Influence of students' STEM self-efficacy on STEM and physics career choice
NASA Astrophysics Data System (ADS)
Halim, Lilia; Rahman, Norshariani Abd; Ramli, Nor Aidillina Mohd; Mohtar, Lilia Ellany
2018-01-01
Interest towards STEM and STEM careers is declining worldwide. Among the STEM related careers, the physics discipline has been the most affected in terms of numbers and imbalance of gender. This study investigates the role of self-efficacy in STEM towards STEM careers and Physics career based on gender and types of school. Findings showed that there is a positive and significant correlation between students' STEM self-efficacy and interest towards all disciplines in STEM and Physics career. Boys showed high level of self-efficacy in engineering discipline while the girls' associate more with science. Students from boarding schools showed higher self-efficacy and interest towards STEM careers compared to students from public schools. An implication of the study is that self-efficacy and interest in STEM careers are enhanced through engagement with STEM activities in and outside of school. Emphasis should be given to the role of counselors in making STEM careers relevant to students.
The University of Texas Science and Engineering Apprentice Program as a Model for an REU Site
NASA Astrophysics Data System (ADS)
Davis, M. B.; Blankenship, D. D.; Ellins, K. E.
2004-12-01
The University of Texas Institute for Geophysics at (UTIG) is one of five research labs in the Austin area that hosts recent high school graduates for summer research projects through the Applied Research Lab Science and Engineering Apprenticeship Program (SEAP). The SEAP is a program designed to provide summer research opportunities to recent high school undergraduates who excel in science and math. UTIG has been a large proponent of the SEAP and has typically mentored two to four students each year and a total alumni of about twenty. The program has successfully targeted groups that are typically underrepresented in sciences and engineering. Current statistics show that 25% of past SEAP students are members of an ethnic minority and 80% of SEAP students are female. Many of these students have stayed on after the summer program and continued to work part-time or return during summers to UTIG while completing their undergraduate careers. A significant portion of these students present results at professional meetings and ultimately commit to careers in science and engineering, both in industry and academia. SEAP students at UTIG work alongside scientists and graduate students as part of a team, and, through this interaction, improve their scientific knowledge and problem solving skills. Both graduate and undergraduate students involved in NSF-funded research grants mentor the SEAP students, giving them the opportunity to work on their own research problem while contributing data and interpretation to a more fundamental research problem. By uniting student research under the umbrella of Antarctic ice sheet research, students learn how their individual research projects relate to the more unifying science problem centered on ice sheet variability, and Antarctic continental evolution. They also gain an understanding of how research is carried out. At the same time, scientists and graduate students learn how to communicate their knowledge so that it is interesting and relevant to student learning. We are interested in expanding the SEAP model for student research to a scale that can support multidisciplinary REU site activities by extending research possibilities into polar research, marine studies, seismology, planetary science, and science education at UTIG in future years.
Discussion on teaching reform of environmental planning and management
NASA Astrophysics Data System (ADS)
Zhang, Qiugen; Chen, Suhua; Xie, Yu; Wei, Li'an; Ding, Yuan
2018-05-01
The curriculum of environmental planning and management is an environmental engineering major curriculum established by the teaching steering committee of environmental science and engineering of Education Ministry, which is the core curriculum of Chinese engineering education professional certification. It plays an important role in cultivating environmental planning and environmental management ability of environmental engineering major. The selection and optimization of the course teaching content of environmental planning and management were discussed which including curriculum teaching content updating and optimizing and teaching resource system construction. The comprehensive application of teaching method was discussed which including teaching method synthesis and teaching method. The final combination of the assessment method was also discussed which including the formative assessment normal grades and the final result of the course examination. Through the curriculum comprehensive teaching reform, students' knowledge had been broadened, the subject status and autonomy of learning had been enhanced, students' learning interest had been motivated, the ability of students' finding, analyzing and solving problems had been improved. Students' innovative ability and positive spirit had been well cultivated.
Genetically Modified Food: Knowledge and Attitude of Teachers and Students
NASA Astrophysics Data System (ADS)
Mohapatra, Animesh K.; Priyadarshini, Deepika; Biswas, Antara
2010-10-01
The concepts behind the technology of genetic modification of organisms and its applications are complex. A diverse range of opinions, public concern and considerable media interest accompanies the subject. This study explores the knowledge and attitudes of science teachers and senior secondary biology students about the application of a rapidly expanding technology, genetic engineering, to food production. The results indicated significant difference in understanding of concepts related with genetically engineered food stuffs between teachers and students. The most common ideas about genetically modified food were that cross bred plants and genetically modified plants are not same, GM organisms are produced by inserting a foreign gene into a plant or animal and are high yielding. More teachers thought that genetically engineered food stuffs were unsafe for the environment. Both teachers and students showed number of misconceptions, for example, the pesticidal proteins produced by GM organisms have indirect effects through bioaccumulation, induces production of allergic proteins, genetic engineering is production of new genes, GM plants are leaky sieves and that transgenes are more likely to introgress into wild species than mutated species. In general, more students saw benefits while teachers were cautious about the advantages of genetically engineered food stuffs.
Inedible Nuts and Non-Lightning Bolts
ERIC Educational Resources Information Center
Rynone, William
2010-01-01
In this article, the author provides detailed information on a wide variety of commonly used screws, bolts, and other fasteners. The information has been gathered in his engineering career and outside interests (maintenance on his car and airplane, and woodworking). The topic should be of interest to students and educators in many technical…
Exploring in Aeronautics. An Introduction to Aeronautical Sciences.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Cleveland, OH. Lewis Research Center.
This curriculum guide is based on a year of lectures and projects of a contemporary special-interest Explorer program intended to provide career guidance and motivation for promising students interested in aerospace engineering and scientific professions. The adult-oriented program avoids technicality and rigorous mathematics and stresses real…
NASA Astrophysics Data System (ADS)
White, Jeffry L.
While there has been an increase in enrollment, interest in science, technology, engineering, and mathematics (STEM) has been declining on college campuses since 1967. Higher enrollment does not transfer to an increase in the number of minorities in the STEM fields. The majority-minority enrollment ratio is nearly 2:1 but the gap widens to 4:1 when it comes to graduation. In fact, underrepresented minorities (URM) earned only 12% of the STEM degrees awarded in 1998. When the higher attrition and lower graduation rates of URM are scrutinized, upwards of 60% changed majors or dropped out of STEM. Further investigation reveals the most frequently cited reasons for departure were loss of initial interest, developed a greater interest in another field, or were turned off by the STEM disciplines. A primarily exploratory study was conducted into the conditions necessary for academic interest in the STEM fields to persist. A model based on student engagement (Astin, 1977) and interest operations (Prenzel, 1988a) theories was used with a random sample of URM at universities participating in the Ohio Science and Engineering Alliance. Survey research was employed to investigate interest development and the effect of student retention programs and activities on such interest. The latter part of the study could not be fully examined when 95% reported not utilizing retention services. For the section on interest, an online survey using a 5-point Likert scale was validated using principal components analysis. A binominal logistic regression was used to predict membership in one of two possible groups: persisters and students at-risk for not persisting. The major conclusions are: (1) While 3 variables (feelings, learning and difficulty) were statistically significant only one, feelings was substantively significant. (2) Persistence increased 80.9% for each 1-unit increase in feelings and 9.9% for learning. (3) Persistence decreased 19.8% for each one-unit increase in difficulty. (4) The sample was not a very good fit with the parameter estimates. (5) The model fit the data at an acceptable level with an overall accuracy of 74.3%. (6) Using the model 72% fewer classification errors were made. (7) Multiple measures of association indicated a small-moderate effect size.
Experience of cooperative learning in engineering
NASA Astrophysics Data System (ADS)
Maceiras, Rocio; Cancela, Angeles; Urréjola, Santiago; Sánchez, Angel
2011-03-01
The objective of this work is to share the authors' experience towards a different mode of teaching/learning method. Cooperative learning (Jigsaw) was employed on the University of Vigo's fourth-year engineering students. The results of the experience show that cooperative learning is quite a viable alternative to the classical way of lecturing at the university when the number of students is not too high. The authors' observation indicates that students did not show a lot of interest towards the new learning style but their resistance changed once they began the activity. The Jigsaw method has proved to be a useful tool for improving the learning process so that students have the opportunity to participate actively in the learning activities.
NASA Astrophysics Data System (ADS)
Griffith, Donald Sanford, Jr.
2005-07-01
This research study was undertaken to examine potential relationships between high school students' attitudes and interests in science, mathematics, engineering, and technology, and their participation in the FIRST Robotics Competition six-week challenge to design, and build a robot. High school students' gender and race, in relationship to students' interest in the aforementioned topics was also examined in this study. A convenience sample of 727 South Carolina public high school students agreed to participate in the study. Data were collected using pre-and post-survey questionnaires. Student participants completed pre-survey questionnaires at the onset of the 2005 FIRST Robotics Competition Kick-off, concurrent with the beginning of the second semester of the 2004--2005 school year. Participants completed post-survey questionnaires after six-weeks, the period of time allocated for teams to design, build, and ship their 2005 FIRST Robotics Competition robot. Data analyzed was collected from the group of students participating in FIRST Robotics (treatment), the experimental group, and the group of students who are not participating in FIRST Robotics (control). Findings reported that the pre- and post-survey questionnaire responses regarding attitudinal change were not significantly different in either the experimental or control group. High pre-survey dependent variable scores provided by students in the FIRST group did not allow for significant gain in each of the seven-attitudinal categories. Findings also indicated that there were significant attitudinal differences between students in the experimental group (FIRST), and students the control group (SMET) pre- and post-survey responses. Students in the FIRST group had statistically significant higher attitude means than students in the SMET group on both pre- and post-surveys in the seven-attitudinal categories. The frequency for responses to each question in the three interest categories on the pre- and post-survey was calculated for the experimental and control group to evaluate differences. The results expressed in percentages indicated that there were significant differences in respondent scores for the pre-survey versus the post-survey in the FIRST group. The null hypothesis concerning interest differences of high school students that participate in the FIRST Robotics six-week challenge as compared to students that do not participate in the program was rejected.
ERIC Educational Resources Information Center
Lichtenberger, Eric; George-Jackson, Casey
2013-01-01
This study examined how various individual, family, and school level contextual factors impact the likelihood of planning to major in one of the science, technology, engineering, or mathematics (STEM) fields for high school students. A binary logistic regression model was developed to determine the extent to which each of the covariates helped to…
ERIC Educational Resources Information Center
VanMeter-Adams, Amy; Frankenfeld, Cara L.; Bases, Jessica; Espina, Virginia; Liotta, Lance A.
2014-01-01
What early experiences attract students to pursue an education and career in science, technology, engineering, and mathematics (STEM)? Does hands-on research influence them to persevere and complete a major course of academic study in STEM? We evaluated survey responses from 149 high school and undergraduate students who gained hands-on research…
ERIC Educational Resources Information Center
Ensign, Todd I.
2017-01-01
Educational robotics (ER) combines accessible and age-appropriate building materials, programmable interfaces, and computer coding to teach science and mathematics using the engineering design process. ER has been shown to increase K-12 students' understanding of STEM concepts, and can develop students' self-confidence and interest in STEM. As…
Bioinspiring an Interest in STEM
ERIC Educational Resources Information Center
Laut, Jeffrey; Bartolini, Tiziana; Porfiri, Maurizio
2015-01-01
Attracting K-12 students to pursue careers in science, technology, engineering, and mathematics (STEM) is viewed as a critical element for benefiting both the economy and society. This paper describes an outreach program, conducted in a Brooklyn, New York, USA, public middle school, aimed at educating students in mechatronics, biology, and…
Chance and Probability: What Do They Mean to University Engineering Students?
ERIC Educational Resources Information Center
Barragues, J. I.; Guisasola, J.; Morais, A.
2006-01-01
The great interest aroused by the incorporation of Statistics and Probability into curricular projects has been accompanied by considerable evidence of significant difficulties in the meaningful learning and application of the concepts. These difficulties have been the subject of many studies, mostly concerning secondary school students. This…
K-12 Project Management Education: NASA Hunch Projects
ERIC Educational Resources Information Center
Morgan, Joe; Zhan, Wei; Leonard, Matt
2013-01-01
To increase the interest in science, technology, engineering, and math (STEM) among high school students, the National Aeronautics and Space Administration (NASA) created the "High Schools United with NASA to Create Hardware" (HUNCH) program. To enhance the experience of the students, NASA sponsored two additional projects that require…
Introducing Ethics Using Structured Controversies
ERIC Educational Resources Information Center
Wareham, David; Elefsiniotis, Takis P.; Elms, David
2006-01-01
This paper describes a method of introducing ethics to a second-year class of civil engineering students. The method, known as a "structured controversy", takes the form of a workshop where the students assume the identity of stakeholders having an interest in a proposed development in an environmentally sensitive region. The instructor…
Incorporating High School Outreach into ChE Courses.
ERIC Educational Resources Information Center
Ross, Julia M.; Bayles, Taryn M.
2003-01-01
Describes an undergraduate-level introductory course in biomedical engineering introduced at the University of Maryland, Baltimore County which allows students to delve deeply into an area of interest not covered in the lecture material and provide a forum for students to hone their presentation and group interaction skills through outreach…
Mesh and Time-Step Independent Computational Fluid Dynamics (CFD) Solutions
ERIC Educational Resources Information Center
Nijdam, Justin J.
2013-01-01
A homework assignment is outlined in which students learn Computational Fluid Dynamics (CFD) concepts of discretization, numerical stability and accuracy, and verification in a hands-on manner by solving physically realistic problems of practical interest to engineers. The students solve a transient-diffusion problem numerically using the common…
Community Partnerships for Fostering Student Interest and Engagement in STEM
ERIC Educational Resources Information Center
Watters, James J.; Diezmann, Carmel M.
2013-01-01
The foundations of Science, Technology, Engineering and Mathematics (STEM) education begins in the early years of schooling when students encounter formal learning experiences primarily in mathematics and science. Politicians, economists and industrialists recognise the importance of STEM in society, and therefore a number of strategies have been…
Laptop Use, Interactive Science Software, and Science Learning among At-Risk Students
ERIC Educational Resources Information Center
Zheng, Binbin; Warschauer, Mark; Hwang, Jin Kyoung; Collins, Penelope
2014-01-01
This year-long, quasi-experimental study investigated the impact of the use of netbook computers and interactive science software on fifth-grade students' science learning processes, academic achievement, and interest in further science, technology, engineering, and mathematics (STEM) study within a linguistically diverse school district in…
Expanding STEM Opportunities through Inclusive STEM-Focused High Schools
ERIC Educational Resources Information Center
Means, Barbara; Wang, Haiwen; Wei, Xin; Lynch, Sharon; Peters, Vanessa; Young, Viki; Allen, Carrie
2017-01-01
Inclusive STEM high schools (ISHSs) (where STEM is science, technology, engineering, and mathematics) admit students on the basis of interest rather than competitive examination. This study examines the central assumption behind these schools--that they provide students from subgroups underrepresented in STEM with experiences that equip them…
Teaching Advanced Vehicle Dynamics Using a Project Based Learning (PBL) Approach
ERIC Educational Resources Information Center
Redkar, Sangram
2012-01-01
This paper presents an interesting teaching experiment carried out at XXX University. The author offered a new course in computational/analytical vehicle dynamics to senior undergraduate students, graduate students and practicing engineers. The objective of the course was to present vehicle dynamics theory with practical applications using…
An Engineering Design STEM Project: T-Shirt Launcher
ERIC Educational Resources Information Center
Fantz, Todd D.; Grant, Melva R.
2013-01-01
The article offers information on making technology education students interested in science and mathematics through the use of a T-shirt launcher design project. This project was designed for junior and senior level high school students who have completed or are currently taking physics and precalculus. The project involves designing an…
Effective Practices for Evaluating STEM Out-of-School Time Programs
ERIC Educational Resources Information Center
Wilkerson, Stephanie B.; Haden, Carol M.
2014-01-01
Science, technology, engineering, and mathematics (STEM) programs in out-of-school time (OST) are designed to supplement school work, ignite student interest, and extend STEM learning. From interactive museum exhibits to summer-long science camps, opportunities for informal student engagement in STEM learning abound. The differences these programs…
2013-01-01
student achievement or par- ticipation in STEM fields. For example, facilitators of a middle school student program...Assessment Annual Cost navy Seaperch Middle school Middle school robotics competition 45% 35,000 students , 4,000 teachers missing number of annual...participating in Seaperch increased interest in studying engineering in 25% of middle school and 30% of high school students program
ERIC Educational Resources Information Center
Glennie, Elizabeth; Mason, Marcinda; Dalton, Ben
2016-01-01
Some states have created science, technology, engineering, and mathematics (STEM) schools to encourage student interest and enhance student proficiency in STEM subjects. We examined a set of STEM schools serving disadvantaged students to see whether these students were more likely to take and pass advanced science and mathematics classes than…
FAA Airport Design Competition for Universities
NASA Technical Reports Server (NTRS)
Sandy, Mary
2008-01-01
Raise awareness of the importance of airports to the National Airspace System infrastructure. Increase the involvement of the academic community in addressing airport operations and infrastructure issues and needs. Engage U.S. students in the conceptualization of applications, systems and equipment capable of addressing related challenges in a robust, reliable and comprehensive manner. Encourage U.S. undergraduate and graduate students to contribute innovative ideas and solutions to airport and runway safety issues. Provide the framework and incentives for quality educational experiences for university students. d Develop an awareness of and an interest in airports as a vital and interesting area for engineering and technology careers.
Gender and family influences on Spanish students' aspirations and values in stem fields
NASA Astrophysics Data System (ADS)
Sáinz, Milagros; Müller, Jörg
2018-01-01
Drawing on expectancy-value theory, this study examines gender and family influences on students' career aspirations and attached values. 796 secondary Spanish students (M age = 16 years old, S.D. = 0.81) participated. 53% were boys. The results show that boys and students with mothers who have completed intermediate level education were more interested in science, technology, engineering and mathematics (STEM) architecture and technology. Girls and students with highly educated mothers born in Spain were more likely to aspire to STEM health and experimental studies. Furthermore, boys and students planning to pursue STEM-technology studies attached higher extrinsic values to these studies. On the contrary, girls and participants with interest in experimental and health studies attached less extrinsic values to these studies. Moreover, students with highly educated mothers and interested in STEM architecture and technology reported higher extrinsic values. Understanding the interaction of gender and family factors shaping adolescents' career aspirations in STEM fields seems to be crucial to designing significant and effective school and family grounded interventions.
Microsoft Excel Software Usage for Teaching Science and Engineering Curriculum
ERIC Educational Resources Information Center
Singh, Gurmukh; Siddiqui, Khalid
2009-01-01
In this article, our main objective is to present the use of Microsoft Software Excel 2007/2003 for teaching college and university level curriculum in science and engineering. In particular, we discuss two interesting and fascinating examples of interactive applications of Microsoft Excel targeted for undergraduate students in: 1) computational…
ERIC Educational Resources Information Center
Luster-Teasley, Stephanie; Hargrove-Leak, Sirena; Gibson, Willietta; Leak, Roland
2017-01-01
This educational research seeks to develop novel laboratory modules by using Case Studies in the Science Teaching method to introduce sustainability and environmental engineering laboratory concepts to 21st century learners. The increased interest in "going green" has led to a surge in the number of engineering students studying…
An Undergraduate Course on Operating Systems Principles.
ERIC Educational Resources Information Center
National Academy of Engineering, Washington, DC. Commission on Education.
This report is from Task Force VIII of the COSINE Committee of the Commission on Education of the National Academy of Engineering. The task force was established to formulate subject matter for an elective undergraduate subject on computer operating systems principles for students whose major interest is in the engineering of computer systems and…
Engineering Education Using a Remote Laboratory through the Internet
ERIC Educational Resources Information Center
Axaopoulos, Petros J.; Moutsopoulos, Konstantinos N.; Theodoridis, Michael P.
2012-01-01
An experiment using real hardware and under real test conditions can be remotely conducted by engineering students and other interested individuals in the world via the Internet and with the capability of live video streaming from the test site. The presentation of this innovative experiment refers to the determination of the current voltage…
Social Cognitive Predictors of Adjustment to Engineering Majors across Gender and Race/Ethnicity
ERIC Educational Resources Information Center
Lent, Robert W.; Miller, Matthew J.; Smith, Paige E.; Watford, Bevlee A.; Lim, Robert H.; Hui, Kayi; Morrison, M. Ashley; Wilkins, Gregory; Williams, Kevin
2013-01-01
We tested a social cognitive model of academic adjustment in a sample of 1377 students enrolled in engineering schools at two predominantly White and two historically Black state universities. The model brought together central elements of social cognitive career theory's (SCCT) segmental models of educational/vocational satisfaction, interest,…
ERIC Educational Resources Information Center
Lee, Ahlam
2014-01-01
Many science, technology, engineering and math (STEM) studies have focused on issues related to underrepresented groups' participation in STEM disciplines. Most of these studies have targeted women and individuals from racial minorities as the underrepresented groups of interest, while little attention has been paid to people with disabilities.…
ERIC Educational Resources Information Center
Kovarik, Dina N.; Patterson, Davis G.; Cohen, Carolyn; Sanders, Elizabeth A.; Peterson, Karen A.; Porter, Sandra G.; Chowning, Jeanne Ting
2013-01-01
We investigated the effects of our Bio-ITEST teacher professional development model and bioinformatics curricula on cognitive traits (awareness, engagement, self-efficacy, and relevance) in high school teachers and students that are known to accompany a developing interest in science, technology, engineering, and mathematics (STEM) careers. The…
Engineering design activities and conceptual change in middle school science
NASA Astrophysics Data System (ADS)
Schnittka, Christine G.
The purpose of this research was to investigate the impact of engineering design classroom activities on conceptual change in science, and on attitudes toward and knowledge about engineering. Students were given a situated learning context and a rationale for learning science in an active, inquiry-based method, and worked in small collaborative groups. One eighth-grade physical science teacher and her students participated in a unit on heat transfer and thermal energy. One class served as the control while two others received variations of an engineering design treatment. Data were gathered from teacher and student entrance and exit interviews, audio recordings of student dialog during group work, video recordings and observations of all classes, pre- and posttests on science content and engineering attitudes, and artifacts and all assignments completed by students. Qualitative and quantitative data were collected concurrently, but analysis took place in two phases. Qualitative data were analyzed in an ongoing manner so that the researcher could explore emerging theories and trends as the study progressed. These results were compared to and combined with the results of the quantitative data analysis. Analysis of the data was carried out in the interpretive framework of analytic induction. Findings indicated that students overwhelmingly possessed alternative conceptions about heat transfer, thermal energy, and engineering prior to the interventions. While all three classes made statistically significant gains in their knowledge about heat and energy, students in the engineering design class with the targeted demonstrations made the most significant gains over the other two other classes. Engineering attitudes changed significantly in the two classes that received the engineering design intervention. Implications from this study can inform teachers' use of engineering design activities in science classrooms. These implications are: (1) Alternative conceptions will persist when not specifically addressed. (2) Engineering design activities are not enough to promote conceptual change. (3) A middle school teacher can successfully implement an engineering design-based curriculum in a science class. (4) Results may also be of interest to science curriculum developers and engineering educators involved in developing engineering outreach curricula for middle school students.
The declining interest in an academic career.
Roach, Michael; Sauermann, Henry
2017-01-01
There is increasing evidence that science & engineering PhD students lose interest in an academic career over the course of graduate training. It is not clear, however, whether this decline reflects students being discouraged from pursuing an academic career by the challenges of obtaining a faculty job or whether it reflects more fundamental changes in students' career goals for reasons other than the academic labor market. We examine this question using a longitudinal survey that follows a cohort of PhD students from 39 U.S. research universities over the course of graduate training to document changes in career preferences and to explore potential drivers of such changes. We report two main results. First, although the vast majority of students start the PhD interested in an academic research career, over time 55% of all students remain interested while 25% lose interest entirely. In addition, 15% of all students were never interested in an academic career during their PhD program, while 5% become more interested. Thus, the declining interest in an academic career is not a general phenomenon across all PhD students, but rather reflects a divergence between those students who remain highly interested in an academic career and other students who are no longer interested in one. Second, we show that the decline we observe is not driven by expectations of academic job availability, nor by related factors such as postdoctoral requirements or the availability of research funding. Instead, the decline appears partly due to the misalignment between students' changing preferences for specific job attributes on the one hand, and the nature of the academic research career itself on the other. Changes in students' perceptions of their own research ability also play a role, while publications do not. We discuss implications for scientific labor markets, PhD career development programs, and science policy.
Reasons and motivations for the option of an engineering career in Portugal
NASA Astrophysics Data System (ADS)
Dias, Diana
2011-08-01
Towards the end of their secondary education, students face significant pressures in their decision about their career plan. These pressures are internal and external, personal and social, individual and from the reference group. This paper aims at understanding the reasons driving engineering students' choices, their perceived needs and aspirations. Moreover, it discusses how, in that process, students are constrained by family and friends and are conditioned by factors such as their socioeconomic and cultural background, employability prospects and gender. The construction of a career map/plan and the reasons and motivations for the option of an engineering career are reviewed, based on the qualitative analysis of students' discourses. The data indicate the relevance of several criteria such as social status, intelligence, gender, competences, values and interests in the construction of career aspirations. All these levels are highly influenced by self-esteem, which is closely related to the social value of training options and career paths.
Examining Physics Career Interests: Recruitment and Persistence into College
NASA Astrophysics Data System (ADS)
Lock, R. M.; Hazari, Z.; Sadler, P. M.; Sonnert, G.
2012-03-01
Compared to the undergraduate population, the number of students obtaining physics degrees has been declining since the 1960s. This trend continues despite the increasing number of students taking introductory physics courses in high school and college. Our work uses an ex-post facto design to study the factors that influence students' decision to pursue a career in physics at the beginning of college. These factors include high school physics classroom experiences, other science-related experiences, and students' career motivations. The data used in this study is drawn from the Persistence Research in Science and Engineering (PRiSE) Project, a large-scale study that surveyed a nationally representative sample of college/university students enrolled in introductory English courses about their interests and prior experiences in science.
Interest in STEM is contagious for students in biology, chemistry, and physics classes
Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D.; Godwin, Allison; Scott, Tyler D.; Klotz, Leidy
2017-01-01
We report on a study of the effect of peers’ interest in high school biology, chemistry, and physics classes on students’ STEM (science, technology, engineering, and mathematics)–related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students‘ experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students‘ STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students’ intentions toward STEM careers while enhancing or maintaining course performance. PMID:28808678
Albarracín, Ana L; Farfán, Fernando D; Coletti, Marcos A; Teruya, Pablo Y; Felice, Carmelo J
2016-09-01
The major challenge in laboratory teaching is the application of abstract concepts in simple and direct practical lessons. However, students rarely have the opportunity to participate in a laboratory that combines practical learning with a realistic research experience. In the Biomedical Engineering career, we offer short and optional courses to complement studies for students as they initiate their Graduation Project. The objective of these theoretical and practical courses is to introduce students to the topics of their projects. The present work describes an experience in electrophysiology to teach undergraduate students how to extract cortical information using electrocorticographic techniques. Students actively participate in some parts of the experience and then process and analyze the data obtained with different signal processing tools. In postlaboratory evaluations, students described the course as an exceptional opportunity for students interested in following a postgraduate science program and fully appreciated their contents. Copyright © 2016 The American Physiological Society.
Haudek, Kevin C; Kaplan, Jennifer J; Knight, Jennifer; Long, Tammy; Merrill, John; Munn, Alan; Nehm, Ross; Smith, Michelle; Urban-Lurain, Mark
2011-01-01
Concept inventories, consisting of multiple-choice questions designed around common student misconceptions, are designed to reveal student thinking. However, students often have complex, heterogeneous ideas about scientific concepts. Constructed-response assessments, in which students must create their own answer, may better reveal students' thinking, but are time- and resource-intensive to evaluate. This report describes the initial meeting of a National Science Foundation-funded cross-institutional collaboration of interdisciplinary science, technology, engineering, and mathematics (STEM) education researchers interested in exploring the use of automated text analysis to evaluate constructed-response assessments. Participants at the meeting shared existing work on lexical analysis and concept inventories, participated in technology demonstrations and workshops, and discussed research goals. We are seeking interested collaborators to join our research community.
NASA Astrophysics Data System (ADS)
Robinson, Carrie
Females and underrepresented ethnic minorities earn a small percentage of engineering and computer science bachelor's degrees awarded in the United States, earn an even smaller proportion of master's and doctoral degrees, and are underrepresented in the engineering workforce (Engineering Workforce Commission, [2006], as cited in National Science Foundation, 2012; United States Department of Education, [2006], as cited in National Science Foundation, 2009a; United States Department of Education, [2006], as cited in National Science Foundation, 2009b). Considerable research has examined the perceptions, culture, curriculum, and pedagogy in engineering that inhibits the achievement of women and underrepresented ethnic minorities. This action research study used a qualitative approach to examine the characteristics and experiences of Latina students who pursued a bachelor's degree in the Ira A. Fulton Schools of Engineering at Arizona State University (ASU) as part of the 2008 first-time full-time freshman cohort. The researcher conducted two semi-structured individual interviews with seven undergraduate Latina students who successfully persisted to their fourth (senior) year in engineering. The researcher aimed to understand what characteristics made these students successful and how their experiences affected their persistence in an engineering major. The data collected showed that the Latina participants were motivated to persist in their engineering degree program due to their parents' expectations for success and high academic achievement; their desire to overcome the discrimination, stereotyping, and naysayers that they encountered; and their aspiration to become a role model for their family and other students interested in pursuing engineering. From the data collected, the researcher provided suggestions to implement and adapt educational activities and support systems within the Ira A. Fulton Schools of Engineering to improve the retention and graduation rates of Latinas in engineering at ASU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Shannon
BETTER Capstone supported 29 student project teams consisting of 155 students over two years in developing transformative building energy efficiency technologies through a capstone design experience. Capstone is the culmination of an undergraduate student’s engineering education. Interdisciplinary teams of students spent a semester designing and prototyping a technological solution for a variety building energy efficiency problems. During this experience students utilized the full design process, including the manufacturing and testing of a prototype solution, as well as publically demonstrating the solution at the Capstone Design Expo. As part of this project, students explored modern manufacturing techniques and gained hands-on experiencemore » with these techniques to produce their prototype technologies. This research added to the understanding of the challenges within building technology education and engagement with industry. One goal of the project was to help break the chicken-and-egg problem with getting students to engage more deeply with the building technology industry. It was learned however that this industry is less interested in trying innovative new concept but rather interested in hiring graduates for existing conventional building efforts. While none of the projects yielded commercial success, much individual student growth and learning was accomplished, which is a long-term benefit to the public at large.« less
Operationalizing and Detecting Disengagement within Online Science Microworlds
ERIC Educational Resources Information Center
Gobert, Janice D.; Baker, Ryan S.; Wixon, Michael B.
2015-01-01
In recent years, there has been increased interest in engagement during learning. This is of particular interest in the science, technology, engineering, and mathematics domains, in which many students struggle and where the United States needs skilled workers. This article lays out some issues important for framing research on this topic and…
Stability and Volatility of STEM Career Interest in High School: A Gender Study
ERIC Educational Resources Information Center
Sadler, Philip M.; Sonnert, Gerhard; Hazari, Zahra; Tai, Robert
2012-01-01
This retrospective cohort study characterizes how interest in science, technology, engineering, mathematics (STEM) careers changes during high school for more than 6,000 students in a representative national sample of 34 two- and four-year colleges taking mandatory college English courses. Overall, large gender differences in career plans were…
ERIC Educational Resources Information Center
Diederich, Kirsten Bakke
2010-01-01
In response to the declining number of students in the United States entering into the STEM (science, technology, engineering, and math) disciplines, there has been an attempt to retain student interest in the sciences through the implementation of more active learning in the classroom. Active learning is defined as any instructional method that…
Beyond Blackboards: Engaging Underserved Middle School Students in Engineering
Blanchard, Sarah; Judy, Justina; Muller, Chandra; Crawford, Richard H.; Petrosino, Anthony J.; White, Christina K.; Lin, Fu-An; Wood, Kristin L.
2015-01-01
Beyond Blackboards is an inquiry-centered, after-school program designed to enhance middle school students’ engagement with engineering through design-based experiences focused on the 21st Century Engineering Challenges. Set within a predominantly low-income, majority-minority community, our study aims to investigate the impact of Beyond Blackboards on students’ interest in and understanding of engineering, as well as their ability to align their educational and career plans. We compare participants’ and nonparticipants’ questionnaire responses before the implementation and at the end of the program's first academic year. Statistically significant findings indicate a school-wide increase in students’ interest in engineering careers, supporting a shift in school culture. However, only program participants showed increased enjoyment of design-based strategies, understanding of what engineers do, and awareness of the steps for preparing for an engineering career. These quantitative findings are supported by qualitative evidence from participant focus groups highlighting the importance of mentors in shaping students’ awareness of opportunities within engineering. PMID:26064787
ERIC Educational Resources Information Center
Bursztyn, Natalie; Pederson, Joel; Shelton, Brett; Walker, Andrew; Campbell, Todd
2015-01-01
Declining interest and low persistence is well documented among undergraduate students in Science, Technology, Engineering, and Math in the United States. For geoscience, field trips are important attractors to students, however with high enrollment courses and increasing costs they are becoming rare. We propose in this concept paper that the…
Special Schools and Other Options for Gifted STEM Students
ERIC Educational Resources Information Center
Olszewski-Kubilius, Paula
2010-01-01
Special schools focused on the Science, Technology, Engineering, and Mathematics (STEM) disciplines are one of the best options for gifted students with talent and interest in these areas. Such schools offer benefits, such as unique opportunities for research and mentoring, that other options cannot. In this article, I compare the advantages and…
NASA Technical Reports Server (NTRS)
McNutt, Leslie
2006-01-01
Many students are not even aware of the many activities related to the US Space Program. The intent of this presentation is to introduce students to the world of space exploration and encourage them to pursue math, science, and engineering careers. If this is not their particular interest, I want to encourage them to pursue their dream.
Student Misconceptions Caused by Misuse of Technology
ERIC Educational Resources Information Center
Paige, Robert
2007-01-01
Calculators used widely by students, teachers, scientists, engineers and many others provide an interesting case study of a compelling technology that has helped change the way many professionals work. They not only help in enhancing problem solving skills of most individuals, but also help visualise solutions to problems in a better way. Research…
ERIC Educational Resources Information Center
Sommer, Cesar Adolfo; Silva, Flavio Henrique; Novo, Maria Teresa Marques
2004-01-01
Practical classes on protein expression and purification were given to undergraduate biology students enrolled in the elective course "Introduction to Genetic Engineering." The heterologous expression of the green fluorescent protein (GFP)* of "Aequorea victoria" is an interesting system for didactic purposes because it can be viewed easily during…
Reviving Graduate Seminar Series through Non-Technical Presentations
ERIC Educational Resources Information Center
Madihally, Sundararajan V.
2011-01-01
Most chemical engineering programs that offer M.S. and Ph.D. degrees have a common seminar series for all the graduate students. Many would agree that seminars lack student interest, leading to ineffectiveness. We questioned the possibility of adding value to the seminar series by incorporating non-technical topics that may be more important to…
Reaching Out, But In Which Direction? The Future Focus of Academic Outreach Programs.
ERIC Educational Resources Information Center
Rodriguez, Roberto
1997-01-01
A new trend in academic outreach programs, initiated to inspire and motivate minority students to prepare generally for college, is to create curriculum-based programs targeting students' specific academic or career interests. The MESA (Mathematics, Science, Engineering Achievement) Program serves as a model for development of other…
Is Science for Us? Black Students' and Parents' Views of Science and Science Careers
ERIC Educational Resources Information Center
Archer, Louise; Dewitt, Jennifer; Osborne, Jonathan
2015-01-01
There are widespread policy concerns to improve (widen and increase) science, technology, engineering, and mathematics participation, which remains stratified by ethnicity, gender, and social class. Despite being interested in and highly valuing science, Black students tend to express limited aspirations to careers in science and remain…
The Role of Social Support in Students' Perceived Abilities and Attitudes toward Math and Science
ERIC Educational Resources Information Center
Rice, Lindsay; Barth, Joan M.; Guadagno, Rosanna E.; Smith, Gabrielle P. A.; McCallum, Debra M.
2013-01-01
Social cognitive models examining academic and career outcomes emphasize constructs such as attitude, interest, and self-efficacy as key factors affecting students' pursuit of STEM (science, technology, engineering and math) courses and careers. The current research examines another under-researched component of social cognitive models: social…
Informatics Teaching from the Students' Point of View
ERIC Educational Resources Information Center
Zahorec, Jan; Haskova, Alena
2013-01-01
Branches of science and technical/engineering study have for a long time been the less favoured disciplines and students have not been interested in studying them. Informatics/computer education, based on its character, belongs to these disciplines, but on the contrary it belongs rather to the group of popular school subjects. The paper presents…
Designing for Enhanced Conceptual Understanding in an Online Physics Course
ERIC Educational Resources Information Center
Dunlap, Joanna C.; Furtak, Thomas E.; Tucker, Susan A.
2009-01-01
The calculus-based, introductory physics course is the port of entry for any student interested in pursuing a college degree in the sciences, mathematics, or engineering. There is increasing demand for online delivery options that make the course more widely available, especially those that use best practices in student engagement. However,…
Knowledge management through the e-learning approach - a case study of online engineering courses
NASA Astrophysics Data System (ADS)
Aichouni, Mohamed; Benchicou, Soraya; Nehari, Dris
2013-06-01
Though it is universally accepted that the face-to-face approach is the best way for education and training, however, with the advent of the information and communication technologies (mainly the World Wide Web) it became possible to enhance further the methods we are using to teach our students and to share the teaching material within a broaden engineering, technical and business communities. This paper is dedicated to making a review of the basic concepts of knowledge management and e-learning and to show how these two modern concepts can be integrated into engineering education to produce knowledge, disseminate it and share it within virtual interest groups and networks of engineering students, academic teachers and industrial engineers and technicians and business managers. A practical case study will be presented and discussed.
E-Readers on Trial: Qualitative Results from an Academic Library Pilot Project
ERIC Educational Resources Information Center
Kemp, Jan; Lutz, Ellen; Nurnberger, Amy L.
2012-01-01
In 2010, the University of Texas at San Antonio Libraries opened a bookless satellite library, the Applied Engineering and Technology (AET) Library. AET librarians wanted to offer a new service: lending e-readers loaded with academic content and other e-books of interest to engineering and science students. Librarians chose three e-readers for the…
Can We Expect to Recruit Future Engineers among Students Who Have Never Repaired a Toy?
ERIC Educational Resources Information Center
Virtic, Mateja Ploj; Šorgo, Andrej
2016-01-01
Education has traditionally focused primarily on content and cognitive goals. While content knowledge is important, to enter to the labour market today, graduates must also develop manual skills and technical literacy. The paper deals with engineering and technology education in Slovenia. It portrays the problem of the decline in interest in…
The predicament of aeronautical engineering education and what we can do about it
NASA Technical Reports Server (NTRS)
Bollard, R. J. H.
1975-01-01
Problems faced by the universities due to the drop in enrollment of aeronautics and astronautics undergraduate students are examined. Efforts made by the universities to overcome some of these problems are discussed. The author presents ten specific recommendations involving government and industry support to overcome the apparent lack of interest in engineering disciplines.
A qualitative examination of the nature and impact of three California minority engineering programs
NASA Astrophysics Data System (ADS)
Christie, Barbara A.
According to the National Action Council for Minorities in Engineering (NACME), the national retention rate of engineering students is 68% and the national retention rate for underrepresented minority engineering students (African American, Latino, Native American and Pacific Islanders) is 37%. In response to the severity of retention issues concerning underrepresented minority students, colleges and universities across the United States have developed special programs known as minority engineering programs (MEP). MEPs are designed to provide academic support, personal counseling, social networking, career counseling and professional development as a means to improve retention. In order to provide a detailed description of the MEPs, the research method selected is a case study. This case study is an examination of the nature and impact of three MEPs in California. This study is also an analysis of the lack of participation by freshmen and sophomore students who qualify for these programs. Methodology included extensive surveys and interviews of students, faculty and staff, site visits, and examination of documents. Over 500 students were surveyed during lower division engineering courses. The qualifying students who gave permission for further interviews were provided with questions about their participation or nonparticipation and the reasons for their behavior. Faculty members were interviews about their knowledge and personal involvement with the minority engineering program on their campuses. Program directors were interviewed to discuss program design and implementation. A categorical method was used to separate the different groups within the study. Of the 509 respondents, 132 were classified as qualifier/nonparticipant freshman and sophomore engineering students. The results demonstrated that a high percentage of the qualifier/nonparticipants are unaware of the programs and events on their campuses. During the interviews the students stated they are very interested in academic enrichment, social networking and professional development. The students also stated they feel the faculty should provide information on enrichment programs available on campus. Conversely, during the faculty interviews, they stated that it is not their responsibility to inform students and were unfamiliar with the minority engineering programs on their campuses. These results concurred with works of Raymond Landis and Elaine Seymour.
NASA Astrophysics Data System (ADS)
Vazquez-Akim, Jenny Amanda
Female and underrepresented racial minority (URM) students are indicating their interest in STEM fields at increasing rates, yet when examining the engineering discipline specifically disparities in degree completion rates between female URM students and others in the racial or gender majority are even more severe. This study explored female URM college student perceptions of school and classroom climate and the impact these factors had on their decision to persist or to leave engineering. Through a qualitative interview methodology grounded in Social Cognitive Career Theory (SCCT), this study explored factors including self-efficacy, perceived barriers and supports, other-group orientation and outcome expectations that influenced students' academic decision-making. Interview participants consisted of 5 female URM students that matriculated into an engineering major at a top tier, private university but subsequently left the discipline in pursuit of another field of study. The perceptions of this target population were juxtaposed with interview data from 4 male non-URM, 4 female non-URM, and 4 male URM leavers in addition to 7 female URM engineering persisters. As a final component in the research design, 9 undergraduate engineering faculty were interviewed to understand their perceptions of why female URM students leave engineering in pursuit of other disciplines. With faculty being a central component of the academic environment, their perceptions of female URM students, as well as how they view their role in these students' retention, provided insight on this other side of retention question. Salient findings emerged that differentiated female URM leavers' experiences in engineering from other student populations. Female URM leavers were less likely to call upon self-directed learning strategies in response to academic challenges. Perceived academic barriers such as heavy course loads, lack of connection between material and application, and perceived academic deficits deterred these students from persisting in the field. A perceived lack of academic preparation also inhibited female URM students from participating actively in class. Additionally, while targeted support programs were effective in connecting female URM students with their peers and such programs contributed to an overall sense of diversity at the school, a lack of diversity was felt when inside the classroom.
Marketing Strategy and Implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report documents the marketing campaign that has been designed for middle and high school students in New Mexico to increase interest in participation in national security careers at the National Nuclear Security Administration. This marketing campaign builds on the research that was previously conducted, as well as the focus groups that were conducted. This work is a part of the National Nuclear Security Preparedness Project (NSPP) being performed under a Department of Energy (DOE) / National Nuclear Security Administration (NNSA) grant. Outcome analysis was performed to determine appropriate marketing strategies. The analysis was based upon focus groups with middlemore » school and high school students, student interactions, and surveys completed by students to understand and gauge student interest in Science, Technology, Engineering, and Math (STEM) subjects, interest in careers at NNSA, future job considerations, and student desire to pursue post-secondary education. Further, through the focus groups, students were asked to attend a presentation on NNSA job opportunities and employee requirements. The feedback received from the students was utilized to develop the focus and components of the marketing campaign.« less
Undergraduate Research in Physics as a course for Engineering and Computer Science Majors
NASA Astrophysics Data System (ADS)
O'Brien, James; Rueckert, Franz; Sirokman, Greg
2017-01-01
Undergraduate research has become more and more integral to the functioning of higher educational institutions. At many institutions undergraduate research is conducted as capstone projects in the pure sciences, however, science faculty at some schools (including that of the authors) face the challenge of not having science majors. Even at these institutions, a select population of high achieving engineering students will often express a keen interest in conducting pure science research. Since a foray into science research provides the student the full exposure to the scientific method and scientific collaboration, the experience can be quite rewarding and beneficial to the development of the student as a professional. To this end, the authors have been working to find new contexts in which to offer research experiences to non- science majors, including a new undergraduate research class conducted by physics and chemistry faculty. An added benefit is that these courses are inherently interdisciplinary. Students in the engineering and computer science fields step into physics and chemistry labs to solve science problems, often invoking their own relevant expertise. In this paper we start by discussing the common themes and outcomes of the course. We then discuss three particular projects that were conducted with engineering students and focus on how the undergraduate research experience enhanced their already rigorous engineering curriculum.
Building international experiences into an engineering curriculum - a design project-based approach
NASA Astrophysics Data System (ADS)
Maldonado, Victor; Castillo, Luciano; Carbajal, Gerardo; Hajela, Prabhat
2014-07-01
This paper is a descriptive account of how short-term international and multicultural experiences can be integrated into early design experiences in an aerospace engineering curriculum. Such approaches are considered as important not only in fostering a student's interest in the engineering curriculum, but also exposing them to a multicultural setting that they are likely to encounter in their professional careers. In the broader sense, this programme is described as a model that can be duplicated in other engineering disciplines as a first-year experience. In this study, undergraduate students from Rensselaer Polytechnic Institute (RPI) and Universidad del Turabo (UT) in Puerto Rico collaborated on a substantial design project consisting of designing, fabricating, and flight-testing radio-controlled model aircraft as a capstone experience in a semester-long course on Fundamentals of Flight. The two-week long experience in Puerto Rico was organised into academic and cultural components designed with the following objectives: (i) to integrate students in a multicultural team-based academic and social environment, (ii) to practise team-building skills and develop students' critical thinking and analytical skills, and finally (iii) to excite students about their engineering major through practical applications of aeronautics and help them decide if it is a right fit for them.
Frankenfeld, Cara L.; Bases, Jessica; Espina, Virginia; Liotta, Lance A.
2014-01-01
What early experiences attract students to pursue an education and career in science, technology, engineering, and mathematics (STEM)? Does hands-on research influence them to persevere and complete a major course of academic study in STEM? We evaluated survey responses from 149 high school and undergraduate students who gained hands-on research experience in the 2007–2013 Aspiring Scientists Summer Internship Programs (ASSIP) at George Mason University. Participants demonstrated their strong interest in STEM by volunteering to participate in ASSIP and completing 300 h of summer research. The survey queried extracurricular experiences, classroom factors, and hands-on projects that first cultivated students’ interest in the STEM fields, and separately evaluated experiences that sustained their interest in pursuing a STEM degree. The majority of students (65.5%, p < 0.0001) reported extracurricular encounters, such as the influence of a relative or family member and childhood experiences, as the most significant factors that initially ignited their interest in STEM, while hands-on lab work was stated as sustaining their interest in STEM (92.6%). Based on these findings collected from a cohort of students who demonstrated a strong talent and interest in STEM, community-based programs that create awareness about STEM for both children and their family members may be key components for igniting long-term academic interest in STEM. PMID:25452491
A Biotic Game Design Project for Integrated Life Science and Engineering Education
Denisin, Aleksandra K.; Rensi, Stefano; Sanchez, Gabriel N.; Quake, Stephen R.; Riedel-Kruse, Ingmar H.
2015-01-01
Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games. PMID:25807212
A biotic game design project for integrated life science and engineering education.
Cira, Nate J; Chung, Alice M; Denisin, Aleksandra K; Rensi, Stefano; Sanchez, Gabriel N; Quake, Stephen R; Riedel-Kruse, Ingmar H
2015-03-01
Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.
A New Approach to A Science Magnet School - Classroom and Museum Integration
NASA Astrophysics Data System (ADS)
Franklin, Samuel
2009-03-01
The Pittsburgh Science & Technology Academy is a place where any student with an interest in science, technology, engineering or math can develop skills for a career in life sciences, environmental sciences, computing, or engineering. The Academy isn't just a new school. It's a new way to think about school. The curriculum is tailored to students who have a passion for science, technology, engineering or math. The environment is one of extraordinary support for students, parents, and faculty. And the Academy exists to provide opportunities, every day, for students to Dream. Discover. Design. That is, Academy students set goals and generate ideas, research and discover answers, and design real solutions for the kinds of real-world problems that they'll face after graduation. The Academy prepares students for their future, whether they go on to higher education or immediate employment. This talk will explain the unique features of the Pittsburgh Science & Technology Academy, lessons learned from its two-year design process, and the role that the Carnegie Museums have played and will continue to play as the school grows.
Exploration and practice in-class practice teaching mode
NASA Astrophysics Data System (ADS)
Zang, Xue-Ping; Wu, Wei-Feng
2017-08-01
According to the opto-electronic information science and engineering professional course characteristics and cultivate students' learning initiative, raised the teaching of photoelectric professional course introduce In-class practice teaching mode. By designing different In-class practice teaching content, the students' learning interest and learning initiative are improved, deepen students' understanding of course content and enhanced students' team cooperation ability. In-class practice teaching mode in the course of the opto-electronic professional teaching practice, the teaching effect is remarkable.
NASA Astrophysics Data System (ADS)
Sánchez-Martín, Jesús; Álvarez-Gragera, García J.; Dávila-Acedo, M. Antonia; Mellado, Vicente
2017-11-01
The interest on engineering and scientific studies can be raised up even from the early years of academic instructional process. This vocation may be linked to emotions and aptitudes towards technological education. Particularly, students get in touch with these technological issues (namely STEM) during the Compulsory Secondary Education in Spain (12-16 years old).This work presents a preliminary evaluation of how relevant is Gardner's multiple intelligence theory (MIT) in the teaching-learning process within the Technology Lessons. In this sense, MIT was considered as an explanation variable of the emotional response within the different educational parts (so-called syllabus units, SU) in the Technology spanish curriculum. Different intelligence style (IS) will orient the student to a vision of the engineering and technology. This work tries to identify which relationships can be established between IS and specific technology and engineering learning. This research involved up to 135 students were subsequently tested about their predominant (IS) and on the emotions that arouse in them when working with each SU. The results were statistically significant and only those with a Logic-arithmetic or Environmental IS were not affected by the SU.Best teaching and learning practicesare required for encouraging further engineering studies.
McPherson, Erin; Park, Bernadette; Ito, Tiffany A
2018-06-01
Self-to-prototype matching is a strategy of mental comparisons between the self-concept and the typical or "representative" member of a group to make some judgment. Such a process might contribute to interest in pursuing a science career and, relatedly, women's underrepresentation in physical science, technology, engineering, and mathematics (pSTEM) fields. Across four studies, we measured self-scientist discrepancies on communal, agentic, and scientific dimensions, and assessed participants' interest in a science career. The most consistent predictor of science interest was the discrepancy between self and scientist on the scientific dimension (e.g., intelligent, meticulous). Study 4 established that students with larger self-scientist discrepancies also had less accurate perceptions of students pursuing science, and that inaccuracy was related to lower science interest. Thus, students with lower science interest do not just perceive scientists differently from themselves but also erroneously. Discrepancy and inaccuracy together explained a significant portion of the gender gap in pSTEM interest.
Haudek, Kevin C.; Kaplan, Jennifer J.; Knight, Jennifer; Long, Tammy; Merrill, John; Munn, Alan; Nehm, Ross; Smith, Michelle; Urban-Lurain, Mark
2011-01-01
Concept inventories, consisting of multiple-choice questions designed around common student misconceptions, are designed to reveal student thinking. However, students often have complex, heterogeneous ideas about scientific concepts. Constructed-response assessments, in which students must create their own answer, may better reveal students’ thinking, but are time- and resource-intensive to evaluate. This report describes the initial meeting of a National Science Foundation–funded cross-institutional collaboration of interdisciplinary science, technology, engineering, and mathematics (STEM) education researchers interested in exploring the use of automated text analysis to evaluate constructed-response assessments. Participants at the meeting shared existing work on lexical analysis and concept inventories, participated in technology demonstrations and workshops, and discussed research goals. We are seeking interested collaborators to join our research community. PMID:21633063
Kovarik, Dina N; Patterson, Davis G; Cohen, Carolyn; Sanders, Elizabeth A; Peterson, Karen A; Porter, Sandra G; Chowning, Jeanne Ting
2013-01-01
We investigated the effects of our Bio-ITEST teacher professional development model and bioinformatics curricula on cognitive traits (awareness, engagement, self-efficacy, and relevance) in high school teachers and students that are known to accompany a developing interest in science, technology, engineering, and mathematics (STEM) careers. The program included best practices in adult education and diverse resources to empower teachers to integrate STEM career information into their classrooms. The introductory unit, Using Bioinformatics: Genetic Testing, uses bioinformatics to teach basic concepts in genetics and molecular biology, and the advanced unit, Using Bioinformatics: Genetic Research, utilizes bioinformatics to study evolution and support student research with DNA barcoding. Pre-post surveys demonstrated significant growth (n = 24) among teachers in their preparation to teach the curricula and infuse career awareness into their classes, and these gains were sustained through the end of the academic year. Introductory unit students (n = 289) showed significant gains in awareness, relevance, and self-efficacy. While these students did not show significant gains in engagement, advanced unit students (n = 41) showed gains in all four cognitive areas. Lessons learned during Bio-ITEST are explored in the context of recommendations for other programs that wish to increase student interest in STEM careers.
NASA Technical Reports Server (NTRS)
Johnson, Kathleen M. (Editor)
2001-01-01
The HEDS-UP (Human Exploration and Development of Space-University Partners) program was instituted to build new relationships between university, faculty, students, and NASA in support of the Human Exploration and Development of Space. The program has provided a mechanism for university students to explore problems of interest to NASA through student engineering design projects, led by a university professor or mentor, and aided by the HEDS-UP staff. HEDS-UP program management advised teams on the selection of projects that were aligned with the goals of the HEDS strategic enterprise, and provided contacts with NASA and industry professionals who served as mentors. Students became acquainted with objectives, strategies, development issues, and technological characteristics of space exploration programs. In doing so, they prepared themselves for future engineering challenges, often discovering that the program was on their critical path to professional advancement. Many of the ideas were innovative and of interest to NASA. Industry benefitted from HEDS-UP as a mechanism to converge with talented students about to enter the work force. In addition, universities became more involved in the teaching of space exploration, and students were encouraged and mentored as they included education outreach as an element in their work. This in turn highlighted their performance to others and universities in their communities.
NASA Astrophysics Data System (ADS)
Stevens, Sally; Andrade, Rosi; Page, Melissa
2016-12-01
Data indicate that females and ethnic/race minority groups are underrepresented in the science and engineering workforce calling for innovative strategies to engage and retain them in science education and careers. This study reports on the development, delivery, and outcomes of a culturally driven science, technology, engineering, mathematics (STEM) program, iSTEM, aimed at increasing engagement in STEM learning among Native American 3rd-8th grade students. A culturally relevant theoretical framework, Funds of Knowledge, informs the iSTEM program, a program based on the contention that the synergistic effect of a hybrid program combining two strategic approaches (1) in-school mentoring and (2) out-of-school informal science education experiences would foster engagement and interest in STEM learning. Students are paired with one of three types of mentors: Native American community members, university students, and STEM professionals. The iSTEM program is theme based with all program activities specifically relevant to Native people living in southern Arizona. Student mentees and mentors complete interactive flash STEM activities at lunch hour and attend approximately six field trips per year. Data from the iSTEM program indicate that the program has been successful in engaging Native American students in iSTEM as well as increasing their interest in STEM and their science beliefs.
Kovarik, Dina N.; Patterson, Davis G.; Cohen, Carolyn; Sanders, Elizabeth A.; Peterson, Karen A.; Porter, Sandra G.; Chowning, Jeanne Ting
2013-01-01
We investigated the effects of our Bio-ITEST teacher professional development model and bioinformatics curricula on cognitive traits (awareness, engagement, self-efficacy, and relevance) in high school teachers and students that are known to accompany a developing interest in science, technology, engineering, and mathematics (STEM) careers. The program included best practices in adult education and diverse resources to empower teachers to integrate STEM career information into their classrooms. The introductory unit, Using Bioinformatics: Genetic Testing, uses bioinformatics to teach basic concepts in genetics and molecular biology, and the advanced unit, Using Bioinformatics: Genetic Research, utilizes bioinformatics to study evolution and support student research with DNA barcoding. Pre–post surveys demonstrated significant growth (n = 24) among teachers in their preparation to teach the curricula and infuse career awareness into their classes, and these gains were sustained through the end of the academic year. Introductory unit students (n = 289) showed significant gains in awareness, relevance, and self-efficacy. While these students did not show significant gains in engagement, advanced unit students (n = 41) showed gains in all four cognitive areas. Lessons learned during Bio-ITEST are explored in the context of recommendations for other programs that wish to increase student interest in STEM careers. PMID:24006393
ERIC Educational Resources Information Center
Duran, M. J.; Barrero, F.; Pozo-Ruz, A.; Guzman, F.; Fernandez, J.; Guzman, H.
2013-01-01
Wind energy conversion systems (WECS) nowadays offer an extremely wide range of topologies, including various different types of electrical generators and power converters. Wind energy is also an application of great interest to students and with a huge potential for engineering employment. Making WECS the main center of interest when teaching…
NASA Astrophysics Data System (ADS)
Ocumpaugh, Jaclyn; San Pedro, Maria Ofelia; Lai, Huei-yi; Baker, Ryan S.; Borgen, Fred
2016-12-01
Research suggests that trajectories toward careers in science, technology, engineering, and mathematics (STEM) emerge early and are influenced by multiple factors. This paper presents a longitudinal study, which uses data from 76 high school students to explore how a student's vocational self-efficacy and interest are related to his or her middle school behavioral and affective engagement. Measures of vocational self-efficacy and interest are drawn from STEM-related scales in CAPAExplore, while measures of middle school performance and engagement in mathematics are drawn from several previously validated automated indicators extracted from logs of student interaction with ASSISTments, an online learning platform. Results indicate that vocational self-efficacy correlates negatively with confusion, but positively with engaged concentration and carelessness. Interest, which also correlates negatively with confusion, correlates positively with correctness and carelessness. Other disengaged behaviors, such as gaming the system, were not correlated with vocational self-efficacy or interest, despite previous studies indicating that they are associated with future college attendance. We discuss implications for these findings, which have the potential to assist educators or counselors in developing strategies to sustain students' interest in STEM-related careers.
The declining interest in an academic career
Sauermann, Henry
2017-01-01
There is increasing evidence that science & engineering PhD students lose interest in an academic career over the course of graduate training. It is not clear, however, whether this decline reflects students being discouraged from pursuing an academic career by the challenges of obtaining a faculty job or whether it reflects more fundamental changes in students’ career goals for reasons other than the academic labor market. We examine this question using a longitudinal survey that follows a cohort of PhD students from 39 U.S. research universities over the course of graduate training to document changes in career preferences and to explore potential drivers of such changes. We report two main results. First, although the vast majority of students start the PhD interested in an academic research career, over time 55% of all students remain interested while 25% lose interest entirely. In addition, 15% of all students were never interested in an academic career during their PhD program, while 5% become more interested. Thus, the declining interest in an academic career is not a general phenomenon across all PhD students, but rather reflects a divergence between those students who remain highly interested in an academic career and other students who are no longer interested in one. Second, we show that the decline we observe is not driven by expectations of academic job availability, nor by related factors such as postdoctoral requirements or the availability of research funding. Instead, the decline appears partly due to the misalignment between students’ changing preferences for specific job attributes on the one hand, and the nature of the academic research career itself on the other. Changes in students’ perceptions of their own research ability also play a role, while publications do not. We discuss implications for scientific labor markets, PhD career development programs, and science policy. PMID:28922403
Exploring in Aerospace Rocketry. An Introduction to the Fundamentals of Rocketry.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Cleveland, OH. Lewis Research Center.
This curriculum guide is based on 2 years of lectures and projects of a contemporary, special-interest aerospace program for promising students, ages 15-19. The program uses technical lectures, project activities and field trips to introduce students to the real engineering world of pioneering aerospace achievement, and the variety of skills and…
Preparing Students for Middle School through After-School STEM Activities
ERIC Educational Resources Information Center
Moreno, Nancy P.; Tharp, Barbara Z.; Vogt, Gregory; Newell, Alana D.; Burnett, Christopher A.
2016-01-01
The middle school years are a crucial time for cultivating students' interest in and preparedness for future STEM careers. However, not all middle school children are provided opportunities to engage, learn and achieve in STEM subject areas. Engineering, in particular, is neglected in these grades because it usually is not part of science or…
Robotic Design for the Classroom
NASA Technical Reports Server (NTRS)
Culbert, Chris; Burns, Kaylynn
2001-01-01
This slide presentation reviews the use of robotic design to interest students in science and engineering. It describes one program, BEST, and resources that area available to design and create a robot. BEST is a competition for sixth and seventh graders that is designed to engage gifted and talented students. A couple of scenarios involving the use of a robot are outlined.
ERIC Educational Resources Information Center
Wooten, Melissa E.
2016-01-01
This study investigates how the college readiness of participants in a compensatory program designed to facilitate interest in science and engineering was determined. Archival data were used to qualitatively analyze the performance reports of 205 student participants during the compensatory program's first 5 years. Findings indicate participants…
1993-04-01
student dropout rate and a lacking scientific tradition. This paper would be beneficial to someone interested in educa- tion, especially the...Competition is keen, especially in engineering, and medicine. The test is very difficult. It tests students knowledge of biology, chemistry, physics...States’ Industrial and National War Colleges and prepares "civilians and military to perform executive and advisory functions, especially in those
ERIC Educational Resources Information Center
Hazari, Zahra; Potvin, Geoff; Lock, Robynne M.; Lung, Florin; Sonnert, Gerhard; Sadler, Philip M.
2013-01-01
There are many hypotheses regarding factors that may encourage female students to pursue careers in the physical sciences. Using multivariate matching methods on national data drawn from the Persistence Research in Science and Engineering (PRiSE) project ("n" = 7505), we test the following five commonly held beliefs regarding what…
ERIC Educational Resources Information Center
Dominguez, Caroline; Nascimento, Maria M.; Payan-Carreira, Rita; Cruz, Gonçalo; Silva, Helena; Lopes, José; Morais, Maria da Felicidade A.; Morais, Eva
2015-01-01
Considering the results of research on the benefits and difficulties of peer review, this paper describes how teaching faculty, interested in endorsing the acquisition of communication and critical thinking (CT) skills among engineering students, has been implementing a learning methodology throughout online peer review activities. While…
ERIC Educational Resources Information Center
Paluri, Sesha L. A.; Edwards, Michelle L.; Lam, Nhi H.; Williams, Elizabeth M.; Meyerhoefer, Allie; Pavel Sizemore, Ioana E.
2015-01-01
In recent years, nanoscience and nanotechnology have been drawing enormous attention due to the numerous applications of nanomaterials. In an attempt to nurture interest towards these areas in young minds and to develop the next generation of environmentally conscious scientists and engineers, this new laboratory module focuses on the green and…
ERIC Educational Resources Information Center
Chen, Xianglei
2009-01-01
Rising concern about America's ability to maintain its competitive position in the global economy has renewed interest in science, technology, engineering and mathematics (STEM) education. To understand who enters into and completes undergraduate programs in STEM fields, this report examined data from three major national studies: the 1995-96…
Idaho Science, Technology, Engineering and Mathematics Overview
None
2017-12-09
Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.
Idaho Science, Technology, Engineering and Mathematics Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampton, Brandon; Shoushtarian, Joannah; Ledoux, P
2011-02-11
Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.
Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord
NASA Astrophysics Data System (ADS)
Cao, Yiping; Chen, Wenjing; Zhang, Qican; Liu, Yuankun; Li, Dahai; Zhou, Xinzhi; Wei, Jun
2017-08-01
Common problems faced in optical comprehensive design experiment and going against the Washington Accord are pointed out. For resolving these problems, an instructional and innovative teaching scheme for Optics Comprehensive Design Experiment is proposed. We would like to understand the student that can improve the hands-on practical ability, theory knowledge understanding ability, complex problem solving ability, engineering application ability, cooperative ability after tracking and researching the student who have attended the class about Optical Comprehensive Design Experiment, We found that there are some problems on the course such as the experiment content vague, the student beginning less time, phase separation theory and engineering application, the experiment content lack of selectivity and so on. So we have made some improvements reference to the Washington Accord for the class teaching plan about Optical Comprehensive Design Experiment. This class must relevant to the engineering basic courses, professional foundation course and the major courses, so far as to the future study and work that which can play a role in inheriting and continuity to the students. The Optical Comprehensive Design Experiment teaching program requires students learning this course to have learnt basic courses like analog electronics technique, digital electronic technique, applied optics and computer and other related courses which students are required to comprehensively utilize. This teaching scheme contains six practical complex engineering problems which are respectively optical system design, light energy meter design, illuminometer design, material refractive index measuring system design, light intensity measuring system design and open design. Establishing the optional experiment and open experiment can provide students with a greater choice and enhance the students' creativity, vivid teaching experimental teachers and enriching contents of experiment can make the experiment more interesting, providing students with more opportunities to conduct experiment and improving students' practical ability with long learning time, putting emphasis on student's understanding of complex engineering problems and the cognitive of the process to solve complex engineering problems with actual engineering problems. Applying the scheme in other courses and improving accordingly will be able to ensure the quality of engineering education. Look forward to offering useful reference for the curriculum system construction in colleges and universities.
Applying Augmented Reality in practical classes for engineering students
NASA Astrophysics Data System (ADS)
Bazarov, S. E.; Kholodilin, I. Yu; Nesterov, A. S.; Sokhina, A. V.
2017-10-01
In this article the Augmented Reality application for teaching engineering students of electrical and technological specialties is introduced. In order to increase the motivation for learning and the independence of students, new practical guidelines on Augmented Reality were developed in the application to practical classes. During the application development, the authors used software such as Unity 3D and Vuforia. The Augmented Reality content consists of 3D-models, images and animations, which are superimposed on real objects, helping students to study specific tasks. A user who has a smartphone, a tablet PC, or Augmented Reality glasses can visualize on-screen virtual objects added to a real environment. Having analyzed the current situation in higher education: the learner’s interest in studying, their satisfaction with the educational process, and the impact of the Augmented Reality application on students, a questionnaire was developed and offered to students; the study involved 24 learners.
Research Laboratory for Engineering and Tehnology (ReLEnT)-Summer Program
NASA Technical Reports Server (NTRS)
Okhio, Cyril B.
1996-01-01
During the fiscal years 1994-1995 students at Central State University (CSU) have worked diligently under the supervision of the PI and associates to plan, design and conduct a four-week hands on summer program for high school students in grades 9 to 12. These workshops consists of experiments and computer aided design and manufacturing, designed to constructively stimulate interests in engineering and technology, and promote enrollment at CSU after they matriculate from high school. The experience gained in two years will be utilized to realize one of the deliverables for CSU engineering program during 1996. In FY-96 a new total of 30 students are now being interviewed for the 1996 program. This grant also provides resource for students enrolled in CSU's engineering program to work as undergraduate research assistants and ReLEnT tuition scholarship awards. These students are involved in the development of research, design projects, workshop procedures, laboratory exercises and seminars. Undergraduate students receiving tuition scholarships are required to maintain a cumulative grade point average of 3.0 or higher. Finally, the ReLEnT award has made it possible for CSU to acquire some experimental and CFD capability which now provides us with the opportunity to compete and respond to RFP's on a competitive basis and a timely manner.
NASA Astrophysics Data System (ADS)
Amelink, Catherine T.; Meszaros, Peggy S.
2011-03-01
This study seeks to examine key extrinsic and intrinsic factors that encourage or discourage persistence in attaining an engineering degree and pursuing an engineering-related career among both male and female undergraduates. Quantitative and qualitative findings from nine participating undergraduate degree programmes reveal that career expectations formulated through educational experiences as undergraduates play a key role in motivating students. Among females, faculty interaction in the classroom, such as feedback received and the degree to which the faculty treat them with respect, is an important encouraging factor. For both males and females, discouraging elements of the undergraduate experience include the amount of time for coursework, competition in engineering classes and grades. The findings have several practical implications that faculty and administrators can employ in shaping the undergraduate experience to encourage short- and long-term interest in engineering among both male and female students.
Seeing through the lens of social justice: A threshold for engineering
NASA Astrophysics Data System (ADS)
Kabo, Jens David
In recent times the need for educational research dedicated to engineering education has been recognised. This PhD project is a contribution to the development of engineering education scholarship and the growing body of engineering education research. In this project it was recognised that problem solving is a central activity to engineering. However, it was also recognised that the conditions for doing engineering are changing, especially in light of pressing issues of poverty and environmental sustainability that humanity currently faces, and as a consequence, engineering education needs to emphasise problem definition to a greater extent. One mechanism for achieving this, which has been adopted by some engineering educators in recent years, is through courses that explicitly relate engineering to social justice. However, creating this relationship requires critical interdisciplinary thinking that is alien to most engineering students. In this dissertation it is suggested that for engineering students, and more generally, engineers, looking at their practice and profession through a social justice lens might be seen as a threshold that needs to be crossed. By studying the variation present among students in three different courses at three different North American universities, the intention was to understand how students approach and internalise social justice as a perspective on engineering and/or develop their abilities to think critically. A conceptual model to frame the study was developed by combining elements of threshold concept theory and the educational research methodology, phenomenographic variation theory. All three of the courses studied operated on a similar basic pedagogical model, however, the courses were framed differently, with social justice in the foreground or in the background with the focus on, in one case, ethics and in the other, sustainability. All courses studied appeared to be successful in encouraging engineering students to engage in critical thinking and a similar general trend in the development of students' conceptions of social justice was observed in each of the three courses. However, it does appear that if one is interested in developing an articulated understanding of social justice, with respect to engineering, that an explicit focus on social justice is preferable.
Partnering with AVID to create transportation scholars
DOT National Transportation Integrated Search
2010-10-01
The goal of this project was to team with the Advancement Via Individual Determination (AVID) : program in local schools to stimulate student awareness of transportation and engineering careers and to : encourage interest in the science, technology, ...
A Five Dollar Physics Experiment
ERIC Educational Resources Information Center
Jacobson, David
1973-01-01
Describes the construction of a simple apparatus capable of converting solar energy into mechanical energy. Construction of the engine'' is inexpensive, and should stimulate student interest in the idea of producing power directly from the sun. (JR)
La Vida Robot - High School Engineering Program Combats Engineering Brain Drain
Cameron, Allan; Lajvardi, Fredi
2018-05-04
Carl Hayden High School has built an impressive reputation with its robotics club. At a time when interest in science, math and engineering is declining, the Falcon Robotics club has young people fired up about engineering. Their program in underwater robots (MATE) and FIRST robotics is becoming a national model, not for building robots, but for building engineers. Teachers Fredi Lajvardi and Allan Cameron will present their story (How kids 'from the mean streets of Phoenix took on the best from M.I.T. in the national underwater bot championship' - Wired Magazine, April 2005) and how every student needs the opportunity to 'do real engineering.'
Cognitive diversity in undergraduate engineering: Dyslexia
NASA Astrophysics Data System (ADS)
Fitzpatrick, Velvet R.
In the United States, institutions have established multiple programs and initiatives aimed at increasing the diversity of both faculty and students in engineering as means to produce a workforce that will better serve society. However, there are two major problems in addressing engineering student diversity. First, the engineering education research community has paid little attention to date as to how engineering education research characterizes diversity in its broadest sense. Second, research on persons with disabilities in undergraduates engineering, a population of interests within diversity, is minimal. Available disability studies tend to be skewed toward physical disabilities, leading to a neglect of cognitive differences such as learning disabilities (LD). In addition, disability research questions and study designs are inherently steeped in ability bias. The purpose of this dissertation is to explore the meaning of ability for students with dyslexia while in undergraduate engineering and establish the significance of cognitive diversity, focusing on LD and more specifically dyslexia, in undergraduate engineering education and answer the following research question: How do undergraduate engineering students with dyslexia experience ability while pursuing and persisting in engineering? The motivation was to lay the groundwork for future engineering education studies on undergraduate students with LD in general but dyslexia in specific. The first goal was to conduct a critical literature review pertaining to the academic strengths of undergraduate students with LD, specifically, dyslexia and the second goal was to describe how undergraduate engineering students with dyslexia experience ability. The intent was not to redefine dyslexia or disability. The intent is to provide an inclusive account of dyslexia, weakness and strengths, within the field of engineering education. This study was conducted from a qualitative inquiry approach, within the social constructivism paradigm, and utilized purposive sampling to identify appropriate participants. The thematic analysis methodological framework was used to portray a rich, complex description of experiences in which undergraduate engineering students with dyslexia constructed meaning around ability while pursuing and persisting in engineering. Eight students participated and semi-structured interviews were the data source. The findings are presented in three parts. First, significant findings that were also salient amongst the general undergraduate engineering student populations are presented. This is done to make a clear demarcation from those significant findings found to be unique to undergraduate engineering students with dyslexia presented in the themes: relationships, early exposure to engineering, and securing an internship or co-op position. Second, the four themes that developed from the analysis will were discussed: alignment, dissociation, ideal education environments, and time. Third, additional findings for further investigation were proposed: the role of remediation practices, the representation of dyslexia in media, gender differences in extracurricular activities that constructed different meanings of ability, the prevalence of co-occurring LD amongst the participants, and the visualization of science, engineering, mathematics concepts. The study is closed with a discussion; findings are discussed with respect to relevant research in the conclusion.
NAROM - a national laboratory for space education and student rockets
NASA Astrophysics Data System (ADS)
Hansen, Arne Hjalmar; Larsen, May Aimee; Østbø, Morten
2001-08-01
Despite a considerable growth in space related industry and scientific research over the past few decades, space related education has largely been neglected in our country. NAROM - the National Centre for Space Related Education - was formed last year to organize space related educational activities, to promote recruitment, to promote appreciation for the benefits of space activities, and to stimulate interest for science in general. This year, nine students from Narvik Engineering College have participated in the Hotel Payload Project (HPP) at Anøya Rocket Range. They have thus played an active and essential role in an ongoing engineering project.
Charge It! Translating Electric Vehicle Research Results to Engage 7th and 8th Grade Girls
ERIC Educational Resources Information Center
Egbue, Ona; Long, Suzanna; Ng, Ean-Harn
2015-01-01
Despite attempts to generate interest in science and technology careers, US students continue to show reduced interest in science, technology, engineering and mathematics (STEM) majors at the collegiate level. If girls are not engaged in STEM learning by the middle school level, studies show that they are even less likely to choose a science- or…
Tackling the nuclear manpower shortage: industry, educators must work together
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witzig, W.
1981-10-01
A 50% decline in graduate enrollment and an increase to 50% of foreign nationals among the nuclear engineering students since 1973 at Pennsylvania State University is typical of national trends, which have led to the closing of 13 undergraduate programs across the country. Penn State's proximity to Three Mile Island had less effect than its interactions with high schools and utilities in keeping the nuclear program as strong as it is. Penn State operates three separate career programs to interest high school students in a nuclear career. Institute of Nuclear Power Operations (INPO) educational assistance reflects industry interest, but moremore » scholarships are needed to broaden student awareness. (DCK)« less
Katrina: macro-ethical issues for engineers.
Newberry, Byron
2010-09-01
Hurricane Katrina was one of the worst disasters in United States history. Failures within New Orleans' engineered hurricane protection system (levees and floodwalls) contributed to the severity of the event and have drawn considerable public attention. In the time since Katrina, forensic investigations have uncovered a range of issues and problems related to the engineering work. In this article, my goal is to distill from these investigations, and the related literature that has accumulated, some overarching macro-ethical issues that are relevant for all engineers. I attempt to frame these issues, using illustrative examples taken from Katrina, in a way that might be of pedagogical use and benefit for engineering educators interested in engaging their students in discussions of engineering ethics, societal impact of engineered systems, engineering design, or related topics. Some of the issues discussed are problems of unanticipated failure modes, faulty assumptions, lack or misuse of information, the importance of resiliency, the effects of time, balancing competing interests, attending to the details of interfaces, the fickleness of risk perception, and how the past constrains the present.
Drazan, John F; Scott, John M; Hoke, Jahkeen I; Ledet, Eric H
2014-01-01
A hands-on learning module called "Science of the Slam" is created that taps into the passions and interests of an under-represented group in the fields of Science, Technology, Engineering and Mathematics (STEM). This is achieved by examining the use of the scientific method to quantify the biomechanics of basketball players who are good at performing the slam dunk. Students already have an intrinsic understanding of the biomechanics of basketball however this "hidden capital" has never translated into the underlying STEM concepts. The effectiveness of the program is rooted in the exploitation of "hidden capital" within the field of athletics to inform and enhance athletic performance. This translation of STEM concepts to athletic performance provides a context and a motivation for students to study the STEM fields who are traditionally disengaged from the classic engineering outreach programs. "Science of the Slam" has the potential to serve as a framework for other researchers to engage under-represented groups in novel ways by tapping into shared interests between the researcher and disadvantaged populations.
NASA Technical Reports Server (NTRS)
Henderson, A. J., Jr.
2001-01-01
FIRST is the acronym of For Inspiration and Recognition of Science and Technology. FIRST is a 501.C.3 non-profit organization whose mission is to generate an interest in science and engineering among today's young adults and youth. This mission is accomplished through a robot competition held annually in the spring of each year. NASAs Marshall Space Flight Center, Education Programs Department, awarded a grant to Lee High School, the sole engineering magnet school in Huntsville, Alabama. MSFC awarded the grant in hopes of fulfilling its goal of giving back invaluable resources to its community and engineers, as well as educating tomorrow's work force in the high-tech area of science and technology. Marshall engineers, Lee High School students and teachers, and a host of other volunteers and parents officially initiated this robot design process and competitive strategic game plan. The FIRST Robotics Competition is a national engineering contest, which immerses high school students in the exciting world of science and engineering. Teaming with engineers from government agencies, businesses, and universities enables the students to learn about the engineering profession. The students and engineers have six weeks to work together to brainstorm, design, procure, construct, and test their robot. The team then competes in a spirited, 'no-holds barred' tournament, complete with referees, other FIRST-designed robots, cheerleaders, and time clocks. The partnerships developed between schools, government agencies, businesses, and universities provide an exchange of resources and talent that build cooperation and expose students to new and rewarding career options. The result is a fun, exciting, and stimulating environment in which all participants discover the important connections between classroom experiences and real-world applications. This paper will highlight the story, engineering development, and evolutionary design of Xtraktor, the rookie robot, a manufacturing marvel and engineering achievement.
Making Hands-On Science Learning Accessible for Students Who Are Blind or Have Low Vision
ERIC Educational Resources Information Center
Supalo, Cary; Isaacson, Mick D.; Lombardi, Michael V.
2014-01-01
The 2011 National Federation of the Blind Youth Slam event at Towson University enabled a large group of blind youth to participate in a five day long science, technology, engineering, and mathematics (STEM) academy. Enrichment experiences such as this one may generate interest in STEM subjects for students with visual impairments. For decades,…
ERIC Educational Resources Information Center
Ahn, Song-ee
2014-01-01
This article describes students' involvement and interest in exchange programmes in Swedish higher education. Law and Engineering bachelor's programmes were chosen to exemplify an over-represented and under-represented group respectively in terms of international mobility in this context. The study combines interview and survey data. The author…
ERIC Educational Resources Information Center
Henriksen, Ellen Karoline; Jensen, Fredrik; Sjaastad, Jørgen
2015-01-01
Understanding young people's educational choice is of interest in order to recruit sufficient numbers of young people to careers in science, technology, engineering and mathematics (STEM). In this article, questionnaire data (closed and open-ended questions) from 5,007 Norwegian first-year students in all STEM higher-education disciplines are…
ERIC Educational Resources Information Center
Siritunga, Dimuth; Montero-Rojas, Maria; Carrero, Katherine; Toro, Gladys; Velez, Ana; Carrero-Martinez, Franklin A.
2011-01-01
Today, more minority students are entering undergraduate programs than ever before, but they earn only 6% of all science or engineering PhDs awarded in the United States. Many studies suggest that hands-on research activities enhance students' interest in pursuing a research career. In this paper, we present a model for the implementation of…
ERIC Educational Resources Information Center
Jeong, Sophia; Kim, Hyoungbum
2015-01-01
Korea has recently started to implement a STEM-like approach in K-12 education, titled STEAM (Science, Technology, Engineering, Arts, and Mathematics) curriculum, to educate the next generation of students to become creative innovators. As this approach has been shown to increase educational success, it is vital to prepare and develop interest in…
ERIC Educational Resources Information Center
Gottfried, Michael A.; Sublett, Cameron
2018-01-01
Over the most recent two decades, federal policy has urged high schools to embed applied science, technology, engineering, and mathematics (STEM) courses into the curriculum to reinforce concepts learned in traditional math and science classes as well as to motivate students' interests and long-term pursuits in STEM areas. While prior research has…
ERIC Educational Resources Information Center
Lin, Peiyi
2013-01-01
With a growing demand for an enhanced K-12 education for strengthening students' conceptual learning, interest, and career awareness in science, technology, engineering, and mathematics, teacher professional development projects have been viewed as an efficient approach. However, a variety of external and teacher factors may prevent such projects…
ERIC Educational Resources Information Center
Bottia, Martha Cecilia; Stearns, Elizabeth; Mickelson, Roslyn Arlin; Moller, Stephanie; Parker, Ashley Dawn
2015-01-01
Background/Context: Schools are integral to augmenting and diversifying the science, technology, engineering, and mathematics (STEM) workforce. This is because K-12 schools can inspire and reinforce students' interest in STEM, in addition to academically preparing them to pursue a STEM career. Previous literature emphasizes the importance of…
ERIC Educational Resources Information Center
Newhouse, Christopher Paul
2017-01-01
The well-being of modern economies and societies is increasingly requiring citizens to possess capabilities in integrating knowledge and skills in science, technology, engineering and science to solve problems. However, by the end of schooling, the majority of Australian students show little interest in these discipline areas and have no plans to…
Advancing participation of blind students in Science, Technology, Engineering, and Math
NASA Astrophysics Data System (ADS)
Beck-Winchatz, Bernhard; Riccobono, Mark A.
2008-12-01
Like their sighted peers, many blind students in elementary, middle, and high school are naturally interested in space. This interest can motivate them to learn fundamental scientific, quantitative, and critical thinking skills, and sometimes even lead to careers in Science, Technology, Engineering, and Math (STEM) disciplines. However, these students are often at a disadvantage in science because of the ubiquity of important graphical information that is generally not available in accessible formats, the unfamiliarity of teachers with non-visual teaching methods, lack of access to blind role models, and the low expectations of their teachers and parents. We discuss joint efforts by the National Aeronautics and Space Administration (NASA) and the National Federation of the Blind’s (NFB) National Center for Blind Youth in Science (NCBYS) to develop and implement strategies to promote opportunities for blind youth in science. These include the development of tactile space science books and curriculum materials, science academies for blind middle school and high school students, and college-level internship and mentoring programs. The partnership with the NFB exemplifies the effectiveness of collaborations between NASA and consumer-directed organizations to improve opportunities for underserved and underrepresented individuals.
NASA Technical Reports Server (NTRS)
Gill, Tracy R.; Gattuso, Kelly
2015-01-01
The X-Hab Academic Innovation Challenge, currently in its sixth year of execution, provides university students with the opportunity to be on the forefront of innovation. The X-Hab Challenge, for short, is designed to engage and retain students in Science, Technology, Engineering and Math (STEM). NASA identifies necessary technologies and studies for deep space missions and invites universities from around the country to develop concepts, prototypes, and lessons learned that will help shape future space missions and awards seed funds to design and produce functional products of interest as proposed by university teams according to their interests and expertise. Universities propose on a variety of projects suggested by NASA and are then judged on technical merit, academic integration, leveraged funding, and outreach. The universities assemble a multi-discipline team of students and advisors that invest months working together, developing concepts, and frequently producing working prototypes. Not only are students able to gain quality experience, working real world problems that have the possibility to be implemented, but they work closely with subject matter experts from NASA who guide them through an official engineering development process.
NASA Technical Reports Server (NTRS)
Gill, Tracy R.; Gattuso, Kelly J.
2015-01-01
The X-Hab Academic Innovation Challenge, currently in its sixth year of execution, provides university students with the opportunity to be on the forefront of innovation. The X-Hab Challenge, for short, is designed to engage and retain students in Science, Technology, Engineering and Math (STEM). NASA identifies necessary technologies and studies for deep space missions and invites universities from around the country to develop concepts, prototypes, and lessons learned that will help shape future space missions and awards seed funds to design and produce functional products of interest as proposed by university teams according to their interests and expertise. Universities propose on a variety of projects suggested by NASA and are then judged on technical merit, academic integration, leveraged funding, and outreach. The universities assemble a multi-discipline team of students and advisors that invest months working together, developing concepts, and frequently producing working prototypes. Not only are students able to gain quality experience, working real world problems that have the possibility of be implemented, but they work closely with subject matter experts from NASA who guide them through an official engineering development process.
ERIC Educational Resources Information Center
Genoways, Sharon K.
2017-01-01
STEM (Science, Technology, Engineering and Math) education creates critical thinkers, increases science literacy, and enables the next generation of innovators, which leads to new products and processes that sustain our economy (Hossain & Robinson, 2012). We have been hearing the warnings for several years, that there simply are not enough…
NASA Astrophysics Data System (ADS)
Yarbrough, L. D.; Katzenstein, K.
2012-12-01
Exposing students to active and local examples of physical geologic processes is beneficial to the learning process. Students typically respond with interest to examples that use state-of-the-art technologies to investigate local or regional phenomena. For lower cognitive level of learning (e.g. knowledge, comprehension, and application), the use of "close-to-home" examples ensures that students better understand concepts. By providing these examples, the students may already have a familiarity or can easily visit the location. Furthermore, these local and regional examples help students to offer quickly other examples of similar phenomena. Investigation of these examples using normal photographic techniques, as well as a more sophisticated 3-D Light Detection And Ranging (LiDAR) (AKA Terrestrial Laser Scanning or TLS) system, allows students to gain a better understanding of the scale and the mechanics of the geologic processes and hazards. The systems are used for research, teaching and outreach efforts and depending on departmental policies can be accessible to students are various learning levels. TLS systems can yield scans at sub-centimeter resolution and contain surface reflectance of targets. These systems can serve a number of learning goals that are essential for training geoscientists and engineers. While querying the data to answer geotechnical or geomorphologic related questions, students will develop skills using large, spatial databases. The upper cognitive level of learning (e.g. analysis, synthesis, and evaluation) is also promoted by using a subset of the data and correlating the physical geologic process of stream bank erosion and rock slope failures with mathematical and computer models using the scanned data. Students use the examples and laboratory exercises to help build their engineering judgment skills with Earth materials. The students learn not only applications of math and engineering science but also the economic and social implication of designed engineering solutions. These course learning modules were developed for traditional geological engineering courses delivered on campus, for more intensive field work courses and online-based asynchronous course delivery.
NASA Technical Reports Server (NTRS)
Thomas, Donald A.; Robinson, Julie A.; Tate, Judy; Thumm, Tracy
2006-01-01
One important objective of NASA has always been to inspire the next generation. NASA and human space flight have a unique ability to capture the imaginations of both students and teachers. The presence of humans onboard the International Space Station (ISS) for more than five years now has provided a foundation for numerous educational activities aimed at capturing the interest and motivating study in the sciences, technology, engineering, and mathematics. Yet even before the Expedition 1 crew arrived at station in November 2000, experiments with student participation were being conducted onboard ISS in support of NASA missions. One of NASA's protein crystal growth experiments had been delivered to station by the shuttle Atlantis during STS-106 in September 2000 and was returned to Earth six weeks later aboard the shuttle Discovery during the STS-92 mission. From very early on it was recognized that students would have a strong interest in the ISS, and that this would provide a unique opportunity for them to get involved and participate in science and engineering projects on ISS. It should be noted that participation is not limited to U.S. students but involves the 16 International Partner countries and various other countries under special commercial agree
NASA Technical Reports Server (NTRS)
Motevalli, Vahid
1994-01-01
This report contains the results of three projects conducted by undergraduate students from Worcester Polytechnic Institute at the NASA's Lewis Research Center under a NASA Award NCC3-312. The students involved in these projects spent part of the summer of 1993 at the Lewis Research Center (LeRC) under the direction of Dr. Howard Ross, head of the Combustion group and other NASA engineers and scientists. The Principal Investigator at Worcester Polytechnic Institute was Professor Vahid Motevalli. Professor Motevalli served as the principal project advisor for two of the three projects which were in Mechanical Engineering. The third project was advised by Professor Duckworth of Electrical and Computer Engineering, while Professor Motevalli acted as the co-advisor. These projects provided an excellent opportunity for the students to participate in the cutting edge research and engineering design, interact with NASA engineers and gain valuable exposure to a real working environment. Furthermore, the combustion group at LeRC was able to forward their goals by employing students to work on topics of immediate use and interest such as experimental research projects planned for the space shuttle, the future space station, or to develop demonstration tools to educate the public about LeRC activities.
Success in Undergraduate Engineering Programs: A Comparative Analysis by Race and Gender
NASA Astrophysics Data System (ADS)
Lord, Susan
2010-03-01
Interest in increasing the number of engineering graduates in the United States and promoting gender equality and diversification of the profession has encouraged considerable research on women and minorities in engineering programs. Drawing on a framework of intersectionality theory, this work recognizes that women of different ethnic backgrounds warrant disaggregated analysis because they do not necessarily share a common experience in engineering education. Using a longitudinal, comprehensive data set of more than 79,000 students who matriculated in engineering at nine universities in the Southeastern United States, this research examines how the six-year graduation rates of engineering students vary by disaggregated combinations of gender and race/ethnicity. Contrary to the popular opinion that women drop out of engineering at higher rates, our results show that Asian, Black, Hispanic, Native American, and White women who matriculate in engineering are as likely as men to graduate in engineering in six years. In fact, Asian, Black, Hispanic, and Native American women engineering matriculants graduate at higher rates than men and there is a small difference for white students. 54 percent of White women engineering matriculants graduate in six-years compared with 53 percent of white men. For male and female engineering matriculants of all races, the most likely destination six years after entering college is graduation within engineering. This work underscores the importance of research disaggregated by race and gender and points to the critical need for more recruitment of women into engineering as the low representation of women in engineering education is primarily a reflection of their low representation at matriculation.
Simulation teaching method in Engineering Optics
NASA Astrophysics Data System (ADS)
Lu, Qieni; Wang, Yi; Li, Hongbin
2017-08-01
We here introduce a pedagogical method of theoretical simulation as one major means of the teaching process of "Engineering Optics" in course quality improvement action plan (Qc) in our school. Students, in groups of three to five, complete simulations of interference, diffraction, electromagnetism and polarization of light; each student is evaluated and scored in light of his performance in the interviews between the teacher and the student, and each student can opt to be interviewed many times until he is satisfied with his score and learning. After three years of Qc practice, the remarkable teaching and learning effect is obatined. Such theoretical simulation experiment is a very valuable teaching method worthwhile for physical optics which is highly theoretical and abstruse. This teaching methodology works well in training students as to how to ask questions and how to solve problems, which can also stimulate their interest in research learning and their initiative to develop their self-confidence and sense of innovation.
NASA Astrophysics Data System (ADS)
Masetti, Margaret; Bowers, S.
2011-01-01
Students around the country are becoming experts on the James Webb Space Telescope by designing solutions to two of the design challenges presented by this complex mission. RealWorld-InWorld has two parts; the first (the Real World portion) has high-school students working face to face in their classroom as engineers and scientists. The InWorld phase starts December 15, 2010 as interested teachers and their teams of high school students register to move their work into a 3D multi-user virtual world environment. At the start of this phase, college students from all over the country choose a registered team to lead InWorld. Each InWorld team is also assigned an engineer or scientist mentor. In this virtual world setting, each team refines their design solutions and creates a 3D model of the Webb telescope. InWorld teams will use 21st century tools to collaborate and build in the virtual world environment. Each team will learn, not only from their own team members, but will have the opportunity to interact with James Webb Space Telescope researchers through the virtual world setting, which allows for synchronous interactions. Halfway through the challenge, design solutions will be critiqued and a mystery problem will be introduced for each team. The top five teams will be invited to present their work during a synchronous Education Forum April 14, 2011. The top team will earn scholarships and technology. This is an excellent opportunity for professionals in both astronomy and associated engineering disciplines to become involved with a unique educational program. Besides the chance to mentor a group of interested students, there are many opportunities to interact with the students as a guest, via chats and presentations.
NASA Astrophysics Data System (ADS)
Melendez, Marnie
The United States Science, Technology, and Engineering and Math (STEM) workforce is vital to this country's economic development interests, and its ability to compete effectively in the global market. One of the greatest challenges facing that industry in the US is the current and projected shortage of engineers serving the STEM industry. Policymakers, educators, and industry leaders in the US are concerned that if the noted challenge is not addressed, the projected shortage particularly in the engineering sector, will have a significant negative impact on the economic well-being of the U.S. (Hagedorn & Purnamasari, 2012). Research supports the need to widen the net when seeking out potential STEM students, and experts have pointed to increasing recruitment of women and underrepresented students into the STEM majors and fields. This study sought a deeper understanding of the lived experience of Latinas pursuing an engineering major at a California community college. Having the Latin engineering students describe in their own words what it is like to be women of color pursuing an engineering degree at a community college made their struggle real. It helped to explore new strategies and provoke change in policies to increase student success rates for Latinas in the STEM fields specifically in engineering. To attract and retain women of color (e.g., Latinas) in STEM programs, the effort must start where many of them typically begin their higher education, in the community college system. The researcher is also recommending that educators concerned with increasing retention, persistence, and academic performance, also examine and promote practices that serve to enhance the sense of belonging among all students, especially students of color. Furthermore, this research recommends that school administrators within the community college system should reaffirm their stated mission to eradicate racial and gender discrimination within the classroom and throughout the campus. Essentially, this stresses that college administration can play a huge role in enhancing the student success of historically disadvantaged students, including women of color pursuing or aspiring to pursue a degree within the STEM field.
A photovoltaics module for incoming science, technology, engineering and mathematics undergraduates
NASA Astrophysics Data System (ADS)
Dark, Marta L.
2011-05-01
Photovoltaic-cell-based projects have been used to train eight incoming undergraduate women who were part of a residential summer programme at a women's college. A module on renewable energy and photovoltaic cells was developed in the physics department. The module's objectives were to introduce women in science, technology, engineering and mathematics (STEM) majors to physical phenomena, to develop quantitative literacy and communication skills, and to increase the students' interest in physics. The students investigated the performance of commercially available silicon semiconductors through experiments they designed, carried out and analysed. They fabricated and tested organic dye-based solar cells. This article describes the programme, the solar cell module, and presents some experimental results obtained by the students.
Laptop Use, Interactive Science Software, and Science Learning Among At-Risk Students
NASA Astrophysics Data System (ADS)
Zheng, Binbin; Warschauer, Mark; Hwang, Jin Kyoung; Collins, Penelope
2014-08-01
This year-long, quasi-experimental study investigated the impact of the use of netbook computers and interactive science software on fifth-grade students' science learning processes, academic achievement, and interest in further science, technology, engineering, and mathematics (STEM) study within a linguistically diverse school district in California. Analysis of students' state standardized science test scores indicated that the program helped close gaps in scientific achievement between at-risk learners (i.e., English learners, Hispanics, and free/reduced-lunch recipients) and their counterparts. Teacher and student interviews and classroom observations suggested that computer-supported visual representations and interactions supported diverse learners' scientific understanding and inquiry and enabled more individualized and differentiated instruction. Finally, interviews revealed that the program had a positive impact on students' motivation in science and on their interest in pursuing science-related careers. This study suggests that technology-facilitated science instruction is beneficial for improving at-risk students' science achievement, scaffolding students' scientific understanding, and strengthening students' motivation to pursue STEM-related careers.
ERIC Educational Resources Information Center
Cunningham, Brittany C.; Hoyer, Kathleen Mulvaney; Sparks, Dinah
2015-01-01
As technical and scientific innovation continue to drive the global economy, educators, policymakers, and scientists seek to promote students' interest and achievement in the STEM fields to maintain the nation's competitive position (National Academy of Sciences 2006; National Science Board 2007; President's Council of Advisors on Science and…
Cheryan, Sapna; Master, Allison; Meltzoff, Andrew N
2015-01-01
Despite having made significant inroads into many traditionally male-dominated fields (e.g., biology, chemistry), women continue to be underrepresented in computer science and engineering. We propose that students' stereotypes about the culture of these fields-including the kind of people, the work involved, and the values of the field-steer girls away from choosing to enter them. Computer science and engineering are stereotyped in modern American culture as male-oriented fields that involve social isolation, an intense focus on machinery, and inborn brilliance. These stereotypes are compatible with qualities that are typically more valued in men than women in American culture. As a result, when computer science and engineering stereotypes are salient, girls report less interest in these fields than their male peers. However, altering these stereotypes-by broadening the representation of the people who do this work, the work itself, and the environments in which it occurs-significantly increases girls' sense of belonging and interest in the field. Academic stereotypes thus serve as gatekeepers, driving girls away from certain fields and constraining their learning opportunities and career aspirations.
NASA Astrophysics Data System (ADS)
Moldwin, M.; Mexicotte, D.
2017-12-01
A new Arts/Lab Student Residence program was developed at the University of Michigan that brings artists into a research lab. Science and Engineering undergraduate and graduate students working in the lab describe their research and allow the artists to shadow them to learn more about the work. The Arts/Lab Student Residencies are designed to be unique and fun, while encouraging interdisciplinary learning and creative production by exposing students to life and work in an alternate discipline's maker space - i.e. the artist in the engineering lab, the engineer in the artist's studio or performance space. Each residency comes with a cash prize and the expectation that a work of some kind will be produced as a response to experience. The Moldwin Prize is designed for an undergraduate student currently enrolled in the Penny W. Stamps School of Art & Design, the Taubman School of Architecture and Urban Planning or the School of Music, Theatre and Dance who is interested in exchange and collaboration with students engaged in research practice in an engineering lab. No previous science or engineering experience is required, although curiosity and a willingness to explore are essential! Students receiving the residency spend 20 hours over 8 weeks (February-April) participating with the undergraduate research team in the lab of Professor Mark Moldwin, which is currently doing work in the areas of space weather (how the Sun influences the space environment of Earth and society) and magnetic sensor development. The resident student artist will gain a greater understanding of research methodologies in the space and climate fields, data visualization and communication techniques, and how the collision of disciplinary knowledge in the arts, engineering and sciences deepens the creative practice and production of each discipline. The student is expected to produce a final work of some kind within their discipline that reflects, builds on, explores, integrates or traces their experience in the residency. This talk will describe the program, the inaugural year's outcomes, and plans to expand the program to other research labs.
La Vida Robot - High School Engineering Program Combats Engineering Brain Drain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, Allan; Lajvardi, Fredi
Carl Hayden High School has built an impressive reputation with its robotics club. At a time when interest in science, math and engineering is declining, the Falcon Robotics club has young people fired up about engineering. Their program in underwater robots (MATE) and FIRST robotics is becoming a national model, not for building robots, but for building engineers. Teachers Fredi Lajvardi and Allan Cameron will present their story (How kids 'from the mean streets of Phoenix took on the best from M.I.T. in the national underwater bot championship' - Wired Magazine, April 2005) and how every student needs the opportunitymore » to 'do real engineering.'« less
The Student-Centered Active Learning Environment for Undergraduate Programs (SCALE-UP) Project
NASA Astrophysics Data System (ADS)
Beichner, Robert J.
2011-04-01
How do you keep a classroom of 100 undergraduates actively learning? Can students practice communication and teamwork skills in a large class? How do you boost the performance of underrepresented groups? The Student-Centered Active Learning Environment for Undergraduate Programs (SCALE-UP) Project has addressed these concerns. Because of their inclusion in a leading introductory physics textbook, project materials are used by more than 1/3 of all science, math, and engineering majors nationwide. The room design and pedagogy have been adopted at more than 100 leading institutions across the country. Physics, chemistry, math, astronomy, biology, engineering, earth sciences, and even literature classes are currently being taught this way. Educational research indicates that students should collaborate on interesting tasks and be deeply involved with the material they are studying. We promote active learning in a redesigned classroom for 100 students or more. (Of course, smaller classes can also benefit.) Class time is spent primarily on "tangibles" and "ponderables"--hands-on activities, simulations, and interesting questions. Nine students sit in three teams at round tables. Instructors circulate and engage in Socratic dialogues. The setting looks like a banquet hall, with lively interactions nearly all the time. Hundreds of hours of classroom video and audio recordings, transcripts of numerous interviews and focus groups, data from conceptual learning assessments (using widely-recognized instruments in a pretest/posttest protocol), and collected portfolios of student work are part of our rigorous assessment effort. Our findings (based on data from over 16,000 students collected over five years as well as replications at adopting sites) can be summarized as the following: 1) Female failure rate is 1/5 of previous levels, even though more is demanded of students. 2) Minority failure rate is 1/4 that seen in traditionally taught courses. 3) At-risk students are more successful in later engineering courses. 4) Top students gain the most, although students at all levels benefit. 5) Conceptual learning and problem solving are significantly improved, with same content coverage. In this talk I will discuss the need for reform, the SCALE-UP classroom environment, and examine the findings of studies of learning.
NASA Astrophysics Data System (ADS)
Hazari, Zahra; Potvin, Geoff; Lock, Robynne M.; Lung, Florin; Sonnert, Gerhard; Sadler, Philip M.
2013-12-01
There are many hypotheses regarding factors that may encourage female students to pursue careers in the physical sciences. Using multivariate matching methods on national data drawn from the Persistence Research in Science and Engineering (PRiSE) project (n=7505), we test the following five commonly held beliefs regarding what factors might impact females’ physical science career interest: (i) having a single-sex physics class, (ii) having a female physics teacher, (iii) having female scientist guest speakers in physics class, (iv) discussing the work of female scientists in physics class, and (v) discussing the underrepresentation of women in physics class. The effect of these experiences on physical science career interest is compared for female students who are matched on several factors, including prior science interests, prior mathematics interests, grades in science, grades in mathematics, and years of enrollment in high school physics. No significant effects are found for single-sex classes, female teachers, female scientist guest speakers, and discussing the work of female scientists. However, discussions about women’s underrepresentation have a significant positive effect.
Role-play and the Industrial Revolution: an STS approach to the teaching of steam engines
NASA Astrophysics Data System (ADS)
Sabka, Diego; Pereira de Pereira, Alexsandro; Lima Junior, Paulo
2016-11-01
Role-play is an interesting, although underexplored, way of teaching physics in high school. This paper presents a science-technology-society (STS) approach to the teaching of heat engines based on a role-play of the Industrial Revolution. Enacting the role-play, students are presented not only to scientific concepts, but also to the social and technological controversies of industrial development.
ERIC Educational Resources Information Center
Bishop, Kristina; Walters, Howard
2007-01-01
Researchers have begun tracking a group of high ability high school students from high school into college study. These students indicated an interest in Science, Technology, Engineering, and Mathematics (STEM) content areas, and specifically ocean sciences, through participation in a regional or national academic competition in high school--The…
ERIC Educational Resources Information Center
Hughes, Bill; Mona, Lynn; Wilson, Greg; McAninch, Steve; Seamans, Jeff; Stout, Heather
2017-01-01
Science, Technology, Engineering, and Math (STEM) have developed broad prevalence in the American (U.S.) education system over the last decade. Academic, government, and business experts emphasize that attracting K-12-university students to STEM subject matter is crucial for expanding the innovation capacity of the U.S. and preparing citizens for…
ERIC Educational Resources Information Center
Shoemaker, Sarah E.; Thomas, Christopher; Roberts, Todd; Boltz, Robin
2016-01-01
The North Carolina School of Science and Mathematics (NCSSM) offers students a wide variety of real-world opportunities to develop skills and talent critical for students to gain the essential professional and personal skills that lead to success in science, technology, engineering, and mathematics (STEM) careers. One of the key avenues available…
Using `min' and `max' functions in calculus teaching
NASA Astrophysics Data System (ADS)
Satianov, Pavel; Dagan, Miriam; Amram, Meirav
2015-08-01
In this paper, we discuss the use of the min and max functions in teaching calculus to engineering students. Our experience illustrates that such functions have great possibilities in the development of a student's analytical thinking. The types of problems we present here are not common in most instructional texts, which lead us to suggest that the paper will be interesting and useful to calculus lecturers.
VanMeter-Adams, Amy; Frankenfeld, Cara L; Bases, Jessica; Espina, Virginia; Liotta, Lance A
2014-01-01
What early experiences attract students to pursue an education and career in science, technology, engineering, and mathematics (STEM)? Does hands-on research influence them to persevere and complete a major course of academic study in STEM? We evaluated survey responses from 149 high school and undergraduate students who gained hands-on research experience in the 2007-2013 Aspiring Scientists Summer Internship Programs (ASSIP) at George Mason University. Participants demonstrated their strong interest in STEM by volunteering to participate in ASSIP and completing 300 h of summer research. The survey queried extracurricular experiences, classroom factors, and hands-on projects that first cultivated students' interest in the STEM fields, and separately evaluated experiences that sustained their interest in pursuing a STEM degree. The majority of students (65.5%, p < 0.0001) reported extracurricular encounters, such as the influence of a relative or family member and childhood experiences, as the most significant factors that initially ignited their interest in STEM, while hands-on lab work was stated as sustaining their interest in STEM (92.6%). Based on these findings collected from a cohort of students who demonstrated a strong talent and interest in STEM, community-based programs that create awareness about STEM for both children and their family members may be key components for igniting long-term academic interest in STEM. © 2014 A. VanMeter-Adams et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
New educational tools to encourage high-school students' activity in stem
NASA Astrophysics Data System (ADS)
Mayorova, Vera; Grishko, Dmitriy; Leonov, Victor
2018-01-01
Many students have to choose their future profession during their last years in the high school and therefore to choose a university where they will get proper education. That choice may define their professional life for many years ahead or probably for the rest of their lives. Bauman Moscow State Technical University conducts various events to introduce future professions to high-school students. Such activity helps them to pick specialization in line with their interests and motivates them to study key scientific subjects. The paper focuses on newly developed educational tools to encourage high school students' interest in STEM disciplines. These tools include laboratory courses developed in the fields of physics, information technologies and mathematics. More than 2000 high school students already participated in these experimental courses. These activities are aimed at increasing the quality of STEM disciplines learning which will result in higher quality of training of future engineers.
NASA Astrophysics Data System (ADS)
Marulcu, Ismail
This mixed method study examined the impact of a LEGO-based, engineering-oriented curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. This study takes a social constructivist theoretical stance that science learning involves learning scientific concepts and their relations to each other. From this perspective, students are active participants, and they construct their conceptual understanding through the guidance of their teacher. With the goal of better understanding the use of engineering education materials in classrooms the National Academy of Engineering and National Research Council in the book "Engineering in K-12 Education" conducted an in-depth review of the potential benefits of including engineering in K--12 schools as (a) improved learning and achievement in science and mathematics, (b) increased awareness of engineering and the work of engineers, (c) understanding of and the ability to engage in engineering design, (d) interest in pursuing engineering as a career, and (e) increased technological literacy (Katehi, Pearson, & Feder, 2009). However, they also noted a lack of reliable data and rigorous research to support these assertions. Data sources included identical written tests and interviews, classroom observations and videos, teacher interviews, and classroom artifacts. To investigate the impact of the design-based simple machines curriculum compared to the scientific inquiry-based simple machines curriculum on student learning outcomes, I compared the control and the experimental groups' scores on the tests and interviews by using ANCOVA. To analyze and characterize the classroom observation videotapes, I used Jordan and Henderson's (1995) method and divide them into episodes. My analyses revealed that the design-based Design a People Mover: Simple Machines unit was, if not better, as successful as the inquiry-based FOSS Levers and Pulleys unit in terms of students' content learning. I also found that students in the engineering group outperformed students in the control group in regards to their ability to answer open-ended questions when interviewed. Implications for students' science content learning and teachers' professional development are discussed.
Proceedings of the Seventh Annual Summer Conference. NASA/USRA: University Advanced Design Program
NASA Technical Reports Server (NTRS)
1991-01-01
The Advanced Design Program (ADP) is a unique program that brings together students and faculty from U.S. engineering schools with engineers from the NASA centers through integration of current and future NASA space and aeronautics projects into university engineering design curriculum. The Advanced Space Design Program study topics cover a broad range of projects that could be undertaken during a 20-30 year period beginning with the deployment of the Space Station Freedom. The Advanced Aeronautics Design Program study topics typically focus on nearer-term projects of interest to NASA, covering from small, slow-speed vehicles through large, supersonic passenger transports and on through hypersonic research vehicles. Student work accomplished during the 1990-91 academic year and reported at the 7th Annual Summer Conference is presented.
Houston Pre-Freshman Enrichment Program (Houston PREP). Final report, June 9, 1997--July 25, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-10-01
The 1997 Houston Pre-Freshman Enrichment Program (PREP) was conducted at the campus of the University of Houston-Downtown from June 9 to July 25, 1997. Program participants were recruited from the Greater Houston Area. All participants were identified as high-achieving students with an interest in learning about the engineering and science professions. The goal of the program was to better prepare our pre-college youth prior to entering college as mathematics, science and engineering majors. The program participants were middle school and high school students from the Aldine, Alief, Channel View, Clear Creek, Cypress-Fairbanks, Fort Bend, Galena Park, Houston, Humble, Katy, Klein,more » North Forest, Pasadena, Private, and Spring Branch Independent School Districts. Of the 194 students starting the program, 165 students were from economically and socially disadvantage groups under-represented in the engineering and science professions, and 118 of the 194 were women. Our First Year group for 1997 composed of 96% minority and women students. Second and Third Year students combined were 96% minority or women. With financial support from the Center for Computational Sciences and Advanced Distributed Simulation, the Fourth Year Program was added to PREP this year. Twelve students completed the program (83% minority or women).« less
NASA Astrophysics Data System (ADS)
Lamore, Brian
2016-10-01
For years the fan cart has provided physics students with an excellent resource for exploring fundamental mechanics concepts such as acceleration, Newton's laws, impulse, momentum, work-energy, and energy conversions. The Physics Teacher has even seen some excellent do-it-yourself (DIY) fan carts and activities. If you are interested in developing the `E' portion of your and your students' STEM (science, technology, engineering, and math) skills, one way to accomplish this is to revisit the DIY fan cart. In this article I share a design of a new edition of the DIY fan cart and some ideas for incorporating the engineering design process into your high school curriculum.
NASA Astrophysics Data System (ADS)
Takahashi, Tsuyoshi
Recently, in Japan, the number of students who hope for finding employment at the nuclear power company has decreased as students‧ concern for the nuclear power industry decreases. To improve the situation, Ministry of Education, Culture, Sports, Science and Technology launched the program of cultivating talent for nuclear power which supports research and education of nuclear power in the academic year of 2007. Supported by the program, Kushiro College of Technology conducted several activities concerning nuclear power for about a year. The students came to be interested in nuclear engineering through these activities and its results.
Ideas in Practice. Nuturing Creativity in a Measurements Course
ERIC Educational Resources Information Center
Neal, James P.
1972-01-01
Describes the conduct of a one-semester laboratory course for electrical engineering sophomores through the use of rack-mounted instruments and printed circuits. Concluded there was greater student and instructor interest and creativity in both lectures and laboratory. (CC)
Incorporating service-learning within engineering and technology education in secondary schools
NASA Astrophysics Data System (ADS)
Smiley, Craig L.
This study focuses the status of service-learning incorporated into the secondary engineering and technology classroom in the State of Indiana. Post-secondary engineering service-learning programs have been found to increase student interest in engineering to attract females into engineering (Coyle, Jamieson, & Oakes, 2005). Engineering, Design, and Development (EDD) is the capstone class of Project Lead The Way (PLTW) curriculum taught in many schools across Indiana, in which students design and develop a project that addresses an open-ended engineering problem. Of all the courses offered in the PLTW curriculum, this has the greatest potential for students to engage in a service-learning project, because the open-ended engineering problem could be used to help the community. A Likert-type survey was sent to the 62 secondary technology education teachers in Indiana who were certified to teach EDD during the 2011-2012 school year to identify the frequency at which the core components of service-learning, as identified by the National Service-Learning Clearinghouse (2006), were being implemented in the EDD curriculum. Fifteen teachers completed the survey by the end of the 2011-2012 academic calendar. Four of the 15 EDD teachers (27%) reported that a majority of their students' projects addressed a need in the community, and therefore were considered to be service-learning projects. The percentage of projects that were called service-learning projects by the respondents appeared to have a direct relationship with the total number of students enrolled in the PLTW program, and an inverse relationship with the number of years the teacher had been teaching technology education. Upon further study, only 2 of these EDD teachers (13%) were guiding students to collaborate with their community partner frequently enough to have an experience indicative of high quality service-learning according to the National Service-Learning Clearinghouse.
NASA Astrophysics Data System (ADS)
Lopez, Carlos
There is soon-to-be a shortage of qualified U.S. workers in science, technology, engineering, and mathematics (STEM). As a result, many science-related jobs are being filled by technically-skilled foreign workers. If the U.S wants to maintain its global economic leadership, then it must ensure a continuous growth of highly-trained individuals in STEM disciplines. Therefore, American institutions of higher education, including community colleges, must identify potential factors that contribute to the lack of interest in STEM majors, as well as the low rate of success of students who enter STEM majors but struggle to finish their degrees. The purpose of this study was to ascertain the perceptions of community college transfer students who are pursuing bachelor degrees in STEM majors at Iowa State University (ISU). What were their transfer experiences and what influenced their academic success in STEM. Participants were encouraged to share their transfer experiences while at the community college as well as their experiences on the ISU campus. They were also asked about their level of academic involvement, their relationships with faculty, and their participation in peer group activities prior to and after transferring. The research design included both quantitative and qualitative components, which provided an in-depth look at the experiences of STEM non-engineering and engineering students. Quantitative data include students' background characteristics, demographic information, and college activities at the community college and ISU. Qualitative data were used to illuminate students' overall transfer experience and their successful journey in STEM fields. The combination of quantitative and qualitative methods allowed a better understanding of the strategies students put into practice once they transfer from a community college to a four-year institution in pursuit of a STEM bachelor's degree. The results of this study suggest that there is an association among the background characteristics, community college experiences, university experiences, and the overall adjustment and cumulative GPA of transfer students from STEM non-engineering and engineering majors. In addition, students reported how their early experiences in science and mathematics inspired them to pursue a career in STEM. Even though students chose to go into STEM areas at the community college and university level due to prior interest, the role of academic advisors and faculty were crucial to the adjustment process. Thus, it is vital for academic advisors and faculty to assist students in researching the transfer process to four-year institutions because students need to understand why this is essential to their academic and social adjustment process. The results indicate that it is important to encourage students to interact inside and outside the classroom with other students and instructors. Also, students should become more involved in academic and social groups since these are important factors in enhancing their academic and social adjustment.
NASA Astrophysics Data System (ADS)
Salzman, Noah
Recent national dialogues on the importance of preparing more students for careers in Science, Technology, Engineering, and Mathematics has driven the development of formal and informal learning opportunities for children and adolescents to explore engineering. Despite the growth of these programs, relatively little research exists on how participation in these programs affects students who choose to pursue further study in engineering. The present study addressed this gap through an exploration of the different ways that First-Year Engineering students experience the transition from pre-college engineering to undergraduate engineering studies. Given the focus of this research on students' experiences, phenomenography was chosen to explore the phenomenon of transition from pre-college to first-year engineering at a large, public Midwestern university. This facilitated understanding the range of variation in the ways that students experienced this transition. Twenty-two students with different amounts of participation in a variety of different engineering programs were selected to be interviewed using a purposeful maximum variation sampling strategy. The interviews were guided by a semi-structured interview protocol that encouraged the participants to reflect on their pre-college engineering experiences, their experiences in First-Year Engineering, and the transition between the two domains. The interviews were analyzed using phenomenographic methods to develop an outcome space consisting of five qualitatively different but related ways of experiencing the transition from pre-college to First-Year Engineering. These categories of description included Foreclosure, Frustration, Tedium, Connection, and Engaging Others. With the exception of the first category which was characterized by a lack of passion and commitment to engineering, the remaining four categories formed a hierarchical relationship representing increasing integration in First-Year Engineering. The outcome space that emerged from this study captured a variety of positive and negative ways that the participants experienced their transitions to First-Year Engineering. Positive outcomes included increased familiarity and confidence with the material being taught in First-Year Engineering, a stronger commitment and drive to be successful in engineering, and the ability to encourage and incorporate input from others in the design process. Negative outcomes included less interest in First-Year Engineering projects, disappointment at the lack of alignment with pre-college engineering, and a struggle to connect with their peers. While not initially guided by Self-Determination Theory, the results of this study align with aspects of Self-Determination Theory, and the relationships between the results of this study and the motivational factors of competence, autonomy, and relatedness are explored. Finally, implications for First-Year and pre-college engineering instructional practices are presented, along with a plan for future work.
NASA Astrophysics Data System (ADS)
Wawro, Martha; Van Norden, Wendy
2013-03-01
Day at Goddard is an all day event for high school students that the SDO EPO team has been running for 5 years now. During the event, students are given a tour of the integration and testing facilities, shown science on a sphere, participate in a meet and greet with scientists and engineers and participate in a hands-on lab activity. The purpose of these field trips is to increase the students' interest in STEM subjects, expose them to STEM-related careers and increase their awareness of the research that NASA conducts.
Teaching the Next Generation of Scientists and Engineers the NASA Design Process
NASA Technical Reports Server (NTRS)
Caruso, Pamela W.; Benfield, Michael P. J.; Justice, Stefanie H.
2011-01-01
The Integrated Product Team (IPT) program, led by The University of Alabama in Huntsville (UAH), is a multidisciplinary, multi-university, multi-level program whose goal is to provide opportunities for high school and undergraduate scientists and engineers to translate stakeholder needs and requirements into viable engineering design solutions via a distributed multidisciplinary team environment. The current program supports three projects. The core of the program is the two-semester senior design experience where science, engineering, and liberal arts undergraduate students from UAH, the College of Charleston, Southern University at Baton Rouge, and Ecole Suprieure des Techniques Aronautiques et de Construction Automobile (ESTACA) in Paris, France form multidisciplinary competitive teams to develop system concepts of interest to the local aerospace community. External review boards form to provide guidance and feedback throughout the semester and to ultimately choose a winner from the competing teams. The other two projects, the Innovative Student Project for the Increased Recruitment of Engineering and Science Students (InSPIRESS) Level I and Level II focus exclusively on high school students. InSPIRESS Level I allows high schools to develop a payload to be accommodated on the system being developed by senior design experience teams. InSPIRESS Level II provides local high school students first-hand experience in the senior design experience by allowing them to develop a subsystem or component of the UAH-led system over the two semesters. This program provides a model for NASA centers to engage the local community to become more involved in design projects.
Project Lead the Ways' Long-Term Effects on Post-Secondary Engineering Academic Success
NASA Astrophysics Data System (ADS)
Zion, George H.
The purpose of this study was to investigate the relationship between students' high school Project Lead They Way participation and their subsequent academic success in post-secondary engineering studies and to assess to what degree, if any, their level of Project Lead The Way (PLTW) participation, gender, and AALANA status (African American, Latino/a American and Native American) effected this success. PLTW is the nation's single largest provider of pre-engineering curriculums, the subject of this research study, currently being offered in over 3,200 secondary schools nationwide. Despite this level of integration, the amount of research on PLTW's effectiveness has been very limited. To date, the majority of the literature on PLTW has examined its impact on students' high school academic performance or their desire to further their engineering studies. The findings from these studies have been overwhelmingly positive, indicating that PLTW students often had greater achievements in math and science and either plan to, or have actually enrolled, in post-secondary studies at higher rates. Nevertheless, the amount of literature on PLTW's effects on students' academic success in post-secondary engineering studies is very limited. Furthermore, no research has yet to examine for the moderating effects of gender, ethnicity, or level of PLTW participation on students' post-secondary academics success. The population of interest for this research study was 1,478 students who entered an undergraduate engineering program from 2007 to 2009 at a privately endowed, co-educational university located in the northeastern United States. The findings of this research study were that virtually all the effects of PLTW participation, gender, and AALANA status had on academic success were observed during students' freshmen and sophomore years. These effects were positive for PLTW participation, and adverse for female and AALANA students. Additionally, PLTW participation, gender, and AALANA status only explained a small amount of the variance for each of the academic success metrics. These conclusions suggest that future research on PLTW should focus on the first and second year of study and expand the factors examined, both quantitative and qualitative, to gain a greater understanding of the complex factors that influence students' initial academic success in post-secondary engineering studies.
NASA Astrophysics Data System (ADS)
Anderson, R. B.; Gaither, T. A.; Edgar, L. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.
2017-12-01
As part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project, we have developed an out-of-school time unit for middle school students focused on planetary remote sensing. The activity is divided into two exercises, with the goal of choosing a scientifically interesting and safe landing site for a future Mars mission. Students are introduced to NASA data from several actual and proposed landing sites and must use what they learn about remote sensing to choose a site that satisfies scientific and engineering criteria. The activity also includes background information for educators, including a summary of how landing on Mars helps answer major scientific questions, brief overviews of the data sets that the students will use, summaries of the site geology, and a list of relevant vocabulary. The first exercise introduces students to the concept of reflectance spectroscopy and how it can be used to identify the "fingerprints" of different minerals on the surface of Mars. Students are provided with simplified maps of mineral spectra at the four sites, based on Compact Reconnaissance Imaging Spectrometer (CRISM) observations, as well as a reference sheet with the spectra of common minerals on Mars. They can use this information to determine which sites have hydrated minerals, mafic minerals, or both. The second exercise adds data from the Mars Orbital Laser Altimeter (MOLA), and high resolution visible data from the Context Camera (CTX) on the Mars Reconnaissance Orbiter. Students learn about laser altimetry and how to interpret topographic contours to assess whether a landing site is too rough. The CTX data allow students to study the sites at higher resolution, with annotations that indicate key landforms of interest. These data, along with the spectroscopy data, allow students to rank the sites based on science and engineering criteria. This activity was developed as a collaboration between subject matter experts at the USGS Astrogeology Science Center and education experts from the Northern Arizona University Center for Science Teaching and Learning. It works as either a stand-alone activity or as an extension of the "Worlds Apart" Engineering is Everywhere unit, also developed as part of the PLANETS project in collaboration with the Boston Museum of Science.
Final Report: An Undergraduate Minor in Wind Energy at Iowa State University
DOE Office of Scientific and Technical Information (OSTI.GOV)
James McCalley
This report describes an undergraduate minor program in wind energy that has been developed at Iowa State University. The minor program targets engineering and meteorology students and was developed to provide interested students with focused technical expertise in wind energy science and engineering, to increase their employability and ultimate effectiveness in this growing industry. The report describes the requirements of the minor program and courses that fulfill those requirements. Five new courses directly addressing wind energy have been developed. Topical descriptions for these five courses are provided in this report. Six industry experts in various aspects of wind energy sciencemore » and engineering reviewed the wind energy minor program and provided detailed comments on the program structure, the content of the courses, and the employability in the wind energy industry of students who complete the program. The general consensus is that the program is well structured, the course content is highly relevant, and students who complete it will be highly employable in the wind energy industry. The detailed comments of the reviewers are included in the report.« less
Boucher, Kathryn L.; Fuesting, Melissa A.; Diekman, Amanda B.; Murphy, Mary C.
2017-01-01
Although science, technology, engineering, and mathematics (STEM) disciplines as a whole have made advances in gender parity and greater inclusion for women, these increases have been smaller or nonexistent in computing and engineering compared to other fields. In this focused review, we discuss how stereotypic perceptions of computing and engineering influence who enters, stays, and excels in these fields. We focus on communal goal incongruity–the idea that some STEM disciplines like engineering and computing are perceived as less aligned with people's communal goals of collaboration and helping others. In Part 1, we review the empirical literature that demonstrates how perceptions that these disciplines are incongruent with communal goals can especially deter women and girls, who highly endorse communal goals. In Part 2, we extend this perspective by reviewing accumulating evidence that perceived communal goal incongruity can deter any individual who values communal goals. Communal opportunities within computing and engineering have the potential to benefit first generation college students, underrepresented minority students, and communally-oriented men (as well as communally-oriented women). We describe the implications of this body of literature: describing how opting out of STEM in order to pursue fields perceived to encourage the pursuit of communal goals leave the stereotypic (mis)perceptions of computing and engineering unchanged and exacerbate female underrepresentation. In Part 3, we close with recommendations for how communal opportunities in computing and engineering can be highlighted to increase interest and motivation. By better integrating and publically acknowledging communal opportunities, the stereotypic perceptions of these fields could gradually change, making computing and engineering more inclusive and welcoming to all. PMID:28620330
Various advanced design projects promoting engineering education
NASA Technical Reports Server (NTRS)
1994-01-01
The Universities Space Research Association (USRA) Advanced Design Program (ADP) program promotes engineering education in the field of design by presenting students with challenging design projects drawn from actual NASA interests. In doing so, the program yields two very positive results. Firstly, the students gain a valuable experience that will prepare them for design problems with which they will be faced in their professional careers. Secondly, NASA is able to use the work done by students as an additional resource in meeting its own design objectives. The 1994 projects include: Universal Test Facility; Automated Protein Crystal Growth Facility; Stiffening of the ACES Deployable Space Boom; Launch System Design for Access to Space; LH2 Fuel Tank Design for SSTO Vehicle; and Feed System Design for a Reduced Pressure Tank.
Ferrando Piera, Pere Joan; Gutiérrez-Colón Plana, Mar; Paleo Cageao, Paloma; de la Flor López, Silvia; Ferrando Piera, Francesc
2013-01-01
The reason for this study was the low interest that high school students, particularly females, show for the subject of mechanical engineering (ME). We assumed that this problem was partly due to: (a) lack of understanding of the tasks involved in ME, and (b) a distorted and negative perception of the professional environment and working conditions. To assess these two assumptions, two measurement instruments (tasks and perceptions) were developed and administered in a sample of 496 high school students. A multiple-group design was used and data was analyzed by using an extended item response theory model. In general terms, the results agreed with our expectations. However, no significant gender differences were found. The implications of the results for future improvements are discussed.
Phys FilmMakers: teaching science students how to make YouTube-style videos
NASA Astrophysics Data System (ADS)
Coates, Rebecca L.; Kuhai, Alvina; Turlej, Laurence Z. J.; Rivlin, Tom; McKemmish, Laura K.
2018-01-01
Phys FilmMakers (PFM) is a new type of course in which a science expert and science communicator partner teach physics students how to make YouTube-style videos on cutting-edge scientific research within the university department. Here, we describe this new course, outline its key components and provide recommendations for others considering implementing a similar FilmMakers-style course using feedback from course tutors and students. We discuss successful and less successful teaching techniques as well as use our experience to identify areas that science students in particular often have difficulties: finding an interesting ‘hook’ for the video, imagining creative B-roll and making a succinct video by removing extraneous (though usually correct and often interesting) material. The course has two major components: workshop sessions in which students learn the key elements of film-making and independent video production where PFM students partner with senior PhD or post-doc researchers to produce a video on their research. This partnership with the department means that the videos produced serve not only as interesting ‘edutainment’ to encourage teenagers and young adults into Science, Technology, Engineering and Maths subjects, but also provide valuable outreach for the academic department.
Dippel, Elizabeth A; Mechels, Keegan B; Griese, Emily R; Laufmann, Rachel N; Weimer, Jill M
2016-08-01
Compared to national numbers, South Dakota has a higher proportion of students interested in science, technology, engineering, and mathematics (STEM) fields. Interest in science can be influenced by exposure to science through formal and informal learning. Informal science activities (including exposures and participation) have been found to elicit higher levels of interest in science, likely impacting one's attitude towards science overall. The current study goal is to better understand the levels and relationships of attitude, exposure, and participation in science that were present among students and parents attending a free science festival. The project collected survey data from 65 students and 79 parents attending a science festival ranging from age 6 to 65. Informal science participation is significantly related to science attitudes in students and informal science exposure is not. No relationship was found for parents between science attitudes and participation. Students who indicated high levels of informal science participation (i.e., reading science-themed books) were positively related to their attitudes regarding science. However, informal science exposures, such as attending the zoo or independently visiting a science lab, was not significantly associated with positive attitudes towards science.
A Student's Candid Reactions to Recruiters
ERIC Educational Resources Information Center
Velcamp, John T.
1970-01-01
Actual records of a chemical engineering major present a number of interviews held with assorted companies. His comments suggest that while initially he sought status, location and challenge, he became more interested in the personal touch," and selected his employer on that basis. (CJ)
NASA Ames summary high school apprenticeship research program, 1983 research papers
NASA Technical Reports Server (NTRS)
Powell, P.
1984-01-01
Engineering enrollments are rising in universities; however, the graduate engineer shortage continues. Particularly, women and minorities will be underrepresented for years to come. As one means of solving this shortage, Federal agencies facing future scientific and technological challenges were asked to participate in the Summer High School Apprenticeship Research Program (SHARP). This program was created 4 years ago to provide an engineering experience for gifted female and minority high school students at an age when they could still make career and education decisions. The SHARP Program is designed for high school juniors (women and minorities) who are U.S. citizens, are 16 years old, and who have unusually high promise in mathematics and science through outstanding academic performance in high school. Students who are accepted into this summer program will earn as they learn by working 8 hours a day in a 5-day work week. This work-study program features weekly field trips, lectures and written reports, and job experience related to the student's career interests.
NASA Astrophysics Data System (ADS)
Dussault, Mary E.; Wright, Erika A.; Sadler, Philip; Sonnert, Gerhard; ITEAMS II Team
2018-01-01
Encouraging students to pursue careers in science, technology, engineering, and mathematics (STEM) is a high priority for national K-12 education improvement initiatives in the United States. Many educators have claimed that a promising strategy for nurturing early student interest in STEM is to engage them in authentic inquiry experiences. “Authentic” refers to investigations in which the questions are of genuine interest and importance to students, and the inquiry more closely resembles the way real science is done. Science education researchers and practitioners at the Harvard-Smithsonian Center for Astrophysics have put this theory into action with the development of YouthAstroNet, a nationwide online learning community of middle-school aged students, educators, and STEM professionals that features the MicroObservatory Robotic Telescope Network, professional image analysis software, and complementary curricula for use in a variety of learning settings. This preliminary study examines factors that influence YouthAstroNet participants' Science Affinity, STEM Identity, and STEM Career Interest, using the matched pre/post survey results of 261 participants as the data source. The pre/post surveys included some 40 items measuring affinity, identity, knowledge, and career interest. In addition, the post intervention instrument included a number of items in which students reported the instructional strategies they experienced as part of the program. A simple analysis of pre-post changes in affinity and interest revealed very little significant change, and for those items where a small pre-post effect was observed, the average change was most often negative. However, after accounting for students' different program treatment experiences and for their prior attitudes and interests, a predictor of significant student gains in Affinity, STEM Identity, Computer/Math Identity, and STEM Career Interest could be identified. This was the degree to which students reported using and experiencing the primary "authentic" learning activities of the YouthAstroNet program.
NASA Astrophysics Data System (ADS)
Hyde, Michelle Smoot
This dissertation provides information concerning the educational experience of females studying in undergraduate fields of math, engineering and science at a large research institution in the West. The majority of the participants were Project Access students, chosen because of their high achievements in science and mathematics during their secondary education. The study identifies and attempts to understand critical factors within the academic environment of science that contribute to female persistence in math, engineering and science (MES) disciplines. The study postulates that universities can make a difference in the education of women by providing programs that assure quality education and the fostering of female interest in science domains. The study recommends the incorporation of collaborative learning processes and teaching methods, cohort involvement and the fostering of study groups, encouragement of professorial associations with students, and internship and lab programs in an attempt to provide a more holistic and less fragmented education, thus benefiting women seeking MES degrees. Also, the research presented in this paper determined that the formation of positive associations and support networks was crucial to college female population studied. The interpretive study's aim is to enhance persistence rates among undergraduate students studying in math, engineering and science fields.
Progress in reforming chemical engineering education.
Wankat, Phillip C
2013-01-01
Three successful historical reforms of chemical engineering education were the triumph of chemical engineering over industrial chemistry, the engineering science revolution, and Engineering Criteria 2000. Current attempts to change teaching methods have relied heavily on dissemination of the results of engineering-education research that show superior student learning with active learning methods. Although slow dissemination of education research results is probably a contributing cause to the slowness of reform, two other causes are likely much more significant. First, teaching is the primary interest of only approximately one-half of engineering faculty. Second, the vast majority of engineering faculty have no training in teaching, but trained professors are on average better teachers. Significant progress in reform will occur if organizations with leverage-National Science Foundation, through CAREER grants, and the Engineering Accreditation Commission of ABET-use that leverage to require faculty to be trained in pedagogy.
Perceptions of Constructivist Pedagogy in Project Lead the Way
NASA Astrophysics Data System (ADS)
Capers, Gesa Maria
In 2016, six of six American Nobel Prize winners in science were immigrants. The numbers of U.S. educated graduates who enter the Science, Technology, Engineering, and Mathematics (STEM) fields have been on the decline, and policymakers and educators have continually sought new policies and programs to try resolve this problem with long-term solutions. In recent years, several Alabama schools have implemented Project Lead the Way (PLTW), a program that is aimed toward promoting students' interest in STEM. The purpose of this qualitative multiple case study was to explore how Alabama's educators perceived the use of constructivist pedagogy in PLTW on student learning behaviors and student interests in science and mathematics. Piaget's developmental theory and Vygotsky's social developmental theory provided the theoretical framework for this study. The data collection procedure for this multiple case study included one-on-one interviews with 23 educators in four Alabama PLTW schools. Themes that emerged from the study included motivation and enthusiasm, critical thinking and problem solving, career awareness, student interest in science and math, collaboration, hands-on learning, confidence and engagement, perceived problems, and satisfaction with PLTW. All interviewees perceived that with PLTW's emphasis on constructivist pedagogy, students were excited, engaged, practiced critical thinking and problem solving skills, and that participation in PLTW had a positive effect on the students' learning behaviors and interests in science and mathematics.
The Ruptured Pipeline: Analysis of the Mining Engineering Faculty Pipeline
NASA Astrophysics Data System (ADS)
Poulton, M.
2011-12-01
The booming commodities markets of the past seven years have created an enormous demand for economic geologists, mining engineers, and extractive metallurgists. The mining sector has largely been recession proof due to demand drivers coming from developing rather than developed nations. The strong demand for new hires as well as mid-career hires has exposed the weakness of the U.S. university supply pipeline for these career fields. A survey of mining and metallurgical engineering faculty and graduate students was conducted in 2010 at the request of the Society for Mining, Metallurgy, and Exploration. The goals of the surveys were to determine the demographics of the U.S. faculty in mining and metallurgical engineering, the expected faculty turn over by 2010 and the potential supply of graduate students as the future professorate. All Mining Engineering and Metallurgical Engineering degrees in the U.S. are accredited by the Accreditation Board for Engineering and Technology (ABET) and the specific courses required are set by the sponsoring professional society, Society for Mining, Metallurgy, and Exploration. There are 13 universities in the U.S. that offer a degree in Mining Engineering accredited as Mining Engineering and 1 university that grants a Mining Engineering degree accredited under general engineering program requirements. Faculty numbers are approximately 87 tenure track positions with a total undergraduate enrollment of slightly over 1,000 in the 2008-2009 academic year. There are approximately 262 graduate students in mining engineering in the U.S. including 87 Ph.D. students. Mining Engineering department heads have identified 14 positions open in 2010 and 18 positions expected to be open in the next 5 years and an additional 21 positions open by 2020. The current survey predicts a 56% turn over in mining faculty ranks over the next 10 years but a retirement of 100% of senior faculty over 10 years. 63% of graduate students say they are interested in a university career at some point in their lives but only 6% of the PhD respondents had applied for the open positions. 69% of Ph.D. students in the survey had graduation dates that would have made them eligible to apply for the open positions. 51% of the responding graduate students are US citizens. Full time graduate student enrollment would have to increase by 75% in order to provide enough graduate students to meet tenure and promotion expectations for mining engineering faculty in the U.S. New research funding on the order of $17M per year would have to be supplied to sustain the mining engineering faculty at a level expected of most R1 engineering colleges. Salaries for new faculty hires are comparable to those offered to BSc graduates by industry. The difficulties in achieving tenure due to lack of government research funding have made academic careers unattractive. If a solution is not found soon to refill the faculty pipeline, the U.S. is in danger of losing nearly all of its capacity to educate students in mining engineering.
Woodward, Elliott; Lai, Yvonne; Egun, Christyanna; Fitzsimons, Michael G
2018-04-01
The field of medicine is built upon science, technology, engineering, and math (STEM), yet the United States is rapidly falling behind when it comes to educating the next generation in these disciplines, especially under-represented populations. The authors reflect on existing educational literature surrounding efforts to promote interest in STEM among students and under-represented populations. The authors advocate for greater efforts toward the development of youth programing. Cardiac anesthesia is uniquely positioned as a subspecialty to advance the goal of promoting interest in STEM in diverse groups of young students. The authors describe their development and implementation of a community outreach program to enhance interest in medicine through a cardiac dissection experience. Copyright © 2017. Published by Elsevier Inc.
The Milliken/Georgia Tech Rising Senior Summer Program.
ERIC Educational Resources Information Center
Agrawal, Pradeep K; Sommerfeld, Jude T.
1987-01-01
Describes the Rising Senior Program at the Georgia Institute of Technology, which is a cooperative education program designed to provide student interns with an opportunity to apply engineering principles to real problems related to the business interests of the Milliken textile manufacturing company. (TW)
Swimming Pools, Hot Rods, and Qualitative Analysis.
ERIC Educational Resources Information Center
Clyde, Dale D.
1988-01-01
Describes some reactions for the identification and application of cyanuric acid. Suggests students may find this applied chemistry interesting because of the use of cyanuric acid in swimming pools and diesel engines. Lists three tests for cyanate ion and two tests for cyanuric acid. (MVL)
2012-02-23
ORLANDO, Fla. – Laura Colville, in the gray shirt at right, from the Educator Resource Center at NASA’s Kennedy Space Center, interacts with students from Meadow Woods Middle School in Orlando during NASA’s Project Management PM Challenge 2012. The demonstrations are designed to increase student interest and pursuit of the science, technology, engineering and mathematics STEM fields integral to producing the next generation of scientists and engineers. PM Challenge 2012 was held at the Caribe Royale Hotel and Convention Center in Orlando, Fla., on Feb. 22-23, to provide a forum for all stakeholders in the project management community to meet and share stories, lessons learned and new uses of technology in the industry. The PM Challenge is sponsored by NASA's Office of the Chief Engineer. For additional information, visit http://www.nasa.gov/offices/oce/pmchallenge/index.html. Photo credit: NASA/Jim Grossmann
2012-02-23
ORLANDO, Fla. – Education specialist Jim Gerard, in the red shirt, from NASA’s Kennedy Space Center, prepares a physics demonstration for students from Meadow Woods Middle School in Orlando during NASA’s Project Management PM Challenge 2012. The demonstrations are designed to increase student interest and pursuit of the science, technology, engineering and mathematics STEM fields integral to producing the next generation of scientists and engineers. PM Challenge 2012 was held at the Caribe Royale Hotel and Convention Center in Orlando, Fla., on Feb. 22-23, to provide a forum for all stakeholders in the project management community to meet and share stories, lessons learned and new uses of technology in the industry. The PM Challenge is sponsored by NASA's Office of the Chief Engineer. For additional information, visit http://www.nasa.gov/offices/oce/pmchallenge/index.html. Photo credit: NASA/Jim Grossmann
2012-02-23
ORLANDO, Fla. – Education project specialist Josh Santora, left, from NASA’s Kennedy Space Center, engages a student from Meadow Woods Middle School in Orlando in a physics demonstration during NASA’s Project Management PM Challenge 2012. The demonstrations are designed to increase student interest and pursuit of the science, technology, engineering and mathematics STEM fields integral to producing the next generation of scientists and engineers. PM Challenge 2012 was held at the Caribe Royale Hotel and Convention Center in Orlando, Fla., on Feb. 22-23, to provide a forum for all stakeholders in the project management community to meet and share stories, lessons learned and new uses of technology in the industry. The PM Challenge is sponsored by NASA's Office of the Chief Engineer. For additional information, visit http://www.nasa.gov/offices/oce/pmchallenge/index.html. Photo credit: NASA/Jim Grossmann
Demanded competences in the agricultural engineering sector in Spain
NASA Astrophysics Data System (ADS)
Perdigones, A.; García, J. L.; Benavente, R. M.; Tarquis, A. M.
2009-04-01
An engineering education should prepare students, i.e., emerging engineers, to use problem-solving processes that combine creativity and imagination with rigour and discipline. The emphasis on training engineers may be best placed on answering the needs of industry; indeed, many proposals are now being made to try to reduce the gap between the educational and industrial communities. Training in the use of certain skills or competences may be one way of better preparing engineering undergraduates for eventual employment in industry. However, industry's needs in this respect must first be known. The aim of this work was to determine which skills are used by practising agricultural engineers with the aim of incorporating training in their use into our department's teaching curriculum. Three surveys were undertaken to determine which skills are demanded by agricultural engineers in their professional activities in Spain. Surveys were carried out by the Department of Rural Engineering, Technical University of Madrid (Spain), analysing two related degrees (agricultural engineer with a duration of the study plan of three and five years, respectively) during the courses 2006/07 and 2007/08. The first survey determined the competences acquired by the students along their academic studies (371 students interviewed). The second survey determined the skills demanded by the enterprises of the agricultural sector (50 enterprises interviewed). The third survey determined the skills demanded by the agricultural engineers working in the sector (70 engineers interviewed), specifically asking about the computer programs used by practising agricultural engineers. Surveys showed important differences between the competences demanded by the enterprises and the competences acquired by the students at the university. Enterprises mainly demanded general competences (team working, time organizing, and skills with computer programs) and were less interested in specific technical skills (engineering, economy, biological competences). These differences suggest it might be a good idea to increase the amount of time devoted to the skills demanded by the enterprises. The software packages most commonly used by practising engineers were Microsoft Office / Excel (used by 79% of respondents) and CAD (56%), as well as budgeting (27%), statistical (21%), engineering (15%) and GIS (13%) programs. As a result of this survey our university department opened an additional computer suite in order to provide students practical experience in the use of the demanded competences. The results of this survey underline the importance of competence training in this and perhaps other fields of engineering.
Emotional intelligence among nursing students: Findings from a cross-sectional study.
Štiglic, Gregor; Cilar, Leona; Novak, Žiga; Vrbnjak, Dominika; Stenhouse, Rosie; Snowden, Austyn; Pajnkihar, Majda
2018-07-01
Emotional intelligence in nursing is of global interest. International studies identify that emotional intelligence influences nurses' work and relationships with patients. It is associated with compassion and care. Nursing students scored higher on measures of emotional intelligence compared to students of other study programmes. The level of emotional intelligence increases with age and tends to be higher in women. This study aims to measure the differences in emotional intelligence between nursing students with previous caring experience and those without; to examine the effects of gender on emotional intelligence scores; and to test whether nursing students score higher than engineering colleagues on emotional intelligence measures. A cross-sectional descriptive study design was used. The study included 113 nursing and 104 engineering students at the beginning of their first year of study at a university in Slovenia. Emotional intelligence was measured using the Trait Emotional Intelligence Questionnaire (TEIQue) and Schutte Self Report Emotional Intelligence Test (SSEIT). Shapiro-Wilk's test of normality was used to test the sample distribution, while the differences in mean values were tested using Student t-test of independent samples. Emotional intelligence was higher in nursing students (n = 113) than engineering students (n = 104) in both measures [TEIQue t = 3.972; p < 0.001; SSEIT t = 8.288; p < 0.001]. Although nursing female students achieved higher emotional intelligence scores than male students on both measures, the difference was not statistically significant [TEIQue t = -0.839; p = 0.403; SSEIT t = -1.159; p = 0.249]. EI scores in nursing students with previous caring experience were not higher compared to students without such experience for any measure [TEIQue t = -1.633; p = 0.105; SSEIT t = -0.595; p = 0.553]. Emotional intelligence was higher in nursing than engineering students, and slightly higher in women than men. It was not associated with previous caring experience. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tradeoffs in Capstone Design Courses Involving More Than One Discipline [Senior Design].
Goldberg, Jay
2017-01-01
According to a 2015 survey, 5% of capstone design course instructors indicated that their courses involve students from more than one engineering discipline [1]. Students in these courses may hear presentations on topics of common interest and work together on project teams that require knowledge and skills from more than one discipline. Some courses make use of occasional breakout sessions in which discipline-specific topics (such as U.S. Food and Drug Administration regulations) of greater value to students in a particular discipline are presented during class sessions where only students of that discipline meet [2].
A structure for maturing intelligent tutoring system student models
NASA Technical Reports Server (NTRS)
Holmes, Willard M.
1990-01-01
A special structure is examined for evolving a detached model of the user of an intelligent tutoring system. Tutoring is used in the context of education and training devices. A detached approach to populating the student model data structure is examined in the context of the need for time dependent reasoning about what the student knows about a particular concept in the domain of interest. This approach, to generating a data structure for the student model, allows an inference engine separate from the tutoring strategy determination to be used. This methodology has advantages in environments requiring real-time operation.
NASA Astrophysics Data System (ADS)
Johnson, D.
2013-12-01
Abstract: Researchers, policymakers, business, and industry have indicated that the United States will experience a future shortage of professionals in the Science, Technology, Engineering, and Mathematics (STEM) fields. Several strategies have been suggested to address this impending shortage, one of which includes increasing the representation of females and minorities in the STEM fields. In order to increase the representation of underrepresented students in the STEM fields, it is important to understand the motivational factors that impact underrepresented students' interest in STEM academics and extracurricular programs. Research indicates that greater confidence leads to greater interest and vice versa (Denissen et al., 2007). In this paper, the mathematics research team examined the role of practical research experience during the summer for talented minority secondary students studying in STEM fields. An undergraduate research mathematics team focused on the link between summer research and the choice of an undergraduate discipline. A Chi Square Statistical Test was used to examine Likert Scale results on the attitude of students participating in the 2006-2012 Center for Remote Sensing of Ice Sheets (CReSIS) Summer Research Programs for secondary students. This research was performed at Elizabeth City State University located in northeastern North Carolina about the factors that impact underrepresented students' choices of STEM related majors in college. Results can be used to inform and guide educators, administrators, and policy makers in developing programs and policy that support and encourage the STEM development of underrepresented students. Index Terms: Science, Technology, Engineering, and Mathematics (STEM), Underrepresented students
NASA Astrophysics Data System (ADS)
Xie, Yichun; Reider, David
2014-06-01
This paper analyzes the outcomes of an innovative technology experience for students and teachers (ITEST) project, Mayor's Youth Technology Corps (MYTCs) in Detroit, MI, which was funded by the NSF ITEST program. The MYTC project offered an integration of two technologies, geographic information system (GIS) and information assurance (IA), to stimulate students' interests in science, technology, engineering, and mathematics (STEM) career pathways and learning opportunities among high schools in underserved communities of the City of Detroit. Pre- and post-surveys demonstrated that the MYTC students showed growth in nearly every area covered in the surveys, including dispositions about STEM career and learning. A STEM career goal measure showed that overall interest in having a career in STEM increased 9 % throughout the program, with an additional 10 % for those who participated in an internship experience, the capstone of the MYTC project.
NASA Astrophysics Data System (ADS)
Finnerty, Valerie
The purpose of this study was to investigate whether participation in a school-based science fair affects middle school students' attitudes toward science and interest in science and engineering careers. A quasi-experimental design was used to compare students' pre- and posttest attitudes toward and interest in science. Forty-eight of the 258 participants completed a school-based science fair during the study. In addition, twelve middle school science teachers completed an online survey. Both the Survey of Science Attitudes and Interest I and II (SSAI-I and II) measured students' attitudes toward and interest in science and science and mathematics self-efficacy, asked about classroom inquiry experiences and gathered demographic information. An online survey gathered qualitative data about science teachers' perceptions of school science fairs. The results showed no significant interactions among completion of a science fair project and attitudes toward and interest in science, science and mathematics self-efficacy or gender. There were significant differences at both pre- and posttest in attitudes between the students who did and did not complete a science fair project. All participating teachers believed that participation in science fairs could have a positive effect on students' attitudes and interest, but cited lack of time as a major impediment. There was significant interaction between level of classroom inquiry and attitudes and interest in science; students who reported more experiences had higher scores on these measures. Classroom inquiry also interacted with the effects of a science fair and participants' pre- and posttest attitude scores. Finally, the amount and source of assistance on a science fair project had a significant impact on students' posttest measures. Major limitations which affect the generalization of these findings include the timing of the administration of the pretest, the number of participants in the experimental group and differences in the science fair procedures at the participating schools. Embedded in a curriculum that includes the teaching of inquiry practices, science fairs may play a role in the inspiration of future scientists, but more research needs to be done on the quality of students' experiences, including amount and type of classroom instruction before and during the science fair process.
Engineering education using a remote laboratory through the Internet
NASA Astrophysics Data System (ADS)
Axaopoulos, Petros J.; Moutsopoulos, Konstantinos N.; Theodoridis, Michael P.
2012-03-01
An experiment using real hardware and under real test conditions can be remotely conducted by engineering students and other interested individuals in the world via the Internet and with the capability of live video streaming from the test site. The presentation of this innovative experiment refers to the determination of the current voltage characteristic curve of a photovoltaic panel installed on the roof of a laboratory, facing south and with the ability to alter its tilt angle, using a closed loop servo motor mounted on the horizontal axis of the panel. The user has the sense of a direct contact with the system since they can intervene and alter the tilt of the panel and get a live visual feedback besides the remote instrumentation panel. The whole procedure takes a few seconds to complete and the characteristic curve is displayed in a chart giving the student and anyone else interested the chance to analyse the results and understand the respective theory; meanwhile, the test data are stored in a file for future use. This type of remote experiment could be used for distance education, training, part-time study and to help students with disabilities to participate in a laboratory environment.
NASA Astrophysics Data System (ADS)
Fifolt, Matthew M.; Abbott, Gypsy
Although slight gains have been made in attracting women and minority students to the field of engineering, the differences are not great enough to meet current economic demands [National Academy of Sciences (2007). Rising above the gathering storm: Energizing and employing America for a brighter economic future, Washington, DC: National Academies Press]. Therefore, it has become imperative that colleges and universities increase efforts to both recruit and retain these students who express interest in the STEM fields [National Science Foundation (2006), Women, minorities, and persons with disabilities in science and engineering, NSF 4-311, Arlington, VA: NSF]. In engineering, one promising venue for students to gain professional experience as part of their undergraduate training is through cooperative education (co-op). However, there is a dearth of information in the research literature regarding how co-op programs can be structured to address the needs of diverse students. There is consensus, however, about one aspect of addressing the needs of diverse students, namely, mentoring and role models are key strategies for success. In this study, a mixed methods design was used to examine students' perceptions of mentoring in a cooperative education program in a southeastern university. Using Noe's [Noe, R. (1988). An investigation of the determinants of successful assigned mentoring relationships. Personnel Psychology, 1, 457-479] mentoring functions scales, which described psychosocial and career-related support, research findings indicated a statistically significant difference between gender and the psychosocial aspect of mentoring. Analysis of the qualitative data further confirmed differences in cooperative education experiences with respect to both gender and ethnicity.
Solar cell and photonics outreach for middle school students and teachers
NASA Astrophysics Data System (ADS)
Gilchrist, Pamela O.; Alexander, Alonzo B.
2017-08-01
This paper will describe the curriculum development process employed to develop a solar cell and photonics curriculum unit for students underrepresented in science, technology, engineering and mathematics fields. Information will explain how the curriculum unit was piloted with middle and high school teachers from public schools in North Carolina, high school students from underrepresented groups in an informal science program, and workshop settings. Measures used to develop the curriculum materials for middle school students will be presented along with program findings documenting students' urban versus rural interest in STEM, career aspirations, and 21st century learning skills in informal learning settings.
Research project for increasing pool of minority engineers
NASA Technical Reports Server (NTRS)
Rogers, Decatur B.
1995-01-01
The Tennessee State University (TSU) Research Project for Increasing the Pool of Minority Engineers is designed to develop engineers who have academic and research experiences in technical areas of interest to NASA. These engineers will also have some degree of familiarity with NASA Lewis Research Center as a result of interaction with Lewis engineers, field trips and internships at Lewis. The Research Project has four components, which are: (1) Minority Introduction to Engineering (MITE), a high school precollege program, (2) engineering and technology previews, (3) the NASA LeRC Scholars program which includes scholarships and summer internships, and (4) undergraduate research experiences on NASA sponsored research. MITE is a two-week summer engineering camp designed to introduce minority high school students to engineering by exposing them to: (1) engineering role models (engineering students and NASA engineer), (2) field trips to engineering firms, (3) in addition to introducing youth to the language of the engineer (i.e., science, mathematics, technical writing, computers, and the engineering laboratory). Three MITE camps are held on the campus of TSU with an average of 40 participants. MITE has grown from 25 participants at its inception in 1990 to 118 participants in 1994 with participants from 17 states, including the District of Columbia, and 51 percent of the participants were female. Over the four-year period, 77 percent of the seniors who participated in MITE have gone to college, while 53 percent of those seniors in college are majoring in science, engineering or mathematics (SEM). This first Engineering and Technology Previews held in 1993 brought 23 youths from Cleveland, Ohio to TSU for a two-day preview of engineering and college life. Two previews are scheduled for 1994-1995. The NASA LeRC Scholars program provides scholarships and summer internships for minority engineering students majoring in electrical or mechanical engineering. Presently six (6) engineering students are in the Scholars program. The average GPA for the scholars is 3.239. Each scholar must maintain a minimum GPA of 3.000/4.000. NASA LeRC Fred Higgs has been awarded a GEM Fellowship. In addition, he will be presenting a paper entitled 'Design of Helical Spring Using Probabilistic Design Methodology' at the Middle Tennessee Section ASME Student Design Presentations in Nashville on March 23rd and at the National Conference on Undergraduate Research to be held at Union College, Schenectady, New York on April 20-22, 1995. Each of the scholars is working on one of the three NASA sponsored research projects in the college.
The Pulsar Search Collaboratory
ERIC Educational Resources Information Center
Rosen, R.; Heatherly, S.; McLaughlin, M. A.; Kondratiev, V. I.; Boyles, J. R.; Wilson, M.; Lorimer, D. R.; Lynch, R.; Ransom, S.
2010-01-01
The Pulsar Search Collaboratory (PSC) (NSF #0737641) is a joint project between the National Radio Astronomy Observatory and West Virginia University designed to interest high school students in science, technology, engineering, and mathematics related career paths by helping them to conduct authentic scientific research. The 3 year PSC program,…
Introductory Course on Satellite Navigation
ERIC Educational Resources Information Center
Giger, Kaspar; Knogl, J. Sebastian
2012-01-01
Satellite navigation is widely used for personal navigation and more and more in precise and safety-critical applications. Thus, the subject is suited for attracting the interest of young people in science and engineering. The practical applications allow catching the students' attention for the theoretical background. Educational material on the…
Aeronautical Drafting, Drafting 3: 9257.02.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
Intended for students interested in the aircraft and missile field of engineering and drafting, the course covers fundamentals, working drawings, and auxiliary views and sections that are related to this field. Considered advanced training, a prerequisite for the course is mastery of the skills indicated in Electrical and Electronic…
Game Development as a Pathway to Information Technology Literacy
ERIC Educational Resources Information Center
Frydenberg, Mark
2016-01-01
Teaching game development has become an accepted methodology for introducing programming concepts and capturing the interest of beginning computer science and information technology (IT) students. This study, conducted over three consecutive semesters, explores game development using a gaming engine, rather than a traditional programming language,…
Multiple Case Study of STEM in School-Based Agricultural Education
ERIC Educational Resources Information Center
Stubbs, Eric A.; Myers, Brian E.
2015-01-01
This multiple case study investigated the integration of science, technology, engineering, and mathematics (STEM) in three Florida high school agriculture programs. Observations, interviews, documents, and artifacts provided qualitative data that indicated the types of STEM knowledge taught. Variables of interest included student and teacher…
NASA Astrophysics Data System (ADS)
Romine, William L.; Sadler, Troy D.
2016-06-01
Improving interest in science, technology, engineering, and mathematics (STEM) is crucial to widening participation and success in STEM studies at the college level. To understand how classroom and extracurricular interventions affect interest, it is necessary to have appropriate measurement tools. We describe the adaptation and revalidation of a previously existing multidimensional instrument to the end of measuring interest in environmental science and technology in college nonscience majors. We demonstrate the revised instrument's ability to detect change in this group over an 8-week time period. While collection of demographic information was not part of the study design, participating students were similar in that they hailed from three environmental science nonmajor classes sharing a common syllabus and instructional delivery method. Change in interest was measured in response to two types of scientific literature-based learning approaches: a scientific practice approach and a traditional, quiz-driven approach. We found that both approaches led to moderate gains in interest in learning environmental science and careers in environmental science across an 8-week time period. Interest in using technology for learning increased among students using the scientific practice approach; in contrast, the same measure decreased among students using the reading/quiz approach. This result invites the possibility that interest in using technology as a learning tool may relate to technological literacy, which must be taught explicitly in the context of authentic inquiry experiences.
2011-05-06
Cape Canaveral, Fla. -- Students from across the nation gathered at NASA's Kennedy Space Center in Florida for the NASA Explorer Schools (NES) symposium. At the microphone is NASA Explorer Schools Lead Education Specialist Alicia Baturoni from NASA's Glenn Research Center. From left, the panel includes aerospace engineer with NASA's Launch Services Program Caley Burke, Gary Letchworth who is working on the Orion multipurpose crew vehicle, NASA Contract Specialist Nicole Rivera, wildlife ecologist with Innovative Heath Applications Becky Bolt, Tim Griffin who works in Kennedy's Chemical Analysis Branch, Xaivian Raymond with NASA Human Resources, aerospace engineer Sarah Cox who works on the space shuttle's thermal protection system, and chemical engineer Annie Caraccio. During the NES event, students presented their investigation project to their peers, scientists, engineers and education specialists. About 60 fourth- through 12-grade students nationwide are at the center May 4-7 participating in tours of processing and launch facilities and the U.S. Astronaut Hall of Fame, as well as several educational activities and a career panel question-and-answer session. About 30 teachers will receive professional development opportunities during the symposium. The participants were competitively selected after they completed an original investigation focused on existing NASA missions or research interests. Photo Credit: NASA/Kim Shiflett
[Knowledge about sexuality in university students].
Silva, P; Alvarado, R
1989-01-01
This study explores the level of sexual knowledge among chilean university students in 4 different professions, compares their responses and verifies them with selected socio-demographic variables. 813 university students were interviewed in 1st and 3rd year medical school, law and engineering from the University of Chile and in education, from the Superior Blas Canas Institute of Pedagogy. The group is equally divided between each of the 4 professions; 64.7% are men with 95.5% single and 84.7% are between 17.22; only 37.5% attended a mixed school; 73.1% are Catholic. The survey aimed to evaluate knowledge, attitude and practices (KAP) but this article only analyzes the attitudes of students through 6 variables: anatomy and physiology, pregnancy and delivery, contraception, venereal diseases, sources claimed by the interviewee to receive information and self-evaluation of actual levels of knowledge. Results demonstrated knowledge about anatomy and physiology, pregnancy and delivery and venereal diseases, but great disparity with contraception. Students are not learning about methods of contraception in school, possibly due to fear on the part of the faculty or their own lack of information. 3 factors influenced levels of knowledge: 1) formal education; 2) experience; and 3) personal interest. The highest results were from students of medicine with the lowest being students in engineering and education. Those that were in their 3rd year of school or married appeared more knowledgeable possibly due to more sexual experience and the need to prevent pregnancies. The females in all variables scored higher due to their own interest in preventing pregnancies, and because women are socialized in interpersonal relations and maternity issues. More than 1/2 the students gave themselves bad evaluations concerning their levels of sexual knowledge.
NASA Astrophysics Data System (ADS)
Peterman, Karen; Kermish-Allen, Ruth; Knezek, Gerald; Christensen, Rhonda; Tyler-Wood, Tandra
2016-12-01
This article describes Energy for ME and Going Green! Middle Schoolers Out to Save the World, two Science, Technology, Engineering, and Mathematics (STEM) education programs with the common goal of improving students' attitudes about scientific careers. The authors represent two project teams, each with funding from the National Science Foundation's ITEST program. Using different approaches and technology, both projects challenged students to use electricity monitoring system data to create action plans for conserving energy in their homes and communities. The impact of each project on students' career interests was assessed via a multi-method evaluation that included the Career Interest Questionnaire (CIQ), a measure that was validated within the context of ITEST projects and has since become one of the instruments used most commonly across the ITEST community. This article explores the extent to which the CIQ can be used to document the effects of technology-enhanced STEM educational experiences on students' career attitudes and intentions in different environments. The results indicate that the CIQ, and the Intent subscale in particular, served as significant predictors of students' self-reported STEM career aspirations across project context. Results from each project also demonstrated content gains by students and demonstrated the impact of project participation and gender on student outcomes. The authors conclude that the CIQ is a useful tool for providing empirical evidence to document the impact of technology-enhanced science education programs, particularly with regard to Intent to purse a STEM career. The need for additional cross-project comparison studies is also discussed.
Christophel, Eva; Schnotz, Wolfgang
2017-01-01
Women are still underrepresented in engineering courses although some German universities offer separate women’s engineering courses which include virtual STEM learning environments. To outline information about fundamental aspects relevant for virtual STEM learning, one has to reveal which similarities both genders in virtual learning show. Moreover, the question arises as to whether there are in fact differences in the virtual science learning of female and male learners. Working with virtual STEM learning environments requires strategic and arithmetic-operative competences. Even if we assume that female and male learners have similar competences levels, their correlational pattern of competences, motivational variables, and invested effort during virtual STEM learning might differ. If such gender differences in the correlations between cognitive and motivational variables and learning behavior were revealed, it would be possible to finetune study conditions for female students in a separate engineering course and shape virtual STEM learning in a more gender-appropriate manner. That might support an increase in the number of women in engineering courses. To reveal the differences and similarities between female and male learners, a field study was conducted with 56 students (female = 27, male = 29) as part of the Open MINT Labs project (the German term for Open STEM Labs, OML). The participants had to complete a virtual STEM learning environment during their regular science lessons. The data were collected with questionnaires. The results revealed that the strategic competences of both genders were positively correlated with situational interest in the virtual learning environment. This result shows the big impact strategic competences have for both genders regarding their situational interest. In contrast, the correlations between mental effort and competences differed between female and male participants. Especially female learners’ mental effort decreased if they had more strategic competences. On the other hand, female learners’ mental effort increased if they had more arithmetic-operative competences. All in all, female learners seem to be more sensitive to differences in their strategic and arithmetic-operative competences regarding their mental effort. These results imply that the implementation of separate women’s engineering courses could be an interesting approach. PMID:29114234
Christophel, Eva; Schnotz, Wolfgang
2017-01-01
Women are still underrepresented in engineering courses although some German universities offer separate women's engineering courses which include virtual STEM learning environments. To outline information about fundamental aspects relevant for virtual STEM learning, one has to reveal which similarities both genders in virtual learning show. Moreover, the question arises as to whether there are in fact differences in the virtual science learning of female and male learners. Working with virtual STEM learning environments requires strategic and arithmetic-operative competences. Even if we assume that female and male learners have similar competences levels, their correlational pattern of competences, motivational variables, and invested effort during virtual STEM learning might differ. If such gender differences in the correlations between cognitive and motivational variables and learning behavior were revealed, it would be possible to finetune study conditions for female students in a separate engineering course and shape virtual STEM learning in a more gender-appropriate manner. That might support an increase in the number of women in engineering courses. To reveal the differences and similarities between female and male learners, a field study was conducted with 56 students (female = 27, male = 29) as part of the Open MINT Labs project (the German term for Open STEM Labs, OML). The participants had to complete a virtual STEM learning environment during their regular science lessons. The data were collected with questionnaires. The results revealed that the strategic competences of both genders were positively correlated with situational interest in the virtual learning environment. This result shows the big impact strategic competences have for both genders regarding their situational interest. In contrast, the correlations between mental effort and competences differed between female and male participants. Especially female learners' mental effort decreased if they had more strategic competences. On the other hand, female learners' mental effort increased if they had more arithmetic-operative competences. All in all, female learners seem to be more sensitive to differences in their strategic and arithmetic-operative competences regarding their mental effort. These results imply that the implementation of separate women's engineering courses could be an interesting approach.
Labour Market Motivation and Undergraduates' Choice of Degree Subject
ERIC Educational Resources Information Center
Davies, Peter; Mangan, Jean; Hughes, Amanda; Slack, Kim
2013-01-01
Labour market outcomes of undergraduates' choice of subject are important for public policy and for students. Policy interest is indicated by the prominence of "employability" in public discourse and in proposals to concentrate government funding in England in supporting STEM subjects (science, technology, engineering and mathematics).…
Blending an Android Development Course with Software Engineering Concepts
ERIC Educational Resources Information Center
Chatzigeorgiou, Alexander; Theodorou, Tryfon L.; Violettas, George E.; Xinogalos, Stelios
2016-01-01
The tremendous popularity of mobile computing and Android in particular has attracted millions of developers who see opportunities for building their own start-ups. As a consequence Computer Science students express an increasing interest into the related technology of Java development for Android applications. Android projects are complex by…
NEWPATH: An Innovative Program to Nurture IT Entrepreneurs
ERIC Educational Resources Information Center
Soundarajan, Neelam; Camp, Stephen M.; Lee, David; Ramnath, Rajiv; Weide, Bruce W.
2016-01-01
The number of freshmen interested in entrepreneurship has grown dramatically in the last few years. In response, many universities have created entrepreneurship programs, including ones focused on engineering entrepreneurship. In this paper, we report on NEWPATH, an innovative NSF-supported program at Ohio State, designed to nurture students to…
Development of an Undergraduate Course--Internet-Based Instrumentation and Control
ERIC Educational Resources Information Center
Zhuang, Hanqi; Morgera, Salvatore D.
2007-01-01
The objective, strategy, and implementation details of a new undergraduate course, Internet-based Instrumentation and Control, are presented. The course has a companion laboratory that is supported by the National Science Foundation and industry. The combination is offered to senior-level undergraduate engineering students interested in sensing,…
Rekindling Scientific Curiosity.
ERIC Educational Resources Information Center
Coble, Charles R.; Rice, Dale R.
1983-01-01
Active involvement in society-related issues can elevate junior high school students' interest not only in the problem being solved but also in related scientific concepts. Examples of how scientific concepts and society-related issues can be taught in the same class are presented, focusing on genetic engineering, water shortage, and others.…
What Young Students in a Major Industrial City Think about the Prestige of Professions
ERIC Educational Resources Information Center
Kaiumov, A. T.; Kanikov, F. K.; Iskhakova, N. R.
2014-01-01
Research on factors affecting the prestige of engineering and blue-collar occupations in Russia shows that, in addition to such things as intrinsic interest and expected income, young people's views are influenced by the kinds of people who typically go into various kinds of occupation.
UNITE 3D Rover Summer Workshop: An Overview and Assessment
ERIC Educational Resources Information Center
Hsiung, Steve C.; Deal, Walter F.; Tuluri, Francis
2017-01-01
UNITE is a program sponsored by the Army Educational Outreach Program (AEOP, 2015). The STEM Enrichment Activities of AEOP are designed to spark student interest in science, technology, engineering, and mathematics, especially among the underserved and those in earlier grades and educators by providing exciting, engaging, interactive, hands-on…
Making Science Appeal to Girls
ERIC Educational Resources Information Center
McCrea, Bridget
2011-01-01
It is no secret that many girls seem disinterested in science, technology, engineering, and mathematics (STEM), but strategies for building their interest are sometimes elusive. Because STEM career paths are not always perceived as "natural" for women, educators do no't always push their female students to explore these educational areas. As a…
Identifying 21st Century STEM Competencies Using Workplace Data
ERIC Educational Resources Information Center
Jang, Hyewon
2016-01-01
Gaps between science, technology, engineering, and mathematics (STEM) education and required workplace skills have been identified in industry, academia, and government. Educators acknowledge the need to reform STEM education to better prepare students for their future careers. We pursue this growing interest in the skills needed for STEM…
Choosing and Leaving Science in Highly Selective Institutions.
ERIC Educational Resources Information Center
Strenta, A. Christopher; And Others
1994-01-01
A study investigated causes of initial interest in and attrition from natural sciences and engineering among 5,320 students entering 4 highly selective institutions in 1988, with attention to probable causes of disproportionate attrition of women. Reasons for high attrition were based on cognitive variables or the perceived "chilly"…
Should Scientists Be Involved in Teaching Science Writing and If So, How?
ERIC Educational Resources Information Center
Goodell, Rae
Realizing the importance of writing skills in communicating with other professionals and in educating the public, scientists and scientific institutions have renewed their interest in the writing education of science students. Informal surveys show that technological and engineering schools are reinstituting writing requirements and staffing the…
ERIC Educational Resources Information Center
Pollard, Vikki; Hains-Wesson, Rachael; Young, Karen
2018-01-01
If Science, Technology, Engineering and Mathematics (STEM) disciplines in higher education are to retain students, there needs to be a shift towards teaching in more enriching and interesting ways. Creative teaching needs to become more prominent in STEM. This article presents a study that defines creative teaching in the STEM context and…
STEM Integration through Design and Inquiry
ERIC Educational Resources Information Center
Johns, Gary; Mentzer, Nathan
2016-01-01
Teachers can find opportunities to incorporate design thinking and scientific inquiry within any lesson where a constraint of the design can be connected to a scientific experiment. Within a lesson, this connection establishes context between engineering and science and can positively impact students' learning and interest in these subjects. The…
An Educational Space Seminar to Increase American Student Interest in Space Careers
1991-09-01
WHATS OUT THERE TODAY .................................................. 39 C. NASA PROGRAM REVIEW...115 6. COLLEGE/UNIVERSITY CHOICES.................................... 116 7. NASA FIELD CENTERS................................................. 127 8...demand affect the United States’ capability in space science and engineering? NASA , Department of Defense, private space industry, and academe are all
Gender Differences in Gifted Students' Advice on Solving the World's Problems
ERIC Educational Resources Information Center
Malin, Jenessa; Makel, Matthew C.
2012-01-01
Gender differences in interests and preferences are among the currently accepted potential explanations for the underrepresentation of women in science, technology, engineering, and mathematics (STEM) fields. In an attempt to analyze the development of such preferences, gender differences expressed in essays written by gifted elementary students…
2012-02-23
ORLANDO, Fla. – Education specialists from NASA’s Kennedy Space Center set up a physics demonstration for the students from Meadow Woods Middle School in Orlando during NASA’s Project Management PM Challenge 2012. Here, Jim Gerard, in the red shirt at center, is assisted by Rachel Powers, in the blue shirt. The demonstrations are designed to increase student interest and pursuit of the science, technology, engineering and mathematics STEM fields integral to producing the next generation of scientists and engineers. PM Challenge 2012 was held at the Caribe Royale Hotel and Convention Center in Orlando, Fla., on Feb. 22-23, to provide a forum for all stakeholders in the project management community to meet and share stories, lessons learned and new uses of technology in the industry. The PM Challenge is sponsored by NASA's Office of the Chief Engineer. For additional information, visit http://www.nasa.gov/offices/oce/pmchallenge/index.html. Photo credit: NASA/Jim Grossmann
2012-02-23
ORLANDO, Fla. – Students from Meadow Woods Middle School in Orlando take part in a hands-on activity during NASA’s Project Management PM Challenge 2012. Education specialists from NASA’s Kennedy Space Center supported the annual PM Challenge with demonstrations designed to illustrate various principles of physics. The demonstrations are designed to increase student interest and pursuit of the science, technology, engineering and mathematics STEM fields integral to producing the next generation of scientists and engineers. PM Challenge 2012 was held at the Caribe Royale Hotel and Convention Center in Orlando, Fla., on Feb. 22-23, to provide a forum for all stakeholders in the project management community to meet and share stories, lessons learned and new uses of technology in the industry. The PM Challenge is sponsored by NASA's Office of the Chief Engineer. For additional information, visit http://www.nasa.gov/offices/oce/pmchallenge/index.html. Photo credit: NASA/Jim Grossmann
The Interactions of Relationships, Interest, and Self-Efficacy in Undergraduate Physics
NASA Astrophysics Data System (ADS)
Dou, Remy
This collected papers dissertation explores students' academic interactions in an active learning, introductory physics settings as they relate to the development of physics self-efficacy and interest. The motivation for this work extends from the national call to increase participation of students in the pursuit of science, technology, engineering, and mathematics (STEM) careers. Self-efficacy and interest are factors that play prominent roles in popular, evidence-based, career theories, including the Social cognitive career theory (SCCT) and the identity framework. Understanding how these constructs develop in light of the most pervasive characteristic of the active learning introductory physics classroom (i.e., peer-to-peer interactions) has implications on how students learn in a variety of introductory STEM classrooms and settings structured after constructivist and sociocultural learning theories. I collected data related to students' in-class interactions using the tools of social network analysis (SNA). Social network analysis has recently been shown to be an effective and useful way to examine the structure of student relationships that develop in and out of STEM classrooms. This set of studies furthers the implementation of SNA as a tool to examine self-efficacy and interest formation in the active learning physics classroom. Here I represent a variety of statistical applications of SNA, including bootstrapped linear regression (Chapter 2), structural equation modeling (Chapter 3), and hierarchical linear modeling for longitudinal analyses (Chapter 4). Self-efficacy data were collected using the Sources of Self-Efficacy for Science Courses - Physics survey (SOSESC-P), and interest data were collected using the physics identity survey. Data for these studies came from the Modeling Instruction sections of Introductory Physics with Calculus offered at Florida International University in the fall of 2014 and 2015. Analyses support the idea that students' perceptions of one another impact the development of their social network centrality, which in turn affects their self-efficacy building experiences and their overall self-efficacy. It was shown that unlike career theories that emphasize causal relationships between the development of self-efficacy and the subsequent growth of student interest, in this context student interest takes precedence before the development of student self-efficacy. This outcome also has various implications for career theories.
NASA Astrophysics Data System (ADS)
Rizzo, D. M.; Hayden, N. J.; Dewoolkar, M.; Neumann, M.; Lathem, S.
2009-12-01
Researchers at the University of Vermont were awarded a NSF-sponsored Department Level Reform (DLR) grant to incorporate a systems approach to engineering problem solving within the civil and environmental engineering programs. A systems approach challenges students to consider the environmental, social, and economic aspects within engineering solutions. Likewise, sustainability requires a holistic approach to problem solving that includes economic, social and environmental factors. Our reform has taken a multi-pronged approach in two main areas that include implementing: a) a sequence of three systems courses related to environmental and transportation systems that introduce systems thinking, sustainability, and systems analysis and modeling; and b) service-learning (SL) projects as a means of practicing the systems approach. Our SL projects are good examples of inquiry-based learning that allow students to emphasize research and learning in areas of most interest to them. The SL projects address real-world open-ended problems. Activities that enhance IT and soft skills for students are incorporated throughout the curricula. Likewise, sustainability has been a central piece of the reform. We present examples of sustainability in the SL and modeling projects within the systems courses (e.g., students have used STELLA™ systems modeling software to address the impact of different carbon sequestration strategies on global climate change). Sustainability in SL projects include mentoring home schooled children in biomimicry projects, developing ECHO exhibits and the design of green roofs, bioretention ponds and porous pavement solutions. Assessment includes formative and summative methods involving student surveys and focus groups, faculty interviews and observations, and evaluation of student work.
STEMujeres: A case study of the life stories of first-generation Latina engineers and scientists
NASA Astrophysics Data System (ADS)
Vielma, Karina I.
Research points to the many obstacles that first-generation, Latina students face when attempting to enter fields in science, technology, engineering, and mathematics, STEM. This qualitative, case study examined the personal and educational experiences of first-generation Latina women who successfully navigated the STEM educational pipeline earning bachelor's, master's, and doctoral degrees in various fields of engineering. Three research questions guided the study: (1) How does a first-generation Latina engineer and scientist describe her life experiences as she became interested in STEM? (2) How does she describe her educational experiences as she navigated the educational pipeline in the physics, mathematics, and/or engineering field(s)? (3) How did she respond to challenges, obstacles and microaggressions, if any, while navigating the STEM educational pipeline? The study was designed using a combination of Critical Race Theory frameworks---Chicana feminist theory and racial microaggressions. Through a life history case study approach, the women shared their stories of success. With the participants' help, influential persons in their educational paths were identified and interviewed. Data were analyzed using crystallization and thematic results indicated that all women in this study identified their parents as planting the seed of interest through the introduction of mathematics. The women unknowingly prepared to enter the STEM fields by taking math and science coursework. They were guided to apply to STEM universities and academic programs by others who knew about their interest in math and science including teachers, counselors, and level-up peers---students close in age who were just a step more advanced in the educational pipeline. The women also drew from previous familial struggles to guide their perseverance and motivation toward educational degree completion. The lives of the women where complex and intersected with various forms of racism including gender, race, class, legality and power. In many instances, the women used their knowledge to help other STEMujeres advance.
NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders
NASA Astrophysics Data System (ADS)
Budney, C. J.; Lowes, L. L.; Sohus, A.; Wheeler, T.; Wessen, A.; Scalice, D.
2010-12-01
Sponsored by NASA’s Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor’s recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week’s end, students present their Concept Study to a “proposal review board” of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. The majority of students come from top US universities with planetary science or engineering programs, such as Brown University, MIT, Georgia Tech, University of Colorado, Caltech, Stanford, University of Arizona, UCLA, and University of Michigan. Almost a third of Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL’s Team X Project Design Center.
Houston prefreshman enrichment program (Houston PREP). Final report, June 10, 1996--August 1, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
The 1996 Houston Pre-freshman Enrichment Program (PREP) was conducted on the campus of the University of Houston-Downtown from June 10 to August 1, 1996. Program Participants were recruited from the Greater Houston area. All participants were identified as high achieving students with an interest in learning about the engineering and science professions. The goal of the program was to better prepare our pre-college youth prior to entering college as mathematics, science and engineering majors. The program participants were middle school and high school students from the Aldine, Alief, Channel View, Crockett, Cypress-Fairbanks, Fort Bend, Galena Park, Houston, Humble, Katy, Klein,more » North Forest, Pasadena, Private, and Spring Branch Independent School Districts. Of the 197 students starting the program, 170 completed, 142 students were from economically and socially disadvantage groups underrepresented in the engineering and science professions, and 121 of the 197 were female. Our First Year group for 1996 composed of 96% minority and women students. Our Second and Third Year students were 100% and 93.75% minority or women respectively. This gave an overall minority and female population of 93.75%. This year, special efforts were again made to recruit students from minority groups, which caused a significant increase in qualified applicants. However, due to space limitations, 140 applicants were rejected. Investigative and discovery learning were key elements of PREP. The academic components of the program included Algebraic Structures, Engineering, Introduction to Computer Science, Introduction to Physics, Logic and Its Application to Mathematics, Probability and Statistics, Problem Solving Seminar using computers and PLATO software, SAT Preparatory Seminars, and Technical Writing.« less
The blind spot: re-educating ourselves about visual images
NASA Astrophysics Data System (ADS)
Farkas, N.; Donnelly, K. M.; Henriksen, P. N.; Ramsier, R. D.
2004-05-01
A simple blind spot activity has been devised to help students discard misconceptions about image formation by lenses. Our hands-on experiment, in which students determine the location and size of their blind spots, is suitable for various age groups at different educational levels. The activity provides an opportunity to teach students how to measure objects indirectly using triangles and encourages them to think about the number of measurements needed to gain confidence in a value. It also gives teachers another interesting experiment in which to discuss the nature of uncertainties and how to deal with them. Student responses to the activity, performed with pre-engineering students and non-science majors, are discussed.
1999-03-06
At the award ceremony for the 1999 FIRST Southeastern Regional robotic competition held at KSC, Center Director Roy Bridges addresses the teams, encouraging them to continue their interest in engineering. Directly behind him (left) are Woody Flowers, national advisor to FIRST, and (right) former KSC Director of Shuttle Processing Robert Sieck, who served as one of the judges. At the far left, students gather around astronaut David Brown, who was present during the two days of matches. At right are other judges, including Deputy Director for Launch and Payload Processing Loren Shriver (third from right). FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology, that sponsors the event pitting gladiator robots against each other in an athletic-style competition. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers, pairing high school students with engineer mentors and corporations. The regional event comprised 27 teams. Along with the championship award, which went to high school teams in Miami and San German, Puerto Rico, 15 other awards were presented
Teaching fluid mechanics to high schoolers: methods, challenges, and outcome
NASA Astrophysics Data System (ADS)
Manikantan, Harishankar
2017-11-01
This talk will summarize the goals, methods, and both short- and long-term feedback from two high-school-level courses in fluid mechanics involving 43 students and cumulatively spanning over 100 hours of instruction. The goals of these courses were twofold: (a) to spark an interest in science and engineering and attract a more diverse demographic into college-level STEM programs; and (b) to train students in a `college-like' method of approaching the physics of common phenomena, with fluid mechanics as the context. The methods of instruction included classes revolving around the idea of dispelling misconceptions, group activities, `challenge' rounds and mock design projects to use fluid mechanics phenomena to achieve a specified goal, and simple hands-on experiments. The feedback during instruction was overwhelmingly positive, particularly in terms of a changing and favorable attitude towards math and engineering. Long after the program, a visible impact lies in a diverse group of students acknowledging that the course had a positive effect in their decision to choose an engineering or science major in a four-year college.
Development of a Renewable Hydrogen Production and Fuel Cell Education Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, Michael D.
2011-11-20
This report presents the results of a program designed to develop an education program to 1) Provide exposure to the basics of hydrogen-based technologies to a large number of students. This exposure will provide a level of training that will allow students to converse and work with other scientists and engineers in this field. It will also serve to spark a level of interest in a subset of students who will then continue with more advanced coursework and/or research; 2) Provide a “mid-level” training to a moderate level of students. More detailed and directed education will provide students with themore » ability to work to support industry and government development of hydrogen technologies. This level of training would be sufficient to work in the industry, but not be a leader in research and development; and 3) Provide detailed training to a smaller subset of students with a strong interest and propensity to make significant contributions to the technology development. These individuals will have extensive hands-on experience through internships that will play a major role in industry, government, and academia.« less
Electronics and Software Engineer for Robotics Project Intern
NASA Technical Reports Server (NTRS)
Teijeiro, Antonio
2017-01-01
I was assigned to mentor high school students for the 2017 First Robotics Competition. Using a team based approach, I worked with the students to program the robot and applied my electrical background to build the robot from start to finish. I worked with students who had an interest in electrical engineering to teach them about voltage, current, pulse width modulation, solenoids, electromagnets, relays, DC motors, DC motor controllers, crimping and soldering electrical components, Java programming, and robotic simulation. For the simulation, we worked together to generate graphics files, write simulator description format code, operate Linux, and operate SOLIDWORKS. Upon completion of the FRC season, I transitioned over to providing full time support for the LCS hardware team. During this phase of my internship I helped my co-intern write test steps for two networking hardware DVTs , as well as run cables and update cable running lists.
An Inquiry-Based Approach to Teaching Space Weather to Undergraduate Non-Science Majors
NASA Astrophysics Data System (ADS)
Cade, W. B., III
2016-12-01
Undergraduate Space Weather education is an important component of creating a society that is knowledgeable about space weather and its societal impacts. The space physics community has made great strides in providing academic education for students, typically physics and engineering majors, who are interested in pursuing a career in the space sciences or space weather. What is rarely addressed, however, is providing a broader space weather education to undergraduate students as a whole. To help address this gap, I have created an introductory space weather course for non-science majors, with the idea of expanding exposure to space weather beyond the typical physics and engineering students. The philosophy and methodologies used in this course will be presented, as well as the results of the first attempts to teach it. Using an approach more tailored to the non-scientist, courses such as this can be an effective means of broadening space weather education and outreach.
Jordan, Tuajuanda C; Burnett, Sandra H; Carson, Susan; Caruso, Steven M; Clase, Kari; DeJong, Randall J; Dennehy, John J; Denver, Dee R; Dunbar, David; Elgin, Sarah C R; Findley, Ann M; Gissendanner, Chris R; Golebiewska, Urszula P; Guild, Nancy; Hartzog, Grant A; Grillo, Wendy H; Hollowell, Gail P; Hughes, Lee E; Johnson, Allison; King, Rodney A; Lewis, Lynn O; Li, Wei; Rosenzweig, Frank; Rubin, Michael R; Saha, Margaret S; Sandoz, James; Shaffer, Christopher D; Taylor, Barbara; Temple, Louise; Vazquez, Edwin; Ware, Vassie C; Barker, Lucia P; Bradley, Kevin W; Jacobs-Sera, Deborah; Pope, Welkin H; Russell, Daniel A; Cresawn, Steven G; Lopatto, David; Bailey, Cheryl P; Hatfull, Graham F
2014-02-04
Engaging large numbers of undergraduates in authentic scientific discovery is desirable but difficult to achieve. We have developed a general model in which faculty and teaching assistants from diverse academic institutions are trained to teach a research course for first-year undergraduate students focused on bacteriophage discovery and genomics. The course is situated within a broader scientific context aimed at understanding viral diversity, such that faculty and students are collaborators with established researchers in the field. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) course has been widely implemented and has been taken by over 4,800 students at 73 institutions. We show here that this alliance-sourced model not only substantially advances the field of phage genomics but also stimulates students' interest in science, positively influences academic achievement, and enhances persistence in science, technology, engineering, and mathematics (STEM) disciplines. Broad application of this model by integrating other research areas with large numbers of early-career undergraduate students has the potential to be transformative in science education and research training. Engagement of undergraduate students in scientific research at early stages in their careers presents an opportunity to excite students about science, technology, engineering, and mathematics (STEM) disciplines and promote continued interests in these areas. Many excellent course-based undergraduate research experiences have been developed, but scaling these to a broader impact with larger numbers of students is challenging. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunting Advancing Genomics and Evolutionary Science (SEA-PHAGES) program takes advantage of the huge size and diversity of the bacteriophage population to engage students in discovery of new viruses, genome annotation, and comparative genomics, with strong impacts on bacteriophage research, increased persistence in STEM fields, and student self-identification with learning gains, motivation, attitude, and career aspirations.
The impact of user centered design on student motivation
NASA Astrophysics Data System (ADS)
Locker, Craig T.
There is a current push for STEM education within the U.S.; however current studies show that students' interest to pursue STEM fields is decreasing as they progress through high school. This lose in interest has shown to have a strong tie to students' perceived levels of motivation towards the subject. The question that this studied set out to answer was if user centered design (UCD) would affect students perceived level of motivation. For this study a treatment of UCD was compared to a traditional high school engineering design curriculum, with the goal to identify if UCD would have a positive effect on the students perceived level of motivation. 59 9th grade high school students from an urban Midwestern city were selected to participate. Students were given a pre and posttest to determine their levels of motivation before and after the comparison or treatment. Analysis showed that students perceived level of intrinsic and extrinsic motivation significantly went up in the treatment group. The study concluded that due to the ease of implementation and low cost of deployment that UCD should be introduced into high school design challenges that focus on developing a solution for an external stakeholder.
NASA Astrophysics Data System (ADS)
Vanwalleghem, Tom; Giráldez, Juan Vicente
2013-04-01
Many courses on natural resources require hands-on practical knowledge and experience that students traditionally could only acquire by expensive and time-consuming field excursions. New technologies and social media however provide an interesting alternative to train students and help them improve their practical knowledge. AgroGeovid is a virtual excursion, based on Google Earth, Youtube, Facebook and Twitter that is aimed at agricultural engineering students, but equally useful for any student interested in soil management and conservation, e.g. geography, geology and environmental resources. Agrogeovid provides the framework for teachers and students to upload geotagged photos, comments and discussions. After the initial startup phase, where the teacher uploaded material on e.g. soil erosion phenomena, soil conservation structures and different soil management strategies under different agronomic systems, students contributed with their own material gathered throughout the academic year. All students decided to contribute via Facebook, in stead of Twitter, which was not known to most of them. The final result was a visual and dynamic tool which students could use to train and perfect skills adopted in the classroom using case-studies and examples from their immediate environment.
NASA Astrophysics Data System (ADS)
Yukita, Kazuto; Goto, Tokimasa; Mizuno, Katsunori; Nakano, Hiroyuki; Ichiyanagi, Katsuhiro; Goto, Yasuyuki; Mori, Tsuyoshi
Recently the importance of Monozukuri (manufacturing) has been watched with keen interest as a social; problem, which has a relation with schoolchildren's decline of their academic standards, pointed out by the reports of PISA of OECD and TIMSS, etc., and their “losing interest in science” and “dislike of science”, some people worry about, which will lead to the decline of technology in the home industry, the top-class personnel shortage, and the decrease of economical power in this country in the future. In order to solve such a problem, science pavilions, universities, and academic societies of science and engineering etc. in various places hold “Monozukuiri Classrooms” or “Science Classrooms”. We can say that various activities which try to hold off “losing interest in science” and “dislike of science.” in the whole society. Under such a situation, Aichi Institute of Technology (AIT) to which we belong, also tries to contribute to the activity of solving the problem, and holds various engineering education lectures which intend for elementary, junior high school and senior high school students. AIT has held “The Whole Experience World” which tries to bring up a talented person who has a dream and hope towards science and technology, grows his/her originality, intellectual curiosity and spirit of inquiry, and supports the nation based on science and technology in the summer vacation since 2001. This paper reports the result of a questionnaire about what kind of the long-term learning effect on the children who participated in “The Whole Experience World” and “Boys and Girls Robot Lectures”. As the conclusion of the study, we can say that the lectures could give the participants who were interested in science and technology more interest. And we could give them the idea of what the study of science and technology is. As a result, we could contribute to the participants' decision of the courses' selection in life.
NASA Astrophysics Data System (ADS)
Rehmat, Abeera Parvaiz
As we progress into the 21st century, higher-order thinking skills and achievement in science and math are essential to meet the educational requirement of STEM careers. Educators need to think of innovative ways to engage and prepare students for current and future challenges while cultivating an interest among students in STEM disciplines. An instructional pedagogy that can capture students' attention, support interdisciplinary STEM practices, and foster higher-order thinking skills is problem-based learning. Problem-based learning embedded in the social constructivist view of teaching and learning (Savery & Duffy, 1995) promotes self-regulated learning that is enhanced through exploration, cooperative social activity, and discourse (Fosnot, 1996). This quasi-experimental mixed methods study was conducted with 98 fourth grade students. The study utilized STEM content assessments, a standardized critical thinking test, STEM attitude survey, PBL questionnaire, and field notes from classroom observations to investigate the impact of problem-based learning on students' content knowledge, critical thinking, and their attitude towards STEM. Subsequently, it explored students' experiences of STEM integration in a PBL environment. The quantitative results revealed a significant difference between groups in regards to their content knowledge, critical thinking skills, and STEM attitude. From the qualitative results, three themes emerged: learning approaches, increased interaction, and design and engineering implementation. From the overall data set, students described the PBL environment to be highly interactive that prompted them to employ multiple approaches, including design and engineering to solve the problem.
NASA Astrophysics Data System (ADS)
Lones, Joe J.; Maltseva, Nadezhda K.; Peterson, Kurt N.
2007-09-01
We seek methods of stimulating young school children to develop an interest in science and engineering through a natural curiosity for the reaction of light. Science learning now begins fully at middle school. Reading skills develop with activity at home and progress through the elementary school curriculum, and in a like manner, a curious interest in science also should begin at that stage of life. Within the ranks of educators, knowledge of optical science needs to be presented to elementary school students in an entertaining manner. One such program used by the authors is Doug Goodman's Optics Demonstrations With the Overhead Projector, co-published by and available from OSA (Optical Society of America) and SPIE-The International Society of Optical Engineering. These demonstrations have been presented in middle and high schools; however, as a special approach, the authors have developed selected Goodman demonstrations as a "Magic Show of Light" for elementary schools. Teachers in the U.S. are overloaded with classroom instruction specifically targeted at improving reading and math scores on the Standard Achievement Test (SAT); therefore, science is getting "short changed" in the education system. For the sake of our future, industry volunteers must come forward to promote interest in science beginning with K-6.
A Seven-Year Longitudinal Study of the Research Outcomes for the CASPER Physics Circus
NASA Astrophysics Data System (ADS)
Carmona-Reyes, Jorge; Land-Zandstra, Anna; Stark, Gary; Tarman, Lisa; Menefee, Matt; Wang, Li; Cook, Mike; Schmoke, Jimmy; Matthews, Lorin; Hyde, Truell
2014-10-01
The CASPER Physics Circus was specifically designed to increase student interest in science, technology, engineering and mathematics (STEM) careers where the current generation of scientists and engineers is rapidly approaching retirement age. The Physics Circus followed Waco and LaVega ISD students starting in the sixth grade and ending in the twelfth grade with this cohort group attending the Physics Circus event on the Baylor University campus, interacting with CASPER graduate students and participating in hands-on instructional activities. The event was designed as an informal learning environment intervention and operated under the discovery, project and guided-inquiry base framework wrapped in a learner-center ideology. Participating students were allowed to experiment with hands-on manipulatives while interacting with physicists, science educators and graduate students in both STEM and science education fields. Professional Development was also a part of the Physics Circus for all science teachers within the cohort. This paper presents the results of a seven-year longitudinal study on the Physics Circus and presents future plans to expand the program's effectiveness and impact.
Seminar for High School Students “Practice on Manufacturing Technology by Advanced Machine Tools”
NASA Astrophysics Data System (ADS)
Marui, Etsuo; Yamawaki, Masao; Taga, Yuken; Omoto, Ken'ichi; Miyaji, Reiji; Ogura, Takahiro; Tsubata, Yoko; Sakai, Toshimasa
The seminar ‘Practice on Manufacturing Technology by Advanced Machine Tools’ for high school students was held at the supporting center for technology education of Gifu University, under the sponsorship of the Japan Society of Mechanical Engineers. This seminar was held, hoping that many students become interested in manufacturing through the experience of the seminar. Operating CNC milling machine and CNC wire-cut electric discharge machine, they made original nameplates. Participants made the program to control CNC machine tools themselves. In this report, some valuable results obtained through such experience are explained.
ERIC Educational Resources Information Center
Fakayode, Sayo O.; Yakubu, Mamudu; Adeyeye, Olasumbo M.; Pollard, David A.; Mohammed, Abdul K.
2014-01-01
Diversification of our country's science talent pool is critically needed and can only be achieved by stimulating interest in science, technology, engineering, and mathematics (STEM) among students from a wide variety of cultural backgrounds. However, motivating, increasing the number, improving retention rates, and graduation rates of…
10 Ways To Take Charge of the Web. Easy Strategies for Internet Smarts.
ERIC Educational Resources Information Center
Wood, Julie M.
2000-01-01
Strategies to help teachers use the Internet effectively include: explore individual interests online; develop acceptable use policies; narrow the playing field; know search engines; use filters; utilize the World Wide Web to lighten the load; teach students to investigate websites effectively; use the Web for professional development; teach…
Heat Loss Experiments: Teach Energy Savings with Cardboard "House"
ERIC Educational Resources Information Center
Roman, Harry T.
2011-01-01
Using two cardboard boxes, a light bulb socket, light bulbs of varying wattage, a thermometer, and some insulation, students can learn some interesting lessons about how heat loss occurs in homes. This article describes practical experiments that work well on units related to energy, sustainable energy, renewables, engineering, and construction.…
Spatial Reasoning in Undergraduate Mathematics: A Case Study
ERIC Educational Resources Information Center
Prugh, Lindsay A.
2012-01-01
The need for spatial thinkers is evident in the growing concerns regarding the performance of U.S. students in mathematics and the lack of interest in spatially-driven fields such as science, technology, engineering, and mathematics. Although the focus on spatial research has fluctuated over decades of educational reform, a platform has been…
Using Mathematics and Engineering to Solve Problems in Secondary Level Biology
ERIC Educational Resources Information Center
Cox, Charles; Reynolds, Birdy; Schunn, Christian; Schuchardt, Anita
2016-01-01
There are strong classroom ties between mathematics and the sciences of physics and chemistry, but those ties seem weaker between mathematics and biology. Practicing biologists realize both that there are interesting mathematics problems in biology, and that viewing classroom biology in the context of another discipline could support students'…
Improving STEM Program Quality in Out-of-School-Time: Tool Development and Validation
ERIC Educational Resources Information Center
Shah, Ashima Mathur; Wylie, Caroline; Gitomer, Drew; Noam, Gil
2018-01-01
In and out-of-school time (OST) experiences are viewed as complementary in contributing to students' interest, engagement, and performance in science, technology, engineering, and mathematics (STEM). While tools exist to measure quality in general afterschool settings and others to measure structured science classroom experiences, there is a need…
Acquiring Software Project Specifications in a Virtual World
ERIC Educational Resources Information Center
Ng, Vincent; Tang, Zoe
2012-01-01
In teaching software engineering, it is often interesting to introduce real life scenarios for students to experience and to learn how to collect information from respective clients. The ideal arrangement is to have some real clients willing to spend time to provide their ideas of a target system through interviews. However, this arrangement…
A Pilot Study of the Epistemological Beliefs of Students in Industrial-Technical Fields
ERIC Educational Resources Information Center
Zinn, Bernd
2012-01-01
An investigation of the epistemological beliefs of apprentices in the commercial engineering sector is of interest for vocational training, both from the point of view of optimising vocational didactic processes as well as in terms of communicating suitable knowledge based beliefs about principles and performance in the commercial engineering…
Introducing Students to Bio-Inspiration and Biomimetic Design: A Workshop Experience
ERIC Educational Resources Information Center
Santulli, Carlo; Langella, Carla
2011-01-01
In recent years, bio-inspired approach to design has gained considerable interest between designers, engineers and end-users. However, there are difficulties in introducing bio-inspiration concepts in the university curriculum in that they involve multi-disciplinary work, which can only possibly be successfully delivered by a team with integrated…
The OSU Water- Resources Seminar Series bm a 3 0-year history, serves as a meeting place for " graduate students and faculty with a common interest in water resource issues but diverse major fields - from sociology to civil engineering to public health to fisheries and wildlife."...
STEM Clubs and Science Fair Competitions: Effects on Post-Secondary Matriculation
ERIC Educational Resources Information Center
Sahin, Alpaslan
2013-01-01
As the global economic competition gets tougher, American policymakers and researchers are interested in finding ways to increase the number of students pursuing STEM (Science, Technology, Engineering, and Mathematics)-related majors in order for the United States to continue its role as an economic powerhouse. A survey study was employed to…
2003-06-21
KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, past and present recipients of college scholarships awarded by the Astronaut Scholarship Foundation stand up to be recognized by the audience. The occasion was the induction ceremony of four Space Shuttle astronauts into the U.S. Astronaut Hall of Fame, including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally K. Ride. The Foundation awards 17 scholarships annually, each worth $8,500, to students interested in studying science and engineering. Since 1984, more than $1.7 million in scholarship funds have been awarded.
United States Air Force High School Apprenticeship Program. 1990 Program Management Report. Volume 4
1991-04-18
NOTES I I& OISThIJTION I AVAILAMJTY STATEMENT 121L ODSTRIIUTION Coal UNLIMITED 11. ABSTRACT (Meuwu 200 WOvMJ >The Air Force High School Apprenticeship ...Program’s purpose is to place outstanding high school students whose interests are in the areas of mathematics , engineering, and science to work in a...Faculty Research Program an Air Force High School Apprenticeship was initiated. This program’s purpose is to place outstanding high school students
The use of hydro-dynamic models in the practice-oriented education of engineering students
NASA Astrophysics Data System (ADS)
Sziebert, J.; Zellei, L.; Tamás, E. A.
2009-04-01
Management tasks related to open channel flows became rather comprehensive and multi-disciplinary, particularly with the predominancy of nature management aspects. The water regime of our rivers has proven to reach extremities more and more frequently in the past decades. In order to develop and analyse alternative solutions and to handle and resolve conflicts of interests, we apply 1D hydro-dynamic models in education for the explanation of processes and to improve practical skills of our students.
NASA Technical Reports Server (NTRS)
Bauer, Robert; Krawczyk, Richard; Gargione, Frank; Kruse, Hans; Vrotsos, Pete (Technical Monitor)
2002-01-01
Now in its ninth year of operations, the Advanced Communications Technology Satellite (ACTS) program has continued, although since May 2000 in a new operations arrangement involving a university based consortium, the Ohio Consortium for Advanced Communications Technology (OCACT), While NASA has concluded its experimental intentions of ACTS, the spacecraft's ongoing viability has permitted its further operations to provide educational opportunities to engineering and communications students interested in satellite operations, as well as a Ka-band test bed for commercial interests in utilizing Kaband space communications. The consortium has reached its first year of operations. This generous opportunity by NASA has already resulted in unique educational opportunities for students in obtaining "hands-on" experience, such as, in satellite attitude control. An update is presented on the spacecraft and consortium operations.
Project-Based Learning in a STEM Academy: Student Engagement and Interest in STEM Careers
NASA Astrophysics Data System (ADS)
Misher, Pamela Henry
This case study explored the utilization of project-based learning (PBL) and how it affected student engagement and interest in STEM careers. Sixty-seven students and nine teachers participated in this case study. Three research questions addressed student engagement, perceptions, and challenges during PBL implementation. This study was designed to understand the experiences teachers and students had when they participated in a PBL environment. This research investigated how to develop a globally skilled workforce utilizing a PBL approach and the challenges teachers encountered during implementation. The survey data and informal focus-group sessions with staff and students were utilized, analyzed, and summarized in order to obtain insight on perceptions, challenges, and implementation of PBL. PBL is an instructional approach that was designed to encourage more engaged learning. This approach was built upon realistic learning activities that stimulated student interest and motivation. This research discovered that PBL did teach content and 21st century skills as students worked collaboratively toward a common goal while responding to a question or problem. This study revealed that rigorous projects were carefully planned to aid students in learning important academic content. This study displayed how PBL allowed students to reflect on their projects and ideas with the opportunity to voice their decisions and findings. This instructional approach provided opportunities for students to investigate and strengthen interest in future STEM careers. The driving force of America's future economy and maintaining the competitive edge will be through more innovation, mainly derived from advances in STEM (Science, Technology, Engineering, and Math) careers. As business and industry leaders stressed the importance of improving STEM education, there continued to be a need to better prepare students to fill STEM-related careers. This research adds to the current body of research knowledge on STEM education in a high school setting and provides guidance on integrating PBL into the academic program.
NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders
NASA Astrophysics Data System (ADS)
Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team
2011-12-01
Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week's end, students present their Concept Study to a "proposal review board" of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. A survey of Planetary Science Summer School alumni administered in summer of 2011 provides information on the program's impact on students' career choices and leadership roles as they pursue their employment in planetary science and related fields. Preliminary results will be discussed during the session. Almost a third of the approximately 450 Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL's Team X Project Design Center.
Optoelectronic lessons as an interdisciplinary lecture
NASA Astrophysics Data System (ADS)
Wu, Dan; Wu, Maocheng; Gu, Jihua
2017-08-01
It is noticed that more and more students in college are passionately curious about the optoelectronic technology, since optoelectronic technology has advanced extremely quickly during the last five years and its applications could be found in a lot of domains. The students who are interested in this area may have different educational backgrounds and their majors cover science, engineering, literature and social science, etc. Our course "History of the Optoelectronic Technology" is set up as an interdisciplinary lecture of the "liberal education" at our university, and is available for all students with different academic backgrounds from any departments of our university. The main purpose of the course is to show the interesting and colorful historical aspects of the development of this technology, so that the students from different departments could absorb the academic nourishment they wanted. There are little complex derivations of physical formulas through the whole lecture, but there are still some difficulties about the lecture which is discussed in this paper.
NASA Astrophysics Data System (ADS)
Saad, Marissa Elizabeth
The United States must provide quality science, technology, engineering, and math (STEM) education in order to maintain a leading role in the global economy. Numerous initiatives have been established across the United States that promote and encourage STEM education within the middle school curriculum. Integrating active learning pedagogy into instructors' lesson plans will prepare the students to think critically - a necessary skill for the twenty first century. This study integrated a three-week long Near Space Balloon project into six eighth grade Earth Science classes from Valley Middle School in Grand Forks, North Dakota. It was hypothesized that after the students designed, constructed, launched, and analyzed their payload experiments, they would have an increased affinity for high school science and math classes. A pre- and post-survey was distributed to the students (n=124), before and after the project to analyze how effective this engineering and space mission was regarding high school STEM interests. The surveys were statistically analyzed, comparing means by the Student's t-Test, specifically the Welch-Satterthwaite test. Female students displayed a 57.1% increase in math and a 63.6% increase in science; male students displayed a 46.6% increase in science and 0% increase in math. Most Likert-scale survey questions experienced no statistically significant change, supporting the null hypothesis. The only survey question that supported the hypothesis was, "I Think Engineers Work Alone," which experienced a 0.24% decrease in student understanding. The results suggest that integrating a three-week long Near Space Balloon project into middle school curricula will not directly influence the students' excitement to pursue STEM subjects and careers. An extensive, yearlong ballooning mission is recommended so that it can be integrated with multiple core subjects. Using such an innovative pedagogy method as with this balloon launch will help students master the scientific process and experience real team collaboration, as they did in this successful mission.
Virginia Demonstration Project Encouraging Middle School Students in Pursuing STEM Careers
NASA Technical Reports Server (NTRS)
Bachman, Jane T.; Kota, Dena H.; Kota, Aaron J.
2011-01-01
Encouraging students at all grade levels to consider pursuing a career in Science, Technology, Engineering, and Mathematics (STEM) fields i s a national focus. In 2005, the Naval Surface Warfare Center, Dahlgren Division (NSWCDD), a Department of Defense laboratory located in Da hlgren, Virginia, began work on the Virginia Demonstration Project (VDP) with the goal of increasing more student interest in STEM educatio n and pursuing STEM careers. This goal continues as the program enters its sixth year. This project has been successful through the partici pation of NSWCDD's scientists and engineers who are trained as mentor s to work in local middle school classrooms throughout the school year, As an extension of the in-class activities, several STEM summer aca demies have been conducted at NSWCDD, These academies are supported by the Navy through the VDP and the STEM Learning Module Project. These projects are part of more extensive outreach efforts offered by the National Defense Education Program (NDEP), sponsored by the Director, Defense Research and Engineering. The focus of this paper is on the types of activities conducted at the summer academy, an overview of the academy planning process, and recommendations to help support a nati onal plan of integrating modeling and simulation-based engineering and science into all grade levels. based upon the lessons learned
Castañeda-Villa, N; Jiménez-González, A; Ortiz-Posadas, M R
2015-08-01
Since 1974, the Bachelor of Biomedical Engineering Program (BBME) is offered at Universidad Autónoma Metropolitana-Iztapalapa, in Mexico City. By design, it must be completed in four years (12 trimesters) and, in the latter three, the senior students work on a BME project, which is done by completing three modules: Project Seminar (PS), Project on BME I and Project on BME II. In the PS module, the student must find a problem of interest in the BME field and suggest a solution through the development of an Engineering Project Proposal (EPP). Currently, the module is being taught by two faculty members of the BBME, who instruct students on how to develop their EPPs and evaluate their progress by reviewing a number of EPPs during the trimester. This generates a huge workload for the module instructors, which makes it necessary to involve more faculty members trimester-to-trimester (i.e. every 12 weeks) and, therefore, to create a set of systematic guidelines that ease the evaluation process for new instructors. Hence, the purpose of this paper is to present an assessment strategy (in the form of an assessment matrix) for the PS module as well as some preliminary results after two trimesters of its implementation.
Experiences Gained Creating a Biophysics Major at a Predominately Undergraduate Institution
NASA Astrophysics Data System (ADS)
Link, Justin; Herbert, Steven
2014-03-01
Xavier University, a liberal arts predominately undergraduate institution (PUI) located in Cincinnati, OH, implemented a Biophysics major in the Department of Physics in spring 2012. The program is built upon foundational physics courses and is unique due to the possible selection of upper-division courses that students elect to take towards their undergraduate degree. A capstone course is offered to bring all prior knowledge in the fundamental sciences together to approach complex problems in biology. Due to the flexibility of the program, it serves students well who are interested in pursuing advanced degrees in Biophysics or Biomedical Engineering. It also offers students interested in the health professions an alternate path towards medical school which can be advantageous in the application process. This session will express some of the advantages and challenges to creating such a program at a liberal arts PUI and discuss the capstone course within the major.
An Introduction to Atmospheric Physics
NASA Astrophysics Data System (ADS)
Andrews, David G.
2000-09-01
This advanced undergraduate textbook clearly details how physics can be used to understand many important aspects of atmospheric behavior. Coverage presents a broad overview of atmospheric physics, including atmospheric thermodynamics, radiative transfer, atmospheric fluid dynamics and elementary atmospheric chemistry. Armed with an understanding of these topics, the interested student will be able to grasp the essential physics behind issues of current concern, such as the enhanced greenhouse effect and associated questions of climate change, the Antarctic ozone hole and global ozone depletion, as well as more familiar processes such as the formation of raindrops and the development of weather systems. This introductory textbook is ideal for advanced undergraduates studying atmospheric physics as part of physics, meteorology or environmental science courses. It will also be useful for graduate students studying atmospheric physics for the first time and for students of applied mathematics, physical chemistry and engineering who have an interest in the atmosphere.
WaterBotics: Pooling Students to STEM
NASA Astrophysics Data System (ADS)
Stambaugh, Beverly
2015-04-01
The STEM workforce of the future is sitting in today's K-12 classrooms, attending summer camps, and participating in after-school programs. How do we attract more youth -- particularly those currently underrepresented in STEM fields such as girls and minorities -- to explore the marvels of engineering and science? How do we entice them to become active participants - not merely witnesses - in the creation of solutions for our global neighborhood's greatest challenges, from environmental cleanup, to safe and efficient energy production, to improvements in healthcare? The WaterBotics program is one vehicle that has demonstrated success in engaging young learners. This underwater robotics program is designed to provide hands-on experiences for middle and high school age youth to engineering design, information technology tools, and science concepts, and to increase awareness and interest in engineering and IT careers. Middle and high school participants demonstrate increased enjoyment in studying science and engineering and interest in STEM careers as a result of WaterBotics. Such results can be seen from a statewide initiative that reached more than 2,600 middle and high school students in New Jersey in 2006-09 where student learning of science concepts and programming increased (McGrath et al, 2009, 2008). These findings provide the impetus to expand the WaterBotics program nationally. The curriculum can be used either in traditional classroom settings or in after-school and summer-camp settings. This problem-based program requires teams of students to work together to design, build, test, and redesign underwater robots, or "bots" made of LEGO® and other components. Students use the NXT and LEGO Mindstorms® software to program their robots to maneuver in the water, thereby gaining valuable experience with computer programming, as well as 21st Century skills. Teams must complete a series of increasingly sophisticated challenges which culminates with a final challenge that integrates learning from the prior challenges. The nature of these challenges allows for easy adaptation to various real-world scenarios for students to engage in, such as developing a submarine for ocean floor study or designing a vehicle to explore and mine the ocean for mineral resources. First-hand experience with WaterBotics curriculum has shown the increased engagement and excitement for STEM. Starting with a peanut butter and jelly sandwich leads to amazing discovery as students work through the engineering design process, sketching and building their LEGO robots and learning the steps to simple programs that allow their robotic creations to complete various tasks. With LEGOs being so easy to use, students can easily revise their design over and over again until it looks and works as it should. Once the students have the opportunity to test their design in the water for the first time, they are hooked. They can see that something they designed and built actually completes the task, even if it takes multiple tries, and they want to try the next challenge.
NASA Astrophysics Data System (ADS)
Butcher, G. J.; Roberts-Harris, D.
2013-12-01
A set of innovative classroom lessons were developed based on informal learning activities in the 'Sensors, Circuits, and Satellites' kit manufactured by littleBits™ Electronics that are designed to lead students through a logical science content storyline about energy using sound and light and fully implements an integrated approach to the three dimensions of the Next Generation of Science Standards (NGSS). This session will illustrate the integration of NGSS into curriculum by deconstructing lesson design to parse out the unique elements of the 3 dimensions of NGSS. We will demonstrate ways in which we have incorporated the NGSS as we believe they were intended. According to the NGSS, 'The real innovation in the NGSS is the requirement that students are required to operate at the intersection of practice, content, and connection. Performance expectations are the right way to integrate the three dimensions. It provides specificity for educators, but it also sets the tone for how science instruction should look in classrooms. (p. 3). The 'Sensors, Circuits, and Satellites' series of lessons accomplishes this by going beyond just focusing on the conceptual knowledge (the disciplinary core ideas) - traditionally approached by mapping lessons to standards. These lessons incorporate the other 2 dimensions -cross-cutting concepts and the 8-practices of Sciences and Engineering-via an authentic and exciting connection to NASA science, thus implementing the NGSS in the way they were designed to be used: practices and content with the crosscutting concepts. When the NGSS are properly integrated, students are engaged in science and engineering content through the coupling of practice, content and connection. In the past, these two dimensions have been separated as distinct entities. We know now that coupling content and practices better demonstrates what goes on in real world science and engineering. We set out to accomplish what is called for in NGSS by integrating these three dimensions to 'provide students with a context for the content of science, how science knowledge is acquired and understood, and how the sciences are connected through concepts that have universal meaning across the disciplines,' which include connections to authentic NASA science (NGSS, pg.2). The NASA context is embedded in the lessons and designed to interest students in Earth and space science. Research suggests that personal interest, experience, and enthusiasm--critical to children's learning of science at school or in other settings-- may also be linked to later educational and career choices. (Framework for K-12 Science Education: Practices, Cross-cutting concepts, Core ideas, p. 28) Students are encouraged to follow their interests, through additional online resources, real world NASA applications, and career connections offering insight to course offerings and possible majors. Combined with the innovative electronic component kit manufactured by littleBits™ Electronics, students are excited and engaged in authentic science and engineering. Sample circuit used in the Sensors, Circuits, and Satellites kit.
HydroViz: evaluation of a web-based tool for improving hydrology education
NASA Astrophysics Data System (ADS)
Habib, E.; Ma, Y.; Williams, D.; Sharif, H.; Hossain, F.
2012-02-01
HydroViz is a web-based, student-centered, highly visual educational tool designed to support active learning in the field of Engineering Hydrology. The development of HydroViz is informed by recent advances in hydrologic data, numerical simulations, visualization and web-based technologies. An evaluation study was conducted to determine the effectiveness of HydroViz, to examine the buy-in of the program, and to identify project components that need to be improved. A total of 182 students from seven freshmen and junior-/senior-level undergraduate classes in three universities participated in the study over the course of two semesters (spring 2010 and fall 2010). Data sources included homework assignments, online surveys, and informal interviews with students. Descriptive statistics were calculated for homework and the survey. Qualitative analysis of students' comments and informal interview notes were also conducted to identify ideas and patterns. HydroViz was effective in facilitating students' learning and understanding of hydrologic concepts and increasing related skills. Students had positive perceptions of various features of HydroViz and they believe that HydroViz fits well in the curriculum. The experience with HydroViz was somewhat effective in raising freshmen civil engineering students' interest in hydrology. In general, HydroViz tend to be more effective with students in junior- or senior-level classes than students in freshmen classes. There does not seem to be obvious differences between different universities. Students identified some issues that can be addressed to improve HydroViz. Future adaptation and expansion studies are under planning to scale-up the application and utility of HydroViz into various hydrology and water-resource engineering curriculum settings.
The Science Training Program for Young Italian Physicists and Engineers at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barzi, Emanuela; Bellettini, Giorgio; Donati, Simone
2015-03-12
Since 1984 Fermilab has been hosting a two-month summer training program for selected undergraduate and graduate Italian students in physics and engineering. Building on the traditional close collaboration between the Italian National Institute of Nuclear Physics (INFN) and Fermilab, the program is supported by INFN, by the DOE and by the Scuola Superiore di Sant`Anna of Pisa (SSSA), and is run by the Cultural Association of Italians at Fermilab (CAIF). This year the University of Pisa has qualified it as a “University of Pisa Summer School”, and will grant successful students with European Supplementary Credits. Physics students join the Fermilabmore » HEP research groups, while engineers join the Particle Physics, Accelerator, Technical, and Computing Divisions. Some students have also been sent to other U.S. laboratories and universities for special trainings. The programs cover topics of great interest for science and for social applications in general, like advanced computing, distributed data analysis, nanoelectronics, particle detectors for earth and space experiments, high precision mechanics, applied superconductivity. In the years, over 350 students have been trained and are now employed in the most diverse fields in Italy, Europe, and the U.S. In addition, the existing Laurea Program in Fermilab Technical Division was extended to the whole laboratory, with presently two students in Master’s thesis programs on neutrino physics and detectors in the Neutrino Division. And finally, a joint venture with the Italian Scientists and Scholars North-America Foundation (ISSNAF) provided this year 4 professional engineers free of charge for Fermilab. More details on all of the above can be found below.« less
Cooperative Learning in Reservoir Simulation Classes: Overcoming Disparate Entry Skills
NASA Astrophysics Data System (ADS)
Awang, Mariyamni
2006-10-01
Reservoir simulation is one of the core courses in the petroleum engineering curriculum and it requires knowledge and skills in three major disciplines, namely programming, numerical methods and reservoir engineering. However, there were often gaps in the students' readiness to undertake the course, even after completing the necessary requirements. The disparate levels of competency of the good and poor students made it difficult to target a certain level. Cooperative learning in the form of projects and peer teaching was designed to address the major concern of disparate entry skills, and at the same time the method used should also succeed in keeping students interest in class, developing communication skills and improving self-learning. Slower and weaker students were expected to benefit from being taught by good students, who were better prepared, and good students would gain deeper comprehension of the subject matter. From evaluations, the approach was considered successful since the overall passing rate was greater than 95% compared to previous years of around 70-80%. It had also succeeded in improving the learning environment in class. Future simulation classes will continue to use the cooperative approach with minor adjustments.