Sample records for engineering systems advanced

  1. A Feasibility Study for Advanced Technology Integration for General Aviation.

    DTIC Science & Technology

    1980-05-01

    154 4.5.9.4 Stratified Charge Reciprocating Engine ..... .. 155 4.5.9.5 Advanced Diesel Engine . ... 158 4.5.9.6 Liquid Cooling ... ........ 159... diesel , rotary combustion engine, advanced reciprocating engine concepts. (7) Powerplant control - integrated controls, microprocessor- based controls...Research Center Topics. (1) GATE (2) Positive displacement engines (a) Advanced reciprocating engines. (b) Alternative engine systems Diesel engines

  2. Toward metabolic engineering in the context of system biology and synthetic biology: advances and prospects.

    PubMed

    Liu, Yanfeng; Shin, Hyun-dong; Li, Jianghua; Liu, Long

    2015-02-01

    Metabolic engineering facilitates the rational development of recombinant bacterial strains for metabolite overproduction. Building on enormous advances in system biology and synthetic biology, novel strategies have been established for multivariate optimization of metabolic networks in ensemble, spatial, and dynamic manners such as modular pathway engineering, compartmentalization metabolic engineering, and metabolic engineering guided by genome-scale metabolic models, in vitro reconstitution, and systems and synthetic biology. Herein, we summarize recent advances in novel metabolic engineering strategies. Combined with advancing kinetic models and synthetic biology tools, more efficient new strategies for improving cellular properties can be established and applied for industrially important biochemical production.

  3. Progress toward an advanced condition monitoring system for reusable rocket engines

    NASA Technical Reports Server (NTRS)

    Maram, J.; Barkhoudarian, S.

    1987-01-01

    A new generation of advanced sensor technologies will allow the direct measurement of critical/degradable rocket engine components' health and the detection of degraded conditions before component deterioration affects engine performance, leading to substantial improvements in reusable engines' operation and maintenance. When combined with a computer-based engine condition-monitoring system, these sensors can furnish a continuously updated data base for the prediction of engine availability and advanced warning of emergent maintenance requirements. Attention is given to the case of a practical turbopump and combustion device diagnostic/prognostic health-monitoring system.

  4. An assessment of advanced technology for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Moore, N.

    1983-01-01

    The potential of advanced fuel utilization and energy conversion technologies to enhance the outlook for the increased use of industrial cogeneration was assessed. The attributes of advanced cogeneration systems that served as the basis for the assessment included their fuel flexibility and potential for low emissions, efficiency of fuel or energy utilization, capital equipment and operating costs, and state of technological development. Over thirty advanced cogeneration systems were evaluated. These cogeneration system options were based on Rankine cycle, gas turbine engine, reciprocating engine, Stirling engine, and fuel cell energy conversion systems. The alternatives for fuel utilization included atmospheric and pressurized fluidized bed combustors, gasifiers, conventional combustion systems, alternative energy sources, and waste heat recovery. Two advanced cogeneration systems with mid-term (3 to 5 year) potential were found to offer low emissions, multi-fuel capability, and a low cost of producing electricity. Both advanced cogeneration systems are based on conventional gas turbine engine/exhaust heat recovery technology; however, they incorporate advanced fuel utilization systems.

  5. Advanced expander test bed engine

    NASA Technical Reports Server (NTRS)

    Mitchell, J. P.

    1992-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  6. The impact of emerging technologies on an advanced supersonic transport

    NASA Technical Reports Server (NTRS)

    Driver, C.; Maglieri, D. J.

    1986-01-01

    The effects of advances in propulsion systems, structure and materials, aerodynamics, and systems on the design and development of supersonic transport aircraft are analyzed. Efficient propulsion systems with variable-cycle engines provide the basis for improved propulsion systems; the propulsion efficienies of supersonic and subsonic engines are compared. Material advances consist of long-life damage-tolerant structures, advanced material development, aeroelastic tailoring, and low-cost fabrication. Improvements in the areas of aerodynamics and systems are examined. The environmental problems caused by engine emissions, airport noise, and sonic boom are studied. The characteristics of the aircraft designed to include these technical advances are described.

  7. Advanced Earth-to-orbit propulsion technology program overview: Impact of civil space technology initiative

    NASA Technical Reports Server (NTRS)

    Stephenson, Frank W., Jr.

    1988-01-01

    The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.

  8. Recent advances in systems metabolic engineering tools and strategies.

    PubMed

    Chae, Tong Un; Choi, So Young; Kim, Je Woong; Ko, Yoo-Sung; Lee, Sang Yup

    2017-10-01

    Metabolic engineering has been playing increasingly important roles in developing microbial cell factories for the production of various chemicals and materials to achieve sustainable chemical industry. Nowadays, many tools and strategies are available for performing systems metabolic engineering that allows systems-level metabolic engineering in more sophisticated and diverse ways by adopting rapidly advancing methodologies and tools of systems biology, synthetic biology and evolutionary engineering. As an outcome, development of more efficient microbial cell factories has become possible. Here, we review recent advances in systems metabolic engineering tools and strategies together with accompanying application examples. In addition, we describe how these tools and strategies work together in simultaneous and synergistic ways to develop novel microbial cell factories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Advanced Natural Gas Reciprocating Engine(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, Edward

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cyclemore » efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.« less

  10. Design description of a microprocessor based Engine Monitoring and Control unit (EMAC) for small turboshaft

    NASA Technical Reports Server (NTRS)

    Baez, A. N.

    1985-01-01

    Research programs have demonstrated that digital electronic controls are more suitable for advanced aircraft/rotorcraft turbine engine systems than hydromechanical controls. Commercially available microprocessors are believed to have the speed and computational capability required for implementing advanced digital control algorithms. Thus, it is desirable to demonstrate that off-the-shelf microprocessors are indeed capable of performing real time control of advanced gas turbine engines. The engine monitoring and control (EMAC) unit was designed and fabricated specifically to meet the requirements of an advanced gas turbine engine control system. The EMAC unit is fully operational in the Army/NASA small turboshaft engine digital research program.

  11. Advanced Reciprocating Engine Systems (ARES): Raising the Bar on Engine Technology with Increased Efficiency and Reduced Emissions, at Attractive Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This is a fact sheet on the U.S. Department of Energy's (DOE) Advanced Reciprocating Engine Systems program (ARES), which is designed to promote separate, but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the United States.

  12. An airline study of advanced technology requirements for advanced high speed commercial engines. 3: Propulsion system requirements

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial transport engine are presented. The results of the phase 3 effort cover the requirements and objectives for future aircraft propulsion systems. These requirements reflect the results of the Task 1 and 2 efforts and serve as a baseline for future evaluations, specification development efforts, contract/purchase agreements, and operational plans for future subsonic commercial engines. This report is divided into five major sections: (1) management objectives for commercial propulsion systems, (2) performance requirements for commercial transport propulsion systems, (3) design criteria for future transport engines, (4) design requirements for powerplant packages, and (5) testing.

  13. Engine health monitoring: An advanced system

    NASA Technical Reports Server (NTRS)

    Dyson, R. J. E.

    1981-01-01

    The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.

  14. A white paper: Operational efficiency. New approaches to future propulsion systems

    NASA Technical Reports Server (NTRS)

    Rhodes, Russel; Wong, George

    1991-01-01

    Advanced launch systems for the next generation of space transportation systems (1995 to 2010) must deliver large payloads (125,000 to 500,000 lbs) to low earth orbit (LEO) at one tenth of today's cost, or 300 to 400 $/lb of payload. This cost represents an order of magnitude reduction from the Titan unmanned vehicle cost of delivering payload to orbit. To achieve this sizable reduction, the operations cost as well as the engine cost must both be lower than current engine system. The Advanced Launch System (ALS) is studying advanced engine designs, such as the Space Transportation Main Engine (STME), which has achieved notable reduction in cost. The results are presented of a current study wherein another level of cost reduction can be achieved by designing the propulsion module utilizing these advanced engines for enhanced operations efficiency and reduced operations cost.

  15. Task 6 -- Advanced turbine systems program conceptual design and product development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-10

    The Allison Engine Company has completed the Task 6 Conceptual Design and Analysis of Phase 2 of the Advanced Turbine System (ATS) contract. At the heart of Allison`s system is an advanced simple cycle gas turbine engine. This engine will incorporate components that ensure the program goals are met. Allison plans to commercialize the ATS demonstrator and market a family of engines incorporating this technology. This family of engines, ranging from 4.9 MW to 12 MW, will be suitable for use in all industrial engine applications, including electric power generation, mechanical drive, and marine propulsion. In the field of electricmore » power generation, the engines will be used for base load, standby, cogeneration, and distributed generation applications.« less

  16. An airline study of advanced technology requirements for advanced high speed commercial transport engines. 2: Engine preliminary design assessment

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial transport engine are presented. The results of the phase 2 study effort cover the following areas: (1) general review of preliminary engine designs suggested for a future aircraft, (2) presentation of a long range view of airline propulsion system objectives and the research programs in noise, pollution, and design which must be undertaken to achieve the goals presented, (3) review of the impact of propulsion system unreliability and unscheduled maintenance on cost of operation, (4) discussion of the reliability and maintainability requirements and guarantees for future engines.

  17. The Cummins advanced turbocompound diesel engine evaluation

    NASA Technical Reports Server (NTRS)

    Hoehne, J. L.; Werner, J. R.

    1982-01-01

    An advanced turbocompound diesel engine program was initiated to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. The individual and cumulative performance gains achieved with the advanced turbocompound engine improvements are presented.

  18. The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering

    NASA Technical Reports Server (NTRS)

    Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen

    2006-01-01

    This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.

  19. Advanced instrumentation for next-generation aerospace propulsion control systems

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, S.; Cross, G. S.; Lorenzo, Carl F.

    1993-01-01

    New control concepts for the next generation of advanced air-breathing and rocket engines and hypersonic combined-cycle propulsion systems are analyzed. The analysis provides a database on the instrumentation technologies for advanced control systems and cross matches the available technologies for each type of engine to the control needs and applications of the other two types of engines. Measurement technologies that are considered to be ready for implementation include optical surface temperature sensors, an isotope wear detector, a brushless torquemeter, a fiberoptic deflectometer, an optical absorption leak detector, the nonintrusive speed sensor, and an ultrasonic triducer. It is concluded that all 30 advanced instrumentation technologies considered can be recommended for further development to meet need of the next generation of jet-, rocket-, and hypersonic-engine control systems.

  20. Single-Lever Power Control for General Aviation Aircraft Promises Improved Efficiency and Simplified Pilot Controls

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1997-01-01

    General aviation research is leading to major advances in internal combustion engine control systems for single-engine, single-pilot aircraft. These advances promise to increase engine performance and fuel efficiency while substantially reducing pilot workload and increasing flight safety. One such advance is a single-lever power control (SLPC) system, a welcome departure from older, less user-friendly, multilever engine control systems. The benefits of using single-lever power controls for general aviation aircraft are improved flight safety through advanced engine diagnostics, simplified powerplant operations, increased time between overhauls, and cost-effective technology (extends fuel burn and reduces overhaul costs). The single-lever concept has proven to be so effective in preliminary studies that general aviation manufacturers are making plans to retrofit current aircraft with the technology and are incorporating it in designs for future aircraft.

  1. An airline study of advanced technology requirements for advanced high speed commercial transport engines. 1: Engine design study assessment

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial tranport engine are presented. The results of the phase 1 study effort cover the following areas: (1) statement of an airline's major objectives for future transport engines, (2) airline's method of evaluating engine proposals, (3) description of an optimum engine for a long range subsonic commercial transport including installation and critical design features, (4) discussion of engine performance problems and experience with performance degradation, (5) trends in engine and pod prices with increasing technology and objectives for the future, (6) discussion of the research objectives for composites, reversers, advanced components, engine control systems, and devices to reduce the impact of engine stall, and (7) discussion of the airline objectives for noise and pollution reduction.

  2. Energy and cost saving results for advanced technology systems from the Cogeneration Technology Alternatives Study (CTAS)

    NASA Technical Reports Server (NTRS)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.

  3. Modernizing Systems and Software: How Evolving Trends in Future Trends in Systems and Software Technology Bode Well for Advancing the Precision of Technology

    DTIC Science & Technology

    2009-04-23

    of Code Need for increased functionality will be a forcing function to bring the fields of software and systems engineering... of Software-Intensive Systems is Increasing 3 How Evolving Trends in Systems and Software Technologies Bode Well for Advancing the Precision of ...Engineering in Continued Partnership 4 How Evolving Trends in Systems and Software Technologies Bode Well for Advancing the

  4. A preliminary design and analysis of an advanced heat-rejection system for an extreme altitude advanced variable cycle diesel engine installed in a high-altitude advanced research platform

    NASA Technical Reports Server (NTRS)

    Johnston, Richard P.

    1992-01-01

    Satellite surveillance in such areas as the Antarctic indicates that from time to time concentration of ozone grows and shrinks. An effort to obtain useful atmospheric data for determining the causes of ozone depletion would require a flight capable of reaching altitudes of at least 100,000 ft and flying subsonically during the sampling portion of the mission. A study of a heat rejection system for an advanced variable cycle diesel (AVCD) engine was conducted. The engine was installed in an extreme altitude, high altitude advanced research platform. Results indicate that the waste heat from an AVCD engine propulsion system can be rejected at the maximum cruise altitude of 120,000 ft. Fifteen performance points, reflecting the behavior of the engine as the vehicle proceeded through the mission, were used to characterize the heat exchanger operation. That portion of the study is described in a appendix titled, 'A Detailed Study of the Heat Rejection System for an Extreme Altitude Atmospheric Sampling Aircraft,' by a consultant, Mr. James Bourne, Lytron, Incorporated.

  5. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Riccardi, D. P.; Mitchell, J. C.

    1993-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.

  6. Advanced orbit transfer vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Cathcart, J. A.; Cooper, T. W.; Corringrato, R. M.; Cronau, S. T.; Forgie, S. C.; Harder, M. J.; Mcallister, J. G.; Rudman, T. J.; Stoneback, V. W.

    1985-01-01

    A reuseable orbit transfer vehicle concept was defined and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine were presented. The major characteristics of the vehicle preliminary design include a low lift to drag aerocapture capability, main propulsion system failure criteria of fail operational/fail safe, and either two main engines with an attitude control system for backup or three main engines to meet the failure criteria. A maintenance and servicing approach was also established for the advanced vehicle and engine concepts. Design tradeoff study conclusions were based on the consideration of reliability, performance, life cycle costs, and mission flexibility.

  7. Reusable rocket engine intelligent control system framework design, phase 2

    NASA Technical Reports Server (NTRS)

    Nemeth, ED; Anderson, Ron; Ols, Joe; Olsasky, Mark

    1991-01-01

    Elements of an advanced functional framework for reusable rocket engine propulsion system control are presented for the Space Shuttle Main Engine (SSME) demonstration case. Functional elements of the baseline functional framework are defined in detail. The SSME failure modes are evaluated and specific failure modes identified for inclusion in the advanced functional framework diagnostic system. Active control of the SSME start transient is investigated, leading to the identification of a promising approach to mitigating start transient excursions. Key elements of the functional framework are simulated and demonstration cases are provided. Finally, the advanced function framework for control of reusable rocket engines is presented.

  8. Cryogenic gear technology for an orbital transfer vehicle engine and tester design

    NASA Technical Reports Server (NTRS)

    Calandra, M.; Duncan, G.

    1986-01-01

    Technology available for gears used in advanced Orbital Transfer Vehicle rocket engines and the design of a cryogenic adapted tester used for evaluating advanced gears are presented. The only high-speed, unlubricated gears currently in cryogenic service are used in the RL10 rocket engine turbomachinery. Advanced rocket engine gear systems experience operational load conditions and rotational speed that are beyond current experience levels. The work under this task consisted of a technology assessment and requirements definition followed by design of a self-contained portable cryogenic adapted gear test rig system.

  9. Secondary electric power generation with minimum engine bleed

    NASA Technical Reports Server (NTRS)

    Tagge, G. E.

    1983-01-01

    Secondary electric power generation with minimum engine bleed is discussed. Present and future jet engine systems are compared. The role of auxiliary power units is evaluated. Details of secondary electric power generation systems with and without auxiliary power units are given. Advanced bleed systems are compared with minimum bleed systems. A cost model of ownership is given. The difference in the cost of ownership between a minimum bleed system and an advanced bleed system is given.

  10. Development and Property Evaluation of Selected HfO2-Silicon and Rare Earth-Silicon Based Bond Coats and Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2016-01-01

    Ceramic environmental barrier coatings (EBC) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiC/SiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si and rare earth Si based EBC bond coat EBC systems for SiC/SiC CMC combustor and turbine airfoil applications are investigated. High temperature properties of the advanced EBC systems, including the strength, fracture toughness, creep and oxidation resistance have been studied and summarized. The advanced NASA EBC systems showed some promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

  11. Advanced rocket propulsion

    NASA Technical Reports Server (NTRS)

    Obrien, Charles J.

    1993-01-01

    Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

  12. Dual nozzle design update. [on liquid rocket engines for advanced earth-to-orbit transportation systems

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.

    1982-01-01

    Dual-nozzle engines, such as the dual-throat and dual-expander engines, are being evaluated for advanced earth-to-orbit transportation systems. Potential derivatives of the Space Shuttle and completely new vehicles might benefit from these advanced engines. In this paper, progress in the design of single-fuel and dual-fuel dual-nozzle engines is summarized. Dual-nozzle engines include those burning propellants such as LOX/RP-1/LH2, LOX/LC3H8/LH2, LOX/LCH4/LH2, LOX/LH2/LH2, LOX/LCH4/LCH4, LOX/LC3H8/C3H8 and N2O4/MMH/LH2. Engine data are applicable for thrust levels from 200,000 through 670,000 lbF. The results indicate that several versions of these engines utilize state-of-the-art technology and that even advanced versions of these engines do not require a major breakthrough in technology.

  13. Energy Efficient Engine (E3) combustion system component technology performance report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) combustor effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent of this effort was to evolve a design that meets the stringent emissions and life goals of the E3, as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this effort was incorporated into the engine combustion hardware design. The advanced engine combustion system was then evaluated in component testing to verify the design intent. What evolved from this effort was an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3.

  14. Control Design for an Advanced Geared Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Litt, Jonathan S.

    2017-01-01

    This paper describes the design process for the control system of an advanced geared turbofan engine. This process is applied to a simulation that is representative of a 30,000 pound-force thrust class concept engine with two main spools, ultra-high bypass ratio, and a variable area fan nozzle. Control system requirements constrain the non-linear engine model as it operates throughout its flight envelope of sea level to 40,000 feet and from 0 to 0.8 Mach. The purpose of this paper is to review the engine control design process for an advanced turbofan engine configuration. The control architecture selected for this project was developed from literature and reflects a configuration that utilizes a proportional integral controller with sets of limiters that enable the engine to operate safely throughout its flight envelope. Simulation results show the overall system meets performance requirements without exceeding operational limits.

  15. The Systems Engineering Process for Human Support Technology Development

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is designing and optimizing systems. This paper reviews the systems engineering process and indicates how it can be applied in the development of advanced human support systems. Systems engineering develops the performance requirements, subsystem specifications, and detailed designs needed to construct a desired system. Systems design is difficult, requiring both art and science and balancing human and technical considerations. The essential systems engineering activity is trading off and compromising between competing objectives such as performance and cost, schedule and risk. Systems engineering is not a complete independent process. It usually supports a system development project. This review emphasizes the NASA project management process as described in NASA Procedural Requirement (NPR) 7120.5B. The process is a top down phased approach that includes the most fundamental activities of systems engineering - requirements definition, systems analysis, and design. NPR 7120.5B also requires projects to perform the engineering analyses needed to ensure that the system will operate correctly with regard to reliability, safety, risk, cost, and human factors. We review the system development project process, the standard systems engineering design methodology, and some of the specialized systems analysis techniques. We will discuss how they could apply to advanced human support systems development. The purpose of advanced systems development is not directly to supply human space flight hardware, but rather to provide superior candidate systems that will be selected for implementation by future missions. The most direct application of systems engineering is in guiding the development of prototype and flight experiment hardware. However, anticipatory systems engineering of possible future flight systems would be useful in identifying the most promising development projects.

  16. Space Launch System NASA Research Announcement Advanced Booster Engineering Demonstration and/or Risk Reduction

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; Craig, Kellie D.

    2011-01-01

    The intent of the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort is to: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Key Concepts (1) Offerors must propose an Advanced Booster concept that meets SLS Program requirements (2) Engineering Demonstration and/or Risk Reduction must relate to the Offeror s Advanced Booster concept (3) NASA Research Announcement (NRA) will not be prescriptive in defining Engineering Demonstration and/or Risk Reduction

  17. Emerging interdisciplinary fields in the coming intelligence/convergence era

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2012-09-01

    Dramatic advances are in the horizon resulting from rapid pace of development of several technologies, including, computing, communication, mobile, robotic, and interactive technologies. These advances, along with the trend towards convergence of traditional engineering disciplines with physical, life and other science disciplines will result in the development of new interdisciplinary fields, as well as in new paradigms for engineering practice in the coming intelligence/convergence era (post-information age). The interdisciplinary fields include Cyber Engineering, Living Systems Engineering, Biomechatronics/Robotics Engineering, Knowledge Engineering, Emergent/Complexity Engineering, and Multiscale Systems engineering. The paper identifies some of the characteristics of the intelligence/convergence era, gives broad definition of convergence, describes some of the emerging interdisciplinary fields, and lists some of the academic and other organizations working in these disciplines. The need is described for establishing a Hierarchical Cyber-Physical Ecosystem for facilitating interdisciplinary collaborations, and accelerating development of skilled workforce in the new fields. The major components of the ecosystem are listed. The new interdisciplinary fields will yield critical advances in engineering practice, and help in addressing future challenges in broad array of sectors, from manufacturing to energy, transportation, climate, and healthcare. They will also enable building large future complex adaptive systems-of-systems, such as intelligent multimodal transportation systems, optimized multi-energy systems, intelligent disaster prevention systems, and smart cities.

  18. Advancing the practice of systems engineering at JPL

    NASA Technical Reports Server (NTRS)

    Jansma, Patti A.; Jones, Ross M.

    2006-01-01

    In FY 2004, JPL launched an initiative to improve the way it practices systems engineering. The Lab's senior management formed the Systems Engineering Advancement (SEA) Project in order to "significantly advance the practice and organizational capabilities of systems engineering at JPL on flight projects and ground support tasks." The scope of the SEA Project includes the systems engineering work performed in all three dimensions of a program, project, or task: 1. the full life-cycle, i.e., concept through end of operations 2. the full depth, i.e., Program, Project, System, Subsystem, Element (SE Levels 1 to 5) 3. the full technical scope, e.g., the flight, ground and launch systems, avionics, power, propulsion, telecommunications, thermal, etc. The initial focus of their efforts defined the following basic systems engineering functions at JPL: systems architecture, requirements management, interface definition, technical resource management, system design and analysis, system verification and validation, risk management, technical peer reviews, design process management and systems engineering task management, They also developed a list of highly valued personal behaviors of systems engineers, and are working to inculcate those behaviors into members of their systems engineering community. The SEA Project is developing products, services, and training to support managers and practitioners throughout the entire system lifecycle. As these are developed, each one needs to be systematically deployed. Hence, the SEA Project developed a deployment process that includes four aspects: infrastructure and operations, communication and outreach, education and training, and consulting support. In addition, the SEA Project has taken a proactive approach to organizational change management and customer relationship management - both concepts and approaches not usually invoked in an engineering environment. This paper'3 describes JPL's approach to advancing the practice of systems engineering at the Lab. It describes the general approach used and how they addressed the three key aspects of change: people, process and technology. It highlights a list of highly valued personal behaviors of systems engineers, discusses the various products, services and training that were developed, describes the deployment approach used, and concludes with several lessons learned.

  19. National space transportation systems planning

    NASA Technical Reports Server (NTRS)

    Lucas, W. R.

    1985-01-01

    In the fall of 1984, the DOD and NASA had been asked to identify launch vehicle technologies which could be made available for use in 1995 to 2010. The results of the studies of the two groups were integrated, and a consumer report, dated December 1984, was forwarded to the President. Aspects of mission planning and analysis are discussed along with a combined mission model, future launch system requirements, a launch vehicle planning background, Shuttle derivative vehicle program options, payload modularization, launch vehicle technology implications, a new engine program for the mid-1990's. Future launch systems goals are to achieve an order of magnitude reduction in future launch cost and meet the lift requirements and launch rates. Attention is given to an advanced cryogenic engine, advanced LOX/hydrocarbon engine, advanced power systems, aerodynamics/flight mechanics, reentry/recovery systems, avionics/software, advanced manufacturing techniques, autonomous ground and mission operations, advanced structures/materials, and air breathing propulsion.

  20. Evaluation of Erosion Resistance of Advanced Turbine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Kuczmarski, Maria A.; Miller, Robert A.; Cuy, Michael D.

    2007-01-01

    The erosion resistant turbine thermal barrier coating system is critical to aircraft engine performance and durability. By demonstrating advanced turbine material testing capabilities, we will be able to facilitate the critical turbine coating and subcomponent development and help establish advanced erosion-resistant turbine airfoil thermal barrier coatings design tools. The objective of this work is to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and/or thermal gradient environments, validating advanced turbine airfoil thermal barrier coating systems based on nano-tetragonal phase toughening design approaches.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitney, S.E.

    This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulationmore » for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.« less

  2. Advanced nozzle and engine components test facility

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Delroso, Richard L.; Delrosario, Ruben

    1992-01-01

    A test facility for conducting scaled advanced nozzle and engine component research is described. The CE-22 test facility, located in the Engine Research Building of the NASA Lewis Research Center, contains many systems for the economical testing of advanced scale-model nozzles and engine components. The combustion air and altitude exhaust systems are described. Combustion air can be supplied to a model up to 40 psig for primary air flow, and 40, 125, and 450 psig for secondary air flow. Altitude exhaust can be simulated up to 48,000 ft, or the exhaust can be atmospheric. Descriptions of the multiaxis thrust stand, a color schlieren flow visualization system used for qualitative flow analysis, a labyrinth flow measurement system, a data acquisition system, and auxiliary systems are discussed. Model recommended design information and temperature and pressure instrumentation recommendations are included.

  3. SSME Advanced Health Management: Project Overview

    NASA Technical Reports Server (NTRS)

    Plowden, John

    2000-01-01

    This document is the viewgraphs from a presentation concerning the development of the Health Management system for the Space Shuttle Main Engine (SSME). It reviews the historical background of the SSME Advanced Health Management effort through the present final Health management configuration. The document includes reviews of three subsystems to the Advanced Health Management System: (1) the Real-Time Vibration Monitor System, (2) the Linear Engine Model, and (3) the Optical Plume Anomaly Detection system.

  4. Orbit Transfer Vehicle (OTV) advanced expander cycle engine point design study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The objective of the study was to generate the system design of a performance-optimized, advanced LOX/hydrogen expander cycle space engine. The engine requirements are summarized, and the development and operational experience with the expander cycle RL10 engine were reviewed. The engine development program is outlined.

  5. Study of advanced rotary combustion engines for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  6. An advanced concept secondary power systems study for an advanced transport technology aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The application of advanced technology to the design of an integrated secondary power system for future near-sonic long-range transports was investigated. The study showed that the highest payoff is achieved by utilizing secondary power equipment that contributes to minimum cruise drag. This is best accomplished by the use of the dedicated auxiliary power unit concept (inflight APU) as the prime power source for an airplane with a body-mounted engine or by the use of the internal engine generator concept (electrical power extraction from the propulsion engine) for an airplane with a wing-pod-mounted engine.

  7. Health management and controls for Earth-to-orbit propulsion systems

    NASA Astrophysics Data System (ADS)

    Bickford, R. L.

    1995-03-01

    Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.

  8. Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.

  9. Engine Structures Modeling Software System (ESMOSS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Engine Structures Modeling Software System (ESMOSS) is the development of a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components, and substructures which can be transferred to finite element analysis programs such as NASTRAN. The NASA Lewis Engine Structures Program is concerned with the development of technology for the rational structural design and analysis of advanced gas turbine engines with emphasis on advanced structural analysis, structural dynamics, structural aspects of aeroelasticity, and life prediction. Fundamental and common to all of these developments is the need for geometric and analytical model descriptions at various engine assembly levels which are generated using ESMOSS.

  10. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions.

    PubMed

    Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    By combining advanced omics technology and computational modeling, systems biologists have identified and inferred thousands of regulatory events and system-wide interactions of the bacterium Bacillus subtilis, which is commonly used both in the laboratory and in industry. This dissection of the multiple layers of regulatory networks and their interactions has provided invaluable information for unraveling regulatory mechanisms and guiding metabolic engineering. In this review, we discuss recent advances in the systems biology and metabolic engineering of B. subtilis and highlight current gaps in our understanding of global metabolism and global pathway engineering in this organism. We also propose future perspectives in the systems biology of B. subtilis and suggest ways that this approach can be used to guide metabolic engineering. Specifically, although hundreds of regulatory events have been identified or inferred via systems biology approaches, systematic investigation of the functionality of these events in vivo has lagged, thereby preventing the elucidation of regulatory mechanisms and further rational pathway engineering. In metabolic engineering, ignoring the engineering of multilayer regulation hinders metabolic flux redistribution. Post-translational engineering, allosteric engineering, and dynamic pathway analyses and control will also contribute to the modulation and control of the metabolism of engineered B. subtilis, ultimately producing the desired cellular traits. We hope this review will aid metabolic engineers in making full use of available systems biology datasets and approaches for the design and perfection of microbial cell factories through global metabolism optimization. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Auxiliary propulsion technology for advanced Earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1987-01-01

    The payload which can be delivered to orbit by advanced Earth-to-Orbit vehicles is significantly increased by advanced subsystem technology. Any weight which can be saved by advanced subsystem design can be converted to payload at Main Engine Cut Off (MECO) given the same launch vehicle performance. The auxiliary propulsion subsystem and the impetus for the current hydrogen/oxygen technology program is examined. A review of the auxiliary propulsion requirements of advanced Earth-to-Orbit (ETO) vehicles and their proposed missions is given first. Then the performance benefits of hydrogen/oxygen auxiliary propulsion are illustrated using current shuttle data. The proposed auxiliary propulsion subsystem implementation includes liquid hydrogen/liquid oxygen (LH2/LO2) primary Reaction Control System (RCS) engines and gaseous hydrogen/gaseous oxygen (GH2/GO2) vernier RCS engines. A distribution system for the liquid cryogens to the engines is outlined. The possibility of providing one dual-phase engine that can operate on either liquid or gaseous propellants is being explored, as well as the simultaneous firing of redundant primary RCS thrusters to provide Orbital Maneuvering System (OMS) level impulse. Scavenging of propellants from integral main engine tankage is proposed to utilize main engine tank residuals and to combine launch vehicle and subsystem reserves.

  12. Evaluation of advanced propulsion options for the next manned transportation system: Propulsion evolution study

    NASA Technical Reports Server (NTRS)

    Spears, L. T.; Kramer, R. D.

    1990-01-01

    The objectives were to examine launch vehicle applications and propulsion requirements for potential future manned space transportation systems and to support planning toward the evolution of Space Shuttle Main Engine (SSME) and Space Transportation Main Engine (STME) engines beyond their current or initial launch vehicle applications. As a basis for examinations of potential future manned launch vehicle applications, we used three classes of manned space transportation concepts currently under study: Space Transportation System Evolution, Personal Launch System (PLS), and Advanced Manned Launch System (AMLS). Tasks included studies of launch vehicle applications and requirements for hydrogen-oxygen rocket engines; the development of suggestions for STME engine evolution beyond the mid-1990's; the development of suggestions for STME evolution beyond the Advanced Launch System (ALS) application; the study of booster propulsion options, including LOX-Hydrocarbon options; the analysis of the prospects and requirements for utilization of a single engine configuration over the full range of vehicle applications, including manned vehicles plus ALS and Shuttle C; and a brief review of on-going and planned LOX-Hydrogen propulsion technology activities.

  13. System identification of jet engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, N.

    2000-01-01

    System identification plays an important role in advanced control systems for jet engines, in which controls are performed adaptively using data from the actual engine and the identified engine. An identification technique for jet engine using the Constant Gain Extended Kalman Filter (CGEKF) is described. The filter is constructed for a two-spool turbofan engine. The CGEKF filter developed here can recognize parameter change in engine components and estimate unmeasurable variables over whole flight conditions. These capabilities are useful for an advanced Full Authority Digital Electric Control (FADEC). Effects of measurement noise and bias, effects of operating point and unpredicted performancemore » change are discussed. Some experimental results using the actual engine are shown to evaluate the effectiveness of CGEKF filter.« less

  14. Engineering in complex systems.

    PubMed

    Bujara, Matthias; Panke, Sven

    2010-10-01

    The implementation of the engineering design cycle of measure, model, manipulate would drastically enhance the success rate of biotechnological designs. Recent progress for the three elements suggests that the scope of the traditional engineering paradigm in biotechnology is expanding. Substantial advances were made in dynamic in vivo analysis of metabolism, which is essential for the accurate prediction of metabolic pathway behavior. Novel methods that require variable degrees of system knowledge facilitate metabolic system manipulation. The combinatorial testing of pre-characterized parts is particularly promising, because it can profit from automation and limits the search space. Finally, conceptual advances in orthogonalizing cells should enhance the reliability of engineering designs in the future. Coupled to improved in silico models of metabolism, these advances should allow a more rational design of metabolic systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. A review of NASA's propulsion programs for aviation

    NASA Technical Reports Server (NTRS)

    Stewart, W. L.; Johnson, H. W.; Weber, R. J.

    1978-01-01

    A review of five NASA engine-oriented propulsion programs of major importance to civil aviation are presented and discussed. Included are programs directed at exploring propulsion system concepts for (1) energy conservation subsonic aircraft (improved current turbofans, advanced turbofans, and advanced turboprops); (2) supersonic cruise aircraft (variable cycle engines); (3) general aviation aircraft (improved reciprocating engines and small gas turbines); (4) powered lift aircraft (advanced turbofans); and (5) advanced rotorcraft.

  16. The Evolution of Technology in the Deep Space Network: A History of the Advanced Systems Program

    NASA Technical Reports Server (NTRS)

    Layland, J. W.; Rauch, L. L.

    1994-01-01

    The Deep Space Network (DSN) of 1995 might be described as the evolutionary result of 45 years of deep space communication and navigation, together with the synergistic activities of radio science and radar and radio astronomy. But the evolution of the DSN did not just happen - it was carefully planned and created. The evolution of the DSN has been an ongoing engineering activity, and engineering is a process of problem solving under constraints, one of which is technology. In turn, technology is the knowledge base providing the capability and experience for practical application of various areas of science, when needed. The best engineering solutions result from optimization under the fewest constraints, and if technology needs are well anticipated (ready when needed), then the most effective engineering solution is possible. Throughout the history of the DSN it has been the goal and function of DSN advanced technology development (designated the DSN Advanced Systems Program from 1963 through 1994) to supply the technology needs of the DSN when needed, and thus to minimize this constraint on DSN engineering. Technology often takes considerable time to develop, and when that happens, it is important to have anticipated engineering needs; at times, this anticipation has been by as much as 15 years. Also, on a number of occasions, mission malfunctions or emergencies have resulted in unplanned needs for technology that has, in fact, been available from the reservoir of advanced technology provided by the DSN Advanced Systems Program. Sometimes, even DSN engineering personnel fail to realize that the organization of JPL permits an overlap of DSN advanced technology activities with subsequent engineering activities. This can result in the flow of advanced technology into DSN engineering in a natural and sometimes almost unnoticed way. In the following pages, we will explore some of the many contributions of the DSN Advanced Systems Program that were provided to DSN Engineering and Implementation. These contributions are, for the most part, unique capabilities that have met the requirements of flight projects for 45 years. These unique capabilities include not only the world's best deep-space communications system, but also outstanding competency in the fields of radio metric measurement, radar and radio astronomy, and radio science.

  17. Layered Systems Engineering Engines

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  18. IECEC '84: Advanced energy systems - Their role in our future; Proceedings of the Nineteenth Intersociety Energy Conversion Engineering Conference, San Francisco, CA, August 19-24, 1984. Volumes 1, 2, 3, & 4

    NASA Astrophysics Data System (ADS)

    Among the topics discussed are: advanced energy conversion concepts, power sources for aircraft and spacecraft, alternate fuels for industrial and vehicular applications, biomass-derived fuels, electric vehicle design and development status, electrochemical energy conversion systems, electric power generation cycles, energy-efficient industrial processes, and energy policy and system analysis. Also discussed are advanced methods for energy storage and transport, fossil fuel conversion systems, geothermal energy system development and performance, novel and advanced heat engines, hydrogen fuel-based energy systems, MHD technology development status, nuclear energy systems, solar energy conversion methods, advanced heating and cooling systems, Stirling cycle device development, terrestrial photovoltaic systems, and thermoelectric and thermionic systems.

  19. Program (systems) engineering

    NASA Technical Reports Server (NTRS)

    Baroff, Lynn E.; Easter, Robert W.; Pomphrey, Richard B.

    2004-01-01

    Program Systems Engineering applies the principles of Systems Engineering at the program level. Space programs are composed of interrelated elements which can include collections of projects, advanced technologies, information systems, etc. Some program elements are outside traditional engineering's physical systems, such as education and public outreach, public relations, resource flow, and interactions within the political environments.

  20. Advanced supersonic propulsion study. [with emphasis on noise level reduction

    NASA Technical Reports Server (NTRS)

    Sabatella, J. A. (Editor)

    1974-01-01

    A study was conducted to determine the promising propulsion systems for advanced supersonic transport application, and to identify the critical propulsion technology requirements. It is shown that noise constraints have a major effect on the selection of the various engine types and cycle parameters. Several promising advanced propulsion systems were identified which show the potential of achieving lower levels of sideline jet noise than the first generation supersonic transport systems. The non-afterburning turbojet engine, utilizing a very high level of jet suppression, shows the potential to achieve FAR 36 noise level. The duct-heating turbofan with a low level of jet suppression is the most attractive engine for noise levels from FAR 36 to FAR 36 minus 5 EPNdb, and some series/parallel variable cycle engines show the potential of achieving noise levels down to FAR 36 minus 10 EPNdb with moderate additional penalty. The study also shows that an advanced supersonic commercial transport would benefit appreciably from advanced propulsion technology. The critical propulsion technology needed for a viable supersonic propulsion system, and the required specific propulsion technology programs are outlined.

  1. Energy Efficient Engine combustor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) Combustor Development effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent was to evolve a design which meets the stringent emissions and life goals of the E3 as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this development effort will be incorporated into the engine combustion system hardware design. This advanced engine combustion system will then be evaluated in component testing to verify the design intent. What is evolving from this development effort is an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3. Fuel nozzle, diffuser, starting, and emissions design studies are discussed.

  2. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  3. Thermal and Environmental Barrier Coating Development for Advanced Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Fox, Dennis S.

    2008-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. Advanced TEBCs that have significantly lower thermal conductivity, better thermal stability and higher toughness than current coatings will be beneficial for future low emission and high performance propulsion engine systems. In this paper, ceramic coating design and testing considerations will be described for turbine engine high temperature and high-heat-flux applications. Thermal barrier coatings for metallic turbine airfoils and thermal/environmental barrier coatings for SiC/SiC ceramic matrix composite (CMC) components for future supersonic aircraft propulsion engines will be emphasized. Further coating capability and durability improvements for the engine hot-section component applications can be expected by utilizing advanced modeling and design tools.

  4. Advanced component technologies for energy-efficient turbofan engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.

    1980-01-01

    The paper reviews NASA's Energy Efficient Engine Project which was initiated to provide the advanced technology base for a new generation of fuel-conservative engines for introduction into airline service by the late 1980s. Efforts in this project are directed at advancing engine component and systems technologies to a point of demonstrating technology-readiness by 1984. Early results indicate high promise in achieving most of the goals established in the project.

  5. Performance improvements of a highly integrated digital electronic control system for an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.; Burcham, F. W., Jr.; Andries, M. G.; Kelly, J. B.

    1985-01-01

    The NASA highly integrated digital electronic control (HIDEC) program is structured to conduct flight research into the benefits of integrating an aircraft flight control system with the engine control system. A brief description of the HIDEC system installed on an F-15 aircraft is provided. The adaptive engine control system (ADECS) mode is described in detail, together with simulation results and analyses that show the significant excess thrust improvements achievable with the ADECS mode. It was found that this increased thrust capability is accompanied by reduced fan stall margin and can be realized during flight conditions where engine face distortion is low. The results of analyses and simulations also show that engine thrust response is improved and that fuel consumption can be reduced. Although the performance benefits that accrue because of airframe and engine control integration are being demonstrated on an F-15 aircraft, the principles are applicable to advanced aircraft such as the advanced tactical fighter and advanced tactical aircraft.

  6. Engineered Polymers for Advanced Drug Delivery

    PubMed Central

    Kim, Sungwon; Kim, Jong-Ho; Jeon, Oju; Kwon, Ick Chan; Park, Kinam

    2009-01-01

    Engineered polymers have been utilized for developing advanced drug delivery systems. The development of such polymers has caused advances in polymer chemistry, which, in turn, has resulted in smart polymers that can respond to changes in environmental condition, such as temperature, pH, and biomolecules. The responses vary widely from swelling/deswelling to degradation. Drug-polymer conjugates and drug-containing nano/micro-particles have been used for drug targeting. Engineered polymers and polymeric systems have also been used in new areas, such as molecular imaging as well as in nanotechnology. This review examines the engineered polymers that have been used as traditional drug delivery and as more recent applications in nanotechnology. PMID:18977434

  7. Benefits of advanced technology in industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Barna, G. J.; Burns, R. K.

    1979-01-01

    This broad study is aimed at identifying the most attractive advanced energy conversion systems for industrial cogeneration for the 1985 to 2000 time period and assessing the advantages of advanced technology systems compared to using today's commercially available technology. Energy conversion systems being studied include those using steam turbines, open cycle gas turbines, combined cycles, diesel engines, Stirling engines, closed cycle gas turbines, phosphoric acid and molten carbonate fuel cells and thermionics. Specific cases using today's commercially available technology are being included to serve as a baseline for assessing the advantages of advanced technology.

  8. Large space antennas: A systems analysis case history

    NASA Technical Reports Server (NTRS)

    Keafer, Lloyd S. (Compiler); Lovelace, U. M. (Compiler)

    1987-01-01

    The value of systems analysis and engineering is aptly demonstrated by the work on Large Space Antennas (LSA) by the NASA Langley Spacecraft Analysis Branch. This work was accomplished over the last half-decade by augmenting traditional system engineering, analysis, and design techniques with computer-aided engineering (CAE) techniques using the Langley-developed Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) system. This report chronicles the research highlights and special systems analyses that focused the LSA work on deployable truss antennas. It notes developmental trends toward greater use of CAE techniques in their design and analysis. A look to the future envisions the application of improved systems analysis capabilities to advanced space systems such as an advanced space station or to lunar and Martian missions and human habitats.

  9. Durability and CMAS Resistance of Advanced Environmental Barrier Coatings Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. This paper will emphasize advanced environmental barrier coating developments for SiCSiC turbine airfoil components, by using advanced coating compositions and processing, in conjunction with mechanical and environment testing and durability validations. The coating-CMC degradations and durability in the laboratory simulated engine fatigue-creep and complex operating environments are being addressed. The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will be discussed. The results help understand the advanced EBC-CMC system performance, aiming at the durability improvements of more robust, prime-reliant environmental barrier coatings for successful applications of the component technologies and lifing methodologies.

  10. Small Engine Component Technology (SECT) study

    NASA Technical Reports Server (NTRS)

    Singh, B.

    1986-01-01

    Small advanced (450 to 850 pounds thrust, 2002 to 3781 N) gas turbine engines were studied for a subsonic strategic cruise missile application, using projected year 2000 technology. An aircraft, mission characteristics, and baseline (state-of-the-art) engine were defined to evaluate technology benefits. Engine performance and configuration analyses were performed for two and three spool turbofan and propfan engine concepts. Mission and Life Cycle Cost (LCC) analyses were performed in which the candidate engines were compared to the baseline engines over a prescribed mission. The advanced technology engines reduced system LCC up to 41 percent relative to the baseline engine. Critical aerodynamic, materials, and mechanical systems turbine engine technologies were identified and program plans were defined for each identified critical technology.

  11. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    PubMed

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Health management and controls for earth to orbit propulsion systems

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.

    1992-01-01

    Fault detection and isolation for advanced rocket engine controllers are discussed focusing on advanced sensing systems and software which significantly improve component failure detection for engine safety and health management. Aerojet's Space Transportation Main Engine controller for the National Launch System is the state of the art in fault tolerant engine avionics. Health management systems provide high levels of automated fault coverage and significantly improve vehicle delivered reliability and lower preflight operations costs. Key technologies, including the sensor data validation algorithms and flight capable spectrometers, have been demonstrated in ground applications and are found to be suitable for bridging programs into flight applications.

  13. Advanced supersonic propulsion study, phase 2. [propulsion system performance, design analysis and technology assessment

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.

    1975-01-01

    A continuation of the NASA/P and WA study to evaluate various types of propulsion systems for advanced commercial supersonic transports has resulted in the identification of two very promising engine concepts. They are the Variable Stream Control Engine which provides independent temperature and velocity control for two coannular exhaust streams, and a derivative of this engine, a Variable Cycle Engine that employs a rear flow-inverter valve to vary the bypass ratio of the cycle. Both concepts are based on advanced engine technology and have the potential for significant improvements in jet noise, exhaust emissions and economic characteristics relative to current technology supersonic engines. Extensive research and technology programs are required in several critical areas that are unique to these supersonic Variable Cycle Engines to realize these potential improvements. Parametric cycle and integration studies of conventional and Variable Cycle Engines are reviewed, features of the two most promising engine concepts are described, and critical technology requirements and required programs are summarized.

  14. Systems Engineering in NASA's R&TD Programs

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is largely the analysis and planning that support the design, development, and operation of systems. The most common application of systems engineering is in guiding systems development projects that use a phased process of requirements, specifications, design, and development. This paper investigates how systems engineering techniques should be applied in research and technology development programs for advanced space systems. These programs should include anticipatory engineering of future space flight systems and a project portfolio selection process, as well as systems engineering for multiple development projects.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowdy, M.; Burke, A.; Schneider, H.

    Fuel economy, exhaust emissions, multifuel capability, advanced materials and cost/manufacturability for both conventional and advanced alternative power systems were assessed. To insure valid comparisons of vehicles with alternative power systems, the concept of an Otto-Engine-Equivalent (OEE) vehicle was utilized. Each engine type was sized to provide equivalent vehicle performance. Sensitivity to different performance criteria was evaluated. Fuel economy projections are made for each engine type considering both the legislated emission standards and possible future emissions requirements.

  16. A Research Program on Artificial Intelligence in Process Engineering.

    ERIC Educational Resources Information Center

    Stephanopoulos, George

    1986-01-01

    Discusses the use of artificial intelligence systems in process engineering. Describes a new program at the Massachusetts Institute of Technology which attempts to advance process engineering through technological advances in the areas of artificial intelligence and computers. Identifies the program's hardware facilities, software support,…

  17. Advanced Gas Turbine (AGT) powertrain system development for automotive applications

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Preliminary layouts were made for the exhaust system, air induction system, and battery installation. Points of interference were identified and resolved by altering either the vehicle or engine designs. An engine general arrangement evolved to meet the vehicle engine compartment constraints while minimizing the duct pressure losses and the heat rejection. A power transfer system (between gasifier and power turbines) was developed to maintain nearly constant temperatures throughout the entire range of engine operation. An advanced four speed automatic transmission was selected to be used with the engine. Performance calculations show improvements in component efficiencies and an increase in fuel economy. A single stage centrifugal compressor design was completed and released for procurement. Gasifier turbine, power turbine, combustor, generator, secondary systems, materials, controls, and transmission development are reported.

  18. Advancing metabolic engineering through systems biology of industrial microorganisms.

    PubMed

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Knowledge-Acquisition Tool For Expert System

    NASA Technical Reports Server (NTRS)

    Disbrow, James D.; Duke, Eugene L.; Regenie, Victoria A.

    1988-01-01

    Digital flight-control systems monitored by computer program that evaluates and recommends. Flight-systems engineers for advanced, high-performance aircraft use knowlege-acquisition tool for expert-system flight-status monitor suppling interpretative data. Interpretative function especially important in time-critical, high-stress situations because it facilitates problem identification and corrective strategy. Conditions evaluated and recommendations made by ground-based engineers having essential knowledge for analysis and monitoring of performances of advanced aircraft systems.

  20. Ultra Efficient Engine Technology Systems Integration and Environmental Assessment

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Geiselhart, Karl A. (Technical Monitor)

    2002-01-01

    This study documents the design and analysis of four types of advanced technology commercial transport airplane configurations (small, medium large and very large) with an assumed technology readiness date of 2010. These airplane configurations were used as a platform to evaluate the design concept and installed performance of advanced technology engines being developed under the NASA Ultra Efficient Engine Technology (UEET) program. Upon installation of the UEET engines onto the UEET advanced technology airframes, the small and medium airplanes both achieved an additional 16% increase in fuel efficiency when using GE advanced turbofan engines. The large airplane achieved an 18% increase in fuel efficiency when using the P&W geared fan engine. The very large airplane (i.e. BWB), also using P&W geared fan engines, only achieved an additional 16% that was attributed to a non-optimized airplane/engine combination.

  1. Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low Pressure Drop Systems to Reduce Engine Fuel Consumption (06B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sappok, Alexander; Ragaller, Paul; Bromberg, Leslie

    This project developed a radio frequencybased sensor for accurate measurement of diesel particulate filter (DPF) loading with advanced low pressuredrop aftertreatment systems. The resulting technology demonstrated engine efficiency improvements through optimization of the combined engineaftertreatment system while reducing emissions, system cost, and complexity to meet the DOE program objectives.

  2. Advanced stratified charge rotary aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  3. Advanced Propfan Engine Technology (APET) definition study, single and counter-rotation gearbox/pitch change mechanism design

    NASA Technical Reports Server (NTRS)

    Anderson, R. D.

    1985-01-01

    Single-rotation propfan-powered regional transport aircraft were studied to identify key technology development issues and programs. The need for improved thrust specific fuel consumption to reduce fuel burned and aircraft direct operating cost is the dominant factor. Typical cycle trends for minimizing fuel consumption are reviewed, and two 10,000 shp class engine configurations for propfan propulsion systems for the 1990's are presented. Recommended engine configurations are both three-spool design with dual spool compressors and free power turbines. The benefits of these new propulsion system concepts were evaluated using an advanced airframe, and results are compared for single-rotation propfan and turbofan advanced technology propulsion systems. The single-rotation gearbox is compared to a similar design with current technology to establish the benefits of the advanced gearbox technology. The conceptual design of the advanced pitch change mechanism identified a high pressure hydraulic system that is superior to the other contenders and completely external to the gearboxes.

  4. Engine design considerations for 2nd generation supersonic transports

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.

    1975-01-01

    The environmental and economic goals projected for advanced supersonic transports will require revolutionary improvements in propulsion systems. Variable cycle engine concepts that incorporate unique components and advanced technologies show promise in meeting these goals. Pratt & Whitney Aircraft is conducting conceptual design studies of variable cycle engine concepts under NASA sponsorship. This paper reviews some of the design considerations for these engine concepts. Emphasis is placed on jet noise abatement, reduction of emissions, performance improvements, installation considerations, hot-section characteristics and control system requirements. Two representative variable cycle engine concepts that incorporate these basic design considerations are described.

  5. The School Advanced Ventilation Engineering Software (SAVES)

    EPA Pesticide Factsheets

    The School Advanced Ventilation Engineering Software (SAVES) package is a tool to help school designers assess the potential financial payback and indoor humidity control benefits of Energy Recovery Ventilation (ERV) systems for school applications.

  6. Design and Development of Wireless Power Transmission for Unmanned Air Vehicles

    DTIC Science & Technology

    2012-09-01

    ELECTRONIC WARFARE SYSTEMS ENGINEERING and MASTER OF SCIENCE IN ELECTRICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL September 2012...Agilent Advanced Design System (ADS). Tuning elements were added and adjusted in order to optimize the efficiency. A maximum efficiency of 57% was...investigated by a series of simulations using Agilent Advanced Design System (ADS). Tuning elements were added and adjusted

  7. Final design of a free-piston hydraulic advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  8. Final design of a free-piston hydraulic advanced Stirling conversion system

    NASA Astrophysics Data System (ADS)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  9. Study of advanced fuel system concepts for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.

    1985-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  10. Communications and Intelligent Systems Division Overview

    NASA Technical Reports Server (NTRS)

    Emerson, Dawn

    2017-01-01

    Provides expertise, and plans, conducts and directs research and engineering development in the competency fields of advanced communications and intelligent systems technologies for applications in current and future aeronautics and space systems.Advances communication systems engineering, development and analysis needed for Glenn Research Center's leadership in communications and intelligent systems technology. Focus areas include advanced high frequency devices, components, and antennas; optical communications, health monitoring and instrumentation; digital signal processing for communications and navigation, and cognitive radios; network architectures, protocols, standards and network-based applications; intelligent controls, dynamics and diagnostics; and smart micro- and nano-sensors and harsh environment electronics. Research and discipline engineering allow for the creation of innovative concepts and designs for aerospace communication systems with reduced size and weight, increased functionality and intelligence. Performs proof-of-concept studies and analyses to assess the impact of the new technologies.

  11. Thermal Barrier Coatings for Advanced Gas Turbine and Diesel Engines

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Ceramic thermal barrier coatings (TBCS) have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, durability issues of these thermal barrier coatings under high temperature cyclic conditions are still of major concern. The coating failure depends not only on the coating, but also on the ceramic sintering/creep and bond coat oxidation under the operating conditions. Novel test approaches have been established to obtain critical thermomechanical and thermophysical properties of the coating systems under near-realistic transient and steady state temperature and stress gradients encountered in advanced engine systems. This paper presents detailed experimental and modeling results describing processes occurring in the ZrO2-Y2O3 thermal barrier coating systems, thus providing a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  12. HPT Clearance Control: Intelligent Engine Systems-Phase 1

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The following work has been completed to satisfy the Phase I Deliverables for the "HPT Clearance Control" project under NASA GRC's "Intelligent Engine Systems" program: (1) Need for the development of an advanced HPT ACC system has been very clearly laid out, (2) Several existing and potential clearance control systems have been reviewed, (3) A scorecard has been developed to document the system, performance (fuel burn, range, payload, etc.), thermal, and mechanical characteristics of the existing clearance control systems, (4) Engine size and flight cycle selection for the advanced HPT ACC system has been reviewed with "large engine"/"long range mission" combination showing the most benefit, (5) A scoring criteria has been developed to tie together performance parameters for an objective, data driven comparison of competing systems, and (6) The existing HPT ACC systems have been scored based on this scoring system.

  13. Alloy design for aircraft engines

    NASA Astrophysics Data System (ADS)

    Pollock, Tresa M.

    2016-08-01

    Metallic materials are fundamental to advanced aircraft engines. While perceived as mature, emerging computational, experimental and processing innovations are expanding the scope for discovery and implementation of new metallic materials for future generations of advanced propulsion systems.

  14. Advanced active health monitoring system of liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Wu, Zhanjun; Beard, Shawn; Chang, Fu-Kuo

    2008-11-01

    An advanced SMART TAPE system has been developed for real-time in-situ monitoring and long term tracking of structural integrity of pressure vessels in liquid rocket engines. The practical implementation of the structural health monitoring (SHM) system including distributed sensor network, portable diagnostic hardware and dedicated data analysis software is addressed based on the harsh operating environment. Extensive tests were conducted on a simulated large booster LOX-H2 engine propellant duct to evaluate the survivability and functionality of the system under the operating conditions of typical liquid rocket engines such as cryogenic temperature, vibration loads. The test results demonstrated that the developed SHM system could survive the combined cryogenic temperature and vibration environments and effectively detect cracks as small as 2 mm.

  15. Control Design for an Advanced Geared Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Litt, Jonathan S.

    2017-01-01

    This paper describes the design process for the control system of an advanced geared turbofan engine. This process is applied to a simulation that is representative of a 30,000 lbf thrust class concept engine with two main spools, ultra-high bypass ratio, and a variable area fan nozzle. Control system requirements constrain the non-linear engine model as it operates throughout its flight envelope of sea level to 40,000 ft and from 0 to 0.8 Mach. The control architecture selected for this project was developed from literature and reflects a configuration that utilizes a proportional integral controller integrated with sets of limiters that enable the engine to operate safely throughout its flight envelope. Simulation results show the overall system meets performance requirements without exceeding system operational limits.

  16. Follow-On Technology Requirement Study for Advanced Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Wendus, Bruce E.; Stark, Donald F.; Holler, Richard P.; Funkhouser, Merle E.

    2003-01-01

    A study was conducted to define and assess the critical or enabling technologies required for a year 2005 entry into service (EIS) engine for subsonic commercial aircraft, with NASA Advanced Subsonic Transport goals used as benchmarks. The year 2005 EIS advanced technology engine is an Advanced Ducted Propulsor (ADP) engine. Performance analysis showed that the ADP design offered many advantages compared to a baseline turbofan engine. An airplane/ engine simulation study using a long range quad aircraft quantified the effects of the ADP engine on the economics of typical airline operation. Results of the economic analysis show the ADP propulsion system provides a 6% reduction in direct operating cost plus interest, with half the reduction resulting from reduced fuel consumption. Critical and enabling technologies for the year 2005 EIS ADP were identified and prioritized.

  17. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  18. Evaluation of undeveloped rocket engine cycle applications to advanced transportation

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Undeveloped pump-fed, liquid propellant rocket engine cycles were assessed and evaluated for application to Next Manned Transportation System (NMTS) vehicles, which would include the evolving Space Transportation System (STS Evolution), the Personnel Launch System (PLS), and the Advanced Manned Launch System (AMLS). Undeveloped engine cycles selected for further analysis had potential for increased reliability, more maintainability, reduced cost, and improved (or possibly level) performance when compared to the existing SSME and proposed STME engines. The split expander (SX) cycle, the full flow staged combustion (FFSC) cycle, and a hybrid version of the FFSC, which has a LOX expander drive for the LOX pump, were selected for definition and analysis. Technology requirements and issues were identified and analyses of vehicle systems weight deltas using the SX and FFSC cycles in AMLS vehicles were performed. A strawman schedule and cost estimate for FFSC subsystem technology developments and integrated engine system demonstration was also provided.

  19. Orbit transfer vehicle engine study, phase A extension. Volume 2A: Study results

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Engine trade studies and systems analyses leading to a baseline engine selection for advanced expander cycle engine are discussed with emphasis on: (1) performance optimization of advanced expander cycle engines in the 10 to 20K pound thrust range; (2) selection of a recommended advanced expander engine configuration based on maximized performance and minimized mission risk, and definition of the components for this configuration; (3) characterization of the low thrust adaptation requirements and performance for the staged combustion engine; (4) generation of a suggested safety and reliability approach for OTV engines independent of engine cycle; (5) definition of program risk relationships between expander and staged combustion cycle engines; and (6) development of schedules and costs for the DDT&E, production, and operation phases of the 10K pound thrust expander engine program.

  20. Advanced OTV engine concepts

    NASA Technical Reports Server (NTRS)

    Zachary, A. T.

    1984-01-01

    The results and status of engine technology efforts to date and related company funded activities are presented. Advanced concepts in combustors and injectors, high speed turbomachinery, controls, and high-area-ratio nozzles that package within a short length result is engines with specific impulse values 35 to 46 seconds higher than those now realized by operational systems. The improvement in life, reliability, and maintainability of OTV engines are important.

  1. Application of advanced technologies to small, short-haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Coussens, T. G.; Tullis, R. H.

    1980-01-01

    The performance and economic benefits available by incorporation of advanced technologies into the small, short haul air transport were assessed. Low cost structure and advanced composite material, advanced turboprop engines and new propellers, advanced high lift systems and active controls; and alternate aircraft configurations with aft mounted engines were investigated. Improvements in fuel consumed and aircraft economics (acquisition cost and direct operating cost) are available by incorporating selected advanced technologies into the small, short haul aircraft.

  2. Advanced oxygen-hydrocarbon rocket engine study

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.; Salkeld, R.

    1980-01-01

    The advantages and disadvantages, system performance and operating limits, engine parametric data, and technology requirements for candidate high pressure LO2/Hydrocarbon engine systems are summarized. These summaries of parametric analysis and design provide a consistent engine system data base. Power balance data were generated for the eleven engine cycles. Engine cycle rating parameters were established and the desired condition and the effect of the parameter on the engine and/or vehicle are described.

  3. Environmental Stability and Oxidation Behavior of HfO2-Si and YbGd(O) Based Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Farmer, Serene; McCue, Terry R.; Harder, Bryan; Hurst, Janet B.

    2017-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, environmental durable environmental barrier coating systems. In this paper, the durability and performance of advanced Electron Beam-Physical Vapor Deposition (EB-PVD) NASA HfO2-Si and YbGdSi(O) EBC bond coat top coat systems for SiCSiC CMC have been summarized. The high temperature thermomechanical creep, fatigue and oxidation resistance have been investigated in the laboratory simulated high-heat-flux environmental test conditions. The advanced NASA EBC systems showed promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

  4. Research on advanced transportation systems

    NASA Astrophysics Data System (ADS)

    Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka

    1992-08-01

    An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.

  5. Space Shuttle Main Engine: Advanced Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Singer, Chirs

    1999-01-01

    The main gola of the Space Shuttle Main Engine (SSME) Advanced Health Management system is to improve flight safety. To this end the new SSME has robust new components to improve the operating margen and operability. The features of the current SSME health monitoring system, include automated checkouts, closed loop redundant control system, catastropic failure mitigation, fail operational/ fail-safe algorithms, and post flight data and inspection trend analysis. The features of the advanced health monitoring system include: a real time vibration monitor system, a linear engine model, and an optical plume anomaly detection system. Since vibration is a fundamental measure of SSME turbopump health, it stands to reason that monitoring the vibration, will give some idea of the health of the turbopumps. However, how is it possible to avoid shutdown, when it is not necessary. A sensor algorithm has been developed which has been exposed to over 400 test cases in order to evaluate the logic. The optical plume anomaly detection (OPAD) has been developed to be a sensitive monitor of engine wear, erosion, and breakage.

  6. Advanced Engine Health Management Applications of the SSME Real-Time Vibration Monitoring System

    NASA Technical Reports Server (NTRS)

    Fiorucci, Tony R.; Lakin, David R., II; Reynolds, Tracy D.; Turner, James E. (Technical Monitor)

    2000-01-01

    The Real Time Vibration Monitoring System (RTVMS) is a 32-channel high speed vibration data acquisition and processing system developed at Marshall Space Flight Center (MSFC). It Delivers sample rates as high as 51,200 samples/second per channel and performs Fast Fourier Transform (FFT) processing via on-board digital signal processing (DSP) chips in a real-time format. Advanced engine health assessment is achieved by utilizing the vibration spectra to provide accurate sensor validation and enhanced engine vibration redlines. Discrete spectral signatures (such as synchronous) that are indicators of imminent failure can be assessed and utilized to mitigate catastrophic engine failures- a first in rocket engine health assessment. This paper is presented in viewgraph form.

  7. Energy efficient engine preliminary design and integration study

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1978-01-01

    The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.

  8. Advanced Prop-fan Engine Technology (APET) single- and counter-rotation gearbox/pitch change mechanism

    NASA Technical Reports Server (NTRS)

    Reynolds, C. N.

    1985-01-01

    The preliminary design of advanced technology (1992) prop-fan engines for single-rotation prop-fans, the conceptual design of the entire propulsion system, and an aircraft evaluation of the resultant designs are discussed. Four engine configurations were examined. A two-spool engine with all axial compressors and a three-spool engine with axial/centrifugal compressors were selected. Integrated propulsion systems were designed in conjunction with airframe manufacturers. The design efforts resulted in 12,000 shaft horsepower engines installed in over the installations with in-line and offset gearboxes. The prop-fan powered aircraft used 21 percent less fuel and cost 10 percent less to operate than a similar aircraft powered by turbofan engines with comparable technology.

  9. Mechatronic System Design Course for Undergraduate Programmes

    ERIC Educational Resources Information Center

    Saleem, A.; Tutunji, T.; Al-Sharif, L.

    2011-01-01

    Technology advancement and human needs have led to integration among many engineering disciplines. Mechatronics engineering is an integrated discipline that focuses on the design and analysis of complete engineering systems. These systems include mechanical, electrical, computer and control subsystems. In this paper, the importance of teaching…

  10. Design of a microprocessor-based Control, Interface and Monitoring (CIM unit for turbine engine controls research

    NASA Technical Reports Server (NTRS)

    Delaat, J. C.; Soeder, J. F.

    1983-01-01

    High speed minicomputers were used in the past to implement advanced digital control algorithms for turbine engines. These minicomputers are typically large and expensive. It is desirable for a number of reasons to use microprocessor-based systems for future controls research. They are relatively compact, inexpensive, and are representative of the hardware that would be used for actual engine-mounted controls. The Control, Interface, and Monitoring Unit (CIM) contains a microprocessor-based controls computer, necessary interface hardware and a system to monitor while it is running an engine. It is presently being used to evaluate an advanced turbofan engine control algorithm.

  11. Reusable Rocket Engine Advanced Health Management System. Architecture and Technology Evaluation: Summary

    NASA Technical Reports Server (NTRS)

    Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.

    1999-01-01

    In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.

  12. Evaluation of advanced displays for engine monitoring and control

    NASA Technical Reports Server (NTRS)

    Summers, L. G.

    1993-01-01

    The relative effectiveness of two advanced display concepts for monitoring engine performance for commercial transport aircraft was studied. The concepts were the Engine Monitoring and Control System (EMACS) display developed by NASA Langley and a display by exception design. Both of these concepts were based on the philosophy of providing information that is directly related to the pilot's task. Both concepts used a normalized thrust display. In addition, EMACS used column deviation indicators; i.e., the difference between the actual parameter value and the value predicted by an engine model, for engine health monitoring; while the Display by Exception displayed the engine parameters if the automated system detected a difference between the actual and the predicted values. The results showed that the advanced display concepts had shorter detection and response times. There were no differences in any of the results between manual and auto throttles. There were no effects upon perceived workload or performance on the primary flight task. The majority of pilots preferred the advanced displays and thought they were operationally acceptable. Certification of these concepts depends on the validation of the engine model. Recommendations are made to improve both the EMACS and the display by exception display formats.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitney, S.E.; McCorkle, D.; Yang, C.

    Process modeling and simulation tools are widely used for the design and operation of advanced power generation systems. These tools enable engineers to solve the critical process systems engineering problems that arise throughout the lifecycle of a power plant, such as designing a new process, troubleshooting a process unit or optimizing operations of the full process. To analyze the impact of complex thermal and fluid flow phenomena on overall power plant performance, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has developed the Advanced Process Engineering Co-Simulator (APECS). The APECS system is an integrated software suite that combinesmore » process simulation (e.g., Aspen Plus) and high-fidelity equipment simulations such as those based on computational fluid dynamics (CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper we discuss the initial phases of the integration of the APECS system with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite uses the ActiveX (OLE Automation) controls in the Aspen Plus process simulator wrapped by the CASI library developed by Reaction Engineering International to run process/CFD co-simulations and query for results. This integration represents a necessary step in the development of virtual power plant co-simulations that will ultimately reduce the time, cost, and technical risk of developing advanced power generation systems.« less

  14. Development of Metal Matrix Composites for NASA'S Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    The state-of-the-art development of several aluminum and copper based Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The presentation's goal is to provide an overview of NASA-Marshall Space Flight Center's planned and on-going activities in MMC for advanced liquid rocket engines such as the X-33 vehicle's Aerospike and X-34 Fastrac engine. The focus will be on lightweight and environmental compatibility with oxygen and hydrogen of key MMC materials, within each NASA's new propulsion application, that will provide a high payoff for NASA's reusable launch vehicle systems and space access vehicles. Advanced MMC processing techniques such as plasma spray, centrifugal casting, pressure infiltration casting will be discussed. Development of a novel 3D printing method for low cost production of composite preform, and functional gradient MMC to enhanced rocket engine's dimensional stability will be presented.

  15. Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3

    NASA Technical Reports Server (NTRS)

    Martinez, A.; Erickson, C.; Hines, B.

    1986-01-01

    Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.

  16. System safety engineering in the development of advanced surface transportation vehicles

    NASA Technical Reports Server (NTRS)

    Arnzen, H. E.

    1971-01-01

    Applications of system safety engineering to the development of advanced surface transportation vehicles are described. As a pertinent example, the paper describes a safety engineering efforts tailored to the particular design and test requirements of the Tracked Air Cushion Research Vehicle (TACRV). The test results obtained from this unique research vehicle provide significant design data directly applicable to the development of future tracked air cushion vehicles that will carry passengers in comfort and safety at speeds up to 300 miles per hour.

  17. Automotive technology status and projections. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Dowdy, M.; Burke, A.; Schneider, H.; Edmiston, W.; Klose, G. J.; Heft, R.

    1978-01-01

    Fuel economy, exhaust emissions, multifuel capability, advanced materials and cost/manufacturability for both conventional and advanced alternative power systems were assessed. To insure valid comparisons of vehicles with alternative power systems, the concept of an Otto-Engine-Equivalent (OEE) vehicle was utilized. Each engine type was sized to provide equivalent vehicle performance. Sensitivity to different performance criteria was evaluated. Fuel economy projections are made for each engine type considering both the legislated emission standards and possible future emissions requirements.

  18. Advanced Computer Simulations of Military Incinerators

    DTIC Science & Technology

    2004-12-01

    Reaction Engineering International (REI) has developed advanced computer simulation tools for analyzing chemical demilitarization incinerators. The...Manager, 2003a: Summary of Engineering Design Study Projectile Washout System (PWS) Testing. Assembled Chemical Weapons Alternatives (ACWA), Final... Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot. O’Shea, L. et al, 2003: RIM 57 – Monitoring in

  19. Ceramics potential in automotive powerplants

    NASA Technical Reports Server (NTRS)

    Mclean, A. F.

    1983-01-01

    The paper addresses the potential that ceramic materials can play an important role in future automotive powerplants - both advanced heat engines and advanced battery systems. A number of related experimental programs are reviewed including ceramics for gasoline and diesel piston engines, gas turbine and Stirling Engines and sodium-sulfur batteries. A strong integrated program to develop ceramics technology is recommended.

  20. Advanced diesel engine component development program, tasks 4-14

    NASA Astrophysics Data System (ADS)

    Kaushal, Tony S.; Weber, Karen E.

    1994-11-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system that eliminated the conventional camshaft was demonstrated on the test bed. High pressure fuel injection via a common rail system was also developed to reduce particulate emissions.

  1. Advanced diesel engine component development program, tasks 4-14

    NASA Technical Reports Server (NTRS)

    Kaushal, Tony S.; Weber, Karen E.

    1994-01-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system that eliminated the conventional camshaft was demonstrated on the test bed. High pressure fuel injection via a common rail system was also developed to reduce particulate emissions.

  2. Adiabatic diesel engine component development: Reference engine for on-highway applications

    NASA Technical Reports Server (NTRS)

    Hakim, Nabil S.

    1986-01-01

    The main objectives were to select an advanced low heat rejection diesel reference engine (ADRE) and to carry out systems analysis and design. The ADRE concept selection consisted of: (1) rated point performance optimization; (2) study of various exhaust energy recovery scenarios; (3) components, systems and engine configuration studies; and (4) life cycle cost estimates of the ADRE economic worth. The resulting ADRE design proposed a reciprocator with many advanced features for the 1995 technology demonstration time frame. These included ceramic air gap insulated hot section structural components, high temperature tribology treatments, nonmechanical (camless) valve actuation systems, and elimination of the cylinder head gasket. ADRE system analysis and design resulted in more definition of the engine systems. These systems include: (1) electro-hydraulic valve actuation, (2) electronic common rail injection system; (3) engine electronic control; (4) power transfer for accessory drives and exhaust energy recovery systems; and (5) truck installation. Tribology and performance assessments were also carried out. Finite element and probability of survival analyses were undertaken for the ceramic low heat rejection component.

  3. Propulsion system studies for an advanced high subsonic, long range jet commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Propulsion system characteristics for a long range, high subsonic (Mach 0.90 - 0.98), jet commercial transport aircraft are studied to identify the most desirable cycle and engine configuration and to assess the payoff of advanced engine technologies applicable to the time frame of the late 1970s to the mid 1980s. An engine parametric study phase examines major cycle trends on the basis of aircraft economics. This is followed by the preliminary design of two advanced mixed exhaust turbofan engines pointed at two different technology levels (1970 and 1985 commercial certification for engines No. 1 and No. 2, respectively). The economic penalties of environmental constraints - noise and exhaust emissions - are assessed. The highest specific thrust engine (lowest bypass ratio for a given core technology) achievable with a single-stage fan yields the best economics for a Mach 0.95 - 0.98 aircraft and can meet the noise objectives specified, but with significant economic penalties. Advanced technologies which would allow high temperature and cycle pressure ratios to be used effectively are shown to provide significant improvement in mission performance which can partially offset the economic penalties incurred to meet lower noise goals. Advanced technology needs are identified; and, in particular, the initiation of an integrated fan and inlet aero/acoustic program is recommended.

  4. KSC-2012-3731

    NASA Image and Video Library

    2012-07-09

    CAPE CANAVERAL, Fla. – Near the Hypergolic Maintenance Facility at NASA’s Kennedy Space Center in Florida, a groundbreaking ceremony was held to mark the location of the Ground Operations Demonstration Unit Liquid Hydrogen, or GODU LH2, test site. From left, are Johnny Nguyen, Fluids Test and Technology Development branch chief Emily Watkins, engineering intern Jeff Walls, Engineering Services Contract, or ESC, Cryogenics Test Lab engineer Kelly Currin, systems engineer Stephen Huff and Rudy Werlink partially hidden, cryogenics engineers Angela Krenn, systems engineer Doug Hammond, command and control engineer in the electrical division William Notardonato, GODU LH2 project manager and Kevin Jumper, ESC Cryogenics Test Lab manager. The GODU LH2 test site is one of the projects in NASA’s Advanced Exploration Systems Program. The site will be used to demonstrate advanced liquid hydrogen systems that are cost and energy efficient ways to store and transfer liquid hydrogen during process, loading, launch and spaceflight. The main components of the site will be a storage tank and a cryogenic refrigerator. Photo credit: NASA/Dimitri Gerondidakis

  5. KSC-2012-3732

    NASA Image and Video Library

    2012-07-09

    CAPE CANAVERAL, Fla. – Near the Hypergolic Maintenance Facility at NASA’s Kennedy Space Center in Florida, a groundbreaking ceremony was held to mark the location of the Ground Operations Demonstration Unit Liquid Hydrogen, or GODU LH2, test site. From left, are Johnny Nguyen, Fluids Test and Technology Development branch chief Emily Watkins, engineering intern Jeff Walls, Engineering Services Contract, or ESC, Cryogenics Test Lab engineer Kelly Currin, systems engineer Stephen Huff and Rudy Werlink partially hidden, cryogenics engineers Angela Krenn, systems engineer Doug Hammond, command and control engineer in the electrical division William Notardonato, GODU LH2 project manager and Kevin Jumper, ESC Cryogenics Test Lab manager. The GODU LH2 test site is one of the projects in NASA’s Advanced Exploration Systems Program. The site will be used to demonstrate advanced liquid hydrogen systems that are cost and energy efficient ways to store and transfer liquid hydrogen during process, loading, launch and spaceflight. The main components of the site will be a storage tank and a cryogenic refrigerator. Photo credit: NASA/Dimitri Gerondidakis

  6. New perspectives for advanced automobile diesel engines

    NASA Technical Reports Server (NTRS)

    Tozzi, L.; Sekar, R.; Kamo, R.; Wood, J. C.

    1983-01-01

    Computer simulation results are presented for advanced automobile diesel engine performance. Four critical factors for performance enhancement were identified: (1) part load preheating and exhaust gas energy recovery, (2) fast heat release combustion process, (3) reduction in friction, and (4) air handling system efficiency. Four different technology levels were considered in the analysis. Simulation results are compared in terms of brake specific fuel consumption and vehicle fuel economy in km/liter (miles per gallon). Major critical performance sensitivity areas are: (1) combustion process, (2) expander and compressor efficiency, and (3) part load preheating and compound system. When compared to the state of the art direct injection, cooled, automobile diesel engine, the advanced adiabatic compound engine concept showed the unique potential of doubling the fuel economy. Other important performance criteria such as acceleration, emissions, reliability, durability and multifuel capability are comparable to or better than current passenger car diesel engines.

  7. High Pressure Burner Rig Testing of Advanced Environmental Barrier Coatings for Si3N4 Turbine Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Pastel, Robert T.

    2007-01-01

    Advanced thermal and environmental barrier coatings are being developed for Si3N4 components for turbine engine propulsion applications. High pressure burner rig testing was used to evaluate the coating system performance and durability. Test results demonstrated the feasibility and durability of the coating component systems under the simulated engine environments.

  8. Recent Technology Advances in Distributed Engine Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis

    2017-01-01

    This presentation provides an overview of the work performed at NASA Glenn Research Center in distributed engine control technology. This is control system hardware technology that overcomes engine system constraints by modularizing control hardware and integrating the components over communication networks.

  9. Computer-Aided Software Engineering - An approach to real-time software development

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.; Turkovich, John J.

    1989-01-01

    A new software engineering discipline is Computer-Aided Software Engineering (CASE), a technology aimed at automating the software development process. This paper explores the development of CASE technology, particularly in the area of real-time/scientific/engineering software, and a history of CASE is given. The proposed software development environment for the Advanced Launch System (ALS CASE) is described as an example of an advanced software development system for real-time/scientific/engineering (RT/SE) software. The Automated Programming Subsystem of ALS CASE automatically generates executable code and corresponding documentation from a suitably formatted specification of the software requirements. Software requirements are interactively specified in the form of engineering block diagrams. Several demonstrations of the Automated Programming Subsystem are discussed.

  10. Performance and Durability of Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    This presentation highlights advanced environmental barrier coating (EBC) and SiC-SiC Ceramic Matrix Composites (CMC) systems for next generation turbine engines. The emphasis will be placed on fundamental coating and CMC property evaluations; and the integrated system performance and degradation mechanisms in simulated laboratory turbine engine testing environments. Long term durability tests in laser rig simulated high heat flux the rmomechanical creep and fatigue loading conditions will also be presented. The results can help improve the future EBC-CMC system designs, validating the advanced EBC-CMC technologies for hot section turbine engine applications.

  11. Multi-fuel rotary engine for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  12. High-Heat-Flux Cyclic Durability of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis L.; Miller, Robert A.

    2007-01-01

    Advanced ceramic thermal and environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect the engine components and further raise engine temperatures. For the supersonic vehicles currently envisioned in the NASA fundamental aeronautics program, advanced gas turbine engines will be used to provide high power density thrust during the extended supersonic flight of the aircraft, while meeting stringent low emission requirements. Advanced ceramic coating systems are critical to the performance, life and durability of the hot-section components of the engine systems. In this work, the laser and burner rig based high-heat-flux testing approaches were developed to investigate the coating cyclic response and failure mechanisms under simulated supersonic long-duration cruise mission. The accelerated coating cracking and delamination mechanism under the engine high-heat-flux, and extended supersonic cruise time conditions will be addressed. A coating life prediction framework may be realized by examining the crack initiation and propagation in conjunction with environmental degradation under high-heat-flux test conditions.

  13. Overview of NASA Glenn Seal Project

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.; Proctor, Margaret; Delgado, Irebert; Finkbeiner,Joshua; deGroh, Henry; Ritzert, Frank; Daniels, Christopher; DeMange, Jeff; Taylor, Shawn; hide

    2009-01-01

    NASA Glenn is currently performing seal research supporting both advanced turbine engine development and advanced space vehicle/propulsion system development. Studies have shown that decreasing parasitic leakage by applying advanced seals will increase turbine engine performance and decrease operating costs. Studies have also shown that higher temperature, long life seals are critical in meeting next generation space vehicle and propulsion system goals in the areas of performance, reusability, safety, and cost. Advanced docking system seals need to be very robust resisting space environmental effects while exhibiting very low leakage and low compression and adhesion forces. NASA Glenn is developing seal technology and providing technical consultation for the Agencys key aero- and space technology development programs.

  14. Design approaches to more energy efficient engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.; Colladay, R. S.; Macioce, L. E.

    1978-01-01

    The status of NASA's Energy Efficient Engine Project, a comparative government-industry effort aimed at advancing the technology base for the next generation of large turbofan engines for civil aircraft transports is summarized. Results of recently completed studies are reviewed. These studies involved selection of engine cycles and configurations that offer potential for at least 12% lower fuel consumption than current engines and also are economically attractive and environmentally acceptable. Emphasis is on the advancements required in component technologies and systems design concepts to permit future development of these more energy efficient engines.

  15. Advanced materials for aircraft engine applications.

    PubMed

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  16. Genome-scale engineering for systems and synthetic biology

    PubMed Central

    Esvelt, Kevin M; Wang, Harris H

    2013-01-01

    Genome-modification technologies enable the rational engineering and perturbation of biological systems. Historically, these methods have been limited to gene insertions or mutations at random or at a few pre-defined locations across the genome. The handful of methods capable of targeted gene editing suffered from low efficiencies, significant labor costs, or both. Recent advances have dramatically expanded our ability to engineer cells in a directed and combinatorial manner. Here, we review current technologies and methodologies for genome-scale engineering, discuss the prospects for extending efficient genome modification to new hosts, and explore the implications of continued advances toward the development of flexibly programmable chasses, novel biochemistries, and safer organismal and ecological engineering. PMID:23340847

  17. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna; Kiser, Doug; Wiesner, Valerie L.

    2016-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiCSiC Ceramic Matrix Composite (CMC) components for next generation turbine engines. The emphasis has been placed on the current design challenges of the 2700F environmental barrier coatings; coating processing and integration with SiCSiC CMCs and component systems; and performance evaluation and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements through advanced compositions and architecture designs, as shown in recent simulated engine high heat flux, combustion environment, in conjunction with mechanical creep and fatigue loading testing conditions.

  18. Advanced Environmental Barrier Coatings Development for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, R. Sung; Robinson, Raymond C.; Lee, Kang N.; Bhatt, Ramakrishna T.; Miller, Robert A.

    2005-01-01

    Advanced environmental barrier coating concepts based on multi-component HfO2 (ZrO2) and modified mullite systems are developed for monolithic Si3N4 and SiC/SiC ceramic matrix composite (CMC) applications. Comprehensive testing approaches were established using the water vapor cyclic furnace, high pressure burner rig and laser heat flux steam rig to evaluate the coating water vapor stability, cyclic durability, radiation and erosion resistance under simulated engine environments. Test results demonstrated the feasibility and durability of the environmental barrier coating systems for 2700 to 3000 F monolithic Si3N4 and SiC/SiC CMC component applications. The high-temperature-capable environmental barrier coating systems are being further developed and optimized in collaboration with engine companies for advanced turbine engine applications.

  19. Communications and Intelligent Systems Division Overview

    NASA Technical Reports Server (NTRS)

    Emerson, Dawn

    2016-01-01

    This presentation provides an overview of the research and engineering in the competency fieldsof advanced communications and intelligent systems with emphasis on advanced technologies, architecture definitionand system development for application in current and future aeronautics and space systems.

  20. Knock detection system to improve petrol engine performance, using microphone sensor

    NASA Astrophysics Data System (ADS)

    Sujono, Agus; Santoso, Budi; Juwana, Wibawa Endra

    2017-01-01

    An increase of power and efficiency of spark ignition engines (petrol engines) are always faced with the problem of knock. Even the characteristics of the engine itself are always determined from the occurrence of knock. Until today, this knocking problem has not been solved completely. Knock is caused by principal factors that are influenced by the engine rotation, the load or opening the throttle and spark advance (ignition timing). In this research, the engine is mounted on the engine test bed (ETB) which is equipped with the necessary sensors. Knock detection using a new method, which is based on pattern recognition, which through the knock sound detection by using a microphone sensor, active filter, the regression of the normalized envelope function, and the calculation of the Euclidean distance is used for identifying knock. This system is implemented with a microcontroller which uses fuzzy logic controller ignition (FLIC), which aims to set proper spark advance, in accordance with operating conditions. This system can improve the engine performance for approximately 15%.

  1. Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.

  2. Advanced technology payoffs for future rotorcraft, commuter aircraft, cruise missile, and APU propulsion systems

    NASA Technical Reports Server (NTRS)

    Turk, M. A.; Zeiner, P. K.

    1986-01-01

    In connection with the significant advances made regarding the performance of larger gas turbines, challenges arise concerning the improvement of small gas turbine engines in the 250 to 1000 horsepower range. In response to these challenges, the NASA/Army-sponsored Small Engine Component Technology (SECT) study was undertaken with the objective to identify the engine cycle, configuration, and component technology requirements for the substantial performance improvements desired in year-2000 small gas turbine engines. In the context of this objective, an American turbine engine company evaluated engines for four year-2000 applications, including a rotorcraft, a commuter aircraft, a supersonic cruise missile, and an auxiliary power unit (APU). Attention is given to reference missions, reference engines, reference aircraft, year-2000 technology projections, cycle studies, advanced engine selections, and a technology evaluation.

  3. Rotorcraft convertible engine study

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Earle, R. V.; Mar, H. M.

    1982-01-01

    The objective of the Rotorcraft Convertible Engine Study was to define future research and technology effort required for commercial development by 1988 of convertible fan/shaft gas turbine engines for unconventional rotorcraft transports. Two rotorcraft and their respective missions were defined: a Fold Tilt Rotor aircraft and an Advancing Blade Concept (ABC) rotorcraft. Sensitivity studies were conducted with these rotorcraft to determine parametrically the influence of propulsion characteristics on aircraft size, mission fuel requirements, and direct operating costs (DOC). The two rotorcraft were flown with conventional propulsion systems (separate lift/cruise engines) and with convertible propulsion systems to determine the benefits to be derived from convertible engines. Trade-off studies were conducted to determine the optimum engine cycle and staging arrangement for a convertible engine. Advanced technology options applicable to convertible engines were studied. Research and technology programs were identified which would ensure technology readiness for commercial development of convertible engines by 1988.

  4. Development of Advanced Environmental Barrier Coatings for SiC/SiC Composites at NASA GRC: Prime-Reliant Design and Durability Perspectives

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2017-01-01

    Environmental barrier coatings (EBCs) are considered technologically important because of the critical needs and their ability to effectively protect the turbine hot-section SiC/SiC ceramic matrix composite (CMC) components in harsh engine combustion environments. The development of NASA's advanced environmental barrier coatings have been aimed at significantly improved the coating system temperature capability, stability, erosion-impact, and CMAS resistance for SiC/SiC turbine airfoil and combustors component applications. The NASA environmental barrier coating developments have also emphasized thermo-mechanical creep and fatigue resistance in simulated engine heat flux and environments. Experimental results and models for advanced EBC systems will be presented to help establishing advanced EBC composition design methodologies, performance modeling and life predictions, for achieving prime-reliant, durable environmental coating systems for 2700-3000 F engine component applications. Major technical barriers in developing environmental barrier coating systems and the coating integration with next generation composites having further improved temperature capability, environmental stability, EBC-CMC fatigue-environment system durability will be discussed.

  5. Orbit transfer rocket engine technology program

    NASA Technical Reports Server (NTRS)

    Gustafson, N. B.; Harmon, T. J.

    1993-01-01

    An advanced near term (1990's) space-based Orbit Transfer Vehicle Engine (OTVE) system was designed, and the technologies applicable to its construction, maintenance, and operations were developed under Tasks A through F of the Orbit Transfer Rocket Engine Technology Program. Task A was a reporting task. In Task B, promising OTV turbomachinery technologies were explored: two stage partial admission turbines, high velocity ratio diffusing crossovers, soft wear ring seals, advanced bearing concepts, and a rotordynamic analysis. In Task C, a ribbed combustor design was developed. Possible rib and channel geometries were chosen analytically. Rib candidates were hot air tested and laser velocimeter boundary layer analyses were conducted. A channel geometry was also chosen on the basis of laser velocimeter data. To verify the predicted heat enhancement effects, a ribbed calorimeter spool was hot fire tested. Under Task D, the optimum expander cycle engine thrust, performance and envelope were established for a set of OTV missions. Optimal nozzle contours and quick disconnects for modularity were developed. Failure Modes and Effects Analyses, maintenance and reliability studies and component study results were incorporated into the engine system. Parametric trades on engine thrust, mixture ratio, and area ratio were also generated. A control system and the health monitoring and maintenance operations necessary for a space-based engine were outlined in Task E. In addition, combustor wall thickness measuring devices and a fiberoptic shaft monitor were developed. These monitoring devices were incorporated into preflight engine readiness checkout procedures. In Task F, the Integrated Component Evaluator (I.C.E.) was used to demonstrate performance and operational characteristics of an advanced expander cycle engine system and its component technologies. Sub-system checkouts and a system blowdown were performed. Short transitions were then made into main combustor ignition and main stage operation.

  6. Using Multi-Robot Systems for Engineering Education: Teaching and Outreach with Large Numbers of an Advanced, Low-Cost Robot

    ERIC Educational Resources Information Center

    McLurkin, J.; Rykowski, J.; John, M.; Kaseman, Q.; Lynch, A. J.

    2013-01-01

    This paper describes the experiences of using an advanced, low-cost robot in science, technology, engineering, and mathematics (STEM) education. It presents three innovations: It is a powerful, cheap, robust, and small advanced personal robot; it forms the foundation of a problem-based learning curriculum; and it enables a novel multi-robot…

  7. Systems Engineering Leadership Development: Advancing Systems Engineering Excellence

    NASA Technical Reports Server (NTRS)

    Hall, Phil; Whitfield, Susan

    2011-01-01

    This slide presentation reviews the Systems Engineering Leadership Development Program, with particular emphasis on the work being done in the development of systems engineers at Marshall Space Flight Center. There exists a lack of individuals with systems engineering expertise, in particular those with strong leadership capabilities, to meet the needs of the Agency's exploration agenda. Therefore there is a emphasis on developing these programs to identify and train systems engineers. The presentation reviews the proposed MSFC program that includes course work, and developmental assignments. The formal developmental programs at the other centers are briefly reviewed, including the Point of Contact (POC)

  8. Multi-Fuel Rotary Engine for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  9. Hydrogen Vent Ground Umbilical Quick Disconnect - Flight Seal Advanced Development

    NASA Technical Reports Server (NTRS)

    Girard, Doug; Jankowski, Fred; Minich, Mark C.; Yu, Weiping

    2012-01-01

    This project is a team effort between NASA Engineering (NE) and Team QNA Engineering personnel to provide support for the Umbilical Systems Development project which is funded by Advanced Exploration Systems (AES) and 21st Century Launch Complex. Specifically, this project seeks to develop a new interface between the PPBE baselined Legacy SSP LH2 Vent Arm QD probe and SLS vent seal.

  10. Division Overview

    NASA Technical Reports Server (NTRS)

    Emerson, Dawn

    2016-01-01

    This presentation provides an overview of the research and engineering in the competency fields of advanced communications and intelligent systems with emphasis on advanced technologies, architecture definition and system development for application in current and future aeronautics and space systems.

  11. Small engine technology programs

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, Richard W.

    1990-01-01

    Described here is the small engine technology program being sponsored at the Lewis Research Center. Small gas turbine research is aimed at general aviation, commuter aircraft, rotorcraft, and cruise missile applications. The Rotary Engine program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. The Automotive Gas Turbine (AGT) and Heavy-Duty Diesel Transport Technology (HDTT) programs are sponsored by DOE. The Compound Cycle Engine program is sponsored by the Army. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The HDTT, rotary technology, and the compound cycle programs are all examining approaches to minimum heat rejection, or 'adiabatic' systems employing advanced materials. The AGT program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbine programs will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.

  12. Energy efficient engine fan component detailed design report

    NASA Technical Reports Server (NTRS)

    Halle, J. E.; Michael, C. J.

    1981-01-01

    The fan component which was designed for the energy efficient engine is an advanced high performance, single stage system and is based on technology advancements in aerodynamics and structure mechanics. Two fan components were designed, both meeting the integrated core/low spool engine efficiency goal of 84.5%. The primary configuration, envisioned for a future flight propulsion system, features a shroudless, hollow blade and offers a predicted efficiency of 87.3%. A more conventional blade was designed, as a back up, for the integrated core/low spool demonstrator engine. The alternate blade configuration has a predicted efficiency of 86.3% for the future flight propulsion system. Both fan configurations meet goals established for efficiency surge margin, structural integrity and durability.

  13. Expanding Robust HCCI Operation with Advanced Valve and Fuel Control Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, J. P.; Confer, K.

    2012-09-11

    Delphi Automotive Systems and ORNL established this CRADA to advance the commercialization potential of the homogeneous charge compression ignition (HCCI) advanced combustion strategy for gasoline engine platforms. HCCI combustion has been shown by others to produce high diesel-like efficiency on a gasoline engine platform while simultaneously producing low NOX and particulate matter emissions. However, the commercialization barriers that face HCCI combustion are significant, with requirements for a more active engine control system, likely with next-cycle closed-loop feedback control, and with advanced valve train technologies to enable negative valve overlap conditions. In the partnership between Delphi and ORNL, each organization broughtmore » a unique and complementary set of skills to the project. Delphi has made a number of breakthroughs with production-intent valve train technologies and controls in recent years to make a part time production-intent HCCI engine plausible. ORNL has extensive knowledge and expertise with HCCI combustion, and also has a versatile research engine with hydraulic valve actuation (HVA) that is useful for guiding production of a cam-based HCCI system. Partnering these knowledge bases and capabilities was essential towards making progress to better understand HCCI combustion and the commercialization barriers that it faces. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided guidance to ORNL regarding operational strategies to investigate on their single-cylinder research engine with HVA and data from their experimental multi-cylinder engine for modeling. ORNL provided single-cylinder engine data and modeling results.« less

  14. Positive displacement compounding of a heavy duty diesel engine

    NASA Technical Reports Server (NTRS)

    Sekar, R.; Kamo, R.

    1983-01-01

    A helical screw type positive displacement (PD) compressor and expander was considered as an alternative to the turbocharger and the power turbine in the Cummins advanced turbocompound engine. The Institute of Gas Technology (IGT) completed the design, layout, and performance prediction of the PD machines. The results indicate that a screw compressor-expander system is feasible up to at least 750 HP, dry operation of the rotors is feasible, cost and producibility are uncertain, and the system will yield about 4% improvement in brake specific fuel consumption (BSFC) over the advanced turbocompound engine.

  15. Ceramic Technology for Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional researchmore » is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.« less

  16. Cost/benefit studies of advanced materials technologies for future aircraft turbine engines: Materials for advanced turbine engines

    NASA Technical Reports Server (NTRS)

    Stearns, M.; Wilbers, L.

    1982-01-01

    Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.

  17. Status of the Body of Knowledge and Curriculum to Advance Systems Engineering (BKCASE (trademark)) Project

    DTIC Science & Technology

    2011-10-01

    Systems engineer- ing knowledge has also been documented through the standards bodies, most notably : • ISO /IEC/IEEE 15288, Systems Engineer- ing...System Life Cycle Processes, 2008 (see [10]). • ANSI/EIA 632, Processes for Engineering a System, (1998) • IEEE 1220, ISO /IEC 26702 Application...tion • United States Defense Acquisition Guidebook, Chapter 4, June 27, 2011 • IEEE/EIA 12207 , Software Life Cycle Processes, 2008 • United

  18. A Rocket Powered Single-Stage-to-Orbit Launch Vehicle With U.S. and Soviet Engineers

    NASA Technical Reports Server (NTRS)

    MacConochie, Ian O.; Stnaley, Douglas O.

    1991-01-01

    A single-stage-to-orbit launch vehicle is used to assess the applicability of Soviet Energia high-pressure-hydrocarbon engine to advanced U.S. manned space transportation systems. Two of the Soviet engines are used with three Space Shuttle Main Engines. When applied to a baseline vehicle that utilized advanced hydrocarbon engines, the higher weight of the Soviet engines resulted in a 20 percent loss of payload capability and necessitated a change in the crew compartment size and location from mid-body to forebody in order to balance the vehicle. Various combinations of Soviet and Shuttle engines were evaluated for comparison purposes, including an all hydrogen system using all Space Shuttle Main Engines. Operational aspects of the baseline vehicle are also discussed. A new mass properties program entitles Weights and Moments of Inertia (WAMI) is used in the study.

  19. Modular Rocket Engine Control Software (MRECS)

    NASA Technical Reports Server (NTRS)

    Tarrant, C.; Crook, J.

    1998-01-01

    The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for advanced engine control systems that will result in lower software maintenance (operations) costs. It effectively accommodates software requirement changes that occur due to hardware technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives, benefits, and status of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishments are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software architecture, reuse software, and reduced software reverification time related to software changes. MRECS was recently modified to support a Space Shuttle Main Engine (SSME) hot-fire test. Cold Flow and Flight Readiness Testing were completed before the test was cancelled. Currently, the program is focused on supporting NASA MSFC in accomplishing development testing of the Fastrac Engine, part of NASA's Low Cost Technologies (LCT) Program. MRECS will be used for all engine development testing.

  20. Influence of Alternative Engine Concepts on LCTR2 Sizing and Mission Profile

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Snyder, Christopher A.

    2012-01-01

    The Large Civil Tiltrotor (LCTR) was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nm at 300 knots, with vertical takeoff and landing. This paper examines the impact of advanced propulsion system concepts on LCTR2 sizing. Two concepts were studied: an advanced, single-speed engine with a conventional power turbine layout (Advanced Conventional Engine, or ACE), and a variable-speed power turbine engine (VSPT). The ACE is the lighter engine, but requires a multi-speed (shifting) gearbox, whereas the VSPT uses a lighter, fixed-ratio gearbox. The NASA Design and Analysis of Rotorcraft (NDARC) design code was used to study the trades between rotor and engine efficiency and weight. Rotor performance was determined by Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II), and engine performance was estimated with the Numerical Propulsion System Simulation (NPSS). Design trades for the ACE vs. VSPT are presented in terms of vehicle weight empty for variations in mission altitude and range; the effect of different One Engine Inoperative (OEI) criteria are also examined. Because of its strong effect on gearbox weight and on both rotor and engine efficiency, rotor speed was chosen as the reference design variable for comparing design trades. The two propulsion concepts had nearly identical vehicle weights and mission fuel consumption, and their relative advantages varied little with cruise altitude, mission range, or OEI criteria; high cruise altitude and low cruise tip speed were beneficial for both concepts.

  1. Overview of NASA Glenn Seal Project

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick; Proctor, Margaret; Delgado, Irebert; Finkbeiner, Josh; DeMange, Jeff; Daniels, Christopher C.; Taylor, Shawn; Oswald, Jay

    2006-01-01

    NASA Glenn is currently performing seal research supporting both advanced turbine engine development and advanced space vehicle/propulsion system development. Studies have shown that decreasing parasitic leakage through applying advanced seals will increase turbine engine performance and decrease operating costs. Studies have also shown that higher temperature, long life seals are critical in meeting next generation space vehicle and propulsion system goals in the areas of performance, reusability, safety, and cost. NASA Glenn is developing seal technology and providing technical consultation for the Agency s key aero- and space technology development programs.

  2. Fourth NASA Inter-Center Control Systems Conference

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Space vehicle control applications are discussed, along with aircraft guidance, control, and handling qualities. System simulation and identification, engine control, advanced propulsion techniques, and advanced control techniques are also included.

  3. Noise impact of advanced high lift systems

    NASA Technical Reports Server (NTRS)

    Elmer, Kevin R.; Joshi, Mahendra C.

    1995-01-01

    The impact of advanced high lift systems on aircraft size, performance, direct operating cost and noise were evaluated for short-to-medium and medium-to-long range aircraft with high bypass ratio and very high bypass ratio engines. The benefit of advanced high lift systems in reducing noise was found to be less than 1 effective-perceived-noise decibel level (EPNdB) when the aircraft were sized to minimize takeoff gross weight. These aircraft did, however, have smaller wings and lower engine thrusts for the same mission than aircraft with conventional high lift systems. When the advanced high lift system was implemented without reducing wing size and simultaneously using lower flap angles that provide higher L/D at approach a cumulative noise reduction of as much as 4 EPNdB was obtained. Comparison of aircraft configurations that have similar approach speeds showed cumulative noise reduction of 2.6 EPNdB that is purely the result of incorporating advanced high lift system in the aircraft design.

  4. The Next Great Ship: NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2013-01-01

    Topics covered include: Most Capable U.S. Launch Vehicle; Liquid engines Progress; Boosters Progress; Stages and Avionics Progress; Systems Engineering and Integration Progress; Spacecraft and Payload Integration Progress; Advanced Development Progress.

  5. Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Terrance

    This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, andmore » to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.« less

  6. Manufacture and engine test of advanced oxide dispersion strengthened alloy turbine vanes. [for space shuttle thermal protection

    NASA Technical Reports Server (NTRS)

    Bailey, P. G.

    1977-01-01

    Oxide-Dispersion-strengthened (ODS) Ni-Cr-Al alloy systems were exploited for turbine engine vanes which would be used for the space shuttle thermal protection system. Available commercial and developmental advanced ODS alloys were evaluated, and three were selected based on established vane property goals and manufacturing criteria. The selected alloys were evaluated in an engine test. Candidate alloys were screened by strength, thermal fatigue resistance, oxidation and sulfidation resistance. The Ni-16Cr (3 to 5)Al-ThO2 system was identified as having attractive high temperature oxidation resistance. Subsequent work also indicated exceptional sulfidation resistance for these alloys.

  7. Solid State Cooling with Advanced Oxide Materials

    DTIC Science & Technology

    2014-06-03

    Department of Materials Science and Engineering , Department of Mechanical Science and Engineering , and Department of Electrical and Computer... Engineering University of Illinois, Urbana-Champaign Program Overview The focus of this program was to probe electro-(magneto-)caloric materials for... engineering systems by developing theoretical and experimental approaches to study thermodynamic properties and effects in thin film systems. Despite

  8. Engineering Cell-Cell Signaling

    PubMed Central

    Milano, Daniel F.; Natividad, Robert J.; Asthagiri, Anand R.

    2014-01-01

    Juxtacrine cell-cell signaling mediated by the direct interaction of adjoining mammalian cells is arguably the mode of cell communication that is most recalcitrant to engineering. Overcoming this challenge is crucial for progress in biomedical applications, such as tissue engineering, regenerative medicine, immune system engineering and therapeutic design. Here, we describe the significant advances that have been made in developing synthetic platforms (materials and devices) and synthetic cells (cell surface engineering and synthetic gene circuits) to modulate juxtacrine cell-cell signaling. In addition, significant progress has been made in elucidating design rules and strategies to modulate juxtacrine signaling based on quantitative, engineering analysis of the mechanical and regulatory role of juxtacrine signals in the context of other cues and physical constraints in the microenvironment. These advances in engineering juxtacrine signaling lay a strong foundation for an integrative approach to utilizing synthetic cells, advanced ‘chassis’ and predictive modeling to engineer the form and function of living tissues. PMID:23856592

  9. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John

    2004-01-01

    Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.

  10. Thick thermal barrier coatings for diesel engines

    NASA Technical Reports Server (NTRS)

    Beardsley, M. Brad

    1995-01-01

    Caterpillar's approach to applying thick thermal barrier coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective Caterpillar's program to date has been to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impeded the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.

  11. Thick thermal barrier coatings for diesel engines

    NASA Technical Reports Server (NTRS)

    Beardsley, M. B.

    1995-01-01

    Caterpillar's approach to applying Thick Thermal Barrier Coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective of Caterpillar's subcontract with ORNL is to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.

  12. Advanced Propulsion System Studies for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); German, Jon

    2003-01-01

    This final report addresses the following topics: Market Impact Analysis (1) assessment of general aviation, including commuter/regional, aircraft market impact due to incorporation of advanced technology propulsion system on acquisition and operating costs, job creation and/or manpower demand, and future fleet size; (2) selecting an aircraft and engine for the study by focusing on the next generation 19-passenger commuter and the Williams International FJ44 turbofan engine growth. Propulsion System Analysis Conducted mission analysis studies and engine cycle analysis to define a new commuter mission and required engine performance, define acquisition and operating costs and, select engine configuration and initiated preliminary design for hardware modifications required. Propulsion System Benefits (1) assessed and defined engine emissions improvements, (2) assessed and defined noise reduction potential and, (3) conducted a cost analysis impact study. Review of Relevant NASA Programs Conducted literature searches using NERAC and NASA RECON services for related technology in the emissions and acoustics area. Preliminary Technology Development Plans Defined plan to incorporate technology improvements for an FJ44-2 growth engine in performance, emissions, and noise suppression.

  13. Corrosion science, corrosion engineering, and advanced technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latanision, R.M.

    1995-04-01

    Professor R.M. Latanision was the 1994 recipient of the Willis Rodney Whitney Award sponsored by NACE International. The present work is taken from his award lecture at CORROSION/94 held in March 1994 in Baltimore, MD. Latanision discussed the interplay between corrosion science and corrosion engineering in advancing technology. His lecture focused on supercritical water oxidation and other technologies that have been under study in the H.H. Uhlig Corrosion Laboratory and in which the chemical properties of new materials and traditional materials have proven integral to the development of contemporary or advanced engineering systems.

  14. Performance estimation for a highly loaded eight-blade propeller combined with an advanced technology turboshaft engine

    NASA Technical Reports Server (NTRS)

    Morris, S. J., Jr.

    1979-01-01

    Performance estimation, weights, and scaling laws for an eight-blade highly loaded propeller combined with an advanced turboshaft engine are presented. The data are useful for planned aircraft mission studies using the turboprop propulsion system. Comparisons are made between the performance of the 1990+ technology turboprop propulsion system and the performance of both a current technology turbofan and an 1990+ technology turbofan.

  15. The spark-ignition aircraft piston engine of the future

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    Areas of advanced technology appropriate to the design of a spark-ignition aircraft piston engine for the late 1980 time period were investigated and defined. Results of the study show that significant improvements in fuel economy, weight and size, safety, reliability, durability and performance may be achieved with a high degree of success, predicated on the continued development of advances in combustion systems, electronics, materials and control systems.

  16. Liquid Oxygen/Liquid Methane Propulsion and Cryogenic Advanced Development

    NASA Technical Reports Server (NTRS)

    Klem, Mark D.; Smith, Timothy D.; Wadel, Mary F.; Meyer, Michael L.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    Exploration Systems Architecture Study conducted by NASA in 2005 identified the liquid oxygen (LOx)/liquid methane (LCH4) propellant combination as a prime candidate for the Crew Exploration Vehicle Service Module propulsion and for later use for ascent stage propulsion of the lunar lander. Both the Crew Exploration Vehicle and Lunar Lander were part the Constellation architecture, which had the objective to provide global sustained lunar human exploration capability. From late 2005 through the end of 2010, NASA and industry matured advanced development designs for many components that could be employed in relatively high thrust, high delta velocity, pressure fed propulsion systems for these two applications. The major investments were in main engines, reaction control engines, and the devices needed for cryogenic fluid management such as screens, propellant management devices, thermodynamic vents, and mass gauges. Engine and thruster developments also included advanced high reliability low mass igniters. Extensive tests were successfully conducted for all of these elements. For the thrusters and engines, testing included sea level and altitude conditions. This advanced development provides a mature technology base for future liquid oxygen/liquid methane pressure fed space propulsion systems. This paper documents the design and test efforts along with resulting hardware and test results.

  17. Air breathing engine/rocket trajectory optimization

    NASA Technical Reports Server (NTRS)

    Smith, V. K., III

    1979-01-01

    This research has focused on improving the mathematical models of the air-breathing propulsion systems, which can be mated with the rocket engine model and incorporated in trajectory optimization codes. Improved engine simulations provided accurate representation of the complex cycles proposed for advanced launch vehicles, thereby increasing the confidence in propellant use and payload calculations. The versatile QNEP (Quick Navy Engine Program) was modified to allow treatment of advanced turboaccelerator cycles using hydrogen or hydrocarbon fuels and operating in the vehicle flow field.

  18. Multi-fuel rotary engine for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, an advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25,000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed. Previously announced in STAR as N83-18910

  19. Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation

    NASA Technical Reports Server (NTRS)

    Patt, R. F.

    1980-01-01

    Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

  20. Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, R.F.

    Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

  1. Communications and Intelligent Systems Division Overview

    NASA Technical Reports Server (NTRS)

    Emerson, Dawn

    2017-01-01

    This presentation provides an overview of the research and engineering work being performed in the competency fields of advanced communications and intelligent systems with emphasis on advanced technologies, architecture definition, and systems development for application in current and future aeronautics and space communications systems.

  2. Communications and Intelligent Systems Division - Division Overview

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2017-01-01

    This presentation provides an overview of the research and engineering work being performed in the competency fields of advanced communications and intelligent systems with emphasis on advanced technologies, architecture definition,and systems development for application in current and future aeronautics and space communications systems.

  3. Communications and Intelligent Systems Division - Division Overview

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2017-01-01

    This presentation provides an overview of the research and engineering work being performed in the competency fields of advanced communications and intelligent systems with emphasis on advanced technologies, architecture definition, and systems development for application in current and future aeronautics and space communications systems.

  4. Propulsion System Advances that Enable a Reusable Liquid Fly Back Booster (LFBB)

    NASA Technical Reports Server (NTRS)

    Keith, Edward L.; Rothschild, William J.

    1998-01-01

    This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX / kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.

  5. Propulsion system advances that enable a reusable Liquid Fly Back Booster (LFBB)

    NASA Technical Reports Server (NTRS)

    Keith, E. L.; Rothschild, W. J.

    1998-01-01

    This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX/kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.

  6. Miniaturization as a key factor to the development and application of advanced metrology systems

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Dobrev, Ivo; Harrington, Ellery; Hefti, Peter; Khaleghi, Morteza

    2012-10-01

    Recent technological advances of miniaturization engineering are enabling the realization of components and systems with unprecedented capabilities. Such capabilities, which are significantly beneficial to scientific and engineering applications, are impacting the development and the application of optical metrology systems for investigations under complex boundary, loading, and operating conditions. In this paper, and overview of metrology systems that we are developing is presented. Systems are being developed and applied to high-speed and high-resolution measurements of shape and deformations under actual operating conditions for such applications as sustainability, health, medical diagnosis, security, and urban infrastructure. Systems take advantage of recent developments in light sources and modulators, detectors, microelectromechanical (MEMS) sensors and actuators, kinematic positioners, rapid prototyping fabrication technologies, as well as software engineering.

  7. Performance and Weight Estimates for an Advanced Open Rotor Engine

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric S.; Tong, Michael T.

    2012-01-01

    NASA s Environmentally Responsible Aviation Project and Subsonic Fixed Wing Project are focused on developing concepts and technologies which may enable dramatic reductions to the environmental impact of future generation subsonic aircraft. The open rotor concept (also historically referred to an unducted fan or advanced turboprop) may allow for the achievement of this objective by reducing engine fuel consumption. To evaluate the potential impact of open rotor engines, cycle modeling and engine weight estimation capabilities have been developed. The initial development of the cycle modeling capabilities in the Numerical Propulsion System Simulation (NPSS) tool was presented in a previous paper. Following that initial development, further advancements have been made to the cycle modeling and weight estimation capabilities for open rotor engines and are presented in this paper. The developed modeling capabilities are used to predict the performance of an advanced open rotor concept using modern counter-rotating propeller designs. Finally, performance and weight estimates for this engine are presented and compared to results from a previous NASA study of advanced geared and direct-drive turbofans.

  8. Quiet Clean Short-haul Experimental Engine (QCSEE). Under-The-Wing (UTW) engine boilerplate nacelle test report. Volume 3: Mechanical performance

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Results of initial tests of the under the wing experimental engine and boilerplate nacelle are presented. The mechanical performance of the engine is reported with emphasis on the advanced technology components. Technology elements of the propulsion system covered include: system dynamics, composite fan blades, reduction gear, lube and accessory drive system, fan frame, inlet, core cowl cooling, fan exhaust nozzle, and digital control system.

  9. Benefits of advanced propulsion technology for the advanced supersonic transport

    NASA Technical Reports Server (NTRS)

    Hines, R. W.; Sabatella, J. A.

    1973-01-01

    Future supersonic transports will have to provide improvement in the areas of economics, range, and emissions relative to the present generation of supersonic transports, as well as meeting or improving upon FAR 36 noise goals. This paper covers the promising propulsion systems including variable-cycle engine concepts for long-range supersonic commercial transport application. The benefits of applying advanced propulsion technology to solve the economic and environmental problems are reviewed. The advanced propulsion technologies covered are in the areas of structures, materials, cooling techniques, aerodynamics, variable engine geometry, jet noise suppressors, acoustic treatment, and low-emission burners. The results of applying the advanced propulsion technology are presented in terms of improvement in overall system takeoff gross weight and return on investment.

  10. QFD emphasis of IME design

    NASA Astrophysics Data System (ADS)

    Erickson, C. M.; Martinez, A.

    1993-06-01

    The 1992 Integrated Modular Engine (IME) design concept, proposed to the Air Force Space Systems Division as a candidate for a National Launch System (NLS) upper stage, emphasized a detailed Quality Functional Deployment (QFD) procedure which set the basis for its final selection. With a list of engine requirements defined and prioritized by the customer, a QFD procedure was implemented where the characteristics of a number of engine and component configurations were assessed for degree of requirement satisfaction. The QFD process emphasized operability, cost, reliability and performance, with relative importance specified by the customer. Existing technology and near-term advanced technology were surveyed to achieve the required design strategies. In the process, advanced nozzles, advanced turbomachinery, valves, controls, and operational procedures were evaluated. The integrated arrangement of three conventional bell nozzle thrust chambers with two advanced turbopump sets selected as the configuration meeting all requirements was rated significantly ahead of the other candidates, including the Aerospike and horizontal flow nozzle configurations.

  11. Exploring Advanced Technology Gas Turbine Engine Design and Performance for the Large Civil Tiltrotor (LCTR)

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2014-01-01

    A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nautical miles at 300 knots, with vertical takeoff and landing capability. This paper explores gas turbine component performance and cycle parameters to quantify performance gains possible for additional improvements in component and material performance beyond those identified in previous LCTR2 propulsion studies and to identify additional research areas. The vehicle-level characteristics from this advanced technology generation 2 propulsion architecture will help set performance levels as additional propulsion and power systems are conceived to meet ever-increasing requirements for mobility and comfort, while reducing energy use, cost, noise and emissions. The Large Civil Tiltrotor vehicle and mission will be discussed as a starting point for this effort. A few, relevant engine and component technology studies, including previous LCTR2 engine study results will be summarized to help orient the reader on gas turbine engine architecture, performance and limitations. Study assumptions and methodology used to explore engine design and performance, as well as assess vehicle sizing and mission performance will then be discussed. Individual performance for present and advanced engines, as well as engine performance effects on overall vehicle size and mission fuel usage, will be given. All results will be summarized to facilitate understanding the importance and interaction of various component and system performance on overall vehicle characteristics.

  12. Microstructure Evolution and Durability of Advanced Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Evans, Laura J.; McCue, Terry R.; Harder, Bryan

    2016-01-01

    Environmental barrier coated SiC-SiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. Advanced HfO2 and rare earth silicate environmental barrier coatings (EBCs), along with multicomponent hafnium and rare earth silicide EBC bond coats have been developed. The coating degradation mechanisms in the laboratory simulated engine thermal cycling, and fatigue-creep operating environments are also being investigated. This paper will focus on the microstructural and compositional evolutions of an advanced environmental barrier coating system on a SiC-SiC CMC substrate during the high temperature simulated durability tests, by using a Field Emission Gun Scanning Electron Microscopy, Energy Dispersive Spectroscopy (EDS) and Wavelength Dispersive Spectroscopy (WDS). The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will also be discussed. The detailed analysis results help understand the EBC-CMC system performance, aiming at the durability improvements to achieve more robust, prime-reliant environmental barrier coatings.

  13. Combined Thermomechanical and Environmental Durability of Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in next generation turbine engines for hot-section component applications. The development of prime-reliant environmental barrier coatings is essential to the EBC-CMC system durability, ensuring the successful implementations of the high temperature and lightweight engine component technologies for engine applications.This paper will emphasize recent NASA environmental barrier coating and CMC developments for SiC/SiC turbine airfoil components, utilizing advanced coating compositions and processing methods. The emphasis has been particularly placed on thermomechanical and environment durability evaluations of EBC-CMC systems. We have also addressed the integration of the EBCs with advanced SiC/SiC CMCs, and studied the effects of combustion environments and Calcium-Magnesium-Alumino-Silicate (CMAS) deposits on the durability of the EBC-CMC systems under thermal gradient and mechanical loading conditions. Advanced environmental barrier coating systems, including multicomponent rare earth silicate EBCs and HfO2-Si based bond coats, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  14. Research on Agriculture Domain Meta-Search Engine System

    NASA Astrophysics Data System (ADS)

    Xie, Nengfu; Wang, Wensheng

    The rapid growth of agriculture web information brings a fact that search engine can not return a satisfied result for users’ queries. In this paper, we propose an agriculture domain search engine system, called ADSE, that can obtains results by an advance interface to several searches and aggregates them. We also discuss two key technologies: agriculture information determination and engine.

  15. Electronic/electric technology benefits study. [avionics

    NASA Technical Reports Server (NTRS)

    Howison, W. W.; Cronin, M. J.

    1982-01-01

    The benefits and payoffs of advanced electronic/electric technologies were investigated for three types of aircraft. The technologies, evaluated in each of the three airplanes, included advanced flight controls, advanced secondary power, advanced avionic complements, new cockpit displays, and advanced air traffic control techniques. For the advanced flight controls, the near term considered relaxed static stability (RSS) with mechanical backup. The far term considered an advanced fly by wire system for a longitudinally unstable airplane. In the case of the secondary power systems, trades were made in two steps: in the near term, engine bleed was eliminated; in the far term bleed air, air plus hydraulics were eliminated. Using three commercial aircraft, in the 150, 350, and 700 passenger range, the technology value and pay-offs were quantified, with emphasis on the fiscal benefits. Weight reductions deriving from fuel saving and other system improvements were identified and the weight savings were cycled for their impact on TOGW (takeoff gross weight) and upon the performance of the airframes/engines. Maintenance, reliability, and logistic support were the other criteria.

  16. Orbital transfer rocket engine technology 7.5K-LB thrust rocket engine preliminary design

    NASA Technical Reports Server (NTRS)

    Harmon, T. J.; Roschak, E.

    1993-01-01

    A preliminary design of an advanced LOX/LH2 expander cycle rocket engine producing 7,500 lbf thrust for Orbital Transfer vehicle missions was completed. Engine system, component and turbomachinery analysis at both on design and off design conditions were completed. The preliminary design analysis results showed engine requirements and performance goals were met. Computer models are described and model outputs are presented. Engine system assembly layouts, component layouts and valve and control system analysis are presented. Major design technologies were identified and remaining issues and concerns were listed.

  17. Application of advanced control techniques to aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.

    1984-01-01

    Two programs are described which involve the application of advanced control techniques to the design of engine control algorithms. Multivariable control theory is used in the F100 MVCS (multivariable control synthesis) program to design controls which coordinate the control inputs for improved engine performance. A systematic method for handling a complex control design task is given. Methods of analytical redundancy are aimed at increasing the control system reliability. The F100 DIA (detection, isolation, and accommodation) program, which investigates the uses of software to replace or augment hardware redundancy for certain critical engine sensor, is described.

  18. System-level perturbations of cell metabolism using CRISPR/Cas9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakočiūnas, Tadas; Jensen, Michael K.; Keasling, Jay D.

    CRISPR/Cas9 (clustered regularly interspaced palindromic repeats and the associated protein Cas9) techniques have made genome engineering and transcriptional reprogramming studies much more advanced and cost-effective. For metabolic engineering purposes, the CRISPR-based tools have been applied to single and multiplex pathway modifications and transcriptional regulations. The effectiveness of these tools allows researchers to implement genome-wide perturbations, test model-guided genome editing strategies, and perform transcriptional reprogramming perturbations in a more advanced manner than previously possible. In this mini-review we highlight recent studies adopting CRISPR/Cas9 for systems-level perturbations and model-guided metabolic engineering.

  19. Protein glycosylation in diverse cell systems: implications for modification and analysis of recombinant proteins.

    PubMed

    Brooks, Susan A

    2006-06-01

    A major challenge for the biotechnology industry is to engineer the glycosylation pathways of expression systems to synthesize recombinant proteins with human glycosylation. Inappropriate glycosylation can result in reduced activity, limited half-life in circulation and unwanted immunogenicity. In this review, the complexities of glycosylation in human cells are explained and compared with glycosylation in bacteria, yeasts, fungi, insects, plants and nonhuman mammalian species. Key advances in the engineering of the glycosylation of expression systems are highlighted. Advances in the challenging and technically complex field of glycan analysis are also described. The emergence of a new generation of expression systems with sophisticated engineering for humanized glycosylation of glycoproteins appears to be on the horizon.

  20. Flow Control Opportunities for Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Cutley, Dennis E.

    2008-01-01

    The advancement of technology in gas turbine engines used for aerospace propulsion has been focused on achieving significant performance improvements. At the system level, these improvements are expressed in metrics such as engine thrust-to-weight ratio and system and component efficiencies. The overall goals are directed at reducing engine weight, fuel burn, emissions, and noise. At a component level, these goals translate into aggressive designs of each engine component well beyond the state of the art.

  1. Advanced Sensor and Packaging Technologies for Intelligent Adaptive Engine Controls (Preprint)

    DTIC Science & Technology

    2013-05-01

    combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high - temperature electronics, and advanced harsh...with simultaneous pressure measurements up to 1,000 psi. The combination of a high - temperature , high -pressure-ratio compressor system, and adaptive...combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high temperature electronics, and advanced harsh

  2. Systems Engineering Building Advances Power Grid Research

    ScienceCinema

    Virden, Jud; Huang, Henry; Skare, Paul; Dagle, Jeff; Imhoff, Carl; Stoustrup, Jakob; Melton, Ron; Stiles, Dennis; Pratt, Rob

    2018-01-16

    Researchers and industry are now better equipped to tackle the nation’s most pressing energy challenges through PNNL’s new Systems Engineering Building – including challenges in grid modernization, buildings efficiency and renewable energy integration. This lab links real-time grid data, software platforms, specialized laboratories and advanced computing resources for the design and demonstration of new tools to modernize the grid and increase buildings energy efficiency.

  3. Power Requirements Determined for High-Power-Density Electric Motors for Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Brown, Gerald V.

    2005-01-01

    Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.

  4. Performance estimation for highly loaded six and ten blade propellers combined with an advanced technology turboshaft engine

    NASA Technical Reports Server (NTRS)

    Morris, S. J., Jr.

    1980-01-01

    Performance estimations, weights, and scaling laws for the six blade and ten blade highly loaded propellers combined with an advanced turboshaft engine are presented. These data are useful for aircraft mission studies using the turboprop system. Comparisons are made between the performance of post 1980 technology turboprop propulsion systems and the performance of both a current technology turbofan and a post 1990 technology turbofan.

  5. Calcium-Magnesium-Alumino-Silicates (CMAS) Reaction Mechanisms and Resistance of Advanced Turbine Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Costa, Gustavo; Harder, Bryan J.; Wiesner, Valerie L.; Hurst, Janet B.; Puleo, Bernadette J.

    2017-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is an essential requirement to enable the applications of the 2700-3000 F EBC - CMC systems. This presentation primarily focuses on the reaction mechanisms of advanced NASA environmental barrier coating systems, when in contact with Calcium-Magnesium Alumino-Silicates (CMAS) at high temperatures. Advanced oxide-silicate defect cluster environmental barrier coatings are being designed for ultimate balanced controls of the EBC temperature capability and CMAS reactivity, thus improving the CMAS resistance. Further CMAS mitigation strategies are also discussed.

  6. Materials for advanced turbine engines. Volume 1: Advanced blade tip seal system

    NASA Technical Reports Server (NTRS)

    Zelahy, J. W.; Fairbanks, N. P.

    1982-01-01

    Project 3, the subject of this technical report, was structured toward the successful engine demonstration of an improved-efficiency, long-life, tip-seal system for turbine blades. The advanced tip-seal system was designed to maintain close operating clearances between turbine blade tips and turbine shrouds and, at the same time, be resistant to environmental effects including high-temperature oxidation, hot corrosion, and thermal cycling. The turbine blade tip comprised an environmentally resistant, activated-diffussion-bonded, monocrystal superalloy combined with a thin layer of aluminium oxide abrasive particles entrapped in an electroplated NiCr matrix. The project established the tip design and joint location, characterized the single-crystal tip alloy and abrasive tip treatment, and established the manufacturing and quality-control plans required to fully process the blades. A total of 171 blades were fully manufactured, and 100 were endurance and performance engine-tested.

  7. Energy Efficient Engine program advanced turbofan nacelle definition study

    NASA Technical Reports Server (NTRS)

    Howe, David C.; Wynosky, T. A.

    1985-01-01

    Advanced, low drag, nacelle configurations were defined for some of the more promising propulsion systems identified in the earlier Benefit/Cost Study, to assess the benefits associated with these advanced technology nacelles and formulate programs for developing these nacelles and low volume thrust reversers/spoilers to a state of technology readiness in the early 1990's. The study results established the design feasibility of advanced technology, slim line nacelles applicable to advanced technology, high bypass ratio turbofan engines. Design feasibility was also established for two low volume thrust reverse/spoiler concepts that meet or exceed the required effectiveness for these engines. These nacelle and thrust reverse/spoiler designs were shown to be applicable in engines with takeoff thrust sizes ranging from 24,000 to 60,000 pounds. The reduced weight, drag, and cost of the advanced technology nacelle installations relative to current technology nacelles offer a mission fuel burn savings ranging from 3.0 to 4.5 percent and direct operating cost plus interest improvements from 1.6 to 2.2 percent.

  8. Advanced Launch System advanced development oxidizer turbopump program: Technical implementation plan

    NASA Technical Reports Server (NTRS)

    Ferlita, F.

    1989-01-01

    The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.

  9. Development of CFD model for augmented core tripropellant rocket engine

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth M.

    1994-10-01

    The Space Shuttle era has made major advances in technology and vehicle design to the point that the concept of a single-stage-to-orbit (SSTO) vehicle appears more feasible. NASA presently is conducting studies into the feasibility of certain advanced concept rocket engines that could be utilized in a SSTO vehicle. One such concept is a tripropellant system which burns kerosene and hydrogen initially and at altitude switches to hydrogen. This system will attain a larger mass fraction because LOX-kerosene engines have a greater average propellant density and greater thrust-to-weight ratio. This report describes the investigation to model the tripropellant augmented core engine. The physical aspects of the engine, the CFD code employed, and results of the numerical model for a single modular thruster are discussed.

  10. The path to next generation biofuels: successes and challenges in the era of synthetic biology

    PubMed Central

    2010-01-01

    Volatility of oil prices along with major concerns about climate change, oil supply security and depleting reserves have sparked renewed interest in the production of fuels from renewable resources. Recent advances in synthetic biology provide new tools for metabolic engineers to direct their strategies and construct optimal biocatalysts for the sustainable production of biofuels. Metabolic engineering and synthetic biology efforts entailing the engineering of native and de novo pathways for conversion of biomass constituents to short-chain alcohols and advanced biofuels are herewith reviewed. In the foreseeable future, formal integration of functional genomics and systems biology with synthetic biology and metabolic engineering will undoubtedly support the discovery, characterization, and engineering of new metabolic routes and more efficient microbial systems for the production of biofuels. PMID:20089184

  11. New bioproduction systems: from molecular circuits to novel reactor concepts in cell-free biotechnology.

    PubMed

    Rupp, Steffen

    2013-01-01

    : The last decades witnessed a strong growth in several areas of biotechnology, especially in fields related to health, as well as in industrial biotechnology. Advances in molecular engineering now enable biotechnologists to design more efficient pathways in order to convert a larger spectrum of renewable resources into industrially used biofuels and chemicals as well as into new pharmaceuticals and therapeutic proteins. In addition material sciences advanced significantly making it more and more possible to integrate biology and engineering. One of the key questions currently is how to develop new ways of engineering biological systems to cope with the complexity and limitations given by the cell. The options to integrate biology with classical engineering advanced cell free technologies in the recent years significantly. Cell free protein production using cellular extracts is now a well-established universal technology for production of proteins derived from many organisms even at the milligram scale. Among other applications it has the potential to supply the demand for a multitude of enzymes and enzyme variants facilitating in vitro metabolic engineering. This review will briefly address the recent achievements and limitations of cell free conversions. Especially, the requirements for reactor systems in cell free biotechnology, a currently underdeveloped field, are reviewed and some perspectives are given on how material sciences and biotechnology might be able to advance these new developments in the future.

  12. Development and Performance Evaluations of HfO2-Si and Rare Earth-Si Based Environmental Barrier Bond Coat Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si based EBC bond coat systems for SiCSiC CMC combustor and turbine airfoil applications are investigated. The coating design approach and stability requirements are specifically emphasized, with the development and implementation focusing on Plasma Sprayed (PS) and Electron Beam-Physic Vapor Deposited (EB-PVD) coating systems and the composition optimizations. High temperature properties of the HfO2-Si based bond coat systems, including the strength, fracture toughness, creep resistance, and oxidation resistance were evaluated in the temperature range of 1200 to 1500 C. Thermal gradient heat flux low cycle fatigue and furnace cyclic oxidation durability tests were also performed at temperatures up to 1500 C. The coating strength improvements, degradation and failure modes of the environmental barrier coating bond coat systems on SiCSiC CMCs tested in simulated stress-environment interactions are briefly discussed and supported by modeling. The performance enhancements of the HfO2-Si bond coat systems with rare earth element dopants and rare earth-silicon based bond coats are also highlighted. The advanced bond coat systems, when integrated with advanced EBC top coats, showed promise to achieve 1500 C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and long-term durability.

  13. Modular Rocket Engine Control Software (MRECS)

    NASA Technical Reports Server (NTRS)

    Tarrant, Charlie; Crook, Jerry

    1997-01-01

    The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for a generic, advanced engine control system that will result in lower software maintenance (operations) costs. It effectively accommodates software requirements changes that occur due to hardware. technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives and benefits of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishment are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software, architecture, reuse software, and reduced software reverification time related to software changes. Currently, the program is focused on supporting MSFC in accomplishing a Space Shuttle Main Engine (SSME) hot-fire test at Stennis Space Center and the Low Cost Boost Technology (LCBT) Program.

  14. DEVELOPMENT OF OPERATIONAL CONCEPTS FOR ADVANCED SMRs: THE ROLE OF COGNITIVE SYSTEMS ENGINEERING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacques Hugo; David Gertman

    Advanced small modular reactors (AdvSMRs) will use advanced digital instrumentation and control systems, and make greater use of automation. These advances not only pose technical and operational challenges, but will inevitably have an effect on the operating and maintenance (O&M) cost of new plants. However, there is much uncertainty about the impact of AdvSMR designs on operational and human factors considerations, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. Existing human factors and systems engineering design standards and methodologies are not current in terms ofmore » human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. New models and guidance for operational concepts for complex socio-technical systems need to adopt a state-of-the-art approach such as Cognitive Systems Engineering (CSE) that gives due consideration to the role of personnel. This approach we report on helps to identify and evaluate human challenges related to non-traditional concepts of operations. A framework - defining operational strategies was developed based on the operational analysis of Argonne National Laboratory’s Experimental Breeder Reactor-II (EBR-II), a small (20MWe) sodium-cooled reactor that was successfully operated for thirty years. Insights from the application of the systematic application of the methodology and its utility are reviewed and arguments for the formal adoption of CSE as a value-added part of the Systems Engineering process are presented.« less

  15. Near Zero Emissions at 50 Percent Thermal Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2012-12-31

    Detroit Diesel Corporation (DDC) has successfully completed a 10 year DOE sponsored heavy-duty truck engine program, hereafter referred to as the NZ-50 program. This program was split into two major phases. The first phase was called Near-Zero Emission at 50 Percent Thermal Efficiency, and was completed in 2007. The second phase was initiated in 2006, and this phase was named Advancements in Engine Combustion Systems to Enable High-Efficiency Clean Combustion for Heavy-Duty Engines. This phase was completed in September, 2010. The key objectives of the NZ-50 program for this first phase were to: Quantify thermal efficiency degradation associated with reductionmore » of engine-out NOx emissions to the 2007 regulated level of ~1.1 g/hp-hr. Implement an integrated analytical/experimental development plan for improving subsystem and component capabilities in support of emerging engine technologies for emissions and thermal efficiency goals of the program. Test prototype subsystem hardware featuring technology enhancements and demonstrate effective application on a multi-cylinder, production feasible heavy-duty engine test-bed. Optimize subsystem components and engine controls (calibration) to demonstrate thermal efficiency that is in compliance with the DOE 2005 Joule milestone, meaning greater than 45% thermal efficiency at 2007 emission levels. Develop technology roadmap for meeting emission regulations of 2010 and beyond while mitigating the associated degradation in engine fuel consumption. Ultimately, develop technical prime-path for meeting the overall goal of the NZ-50 program, i.e., 50% thermal efficiency at 2010 regulated emissions. These objectives were successfully met during the course of the NZ-50 program. The most noteworthy achievements in this program are summarized as follows: Demonstrated technologies through advanced integrated experiments and analysis to achieve the technical objectives of the NZ-50 program with 50.2% equivalent thermal efficiency under EPA 2010 emissions regulations. Experimentally demonstrate brake efficiency of 48.5% at EPA 2010 emission level at single steady-state point. Analytically demonstrated additional brake efficiency benefits using advanced aftertreatment configuration concept and air system enhancement including, but not limited to, turbo-compound, variable valve actuator system, and new cylinder head redesign, thus helping to achieve the final program goals. Experimentally demonstrated EPA 2010 emissions over FTP cycles using advanced integrated engine and aftertreatment system. These aggressive thermal efficiency and emissions results were achieved by applying a robust systems technology development methodology. It used integrated analytical and experimental tools for subsystem component optimization encompassing advanced fuel injection system, increased EGR cooling capacity, combustion process optimization, and advanced aftertreatment technologies. Model based controls employing multiple input and output techniques enabled efficient integration of the various subsystems and ensured optimal performance of each system within the total engine package. . The key objective of the NZ-50 program for the second phase was to explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize cylinder-out emissions, targeting a 10% efficiency improvement. The most noteworthy achievements in this phase of the program are summarized as follows: Experimentally and analytically evaluated numerous air system improvements related to the turbocharger and variable valve actuation. Some of the items tested proved to be very successful and modifications to the turbine discovered in this program have since been incorporated into production hardware. The combustion system development continued with evaluation of various designs of the 2-step piston bowl. Significant improvements in engine emissions have been obtained, but fuel economy improvements have been tougher to realize. Development of a neural network control system progressed to the point that the system was fully functional and showing significant fuel economy gains in transient engine testing. Development of the QuantLogic injector with the capability of both a hollow cone spray during early injection and conventional diesel injection at later injection timings was undertaken and proved to be problematic. This injector was designed to be a key component in a PCCI combustion system, but this innovative fuel injector required significantly more development effort than this programâ's resources or timing would allow.« less

  16. Convolving engineering and medical pedagogies for training of tomorrow's health care professionals.

    PubMed

    Lee, Raphael C

    2013-03-01

    Several fundamental benefits justify why biomedical engineering and medicine should form a more convergent alliance, especially for the training of tomorrow's physicians and biomedical engineers. Herein, we review the rationale underlying the benefits. Biological discovery has advanced beyond the era of molecular biology well into today's era of molecular systems biology, which focuses on understanding the rules that govern the behavior of complex living systems. This has important medical implications. To realize cost-effective personalized medicine, it is necessary to translate the advances in molecular systems biology to higher levels of biological organization (organ, system, and organismal levels) and then to develop new medical therapeutics based on simulation and medical informatics analysis. Higher education in biological and medical sciences must adapt to a new set of training objectives. This will involve a shifting away from reductionist problem solving toward more integrative, continuum, and predictive modeling approaches which traditionally have been more associated with engineering science. Future biomedical engineers and MDs must be able to predict clinical response to therapeutic intervention. Medical education will involve engineering pedagogies, wherein basic governing rules of complex system behavior and skill sets in manipulating these systems to achieve a practical desired outcome are taught. Similarly, graduate biomedical engineering programs will include more practical exposure to clinical problem solving.

  17. Cogeneration Technology Alternatives Study (CTAS). Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Barna, G. J.; Burns, R. K.; Sagerman, G. D.

    1980-01-01

    Various advanced energy conversion systems that can use coal or coal-derived fuels for industrial cogeneration applications were compared to provide information needed by DOE to establish research and development funding priorities for advanced-technology systems that could significantly advance the use of coal or coal-derived fuels in industrial cogeneration. Steam turbines, diesel engines, open-cycle gas turbines, combined cycles, closed-cycle gas turbines, Stirling engines, phosphoric acid fuel cells, molten carbonate fuel cells, and thermionics were studied with technology advancements appropriate for the 1985-2000 time period. The various advanced systems were compared and evaluated for wide diversity of representative industrial plants on the basis of fuel energy savings, annual energy cost savings, emissions savings, and rate of return on investment as compared with purchasing electricity from a utility and providing process heat with an on-site boiler. Also included in the comparisons and evaluations are results extrapolated to the national level.

  18. Cogeneration Technology Alternatives Study (CTAS). Volume 2: Comparison and evaluation of results

    NASA Technical Reports Server (NTRS)

    1984-01-01

    CTAS compared and evaluated various advanced energy conversion systems that can use coal or coal-derived fuels for industrial cogeneration applications. The principal aim of the study was to provide information needed by DOE to establish research and development (R&D) funding priorities for advanced-technology systems that could significantly advance the use of coal or coal-derived fuels in industrial cogeneration. Steam turbines, diesel engines, open-cycle gas turbines, combined cycles, closed-cycle gas turbines, Stirling engines, phosphoric acid fuel cells, molten carbonate fuel cells, and thermionics were studied with technology advancements appropriate for the 1985-2000 time period. The various advanced systems were compared and evaluated for a wide diversity of representative industrial plants on the basis of fuel energy savings, annual energy cost savings, emissions savings, and rate of return on investment (ROI) as compared with purchasing electricity from a utility and providing process heat with an on-site boiler.

  19. A summary of NASA/Air Force full scale engine research programs using the F100 engine

    NASA Technical Reports Server (NTRS)

    Deskin, W. J.; Hurrell, H. G.

    1979-01-01

    A full scale engine research (FSER) program conducted with the F100 engine is presented. The program mechanism is described and the F100 test vehicles utilized are illustrated. Technology items were addressed in the areas of swirl augmentation, flutter phenomenon, advanced electronic control logic theory, strain gage technology and distortion sensitivity. The associated test programs are described. The FSER approach utilizes existing state of the art engine hardware to evaluate advanced technology concepts and problem areas. Aerodynamic phenomenon previously not considered by design systems were identified and incorporated into industry design tools.

  20. NASA's Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  1. Evaluation of advanced lift concepts and potential fuel conservation for short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Sweet, H. S.; Renshaw, J. H.; Bowden, M. K.

    1975-01-01

    The effect of different field lengths, cruise requirements, noise level, and engine cycle characteristics on minimizing fuel consumption and minimizing operating cost at high fuel prices were evaluated for some advanced short-haul aircraft. The conceptual aircraft were designed for 148 passengers using the upper surface-internally blown jet flap, the augmentor wing, and the mechanical flap lift systems. Advanced conceptual STOL engines were evaluated as well as a near-term turbofan and turboprop engine. Emphasis was given to designs meeting noise levels equivalent to 95-100 EPNdB at 152 m (500 ft) sideline.

  2. The AFIT of Today is the Air Force of Tomorrow

    DTIC Science & Technology

    2012-05-11

    Engineering • Operations Research • Space Systems • Systems Engineering • Air Mobility • Combating Weapons of Mass Destruction • Cost Analysis • Cyber...Fight - Win Graduate Certificate Programs • Systems Engineering • Space Systems • Advanced Geospatial Intelligence • Combating Weapons of Mass ...over five years • Critical enabler for SSA: extending the satellite catalog to small objects Current Works: • Converting satellite catalog to KAM Tori

  3. Assessment of the Noise Reduction Potential of Advanced Subsonic Transport Concepts for NASA's Environmentally Responsible Aviation Project

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burley, Casey L.; Nickol, Craig L.

    2016-01-01

    Aircraft system noise is predicted for a portfolio of NASA advanced concepts with 2025 entry-into-service technology assumptions. The subsonic transport concepts include tube-and-wing configurations with engines mounted under the wing, over the wing nacelle integration, and a double deck fuselage with engines at a mid-fuselage location. Also included are hybrid wing body aircraft with engines upstream of the fuselage trailing edge. Both advanced direct drive engines and geared turbofan engines are modeled. Recent acoustic experimental information was utilized in the prediction for several key technologies. The 301-passenger class hybrid wing body with geared ultra high bypass engines is assessed at 40.3 EPNLdB cumulative below the Stage 4 certification level. Other hybrid wing body and unconventional tube-and-wing configurations reach levels of 33 EPNLdB or more below the certification level. Many factors contribute to the system level result; however, the hybrid wing body in the 301-passenger class, as compared to a tubeand- wing with conventional engine under wing installation, has 11.9 EPNLdB of noise reduction due to replacing reflection with acoustic shielding of engine noise sources. Therefore, the propulsion airframe aeroacoustic interaction effects clearly differentiate the unconventional configurations that approach levels close to or exceed the 42 EPNLdB goal.

  4. 76 FR 77854 - Notice of Intent To Seek Approval To Establish an Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... Reporting Requirements for the Engineering Research Centers (ERCs). OMB Number: 3145-NEW. Expiration Date of.... Abstract Proposed Project The Engineering Research Centers (ERC) program supports an integrated, interdisciplinary research environment to advance fundamental engineering knowledge and engineered systems; educate...

  5. Energy efficient engine: Flight propulsion system preliminary analysis and design

    NASA Technical Reports Server (NTRS)

    Johnston, R. P.; Beitler, R. S.; Bobinger, R. O.; Broman, C. L.; Gravitt, R. D.; Heineke, H.; Holloway, P. R.; Klem, J. S.; Nash, D. O.; Ortiz, P.

    1980-01-01

    The characteristics of an advanced flight propulsion system (FPS), suitable for introduction in the late 1980's to early 1990's, was more fully defined. It was determined that all goals for efficiency, environmental considerations, and economics could be met or exceeded with the possible exception of NOx emission. In evaluating the FPS, all aspects were considered including component design, performance, weight, initial cost, maintenance cost, engine system integration (including nacelle), and aircraft integration considerations. The current FPS installed specific fuel consumption was reduced 14.2% from that of the CF6-50C reference engine. When integrated into an advanced, subsonic, study transport, the FPS produced a fuel burn savings of 15 to 23% and a direct operating cost reduction of 5 to 12% depending on the mission and study aircraft characteristics relative to the reference engine.

  6. Compendium : graduate student papers on advanced surface transportation systems, 1999

    DOT National Transportation Integrated Search

    1999-08-01

    This document is the culmination of the ninth offering of an innovative transportation engineering graduate course at Texas A&M : University entitled, Advanced Surface Transportation Systems. The ninth offering of the course was presented durin...

  7. Microfluidic systems for stem cell-based neural tissue engineering.

    PubMed

    Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R

    2016-07-05

    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.

  8. Small engine technology programs

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, Richard W.

    1987-01-01

    Small engine technology programs being conducted at the NASA Lewis Research Center are described. Small gas turbine research is aimed at general aviation, commutercraft, rotorcraft, and cruise missile applications. The Rotary Engine Program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. There is a strong element of synergism between the various programs in several respects. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The Heavy Duty Diesel Transport (HDTT), rotary technology, and the compound cycle programs are all examining approached to minimum heat rejection, or adiabatic systems employing advanced materials. The Automotive Gas Turbine (AGT) program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbines will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.

  9. Two Rotor Stratified Charge Rotary Engine (SCRE) Engine System Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Hoffman, T.; Mack, J.; Mount, R.

    1994-01-01

    This report summarizes results of an evaluation of technology enablement component technologies as integrated into a two rotor Stratified Charge Rotary Engine (SCRE). The work constitutes a demonstration of two rotor engine system technology, utilizing upgraded and refined component technologies derived from prior NASA Contracts NAS3-25945, NAS3-24628 and NAS-23056. Technical objectives included definition of, procurement and assembly of an advanced two rotor core aircraft engine, operation with Jet-A fuel at Take-Off rating of 340 BHP (254kW) and operation at a maximum cruise condition of 255 BHP (190kW), 75% cruise. A fuel consumption objective of 0.435 LBS/BHP-Hr (265 GRS/kW-Hr) was identified for the maximum cruise condition. A critical technology component item, a high speed, unit injector fuel injection system with electronic control was defined, procured and tested in conjunction with this effort. The two rotor engine configuration established herein defines an affordable, advanced, Jet-A fuel capability core engine (not including reduction gear, propeller shaft and some aircraft accessories) for General Aviation of the mid-1990's and beyond.

  10. Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle

    NASA Technical Reports Server (NTRS)

    Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit

    1995-01-01

    As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential.

  11. A numerical investigation on the efficiency of range extending systems using Advanced Vehicle Simulator

    NASA Astrophysics Data System (ADS)

    Varnhagen, Scott; Same, Adam; Remillard, Jesse; Park, Jae Wan

    2011-03-01

    Series plug-in hybrid electric vehicles of varying engine configuration and battery capacity are modeled using Advanced Vehicle Simulator (ADVISOR). The performance of these vehicles is analyzed on the bases of energy consumption and greenhouse gas emissions on the tank-to-wheel and well-to-wheel paths. Both city and highway driving conditions are considered during the simulation. When simulated on the well-to-wheel path, it is shown that the range extender with a Wankel rotary engine consumes less energy and emits fewer greenhouse gases compared to the other systems with reciprocating engines during many driving cycles. The rotary engine has a higher power-to-weight ratio and lower noise, vibration and harshness compared to conventional reciprocating engines, although performs less efficiently. The benefits of a Wankel engine make it an attractive option for use as a range extender in a plug-in hybrid electric vehicle.

  12. Advanced online control mode selection for gas turbine aircraft engines

    NASA Astrophysics Data System (ADS)

    Wiseman, Matthew William

    The modern gas turbine aircraft engine is a complex, highly nonlinear system the operates in a widely varying environment. Traditional engine control techniques based on the hydro mechanical control concepts of early turbojet engines are unable to deliver the performance required from today's advanced engine designs. A new type of advanced control utilizing multiple control modes and an online mode selector is investigated, and various strategies for improving the baseline mode selection architecture are introduced. The ability to five-tune actuator command outputs is added to the basic mode selection and blending process, and mode selection designs that we valid for the entire flight envelope are presented. Methods for optimizing the mode selector to improve overall engine performance are also discussed. Finally, using flight test data from a GE F110-powered F16 aircraft, the full-envelope mode selector designs are validated and shown to provide significant performance benefits. Specifically, thrust command tracking is enhanced while critical engine limits are protected, with very little impact on engine efficiency.

  13. Heavy-Duty Stoichiometric Compression Ignition Engine with Improved Fuel Economy over Alternative Technologies for Meeting 2010 On-Highway Emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby J. Baumgard; Richard E. Winsor

    2009-12-31

    The objectives of the reported work were: to apply the stoichiometric compression ignition (SCI) concept to a 9.0 liter diesel engine; to obtain engine-out NO{sub x} and PM exhaust emissions so that the engine can meet 2010 on-highway emission standards by applying a three-way catalyst for NO{sub x} control and a particulate filter for PM control; and to simulate an optimize the engine and air system to approach 50% thermal efficiency using variable valve actuation and electric turbo compounding. The work demonstrated that an advanced diesel engine can be operated at stoichiometric conditions with reasonable particulate and NOx emissions atmore » full power and peak torque conditions; calculated that the SCI engine will operate at 42% brake thermal efficiency without advanced hardware, turbocompounding, or waste heat recovery; and determined that EGR is not necessary for this advanced concept engine, and this greatly simplifies the concept.« less

  14. Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism

    NASA Technical Reports Server (NTRS)

    Kurasaki, S. S.; Vallotton, W. C.

    1985-01-01

    The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.

  15. Develop advanced nonlinear signal analysis topographical mapping system

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1993-01-01

    This study will provide timely assessment of SSME component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. The final result of this program will yield an advanced nonlinear signal analysis topographical mapping system (ATMS) of nonlinear and nonstationary spectral analysis software package integrated with the Compressed SSME TOPO Data Base (CSTDB) on the same platform. This system will allow NASA engineers to retrieve any unique defect signatures and trends associated with different failure modes and anomalous phenomena over the entire SSME test history across turbopump families.

  16. Technology readiness assessment of advanced space engine integrated controls and health monitoring

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1991-01-01

    An evaluation is given for an integrated control and health monitoring system (ICHM) system that is designed to be used with hydrogen-oxygen rocket engines. The minimum required ICHM functions, system elements, technology readiness, and system cost are assessed for a system which permits the operation of H-O engines that are space-based, reusable, and descent throttleable. Based on the evaluation of the H-O ICHM, it is estimated that the minimum system requirements for demonstration on an engine system testbed will require an investment of 30 to 45 million dollars over six years.

  17. A real-time simulator of a turbofan engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Delaat, John C.; Merrill, Walter C.

    1989-01-01

    A real-time digital simulator of a Pratt and Whitney F100 engine has been developed for real-time code verification and for actuator diagnosis during full-scale engine testing. This self-contained unit can operate in an open-loop stand-alone mode or as part of closed-loop control system. It can also be used for control system design and development. Tests conducted in conjunction with the NASA Advanced Detection, Isolation, and Accommodation program show that the simulator is a valuable tool for real-time code verification and as a real-time actuator simulator for actuator fault diagnosis. Although currently a small perturbation model, advances in microprocessor hardware should allow the simulator to evolve into a real-time, full-envelope, full engine simulation.

  18. Systems Engineering and Integration for Advanced Life Support System and HST

    NASA Technical Reports Server (NTRS)

    Kamarani, Ali K.

    2005-01-01

    Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.

  19. Main propulsion system design recommendations for an advanced Orbit Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Redd, L.

    1985-01-01

    Various main propulsion system configurations of an advanced OTV are evaluated with respect to the probability of nonindependent failures, i.e., engine failures that disable the entire main propulsion system. Analysis of the life-cycle cost (LCC) indicates that LCC is sensitive to the main propulsion system reliability, vehicle dry weight, and propellant cost; it is relatively insensitive to the number of missions/overhaul, failures per mission, and EVA and IVA cost. In conclusion, two or three engines are recommended in view of their highest reliability, minimum life-cycle cost, and fail operational/fail safe capability.

  20. Polymer, metal and ceramic matrix composites for advanced aircraft engine applications

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.

    1985-01-01

    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  1. A review and forecast of engine system research at the Army Propulsion Directorate

    NASA Technical Reports Server (NTRS)

    Bobula, George A.

    1989-01-01

    An account is given of the development status and achievements to date of the U.S. Army Propulsion Directorate's Small Turbine Engine Research (STER) programs, which are experimental investigations of the physics of entire engine systems from the viewpoints of component interactions and/or system dynamics. STER efforts are oriented toward the evaluation of complete turboshaft engine advanced concepts and are conducted at the ECRL-2 indoor, sea-level engine test facility. Attention is given to the results obtained by STER experiments concerned with IR-suppressing engine exhausts, a ceramic turbine-blade shroud, an active shaft-vibration control system, and a ceramic-matrix combustor liner.

  2. Advanced hybrid vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  3. Expanded Guidance for NASA Systems Engineering. Volume 1: Systems Engineering Practices

    NASA Technical Reports Server (NTRS)

    Hirshorn, Steven R.

    2016-01-01

    This document is intended to provide general guidance and information on systems engineering that will be useful to the NASA community. It provides a generic description of Systems Engineering (SE) as it should be applied throughout NASA. A goal of the expanded guidance is to increase awareness and consistency across the Agency and advance the practice of SE. This guidance provides perspectives relevant to NASA and data particular to NASA. This expanded guidance should be used as a companion for implementing NPR 7123.1, Systems Engineering Processes and Requirements, the Rev 2 version of SP-6105, and the Center-specific handbooks and directives developed for implementing systems engineering at NASA. It provides a companion reference book for the various systems engineering-related training being offered under NASA's auspices.

  4. Development of Improved Environmental Resistant Organic-Reinforced Materials Systems

    DTIC Science & Technology

    1975-11-01

    Advanced composites , graphite and boron reinforced laminates, moisture resistance, environmental resistance, organic matrix composites . 20. ABSTRACT...in November 1975 for publication. Efforts at TOD were conducted within the Advanced Composites Engineering Departmfntrunde; L technical...weight makes^organic matrix advanced composites hardware extremely attractive for today s modern Air Force weapons systems. Accordingly, such

  5. Advanced Technology for Engineering Education

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  6. Cam Design Projects in an Advanced CAD Course for Mechanical Engineers

    ERIC Educational Resources Information Center

    Ault, H. K.

    2009-01-01

    The objective of this paper is to present applications of solid modeling aimed at modeling of complex geometries such as splines and blended surfaces in advanced CAD courses. These projects, in CAD-based Mechanical Engineering courses, are focused on the use of the CAD system to solve design problems for applications in machine design, namely the…

  7. Pratt and Whitney Overview and Advanced Health Management Program

    NASA Technical Reports Server (NTRS)

    Inabinett, Calvin

    2008-01-01

    Hardware Development Activity: Design and Test Custom Multi-layer Circuit Boards for use in the Fault Emulation Unit; Logic design performed using VHDL; Layout power system for lab hardware; Work lab issues with software developers and software testers; Interface with Engine Systems personnel with performance of Engine hardware components; Perform off nominal testing with new engine hardware.

  8. A summary of NASA/Air Force Full Scale Engine Research programs using the F100 engine

    NASA Technical Reports Server (NTRS)

    Deskin, W. J.; Hurrell, H. G.

    1979-01-01

    This paper summarizes a joint NASA/Air Force Full Scale Engine Research (FSER) program conducted with the F100 engine during the period 1974 through 1979. The program mechanism is described and the F100 test vehicles utilized are illustrated. Technology items which have been addressed in the areas of swirl augmentation, flutter phenomenon, advanced electronic control logic theory, strain gage technology, and distortion sensitivity are identified and the associated test programs conducted at the NASA-Lewis Research Center are described. Results presented show that the FSER approach, which utilizes existing state-of-the-art engine hardware to evaluate advanced technology concepts and problem areas, can contribute a significant data base for future system applications. Aerodynamic phenomenon previously not considered by current design systems have been identified and incorporated into current industry design tools.

  9. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jiazhang; Mishra, Shekhar; Zhao, Huimin

    Metabolic engineering aims to develop efficient cell factories by rewiring cellular metabolism. As one of the most commonly used cell factories, Saccharomyces cerevisiae has been extensively engineered to produce a wide variety of products at high levels from various feedstocks. In this paper, we summarize the recent development of metabolic engineering approaches to modulate yeast metabolism with representative examples. Particularly, we highlight new tools for biosynthetic pathway optimization (i.e. combinatorial transcriptional engineering and dynamic metabolic flux control) and genome engineering (i.e. clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) system based genome engineering and RNA interference assisted genome evolution)more » to advance metabolic engineering in yeast. Lastly, we also discuss the challenges and perspectives for high throughput metabolic engineering.« less

  10. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications

    DOE PAGES

    Lian, Jiazhang; Mishra, Shekhar; Zhao, Huimin

    2018-04-25

    Metabolic engineering aims to develop efficient cell factories by rewiring cellular metabolism. As one of the most commonly used cell factories, Saccharomyces cerevisiae has been extensively engineered to produce a wide variety of products at high levels from various feedstocks. In this paper, we summarize the recent development of metabolic engineering approaches to modulate yeast metabolism with representative examples. Particularly, we highlight new tools for biosynthetic pathway optimization (i.e. combinatorial transcriptional engineering and dynamic metabolic flux control) and genome engineering (i.e. clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) system based genome engineering and RNA interference assisted genome evolution)more » to advance metabolic engineering in yeast. Lastly, we also discuss the challenges and perspectives for high throughput metabolic engineering.« less

  11. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, R. W.; Hewett, M. D.; Tartt, D. M.

    1992-01-01

    Described here are the capabilities and evolution of a flight-test engineer's workstation (called TEST PLAN) from an automated flight-test management system. The concept and capabilities of the automated flight-test management system are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  12. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, Randal W.; Hewett, M. D.; Tartt, D. M.

    1991-01-01

    The capabilities and evolution is described of a flight engineer's workstation (called TEST-PLAN) from an automated flight test management system. The concept and capabilities of the automated flight test management systems are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  13. Materials Advance Chemical Propulsion Technology

    NASA Technical Reports Server (NTRS)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  14. EPA Science Matters Newsletter: Advancing Ways to Clean Up Drinking Water Systems (Published November 2013)

    EPA Pesticide Factsheets

    To advance the science and engineering of decontaminating pipe systems and safely disposing of high-volumes of contaminated water, Agency homeland security researchers are developing a Water Security Test Bed (WSTB).

  15. Energy efficient engine high-pressure turbine detailed design report

    NASA Technical Reports Server (NTRS)

    Thulin, R. D.; Howe, D. C.; Singer, I. D.

    1982-01-01

    The energy efficient engine high-pressure turbine is a single stage system based on technology advancements in the areas of aerodynamics, structures and materials to achieve high performance, low operating economics and durability commensurate with commercial service requirements. Low loss performance features combined with a low through-flow velocity approach results in a predicted efficiency of 88.8 for a flight propulsion system. Turbine airfoil durability goals are achieved through the use of advanced high-strength and high-temperature capability single crystal materials and effective cooling management. Overall, this design reflects a considerable extension in turbine technology that is applicable to future, energy efficient gas-turbine engines.

  16. Research and technology 1995 annual report

    NASA Technical Reports Server (NTRS)

    1995-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1995 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as technology transfer activities. Major areas of research include environmental engineering, automation, robotics, advanced software, materials science, life sciences, mechanical engineering, nondestructive evaluation, and industrial engineering.

  17. Advanced Combustion Numerics and Modeling - FY18 First Quarter Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitesides, R. A.; Killingsworth, N. J.; McNenly, M. J.

    This project is focused on early stage research and development of numerical methods and models to improve advanced engine combustion concepts and systems. The current focus is on development of new mathematics and algorithms to reduce the time to solution for advanced combustion engine design using detailed fuel chemistry. The research is prioritized towards the most time-consuming workflow bottlenecks (computer and human) and accuracy gaps that slow ACS program members. Zero-RK, the fast and accurate chemical kinetics solver software developed in this project, is central to the research efforts and continues to be developed to address the current and emergingmore » needs of the engine designers, engine modelers and fuel mechanism developers.« less

  18. Develop Advanced Nonlinear Signal Analysis Topographical Mapping System

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1997-01-01

    During the development of the SSME, a hierarchy of advanced signal analysis techniques for mechanical signature analysis has been developed by NASA and AI Signal Research Inc. (ASRI) to improve the safety and reliability for Space Shuttle operations. These techniques can process and identify intelligent information hidden in a measured signal which is often unidentifiable using conventional signal analysis methods. Currently, due to the highly interactive processing requirements and the volume of dynamic data involved, detailed diagnostic analysis is being performed manually which requires immense man-hours with extensive human interface. To overcome this manual process, NASA implemented this program to develop an Advanced nonlinear signal Analysis Topographical Mapping System (ATMS) to provide automatic/unsupervised engine diagnostic capabilities. The ATMS will utilize a rule-based Clips expert system to supervise a hierarchy of diagnostic signature analysis techniques in the Advanced Signal Analysis Library (ASAL). ASAL will perform automatic signal processing, archiving, and anomaly detection/identification tasks in order to provide an intelligent and fully automated engine diagnostic capability. The ATMS has been successfully developed under this contract. In summary, the program objectives to design, develop, test and conduct performance evaluation for an automated engine diagnostic system have been successfully achieved. Software implementation of the entire ATMS system on MSFC's OISPS computer has been completed. The significance of the ATMS developed under this program is attributed to the fully automated coherence analysis capability for anomaly detection and identification which can greatly enhance the power and reliability of engine diagnostic evaluation. The results have demonstrated that ATMS can significantly save time and man-hours in performing engine test/flight data analysis and performance evaluation of large volumes of dynamic test data.

  19. Potential Collaborative Research topics with Korea’s Agency for Defense Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Charles R.; Todd, Michael D.

    2012-08-23

    This presentation provides a high level summary of current research activities at the Los Alamos National Laboratory (LANL)-University of California Jacobs School of Engineering (UCSD) Engineering Institute that will be presented at Korea's Agency for Defense Development (ADD). These research activities are at the basic engineering science level with different level of maturity ranging from initial concepts to field proof-of-concept demonstrations. We believe that all of these activities are appropriate for collaborative research activities with ADD subject to approval by each institution. All the activities summarized herein have the common theme that they are multi-disciplinary in nature and typically involvedmore » the integration of high-fidelity predictive modeling, advanced sensing technologies and new development in information technology. These activities include: Wireless Sensor Systems, Swarming Robot sensor systems, Advanced signal processing (compressed sensing) and pattern recognition, Model Verification and Validation, Optimal/robust sensor system design, Haptic systems for large-scale data processing, Cyber-physical security for robots, Multi-source energy harvesting, Reliability-based approaches to damage prognosis, SHMTools software development, and Cyber-physical systems advanced study institute.« less

  20. Development Activities on Airbreathing Combined Cycle Engines

    NASA Technical Reports Server (NTRS)

    McArthur, J. Craig; Lyles, Garry (Technical Monitor)

    2000-01-01

    Contents include the following: Advanced reusable transportation(ART); aerojet and rocketdyne tests, RBCC focused concept flowpaths,fabricate flight weigh, test select components, document ART project, Istar (Integrated system test of an airbreathing rocket); combined cycle propulsion testbed;hydrocarbon demonstrator tracebility; Istar engine system and vehicle system closure study; and Istar project planning.

  1. Advanced supersonic propulsion study, phase 3

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.; Johnson, J.; Sabatella, J.; Sewall, T.

    1976-01-01

    The variable stream control engine is determined to be the most promising propulsion system concept for advanced supersonic cruise aircraft. This concept uses variable geometry components and a unique throttle schedule for independent control of two flow streams to provide low jet noise at takeoff and high performance at both subsonic and supersonic cruise. The advanced technology offers a 25% improvement in airplane range and an 8 decibel reduction in takeoff noise, relative to first generation supersonic turbojet engines.

  2. Development of Metal Matrix Composites for NASA's Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, J.; Elam, S.

    2001-01-01

    The state-of-the-art development of several Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The goal is to provide an overview of NASA-Marshall Space Flight Center's on-going activities in MMC components for advanced liquid rocket engines such as the X-33 vehicle's Aerospike engine and X-34's Fastrac engine. The focus will be on lightweight, low cost, and environmental compatibility with oxygen and hydrogen of key MMC materials, within each of NASA's new propulsion application, that will provide a high payoff for NASA's Reusable Launch Vehicles and space access vehicles. In order to fabricate structures from MMC, effective joining methods must be developed to join MMC to the same or to different monolithic alloys. Therefore, a qualitative assessment of MMC's welding and joining techniques will be outlined.

  3. 2001 NASA Seal/secondary Air System Workshop, Volume 1. Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)

    2002-01-01

    The 2001 NASA Seal/Secondary Air System Workshop covered the following topics: (i) overview of NASA's Vision for 21st Century Aircraft; (ii) overview of NASA-sponsored Ultra-Efficient Engine Technology (UEET); (iii) reviews of sealing concepts, test results, experimental facilities, and numerical predictions; and (iv) reviews of material development programs relevant to advanced seals development. The NASA UEET overview illustrates for the reader the importance of advanced technologies, including seals, in meeting future turbine engine system efficiency and emission goals. The NASA UEET program goals include an 8-to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs NASA is funding to investigate advanced reusable space vehicle technologies (X-38) and advanced space ram/scramjet propulsion systems. Seal challenges posed by these advanced systems include high-temperature operation, resiliency at the operating temperature to accommodate sidewall flexing, and durability to last many missions.

  4. Advanced detection, isolation and accommodation of sensor failures: Real-time evaluation

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Delaat, John C.; Bruton, William M.

    1987-01-01

    The objective of the Advanced Detection, Isolation, and Accommodation (ADIA) Program is to improve the overall demonstrated reliability of digital electronic control systems for turbine engines by using analytical redundacy to detect sensor failures. The results of a real time hybrid computer evaluation of the ADIA algorithm are presented. Minimum detectable levels of sensor failures for an F100 engine control system are determined. Also included are details about the microprocessor implementation of the algorithm as well as a description of the algorithm itself.

  5. Technology for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  6. History of visual systems in the Systems Engineering Simulator

    NASA Technical Reports Server (NTRS)

    Christianson, David C.

    1989-01-01

    The Systems Engineering Simulator (SES) houses a variety of real-time computer generated visual systems. The earliest machine dates from the mid-1960's and is one of the first real-time graphics systems in the world. The latest acquisition is the state-of-the-art Evans and Sutherland CT6. Between the span of time from the mid-1960's to the late 1980's, tremendous strides have been made in the real-time graphics world. These strides include advances in both software and hardware engineering. The purpose is to explore the history of the development of these real-time computer generated image systems from the first machine to the present. Hardware advances as well as software algorithm changes are presented. This history is not only quite interesting but also provides us with a perspective with which we can look backward and forward.

  7. Heterologous Synthesis and Recovery of Advanced Biofuels from Bacterial Cell Factories.

    PubMed

    Malik, Sana; Afzal, Ifrah; Mehmood, Muhammad Aamer; Al Doghaither, Huda; Rahimuddin, Sawsan Abdulaziz; Gull, Munazza; Nahid, Nazia

    2018-01-01

    Microbial engineering to produce advanced biofuels is currently the most encouraging approach in renewable energy. Heterologous synthesis of biofuels and other useful industrial chemicals using bacterial cell factories has radically diverted the attentions from the native synthesis of these compounds. However, recovery of biofuels from the media and cellular toxicity are the main hindrances to successful commercialization of advanced biofuels. Therefore, membrane transporter engineering is gaining increasing attentions from all over the world. The main objective of this review is to explore the ways to increase the microbial production of biofuels by counteracting the cellular toxicity and facilitating their easier recovery from media. Microbial synthesis of industrially viable compounds such as biofuels has been increased due to genomic revolution. Moreover, advancements in protein engineering, gene regulation, pathway portability, metabolic engineering and synthetic biology led the focus towards the development of robust and cost-effective systems for biofuel production. The most convenient way to combat cellular toxicity and to secrete biofuels is the use of membrane transport system. The use of membrane transporters is currently a serious oversight as do not involve chemical changes and contribute greatly to efflux biofuels in extracellular milieu. However, overexpression of transport systems can also be detrimental to cell, so, in future, structure-based engineering of transporters can be employed to evaluate optimum expression range, to increase biofuel specificity and transport rate through structural studies of biofuel molecules. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Analytical concepts for health management systems of liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Williams, Richard; Tulpule, Sharayu; Hawman, Michael

    1990-01-01

    Substantial improvement in health management systems performance can be realized by implementing advanced analytical methods of processing existing liquid rocket engine sensor data. In this paper, such techniques ranging from time series analysis to multisensor pattern recognition to expert systems to fault isolation models are examined and contrasted. The performance of several of these methods is evaluated using data from test firings of the Space Shuttle main engines.

  9. Advanced Engineering Environment FY09/10 pilot project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamph, Jane Ann; Kiba, Grant W.; Pomplun, Alan R.

    2010-06-01

    The Advanced Engineering Environment (AEE) project identifies emerging engineering environment tools and assesses their value to Sandia National Laboratories and our partners in the Nuclear Security Enterprise (NSE) by testing them in our design environment. This project accomplished several pilot activities, including: the preliminary definition of an engineering bill of materials (BOM) based product structure in the Windchill PDMLink 9.0 application; an evaluation of Mentor Graphics Data Management System (DMS) application for electrical computer-aided design (ECAD) library administration; and implementation and documentation of a Windchill 9.1 application upgrade. The project also supported the migration of legacy data from existing corporatemore » product lifecycle management systems into new classified and unclassified Windchill PDMLink 9.0 systems. The project included two infrastructure modernization efforts: the replacement of two aging AEE development servers for reliable platforms for ongoing AEE project work; and the replacement of four critical application and license servers that support design and engineering work at the Sandia National Laboratories/California site.« less

  10. Tribological systems as applied to aircraft engines

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1985-01-01

    Tribological systems as applied to aircraft are reviewed. The importance of understanding the fundamental concepts involved in such systems is discussed. Basic properties of materials which can be related to adhesion, friction and wear are presented and correlated with tribology. Surface processes including deposition and treatment are addressed in relation to their present and future application to aircraft components such as bearings, gears and seals. Lubrication of components with both liquids and solids is discussed. Advances in both new liquid molecular structures and additives for those structures are reviewed and related to the needs of advanced engines. Solids and polymer composites are suggested for increasing use and ceramic coatings containing fluoride compounds are offered for the extreme temperatures encountered in such components as advanced bearings and seals.

  11. Propulsion Controls Modeling for a Small Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy; Franco, Kevin

    2017-01-01

    A nonlinear dynamic model and propulsion controller are developed for a small-scale turbofan engine. The small-scale turbofan engine is based on the Price Induction company's DGEN 380, one of the few turbofan engines targeted for the personal light jet category. Comparisons of the nonlinear dynamic turbofan engine model to actual DGEN 380 engine test data and a Price Induction simulation are provided. During engine transients, the nonlinear model typically agrees within 10 percent error, even though the nonlinear model was developed from limited available engine data. A gain scheduled proportional integral low speed shaft controller with limiter safety logic is created to replicate the baseline DGEN 380 controller. The new controller provides desired gain and phase margins and is verified to meet Federal Aviation Administration transient propulsion system requirements. In understanding benefits, there is a need to move beyond simulation for the demonstration of advanced control architectures and technologies by using real-time systems and hardware. The small-scale DGEN 380 provides a cost effective means to accomplish advanced controls testing on a relevant turbofan engine platform.

  12. VSCE technology definition study

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.; Hunt, R. B.

    1979-01-01

    Refined design definition of the variable stream control engine (VSCE) concept for advanced supersonic transports is presented. Operating and performance features of the VSCE are discussed, including the engine components, thrust specific fuel consumption, weight, noise, and emission system. A preliminary engine design is presented.

  13. Advanced diesel electronic fuel injection and turbocharging

    NASA Astrophysics Data System (ADS)

    Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.

    1993-12-01

    The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.

  14. Performance Evaluation and Modeling of Erosion Resistant Turbine Engine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Zhu, Dongming; Kuczmarski, Maria

    2008-01-01

    The erosion resistant turbine thermal barrier coating system is critical to the rotorcraft engine performance and durability. The objective of this work was to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and thermal gradient environments, thus validating a new thermal barrier coating turbine blade technology for future rotorcraft applications. A high velocity burner rig based erosion test approach was established and a new series of rare earth oxide- and TiO2/Ta2O5- alloyed, ZrO2-based low conductivity thermal barrier coatings were designed and processed. The low conductivity thermal barrier coating systems demonstrated significant improvements in the erosion resistance. A comprehensive model based on accumulated strain damage low cycle fatigue is formulated for blade erosion life prediction. The work is currently aiming at the simulated engine erosion testing of advanced thermal barrier coated turbine blades to establish and validate the coating life prediction models.

  15. A real-time simulation evaluation of an advanced detection. Isolation and accommodation algorithm for sensor failures in turbine engines

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.; Delaat, J. C.

    1986-01-01

    An advanced sensor failure detection, isolation, and accommodation (ADIA) algorithm has been developed for use with an aircraft turbofan engine control system. In a previous paper the authors described the ADIA algorithm and its real-time implementation. Subsequent improvements made to the algorithm and implementation are discussed, and the results of an evaluation presented. The evaluation used a real-time, hybrid computer simulation of an F100 turbofan engine.

  16. Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects.

    PubMed

    Guan, Ningzi; Zhuge, Xin; Li, Jianghua; Shin, Hyun-Dong; Wu, Jing; Shi, Zhongping; Liu, Long

    2015-01-01

    Propionibacteria are actinobacteria consisting of two principal groups: cutaneous and dairy. Cutaneous propionibacteria are considered primary pathogens to humans, whereas dairy propionibacteria are widely used in the food and pharmaceutical industries. Increasing attention has been focused on improving the performance of dairy propionibacteria for the production of industrially important chemicals, and significant advances have been made through strain engineering and process optimization in the production of flavor compounds, nutraceuticals, and antimicrobial compounds. In addition, genome sequencing of several propionibacteria species has been completed, deepening understanding of the metabolic and physiological features of these organisms. However, the metabolic engineering of propionibacteria still faces several challenges owing to the lack of efficient genome manipulation tools and the existence of various types of strong restriction-modification systems. The emergence of systems and synthetic biology provides new opportunities to overcome these bottlenecks. In this review, we first introduce the major species of propionibacteria and their properties and provide an overview of their functions and applications. We then discuss advances in the genome sequencing and metabolic engineering of these bacteria. Finally, we discuss systems and synthetic biology approaches for engineering propionibacteria as efficient and robust cell factories for the production of industrially important chemicals.

  17. Tailoring Systems Engineering Processes in a Conceptual Design Environment: A Case Study at NASA Marshall Spaceflight Center's ACO

    NASA Technical Reports Server (NTRS)

    Mulqueen, John; Maples, C. Dauphne; Fabisinski, Leo, III

    2012-01-01

    This paper provides an overview of Systems Engineering as it is applied in a conceptual design space systems department at the National Aeronautics and Space Administration (NASA) Marshall Spaceflight Center (MSFC) Advanced Concepts Office (ACO). Engineering work performed in the NASA MFSC's ACO is targeted toward the Exploratory Research and Concepts Development life cycle stages, as defined in the International Council on Systems Engineering (INCOSE) System Engineering Handbook. This paper addresses three ACO Systems Engineering tools that correspond to three INCOSE Technical Processes: Stakeholder Requirements Definition, Requirements Analysis, and Integration, as well as one Project Process Risk Management. These processes are used to facilitate, streamline, and manage systems engineering processes tailored for the earliest two life cycle stages, which is the environment in which ACO engineers work. The role of systems engineers and systems engineering as performed in ACO is explored in this paper. The need for tailoring Systems Engineering processes, tools, and products in the ever-changing engineering services ACO provides to its customers is addressed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Jeffrey

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed tomore » achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70, Taurus 65, Titan 130, Titan 250 and Mercury 50). This TBC coating system significantly outperformed all other TBC systems evaluated under the program. The initial field unit, with the 40 mil advanced TBC developed under this program, has far exceeded the 4,000-hour requirement of the program, accumulating over 20,000 hours of commercial operation at Qualcomm Inc. in San Diego, CA. The 40 mil advanced TBC remains in excellent condition, with no evidence of chipping or spalling. The engine will continue operation until the unit is due for overhaul at approximately 30,000 hours. The Oxide Dispersion Strengthened (ODS) alloy injector tip testing and evaluation was also successful, however, the ODS injector tip development on this program was terminated, primarily due to the fact that the Mercury 50 injector tip was redesigned (Generation 3) by Combustion Engineering.« less

  19. Automotive Control Systems: For Engine, Driveline, and Vehicle

    NASA Astrophysics Data System (ADS)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  20. Advanced propulsion system concept for hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  1. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John; Rodela, Chris

    2006-01-01

    Pratt & Whitney Rocketdyne, Inc., in cooperation with NASA-Marshall Space Flight Center (MSFC), has developed a new Advanced Health Management System (AHMS) controller for the Space Shuttle Main Engine (SSME) that will increase the probability of successfully placing the shuttle into the intended orbit and increase the safety of the Space Transportation System (STS) launches. The AHMS is an upgrade o the current Block II engine controller whose primary component is an improved vibration monitoring system called the Real-Time Vibration Monitoring System (RTVMS) that can effectively and reliably monitor the state of the high pressure turbomachinery and provide engine protection through a new synchronous vibration redline which enables engine shutdown if the vibration exceeds predetermined thresholds. The introduction of this system required improvements and modification to the Block II controller such as redesigning the Digital Computer Unit (DCU) memory and the Flight Accelerometer Safety Cut-Off System (FASCOS) circuitry, eliminating the existing memory retention batteries, installation of the Digital Signal Processor (DSP) technology, and installation of a High Speed Serial Interface (HSSI) with accompanying outside world connectors. Test stand hot-fire testing along with lab testing have verified successful implementation and is expected to reduce the probability of catastrophic engine failures during the shuttle ascent phase and improve safely by about 23% according to the Quantitative Risk Assessment System (QRAS), leading to a safer and more reliable SSME.

  2. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory Corman; Krishan Luthra; Jill Jonkowski

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000more » hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.« less

  3. Advanced detection, isolation, and accommodation of sensor failures in turbofan engines: Real-time microcomputer implementation

    NASA Technical Reports Server (NTRS)

    Delaat, John C.; Merrill, Walter C.

    1990-01-01

    The objective of the Advanced Detection, Isolation, and Accommodation Program is to improve the overall demonstrated reliability of digital electronic control systems for turbine engines. For this purpose, an algorithm was developed which detects, isolates, and accommodates sensor failures by using analytical redundancy. The performance of this algorithm was evaluated on a real time engine simulation and was demonstrated on a full scale F100 turbofan engine. The real time implementation of the algorithm is described. The implementation used state-of-the-art microprocessor hardware and software, including parallel processing and high order language programming.

  4. System engineering of aerospace and advanced technology programs at an astronautics company (record of study)

    NASA Astrophysics Data System (ADS)

    Kennedy, Mike O.

    An internship with the Martin Marietta Astronautics Group that was performed in partial fulfillment of the requirements for the Doctor of Engineering degree is documented. The internship included assignments with two Martin Marietta companies, on three different programs and in four areas of engineering. A first-hand look is taken at system engineering, SDI and advanced program management, and the way Martin Marietta conducts business. The five internship objectives were related to assignments in system modeling, system integration, engineering analysis and technical management: (1) The effects of thermally and mechanically induced mirror surface distortions upon the wavefront intensity field of a high energy laser beam passing through the optical train of a space-based laser system were modeled. (2) The restrictive as opposed to the broad interpretation of the 1972 ABM Treaty, and the capability of the Strategic Defense Initiative Zenith Star Program to comply with the Treaty were evaluated. (3) The capability of Martin Marietta to develop an automated analysis system to integrate and analyze Superconducting Super Collider detector designs was investigated. (4) The thermal models that were developed in support of the Small Intercontinental Ballistic Missile flight tests were described. (5) The technical management role of the Product Integrity Engineer assigned to the Zenith Star spacecraft's Beam Control and Transfer Subsystem was discussed. The relationships between the engineering, business, security and social concerns associated with the practice of engineering and the management of programs by a major defense contractor are explored.

  5. Study of Advanced Propulsion Systems for Small Transport Aircraft Technology (STAT) Program

    NASA Technical Reports Server (NTRS)

    Baerst, C. F.; Heldenbrand, R. W.; Rowse, J. H.

    1981-01-01

    Definitions of takeoff gross weight, performance, and direct operating cost for both a 30 and 50 passenger airplane were established. The results indicate that a potential direct operating cost benefit, resulting from advanced technologies, of approximately 20 percent would be achieved for the 1990 engines. Of the numerous design features that were evaluated, only maintenance-related items contributed to a significant decrease in direct operating cost. Recommendations are made to continue research and technology programs for advanced component and engine development.

  6. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Mitchell, J. C.

    1991-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  7. An overview of NASA research on positive displacement general-aviation engines

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.

    1980-01-01

    The research and technology program related to improved and advanced general aviation engines is described. Current research is directed at the near-term improvement of conventional air-cooled spark-ignition piston engines and at future alternative engine systems based on all-new spark-ignition piston engines, lightweight diesels, and rotary combustion engines that show potential for meeting program goals in the midterm and long-term future. The conventional piston engine activities involve efforts on applying existing technology to improve fuel economy, investigation of key processes to permit leaner operation and reduce drag, and the development of cost effective technology to permit flight at high-altitudes where fuel economy and safety are improved. The advanced engine concepts activities include engine conceptual design studies and enabling technology efforts on the critical or key technology items.

  8. Virtual Collaborative Environments for System of Systems Engineering and Applications for ISAT

    NASA Technical Reports Server (NTRS)

    Dryer, David A.

    2002-01-01

    This paper describes an system of systems or metasystems approach and models developed to help prepare engineering organizations for distributed engineering environments. These changes in engineering enterprises include competition in increasingly global environments; new partnering opportunities caused by advances in information and communication technologies, and virtual collaboration issues associated with dispersed teams. To help address challenges and needs in this environment, a framework is proposed that can be customized and adapted for NASA to assist in improved engineering activities conducted in distributed, enhanced engineering environments. The approach is designed to prepare engineers for such distributed collaborative environments by learning and applying e-engineering methods and tools to a real-world engineering development scenario. The approach consists of two phases: an e-engineering basics phase and e-engineering application phase. The e-engineering basics phase addresses skills required for e-engineering. The e-engineering application phase applies these skills in a distributed collaborative environment to system development projects.

  9. Application of single crystal superalloys for Earth-to-orbit propulsion systems

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Parr, R. A.

    1987-01-01

    Single crystal superalloys were first identified as potentially useful engineering materials for aircraft gas turbine engines in the mid-1960's. Although they were not introduced into service as turbine blades in commercial aircraft engines until the early 1980's, they have subsequently accumulated tens of millions of flight hours in revenue producing service. The space shuttle main engine (SSME) and potential advanced earth-to-orbit propulsion systems impose severe conditions on turbopump turbine blades which for some potential failure modes are more severe than in aircraft gas turbines. Research activities which are directed at evaluating the potential for single crystal superalloys for application as turbopump turbine blades in the SSME and advanced rocket engines are discussed. The mechanical properties of these alloys are summarized and the effects of hydrogen are noted. The use of high gradient directional solidification and hot isostatic pressing to improve fatigue properties is also addressed.

  10. Ares First Stage "Systemology" - Combining Advanced Systems Engineering and Planning Tools to Assure Mission Success

    NASA Technical Reports Server (NTRS)

    Seiler, James; Brasfield, Fred; Cannon, Scott

    2008-01-01

    Ares is an integral part of NASA s Constellation architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Ares replaces the Space Shuttle in the post 2010 time frame. Ares I is an in-line, two-stage rocket topped by the Orion Crew Exploration Vehicle, its service module, and a launch abort system. The Ares I first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor. The Ares second or upper stage is propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This paper describes the advanced systems engineering and planning tools being utilized for the design, test, and qualification of the Ares I first stage element. Included are descriptions of the current first stage design, the milestone schedule requirements, and the marriage of systems engineering, detailed planning efforts, and roadmapping employed to achieve these goals.

  11. Animation of Heliopause Electrostatic Rapid Transport System (HERTS)

    NASA Image and Video Library

    2016-04-20

    Animation of Heliopause Electrostatic Rapid Transport System (HERTS) concept. NASA engineers are conducting tests to develop models for the Heliopause Electrostatic Rapid Transport System. HERTS builds upon the electric sail invention of Dr. Pekka Janhunen of the Finnish Meteorological Institute. An electric sail could potentially send scientific payloads to the edge of our solar system, the heliopause, in less than 10 years. The research is led by Bruce M. Wiegmann, an engineer in the Advanced Concepts Office at NASA's Marshall Space Flight Center. The HERTS E-Sail development and testing is funded by NASA’s Space Technology Mission Directorate through the NASA Innovative Advanced Concepts Program.

  12. Hypothetical Scenario Generator for Fault-Tolerant Diagnosis

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    The Hypothetical Scenario Generator for Fault-tolerant Diagnostics (HSG) is an algorithm being developed in conjunction with other components of artificial- intelligence systems for automated diagnosis and prognosis of faults in spacecraft, aircraft, and other complex engineering systems. By incorporating prognostic capabilities along with advanced diagnostic capabilities, these developments hold promise to increase the safety and affordability of the affected engineering systems by making it possible to obtain timely and accurate information on the statuses of the systems and predicting impending failures well in advance. The HSG is a specific instance of a hypothetical- scenario generator that implements an innovative approach for performing diagnostic reasoning when data are missing. The special purpose served by the HSG is to (1) look for all possible ways in which the present state of the engineering system can be mapped with respect to a given model and (2) generate a prioritized set of future possible states and the scenarios of which they are parts.

  13. Development and Life Prediction of Erosion Resistant Turbine Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2010-01-01

    Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.

  14. NASA Orbit Transfer Rocket Engine Technology Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The advanced expander cycle engine with a 15,000 lb thrust level and a 6:1 mixture ratio and optimized performance was used as the baseline for a design study of the hydrogen/oxgyen propulsion system for the orbit transfer vehicle. The critical components of this engine are the thrust chamber, the turbomachinery, the extendible nozzle system, and the engine throttling system. Turbomachinery technology is examined for gears, bearing, seals, and rapid solidification rate turbopump shafts. Continuous throttling concepts are discussed. Components of the OTV engine described include the thrust chamber/nozzle assembly design, nozzles, the hydrogen regenerator, the gaseous oxygen heat exchanger, turbopumps, and the engine control valves.

  15. Center for Advanced Computational Technology

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    2000-01-01

    The Center for Advanced Computational Technology (ACT) was established to serve as a focal point for diverse research activities pertaining to application of advanced computational technology to future aerospace systems. These activities include the use of numerical simulations, artificial intelligence methods, multimedia and synthetic environments, and computational intelligence, in the modeling, analysis, sensitivity studies, optimization, design and operation of future aerospace systems. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The Center has four specific objectives: 1) conduct innovative research on applications of advanced computational technology to aerospace systems; 2) act as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); 3) help in identifying future directions of research in support of the aeronautical and space missions of the twenty-first century; and 4) help in the rapid transfer of research results to industry and in broadening awareness among researchers and engineers of the state-of-the-art in applications of advanced computational technology to the analysis, design prototyping and operations of aerospace and other high-performance engineering systems. In addition to research, Center activities include helping in the planning and coordination of the activities of a multi-center team of NASA and JPL researchers who are developing an intelligent synthesis environment for future aerospace systems; organizing workshops and national symposia; as well as writing state-of-the-art monographs and NASA special publications on timely topics.

  16. Advances in polymeric systems for tissue engineering and biomedical applications.

    PubMed

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-03-01

    The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Gear systems for advanced turboprops

    NASA Technical Reports Server (NTRS)

    Wagner, Douglas A.

    1987-01-01

    A new generation of transport aircraft will be powered by efficient, advanced turboprop propulsion systems. Systems that develop 5,000 to 15,000 horsepower have been studied. Reduction gearing for these advanced propulsion systems is discussed. Allison Gas Turbine Division's experience with the 5,000 horsepower reduction gearing for the T56 engine is reviewed and the impact of that experience on advanced gear systems is considered. The reliability needs for component design and development are also considered. Allison's experience and their research serve as a basis on which to characterize future gear systems that emphasize low cost and high reliability.

  18. Preliminary Assessment of Variable Speed Power Turbine Technology on Civil Tiltrotor Size and Performance

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Acree, Cecil W., Jr.

    2012-01-01

    A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nm at 300 knots, with vertical takeoff and landing capability. This paper performs a preliminary assessment of variable-speed power turbine technology on LCTR2 sizing, while maintaining the same, advanced technology engine core. Six concepts were studied; an advanced, single-speed engine with a conventional power turbine layout (Advanced Conventional Engine, or ACE) using a multi-speed (shifting) gearbox. There were five variable-speed power turbine (VSPT) engine concepts, comprising a matrix of either three or four turbine stages, and fixed or variable guide vanes; plus a minimum weight, twostage, fixed-geometry VSPT. The ACE is the lightest engine, but requires a multi-speed (shifting) gearbox to maximize its fuel efficiency, whereas the VSPT concepts use a lighter, fixed-ratio gearbox. The NASA Design and Analysis of Rotorcraft (NDARC) design code was used to study the trades between rotor and engine efficiency and weight. Rotor performance was determined by Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II), and engine performance was estimated with the Numerical Propulsion System Simulation (NPSS). Design trades for the ACE vs. VSPT are presented in terms of vehicle gross and empty weight, propulsion system weight and mission fuel burn for the civil mission. Because of its strong effect on gearbox weight and on both rotor and engine efficiency, rotor speed was chosen as the reference design variable for comparing design trades. Major study assumptions are presented and discussed. Impressive engine power-to-weight and fuel efficiency reduced vehicle sensitivity to propulsion system choice. The 10% weight penalty for multi-speed gearbox was more significant than most engine technology weight penalties to the vehicle design because drive system weight is more than two times engine weight. Based on study assumptions, fixed-geometry VSPT concept options performed better than their variable-geometry counterparts. Optimum design gross weights varied 1% or less and empty weights less than 2% among the concepts studied, while optimum fuel burns varied up to 5%. The outcome for some optimum configurations was so unexpected as to recommend a deeper look at the underlying technology assumptions.

  19. Overview of Lightweight Structures for Rotorcraft Engines and Drivetrains

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.

    2011-01-01

    This is an overview presentation of research being performed in the Advanced Materials Task within the NASA Subsonic Rotary Wing Project. This research is focused on technology areas that address both national goals and project goals for advanced rotorcraft. Specific technology areas discussed are: (1) high temperature materials for advanced turbines in turboshaft engines; (2) polymer matrix composites for lightweight drive system components; (3) lightweight structure approaches for noise and vibration control; and (4) an advanced metal alloy for lighter weight bearings and more reliable mechanical components. An overview of the technology in each area is discussed, and recent accomplishments are presented.

  20. Fuel savings potential of the NASA Advanced Turboprop Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitlow, J.B. Jr.; Sievers, G.K.

    1984-01-01

    The NASA Advanced Turboprop (ATP) Program is directed at developing new technology for highly loaded, multibladed propellers for use at Mach 0.65 to 0.85 and at altitudes compatible with the air transport system requirements. Advanced turboprop engines offer the potential of 15 to 30 percent savings in aircraft block fuel relative to advanced turbofan engines (50 to 60 percent savings over today's turbofan fleet). The concept, propulsive efficiency gains, block fuel savings and other benefits, and the program objectives through a systems approach are described. Current program status and major accomplishments in both single rotation and counter rotation propeller technologymore » are addressed. The overall program from scale model wind tunnel tests to large scale flight tests on testbed aircraft is discussed.« less

  1. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    NASA Astrophysics Data System (ADS)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time for current two-stroke swing engine is estimated as about 2.5 ms, which can be used in the prescribed burned mass fraction profile that follows the Wiebe's function. Finally, a 2D CFD code for compressible flow has been developed to study wave interactions in the engine and header system. It is found that with realistic working conditions, for a two-stroke swing engine, certain expansion waves can be created by the exhaust gas flows and the chamber pressure can reach as low as 5 psi below one atmosphere, which helps fill fresh reactant charge. The results also show that to obtain appropriate header tuning for the current two-stroke swing engine, the length of the header neck is about 40 cm.

  2. How Can Nanotechnology Help to Repair the Body? Advances in Cardiac, Skin, Bone, Cartilage and Nerve Tissue Regeneration

    PubMed Central

    Perán, Macarena; García, María Angel; Lopez-Ruiz, Elena; Jiménez, Gema; Marchal, Juan Antonio

    2013-01-01

    Nanotechnologists have become involved in regenerative medicine via creation of biomaterials and nanostructures with potential clinical implications. Their aim is to develop systems that can mimic, reinforce or even create in vivo tissue repair strategies. In fact, in the last decade, important advances in the field of tissue engineering, cell therapy and cell delivery have already been achieved. In this review, we will delve into the latest research advances and discuss whether cell and/or tissue repair devices are a possibility. Focusing on the application of nanotechnology in tissue engineering research, this review highlights recent advances in the application of nano-engineered scaffolds designed to replace or restore the followed tissues: (i) skin; (ii) cartilage; (iii) bone; (iv) nerve; and (v) cardiac. PMID:28809213

  3. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2010-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. An engineering unit, the ASRG engineering unit (EU), was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently under extended operation test at the NASA Glenn Research Center (GRC) to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for the ASRG EU. This paper summarizes details of the test facility design, including the mechanical mounting, heat-rejection system, argon system, control systems, and maintenance. The effort proceeded from requirements definition through design, analysis, build, and test. Initial testing and facility performance results are discussed.

  4. Demonstration, Testing and Qualification of a High Temperature, High Speed Magnetic Thrust Bearing

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth

    2005-01-01

    The gas turbine industry has a continued interest in improving engine performance and reducing net operating and maintenance costs. These goals are being realized because of advancements in aeroelasticity, materials, and computational tools such as CFD and engine simulations. These advancements aid in increasing engine thrust-to-weight ratios, specific fuel consumption, pressure ratios, and overall reliability through higher speed, higher temperature, and more efficient engine operation. Currently, rolling element bearing and squeeze film dampers are used to support rotors in gas turbine engines. Present ball bearing configurations are limited in speed (<2 million DN) and temperature (<5OO F) and require both cooling air and an elaborate lubrication system. Also, ball bearings require extensive preventative maintenance in order to assure their safe operation. Since these bearings are at their operational limits, new technologies must be found in order to take advantage of other advances. Magnetic bearings are well suited to operate at extreme temperatures and higher rotational speeds and are a promising solution to the problems that conventional rolling element bearings present. Magnetic bearing technology is being developed worldwide and is considered an enabling technology for new engine designs. Using magnetic bearings, turbine and compressor spools can be radically redesigned to be significantly larger and stiffer with better damping and higher rotational speeds. These advances, a direct result of magnetic bearing technology, will allow significant increases in engine power and efficiency. Also, magnetic bearings allow for real-time, in-situ health monitoring of the system, lower maintenance costs and down time.

  5. Systems Engineering and Integration (SE and I)

    NASA Technical Reports Server (NTRS)

    Chevers, ED; Haley, Sam

    1990-01-01

    The issue of technology advancement and future space transportation vehicles is addressed. The challenge is to develop systems which can be evolved and improved in small incremental steps where each increment reduces present cost, improves, reliability, or does neither but sets the stage for a second incremental upgrade that does. Future requirements are interface standards for commercial off the shelf products to aid in the development of integrated facilities; enhanced automated code generation system slightly coupled to specification and design documentation; modeling tools that support data flow analysis; and shared project data bases consisting of technical characteristics cast information, measurement parameters, and reusable software programs. Topics addressed include: advanced avionics development strategy; risk analysis and management; tool quality management; low cost avionics; cost estimation and benefits; computer aided software engineering; computer systems and software safety; system testability; and advanced avionics laboratories - and rapid prototyping. This presentation is represented by viewgraphs only.

  6. Directed evolution and synthetic biology applications to microbial systems.

    PubMed

    Bassalo, Marcelo C; Liu, Rongming; Gill, Ryan T

    2016-06-01

    Biotechnology applications require engineering complex multi-genic traits. The lack of knowledge on the genetic basis of complex phenotypes restricts our ability to rationally engineer them. However, complex phenotypes can be engineered at the systems level, utilizing directed evolution strategies that drive whole biological systems toward desired phenotypes without requiring prior knowledge of the genetic basis of the targeted trait. Recent developments in the synthetic biology field accelerates the directed evolution cycle, facilitating engineering of increasingly complex traits in biological systems. In this review, we summarize some of the most recent advances in directed evolution and synthetic biology that allows engineering of complex traits in microbial systems. Then, we discuss applications that can be achieved through engineering at the systems level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals.

    PubMed

    Shi, Shuobo; Zhao, Huimin

    2017-01-01

    Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium , Trichosporon , and Lipomyces . This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.

  8. Design of Conventional Submarines with Advanced Air Independent Propulsion Systems and Determination of Corresponding Theater-Level Impacts

    DTIC Science & Technology

    2010-01-01

    rescue vehicle e: Error term ft: Feet HDW: Howaldtswerke- Deutsche Werft GmbH PEMFC : Proton exchange membrane fuel cells IR: Indiscretion rate/ratio...engines &Rankine cycle power plants &Closed cycle engines A PEMFC AIP system is fitted in the 212 class of submarines that German shipbuilders How...bines a conventional system consisting of a diesel engine and a lead acid battery, with the PEMFC AIP system used for slow, silent cruising. The AIP

  9. Orbit transfer rocket engine technology program. Phase 2: Advanced engine study

    NASA Technical Reports Server (NTRS)

    Erickson, C.; Martinez, A.; Hines, B.

    1987-01-01

    In Phase 2 of the Advanced Engine Study, the Failure Modes and Effects Analysis (FMEA) maintenance-driven engine design, preliminary maintenance plan, and concept for space operable disconnects generated in Phase 1 were further developed. Based on the results of the vehicle contractors Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Phase A studies, minor revisions to the engine design were made. Additional refinements in the engine design were identified through further engine concept studies. These included an updated engine balance incorporating experimental heat transfer data from the Enhanced Heat Load Thrust Chamber Study and a Rao optimum nozzle contour. The preliminary maintenance plan of Phase 1 was further developed through additional studies. These included a compilation of critical component lives and life limiters and a review of the Space Shuttle Main Engine (SSME) operations and maintenance manual in order to begin outlining the overall maintenance procedures for the Orbit Transfer Vehicle Engine and identifying technology requirements for streamlining space-based operations. Phase 2 efforts also provided further definition to the advanced fluid coupling devices including the selection and preliminary design of a preferred concept and a preliminary test plan for its further development.

  10. 1300101

    NASA Image and Video Library

    2013-02-22

    FROM LEFT, NASA ADMINISTRATOR CHARLES BOLDEN LISTENS TO MARSHALL MATERIALS ENGINEER NANCY TOLLIVER; JOHN VICKERS, MANAGER OF THE NATIONAL CENTER FOR ADVANCED MANUFACTURING; AND MARSHALL FLIGHT SYSTEMS DESIGN ENGINEER ROB BLACK AS THEY BRIEF HIM ON THE USE OF 3-D PRINTING AND PROTOTYPING TECHNOLOGY TO CREATE PARTS FOR THE SPACE LAUNCH SYSTEM

  11. A Multidimensional Software Engineering Course

    ERIC Educational Resources Information Center

    Barzilay, O.; Hazzan, O.; Yehudai, A.

    2009-01-01

    Software engineering (SE) is a multidimensional field that involves activities in various areas and disciplines, such as computer science, project management, and system engineering. Though modern SE curricula include designated courses that address these various subjects, an advanced summary course that synthesizes them is still missing. Such a…

  12. Orbit transfer rocket engine technology program: Automated preflight methods concept definition

    NASA Technical Reports Server (NTRS)

    Erickson, C. M.; Hertzberg, D. W.

    1991-01-01

    The possibility of automating preflight engine checkouts on orbit transfer engines is discussed. The minimum requirements in terms of information and processing necessary to assess the engine'e integrity and readiness to perform its mission were first defined. A variety of ways for remotely obtaining that information were generated. The sophistication of these approaches varied from a simple preliminary power up, where the engine is fired up for the first time, to the most advanced approach where the sensor and operational history data system alone indicates engine integrity. The critical issues and benefits of these methods were identified, outlined, and prioritized. The technology readiness of each of these automated preflight methods were then rated on a NASA Office of Exploration scale used for comparing technology options for future mission choices. Finally, estimates were made of the remaining cost to advance the technology for each method to a level where the system validation models have been demonstrated in a simulated environment.

  13. Advanced automotive diesel engine system study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A conceptual study of an advanced automotive diesel engine is discussed. The engine concept selected for vehicle installation was a supercharged 1.4 liter, 4 cylinder spark assisted diesel of 14:1 compression ratio. A compounding unit consisting of a Lysholm compressor and expander is connected to the engine crankshaft by a belt drive. The inlet air charge is heated by the expander exhaust gas via a heat exchanger. Four levels of technology achievement on the selected engine concept were evaluated, from state-of-the-art to the ideal case. This resulted in the fuel economy increasing from 53.2 mpg to 81.7 mpg, and the 0-60 mph time decreasing from 17.6 seconds to 10.9 seconds.

  14. Department of Defense In-House RDT and E Activities Report for Fiscal Year 1990

    DTIC Science & Technology

    1990-01-01

    equipment systems. Advanced personnel and cargo airdrop system. 1FUNCTIONS/EQUIPMENT!/FACI LITIES Biotechnology lab, materials characterization lab...4 Airworthines. Qualification Test Directorate ..... .................................... 5 Armament Rrsearch . Developaent & Eaguiecring Center...1), exploratory development (6.2), advanced development (6.3), engineering development (6.4), management support (6.5), operational systems support

  15. Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jiazhang; HamediRad, Mohammad; Zhao, Huimin

    Thanks to its ease of use, modularity, and scalability, the clustered regularly interspaced short palindromic repeats (CRISPR) system has been increasingly used in the design and engineering of Saccharomyces cerevisiae, one of the most popular hosts for industrial biotechnology. This review summarizes the recent development of this disruptive technology for metabolic engineering applications, including CRISPR-mediated gene knock-out and knock-in as well as transcriptional activation and interference. More importantly, multi-functional CRISPR systems that combine both gain- and loss-of-function modulations for combinatorial metabolic engineering are highlighted.

  16. Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System

    DOE PAGES

    Lian, Jiazhang; HamediRad, Mohammad; Zhao, Huimin

    2018-04-18

    Thanks to its ease of use, modularity, and scalability, the clustered regularly interspaced short palindromic repeats (CRISPR) system has been increasingly used in the design and engineering of Saccharomyces cerevisiae, one of the most popular hosts for industrial biotechnology. This review summarizes the recent development of this disruptive technology for metabolic engineering applications, including CRISPR-mediated gene knock-out and knock-in as well as transcriptional activation and interference. More importantly, multi-functional CRISPR systems that combine both gain- and loss-of-function modulations for combinatorial metabolic engineering are highlighted.

  17. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    NASA Technical Reports Server (NTRS)

    Bergholz, Robert

    2008-01-01

    The objective of the Advanced Turbine Cooling and Thermal Management program is to develop intelligent control and distribution methods for turbine cooling, while achieving a reduction in total cooling flow and assuring acceptable turbine component safety and reliability. The program also will develop embedded sensor technologies and cooling system models for real-time engine diagnostics and health management. Both active and passive control strategies will be investigated that include the capability of intelligent modulation of flow quantities, pressures, and temperatures both within the supply system and at the turbine component level. Thermal management system concepts were studied, with a goal of reducing HPT blade cooling air supply temperature. An assessment will be made of the use of this air by the active clearance control system as well. Turbine component cooling designs incorporating advanced, high-effectiveness cooling features, will be evaluated. Turbine cooling flow control concepts will be studied at the cooling system level and the component level. Specific cooling features or sub-elements of an advanced HPT blade cooling design will be downselected for core fabrication and casting demonstrations.

  18. Research and technology, fiscal year 1986, Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Marshall Space Flight Center is continuing its vigorous efforts in space-related research and technology. Extensive activities in advanced studies have led to the approval of the Orbital Maneuvering Vehicle as a new start. Significant progress was made in definition studies of liquid rocket engine systems for future space transportation needs and the conceptualization of advanced laucnch vehicles. The space systems definition studies have brought the Advanced X-ray Astrophysics Facility and Gravity Probe-B to a high degree of maturity. Both are ready for project implementation. Also discussed include significant advances in low gravity sciences, solar terrestrial physics, high energy astrophysics, atmospheric sciences, propulsion systems, and on the critical element of the Space Shuttle Main Engine in particular. The goals of improving the productivity of high-cost repetitive operations on reusable transportation systems, and extending the useful life of such systems are examined. The research and technology highlighted provides a foundation for progress on the Hubble Space Telescope, the Space Station, all elements of the Space Transportation System, and the many other projects assigned to this Center.

  19. Aeropropulsion 1987. Session 2: Aeropropulsion Structures Research

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Aeropropulsion systems present unique problems to the structural engineer. The extremes in operating temperatures, rotational effects, and behaviors of advanced material systems combine into complexities that require advances in many scientific disciplines involved in structural analysis and design procedures. This session provides an overview of the complexities of aeropropulsion structures and the theoretical, computational, and experimental research conducted to achieve the needed advances.

  20. Design and Test of Fan/Nacelle Models Quiet High-Speed Fan

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J. (Technical Monitor); Weir, Donald

    2003-01-01

    The Quiet High-Speed Fan program is a cooperative effort between Honeywell Engines & Systems (formerly AlliedSignal Engines & Systems) and the NASA Glenn Research Center. Engines & Systems has designed an advanced high-speed fan that will be tested on the Ultra High Bypass Propulsion Simulator in the NASA Glenn 9 x 15 foot wind tunnel, currently scheduled for the second quarter of 2000. An Engines & Systems modern fan design will be used as a baseline. A nacelle model is provided that is characteristic of a typical, modern regional aircraft nacelle and meets all of the program test objectives.

  1. Army/NASA small turboshaft engine digital controls research program

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Baez, A. N.

    1981-01-01

    The emphasis of a program to conduct digital controls research for small turboshaft engines is on engine test evaluation of advanced control logic using a flexible microprocessor based digital control system designed specifically for research on advanced control logic. Control software is stored in programmable memory. New control algorithms may be stored in a floppy disk and loaded directly into memory. This feature facilitates comparative evaluation of different advanced control modes. The central processor in the digital control is an Intel 8086 16 bit microprocessor. Control software is programmed in assembly language. Software checkout is accomplished prior to engine test by connecting the digital control to a real time hybrid computer simulation of the engine. The engine currently installed in the facility has a hydromechanical control modified to allow electrohydraulic fuel metering and VG actuation by the digital control. Simulation results are presented which show that the modern control reduces the transient rotor speed droop caused by unanticipated load changes such as cyclic pitch or wind gust transients.

  2. Thermal and Environmental Barrier Coatings for Advanced Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2005-01-01

    Ceramic thermal and environmental barrier coatings (T/EBCs) will play a crucial role in advanced gas turbine engine systems because of their ability to significantly increase engine operating temperatures and reduce cooling requirements, thus help achieve engine low emission and high efficiency goals. Advanced T/EBCs are being developed for the low emission SiC/SiC ceramic matrix composite (CMC) combustor applications by extending the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water vapor containing combustion environments. Low conductivity thermal barrier coatings (TBCs) are also being developed for metallic turbine airfoil and combustor applications, providing the component temperature capability up to 1650 C (3000 F). In this paper, ceramic coating development considerations and requirements for both the ceramic and metallic components will be described for engine high temperature and high-heat-flux applications. The underlying coating failure mechanisms and life prediction approaches will be discussed based on the simulated engine tests and fracture mechanics modeling results.

  3. Analysis of Turbofan Design Options for an Advanced Single-Aisle Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. It is possible that future designs will continue this trend, leading to very-high or ultra-high bypass ratio (UHB) engines. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single-aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. Regardless of the engine architecture chosen, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  4. Advanced Vehicle system concepts. [nonpetroleum passenger transportation

    NASA Technical Reports Server (NTRS)

    Hardy, K. S.; Langendoen, J. M.

    1983-01-01

    Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.

  5. Research requirements to reduce civil helicopter life cycle cost

    NASA Technical Reports Server (NTRS)

    Blewitt, S. J.

    1978-01-01

    The problem of the high cost of helicopter development, production, operation, and maintenance is defined and the cost drivers are identified. Helicopter life cycle costs would decrease by about 17 percent if currently available technology were applied. With advanced technology, a reduction of about 30 percent in helicopter life cycle costs is projected. Technological and managerial deficiencies which contribute to high costs are examined, basic research and development projects which can reduce costs include methods for reduced fuel consumption; improved turbine engines; airframe and engine production methods; safety; rotor systems; and advanced transmission systems.

  6. Technical Evaluation Report on the Propulsion and Energetics Panel 54th (A) Meeting Advanced Control Systems for Aircraft Powerplants.

    DTIC Science & Technology

    1980-03-01

    availability and accuracy were vital to continued advance in electronic control and that the man-machine interface should continue to be addressed. Mr Bentz was...why there is not more digital engine control being brought in on a retro fit basis so as to obtain its advantages. Dr Bentz answered that it was too...surge line. Mr Bentz answered that all engines are being designed with digital control in mind. The issue is whether the systems can withstand the

  7. 1300099

    NASA Image and Video Library

    2013-02-22

    DURING HIS FEB. 22 VISIT TO THE NATIONAL CENTER FOR ADVANCED MANUFACTURING RAPID PROTOTYPING FACILITY AT NASA'S MARSHALL SPACE FLIGHT CENTER, NASA ADMINISTRATOR CHARLES BOLDEN, CENTER, TALKS WITH FRANK LEDBETTER, RIGHT, CHIEF OF THE NONMETALLIC MATERIALS AND MANUFACTURING DIVISION AT MARSHALL, ABOUT THE USE OF 3-D PRINTING AND PROTOTYPING TECHNOLOGY TO CREATE PARTS FOR THE SPACE LAUNCH SYSTEM. ALSO PARTICIPATING IN THE TOUR ARE, FROM BACK RIGHT, MARSHALL CENTER DIRECTOR PATRICK SCHEUERMANN; SHERRY KITTREDGE, DEPUTY MANAGER OF THE SLS LIQUID ENGINES OFFICE; MARSHALL FLIGHT SYSTEMS DESIGN ENGINEER ROB BLACK; AND JOHN VICKERS, MANAGER OF THE NATIONAL CENTER FOR ADVANCED MANUFACTURING.

  8. Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    Thermal barrier coatings have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, the issue of coating durability under high temperature cyclic conditions is still of major concern. The coating failure is closely related to thermal stresses and oxidation in the coating systems. Coating shrinkage cracking resulting from ceramic sintering and creep at high temperatures can further accelerate the coating failure process. The purpose of this paper is to address critical issues such as ceramic sintering and creep, thermal fatigue and their relevance to coating life prediction. Novel test approaches have been established to obtain critical thermophysical and thermomechanical properties of the coating systems under near-realistic temperature and stress gradients encountered in advanced engine systems. Emphasis is placed on the dynamic changes of the coating thermal conductivity and elastic modulus, fatigue and creep interactions, and resulting failure mechanisms during the simulated engine tests. Detailed experimental and modeling results describing processes occurring in the thermal barrier coating systems provide a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  9. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristics of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. These are characterized by specific impulse, overall efficiency, input power, average thrust, power to average thrust ratio and average thrust to dry weight ratio. Several important physical characteristics such as dry system mass, accelerator length, bore size and current pulse requirement are also evaluated in appropriate cases. Only the ion engine can operate at a specific impulse beyond 2000 sec. Rail gun, MPD thruster and free radical thruster are currently characterized by low efficiencies. Mass drivers have the best performance characteristics in terms of overall efficiency, power to average thrust ratio and average thrust to dry weight ratio. But, they can only operate at low specific impulses due to large power requirements and are extremely long due to limitations of driving current. Mercury ion engines have the next best performance characteristics while operating at higher specific impulses. It is concluded that, overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  10. Propulsion Control Technology Development in the United States A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Jaw, Link C.a; Garg, Sanjay

    2005-01-01

    This paper presents a historical perspective of the advancement of control technologies for aircraft gas turbine engines. The paper primarily covers technology advances in the United States in the last 60 years (1940 to approximately 2002). The paper emphasizes the pioneering technologies that have been tested or implemented during this period, assimilating knowledge and experience from industry experts, including personal interviews with both current and retired experts. Since the first United States-built aircraft gas turbine engine was flown in 1942, engine control technology has evolved from a simple hydro-mechanical fuel metering valve to a full-authority digital electronic control system (FADEC) that is common to all modern aircraft propulsion systems. At the same time, control systems have provided engine diagnostic functions. Engine diagnostic capabilities have also evolved from pilot observation of engine gauges to the automated on-board diagnostic system that uses mathematical models to assess engine health and assist in post-flight troubleshooting and maintenance. Using system complexity and capability as a measure, we can break the historical development of control systems down to four phases: (1) the start-up phase (1942 to 1949), (2) the growth phase (1950 to 1969), (3) the electronic phase (1970 to 1989), and (4) the integration phase (1990 to 2002). In each phase, the state-of-the-art control technology is described and the engines that have become historical landmarks, from the control and diagnostic standpoint, are identified. Finally, a historical perspective of engine controls in the last 60 years is presented in terms of control system complexity, number of sensors, number of lines of software (or embedded code), and other factors.

  11. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  12. Energy efficient engine: Propulsion system-aircraft integration evaluation

    NASA Technical Reports Server (NTRS)

    Owens, R. E.

    1979-01-01

    Flight performance and operating economics of future commercial transports utilizing the energy efficient engine were assessed as well as the probability of meeting NASA's goals for TSFC, DOC, noise, and emissions. Results of the initial propulsion systems aircraft integration evaluation presented include estimates of engine performance, predictions of fuel burns, operating costs of the flight propulsion system installed in seven selected advanced study commercial transports, estimates of noise and emissions, considerations of thrust growth, and the achievement-probability analysis.

  13. Mathematical Model of the Jet Engine Fuel System

    NASA Astrophysics Data System (ADS)

    Klimko, Marek

    2015-05-01

    The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.

  14. Algorithms for Port-of-Entry Inspection

    DTIC Science & Technology

    2007-05-29

    Devdatt Lad, Rutgers University, Center for Advanced Information Processing Mingyu Li, Rutgers University, Statistics Francesco Longo, University of...Industrial and Systems Engineering graduate student Devdatt Lad, Rutgers University, Electrical & Computer Engineering, graduate student Mingyu Li

  15. Advanced life support systems in lunar and Martian environments utilizing a higher plant based engineering paradigm

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis

    1992-01-01

    The paper describes a higher-plant-based engineering paradigm for advanced life support in a Controlled Ecological Life Support System (CELSS) on the surface of the moon or Mars, called the CELSS Breadboard Project, designed at John F. Kennedy Space Center. Such a higher-plant-based system would use the plants for a direct food source, gas exchange, water reclamation, and plant residuals in a complex biological resource recovery scheme. The CELSS Breadboard Project utilizes a 'breadboard' approach of developing independent systems that are evaluated autonomously and are later interconnected. Such a scheme will enable evaluation of life support system methodologies tested for their efficiency in a life support system for habitats on the moon or Mars.

  16. Design of a pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.; Kesseli, J.

    1991-01-01

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding a heat transport system to more uniformly supply heat to the heater head tubes. One heat transport system with favorable characteristics is an alkali metal pool boiler. An alkali metal pool boiler heat transport system was designed for a 25-kW advanced Stirling conversion system (ASCS). Solar energy concentrated on the absorber dome boils a eutectic mixture of sodium and potassium. The alkali metal vapors condense on the heater head tubes, supplying the Stirling engine with a uniform heat flux at a constant temperature. Boiling stability is achieved with the use of an enhanced boiling surface and noncondensible gas.

  17. 2002 NASA Seal/Secondary Air System Workshop. Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)

    2003-01-01

    The 2002 NASA Seal/Secondary Air System Workshop covered the following topics: (i) Overview of NASA s perspective of aeronautics and space technology for the 21st century; (ii) Overview of the NASA-sponsored Ultra-Efficient Engine Technology (UEET), Turbine-Based Combined-Cycle (TBCC), and Revolutionary Turbine Accelator (RTA) programs; (iii) Overview of NASA Glenn's seal program aimed at developing advanced seals for NASA's turbomachinery, space propulsion, and reentry vehicle needs; (iv) Reviews of sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. The NASA UEET and TBCC/RTA program overviews illustrated for the reader the importance of advanced technologies, including seals, in meeting future turbine engine system efficiency and emission goals. For example, the NASA UEET program goals include an 8- to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs NASA is funding to investigate advanced reusable space vehicle technologies (X-38) and advanced space ram/scramjet propulsion systems. Seal challenges posed by these advanced systems include high-temperature operation, resiliency at the operating temperature to accommodate sidewall flexing, and durability to last many missions.

  18. Advanced Computing Technologies for Rocket Engine Propulsion Systems: Object-Oriented Design with C++

    NASA Technical Reports Server (NTRS)

    Bekele, Gete

    2002-01-01

    This document explores the use of advanced computer technologies with an emphasis on object-oriented design to be applied in the development of software for a rocket engine to improve vehicle safety and reliability. The primary focus is on phase one of this project, the smart start sequence module. The objectives are: 1) To use current sound software engineering practices, object-orientation; 2) To improve on software development time, maintenance, execution and management; 3) To provide an alternate design choice for control, implementation, and performance.

  19. Engine Concept Study for an Advanced Single-Aisle Transport

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which mission fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. The results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  20. Nanoparticles-Based Systems for Osteochondral Tissue Engineering.

    PubMed

    Oliveira, Isabel; Vieira, Sílvia; Oliveira, J Miguel; Reis, Rui L

    2018-01-01

    Osteochondral lesions represent one of the major causes of disabilities in the world. These defects are due to degenerative or inflammatory arthritis, but both affect the articular cartilage and the underlying subchondral bone. Defects from trauma or degenerative pathology frequently cause severe pain, joint deformity, and loss of joint motion. Osteochondral defects are a significant challenge in orthopedic surgery, due to the cartilage complexity and unique structure, as well as its exposure to high pressure and motion. Although there are treatments routinely performed in the clinical practice, they present several limitations. Tissue engineering can be a suitable alternative for osteochondral defects since bone and cartilage engineering had experienced a notable advance over the years. Allied with nanotechnology, osteochondral tissue engineering (OCTE) can be leveled up, being possible to create advanced structures similar to the OC tissue. In this chapter, the current strategies using nanoparticles-based systems are overviewed. The results of the studies herein considered confirm that advanced nanomaterials will undoubtedly play a crucial role in the design of strategies for treatment of osteochondral defects in the near future.

  1. Real-time in-flight engine performance and health monitoring techniques for flight research application

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Hicks, John W.; Wichman, Keith D.

    1991-01-01

    Procedures for real time evaluation of the inflight health and performance of gas turbine engines and related systems were developed to enhance flight test safety and productivity. These techniques include the monitoring of the engine, the engine control system, thrust vectoring control system health, and the detection of engine stalls. Real time performance techniques were developed for the determination and display of inflight thrust and for aeroperformance drag polars. These new methods were successfully shown on various research aircraft at NASA-Dryden. The capability of NASA's Western Aeronautical Test Range and the advanced data acquisition systems were key factors for implementation and real time display of these methods.

  2. Barbara Goodman - Executive Director, Institutional Planning, Integration

    Science.gov Websites

    Systems Engineering overseeing NREL's research on advanced transportation technologies, residential and for NREL's research in advanced vehicles (both light and heavy-duty) and fuels. Key elements include : evaluating advanced battery technologies and power electronics (motors and inverters); measuring emissions

  3. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andrew M.; Greene, William D.

    2017-01-01

    The stated goals of NASA's Research Announcement for the Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS and enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Dynetics, Inc. and Aerojet Rocketdyne (AR) formed a team to offer a wide-ranging set of risk reduction activities and full-scale, system-level demonstrations that support NASA's ABEDRR goals. During the ABEDRR effort, the Dynetics Team has modified flight-proven Apollo-Saturn F-1 engine components and subsystems to improve affordability and reliability (e.g., reduce parts counts, touch labor, or use lower cost manufacturing processes and materials). The team has built hardware to validate production costs and completed tests to demonstrate it can meet performance requirements. State-of-the-art manufacturing and processing techniques have been applied to the heritage F-1, resulting in a low recurring cost engine while retaining the benefits of Apollo-era experience. NASA test facilities have been used to perform low-cost risk-reduction engine testing. In early 2014, NASA and the Dynetics Team agreed to move additional large liquid oxygen/kerosene engine work under Dynetics' ABEDRR contract. Also led by AR, the objectives of this work are to demonstrate combustion stability and measure performance of a 500,000 lbf class Oxidizer-Rich Staged Combustion (ORSC) cycle main injector. A trade study was completed to investigate the feasibility, cost effectiveness, and technical maturity of a domestically-produced engine that could potentially both replace the RD-180 on Atlas V and satisfy NASA SLS payload-to-orbit requirements via an advanced booster application. Engine physical dimensions and performance parameters resulting from this study provide the system level requirements for the ORSC risk reduction test article. The test article is scheduled to complete fabrication and assembly soon and continue testing through late 2019. Dynetics has also designed, developed, and built innovative tank and structure assemblies using friction stir welding to leverage recent NASA investments in manufacturing tools, facilities, and processes, significantly reducing development and recurring costs. The full-scale cryotank assembly was used to verify the structural design and prove affordable processes. Dynetics performed hydrostatic and cryothermal proof tests on the assembly to verify the assembly meets performance requirements..

  4. Enabling functional genomics with genome engineering

    PubMed Central

    Hilton, Isaac B.; Gersbach, Charles A.

    2015-01-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  5. The Role of Intelligent Agents in Advanced Information Systems

    NASA Technical Reports Server (NTRS)

    Kerschberg, Larry

    1999-01-01

    In this presentation we review the current ongoing research within George Mason University's (GMU) Center for Information Systems Integration and Evolution (CISE). We define characteristics of advanced information systems, discuss a family of agents for such systems, and show how GMU's Domain modeling tools and techniques can be used to define a product line Architecture for configuring NASA missions. These concepts can be used to define Advanced Engineering Environments such as those envisioned for NASA's new initiative for intelligent design and synthesis environments.

  6. Evaluation in context: ATC automation in the field

    NASA Technical Reports Server (NTRS)

    Harwood, Kelly; Sanford, Beverly

    1994-01-01

    The process for incorporating advanced technologies into complex aviation systems is as important as the final product itself. This paper described a process that is currently being applied to the development and assessment of an advanced ATC automation system, CTAS. The key element of the process is field exposure early in the system development cycle. The process deviates from current established practices of system development -- where field testing is an implementation endpoint -- and has been deemed necessary by the FAA for streamlining development and bringing system functions to a level of stability and usefulness. Methods and approaches for field assessment are borrowed from human factors engineering, cognitive engineering, and usability engineering and are tailored for the constraints of an operational ATC environment. To date, the focus has been on the qualitative assessment of the match between TMA capabilities and the context for their use. Capturing the users' experience with the automation tool and understanding tool use in the context of the operational environment is important, not only for developing a tool that is an effective problem-solving instrument but also for defining meaningful operational requirements. Such requirements form the basis for certifying the safety and efficiency of the system. CTAS is the first U.S. advanced ATC automation system of its scope and complexity to undergo this field development and assessment process. With the rapid advances in aviation technologies and our limited understanding of their impact on system performance, it is time we opened our eyes to new possibilities for developing, validating, and ultimately certifying complex aviation systems.

  7. Advanced Kalman Filter for Real-Time Responsiveness in Complex Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Gregory Francis; Zhang, Jinghe

    2014-06-10

    Complex engineering systems pose fundamental challenges in real-time operations and control because they are highly dynamic systems consisting of a large number of elements with severe nonlinearities and discontinuities. Today’s tools for real-time complex system operations are mostly based on steady state models, unable to capture the dynamic nature and too slow to prevent system failures. We developed advanced Kalman filtering techniques and the formulation of dynamic state estimation using Kalman filtering techniques to capture complex system dynamics in aiding real-time operations and control. In this work, we looked at complex system issues including severe nonlinearity of system equations, discontinuitiesmore » caused by system controls and network switches, sparse measurements in space and time, and real-time requirements of power grid operations. We sought to bridge the disciplinary boundaries between Computer Science and Power Systems Engineering, by introducing methods that leverage both existing and new techniques. While our methods were developed in the context of electrical power systems, they should generalize to other large-scale scientific and engineering applications.« less

  8. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals

    PubMed Central

    Shi, Shuobo; Zhao, Huimin

    2017-01-01

    Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years. PMID:29167664

  9. FY2017 Advanced Combustion Systems and Fuels Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Combustion Systems and Fuels Program supports VTO’s goal and focuses early-stage research and development (R&D) to improve understanding of the combustion processes, fuel properties, and emission control technologies while generating knowledge and insight necessary for industry to develop the next generation of engines.

  10. Advanced technologies for Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Dalton, John T.; Hughes, Peter M.

    1991-01-01

    Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.

  11. Component qualification and initial build of the AGT 100 advanced automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1983-01-01

    In advance of initial dynamometer testing of the AGT 100 engine, all prime components and subsystems were bench/rig tested. Included were compressor, combustor, turbines, regenerator, ceramic components, and electronic control system. Results are briefly reviewed. Initial engine buildup was completed and rolled-out for test cell installation in July 1982. Shakedown testing included motoring and sequential firing of the combustor's three fuel nozzles.

  12. Fuel system design concepts for broad property fuels

    NASA Technical Reports Server (NTRS)

    Versaw, E. F.

    1984-01-01

    The results of a study assessing the impact of using jet fuel with relaxed specification properties on an aircraft fuel system are given. The study objectives were to identify credible values for specific fuel properties which might be relaxed, to evolve advanced fuel system designs for airframe and engines which would permit use of the specified relaxed properties fuels, and to evaluate performance of the candidate advanced fuel systems and the relaxed property fuels in a typical transport aircraft. The study used, as a baseline, the fuel system incorporated in the Lockheed Tristar. This aircraft is powered by three RB.211-524 Rolls-Royce engines and incorporates a Pratt and Whitney ST6C-421 auxiliary power unit for engine starting and inflight emergency electrical power. The fuel property limits examined are compared with commercial Jet A kerosene and the NASA RFP fuel properties. A screening of these properties established that a higher freezing point and a lower thermal stability would impact fuel system design more significantly than any of the other property changes. Three candidate fuel systems which combine the ability to operate with fuels having both a high freeze point and a low thermal stability are described. All candidates employ bleed air to melt fuel freeze-out prior to starting the APU or an inoperable engine. The effects of incorporating these systems on aircraft weight and engine specific fuel consumption are given.

  13. Advanced engineering design program at the University of Illinois for the 1987-1988 academic year

    NASA Technical Reports Server (NTRS)

    Sivier, Kenneth R.; Lembeck, Michael F.

    1988-01-01

    The participation of the University of Illinois at Urbana-Champaign in the NASA/USRA Universities Advanced Engineering Design Program (Space) is reviewed for the 1987 to 88 academic year. The University's design project was the Manned Marsplane and Delivery System. In the spring of 1988 semester, 107 students were enrolled in the Aeronautical and Astronautical Engineering Departments' undergraduate Aerospace Vehicle Design course. These students were divided into an aircraft section (responsible for the Marsplane design), and a spacecraft section (responsible for the Delivery System Design). The design results are presented in Final Design Reports, copies of which are attached. In addition, five students presented a summary of the design results at the Program's Summer Conference.

  14. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    NASA Technical Reports Server (NTRS)

    Bergholz, Robert

    2008-01-01

    The objective is to provide turbine-cooling technologies to meet Propulsion 21 goals related to engine fuel burn, emissions, safety, and reliability. Specifically, the GE Aviation (GEA) Advanced Turbine Cooling and Thermal Management program seeks to develop advanced cooling and flow distribution methods for HP turbines, while achieving a substantial reduction in total cooling flow and assuring acceptable turbine component safety and reliability. Enhanced cooling techniques, such as fluidic devices, controlled-vortex cooling, and directed impingement jets, offer the opportunity to incorporate both active and passive schemes. Coolant heat transfer enhancement also can be achieved from advanced designs that incorporate multi-disciplinary optimization of external film and internal cooling passage geometry.

  15. Status of Technological Advancements for Reducing Aircraft Gas Turbine Engine Pollutant Emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1975-01-01

    Combustor test rig results indicate that substantial reductions from current emission levels of carbon monoxide (CO), total unburned hydrocarbons (THC), oxides of nitrogen (NOx), and smoke are achievable by employing varying degrees of technological advancements in combustion systems. Minor to moderate modifications to existing conventional combustors produced significant reductions in CO and THC emissions at engine low power (idle/taxi) operating conditions but did not effectively reduce NOx at engine full power (takeoff) operating conditions. Staged combusiton techniques were needed to simultaneously reduce the levels of all the emissions over the entire engine operating range (from idle to takeoff). Emission levels that approached or were below the requirements of the 1979 EPA standards were achieved with the staged combustion systems and in some cases with the minor to moderate modifications to existing conventional combustion systems. Results from research programs indicate that an entire new generation of combustor technology with extremely low emission levels may be possible in the future.

  16. Turbomachine Sealing and Secondary Flows. Part 1; Review of Sealing Performance, Customer, Engine Designer, and Research Issues

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Steinetz, B. M.; Braun, M. J.

    2004-01-01

    Although forces outside our control shape our industry, turbomachine sealing research, design, and customer agendas established in 1978 by Ludwig, Campbell, and Smith in terms of specific fuel consumption and performance remain as objectives today. Advances have been made because failures of the space shuttle main engine turbomachinery ushered in a new understanding of sealing in high-power-density systems. Further, it has been shown that changes in sealing, especially for high-pressure rotors, dramatically change the performance of the entire engine or turbomachine. Maintaining seal leakages and secondary flows within engine design specifications remains the most efficient and cost effective way to enhance performance and minimize maintenance costs. This three-part review summarizes experiences, ideas, successes, and failures by NASA and the U.S. aerospace industry in secondary flow management in advanced turbomachinery. Part 1 presents system sealing, part 2 system rotordynamics, and part 3 modeling, with some overlap of each part.

  17. Applying Technology Ranking and Systems Engineering in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Luna, Bernadette (Technical Monitor)

    2000-01-01

    According to the Advanced Life Support (ALS) Program Plan, the Systems Modeling and Analysis Project (SMAP) has two important tasks: 1) prioritizing investments in ALS Research and Technology Development (R&TD), and 2) guiding the evolution of ALS systems. Investments could be prioritized simply by independently ranking different technologies, but we should also consider a technology's impact on system design. Guiding future ALS systems will require SMAP to consider many aspects of systems engineering. R&TD investments can be prioritized using familiar methods for ranking technology. The first step is gathering data on technology performance, safety, readiness level, and cost. Then the technologies are ranked using metrics or by decision analysis using net present economic value. The R&TD portfolio can be optimized to provide the maximum expected payoff in the face of uncertain future events. But more is needed. The optimum ALS system can not be designed simply by selecting the best technology for each predefined subsystem. Incorporating a new technology, such as food plants, can change the specifications of other subsystems, such as air regeneration. Systems must be designed top-down starting from system objectives, not bottom-up from selected technologies. The familiar top-down systems engineering process includes defining mission objectives, mission design, system specification, technology analysis, preliminary design, and detail design. Technology selection is only one part of systems analysis and engineering, and it is strongly related to the subsystem definitions. ALS systems should be designed using top-down systems engineering. R&TD technology selection should consider how the technology affects ALS system design. Technology ranking is useful but it is only a small part of systems engineering.

  18. FY10 Engineering Innovations, Research and Technology Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, M A; Aceves, S M; Paulson, C N

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&Dmore » 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.« less

  19. Advanced Expander Test Bed Program

    DTIC Science & Technology

    1991-04-01

    CHAMBER COOLANT DP 503. CHAMBER COOLANT DT 896. ETA C* 0.993 CHAMBER Q 12371. ENGINE STATION CONDITIONS FUEL SYSTEM CONDITIONS STATION PRESS TEMP FLOW...1597.3 452.5 7.44 1507.1 0.62 CHAMBER 1500.0 * OXYGEN SYSTEM CONDITIONS STATION PRESS TEMP FLOW ENTHALPY DENSITY ENGINE INLET 70.0 163.0- 44.64 61.2...FUEL SYSTEM CONOITIONS PRESS TEMP FLOM ENTHALPY OENSITY STATION (PSIA) (DEG R) (LB/SEC) [(BTU/LB) (LB/FT31 ENGINE INLET 73.0 38.0 7.440 -104.8 4.389

  20. Ceramic Technology Project semiannual progress report, April 1992--September 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    1993-07-01

    This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments,more » and ceramic coatings for thermal barrier and wear applications in these engines.« less

  1. High Stability Engine Control (HISTEC) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Southwick, Robert D.; Gallops, George W.; Kerr, Laura J.; Kielb, Robert P.; Welsh, Mark G.; DeLaat, John C.; Orme, John S.

    1998-01-01

    The High Stability Engine Control (HISTEC) Program, managed and funded by the NASA Lewis Research Center, is a cooperative effort between NASA and Pratt & Whitney (P&W). The program objective is to develop and flight demonstrate an advanced high stability integrated engine control system that uses real-time, measurement-based estimation of inlet pressure distortion to enhance engine stability. Flight testing was performed using the NASA Advanced Controls Technologies for Integrated Vehicles (ACTIVE) F-15 aircraft at the NASA Dryden Flight Research Center. The flight test configuration, details of the research objectives, and the flight test matrix to achieve those objectives are presented. Flight test results are discussed that show the design approach can accurately estimate distortion and perform real-time control actions for engine accommodation.

  2. Linguistic Alternatives to Quantitative Research Strategies. Part One: How Linguistic Mechanisms Advance Research Outcomes

    ERIC Educational Resources Information Center

    Yeager, Joseph; Sommer, Linda

    2007-01-01

    Combining psycholinguistic technologies and systems analysis created advances in motivational profiling and numerous new behavioral engineering applications. These advances leapfrog many mainstream statistical research methods, producing superior research results via cause-effect language mechanisms. Entire industries explore motives ranging from…

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skibo, A.

    SRNL has considerable experience in designing, engineering, and operating systems for removing iodine-129 (I-129) and ruthenium-106 (Ru-106) from waste streams that are directly analogous to the Advanced Liquid Processing System (ALPS) waste streams. SRNL proposes to provide the technical background and design and engineering support for an improved I-129 and Ru-106 removal system for application to ALPS on the Fukushima Daiichi Nuclear Power Station (NPS).

  4. Mechatronic system design course for undergraduate programmes

    NASA Astrophysics Data System (ADS)

    Saleem, A.; Tutunji, T.; Al-Sharif, L.

    2011-08-01

    Technology advancement and human needs have led to integration among many engineering disciplines. Mechatronics engineering is an integrated discipline that focuses on the design and analysis of complete engineering systems. These systems include mechanical, electrical, computer and control subsystems. In this paper, the importance of teaching mechatronic system design to undergraduate engineering students is emphasised. The paper offers the collaborative experience in preparing and delivering the course material for two universities in Jordan. A detailed description of such a course is provided and a case study is presented. The case study used is a final year project, where students applied a six-stage design procedure that is described in the paper.

  5. Status of the advanced Stirling conversion system project for 25 kW dish Stirling applications

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1991-01-01

    Heat engines were evaluated for terrestrial Solar Distributed Heat Receivers. The Stirling engine was identified as one of the most promising heat engines for terrestrial applications. Technology development is also conducted for Stirling convertors directed toward a dynamic power source for space applications. Space power requirements include high reliability with very long life, low vibration, and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other.

  6. An Updated Assessment of NASA Ultra-Efficient Engine Technologies

    NASA Technical Reports Server (NTRS)

    Tong Michael T.; Jones, Scott M.

    2005-01-01

    NASA's Ultra Efficient Engine Technology (UEET) project features advanced aeropropulsion technologies that include highly loaded turbomachinery, an advanced low-NOx combustor, high-temperature materials, and advanced fan containment technology. A probabilistic system assessment is performed to evaluate the impact of these technologies on aircraft CO2 (or equivalent fuel burn) and NOx reductions. A 300-passenger aircraft, with two 396-kN thrust (85,000-lb) engines is chosen for the study. The results show that a large subsonic aircraft equipped with the current UEET technology portfolio has very high probabilities of meeting the UEET minimum success criteria for CO2 reduction (-12% from the baseline) and LTO (landing and takeoff) NOx reductions (-65% relative to the 1996 International Civil Aviation Organization rule).

  7. 40 CFR 86.230-11 - Test sequence: general requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vehicle interior climate control system shall be operated with the interior heating system on and the air... changes (e.g., engine-off logic, idle speed operation, spark advance changes) and engine control features...) Prior to the first acceleration of the test at T=20 seconds the climate control settings shall be set as...

  8. 40 CFR 86.230-11 - Test sequence: general requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vehicle interior climate control system shall be operated with the interior heating system on and the air... changes (e.g., engine-off logic, idle speed operation, spark advance changes) and engine control features...) Prior to the first acceleration of the test at T=20 seconds the climate control settings shall be set as...

  9. 40 CFR 86.230-11 - Test sequence: general requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vehicle interior climate control system shall be operated with the interior heating system on and the air... changes (e.g., engine-off logic, idle speed operation, spark advance changes) and engine control features...) Prior to the first acceleration of the test at T=20 seconds the climate control settings shall be set as...

  10. 40 CFR 86.230-11 - Test sequence: general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vehicle interior climate control system shall be operated with the interior heating system on and the air... changes (e.g., engine-off logic, idle speed operation, spark advance changes) and engine control features...) Prior to the first acceleration of the test at T=20 seconds the climate control settings shall be set as...

  11. Detailed Post-Soft Impact Progressive Damage Assessment for Hybrid Structure Jet Engines

    NASA Technical Reports Server (NTRS)

    Siddens, Aaron; Bayandor, Javid; Celestina, Mark L.

    2014-01-01

    Currently, certification of engine designs for resistance to bird strike is reliant on physical tests. Predictive modeling of engine structural damage has mostly been limited to evaluation of individual forward section components, such as fan blades within a fixed frame of reference, to direct impact with a bird. Such models must be extended to include interactions among engine components under operating conditions to evaluate the full extent of engine damage. This paper presents the results of a study aim to develop a methodology for evaluating bird strike damage in advanced propulsion systems incorporating hybrid composite/metal structures. The initial degradation and failure of individual fan blades struck by a bird were investigated. Subsequent damage to other fan blades and engine components due to resultant violent fan assembly vibrations and fragmentation was further evaluated. Various modeling parameters for the bird and engine components were investigated to determine guidelines for accurately capturing initial damage and progressive failure of engine components. Then, a novel hybrid structure modeling approach was investigated and incorporated into the crashworthiness methodology. Such a tool is invaluable to the process of design, development, and certification of future advanced propulsion systems.

  12. Advanced Development of a Compact 5-15 lbf Lox/Methane Thruster for an Integrated Reaction Control and Main Engine Propulsion System

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric A.; McManamen, John Patrick; Sooknanen, Josh; Studak, Joseph W.

    2011-01-01

    This paper describes the advanced development and testing of a compact 5 to 15 lbf LOX/LCH4 thruster for a pressure-fed integrated main engine and RCS propulsion system to be used on a spacecraft "vertical" test bed (VTB). The ability of the RCS thruster and the main engine to operate off the same propellant supply in zero-g reduces mass and improves mission flexibility. This compact RCS engine incorporates several features to dramatically reduce mass and parts count, to ease manufacturing, and to maintain acceptable performance given that specific impulse (Isp) is not the driver. For example, radial injection holes placed on the chamber body for easier drilling, and high temperature Haynes 230 were selected for the chamber over other more expensive options. The valve inlets are rotatable before welding allowing different orientations for vehicle integration. In addition, the engine design effort selected a coil-on-plug ignition system which integrates a relay and coil with the plug electrode, and moves some exciter electronics to avionics driver board. The engine injector design has small dribble volumes to target minimum pulse widths of 20 msec. and an efficient minimum impulse bit of less than 0.05 lbf-sec. The propellants, oxygen and methane, were chosen because together they are a non-toxic, Mars-forward, high density, space storable, and high performance propellant combination that is capable of pressure-fed and pump-fed configurations and integration with life support and power subsystems. This paper will present the results of the advanced development testing to date of the RCS thruster and the integration with a vehicle propulsion system.

  13. Projected techno-economic improvements for advanced solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Manvi, R.; Roschke, E. J.

    1979-01-01

    The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.

  14. Expanding the chemical palate of cells by combining systems biology and metabolic engineering.

    PubMed

    Curran, Kathleen A; Alper, Hal S

    2012-07-01

    The field of Metabolic Engineering has recently undergone a transformation that has led to a rapid expansion of the chemical palate of cells. Now, it is conceivable to produce nearly any organic molecule of interest using a cellular host. Significant advances have been made in the production of biofuels, biopolymers and precursors, pharmaceuticals and nutraceuticals, and commodity and specialty chemicals. Much of this rapid expansion in the field has been, in part, due to synergies and advances in the area of systems biology. Specifically, the availability of functional genomics, metabolomics and transcriptomics data has resulted in the potential to produce a wealth of new products, both natural and non-natural, in cellular factories. The sheer amount and diversity of this data however, means that uncovering and unlocking novel chemistries and insights is a non-obvious exercise. To address this issue, a number of computational tools and experimental approaches have been developed to help expedite the design process to create new cellular factories. This review will highlight many of the systems biology enabling technologies that have reduced the design cycle for engineered hosts, highlight major advances in the expanded diversity of products that can be synthesized, and conclude with future prospects in the field of metabolic engineering. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Teaching Reinforcement of Stochastic Behavior Using Monte Carlo Simulation.

    ERIC Educational Resources Information Center

    Fox, William P.; And Others

    1996-01-01

    Explains a proposed block of instruction that would give students in industrial engineering, operations research, systems engineering, and applied mathematics the basic understanding required to begin more advanced courses in simulation theory or applications. (DDR)

  16. Advanced Seal Development for Large Industrial Gas Turbines

    NASA Technical Reports Server (NTRS)

    Chupp, Raymond E.

    2006-01-01

    Efforts are in progress to develop advanced sealing for large utility industrial gas turbine engines (combustion turbines). Such seals have been under developed for some time for aero gas turbines. It is desired to transition this technology to combustion turbines. Brush seals, film riding face and circumferential seals, and other dynamic and static sealing approaches are being incorporated into gas turbines for aero applications by several engine manufacturers. These seals replace labyrinth or other seals with significantly reduced leakage rates. For utility industrial gas turbines, leakage reduction with advanced sealing can be even greater with the enormous size of the components. Challenges to transitioning technology include: extremely long operating times between overhauls; infrequent but large radial and axial excursions; difficulty in coating larger components; and maintenance, installation, and durability requirements. Advanced sealing is part of the Advanced Turbine Systems (ATS) engine development being done under a cooperative agreement between Westinghouse and the US Department of Energy, Office of Fossil Energy. Seal development focuses on various types of seals in the 501ATS engine both at dynamic and static locations. Each development includes rig testing of candidate designs and subsequent engine validation testing of prototype seals. This presentation gives an update of the ongoing ATS sealing efforts with special emphasis on brush seals.

  17. Development of the platelet micro-orifice injector. [for liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    La Botz, R. J.

    1984-01-01

    For some time to come, liquid rocket engines will continue to provide the primary means of propulsion for space transportation. The injector represents a key to the optimization of engine and system performance. The present investigation is concerned with a unique injector design and fabrication process which has demonstrated performance capabilities beyond that achieved with more conventional approaches. This process, which is called the 'platelet process', makes it feasible to fabricate injectors with a pattern an order of magnitude finer than that obtainable by drilling. The fine pattern leads to an achievement of high combustion efficiencies. Platelet injectors have been identified as one of the significant technology advances contributing to the feasibility of advanced dual-fuel booster engines. Platelet injectors are employed in the Space Shuttle Orbit Maneuvering System (OMS) engines. Attention is given to injector design theory as it relates to pattern fineness, a description of platelet injectors, and test data obtained with three different platelet injectors.

  18. A Web Centric Architecture for Deploying Multi-Disciplinary Engineering Design Processes

    NASA Technical Reports Server (NTRS)

    Woyak, Scott; Kim, Hongman; Mullins, James; Sobieszczanski-Sobieski, Jaroslaw

    2004-01-01

    There are continuous needs for engineering organizations to improve their design process. Current state of the art techniques use computational simulations to predict design performance, and optimize it through advanced design methods. These tools have been used mostly by individual engineers. This paper presents an architecture for achieving results at an organization level beyond individual level. The next set of gains in process improvement will come from improving the effective use of computers and software within a whole organization, not just for an individual. The architecture takes advantage of state of the art capabilities to produce a Web based system to carry engineering design into the future. To illustrate deployment of the architecture, a case study for implementing advanced multidisciplinary design optimization processes such as Bi-Level Integrated System Synthesis is discussed. Another example for rolling-out a design process for Design for Six Sigma is also described. Each example explains how an organization can effectively infuse engineering practice with new design methods and retain the knowledge over time.

  19. Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications.

    PubMed

    Gu, Yang; Xu, Xianhao; Wu, Yaokang; Niu, Tengfei; Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Liu, Long

    2018-05-15

    Bacillus subtilis is the most characterized gram-positive bacterium that has significant attributes, such as growing well on cheap carbon sources, possessing clear inherited backgrounds, having mature genetic manipulation methods, and exhibiting robustness in large-scale fermentations. Till date, B. subtilis has been identified as attractive hosts for the production of recombinant proteins and chemicals. By applying various systems and synthetic biology tools, the productivity features of B. subtilis can be thoroughly analyzed and further optimized via metabolic engineering. In the present review, we discussed why B. subtilis is the primary organisms used for metabolic engineering and industrial applications. Additionally, we summarized the recent advances in systems and synthetic biology, engineering strategies for improving cellular performances, and metabolic engineering applications of B. subtilis. In particular, we proposed emerging opportunities and essential strategies to enable the successful development of B. subtilis as microbial cell factories. Copyright © 2018. Published by Elsevier Inc.

  20. Second Law based definition of passivity/activity of devices

    NASA Astrophysics Data System (ADS)

    Sundqvist, Kyle M.; Ferry, David K.; Kish, Laszlo B.

    2017-10-01

    Recently, our efforts to clarify the old question, if a memristor is a passive or active device [1], triggered debates between engineers, who have had advanced definitions of passivity/activity of devices, and physicists with significantly different views about this seemingly simple question. This debate triggered our efforts to test the well-known engineering concepts about passivity/activity in a deeper way, challenging them by statistical physics. It is shown that the advanced engineering definition of passivity/activity of devices is self-contradictory when a thermodynamical system executing Johnson-Nyquist noise is present. A new, statistical physical, self-consistent definition based on the Second Law of Thermodynamics is introduced. It is also shown that, in a system with uniform temperature distribution, any rectifier circuitry that can rectify thermal noise must contain an active circuit element, according to both the engineering and statistical physical definitions.

  1. Energy efficient engine sector combustor rig test program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.; Greene, W.; Sundt, C. V.; Tanrikut, S.; Zeisser, M. H.

    1981-01-01

    Under the NASA-sponsored Energy Efficient Engine program, Pratt & Whitney Aircraft has successfully completed a comprehensive combustor rig test using a 90-degree sector of an advanced two-stage combustor with a segmented liner. Initial testing utilized a combustor with a conventional louvered liner and demonstrated that the Energy Efficient Engine two-stage combustor configuration is a viable system for controlling exhaust emissions, with the capability to meet all aerothermal performance goals. Goals for both carbon monoxide and unburned hydrocarbons were surpassed and the goal for oxides of nitrogen was closely approached. In another series of tests, an advanced segmented liner configuration with a unique counter-parallel FINWALL cooling system was evaluated at engine sea level takeoff pressure and temperature levels. These tests verified the structural integrity of this liner design. Overall, the results from the program have provided a high level of confidence to proceed with the scheduled Combustor Component Rig Test Program.

  2. High-Temperature Alloys for Automotive Stirling Engines

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Titran, R. H.

    1986-01-01

    Stirling engine is external-combustion engine that offers fuel economy, low emissions, low noise, and low vibrations. One of most critical areas in engine development concerns material selection for component parts. Alloys CG-27 and XF-818 identified capable of withstanding rigorous requirements of automotive Stirling engine. Alloys chosen for availability, performance, and manufacturability. Advanced iron-base alloys have potential for variety of applications, including stationary solar-power systems.

  3. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystem Concepts. Volume 1; Executive Summary

    NASA Technical Reports Server (NTRS)

    Levack, Daniel J. H.

    2000-01-01

    The Alternate Propulsion Subsystem Concepts contract had seven tasks defined that are reported under this contract deliverable. The tasks were: FAA Restart Study, J-2S Restart Study, Propulsion Database Development. SSME Upper Stage Use. CERs for Liquid Propellant Rocket Engines. Advanced Low Cost Engines, and Tripropellant Comparison Study. The two restart studies, F-1A and J-2S, generated program plans for restarting production of each engine. Special emphasis was placed on determining changes to individual parts due to obsolete materials, changes in OSHA and environmental concerns, new processes available, and any configuration changes to the engines. The Propulsion Database Development task developed a database structure and format which is easy to use and modify while also being comprehensive in the level of detail available. The database structure included extensive engine information and allows for parametric data generation for conceptual engine concepts. The SSME Upper Stage Use task examined the changes needed or desirable to use the SSME as an upper stage engine both in a second stage and in a translunar injection stage. The CERs for Liquid Engines task developed qualitative parametric cost estimating relationships at the engine and major subassembly level for estimating development and production costs of chemical propulsion liquid rocket engines. The Advanced Low Cost Engines task examined propulsion systems for SSTO applications including engine concept definition, mission analysis. trade studies. operating point selection, turbomachinery alternatives, life cycle cost, weight definition. and point design conceptual drawings and component design. The task concentrated on bipropellant engines, but also examined tripropellant engines. The Tripropellant Comparison Study task provided an unambiguous comparison among various tripropellant implementation approaches and cycle choices, and then compared them to similarly designed bipropellant engines in the SSTO mission This volume overviews each of the tasks giving its objectives, main results. and conclusions. More detailed Final Task Reports are available on each individual task.

  4. Real-time control for manufacturing space shuttle main engines: Work in progress

    NASA Technical Reports Server (NTRS)

    Ruokangas, Corinne C.

    1988-01-01

    During the manufacture of space-based assemblies such as Space Shuttle Main Engines, flexibility is required due to the high-cost and low-volume nature of the end products. Various systems have been developed pursuing the goal of adaptive, flexible manufacturing for several space applications, including an Advanced Robotic Welding System for the manufacture of complex components of the Space Shuttle Main Engines. The Advanced Robotic Welding System (AROWS) is an on-going joint effort, funded by NASA, between NASA/Marshall Space Flight Center, and two divisions of Rockwell International: Rocketdyne and the Science Center. AROWS includes two levels of flexible control of both motion and process parameters: Off-line programming using both geometric and weld-process data bases, and real-time control incorporating multiple sensors during weld execution. Both control systems were implemented using conventional hardware and software architectures. The feasibility of enhancing the real-time control system using the problem-solving architecture of Schemer is investigated and described.

  5. Advanced secondary power system for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

    1985-01-01

    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

  6. Design and Performance Optimizations of Advanced Erosion-Resistant Low Conductivity Thermal Barrier Coatings for Rotorcraft Engines

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2012-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability

  7. Requirements Development for the NASA Advanced Engineering Environment (AEE)

    NASA Technical Reports Server (NTRS)

    Rogers, Eric; Hale, Joseph P.; Zook, Keith; Gowda, Sanjay; Salas, Andrea O.

    2003-01-01

    The requirements development process for the Advanced Engineering Environment (AEE) is presented. This environment has been developed to allow NASA to perform independent analysis and design of space transportation architectures and technologies. Given the highly collaborative and distributed nature of AEE, a variety of organizations are involved in the development, operations and management of the system. Furthermore, there are additional organizations involved representing external customers and stakeholders. Thorough coordination and effective communication is essential to translate desired expectations of the system into requirements. Functional, verifiable requirements for this (and indeed any) system are necessary to fulfill several roles. Requirements serve as a contractual tool, configuration management tool, and as an engineering tool, sometimes simultaneously. The role of requirements as an engineering tool is particularly important because a stable set of requirements for a system provides a common framework of system scope and characterization among team members. Furthermore, the requirements provide the basis for checking completion of system elements and form the basis for system verification. Requirements are at the core of systems engineering. The AEE Project has undertaken a thorough process to translate the desires and expectations of external customers and stakeholders into functional system-level requirements that are captured with sufficient rigor to allow development planning, resource allocation and system-level design, development, implementation and verification. These requirements are maintained in an integrated, relational database that provides traceability to governing Program requirements and also to verification methods and subsystem-level requirements.

  8. Engineering of the Magnetized Target Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Statham, G.; White, S.; Adams, R. B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Chapman, J.; Fincher, S.; Philips, A.; Polsgrove, T.

    2003-01-01

    Engineering details are presented for a magnetized target fusion (MTF) propulsion system designed to support crewed missions to the outer solar system. Basic operation of an MTF propulsion system is introduced. Structural, thermal, radiation-management and electrical design details are presented. The propellant storage and supply system design is also presented. A propulsion system mass estimate and associated performance figures are given. The advantages of helium-3 as a fusion fuel for an advanced MTF system are discussed.

  9. Proposal for continued research in intelligent machines at the Center for Engineering Systems Advanced Research (CESAR) for FY 1988 to FY 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbin, C.R.

    1987-03-01

    This document reviews research accomplishments achieved by the staff of the Center for Engineering Systems Advanced Research (CESAR) during the fiscal years 1984 through 1987. The manuscript also describes future CESAR objectives for the 1988-1991 planning horizon, and beyond. As much as possible, the basic research goals are derived from perceived Department of Energy (DOE) needs for increased safety, productivity, and competitiveness in the United States energy producing and consuming facilities. Research areas covered include the HERMIES-II Robot, autonomous robot navigation, hypercube computers, machine vision, and manipulators.

  10. Series II AMTEC cell development issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sievers, R.K.; Rasmussen, J.R.; Giglio, J.C.

    1998-07-01

    The Series II alkali metal thermal to electric converter (AMTEC) cell, developed over the last two year, represents a significant engineering advance in AMTEC technology, and major step toward spacecraft power systems. The PX-5 cell design was developed as an early prototype in stainless steel alloys. This design will evolve into the PX-6 engineering cell and finally into the EPX-1 to be used in the Advanced Radioisotope Power System (ARPS) program. The EPX-1 cell will be all-refractory metal. Late work on the PX-5 and early work on the PX-6 will be described.

  11. The Need for Understanding and Engaging the Patient as Consumer of Products Developed by Neural Engineering.

    PubMed

    French, Jennifer; Lujan, J Luis; Bardot, Dawn; Graczyk, Emily Lauren; Hess-Dunning, Allison; Triolo, Ronald J; Moynahan, Megan; Tan, Winny; Zbrzeski, Adeline

    2018-05-21

    Neural Engineering is a discipline at the intersection of neuroscience, engineering, and clinical care. Recent major efforts by government and industry aimed at bringing forth personalized therapies, increasing the potential of the neural engineering industry for future growth, eg. the National Institutes of Health (NIH) Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative and Stimulating Peripheral Activity to Relieve Conditions (SPARC) Common Fund Program, the Defense Advanced Research Projects Agency (DARPA) Electrical Prescriptions (ElectRx) and Systems-Based Neurotechnology for Emerging Therapies (SUBNETS) Programs, and the GlaxoSmithKline Bioelectric Medicines Initiative. However, the incremental development of neural technologies can easily become a case of advancing technology for its own sake. This mindset can lead to a solution looking for a problem, without taking into consideration the patient/consumer point of view. Creative Commons Attribution license.

  12. Structures, performance, benefit, cost study. [gas turbine engines

    NASA Technical Reports Server (NTRS)

    Feder, E.

    1981-01-01

    Aircraft engine structures were studied to identify the advanced structural technologies that would provide the most benefits to future aircraft operations. A series of studies identified engine systems with the greatest potential for improvements. Based on these studies, six advanced generic structural concepts were selected and conceptually designed. The benefits of each concept were quantitatively assessed in terms of thrust specific fuel consumption, weight, cost, maintenance cost, fuel burned and direct operating cost plus interest. The probability of success of each concept was also determined. The concepts were ranked and the three most promising were selected for further study which consisted of identifying and comprehensively outlining the advanced technologies required to develop these concepts for aircraft engine application. Analytic, fabrication, and test technology developments are required. The technology programs outlined emphasize the need to provide basic, fundamental understanding of technology to obtain the benefit goals.

  13. Proceedings of the 6th Annual Summer Conference: NASA/USRA University Advanced Design Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The NASA/USRA University Advanced Design Program is a unique program that brings together NASA engineers, students, and faculty from United States engineering schools by integrating current and future NASA space/aeronautics engineering design projects into the university curriculum. The Program was conceived in the fall of 1984 as a pilot project to foster engineering design education in the universities and to supplement NASA's in-house efforts in advanced planning for space and aeronautics design. Nine universities and five NASA centers participated in the first year of the pilot project. The study topics cover a broad range of potential space and aeronautics projects that could be undertaken during a 20 to 30 year period beginning with the deployment of the Space Station Freedom scheduled for the mid-1990s. Both manned and unmanned endeavors are embraced, and the systems approach to the design problem is emphasized.

  14. Enabling functional genomics with genome engineering.

    PubMed

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. © 2015 Hilton and Gersbach; Published by Cold Spring Harbor Laboratory Press.

  15. Energy Efficient Engine Flight Propulsion System Preliminary Analysis and Design Report

    NASA Technical Reports Server (NTRS)

    Bisset, J. W.; Howe, D. C.

    1983-01-01

    The final design and analysis of the flight propulsion system is presented. This system is the conceptual study engine defined to meet the performance, economic and environmental goals established for the Energy Efficient Engine Program. The design effort included a final definition of the engine, major components, internal subsystems, and nacelle. Various analytical representations and results from component technology programs are used to verify aerodynamic and structural design concepts and to predict performance. Specific design goals and specifications, reflecting future commercial aircraft propulsion system requirements for the mid-1980's, are detailed by NASA and used as guidelines during engine definition. Information is also included which details salient results from a separate study to define a turbofan propulsion system, known as the maximum efficiency engine, which reoptimized the advanced fuel saving technologies for improved fuel economy and direct operating costs relative to the flight propulsion system.

  16. Systems metabolic engineering of microorganisms for natural and non-natural chemicals.

    PubMed

    Lee, Jeong Wook; Na, Dokyun; Park, Jong Myoung; Lee, Joungmin; Choi, Sol; Lee, Sang Yup

    2012-05-17

    Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of chemicals, fuels and materials from renewable resources. Metabolic engineering is a key enabling technology for transforming microorganisms into efficient cell factories for these compounds. Systems metabolic engineering, which incorporates the concepts and techniques of systems biology, synthetic biology and evolutionary engineering at the systems level, offers a conceptual and technological framework to speed the creation of new metabolic enzymes and pathways or the modification of existing pathways for the optimal production of desired products. Here we discuss the general strategies of systems metabolic engineering and examples of its application and offer insights as to when and how each of the different strategies should be used. Finally, we highlight the limitations and challenges to be overcome for the systems metabolic engineering of microorganisms at more advanced levels.

  17. Environmental Barrier Coating Fracture, Fatigue and High-Heat-Flux Durability Modeling and Stochastic Progressive Damage Simulation

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Nemeth, Noel N.

    2017-01-01

    Advanced environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect emerging light-weight SiC/SiC ceramic matrix composite (CMC) engine components, further raising engine operating temperatures and performance. Because the environmental barrier coating systems are critical to the performance, reliability and durability of these hot-section ceramic engine components, a prime-reliant coating system along with established life design methodology are required for the hot-section ceramic component insertion into engine service. In this paper, we have first summarized some observations of high temperature, high-heat-flux environmental degradation and failure mechanisms of environmental barrier coating systems in laboratory simulated engine environment tests. In particular, the coating surface cracking morphologies and associated subsequent delamination mechanisms under the engine level high-heat-flux, combustion steam, and mechanical creep and fatigue loading conditions will be discussed. The EBC compostion and archtechture improvements based on advanced high heat flux environmental testing, and the modeling advances based on the integrated Finite Element Analysis Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program will also be highlighted. The stochastic progressive damage simulation successfully predicts mud flat damage pattern in EBCs on coated 3-D specimens, and a 2-D model of through-the-thickness cross-section. A 2-parameter Weibull distribution was assumed in characterizing the coating layer stochastic strength response and the formation of damage was therefore modeled. The damage initiation and coalescence into progressively smaller mudflat crack cells was demonstrated. A coating life prediction framework may be realized by examining the surface crack initiation and delamination propagation in conjunction with environmental degradation under high-heat-flux and environment load test conditions.

  18. The Stirling Project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Stirling Engine's advanced technology engine offers multiple advantages, principal among them reduced fuel consumption and lower exhaust emissions than comparable internal combustion auto engines, plus multifuel capability. Stirling can use gasoline, kerosene, diesel fuel, jet fuel, alcohol, methanol, butane and that's not the whole list. Applications include irrigation pumping, heat pumps, and electricity generation for submarine, Earth and space systems.

  19. Challenges of Engineering Higher Education in a Transitional Economy: A Russian Experience

    ERIC Educational Resources Information Center

    Matveev, Alexei; Matveev, Olga; Zhukov, Vassily

    2005-01-01

    Education and training serve as critical elements of advancement of a nation's economy in transition. The restructuring of the power engineering industry in Russia has called for a fast implementation of new management system in electric power engineering and radical training of professional managers at different levels in organizations.…

  20. The NASA pollution-reduction technology program for small jet aircraft engines

    NASA Technical Reports Server (NTRS)

    Fear, J. S.

    1976-01-01

    Three advanced combustor concepts, designed for the AiResearch TFE 731-2 turbofan engine, were evaluated in screening tests. Goals for carbon monoxide and unburned hydrocarbons were met or closely approached with two of the concepts with relatively modest departures from conventional combustor design practices. A more advanced premixing/prevaporizing combustor, while appearing to have the potential for meeting the oxides of nitrogen goal as well, will require extensive development to make it a practical combustion system. Smoke numbers for the two combustor concepts were well within the EPA smoke standard. Phase 2, Combustor-Engine Compatibility Testing, which is in its early stages, and planned Phase 3, Combustor-Engine Demonstration Testing, are also described.

  1. Advances in Engine Test Capabilities at the NASA Glenn Research Center's Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Pachlhofer, Peter M.; Panek, Joseph W.; Dicki, Dennis J.; Piendl, Barry R.; Lizanich, Paul J.; Klann, Gary A.

    2006-01-01

    The Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Glenn Research Center is one of the premier U.S. facilities for research on advanced aeropropulsion systems. The facility can simulate a wide range of altitude and Mach number conditions while supplying the aeropropulsion system with all the support services necessary to operate at those conditions. Test data are recorded on a combination of steady-state and highspeed data-acquisition systems. Recently a number of upgrades were made to the facility to meet demanding new requirements for the latest aeropropulsion concepts and to improve operational efficiency. Improvements were made to data-acquisition systems, facility and engine-control systems, test-condition simulation systems, video capture and display capabilities, and personnel training procedures. This paper discusses the facility s capabilities, recent upgrades, and planned future improvements.

  2. Metabolic Engineering for the Production of Natural Products

    PubMed Central

    Pickens, Lauren B.; Tang, Yi; Chooi, Yit-Heng

    2014-01-01

    Natural products and natural product derived compounds play an important role in modern healthcare as frontline treatments for many diseases and as inspiration for chemically synthesized therapeutics. With advances in sequencing and recombinant DNA technology, many of the biosynthetic pathways responsible for the production of these chemically complex and pharmaceutically valuable compounds have been elucidated. With an ever expanding toolkit of biosynthetic components, metabolic engineering is an increasingly powerful method to improve natural product titers and generate novel compounds. Heterologous production platforms have enabled access to pathways from difficult to culture strains; systems biology and metabolic modeling tools have resulted in increasing predictive and analytic capabilities; advances in expression systems and regulation have enabled the fine-tuning of pathways for increased efficiency, and characterization of individual pathway components has facilitated the construction of hybrid pathways for the production of new compounds. These advances in the many aspects of metabolic engineering have not only yielded fascinating scientific discoveries but also make it an increasingly viable approach for the optimization of natural product biosynthesis. PMID:22432617

  3. 2007 NASA Seal/Secondary Air System Workshop. Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Hendricks, Robert C.; Delgado, Irebert

    2008-01-01

    The 2007 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA's new Orion project aimed at developing a new spacecraft that will fare astronauts to the International Space Station, the Moon, Mars, and beyond; (ii) Overview of NASA's fundamental aeronautics technology project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA's turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakage as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Turbine seal development topics covered include a method for fast-acting HPT blade tip clearance control, noncontacting low-leakage seals, intershaft seals, and a review of engine seal performance requirements for current and future Army engine platforms.

  4. 2008 NASA Seal/Secondary Air System Workshop

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor); Delgado, Irebert R. (Editor)

    2009-01-01

    The 2008 NASA Seal/Secondary Air System Workshop covered the following topics: (i) Overview of NASA s new Orion project aimed at developing a new spacecraft that will fare astronauts to the International Space Station, the Moon, Mars, and beyond; (ii) Overview of NASA s fundamental aeronautics technology project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakage as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Turbine seal development topics covered include a method for fast-acting HPT blade tip clearance control, noncontacting low-leakage seals, intershaft seals, and a review of engine seal performance requirements for current and future Army engine platforms.

  5. The third-generation turbocharged engine for the Audi 5000 CS and 5000 CS Quattro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stock, D.

    In September 1985 the new Audi 5000 CS Quattro was introduced to the American market. This luxurious high performance touring sedan has been equipped with a more advanced turbocharged engine with intercooler and electronic engine management giving improved performance, excellent torque, faster response and better fuel economy. The basic engine is the tried-and-tested Audi 5-cylinder unit. The turbocharged engine's ancillary systems, the electronic ignition control and fuel injection have all been newly developed, carefully optimized and well matched in the special demands of a turbocharged engine. The ignition system controls the engine and fuel injection and delivers analog and digitalmore » signals to the car's instrument panel display. The system also has an integrated self-diagnostic function.« less

  6. Samarium Cobalt (SmCo) Generator/Engine Integration Study

    DTIC Science & Technology

    1980-04-01

    110o1110 (Cole Ms -W~ Daiwa. to* J11 tuo.in Wfi wee -004"ni Aircraft Generator/starter Samarium Cobalt Turbine Engine , Feasibility Secondary Power...integration into the main rotor system of typical aircraft gas turbine engines . A major objective is the definition of the engine interface for such... Engine The F404 is a low bypass, augmented turbofan Pngine developed for application in advanced fighter aircraft (F-18). This type of engine benefits most

  7. Advances in cryogenic engineering. Vols. 37A & 37B - Proceedings of the 1991 Cryogenic Engineering Conference, Univ. of Alabama, Huntsville, June 11-14, 1991

    NASA Technical Reports Server (NTRS)

    Fast, Ronald W. (Editor)

    1991-01-01

    The present volume on advances in cryogenic engineering discusses heat and mass transfer in helium, heat transfer in cryogenic fluids, thermoacoustic oscillations, and insulation. Attention is given to applications of superconductivity with reference to magnetic stability and coil protection, cryogenic techniques, and refrigeration for electronics and superconducting systems. Topics addressed include compressors, expanders, and pumps for liquid helium, magnetic refrigerators, pulse tube refrigerators, and cryocoolers. Also examined are properties of cryogenic fluids, cryogenic applications in transportion and space science and technology, and cryogenic instrumentation.

  8. System Engineering of Aerospace and Advanced Technology Programs at AN Astronautics Company

    NASA Astrophysics Data System (ADS)

    Kennedy, Mike O.

    The purpose of this Record of Study is to document an internship with the Martin Marietta Astronautics Group in Denver, Colorado that was performed in partial fulfillment of the requirements for the Doctor of Engineering degree at Texas A&M University, and to demonstrate that the internship objectives have been met. The internship included assignments with two Martin Marietta companies, on three different programs and in four areas of engineering. The Record of Study takes a first-hand look at system engineering, SDI and advanced program management, and the way Martin Marietta conducts business. The five internship objectives were related to assignments in system modeling, system integration, engineering analysis and technical management. In support of the first objective, the effects of thermally and mechanically induced mirror surface distortions upon the wavefront intensity field of a high energy laser beam passing through the optical train of a space-based laser system were modeled. To satisfy the second objective, the restrictive as opposed to the broad interpretation of the 1972 ABM Treaty, and the capability of the Strategic Defense Initiative Zenith Star Program to comply with the Treaty were evaluated. For the third objective, the capability of Martin Marietta to develop an automated analysis system to integrate and analyze Superconducting Super Collider detector designs was investigated. For the fourth objective, the thermal models that were developed in support of the Small Intercontinental Ballistic Missile flight tests were described. And in response to the fifth objective, the technical management role of the Product Integrity Engineer assigned to the Zenith Star spacecraft's Beam Control and Transfer Subsystem was discussed. This Record of Study explores the relationships between the engineering, business, security and social concerns associated with the practice of engineering and the management of programs by a major defense contractor.

  9. Cryogenics for superconductors: Refrigeration, delivery, and preservation of the cold

    NASA Astrophysics Data System (ADS)

    Ganni, Venkatarao; Fesmire, James

    2012-06-01

    Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-user with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.

  10. Cryogenics for superconductors: Refrigeration, delivery, and preservation of the cold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatarao Ganni, James Fesmire

    Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-usermore » with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.« less

  11. Cryogenics for Superconductors: Refrigeration, Delivery, and Preservation of the Cold

    NASA Technical Reports Server (NTRS)

    Ganni, V.; Fesmire, J. E.

    2011-01-01

    Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-user with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.

  12. Heavy Vehicle Propulsion System Materials Program Semiannual Progress Report for April 2000 Through September 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, DR

    2000-12-11

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advantages LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOx and 0.05 g/bhp-h particulates. The goal ismore » also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles.« less

  13. The NASA Advanced Exploration Systems Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; hide

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse (Isp) above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation systems.

  14. Peroxide Propulsion at the Turn of the Century

    NASA Technical Reports Server (NTRS)

    Anderson, William E.; Butler, Kathy; Crocket, Dave; Lewis, Tim; McNeal, Curtis

    2000-01-01

    A resurgence of interest in peroxide propulsion has occurred in the last years of the 21st Century. This interest is driven by the need for lower cost propulsion systems and the need for storable reusable propulsion systems to meet future space transportation system architectures. NASA and the Air Force are jointly developing two propulsion systems for flight demonstration early in the 21st Century. One system will be a development of Boeing's AR2-3 engine, which was successfully fielded in the 1960s. The other is a new pressure-fed design by Orbital Sciences Corporation for expendable mission requirements. Concurrently NASA and industry are pursuing the key peroxide technologies needed to design, fabricate, and test advanced peroxide engines to meet the mission needs beyond 2005. This paper will present a description of the AR2-3, report the status of its current test program, and describe its intended flight demonstration. This paper will then describe the Orbital 10K engine, the status of its test program, and describe its planned flight demonstration. Finally the paper will present a plan, or technology roadmap, for the development of an advanced peroxide engine for the 21st Century.

  15. Advancing Systems Engineering Excellence: The Marshall Systems Engineering Leadership Development Program

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Whitfield, Susan

    2011-01-01

    As NASA undertakes increasingly complex projects, the need for expert systems engineers and leaders in systems engineering is becoming more pronounced. As a result of this issue, the Agency has undertaken an initiative to develop more systems engineering leaders through its Systems Engineering Leadership Development Program; however, the NASA Office of the Chief Engineer has also called on the field Centers to develop mechanisms to strengthen their expertise in systems engineering locally. In response to this call, Marshall Space Flight Center (MSFC) has developed a comprehensive development program for aspiring systems engineers and systems engineering leaders. This presentation will summarize the two-level program, which consists of a combination of training courses and on-the-job, developmental training assignments at the Center to help develop stronger expertise in systems engineering and technical leadership. In addition, it will focus on the success the program has had in its pilot year. The program hosted a formal kickoff event for Level I on October 13, 2009. The first class includes 42 participants from across MSFC and Michoud Assembly Facility (MAF). A formal call for Level II is forthcoming. With the new Agency focus on research and development of new technologies, having a strong pool of well-trained systems engineers is becoming increasingly more critical. Programs such as the Marshall Systems Engineering Leadership Development Program, as well as those developed at other Centers, help ensure that there is an upcoming generation of trained systems engineers and systems engineering leaders to meet future design challenges.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.D.

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OIT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOX and 0.05 g/bhp-h particulate. The goal ismore » also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OIT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1,2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles. The principal areas of research are: (1) Cost Effective High Performance Materials and Processing; (2) Advanced Manufacturing Technology; (3)Testing and Characterization; and (4) Materials and Testing Standards.« less

  17. Systems engineering and integration: Advanced avionics laboratories

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In order to develop the new generation of avionics which will be necessary for upcoming programs such as the Lunar/Mars Initiative, Advanced Launch System, and the National Aerospace Plane, new Advanced Avionics Laboratories are required. To minimize costs and maximize benefits, these laboratories should be capable of supporting multiple avionics development efforts at a single location, and should be of a common design to support and encourage data sharing. Recent technological advances provide the capability of letting the designer or analyst perform simulations and testing in an environment similar to his engineering environment and these features should be incorporated into the new laboratories. Existing and emerging hardware and software standards must be incorporated wherever possible to provide additional cost savings and compatibility. Special care must be taken to design the laboratories such that real-time hardware-in-the-loop performance is not sacrificed in the pursuit of these goals. A special program-independent funding source should be identified for the development of Advanced Avionics Laboratories as resources supporting a wide range of upcoming NASA programs.

  18. Key Reliability Drivers of Liquid Propulsion Engines and A Reliability Model for Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Huang, Zhao-Feng; Fint, Jeffry A.; Kuck, Frederick M.

    2005-01-01

    This paper is to address the in-flight reliability of a liquid propulsion engine system for a launch vehicle. We first establish a comprehensive list of system and sub-system reliability drivers for any liquid propulsion engine system. We then build a reliability model to parametrically analyze the impact of some reliability parameters. We present sensitivity analysis results for a selected subset of the key reliability drivers using the model. Reliability drivers identified include: number of engines for the liquid propulsion stage, single engine total reliability, engine operation duration, engine thrust size, reusability, engine de-rating or up-rating, engine-out design (including engine-out switching reliability, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction), propellant specific hazards, engine start and cutoff transient hazards, engine combustion cycles, vehicle and engine interface and interaction hazards, engine health management system, engine modification, engine ground start hold down with launch commit criteria, engine altitude start (1 in. start), Multiple altitude restart (less than 1 restart), component, subsystem and system design, manufacturing/ground operation support/pre and post flight check outs and inspection, extensiveness of the development program. We present some sensitivity analysis results for the following subset of the drivers: number of engines for the propulsion stage, single engine total reliability, engine operation duration, engine de-rating or up-rating requirements, engine-out design, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction, and engine health management system implementation (basic redlines and more advanced health management systems).

  19. Engineering stategies and implications of using higher plants for throttling gas and water exchange in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis; Wheeler, Raymond M.; Corey, Kenneth A.

    1993-01-01

    Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Center's Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.

  20. A Concept for the Inclusion of Analytical and Computational Capability in Existing Systems for Measurement of Neutron Flux

    NASA Technical Reports Server (NTRS)

    Patrick, Clinton; Cooper, Anita E.; Powers, W. T.

    2005-01-01

    For approximately two decades, efforts have been sponsored by NASA's Marshall Space Flight Center to make possible high-speed, automated classification and quantification of constituent materials in various harsh environments. MSFC, along with the Air Force/Arnold Engineering Development Center, has led the work, developing and implementing systems that employ principles of emission and absorption spectroscopy to monitor molecular and atomic particulates in gas plasma of rocket engine flow fields. One such system identifies species and quantifies mass loss rates in H2/O2 rocket plumes. Other gases have been examined and the physics of their detection under numerous conditions were made a part of the knowledge base for the MSFC/USAF team. Additionally, efforts are being advanced to hardware encode components of the data analysis tools in order to address real-time operational requirements for health monitoring and management. NASA has a significant investment in these systems, warranting a spiral approach that meshes current tools and experience with technological advancements. This paper addresses current systems - the Optical Plume Anomaly Detector (OPAD) and the Engine Diagnostic Filtering System (EDIFIS) - and discusses what is considered a natural progression: a concept for migrating them towards detection of high energy particles, including neutrons and gamma rays. The proposal outlines system development to date, basic concepts for future advancements, and recommendations for accomplishing them.

  1. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor W. Wong; Tian Tian; Grant Smedley

    2003-08-28

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. A detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and concepts have been explored, and engine experiments will validate these concepts. An iterative process of experimentation, simulation and analysis, will be followed with the goal of demonstrating a complete optimized low-friction engine system. As planned, MIT has developed guidelinesmore » for an initial set of low-friction piston-ring-pack designs. Current recommendations focus on subtle top-piston-ring and oil-control-ring characteristics. A full-scale Waukesha F18 engine has been installed at Colorado State University and testing of the baseline configuration is in progress. Components for the first design iteration are being procured. Subsequent work includes examining the friction and engine performance data and extending the analyses to other areas to evaluate opportunities for further friction improvement and the impact on oil consumption/emission and wear, towards demonstrating an optimized reduced-friction engine system.« less

  2. Tactical Unmanned Ground Vehicle Related Research References (BTA Study)

    DTIC Science & Technology

    1993-03-01

    draw bar pull - 4,297 lbs; Engine - 65 hp air cooled diesel engine ; dual electrical motors, hydrostatic drive; Observation - three closed-circuit...8217 Munitions and Chemical Command. Commander, U. S. Army Chemical Research, Development, and Engineering Center. 40..... "Unmanned Air Vehicles Payloads...8217 Larry Brantley Advanced Systems Concepts Office Research, Development, and Engineering Center MARCH 1993 edetone qArs nal, Alabama 35898-5000

  3. Engineering hybrid exosomes by membrane fusion with liposomes.

    PubMed

    Sato, Yuko T; Umezaki, Kaori; Sawada, Shinichi; Mukai, Sada-atsu; Sasaki, Yoshihiro; Harada, Naozumi; Shiku, Hiroshi; Akiyoshi, Kazunari

    2016-02-25

    Exosomes are a valuable biomaterial for the development of novel nanocarriers as functionally advanced drug delivery systems. To control and modify the performance of exosomal nanocarriers, we developed hybrid exosomes by fusing their membranes with liposomes using the freeze-thaw method. Exosomes embedded with a specific membrane protein isolated from genetically modified cells were fused with various liposomes, confirming that membrane engineering methods can be combined with genetic modification techniques. Cellular uptake studies performed using the hybrid exosomes revealed that the interactions between the developed exosomes and cells could be modified by changing the lipid composition or the properties of the exogenous lipids. These results suggest that the membrane-engineering approach reported here offers a new strategy for developing rationally designed exosomes as hybrid nanocarriers for use in advanced drug delivery systems.

  4. Genome Engineering with TALE and CRISPR Systems in Neuroscience

    PubMed Central

    Lee, Han B.; Sundberg, Brynn N.; Sigafoos, Ashley N.; Clark, Karl J.

    2016-01-01

    Recent advancement in genome engineering technology is changing the landscape of biological research and providing neuroscientists with an opportunity to develop new methodologies to ask critical research questions. This advancement is highlighted by the increased use of programmable DNA-binding agents (PDBAs) such as transcription activator-like effector (TALE) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. These PDBAs fused or co-expressed with various effector domains allow precise modification of genomic sequences and gene expression levels. These technologies mirror and extend beyond classic gene targeting methods contributing to the development of novel tools for basic and clinical neuroscience. In this Review, we discuss the recent development in genome engineering and potential applications of this technology in the field of neuroscience. PMID:27092173

  5. Genome Engineering with TALE and CRISPR Systems in Neuroscience.

    PubMed

    Lee, Han B; Sundberg, Brynn N; Sigafoos, Ashley N; Clark, Karl J

    2016-01-01

    Recent advancement in genome engineering technology is changing the landscape of biological research and providing neuroscientists with an opportunity to develop new methodologies to ask critical research questions. This advancement is highlighted by the increased use of programmable DNA-binding agents (PDBAs) such as transcription activator-like effector (TALE) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. These PDBAs fused or co-expressed with various effector domains allow precise modification of genomic sequences and gene expression levels. These technologies mirror and extend beyond classic gene targeting methods contributing to the development of novel tools for basic and clinical neuroscience. In this Review, we discuss the recent development in genome engineering and potential applications of this technology in the field of neuroscience.

  6. Advanced blade tip seal system, volume 2

    NASA Technical Reports Server (NTRS)

    Zelahy, J. W.; Fairbanks, N. P.

    1982-01-01

    The results of the endurance and performance engine tests conducted on monocrystal/abrasive-tipped CF6-50 Stage 1 HPT blades fabricated in Task VII of MATE Project 3 are presented. Two engine tests are conducted. The endurance engine test is conducted for 1000 C cycles. The performance engine test is conducted on a variable cycle core engine. Posttest evaluation and analyses of the blades and shrouds included visual, dimensional, and destructive evaluations.

  7. Society for the advancement of material and process engineering. 41st International SAMPE symposium and exhibition, Volume 41, Books 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document contains reports which were presented at the 41st International Society For The Advancement of Material and Process Engineering Symposium and Exhibition. Topics include: structural integrity of aging aircraft; composite materials development; affordable composites and processes; corrosion characterization of aging aircraft; adhesive advances; composite design; dual use materials and processing; repair of aircraft structures; adhesive inspection; materials systems for infrastructure; fire safety; composite impact/energy absorption; advanced materials for space; seismic retrofit; high temperature resins; preform technology; thermoplastics; alternative energy and transportation; manufacturing; and durability. Individual reports have been processed separately for the United States Department of Energy databases.

  8. New Frontiers AO: Advanced Materials Bi-propellant Rocket (AMBR) Engine Information Summary

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    2008-01-01

    The Advanced Material Bi-propellant Rocket (AMBR) engine is a high performance (I(sub sp)), higher thrust, radiation cooled, storable bi-propellant space engine of the same physical envelope as the High Performance Apogee Thruster (HiPAT(TradeMark)). To provide further information about the AMBR engine, this document provides details on performance, development, mission implementation, key spacecraft integration considerations, project participants and approach, contact information, system specifications, and a list of references. The In-Space Propulsion Technology (ISPT) project team at NASA Glenn Research Center (GRC) leads the technology development of the AMBR engine. Their NASA partners were Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Aerojet leads the industrial partners selected competitively for the technology development via the NASA Research Announcement (NRA) process.

  9. 3D Game-Based Learning System for Improving Learning Achievement in Software Engineering Curriculum

    ERIC Educational Resources Information Center

    Su,Chung-Ho; Cheng, Ching-Hsue

    2013-01-01

    The advancement of game-based learning has encouraged many related studies, such that students could better learn curriculum by 3-dimension virtual reality. To enhance software engineering learning, this paper develops a 3D game-based learning system to assist teaching and assess the students' motivation, satisfaction and learning achievement. A…

  10. Polymers for Drug Delivery Systems

    PubMed Central

    Liechty, William B.; Kryscio, David R.; Slaughter, Brandon V.; Peppas, Nicholas A.

    2012-01-01

    Polymers have played an integral role in the advancement of drug delivery technology by providing controlled release of therapeutic agents in constant doses over long periods, cyclic dosage, and tunable release of both hydrophilic and hydrophobic drugs. From early beginnings using off-the-shelf materials, the field has grown tremendously, driven in part by the innovations of chemical engineers. Modern advances in drug delivery are now predicated upon the rational design of polymers tailored for specific cargo and engineered to exert distinct biological functions. In this review, we highlight the fundamental drug delivery systems and their mathematical foundations and discuss the physiological barriers to drug delivery. We review the origins and applications of stimuli-responsive polymer systems and polymer therapeutics such as polymer-protein and polymer-drug conjugates. The latest developments in polymers capable of molecular recognition or directing intracellular delivery are surveyed to illustrate areas of research advancing the frontiers of drug delivery. PMID:22432577

  11. System engineering techniques for establishing balanced design and performance guidelines for the advanced telerobotic testbed

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Matijevic, J. R.

    1987-01-01

    Novel system engineering techniques have been developed and applied to establishing structured design and performance objectives for the Telerobotics Testbed that reduce technical risk while still allowing the testbed to demonstrate an advancement in state-of-the-art robotic technologies. To estblish the appropriate tradeoff structure and balance of technology performance against technical risk, an analytical data base was developed which drew on: (1) automation/robot-technology availability projections, (2) typical or potential application mission task sets, (3) performance simulations, (4) project schedule constraints, and (5) project funding constraints. Design tradeoffs and configuration/performance iterations were conducted by comparing feasible technology/task set configurations against schedule/budget constraints as well as original program target technology objectives. The final system configuration, task set, and technology set reflected a balanced advancement in state-of-the-art robotic technologies, while meeting programmatic objectives and schedule/cost constraints.

  12. 1999 NASA Seal/Secondary Air System Workshop

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Hendricks, Robert C.

    2000-01-01

    NASA Glenn hosted the Seals/Secondary Air System Workshop on October 2829, 1999. Each year NASA and our industry and university partners share their respective seal technology development. We use these workshops as a technical forum to exchange recent advancements and "lessons-learned" in advancing seal technology and solving problems of common interest. As in the past we are publishing two volumes. Volume 1 will be publicly available and will be made available on-line through the web page address listed at the end of this chapter. Volume 2 will be restricted under International Traffic and Arms Regulations (I.T.A.R.) In this conference participants gained an appreciation of NASA's new Ultra Efficient Engine Technology (UEET) program and how this program will be partnering with ongoing DOE -industrial power production and DOD- military aircraft engine programs. In addition to gaining a deeper understanding into sealing advancements and challenges that lie ahead, participants gained new working and personal relationships with the attendees. When the seals and secondary fluid management program was initiated, the emphasis was on rocket engines with spinoffs to gas turbines. Today, the opposite is true and we are, again building our involvement in the rocket engine and space vehicle demonstration programs.

  13. Sensor for performance monitoring of advanced gas turbines

    NASA Astrophysics Data System (ADS)

    Latvakoski, Harri M.; Markham, James R.; Harrington, James A.; Haan, David J.

    1999-01-01

    Advanced thermal coating materials are being developed for use in the combustor section of high performance turbine engines to allow for higher combustion temperatures. To optimize the use of these thermal barrier coatings (TBC), accurate surface temperature measurements are required to understand their response to changes in the combustion environment. Present temperature sensors, which are based on the measurement of emitted radiation, are not well studied for coated turbine blades since their operational wavelengths are not optimized for the radiative properties of the TBC. This work is concerned with developing an instrument to provide accurate, real-time measurements of the temperature of TBC blades in an advanced turbine engine. The instrument will determine the temperature form a measurement of the radiation emitted at the optimum wavelength, where the TBC radiates as a near-blackbody. The operational wavelength minimizes interference from the high temperature and pressure environment. A hollow waveguide is used to transfer the radiation from the engine cavity to a high-speed detector and data acquisition system. A prototype of this system was successfully tested at an atmospheric burner test facility, and an on-engine version is undergoing testing for installation on a high-pressure rig.

  14. Analysis of high load dampers

    NASA Technical Reports Server (NTRS)

    Bhat, S. T.; Buono, D. F.; Hibner, D. H.

    1981-01-01

    High load damping requirements for modern jet engines are discussed. The design of damping systems which could satisfy these requirements is also discusseed. In order to evaluate high load damping requirements, engines in three major classes were studied; large transport engines, small general aviation engines, and military engines. Four damper concepts applicable to these engines were evaluated; multi-ring, cartridge, curved beam, and viscous/friction. The most promising damper concept was selected for each engine and performance was assessed relative to conventional dampers and in light of projected damping requirements for advanced jet engines.

  15. Econometric comparisons of liquid rocket engines for dual-fuel advanced earth-to-orbit shuttles

    NASA Technical Reports Server (NTRS)

    Martin, J. A.

    1978-01-01

    Econometric analyses of advanced Earth-to-orbit vehicles indicate that there are economic benefits from development of new vehicles beyond the space shuttle as traffic increases. Vehicle studies indicate the advantage of the dual-fuel propulsion in single-stage vehicles. This paper shows the economic effect of incorporating dual-fuel propulsion in advanced vehicles. Several dual-fuel propulsion systems are compared to a baseline hydrogen and oxygen system.

  16. An N+3 Technology Level Reference Propulsion System

    NASA Technical Reports Server (NTRS)

    Jones, Scott M.; Haller, William J.; Tong, Michael To-Hing

    2017-01-01

    An N+3 technology level engine, suitable as a propulsion system for an advanced single-aisle transport, was developed as a reference cycle for use in technology assessment and decision-making efforts. This reference engine serves three main purposes: it provides thermodynamic quantities at each major engine station, it provides overall propulsion system performance data for vehicle designers to use in their analyses, and it can be used for comparison against other proposed N+3 technology-level propulsion systems on an equal basis. This reference cycle is meant to represent the expected capability of gas turbine engines in the N+3 timeframe given reasonable extrapolations of technology improvements and the ability to take full advantage of those improvements.

  17. Reducing the Time and Cost of Testing Engines

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Producing a new aircraft engine currently costs approximately $1 billion, with 3 years of development time for a commercial engine and 10 years for a military engine. The high development time and cost make it extremely difficult to transition advanced technologies for cleaner, quieter, and more efficient new engines. To reduce this time and cost, NASA created a vision for the future where designers would use high-fidelity computer simulations early in the design process in order to resolve critical design issues before building the expensive engine hardware. To accomplish this vision, NASA's Glenn Research Center initiated a collaborative effort with the aerospace industry and academia to develop its Numerical Propulsion System Simulation (NPSS), an advanced engineering environment for the analysis and design of aerospace propulsion systems and components. Partners estimate that using NPSS has the potential to dramatically reduce the time, effort, and expense necessary to design and test jet engines by generating sophisticated computer simulations of an aerospace object or system. These simulations will permit an engineer to test various design options without having to conduct costly and time-consuming real-life tests. By accelerating and streamlining the engine system design analysis and test phases, NPSS facilitates bringing the final product to market faster. NASA's NPSS Version (V)1.X effort was a task within the Agency s Computational Aerospace Sciences project of the High Performance Computing and Communication program, which had a mission to accelerate the availability of high-performance computing hardware and software to the U.S. aerospace community for its use in design processes. The technology brings value back to NASA by improving methods of analyzing and testing space transportation components.

  18. Digital Avionics

    NASA Technical Reports Server (NTRS)

    Koelbl, Terry G.; Ponchak, Denise; Lamarche, Teresa

    2002-01-01

    The field of digital avionics experienced another year of important advances in civil aviation, military systems, and space applications. As a result of the events of 9/11/2001, NASA has pursued activities to apply its aerospace technologies toward improved aviation security. Both NASA Glenn Research Center and Langley Research Center have performed flight research demonstrations using advanced datalink concepts to transmit live pictures from inside a jetliner, and to downlink the contents of the plane's 'black box' recorder in real time. The U.S. Navy and General Electric demonstrated survivable engine control (SEC) algorithms during engine ground tests at the Weapons Survivability Laboratory at China Lake. The scientists at Boeing Satellite Systems advanced the field of stellar inertial technology with the development of a new method for positioning optical star trackers on satellites.

  19. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2016-03-17

    KEN COOPER, TEAM LEAD OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH NICKEL ALLOY 718 PARTS FABRICATED USING THE M1 SELECTIVE LASER MELTING SYSTEM. THE M1 MACHINE IS DEDICATED TO BUILDING QUALIFICATION SAMPLES AND HARDWARE DEMONSTRATORS FOR THE RS25 ENGINE PROJECT.

  20. Concept Designed and Developed for Distortion- Tolerant, High-Stability Engine Control

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Engine Control Future aircraft turbine engines, both commercial and military, must be able to successfully accommodate expected increased levels of steady-state and dynamic engine-face distortion. Advanced tactical aircraft are likely to use thrust vectoring to enhance their maneuverability. As a result, the engines will see more extreme aircraft angles-of-attack and sideslip levels than are currently encountered with present-day aircraft. Also, the mixed-compression inlets needed for the High Speed Civil Transport will likely encounter disturbances similar to those seen by tactical aircraft, in addition to planar pulse, inlet buzz, and high distortion levels at low flight speed and off-design operation. The current approach of incorporating a sufficient component design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight demonstrate an advanced, high-stability, integrated engine-control system that uses measurement-based, real-time estimates of distortion to enhance engine stability. The resulting distortion-tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been designed and developed, and the software implementing the concept has successfully accommodated time-varying distortion. The NASA Lewis Research Center is currently overseeing the development and validation of the hardware and software necessary to flight test the HISTEC concept. HISTEC is a contracted effort with Pratt & Whitney of West Palm Beach, Florida. The HISTEC approach includes two major systems: A Distortion Estimation System (DES) and Stability Management Control (SMC). DES is an aircraft-mounted, high-speed processor that estimates the amount and type of distortion present and its effect on the engine. It uses high-response pressure measurements at the engine face to calculate indicators of the type and extent of distortion in real time. From these indicators, DES determines the effects of distortion on the propulsion systems and the corresponding engine match point necessary to accommodate it. DES output consists of fan and compressor pressure ratio trim commands that are passed to the SMC. In addition, DES uses maneuver information, consisting of angle-of-attack and sideslip from the flight control, to anticipate high inlet distortion conditions. The SMC, which is contained in the engine-mounted, Improved Digital Electronic Engine Control (IDEEC), includes advanced control laws to directly control the fan and compressor transient operating line (pressure ratio). These advanced control laws, with a multivariable design, have the potential for higher bandwidth and the resulting more precise control of engine match. The ability to measure and assess the distortion effects in real time coupled with a high-response controller improves engine stability at high levels of distortion. The software algorithms implementing DES have been designed, developed, and demonstrated, and integration testing of the DES and SMC software has been completed. The results show that the HISTEC system will be able to sense inlet distortion, determine the effect on engine stability, and accommodate distortion by maintaining an adequate margin for engine surge. The Pratt &Whitney Comprehensive Engine Diagnostic Unit was chosen as the DES processor. An instrumented inlet case for sensing distortion was designed and fabricated. HISTEC is scheduled for flight test on the ACTIVE F-15 aircraft at the NASA Dryden Flight Research Center in Edwards, California, in late 1996.

  1. Sandia National Laboratories: Research: Research Foundations: Engineering

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New engineering transitions in advanced, highly critical systems by integrating theory development, experimental

  2. Early Formulation Model-centric Engineering on Nasa's Europa Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bayer, Todd; Chung, Seung; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Chris; Gontijo, I.; Lewis, Kari; Moshir, Mehrdad; Rasmussen, Robert; hide

    2012-01-01

    By leveraging the existing Model-Based Systems Engineering (MBSE) infrastructure at JPL and adding a modest investment, the Europa Mission Concept Study made striking advances in mission concept capture and analysis. This effort has reaffirmed the importance of architecting and successfully harnessed the synergistic relationship of system modeling to mission architecting. It clearly demonstrated that MBSE can provide greater agility than traditional systems engineering methods. This paper will describe the successful application of MBSE in the dynamic environment of early mission formulation, the significant results produced and lessons learned in the process.

  3. Space transportation booster engine configuration study. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and to explore innovative approaches to the follow-on full-scale development (FSD) phase for the STBE.

  4. The cost of performance - A comparison of the space transportation main engine and the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Barisa, B. B.; Flinchbaugh, G. D.; Zachary, A. T.

    1989-01-01

    This paper compares the cost of the Space Shuttle Main Engine (SSME) and the Space Transportation Main Engine (STME) proposed by the Advanced Launch System Program. A brief description of the SSME and STME engines is presented, followed by a comparison of these engines that illustrates the impact of focusing on acceptable performance at minimum cost (as for the STME) or on maximum performance (as for the SSME). Several examples of cost reduction methods are presented.

  5. The necessity of a theory of biology for tissue engineering: metabolism-repair systems.

    PubMed

    Ganguli, Suman; Hunt, C Anthony

    2004-01-01

    Since there is no widely accepted global theory of biology, tissue engineering and bioengineering lack a theoretical understanding of the systems being engineered. By default, tissue engineering operates with a "reductionist" theoretical approach, inherited from traditional engineering of non-living materials. Long term, that approach is inadequate, since it ignores essential aspects of biology. Metabolism-repair systems are a theoretical framework which explicitly represents two "functional" aspects of living organisms: self-repair and self-replication. Since repair and replication are central to tissue engineering, we advance metabolism-repair systems as a potential theoretical framework for tissue engineering. We present an overview of the framework, and indicate directions to pursue for extending it to the context of tissue engineering. We focus on biological networks, both metabolic and cellular, as one such direction. The construction of these networks, in turn, depends on biological protocols. Together these concepts may help point the way to a global theory of biology appropriate for tissue engineering.

  6. Systems Engineering Model for ART Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendez Cruz, Carmen Margarita; Rochau, Gary E.; Wilson, Mollye C.

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation ofmore » lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.« less

  7. Physiology and the Biomedical Engineering Curriculum: Utilizing Emerging Instructional Technologies to Promote Development of Adaptive Expertise in Undergraduate Students

    ERIC Educational Resources Information Center

    Nelson, Regina K.

    2013-01-01

    A mixed-methods research study was designed to test whether undergraduate engineering students were better prepared to learn advanced topics in biomedical engineering if they learned physiology via a quantitative, concept-based approach rather than a qualitative, system-based approach. Experiments were conducted with undergraduate engineering…

  8. Advanced Gas Turbine (AGT) Technology Project

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Technical work on the design and effort leading to the testing of a 74.5 kW (100 hp) automotive gas turbine engine is reviewed. Development of the engine compressor, gasifier turbine, power turbine, combustor, regenerator, and secondary system is discussed. Ceramic materials development and the application of such materials in the gas turbine engine components is described.

  9. Performance seeking control program overview

    NASA Technical Reports Server (NTRS)

    Orme, John S.

    1995-01-01

    The Performance Seeking Control (PSC) program evolved from a series of integrated propulsion-flight control research programs flown at NASA Dryden Flight Research Center (DFRC) on an F-15. The first of these was the Digital Electronic Engine Control (DEEC) program and provided digital engine controls suitable for integration. The DEEC and digital electronic flight control system of the NASA F-15 were ideally suited for integrated controls research. The Advanced Engine Control System (ADECS) program proved that integrated engine and aircraft control could improve overall system performance. The objective of the PSC program was to advance the technology for a fully integrated propulsion flight control system. Whereas ADECS provided single variable control for an average engine, PSC controlled multiple propulsion system variables while adapting to the measured engine performance. PSC was developed as a model-based, adaptive control algorithm and included four optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, maximum thrust, and minimum thrust. Subsonic and supersonic flight testing were conducted at NASA Dryden covering the four PSC optimization modes and over the full throttle range. Flight testing of the PSC algorithm, conducted in a series of five flight test phases, has been concluded at NASA Dryden covering all four of the PSC optimization modes. Over a three year period and five flight test phases 72 research flights were conducted. The primary objective of flight testing was to exercise each PSC optimization mode and quantify the resulting performance improvements.

  10. Engineering low-temperature expression systems for heterologous production of cold-adapted enzymes.

    PubMed

    Bjerga, Gro Elin Kjæreng; Lale, Rahmi; Williamson, Adele Kim

    2016-01-01

    Production of psychrophilic enzymes in the commonly used mesophilic expression systems is hampered by low intrinsic stability of the recombinant enzymes at the optimal host growth temperatures. Unless strategies for low-temperature expression are advanced, research on psychrophilic enzymes may end up being biased toward those that can be stably produced in commonly used mesophilic host systems. Two main strategies are currently being explored for the development of low-temperature expression in bacterial hosts: (i) low-temperature adaption of existing mesophilic expression systems, and (ii) development of new psychrophilic hosts. These developments include genetic engineering of the expression cassettes to optimize the promoter/operator systems that regulate heterologous expression. In this addendum we present our efforts in the development of such low-temperature expression systems, and speculate about future advancements in the field and potential applications.

  11. Advanced Environmental Barrier Coating and SA Tyrannohex SiC Composites Integration for Improved Thermomechanical and Environmental Durability

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Halbig, Michael; Singh, Mrityunjay

    2018-01-01

    The development of 2700 degF capable environmental barrier coating (EBC) systems, particularly, the Rare Earth "Hafnium" Silicon bond coat systems, have significantly improved the temperature capability and environmental stability of SiC/SiC Ceramic Matrix Composite Systems. We have specifically developed the advanced 2700 degF EBC systems, integrating the EBC to the high temperature SA Tyrannohex SiC fiber composites, for comprehensive performance and durability evaluations for potential turbine engine airfoil component applications. The fundamental mechanical properties, environmental stability and thermal gradient cyclic durability performance of the EBC - SA Tyrannohex composites were investigated. The paper will particularly emphasize the high pressure combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue testing of uncoated and environmental barrier coated Tyrannohex SiC SA composites in these simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. We have also investigated high heat flux and flexural fatigue degradation mechanisms, determined the upper limits of operating temperature conditions for the coated SA composite material systems in thermomechanical fatigue conditions. Recent progress has also been made by using the self-healing rare earth-silicon based EBCs, thus enhancing the SA composite hexagonal fiber columns bonding for improved thermomechanical and environmental durability in turbine engine operation environments. More advanced EBC- composite systems based on the new EBC-Fiber Interphases will also be discussed.

  12. DOE-OTM Tribology Program semiannual progress report, October 1992--March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The OTM Tribology Program supports applied research and exploratory development which private enterprise will not or cannot pursue, in specifically identified industrial problem areas pertaining to energy conservation in the transportation sector. Under the current Annual Operating Plan (AOP) the tribology project is structured to conform with the ongoing and planned research activities in three program elements: (1) advanced lubrication--experimental investigations of lubrication phenomena and the development of improved or novel lubricants and lubricant-delivery systems for current and advanced engine systems; (2) engineered tribological interfaces--research and development on various coating processes to modify the microstructure and chemical composition of near-surfacemore » regions in order to improve their friction and wear properties for use in advanced engine designs; (3) advanced tribomaterials and components--tribomaterials evaluation of the friction and wear behavior of newly emerging materials, particularly those promising low friction and wealth at elevated temperatures in advanced engine designs: and tribocomponents evaluation which focuses on development of models, analysis/design tools to enable US transportation industry to employ a tribology-by-design approach and dissemination of program developments to the US transportation industry. Project Management encompasses the administrative and managerial duties of planning, including assessments of application areas with significant tribological energy losses and opportunities for tribological advances in the transportation sector; program implementation, including the review of proposals, organization and conduct of RFP and/or ROA solicitations, selection of R and D projects; and the issues of contracts grants and purchase orders; monitoring of project activities: reporting, information exchange and technology transfer. The current organization of the tribology project, the lead responsibilities for each program element and the present contractors are shown in Table 1. Brief summaries of progress made in this are included.« less

  13. Advanced Stirling Duplex Materials Assessment for Potential Venus Mission Heater Head Application

    NASA Technical Reports Server (NTRS)

    Ritzert, Frank; Nathal, Michael V.; Salem, Jonathan; Jacobson, Nathan; Nesbitt, James

    2011-01-01

    This report will address materials selection for components in a proposed Venus lander system. The lander would use active refrigeration to allow Space Science instrumentation to survive the extreme environment that exists on the surface of Venus. The refrigeration system would be powered by a Stirling engine-based system and is termed the Advanced Stirling Duplex (ASD) concept. Stirling engine power conversion in its simplest definition converts heat from radioactive decay into electricity. Detailed design decisions will require iterations between component geometries, materials selection, system output, and tolerable risk. This study reviews potential component requirements against known materials performance. A lower risk, evolutionary advance in heater head materials could be offered by nickel-base superalloy single crystals, with expected capability of approximately 1100C. However, the high temperature requirements of the Venus mission may force the selection of ceramics or refractory metals, which are more developmental in nature and may not have a well-developed database or a mature supporting technology base such as fabrication and joining methods.

  14. Requirements Flowdown for Prognostics and Health Management

    NASA Technical Reports Server (NTRS)

    Goebel, Kai; Saxena, Abhinav; Roychoudhury, Indranil; Celaya, Jose R.; Saha, Bhaskar; Saha, Sankalita

    2012-01-01

    Prognostics and Health Management (PHM) principles have considerable promise to change the game of lifecycle cost of engineering systems at high safety levels by providing a reliable estimate of future system states. This estimate is a key for planning and decision making in an operational setting. While technology solutions have made considerable advances, the tie-in into the systems engineering process is lagging behind, which delays fielding of PHM-enabled systems. The derivation of specifications from high level requirements for algorithm performance to ensure quality predictions is not well developed. From an engineering perspective some key parameters driving the requirements for prognostics performance include: (1) maximum allowable Probability of Failure (PoF) of the prognostic system to bound the risk of losing an asset, (2) tolerable limits on proactive maintenance to minimize missed opportunity of asset usage, (3) lead time to specify the amount of advanced warning needed for actionable decisions, and (4) required confidence to specify when prognosis is sufficiently good to be used. This paper takes a systems engineering view towards the requirements specification process and presents a method for the flowdown process. A case study based on an electric Unmanned Aerial Vehicle (e-UAV) scenario demonstrates how top level requirements for performance, cost, and safety flow down to the health management level and specify quantitative requirements for prognostic algorithm performance.

  15. Environmental Barrier Coatings for Turbine Engines: A Design and Performance Perspective

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis; Smialek, James L.; Miller, Robert A.

    2009-01-01

    Ceramic thermal and environmental barrier coatings (TEBC) for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating long-term durability remains a major concern with the ever-increasing temperature, strength and stability requirements in engine high heat-flux combustion environments, especially for highly-loaded rotating turbine components. Advanced TEBC systems, including nano-composite based HfO2-aluminosilicate and rare earth silicate coatings are being developed and tested for higher temperature capable SiC/SiC ceramic matrix composite (CMC) turbine blade applications. This paper will emphasize coating composite and multilayer design approach and the resulting performance and durability in simulated engine high heat-flux, high stress and high pressure combustion environments. The advances in the environmental barrier coating development showed promise for future rotating CMC blade applications.

  16. Advanced nanobiomaterial strategies for the development of organized tissue engineering constructs.

    PubMed

    An, Jia; Chua, Chee Kai; Yu, Ting; Li, Huaqiong; Tan, Lay Poh

    2013-04-01

    Nanobiomaterials, a field at the interface of biomaterials and nanotechnologies, when applied to tissue engineering applications, are usually perceived to resemble the cell microenvironment components or as a material strategy to instruct cells and alter cell behaviors. Therefore, they provide a clear understanding of the relationship between nanotechnologies and resulting cellular responses. This review will cover recent advances in nanobiomaterial research for applications in tissue engineering. In particular, recent developments in nanofibrous scaffolds, nanobiomaterial composites, hydrogel systems, laser-fabricated nanostructures and cell-based bioprinting methods to produce scaffolds with nanofeatures for tissue engineering are discussed. As in native niches of cells, where nanofeatures are constantly interacting and influencing cellular behavior, new generations of scaffolds will need to have these features to enable more desirable engineered tissues. Moving forward, tissue engineering will also have to address the issues of complexity and organization in tissues and organs.

  17. Materials technology assessment for stirling engines

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.; Watson, G. K.; Johnston, J. R.; Croft, W. J.

    1977-01-01

    A materials technology assessment of high temperature components in the improved (metal) and advanced (ceramic) Stirling engines was undertaken to evaluate the current state-of-the-art of metals and ceramics, identify materials research and development required to support the development of automotive Stirling engines, and to recommend materials technology programs to assure material readiness concurrent with engine system development programs. The most critical component for each engine is identified and some of the material problem areas are discussed.

  18. NASA's new university engineering space research programs

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.

    1988-01-01

    The objective of a newly emerging element of NASA's university engineering programs is to provide a more autonomous element that will enhance and broaden the capabilities in academia, enabling them to participate more effectively in the U.S. civil space program. The programs utilize technical monitors at NASA centers to foster collaborative arrangements, exchange of personnel, and the sharing of facilities between NASA and the universities. The elements include: the university advanced space design program, which funds advanced systems study courses at the senior and graduate levels; the university space engineering research program that supports cross-disciplinary research centers; the outreach flight experiments program that offers engineering research opportunities to universities; and the planned university investigator's research program to provide grants to individuals with outstanding credentials.

  19. Toward Engineering Synthetic Microbial Metabolism

    PubMed Central

    McArthur, George H.; Fong, Stephen S.

    2010-01-01

    The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements in de novo DNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism. PMID:20037734

  20. Advanced high pressure engine study for mixed-mode vehicle applications

    NASA Technical Reports Server (NTRS)

    Luscher, W. P.; Mellish, J. A.

    1977-01-01

    High pressure liquid rocket engine design, performance, weight, envelope, and operational characteristics were evaluated for a variety of candidate engines for use in mixed-mode, single-stage-to-orbit applications. Propellant property and performance data were obtained for candidate Mode 1 fuels which included: RP-1, RJ-5, hydrazine, monomethyl-hydrazine, and methane. The common oxidizer was liquid oxygen. Oxygen, the candidate Mode 1 fuels, and hydrogen were evaluated as thrust chamber coolants. Oxygen, methane, and hydrogen were found to be the most viable cooling candidates. Water, lithium, and sodium-potassium were also evaluated as auxiliary coolant systems. Water proved to be the best of these, but the system was heavier than those systems which cooled with the engine propellants. Engine weight and envelope parametric data were established for candidate Mode 1, Mode 2, and dual-fuel engines. Delivered engine performance data were also calculated for all candidate Mode 1 and dual-fuel engines.

  1. Prototype design and test of a collision protection system for cab car engineers.

    DOT National Transportation Integrated Search

    2014-12-01

    Advancements in the design of rail cars can : potentially prevent the structural collapse of : space occupied by a cab car engineer : during a train collision. With adequate : survival space maintained, the next : crashworthiness objective is to mini...

  2. Prototype design of a collision protection system for cab car engineers - fabrication and test.

    DOT National Transportation Integrated Search

    2015-06-01

    Advancements in the structural crashworthiness of passenger rail cars now make it possible to preserve the compartmentalized : space occupied by a cab car engineer during a train collision. In order to translate this additional protection into improv...

  3. Synthetic biology through biomolecular design and engineering.

    PubMed

    Channon, Kevin; Bromley, Elizabeth H C; Woolfson, Derek N

    2008-08-01

    Synthetic biology is a rapidly growing field that has emerged in a global, multidisciplinary effort among biologists, chemists, engineers, physicists, and mathematicians. Broadly, the field has two complementary goals: To improve understanding of biological systems through mimicry and to produce bio-orthogonal systems with new functions. Here we review the area specifically with reference to the concept of synthetic biology space, that is, a hierarchy of components for, and approaches to generating new synthetic and functional systems to test, advance, and apply our understanding of biological systems. In keeping with this issue of Current Opinion in Structural Biology, we focus largely on the design and engineering of biomolecule-based components and systems.

  4. Metal- and intermetallic-matrix composites for aerospace propulsion and power systems

    NASA Astrophysics Data System (ADS)

    Doychak, J.

    1992-06-01

    Successful development and deployment of metal-matrix composites and intermetallic- matrix composites are critical to reaching the goals of many advanced aerospace propulsion and power development programs. The material requirements are based on the aerospace propulsion and power system requirements, economics, and other factors. Advanced military and civilian aircraft engines will require higher specific strength materials that operate at higher temperatures, and the civilian engines will also require long lifetimes. The specific space propulsion and power applications require hightemperature, high-thermal-conductivity, and high-strength materials. Metal-matrix composites and intermetallic-matrix composites either fulfill or have the potential of fulfilling these requirements.

  5. Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems. Task 4: Advanced fan section aerodynamic analysis computer program user's manual

    NASA Technical Reports Server (NTRS)

    Crook, Andrew J.; Delaney, Robert A.

    1992-01-01

    The computer program user's manual for the ADPACAPES (Advanced Ducted Propfan Analysis Code-Average Passage Engine Simulation) program is included. The objective of the computer program is development of a three-dimensional Euler/Navier-Stokes flow analysis for fan section/engine geometries containing multiple blade rows and multiple spanwise flow splitters. An existing procedure developed by Dr. J. J. Adamczyk and associates at the NASA Lewis Research Center was modified to accept multiple spanwise splitter geometries and simulate engine core conditions. The numerical solution is based upon a finite volume technique with a four stage Runge-Kutta time marching procedure. Multiple blade row solutions are based upon the average-passage system of equations. The numerical solutions are performed on an H-type grid system, with meshes meeting the requirement of maintaining a common axisymmetric mesh for each blade row grid. The analysis was run on several geometry configurations ranging from one to five blade rows and from one to four radial flow splitters. The efficiency of the solution procedure was shown to be the same as the original analysis.

  6. 25 Years of DECOVALEX - Research Advances and Lessons Learned from an International Model Comparison Initiative

    NASA Astrophysics Data System (ADS)

    Birkholzer, J. T.

    2017-12-01

    This presentation provides an overview of an international research and model comparison collaboration (DECOVALEX) for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. Prediction of these coupled effects is an essential part of the performance and safety assessment of geologic disposal systems for radioactive waste and spent nuclear fuel, and is also relevant for a range of other sub-surface engineering activities. DECOVALEX research activities have been supported by a large number of radioactive-waste-management organizations and regulatory authorities. Research teams from more than a dozen international partner organizations have participated in the comparative modeling evaluation of complex field and laboratory experiments in the UK, Switzerland, Japan, France and Sweden. Together, these tasks (1) have addressed a wide range of relevant issues related to engineered and natural system behavior in argillaceous, crystalline and other host rocks, (2) have yielded in-depth knowledge of coupled THM and THMC processes associated with nuclear waste repositories and wider geo-engineering applications, and (3) have advanced the capability, as well as demonstrated the suitability, of numerical simulation models for quantitative analysis.

  7. Advanced Collaborative Emissions Study (ACES)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon

    2013-12-31

    The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested enginesmore » was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.« less

  8. Nuclear Thermal Propulsion for Advanced Space Exploration

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  9. A large scale software system for simulation and design optimization of mechanical systems

    NASA Technical Reports Server (NTRS)

    Dopker, Bernhard; Haug, Edward J.

    1989-01-01

    The concept of an advanced integrated, networked simulation and design system is outlined. Such an advanced system can be developed utilizing existing codes without compromising the integrity and functionality of the system. An example has been used to demonstrate the applicability of the concept of the integrated system outlined here. The development of an integrated system can be done incrementally. Initial capabilities can be developed and implemented without having a detailed design of the global system. Only a conceptual global system must exist. For a fully integrated, user friendly design system, further research is needed in the areas of engineering data bases, distributed data bases, and advanced user interface design.

  10. Design Considerations for Clean QED Fusion Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Bussard, Robert W.; Jameson, Lorin W.

    1994-07-01

    The direct production of electric power appears possible from fusion reactions between fuels whose products consist solely of charged particles and thus do not present radiation hazards from energetic neutron production, as do reactions involving deuteron-bearing fuels. Among these are the fuels p, 11B, 3He, and 6Li. All of these can be ``burned'' in inertial-electrostatic-fusion (IEF) devices to power QED fusion-electric rocket engines. These IEF sources provide direct-converted electrical power at high voltage (MeV) to drive e-beams for efficient propellant heating to extreme temperatures, with resulting high specific impulse performance capabilities. IEF/QED engine systems using p11B can outperform all other advanced concepts for controlled fusion propulsion by 2-3 orders of magnitude, while 6Li6Li fusion yields one order of magnitude less advance. Either of these fusion rocket propulsion systems can provide very rapid transit for solar system missions, with high payload fractions in single-stage vehicles. The 3He3He reaction can not be used practically for direct electric conversion because of the wide spread in energy of its fusion products. However, it may eventually prove useful for thermal/electrical power generation in central station power plants, or for direct-fusion-product (DFP) propellant heatingin advanced deep-space rocket engines.

  11. Military engine computational structures technology

    NASA Technical Reports Server (NTRS)

    Thomson, Daniel E.

    1992-01-01

    Integrated High Performance Turbine Engine Technology Initiative (IHPTET) goals require a strong analytical base. Effective analysis of composite materials is critical to life analysis and structural optimization. Accurate life prediction for all material systems is critical. User friendly systems are also desirable. Post processing of results is very important. The IHPTET goal is to double turbine engine propulsion capability by the year 2003. Fifty percent of the goal will come from advanced materials and structures, the other 50 percent will come from increasing performance. Computer programs are listed.

  12. An update of engine system research at the Army Propulsion Directorate

    NASA Technical Reports Server (NTRS)

    Bobula, George A.

    1990-01-01

    The Small Turboshaft Engine Research (STER) program provides a vehicle for evaluating the application of emerging technologies to Army turboshaft engine systems and to investigate related phenomena. Capitalizing on the resources at hand, in the form of both the NASA facilities and the Army personnel, the program goal of developing a physical understanding of engine system dynamics and/or system interactions is being realized. STER entries investigate concepts and components developed both in-house and out-of-house. Emphasis is placed upon evaluations which evolved from on-going basic research and advanced development programs. Army aviation program managers are also encouraged to make use of STER resources, both people and facilities. The STER personnel have established their reputations as experts in the fields of engine system experimental evaluations and engine system related phenomena. The STER facility has STER program provides the Army aviation community the opportunity to perform system level investigations, and then to offer the findings to the entire engine community for their consideration in next generation propulsion systems. In this way results of the fundamental research being conducted to meet small turboshaft engine technology challenges expeditiously find their way into that next generation of propulsion systems.

  13. Systems metabolic engineering: genome-scale models and beyond.

    PubMed

    Blazeck, John; Alper, Hal

    2010-07-01

    The advent of high throughput genome-scale bioinformatics has led to an exponential increase in available cellular system data. Systems metabolic engineering attempts to use data-driven approaches--based on the data collected with high throughput technologies--to identify gene targets and optimize phenotypical properties on a systems level. Current systems metabolic engineering tools are limited for predicting and defining complex phenotypes such as chemical tolerances and other global, multigenic traits. The most pragmatic systems-based tool for metabolic engineering to arise is the in silico genome-scale metabolic reconstruction. This tool has seen wide adoption for modeling cell growth and predicting beneficial gene knockouts, and we examine here how this approach can be expanded for novel organisms. This review will highlight advances of the systems metabolic engineering approach with a focus on de novo development and use of genome-scale metabolic reconstructions for metabolic engineering applications. We will then discuss the challenges and prospects for this emerging field to enable model-based metabolic engineering. Specifically, we argue that current state-of-the-art systems metabolic engineering techniques represent a viable first step for improving product yield that still must be followed by combinatorial techniques or random strain mutagenesis to achieve optimal cellular systems.

  14. Steam bottoming cycle for an adiabatic diesel engine

    NASA Technical Reports Server (NTRS)

    Poulin, E.; Demier, R.; Krepchin, I.; Walker, D.

    1984-01-01

    Steam bottoming cycles using adiabatic diesel engine exhaust heat which projected substantial performance and economic benefits for long haul trucks were studied. Steam cycle and system component variables, system cost, size and performance were analyzed. An 811 K/6.90 MPa state of the art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. The costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with aftercooling with the same total output were compared, the annual fuel savings less the added maintenance cost was determined to cover the increase initial cost of the TC/B system in a payback period of 2.3 years. Steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability are considered and the cost and performance of advanced systes are evaluated.

  15. Towards Run-time Assurance of Advanced Propulsion Algorithms

    NASA Technical Reports Server (NTRS)

    Wong, Edmond; Schierman, John D.; Schlapkohl, Thomas; Chicatelli, Amy

    2014-01-01

    This paper covers the motivation and rationale for investigating the application of run-time assurance methods as a potential means of providing safety assurance for advanced propulsion control systems. Certification is becoming increasingly infeasible for such systems using current verification practices. Run-time assurance systems hold the promise of certifying these advanced systems by continuously monitoring the state of the feedback system during operation and reverting to a simpler, certified system if anomalous behavior is detected. The discussion will also cover initial efforts underway to apply a run-time assurance framework to NASA's model-based engine control approach. Preliminary experimental results are presented and discussed.

  16. Advanced thermal control for spacecraft applications

    NASA Astrophysics Data System (ADS)

    Hardesty, Robert; Parker, Kelsey

    2015-09-01

    In optical systems just like any other space borne system, thermal control plays an important role. In fact, most advanced designs are plagued with volume constraints that further complicate the thermal control challenges for even the most experienced systems engineers. Peregrine will present advances in satellite thermal control based upon passive heat transfer technologies to dissipate large thermal loads. This will address the use of 700 W/m K and higher conducting products that are five times better than aluminum on a specific basis providing enabling thermal control while maintaining structural support.

  17. Overview of High-Fidelity Modeling Activities in the Numerical Propulsion System Simulations (NPSS) Project

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2002-01-01

    A high-fidelity simulation of a commercial turbofan engine has been created as part of the Numerical Propulsion System Simulation Project. The high-fidelity computer simulation utilizes computer models that were developed at NASA Glenn Research Center in cooperation with turbofan engine manufacturers. The average-passage (APNASA) Navier-Stokes based viscous flow computer code is used to simulate the 3D flow in the compressors and turbines of the advanced commercial turbofan engine. The 3D National Combustion Code (NCC) is used to simulate the flow and chemistry in the advanced aircraft combustor. The APNASA turbomachinery code and the NCC combustor code exchange boundary conditions at the interface planes at the combustor inlet and exit. This computer simulation technique can evaluate engine performance at steady operating conditions. The 3D flow models provide detailed knowledge of the airflow within the fan and compressor, the high and low pressure turbines, and the flow and chemistry within the combustor. The models simulate the performance of the engine at operating conditions that include sea level takeoff and the altitude cruise condition.

  18. Conceptual design of an advanced Stirling conversion system for terrestrial power generation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A free piston Stirling engine coupled to an electric generator or alternator with a nominal kWe power output absorbing thermal energy from a nominal 100 square meter parabolic solar collector and supplying electric power to a utility grid was identified. The results of the conceptual design study of an Advanced Stirling Conversion System (ASCS) were documented. The objectives are as follows: define the ASCS configuration; provide a manufacturability and cost evaluation; predict ASCS performance over the range of solar input required to produce power; estimate system and major component weights; define engine and electrical power condidtioning control requirements; and define key technology needs not ready by the late 1980s in meeting efficiency, life, cost, and with goalds for the ASCS.

  19. Sensible heat receiver for solar dynamic space power system

    NASA Astrophysics Data System (ADS)

    Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris

    A sensible heat receiver is considered which uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage medium and which was designed for a 7-kW Brayton engine. This heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies, while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7-kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  20. Sensible heat receiver for solar dynamic space power system

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris

    1991-01-01

    A sensible heat receiver considered in this study uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage media and was designed for a 7 kW Brayton engine. The proposed heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7 kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  1. Sensible heat receiver for solar dynamic space power system

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris

    1991-01-01

    A sensible heat receiver is considered which uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage medium and which was designed for a 7-kW Brayton engine. This heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies, while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7-kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  2. Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion

    NASA Technical Reports Server (NTRS)

    Hanley, David; Carella, John

    1999-01-01

    This document, submitted by AlliedSignal Engines (AE), a division of AlliedSignal Aerospace Company, presents the program final report for the Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion in compliance with data requirements in the statement of work, Contract No. NAS3-97003. This document includes: 1 -Technical Summary: a) Component Design, b) Manufacturing Process Selection, c) Vendor Selection, and d) Testing Validation: 2-Program Conclusion and Perspective. Also, see the Appendix at the back of this report. This report covers the program accomplishments from December 1, 1996, to August 24, 1998. The Advanced High Temperature PMC's for Gas Turbine Engines Program Expansion was a one year long, five task technical effort aimed at designing, fabricating and testing a turbine engine component using NASA's high temperature resin system AMB-21. The fiber material chosen was graphite T650-35, 3K, 8HS with UC-309 sizing. The first four tasks included component design and manufacturing, process selection, vendor selection, component fabrication and validation testing. The final task involved monthly financial and technical reports.

  3. Safe, Affordable, Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Doughty, G. E.

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  4. Model-Based Systems Engineering in Concurrent Engineering Centers

    NASA Technical Reports Server (NTRS)

    Iwata, Curtis; Infeld, Samantha; Bracken, Jennifer Medlin; McGuire; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman

    2015-01-01

    Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a focused design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.

  5. Model-Based Systems Engineering in Concurrent Engineering Centers

    NASA Technical Reports Server (NTRS)

    Iwata, Curtis; Infeld, Samatha; Bracken, Jennifer Medlin; McGuire, Melissa; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman

    2015-01-01

    Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a narrow design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.

  6. Engineering derivatives from biological systems for advanced aerospace applications

    NASA Technical Reports Server (NTRS)

    Winfield, Daniel L.; Hering, Dean H.; Cole, David

    1991-01-01

    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs.

  7. 48 CFR 932.407 - Interest.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Interest. 932.407 Section... CONTRACT FINANCING Advance Payments for Non-Commercial Items 932.407 Interest. (d)(4) Advance payments may be made without interest under cost-reimbursement contracts for construction or engineering services. ...

  8. 48 CFR 932.407 - Interest.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Interest. 932.407 Section... CONTRACT FINANCING Advance Payments for Non-Commercial Items 932.407 Interest. (d)(4) Advance payments may be made without interest under cost-reimbursement contracts for construction or engineering services. ...

  9. 48 CFR 932.407 - Interest.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Interest. 932.407 Section... CONTRACT FINANCING Advance Payments for Non-Commercial Items 932.407 Interest. (d)(4) Advance payments may be made without interest under cost-reimbursement contracts for construction or engineering services. ...

  10. 48 CFR 932.407 - Interest.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Interest. 932.407 Section... CONTRACT FINANCING Advance Payments for Non-Commercial Items 932.407 Interest. (d)(4) Advance payments may be made without interest under cost-reimbursement contracts for construction or engineering services. ...

  11. 48 CFR 932.407 - Interest.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Interest. 932.407 Section... CONTRACT FINANCING Advance Payments for Non-Commercial Items 932.407 Interest. (d)(4) Advance payments may be made without interest under cost-reimbursement contracts for construction or engineering services. ...

  12. Genetic and metabolic engineering of microorganisms for the development of new flavor compounds from terpenic substrates.

    PubMed

    Bution, Murillo L; Molina, Gustavo; Abrahão, Meissa R E; Pastore, Gláucia M

    2015-01-01

    Throughout human history, natural products have been the basis for the discovery and development of therapeutics, cosmetic and food compounds used in industry. Many compounds found in natural organisms are rather difficult to chemically synthesize and to extract in large amounts, and in this respect, genetic and metabolic engineering are playing an increasingly important role in the production of these compounds, such as new terpenes and terpenoids, which may potentially be used to create aromas in industry. Terpenes belong to the largest class of natural compounds, are produced by all living organisms and play a fundamental role in human nutrition, cosmetics and medicine. Recent advances in systems biology and synthetic biology are allowing us to perform metabolic engineering at the whole-cell level, thus enabling the optimal design of microorganisms for the efficient production of drugs, cosmetic and food additives. This review describes the recent advances made in the genetic and metabolic engineering of the terpenes pathway with a particular focus on systems biotechnology.

  13. The Army Digital Terrain Catalog II (ADTC)

    DTIC Science & Technology

    2006-06-01

    Engineering (Eds.). Readings for Systems Engineering & Engineering Management. Mason, OH: Thomson Customer Publishing, 2004, p. 2. [3] E. von Hippel ...responsive, deployable, agile, versatile, lethal, survivable, and sustainable force. --Former Army Chief of Staff General Eric Shinseki and former...to advance the tenets of Army Transformation. As former Army Chief of Staff General Eric Shinseki and former Army Secretary Thomas White have stated

  14. Modeling, Analysis, and Optimization Issues for Large Space Structures.

    DTIC Science & Technology

    1983-02-01

    There are numerous opportunities - provided by new advances in computer hardware, firmware, software , CAD/CAM systems, computational algorithms and...Institute Department of Mechanical Engineering Dept. of Civil Engineering & Mechanics Troy, NY 12181 Drexel University Philadelphia, PA 19104 Dr...Mechanical Engineering Hampton, VA 23665 Washington, DC 20059 Dr. K. T. Alfriend Mr. Siva S. Banda Department of the Navy Flight Dynamics LaboratoryNaval

  15. Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  16. Development of advanced fuel cell system, phase 2

    NASA Technical Reports Server (NTRS)

    Handley, L. M.; Meyer, A. P.; Bell, W. F.

    1973-01-01

    A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Development and characterization of a very stable gold alloy catalyst was continued from Phase I of the program. A polymer material for fabrication of cell structural components was identified and its long term compatibility with the fuel cell environment was demonstrated in cell tests. Full scale partial cell stacks, with advanced design closed cycle evaporative coolers, were tested. The characteristics demonstrated in these tests verified the feasibility of developing the engineering model system concept into an advanced lightweight long life powerplant.

  17. Methods to Determine Recommended Feeder-Wide Advanced Inverter Settings for Improving Distribution System Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rylander, Matthew; Reno, Matthew J.; Quiroz, Jimmy E.

    This paper describes methods that a distribution engineer could use to determine advanced inverter settings to improve distribution system performance. These settings are for fixed power factor, volt-var, and volt-watt functionality. Depending on the level of detail that is desired, different methods are proposed to determine single settings applicable for all advanced inverters on a feeder or unique settings for each individual inverter. Seven distinctly different utility distribution feeders are analyzed to simulate the potential benefit in terms of hosting capacity, system losses, and reactive power attained with each method to determine the advanced inverter settings.

  18. Effect of broadened-specification fuels on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1979-01-01

    A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may effect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are explored; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are examined. The ability of current technology to accept possible future fuel specification changes is assessed and selected technological advances that can reduce the severity of the potential problems are illustrated.

  19. Effect of broadened-specification fuels on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1979-01-01

    A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may affect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are described; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are discussed. The ability of current technology to accept possible future fuel-specification changes is discussed, and selected technological advances that can reduce the severity of the potential problems are illustrated.

  20. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor Wong; Tian Tian; Luke Moughon

    2005-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, withmore » full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.« less

Top