Engineering America's Future in Space: Systems Engineering Innovations for Sustainable Exploration
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.; Caruso, Pamela W.; Jones, Carl P.
2008-01-01
This viewgraph presentation reviews systems engineering innovations for Ares I and Ares V launch vehicles. The contents include: 1) NASA's Exploratoin Roadmap; 2) Launch Vehicle Comparisons; 3) Designing the Ares I and Ares V in House; 4) Exploring the Moon; and 5) Systems Engineering Adds Value Throughout the Project Lifecycle.
An Innovative Improvement of Engineering Learning System Using Computational Fluid Dynamics Concept
ERIC Educational Resources Information Center
Hung, T. C.; Wang, S. K.; Tai, S. W.; Hung, C. T.
2007-01-01
An innovative concept of an electronic learning system has been established in an attempt to achieve a technology that provides engineering students with an instructive and affordable framework for learning engineering-related courses. This system utilizes an existing Computational Fluid Dynamics (CFD) package, Active Server Pages programming,…
Innovative Design of Complex Engineering Systems
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler)
2004-01-01
The document contains the proceedings of the training workshop on Innovative Design of Complex Engineering Systems. The workshop was held at the Peninsula Higher Education Center, Hampton, Virginia, March 23 and 24, 2004. The workshop was jointly sponsored by Old Dominion University and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to a) provide broad overviews of the diverse activities related to innovative design of high-tech engineering systems; and b) identify training needs for future aerospace work force development in the design area. The format of the workshop included fifteen, half-hour overview-type presentations, a panel discussion on how to teach and train engineers in innovative design, and three exhibits by commercial vendors.
Two-stage commercial evaluation of engineering systems production projects for high-rise buildings
NASA Astrophysics Data System (ADS)
Bril, Aleksander; Kalinina, Olga; Levina, Anastasia
2018-03-01
The paper is devoted to the current and debatable problem of methodology of choosing the effective innovative enterprises for venture financing. A two-stage system of commercial innovation evaluation based on the UNIDO methodology is proposed. Engineering systems account for 25 to 40% of the cost of high-rise residential buildings. This proportion increases with the use of new construction technologies. Analysis of the construction market in Russia showed that the production of internal engineering systems elements based on innovative technologies has a growth trend. The production of simple elements is organized in small enterprises on the basis of new technologies. The most attractive for development is the use of venture financing of small innovative business. To improve the efficiency of these operations, the paper proposes a methodology for a two-stage evaluation of small business development projects. A two-stage system of commercial evaluation of innovative projects allows creating an information base for informed and coordinated decision-making on venture financing of enterprises that produce engineering systems elements for the construction business.
Electrochemical energy engineering: a new frontier of chemical engineering innovation.
Gu, Shuang; Xu, Bingjun; Yan, Yushan
2014-01-01
One of the grand challenges facing humanity today is a safe, clean, and sustainable energy system where combustion no longer dominates. This review proposes that electrochemical energy conversion could set the foundation for such an energy system. It further suggests that a simple switch from an acid to a base membrane coupled with innovative cell designs may lead to a new era of affordable electrochemical devices, including fuel cells, electrolyzers, solar hydrogen generators, and redox flow batteries, for which recent progress is discussed using the authors' work as examples. It also notes that electrochemical energy engineering will likely become a vibrant subdiscipline of chemical engineering and a fertile ground for chemical engineering innovation. To realize this vision, it is necessary to incorporate fundamental electrochemistry and electrochemical engineering principles into the chemical engineering curriculum.
Forming system of strategic innovation management at high-tech engineering enterprises
NASA Astrophysics Data System (ADS)
Ergunova, O. T.; Lizunkov, V. G.; Malushko, E. Yu; Marchuk, V. I.; Ignatenko, A. Yu
2017-02-01
The article considers the processes of forming the strategic system of innovative activity management at the enterprises of a high-tech mechanical engineering complex (MEC) that are traditionally decisive in shaping the economic base of Russia. The authors proposed a method of designing a strategic system of innovative activity management at the MEC’s enterprises of the region which is based on the consideration of means and opportunities of the enterprise to implement intellectual activity. The proposed methodology and the empirical results constituted a ground for developing a system of strategic innovation management when performing the state-guaranteed order at the hi-tech MEC enterprises. Its implementation will help to reduce the level of uncertainty throughout the entire life cycle of an innovative activity product.
FY10 Engineering Innovations, Research and Technology Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, M A; Aceves, S M; Paulson, C N
This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&Dmore » 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.« less
From biomedical-engineering research to clinical application and industrialization
NASA Astrophysics Data System (ADS)
Taguchi, Tetsushi; Aoyagi, Takao
2012-12-01
The rising costs and aging of the population due to a low birth rate negatively affect the healthcare system in Japan. In 2011, the Council for Science and Technology Policy released the 4th Japan's Science and Technology Basic Policy Report from 2011 to 2015. This report includes two major innovations, 'Life Innovation' and 'Green Innovation', to promote economic growth. Biomedical engineering research is part of 'Life Innovation' and its outcomes are required to maintain people's mental and physical health. It has already resulted in numerous biomedical products, and new ones should be developed using nanotechnology-based concepts. The combination of accumulated knowledge and experience, and 'nanoarchitechtonics' will result in novel, well-designed functional biomaterials. This focus issue contains three reviews and 19 original papers on various biomedical topics, including biomaterials, drug-delivery systems, tissue engineering and diagnostics. We hope that it demonstrates the importance of collaboration among scientists, engineers and clinicians, and will contribute to the further development of biomedical engineering.
Engineering innovation in healthcare: technology, ethics and persons.
Bowen, W Richard
2011-01-01
Engineering makes profound contributions to our health. Many of these contributions benefit whole populations, such as clean water and sewage treatment, buildings, dependable sources of energy, efficient harvesting and storage of food, and pharmaceutical manufacture. Thus, ethical assessment of these and other engineering activities has often emphasized benefits to communities. This is in contrast to medical ethics, which has tended to emphasize the individual patient affected by a doctor's actions. However technological innovation is leading to an entanglement of the activities, and hence ethical responsibilities, of healthcare professionals and engineering professionals. The article outlines three categories of innovation: assistive technologies, telehealthcare and quasi-autonomous systems. Approaches to engineering ethics are described and applied to these innovations. Such innovations raise a number of ethical opportunities and challenges, especially as the complexity of the technology increases. In particular the design and operation of the technologies require engineers to seek closer involvement with the persons benefiting from their work. Future innovation will require engineers to have a good knowledge of human biology and psychology. More particularly, healthcare engineers will need to prioritize each person's wellbeing, agency, human relationships and ecological self rather than technology, in the same way that doctors prioritize the treatment of persons rather than their diseases.
The Quest for Engineering Innovation at NASA's Marshall Space Flight (MSFC)
NASA Technical Reports Server (NTRS)
Turner, James E.
2017-01-01
A recent NASA team, chartered to examine innovation within the Agency, captured the meaning of the word innovation as the "application of creative ideas to improve and generate value for the organization". The former NASA Administrator Charles Bolden shared his own thoughts about innovation in a memo with all employees that stated, "At NASA, we are dedicated to innovation, bold ideas, and excellence." Innovation turns out to be one of the major driving forces behind the work produced at NASA. It seems failure is often what has driven NASA to be more innovative. Fifty years ago, the Apollo 1 tragedy killed three astronauts when fire erupted in their command module. NASA had to bear the responsibility of such loss and at the same time work smarter in order to obtain the dream to reach the moon by the end of the 1960s. Through this circumstance, NASA engineers developed a revolutionary replacement for the combustible nylon astronaut suits so the Apollo program could continue. A material called Beta Cloth was born. This material was used to produce noncombustible space suits for all Apollo astronauts, enabling the United States to ultimately land 12 Americans on the moon. Eventually this material was used as the roof system in the Denver International Airport, showing relevance and applications of NASA innovations to real-world need. Innovative ideas are also driven by the need to accomplish NASA missions and to improve the way we produce our products. MSFC engineers are advancing technologies in additive manufacturing of liquid rocket engines in order to reduce the number of parts, design time, and the cost of the engines. NASA is working with academia to eliminate the need for miles of sensor cables by investigating innovations in wireless sensors. In order to enable future exploration missions to Mars, MSFC engineers are pursuing innovative approaches in diverse areas such as the use of ionic liquids for life support systems and composite cryogenic tanks, very low leakage valves to contain propulsion fluids, and natural, non-toxic inhibitors to eliminate the buildup of biofilms in the water systems planned for future crewed Mars missions. Although results are encouraging, we cannot rest on our past accomplishments. In order to overcome breathtaking technical challenges in space exploration, we must continue to promote a culture supporting growth, breakthroughs and disruptive innovations.
Innovating Method of Existing Mechanical Product Based on TRIZ Theory
NASA Astrophysics Data System (ADS)
Zhao, Cunyou; Shi, Dongyan; Wu, Han
Main way of product development is adaptive design and variant design based on existing product. In this paper, conceptual design frame and its flow model of innovating products is put forward through combining the methods of conceptual design and TRIZ theory. Process system model of innovating design that includes requirement analysis, total function analysis and decomposing, engineering problem analysis, finding solution of engineering problem and primarily design is constructed and this establishes the base for innovating design of existing product.
The Stryker Mobile Gun System: A Case Study on Managing Complexity
2009-06-01
In his article Managing Innovation in Complex Product Systems, Howard Rush (1997) identified three “hotspot” categories: 1) requirements... Managing innovation in complex product systems. The Institution for Electrical Engineers. Retrieved February 2, 2009, from http
Innovative Double Bypass Engine for Increased Performance
NASA Astrophysics Data System (ADS)
Manoharan, Sanjivan
Engines continue to grow in size to meet the current thrust requirements of the civil aerospace industry. Large engines pose significant transportation problems and require them to be split in order to be shipped. Thus, large amounts of time have been spent in researching methods to increase thrust capabilities while maintaining a reasonable engine size. Unfortunately, much of this research has been focused on increasing the performance and efficiencies of individual components while limited research has been done on innovative engine configurations. This thesis focuses on an innovative engine configuration, the High Double Bypass Engine, aimed at increasing fuel efficiency and thrust while maintaining a competitive fan diameter and engine length. The 1-D analysis was done in Excel and then compared to the results from Numerical Propulsion Simulation System (NPSS) software and were found to be within 4% error. Flow performance characteristics were also determined and validated against their criteria.
Aircraft Engine-Monitoring System And Display
NASA Technical Reports Server (NTRS)
Abbott, Terence S.; Person, Lee H., Jr.
1992-01-01
Proposed Engine Health Monitoring System and Display (EHMSD) provides enhanced means for pilot to control and monitor performances of engines. Processes raw sensor data into information meaningful to pilot. Provides graphical information about performance capabilities, current performance, and operational conditions in components or subsystems of engines. Provides means to control engine thrust directly and innovative means to monitor performance of engine system rapidly and reliably. Features reduce pilot workload and increase operational safety.
NASA Astrophysics Data System (ADS)
Choomlucksana, Juthamas; Doolen, Toni L.
2017-11-01
The use of collaborative activities and simulation sessions in engineering education has been explored previously. However, few studies have investigated the relationship of these types of teaching innovations with other learner characteristics, such as self-efficacy and background knowledge. This study explored the effects of collaborative activities and simulation sessions on learning and the relationships between self-efficacy beliefs, background knowledge, and learning. Data were collected from two different terms in an upper division engineering course entitled Lean Manufacturing Systems Engineering. Findings indicated that the impact of collaborative activities and simulation sessions appears to be different, depending on the concepts being taught. Simulation sessions were found to have a significant effect on self-efficacy beliefs, and background knowledge had a mixed effect on learning. Overall the results of this study highlight the complex set of relationships between classroom innovations, learner characteristics, and learning.
ERIC Educational Resources Information Center
Doskey, Steven Craig
2014-01-01
This research presents an innovative means of gauging Systems Engineering effectiveness through a Systems Engineering Relative Effectiveness Index (SE REI) model. The SE REI model uses a Bayesian Belief Network to map causal relationships in government acquisitions of Complex Information Systems (CIS), enabling practitioners to identify and…
ERIC Educational Resources Information Center
Choomlucksana, Juthamas; Doolen, Toni L.
2017-01-01
The use of collaborative activities and simulation sessions in engineering education has been explored previously. However, few studies have investigated the relationship of these types of teaching innovations with other learner characteristics, such as self-efficacy and background knowledge. This study explored the effects of collaborative…
Integrating Science and Engineering to Implement Evidence-Based Practices in Health Care Settings.
Wu, Shinyi; Duan, Naihua; Wisdom, Jennifer P; Kravitz, Richard L; Owen, Richard R; Sullivan, J Greer; Wu, Albert W; Di Capua, Paul; Hoagwood, Kimberly Eaton
2015-09-01
Integrating two distinct and complementary paradigms, science and engineering, may produce more effective outcomes for the implementation of evidence-based practices in health care settings. Science formalizes and tests innovations, whereas engineering customizes and optimizes how the innovation is applied tailoring to accommodate local conditions. Together they may accelerate the creation of an evidence-based healthcare system that works effectively in specific health care settings. We give examples of applying engineering methods for better quality, more efficient, and safer implementation of clinical practices, medical devices, and health services systems. A specific example was applying systems engineering design that orchestrated people, process, data, decision-making, and communication through a technology application to implement evidence-based depression care among low-income patients with diabetes. We recommend that leading journals recognize the fundamental role of engineering in implementation research, to improve understanding of design elements that create a better fit between program elements and local context.
Adoption of Technological Innovations: A Case Study of the ASSESS Website
ERIC Educational Resources Information Center
Brooks, Sarah; Brown, Shane; Davis, Denny; LeBeau, Jennifer
2014-01-01
In engineering education, assessment instruments are often developed to evaluate programs and projects. Unfortunately, these innovations are not always adopted by intended audiences. Rogers' Diffusion of Innovations (DI) Theory provides a framework to analyze characteristics of an innovation that will affect adoption. The Appraisal System for…
Deicing System Protects General Aviation Aircraft
NASA Technical Reports Server (NTRS)
2007-01-01
Kelly Aerospace Thermal Systems LLC worked with researchers at Glenn Research Center on deicing technology with assistance from the Small Business Innovation Research (SBIR) program. Kelly Aerospace acquired Northcoast Technologies Ltd., a firm that had conducted work on a graphite foil heating element under a NASA SBIR contract and developed a lightweight, easy-to-install, reliable wing and tail deicing system. Kelly Aerospace engineers combined their experiences with those of the Northcoast engineers, leading to the certification and integration of a thermoelectric deicing system called Thermawing, a DC-powered air conditioner for single-engine aircraft called Thermacool, and high-output alternators to run them both. Thermawing, a reliable anti-icing and deicing system, allows pilots to safely fly through ice encounters and provides pilots of single-engine aircraft the heated wing technology usually reserved for larger, jet-powered craft. Thermacool, an innovative electric air conditioning system, uses a new compressor whose rotary pump design runs off an energy-efficient, brushless DC motor and allows pilots to use the air conditioner before the engine even starts
ERIC Educational Resources Information Center
MOGUEROU, PHILIPPE
2005-01-01
In this article, we discuss the recent evolutions of science and engineering doctoral and postdoctoral education in Europe. Indeed, Ph.Ds are crucial to the conduct of research and innovation in the national innovation systems, as they provide a large amount of input into creating the competitive advantage, notably through basic research. First,…
Clifford, Katie L; Zaman, Muhammad H
2016-01-01
The recent drafting of the Sustainable Development Goals challenges the research community to rethink the traditional approach to global health and provides the opportunity for science, technology, engineering, and mathematical (STEM) disciplines, particularly engineering, to demonstrate their benefit to the field. Higher education offers a platform for engineering to intersect with global health research through interdisciplinary partnerships among international universities that provide excellence in education, attract nontraditional STEM students, and foster a sense of innovation. However, a traditional lack of engineering-global health collaborations, as well as limited faculty and inadequate STEM research funding in low-income countries, has stifled progress. Still, the impact of higher education on development efforts holds great potential. This value will be realized in low-income countries through strengthening local capacity, supporting innovation through educational initiatives, and encouraging the inclusion of women and minorities in STEM programs. Current international university-level partnerships are working towards integrating engineering into global health research and strengthening STEM innovation among universities in low-income countries, but more can be done. Global health research informs sustainable development, and through integrating engineering into research efforts through university partnerships, we can accelerate progress and work towards a healthier future for all.
NASA Astrophysics Data System (ADS)
Xu, Yishen; Wu, Di; Chen, Daqing; Gu, Jihua; Gao, Lei
2017-08-01
According to the inherent requirements of education for talents' knowledge, quality and comprehensive ability and the major training goals of optoelectronics information science and engineering, in order to enhance the undergraduates' comprehensive practical ability and consciousness of innovation, we carried out the reforms of teaching method and teaching mode, which took the training programs of innovation and entrepreneurship for undergraduates, extracurricular academic research fund, "Chun-Tsung Scholar" program or research projects of their tutors as the guidance, and took the all levels of relevant discipline competitions as the promotion. And the training mainline of engineering innovation talents as "undergraduate's tutorial system ->innovative training program or tutor's research project ->academic competition ->graduation projects (thesis)" was constructed stage by stage by combining the undergraduates' graduation projects and their participated academic competition into one for improving the quality of the graduation projects (thesis). The practical results of the last several years illuminate that the proposed training model can effectively stimulate the students' awareness of autonomous learning, enhance their comprehensive ability of analyzing and solving problems and improve their ability of engineering practice and innovation as well as their teamwork spirit.
Integrating Science and Engineering to Implement Evidence-Based Practices in Health Care Settings
Wu, Shinyi; Duan, Naihua; Wisdom, Jennifer P.; Kravitz, Richard L.; Owen, Richard R.; Sullivan, Greer; Wu, Albert W.; Di Capua, Paul; Hoagwood, Kimberly Eaton
2015-01-01
Integrating two distinct and complementary paradigms, science and engineering, may produce more effective outcomes for the implementation of evidence-based practices in health care settings. Science formalizes and tests innovations, whereas engineering customizes and optimizes how the innovation is applied tailoring to accommodate local conditions. Together they may accelerate the creation of an evidence-based healthcare system that works effectively in specific health care settings. We give examples of applying engineering methods for better quality, more efficient, and safer implementation of clinical practices, medical devices, and health services systems. A specific example was applying systems engineering design that orchestrated people, process, data, decision-making, and communication through a technology application to implement evidence-based depression care among low-income patients with diabetes. We recommend that leading journals recognize the fundamental role of engineering in implementation research, to improve understanding of design elements that create a better fit between program elements and local context. PMID:25217100
Innovative Approaches to Fuel-Air Mixing and Combustion in Airbreathing Hypersonic Engines
NASA Astrophysics Data System (ADS)
MacLeod, C.
This paper describes some innovative methods for achieving enhanced fuel-air mixing and combustion in Scramjet-like spaceplane engines. A multimodal approach to the problem is discussed; this involves using several concurrent methods of forced mixing. The paper concentrates on Electromagnetic Activation (EMA) and Electrostatic Attraction as suitable techniques for this purpose - although several other potential methods are also discussed. Previously published empirical data is used to draw conclusions about the likely effectiveness of the system and possible engine topologies are outlined.
Niimi, Shingo; Umezu, Mitsuo; Iseki, Hiroshi; Harada, Hiroshi Kasanuki Noboru; Mitsuishi, Mamoru; Kitamori, Takehiko; Tei, Yuichi; Nakaoka, Ryusuke; Haishima, Yuji
2014-01-01
Division of Medical Devices has been conducting the projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo. The TWIns has been studying to aim at establishment of preclinical evaluation methods by "Engineering Based Medicine", and established Regulatory Science Institute for Medical Devices. School of Engineering, The University of Tokyo has been studying to aim at establishment of assessment methodology for innovative minimally invasive therapeutic devices, materials, and nanobio diagnostic devices. This report reviews the exchanges of personnel, the implement systems and the research progress of these projects.
Challenges and Opportunities for Innovation in the Public Works Infrastructure. Volume 1.
1993-06-01
managing innovation are continuously moving into the private sector seeking higher wages. Political Agendas. Frequent emphasis on short-term, high...Colglazier, Jr., " Managing Innovation ," Pergamon Press (1982). Mitropoulos, P., "An Expert System Technology Transfer Model for the Architecture-Engineering
Innovations in education and approaches to assessment of regional educational systems
NASA Astrophysics Data System (ADS)
Bauer, V. I.; Iljinyh, V. D.; Bazanov, A. V.; Kozin, E. S.
2018-05-01
The analysis of the latest innovations in the Russian education and trends in the development of educational regional systems is provided. Approaches to assessing the effectiveness of the operation of the company-university system are discussed by an example of motor engineering training for the oil and gas industry.
Environmental Engineering Curricula assessment in the global world
NASA Astrophysics Data System (ADS)
Caporali, Enrica; Catelani, Marcantonio; Manfrida, Giampaolo; Valdiserri, Juna
2014-05-01
Environmental engineers are technicians with specific expertise on the sustainability of human presence in the environment. Among other global dilemmas, to the environmental engineers it is often demanded to be able in developing systematic, innovative solutions in order to simultaneously meet water and energy needs, to build resilience to natural and technological disasters, to more accurately gauge and manage countries' greenhouse gas emissions. The general objectives of the Environmental Engineers are to establish actions of environmental sustainability as well as to verify progress toward global goals or international commitments. The globalization of challenges and problems to be faced, leads, in general, to the globalization of the engineering profession. In particular, since the environmental issues are without boundaries, and many and different are the involved professions and the competences, the environmental engineer must have a multidisciplinary and interdisciplinary approach to adequately answer to the demand of technical innovative knowledge at global scale. The environmental engineers, more and more, are involved in international projects were the effective collaboration requires not only the capacity to communicate in a common technical language, but also the assurance of an adequate and common level of technical competences, knowledge and understanding. The Europe-based EUR ACE system, currently operated by ENAEE - European Network for Accreditation of Engineering Education, can represent the proper framework and accreditation system in order to provide a set of measures to assess the quality of engineering degree programmes in Europe and abroad. In the global frame of the knowledge triangle: education-innovation-research, the accreditation and quality assurance of engineering curricula in Europe is discussed with reference to the Environmental engineering curricula, of the 1st and 2nd cycle, based on the European Credit Transfer System and in accordance with the Bologna Process, offered at School of Engineering, University of Firenze. The application of the accreditation model EUR-ACE to the multidisciplinary first cycle degree in Civil, Building and Environmental Engineering and the more specific second cycle degree in Environmental Engineering is discussed. Particularly, the critical issues to guarantee the quality and the status of environmental engineering graduates, in terms of applying knowledge capacities and technical innovative competences are examined. The expected learning outcomes of the quality assessment according the Dublin descriptors or the more engineering focused EUR-ACE skill descriptors, and at local and global scale are analysed. The system for educating engineers in communicating knowledge and understanding, making informed judgments and choices, capacities to lifelong learning is also assessed. The involvement of the professional working world in the definition of goals in skills, of typical expectations of achievements and abilities, and in general in comparing the teaching profile with the actual needs of the technical workforce, is described. With the aim to promote the innovative aspects related with the environmental engineering education, the important role that science and technology could play is also taken into consideration.
Thermal, optical, and electrical engineering of an innovative tunable white LED light engine
NASA Astrophysics Data System (ADS)
Trivellin, Nicola; Meneghini, Matteo; Ferretti, Marco; Barbisan, Diego; Dal Lago, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico
2014-02-01
Color temperature, intensity and blue spectrum of the light affects the ganglion receptors in human brain stimulating the human nervous system. With this work we review different methods for obtaining tunable light emission spectra and propose an innovative white LED lighting system. By an in depth study of the thermal, electrical and optical characteristics of GaN and GaP based compound semiconductors for optoelectronics a specific tunable spectra has been designed. The proposed tunable white LED system is able to achieve high CRI (above 95) in a large CCT range (3000 - 5000K).
Education of Sustainability Engineers
NASA Astrophysics Data System (ADS)
Oleschko, K.; Perrier, E.; Tarquis, A. M.
2010-05-01
It's not the same to educate the sustainable engineers as to prepare the engineers of Sustainability. In the latter case all existing methods of inventive creativity (Altshuller, 1988) should be introduced in the teaching and research processes in order to create a culture of innovation at a group. The Theory of Inventing Problem Solving (TRIZ) is based on the pioneer works of Genrich Altshuller (1988) and his associated. Altshuller reviewed over 2 million patents beginning in 1946 (Orlov, 2006) and developed the Laws of Evolution of Technological Systems; An Algorithm for Inventive Problem Solving (ARIZ); forty typical Techniques for Overcoming System Conflicts (TOSC); a system of 76 Standard Approaches to Inventive Problems (Standards) etc. (Fey and Rivin, 1997). Nowadays, "a theory and constructive instrument package for the controlled synthesis of ideas and the focused transformation of the object to be improved" (Orlov, 2006) are used with high efficacy as the teaching and thinking inventive problem-solving methods in some high schools (Barak and Mesika, 2006; Sokoi et al., 2008) as well as a framework for research (Moehrle, 2005) in construction industry (Zhang et al., 2009); chemical engineering (Cortes Robles et al., 2008) etc. In 2005 US Congress passed the innovation act with the intent of increasing research investment (Gupta, 2007), while China had included inventive principles of TRIZ in strategy and decision making structure design (Kai Yang, 2010). The integrating of TRIZ into eco-innovation diminishes the common conflicts between technology and environment (Chang and Chen, 2004). In our presentation we show discuss some examples of future patents elaborated by the master degree students of Queretaro University, Faculty of Engineering, Mexico using TRIZ methods. References 1. Altshuller, G., 1988. Creativity as an Exact Science. Gordon and Breach, New York. 2. Chang, Hsiang-Tang and Chen, Jahau Lewis, 2004. The conflict-problem-solving CAD software integrating TRIZ into eco-innovation. Advances in Engineering Software, 35: 553-566. 3. Cortes Robles, G., Negny, S. and Le Lann, J.M., 2008. Case-based reasoning and TRIZ: A coupling for innovative conception in Chemical Engineering. Chemical Engineering and Processing: Process Intensification, 48 (1): 239-249. 4. Gupta, P., 2007. Real Innovation Commentary. http://www. RealInnovation.com. 5. Kai Yang, 2010. Inventive principles of TRIZ with Chinás 36 strategies. TRIZ J., 1-20. 6. Moehrle, M. G., 2005. What is TRIZ? From conceptual basics to a framework for research. Social Science research Network, http://papers.ssrn.com/sol13/papers.cfm?abstract_id=674062. 7. Orlov, M., 2006. Inventive Thinking through TRIZ. A practical Guide, Springer, Berlin, 351. 8. Zhang, X., Mao, X. and AbouRizk, S.M, 2009. Developing a knowledge management system for improved value engineering practices in the construction industry. Automation in Construction, 18 (6): 777-789. 9. Sokol, A., Oget, D., Sonntag, M. and Khomenko, N., 2008. The development of inventive thinking skills in the upper secondary language classroom. Thinking Skills and Creativity, 3 (1): 34-46.
Systems Engineering of Education I: The Evolution of Systems Thinking in Education, 2nd Edition.
ERIC Educational Resources Information Center
Silvern, Leonard C.
This document methodically traces the development of the fundamental concepts of systems thinking in education from Harbert to contemporary innovators. The discussion explains narrative models, concentrating on educational flowcharting techniques and mathematical models related to developments in engineering and physical science. The presentation…
Exploring Mission Concepts with the JPL Innovation Foundry A-Team
NASA Technical Reports Server (NTRS)
Ziemer, John K.; Ervin, Joan; Lang, Jared
2013-01-01
The JPL Innovation Foundry has established a new approach for exploring, developing, and evaluating early concepts called the A-Team. The A-Team combines innovative collaborative methods with subject matter expertise and analysis tools to help mature mission concepts. Science, implementation, and programmatic elements are all considered during an A-Team study. Methods are grouped by Concept Maturity Level (CML), from 1 through 3, including idea generation and capture (CML 1), initial feasibility assessment (CML 2), and trade space exploration (CML 3). Methods used for each CML are presented, and the key team roles are described from two points of view: innovative methods and technical expertise. A-Team roles for providing innovative methods include the facilitator, study lead, and assistant study lead. A-Team roles for providing technical expertise include the architect, lead systems engineer, and integration engineer. In addition to these key roles, each A-Team study is uniquely staffed to match the study topic and scope including subject matter experts, scientists, technologists, flight and instrument systems engineers, and program managers as needed. Advanced analysis and collaborative engineering tools (e.g. cost, science traceability, mission design, knowledge capture, study and analysis support infrastructure) are also under development for use in A-Team studies and will be discussed briefly. The A-Team facilities provide a constructive environment for innovative ideas from all aspects of mission formulation to eliminate isolated studies and come together early in the development cycle when they can provide the biggest impact. This paper provides an overview of the A-Team, its study processes, roles, methods, tools and facilities.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
... Aerospace Innovation in Science and Engineering (RAISE) Award AGENCY: Office of the Secretary, U.S... demonstrate unique, innovative thinking in aerospace science and engineering. With this award, the Secretary... Science and Engineering) Award will recognize innovative scientific and engineering achievements that will...
Innovative Competencies of Mining engineers in Transition to the Sustainable Development
NASA Astrophysics Data System (ADS)
Krechetov, Andrey; Khoreshok, Alexey; Blumenstein, Valery
2017-11-01
The transition to the sustainable development posed new challenges to the system of mining higher education. They are determined by the acceleration of scientific and technological progress and widespread introduction of innovations, convergence of technologies from various industries. On the one hand, globalization and rapid technology development are constantly increasing quality requirements for the labor resources of the mineral and raw materials complex and constant improvement of their skills. On the other hand, the transition to the sustainable development provides the necessity for rational use of raw materials and environmental protection. This requires the improvement of staff support system for mining operations and the interaction of enterprises with universities training mining engineers, aimed at the innovative competencies development of future miners.
[Prospects of systemic radioecology in solving innovative tasks of nuclear power engineering].
Spiridonov, S I
2014-01-01
A need of systemic radioecological studies in the strategy developed by the atomic industry in Russia in the XXI century has been justified. The priorities in the radioecology of nuclear power engineering of natural safety associated with the development of the radiation-migration equivalence concept, comparative evaluation of innovative nuclear technologies and forecasting methods of various emergencies have been identified. Also described is an algorithm for the integrated solution of these tasks that includes elaboration of methodological approaches, methods and software allowing dose burdens to humans and biota to be estimated. The rationale of using radioecological risks for the analysis of uncertainties in the environmental contamination impacts,at different stages of the existing and innovative nuclear fuel cycles is shown.
Henrionnet, Christel; Dumas, Dominique; Hupont, Sébastien; Stoltz, Jean François; Mainard, Didier; Gillet, Pierre; Pinzano, Astrid
2017-01-01
In tissue engineering approaches, the quality of substitutes is a key element to determine its ability to treat cartilage defects. However, in clinical practice, the evaluation of tissue-engineered cartilage substitute quality is not possible due to the invasiveness of the standard procedure, which is to date histology. The aim of this work was to validate a new innovative system performed from two-photon excitation laser adapted to an optical macroscope to evaluate at macroscopic scale the collagen network in cartilage tissue-engineered substitutes in confrontation with gold standard histologic techniques or immunohistochemistry to visualize type II collagen. This system permitted to differentiate the quality of collagen network between ITS and TGF-β1 treatments. Multiscale large field imaging combined to multimodality approaches (SHG-TCSPC) at macroscopical scale represent an innovative and non-invasive technique to monitor the quality of collagen network in cartilage tissue-engineered substitutes before in vivo implantation.
Software Innovation in a Mission Critical Environment
NASA Technical Reports Server (NTRS)
Fredrickson, Steven
2015-01-01
Operating in mission-critical environments requires trusted solutions, and the preference for "tried and true" approaches presents a potential barrier to infusing innovation into mission-critical systems. This presentation explores opportunities to overcome this barrier in the software domain. It outlines specific areas of innovation in software development achieved by the Johnson Space Center (JSC) Engineering Directorate in support of NASA's major human spaceflight programs, including International Space Station, Multi-Purpose Crew Vehicle (Orion), and Commercial Crew Programs. Software engineering teams at JSC work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements for genuinely mission critical applications. The innovations described, including the use of NASA Core Flight Software and its associated software tool chain, can lead to software that is more affordable, more reliable, better modelled, more flexible, more easily maintained, better tested, and enabling of automation.
Bohl, Michael A; Xu, David S; Cavallo, Claudio; Paisan, Gabriella M; Smith, Kris A; Nakaji, Peter
2018-06-01
The Barrow Innovation Center consists of an educational program that promotes interdisciplinary collaboration among neurosurgery, legal, and engineering professionals to foster the development of new medical devices. This report describes a common issue faced during the placement of ventricular shunts for the treatment of hydrocephalus, and the solution to this problem that was developed through the Barrow Innovation Center. Neurosurgery residents involved in the Barrow Innovation Center presented the problem of ferromagnetic retractors interfering with pinless image-guidance systems at a monthly meeting. Potential solutions were openly discussed by an interdisciplinary committee of neurosurgeons, patent lawyers, and biomedical engineers. The committee decided to pursue development of a novel self-retaining retractor made of non-ferromagnetic material as a solution to the problem. Each retractor design was tested in the cadaver laboratory for size and functionality. A final design was chosen and used in a surgical case requiring ventriculoperitoneal shunt placement. The new retractor successfully retracted the scalp without interfering with the electromagnetic image-guidance system. Through the interdisciplinary Barrow Innovation Center program, a newly designed, 3-dimensional-printed skin and soft tissue retractor was created, along with an innovative universal shunt retainer. Through this integrated program dedicated to surgical innovation (i.e., the Barrow Innovation Center), the process of developing and implementing new technology at our institution has been streamlined, creating a culture of innovation within the neurosurgery training program. Copyright © 2018 Elsevier Inc. All rights reserved.
Review of Innovative Sediment Delivery Systems
2013-04-01
Alternative conveyor belt systems appear to be available from the growing hydraulic fracturing ( fracking , shale gas recovery) industry, which use...ERDC/CHL CHETN-XIV-28 April 2013 Review of Innovative Sediment Delivery Systems by Thomas D. Smith PURPOSE. This Coastal and Hydraulic ...ADDRESS(ES) US Army Engineer Research and Development Center,Coastal and Hydraulics Laboratory,3909 Halls Ferry Road,Vicksburg,MS,39180 8. PERFORMING
Multimedia: Developing Creativity and Innovation in Engineering, Science,
Find ScienceCinema Search Results Multimedia: Developing Creativity and Innovation in Engineering , Science, and Medicine Citation Details Title: Developing Creativity and Innovation in Engineering, Science , and Medicine Title: Developing Creativity and Innovation in Engineering, Science, and Medicine Authors
Clifford, Katie L.; Zaman, Muhammad H.
2016-01-01
The recent drafting of the Sustainable Development Goals challenges the research community to rethink the traditional approach to global health and provides the opportunity for science, technology, engineering, and mathematical (STEM) disciplines, particularly engineering, to demonstrate their benefit to the field. Higher education offers a platform for engineering to intersect with global health research through interdisciplinary partnerships among international universities that provide excellence in education, attract nontraditional STEM students, and foster a sense of innovation. However, a traditional lack of engineering–global health collaborations, as well as limited faculty and inadequate STEM research funding in low-income countries, has stifled progress. Still, the impact of higher education on development efforts holds great potential. This value will be realized in low-income countries through strengthening local capacity, supporting innovation through educational initiatives, and encouraging the inclusion of women and minorities in STEM programs. Current international university-level partnerships are working towards integrating engineering into global health research and strengthening STEM innovation among universities in low-income countries, but more can be done. Global health research informs sustainable development, and through integrating engineering into research efforts through university partnerships, we can accelerate progress and work towards a healthier future for all. PMID:26790462
Identification of patent in incentivizing innovation for sustainability in the construction industry
NASA Astrophysics Data System (ADS)
Zakaria, Sharifah Akmam Syed; Sadullah, Ahmad Farhan Mohd; Majid, Taksiah A.; Ghazali, Farid Ezanee Mohamed
2017-07-01
The increasing trend of research and innovation developments in the field of construction industry and their impacts on the national economy have raised much attention in the recent years. In this respect, through the relationship that exists between innovation and patent protection means that the education system of civil engineering has to gear itself to provide a sense of direction to facilitate future civil engineers to meet the challenges through innovation. The aim of this paper is to examine the educational experience and inclination of civil engineering students at Universiti Sains Malaysia in terms of their educational readiness to invent and innovate based on patents' exploration. Specifically, this paper presents research evidence using a quantitative method through questionnaire surveys in determining the dimension of patent information usage for innovation purposes, with attention to the hierarchy of each usage aspect and outcome measures reported. Results of this study revealed that majority of the participants have a "simplistic and superficial" ideas of patents identification as a source of innovation. Although a fair number of participants have relatively good knowledge of patents and innovation, lack of practical exposure and experience in construction industry are still a problem frequently encountered in the preparation to invent and innovate based on patents' exploration. It is recommended that the research model is tested using a greater number of research participants.
ERIC Educational Resources Information Center
Eekels, J.
1987-01-01
Emphasizes that the concept of design is fundamental in innovation. Outlines the work of the European Society for Engineering Education-Working group on Innovation. Describes the innovation-management stream in the curriculum of the faculty of Industrial Design Engineering at Delft University of Technology, Netherlands. (CW)
Study on the continuing education innovative talents training mode of civil engineering major
NASA Astrophysics Data System (ADS)
Sun, Shengnan; Su, Zhibin; Cui, Shicai
2017-12-01
According to the characteristics of civil engineering professional continuing education, continuing education of innovative talents training mode suitable for the characteristics of our school is put forward in this paper. The characteristics of the model include: the education of professional basic courses and specialized courses should be paid attention to; engineering training should be strengthened and engineering quality should be trained; the concept of large civil engineering should be highlighted, the specialized areas should be broadened, and the curriculum system should be reconstructed; the mechanism of personnel training program should be constructed by the employers, the domestic highlevel institutions and our university. It is hoped that the new training model will promote the development of continuing education of civil engineering specialty in our university.
Embedding Context in Teaching Engineering Design
ERIC Educational Resources Information Center
Neumeyer, Xaver; Chen, Wei; McKenna, Ann F.
2013-01-01
Understanding the global, societal, environmental and economic (GSEE) context of a product, process or system is critical to an engineer's ability to design and innovate. The already packed curricula in engineering programs provide few occasions to offer meaningful experiences to address this issue, and most departments delegate this requirement…
Alloy design for aircraft engines
NASA Astrophysics Data System (ADS)
Pollock, Tresa M.
2016-08-01
Metallic materials are fundamental to advanced aircraft engines. While perceived as mature, emerging computational, experimental and processing innovations are expanding the scope for discovery and implementation of new metallic materials for future generations of advanced propulsion systems.
The Role of System Thinking Development and Experiential Learning on Enterprise Transformation
NASA Astrophysics Data System (ADS)
Lopez, Gabriel
The recent economic downturn has had global repercussions in all businesses alike. Competition is fierce and a survival of the fittest model is always present; fast delivery times and innovative designs ultimately translate into the enterprises' bottom line. In such market conditions, enterprises have to find ways to develop and train their workforce in a manner that enhances the innovative capabilities of the enterprise. Additionally, if companies are to stay competitive, they have to ensure critical skills in their workforce are transferred from generation to generation. This study builds on recent research on system-thinking development via experiential learning methodologies. First, a conceptual framework model was developed. This conceptual model captures a methodology to construct a system-thinking apprenticeship program suitable for system engineers. Secondly, a survey of system engineering professionals was conducted in order to assess and refine the proposed conceptual model. This dissertation captures the findings of the conceptual model and the implications of the study for enterprises and for system engineering organizations.
1993-06-01
Designers and Champions of Innovation. Journal of Product Innovation Management . Vol. 8,91-103 Barabba, V. P., & Zaltman, G. (1991). Hearing the Voice of...Kleinschmidt, E. K. (1986). An Investigation into the New Product Process: Steps, Deficiencies, and Impact. Journal of Product Innovation Management . Vol...Product and Process Development. Journal of Product Innovation Management . Vol. 4,81-88 Goodman, M. (1974). Study Notes in System Dynamics. Cambridge, MA
100-Lb(f) LO2/LCH4 Reaction Control Engine Technology Development for Future Space Vehicles
NASA Technical Reports Server (NTRS)
Robinson, Philip J.; Veith, Eric M.; Hurlbert, Eric A.; Jimenez, Rafael; Smith, Timothy D.
2008-01-01
The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass.
100-LBF LO2/LCH4 - Reaction Control Engine Technology Development for Future Space Vehicles
NASA Technical Reports Server (NTRS)
Robinson, Philip J.; Veith, Eric M.; Hurlbert, Eric A.; Jimenez, Rafael; Smith, Timothy D.
2008-01-01
The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass.
Exploration and practice for engineering innovative talents training based on project-driven
NASA Astrophysics Data System (ADS)
Xu, Yishen; Lv, Qingsong; Ye, Yan; Wu, Maocheng; Gu, Jihua
2017-08-01
As one of the "excellent engineer education program" of the Ministry of Education and one of the characteristic majors of Jiangsu Province, the major of optoelectronic information science and engineering in Soochow University has a long history and distinctive features. In recent years, aiming to the talents training objective of "broad foundation, practiceoriented, to be creative", education and teaching reforms have been carried out, which emphasize basis of theoretical teaching, carrier of practical training, promotion of projects and discussion, and development of second class. By optimizing the teaching contents and course system of the theoretical courses, the engineering innovative talents training mode based on the project-driven has been implemented with playing a practical training carrier role and overall managing the second class teaching for cultivating students' innovative spirit and practical ability. Meanwhile, the evaluation mechanism of the students' comprehensive performance mainly based on "scores of theory test" is being gradually changed, and the activities such as scientific research, discipline competitions and social practices are playing an increasing important role in the students' comprehensive assessment. The produced achievements show that the proposed training model based on project-driven could stimulate the students' enthusiasm and initiative to participate in research activities and promote the training of students' ability of engineering practice and consciousness of innovation.
Training System Device Certification and Qualification Process
2013-09-01
Engineering IPT Integrated Product Team ISD Instructional Systems Development ISEO In-Service Engineering Office KSAs Knowledge, Skills, and Attributes...Plan TES Tactical Engagement Simulation TPM Training Pipeline Managers T&R Training and Readiness TRR Test Readiness Review TS Training System...NAWCTSD) is the Navy’s source for a full range of innovative products and services that provide complete training solutions. This includes
ERIC Educational Resources Information Center
Griffin, Patricia A.
2015-01-01
STEM Schools purport to prepare students to learn and work in the 21st Century by providing students with innovative learning experiences through the interdisciplinary integration of science, technology, engineering, and math (Tsupros, 2009). Advocates of STEM and innovative school models argue that the traditional school system does not and…
A Phenomenographic Investigation of the Ways Engineering Students Experience Innovation
NASA Astrophysics Data System (ADS)
Fila, Nicholas David
Innovation has become an important phenomenon in engineering and engineering education. By developing novel, feasible, viable, and valued solutions to complex technical and human problems, engineers support the economic competitiveness of organizations, make a difference in the lives of users and other stakeholders, drive societal and scientific progress, and obtain key personal benefits. Innovation is also a complex phenomenon. It occurs across a variety of contexts and domains, encompasses numerous phases and activities, and requires unique competency profiles. Despite this complexity, many studies in engineering education focus on specific aspects (e.g., engineering students' abilities to generate original concepts during idea generation), and we still know little about the variety of ways engineering students approach and understand innovation. This study addresses that gap by asking: 1. What are the qualitatively different ways engineering students experience innovation during their engineering projects? 2. What are the structural relationships between the ways engineering students experience innovation? This study utilized phenomenography, a qualitative research method, to explore the above research questions. Thirty-three engineering students were recruited to ensure thorough coverage along four factors suggested by the literature to support differences related to innovation: engineering project experience, academic major, year in school, and gender. Each participant completed a 1-2 hour, semi-structured interview that focused on experiences with and conceptions of innovation. Whole transcripts were analyzed using an eight-stage, iterative, and comparative approach meant to identify a limited number of categories of description (composite ways of experiencing innovation comprised of the experiences of several participants), and the structural relationships between these categories. Phenomenographic analysis revealed eight categories of description that were structured in a semi-hierarchical, two-dimensional outcome space. The first four categories demonstrated a progression toward greater comprehensiveness in both process and focus dimensions. In the process dimension, subsequent categories added increasingly preliminary innovation phases: idea realization, idea generation, problem scoping, and problem finding. In the focus dimension, subsequent categories added key areas engineers considered during innovation: technical, human, and enterprise. The final four categories each incorporated all previous process phases and focus areas, but prioritized different focus areas in sophisticated ways and acknowledged a macro-iterative cycle, i.e., an understanding of how the processes within a single innovation project built upon and contributed to past and future innovation projects. These results demonstrate important differences between engineering students and suggest how they may come to experience innovation in increasingly comprehensive ways. A framework based on the results can be used by educators and researchers to support more robust educational offerings and nuanced research designs that reflect these differences.
An Innovative Instrument Flight Training Program.
ERIC Educational Resources Information Center
Caro, Paul W.
An innovative flight training program, its development, and initial administration are described. The program involves use of a commercially available training device in a twin-engine transition and instrument training course. Principal features of the training include redefinition of the flight instructor's role, and incentive award system,…
Development of Novel Fe-Based Coating Systems for Internal Combustion Engines
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Königstein, T.; Dröder, K.; Hoffmeister, H.-W.; Mahlfeld, G.; Schläfer, T.
2018-04-01
Nowadays, combustion engines are the most common way to power vehicles. Thereby, losses occur due to cooling, exhaust gas and friction. With regard to frictional losses, highest potentials for optimization can be found in the tribological system of the inner surface of combustion chamber and piston ring. Besides friction, corrosive stress increases, e.g., due to utilization of exhaust gas recovery. In order to save energy, reduce emissions and enhance the life span of combustion engines, the demand for innovative coating material systems, especially for the inner surface of combustion chamber, increases. This study focuses on the development of innovative iron-based coating materials for the combustion chamber. As a first step, the plasma transferred wire arc and rotating single wire arc (RSW) technologies were compared using 0.8% C-steel as a reference. Subsequently, RSW was used for coating deposition using an innovative iron-based feedstock material. In order to improve wear and corrosion resistance, boron and chromium were added to the feedstock material. After deposition, different honing topographies were manufactured and compared under tribological load. Furthermore, electrochemical corrosion tests were conducted using an electrolyte simulating the exhaust gas concentrate. Especially with regard to corrosion, the novel coating system FeCrBMn showed promising results.
Innovation in Extraterrestrial Service Systems - A Challenge for Service Science
NASA Technical Reports Server (NTRS)
Bergner, David
2010-01-01
This presentation was prepared at the invitation of Professor Yukio Ohsawa, Department of Systems Innovation, School of Engineering, The University of Tokyo, for delivery at the International Workshop on Innovating Service Systems, sponsored by the Japanese Society of Artificial Intelligence (JSAI) as part of the JSAI Internation Symposium on AI, 2010. It offers several challenges for Service Science and Service Innovation. the goal of the presentation is to stimulate thinking about how service systems viII evolve in the future, as human society advances from its terrestrial base toward a permanent presence in space. First we will consider the complexity of the International Space Station (ISS) as it is today, with particular emphasis of its research facilities, and focus on a current challenge - to maximize the utilization of ISS research facilities for the benefit of society. After briefly reviewing the basic principles of Service Science, we will discuss the potential application of Service Innovation methodology to this challenge. Then we viII consider how game-changing technologies - in particular Synthetic Biology - could accelerate the pace of sociocultural evolution and consequently, the progression of human society into space. We will use this provocative vision to advance thinking about how the emerging field of Service Science, Management, and Engineering (SSME) might help us anticipate and better handle the challenges of this inevitable evolutionary process.
78 FR 3453 - Notice of Intent To Seek Approval To Establish an Information Collection System
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-16
... Research and Innovation program. OMB Number: 3145-NEW. Expiration Date of Approval: Not applicable. Type of... The Emerging Frontiers in Research and Innovation (EFRI) program recommends, prioritizes, and funds interdisciplinary initiatives at the emerging frontier of engineering research and education. These investments...
A Productivity Enhancement Study for the U.S. Army Information Systems Engineering Command.
1985-09-01
This is not to say "doing one’s homework" is unimportant. It is as long as it does not snuff out enthusiasm and innovativeness. Peters tells us: The...Commander 10 U.S. Army Information Systems Engineering Command Ft Belvoir, Virginia 22060-5456 134 71" ~..-.-------..~.-.-........ -PV S FILMED
ERIC Educational Resources Information Center
Hayashi, Yusuke; Bourdeau, Jacqueline; Mizoguchi, Riichiro
2009-01-01
This paper describes the achievements of an innovative eight-year research program first introduced in Mizoguchi and Bourdeau (2000), which was aimed at building a theory-aware authoring system by using ontological engineering. To date, we have proposed OMNIBUS, an ontology that comprehensively covers different learning/instructional theories and…
Structural Performance’s Optimally Analysing and Implementing Based on ANSYS Technology
NASA Astrophysics Data System (ADS)
Han, Na; Wang, Xuquan; Yue, Haifang; Sun, Jiandong; Wu, Yongchun
2017-06-01
Computer-aided Engineering (CAE) is a hotspot both in academic field and in modern engineering practice. Analysis System(ANSYS) simulation software for its excellent performance become outstanding one in CAE family, it is committed to the innovation of engineering simulation to help users to shorten the design process, improve product innovation and performance. Aimed to explore a structural performance’s optimally analyzing model for engineering enterprises, this paper introduced CAE and its development, analyzed the necessity for structural optimal analysis as well as the framework of structural optimal analysis on ANSYS Technology, used ANSYS to implement a reinforced concrete slab structural performance’s optimal analysis, which was display the chart of displacement vector and the chart of stress intensity. Finally, this paper compared ANSYS software simulation results with the measured results,expounded that ANSYS is indispensable engineering calculation tools.
2014-06-23
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, Heather Hava, who is working on a doctorate in aerospace engineering sciences at the University of Colorado Boulder, describes a Remotely Operated Gardening Rover, or ROGR, which could tend to plants grown in one of the SmartPots, or SPOTS seen on the right. The system is being developed by the graduate students participating in the eXploration HABitat X-Hab Academic Innovation Challenge. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in science, technology, engineering and math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Daniel Casper
System Engineering and Technical Challenges Overcome in the J-2X Rocket Engine Development Project
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2012-01-01
Beginning in 2006, NASA initiated the J-2X engine development effort to develop an upper stage propulsion system to enable the achievement of the primary objectives of the Constellation program (CxP): provide continued access to the International Space Station following the retirement of the Space Station and return humans to the moon. The J-2X system requirements identified to accomplish this were very challenging and the time expended over the five years following the beginning of the J- 2X effort have been noteworthy in the development of innovations in both the fields for liquid rocket propulsion and system engineering.
Capacity-oriented curriculum system of optoelectronics in the context of large category cultivation
NASA Astrophysics Data System (ADS)
Luo, Yuan; Hu, Zhangfang; Zhang, Yi
2017-08-01
In order to cultivate the innovative talents with the comprehensive development to meet the talents demand for development of economic society, Chongqing University of Posts and Telecommunications implements cultivation based on broadening basic education and enrolment in large category of general education. Optoelectronic information science and engineering major belongs to the electronic engineering category. The "2 +2" mode is utilized for personnel training, where students are without major in the first and second year and assigned to a major within the major categories in the end of the second year. In the context of the comprehensive cultivation, for the changes in the demand for professionals in the global competitive environment with the currently rapid development, especially the demand for the professional engineering technology personnel suitable to industry and development of local economic society, the concept of CDIO engineering ability cultivation is used for reference. Thus the curriculum system for the three-node structure optoelectronic information science and engineering major is proposed, which attaches great importance to engineering practice and innovation cultivation under the background of the comprehensive cultivation. The conformity between the curriculum system and the personnel training objectives is guaranteed effectively, and the consistency between the teaching philosophy and the teaching behavior is enhanced. Therefore, the idea of major construction is clear with specific characteristics.
NASA Technical Reports Server (NTRS)
1992-01-01
The purpose of QASE RT is to enable system analysts and software engineers to evaluate performance and reliability implications of design alternatives. The program resulted from two Small Business Innovation Research (SBIR) projects. After receiving a description of the system architecture and workload from the user, QASE RT translates the system description into simulation models and executes them. Simulation provides detailed performance evaluation. The results of the evaluations are service and response times, offered load and device utilizations and functional availability.
ERIC Educational Resources Information Center
Mumba, Frackson; Zhu, Mengxia
2013-01-01
This paper presents a Simulation-based interactive Virtual ClassRoom web system (SVCR: www.vclasie.com) powered by the state-of-the-art cloud computing technology from Google SVCR integrates popular free open-source math, science and engineering simulations and provides functions such as secure user access control and management of courses,…
Space transportation booster engine configuration study. Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
1989-01-01
The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and to explore innovative approaches to the follow-on full-scale development (FSD) phase for the STBE.
Current developments in the French engineering education system
NASA Astrophysics Data System (ADS)
Lemaître, Denis
2017-03-01
The French engineering education system has been established in quite a different way from others in Europe, such as the German and British systems, for instance. Due to both the whole state system and the private initiatives during the industrial revolution, the engineering education system today is composed of a large number (nearly 200) of rather small and specialised institutions, which have historically mostly developed outside universities. In the last decades, this system has had to face a powerful internationalisation movement. This has had major consequences on the curricula design, regarding foreign language teaching, international exchanges, and links with research. Currently, the French engineering education system is facing new challenges, regarding innovation and environmental and social issues, in a very competitive higher education context.
ERIC Educational Resources Information Center
Chapman, Geoffrey R.; Hayes, Kathryn J.; Sloan, Terry; Fitzgerald, Janna Anneke
2011-01-01
There has been substantial academic interest surrounding innovation, change management and the individual attributes that permit and promote learning, organisational change and innovative behaviour. This research uses a psychometric tool known as the Instinctive Drives System[R] to measure preferred working styles in 3943 employees from a range of…
ERIC Educational Resources Information Center
Fletcher, Jordan L.
2013-01-01
Developing nations are poised to spend billions on information and communication technology (ICT) innovation in 2020. A study of the historical adoption of ICT in developing nations has indicated that their adoption patterns do not follow typical technology innovation adoption models. This study addressed the weaknesses found in existing…
NREL: News - Technology Review Honors National Renewable Energy Lab
Engineer as One of the World's Top Young Innovators Technology Review Honors National Renewable Technology Magazine Golden, Colo., May 20, 2002 The U.S. Department of Energy's National Renewable Energy Systems, has been chosen as one of the world's 100 Top Young Innovators by Technology Review, MIT's
Biomedical engineering education--status and perspectives.
Magjarevic, Ratko; Zequera Diaz, Martha L
2014-01-01
Biomedical Engineering programs are present at a large number of universities all over the world with an increasing trend. New generations of biomedical engineers have to face the challenges of health care systems round the world which need a large number of professionals not only to support the present technology in the health care system but to develop new devices and services. Health care stakeholders would like to have innovative solutions directed towards solving problems of the world growing incidence of chronic disease and ageing population. These new solutions have to meet the requirements for continuous monitoring, support or care outside clinical settlements. Presence of these needs can be tracked through data from the Labor Organization in the U.S. showing that biomedical engineering jobs have the largest growth at the engineering labor market with expected 72% growth rate in the period from 2008-2018. In European Union the number of patents (i.e. innovation) is the highest in the category of biomedical technology. Biomedical engineering curricula have to adopt to the new needs and for expectations of the future. In this paper we want to give an overview of engineering professions in related to engineering in medicine and biology and the current status of BME education in some regions, as a base for further discussions.
An analysis of innovation in materials and energy
NASA Astrophysics Data System (ADS)
Connelly, Michael
This dissertation presents an analysis of innovation in engineering materials and energy sources. More than fifty engineering materials and fourteen energy sources were selected for an evaluation of the relationship between the yearly production activity and yearly patent counts, which may be considered as a measure of innovation, for each. Through the employment of correlation theory, best-fit and origin shift analyses, it has been determined here that engineering materials and energy sources display similar life cycle and innovative activity behaviors. Correlation theory revealed a relationship between the yearly production and yearly patent counts indicating the extent that production and innovation affect each other. Best-fit analysis determined that four-stage life cycles exist for both engineering materials (metals and non-metals) and energy sources. Correlation and best-fit indicators of an estimated Stage III are confirmed by the presence of an origin shift of the patent data when compared to the production data which indicates that patents, or innovation, are driving, or being driven by, production. This driving force could represent the constructive or destructive side of the innovative process, with such sides being delineated by a possible universal constant above which there is destructive innovative behavior and below which exists constructive innovation. The driving force may also illustrate the manner in which an engineering material or energy source transitions into an innovatively less active state, enter Stage IV and possibly become a commodity. A possible Stage V, indicating "Final Death", is introduced in which production is on a steep decline with no signs of recovery. Additionally, innovatively active energy sources are often found to utilize or be supported by innovatively active engineering materials. A model is presented that can be used for the evaluation of innovation and production that can be applied to both engineering materials and energy sources that may be used to predict the innovative behavior of these resources in order that they can be more effectively allocated and utilized.
Slide presentation at Conference: ASCE 7th Civil Engineering Conference in the Asian Region. USEPA in partnership with the Cadmus Group, Carollo Engineers, and other State & Industry collaborators, are evaluating new approaches for validating UV reactors to meet groundwater & sur...
2014-06-23
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, Heather Hava, right, who is working on a doctorate in aerospace engineering sciences at the University of Colorado Boulder, describes a computerized SmartPot, or SPOT, which could be used to grow plants in a deep-space habitat. The SPOTs could be tended by a Remotely Operated Gardening Rover, or ROGR, seen on the left. The system is being developed by the graduate students participating in the eXploration HABitat X-Hab Academic Innovation Challenge. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in science, technology, engineering and math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Daniel Casper
2014-06-23
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, Heather Hava, who is working on a doctorate in aerospace engineering sciences at the University of Colorado Boulder, makes adjustments on a Remotely Operated Gardening Rover, or ROGR, which could tend to plants grown in one of the SmartPots, or SPOTS seen on the right. The system is being developed by the graduate students participating in the eXploration HABitat X-Hab Academic Innovation Challenge. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in science, technology, engineering and math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Daniel Casper
Building Safer Systems With SpecTRM
NASA Technical Reports Server (NTRS)
2003-01-01
System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.
Design and development of the Waukesha Custom Engine Control Air/Fuel Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, D.W.
1996-12-31
The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuelmore » composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.« less
Jin joined NREL in 2012. His research focuses on control systems, fault detection and diagnosis, load Jin Photo of Xin Jin Xin Jin Researcher IV-Control Engineering Xin.Jin@nrel.gov | 303-275-4360 Xin project engineer at A.O. Smith Corporate Technology Center creating innovative electronic control
In Situ Wetland Restoration Demonstration
2014-07-01
Program (ESTCP) has funded the Naval Facilities Engineering and Expeditionary Warfare Center (NAVFAC EXWC) and its DoD partners: U.S. Army Public Health ...Command Engineering Service Center [NAVFAC ESC]) and its DoD partners U.S. Army Public Health Command, Naval Facilities Engineering Command Atlantic...made that unacceptable risks to human health or the environment may be present in portions of the Canal Creek system. Innovative technologies
Brazile, Tiffany; Hostetter Shoop, Glenda; McDonough, Christine M; Van Citters, Douglas W
2018-01-30
Addressing current healthcare challenges requires innovation and collaboration. Current literature provides limited guidance in promoting these skills in medical school. One approach involves transdisciplinary training in which students from different disciplines work together toward a shared goal. We assessed the need for such a curriculum at Dartmouth College. We surveyed medical and engineering students' educational values; learning experiences; professional goals; and interest in transdisciplinary education and innovation. Data were analyzed using descriptive statistics. Shared values among student groups included leadership development, innovation, collaboration, and resource sharing. Medical students felt their curriculum inadequately addressed creativity and innovation relative to their engineering counterparts (p < 0.05). Medical students felt less prepared for entrepreneurial activities (p < 0.05), while engineering students indicated a need for basic medical knowledge and patient-oriented design factors. Despite strong interest, collaboration was less than 50% of indicated interest. Medical and engineering students share an interest in the innovation process and need a shared curriculum to facilitate collaboration. A transdisciplinary course that familiarizes students with this process has the potential to promote physicians and engineers as leaders and innovators who can effectively work across industry lines. A transdisciplinary course was piloted in Spring 2017.
War-gaming application for future space systems acquisition
NASA Astrophysics Data System (ADS)
Nguyen, Tien M.; Guillen, Andy T.
2016-05-01
Recently the U.S. Department of Defense (DOD) released the Defense Innovation Initiative (DII) [1] to focus DOD on five key aspects; Aspect #1: Recruit talented and innovative people, Aspect #2: Reinvigorate war-gaming, Aspect #3: Initiate long-range research and development programs, Aspect #4: Make DOD practices more innovative, and Aspect #5: Advance technology and new operational concepts. Per DII instruction, this paper concentrates on Aspect #2 and Aspect #4 by reinvigorating the war-gaming effort with a focus on an innovative approach for developing the optimum Program and Technical Baselines (PTBs) and their corresponding optimum acquisition strategies for acquiring future space systems. The paper describes a unified approach for applying the war-gaming concept for future DOD acquisition of space systems. The proposed approach includes a Unified Game-based Acquisition Framework (UGAF) and an Advanced Game-Based Mathematical Framework (AGMF) using Bayesian war-gaming engines to optimize PTB solutions and select the corresponding optimum acquisition strategies for acquiring a space system. The framework defines the action space for all players with a complete description of the elements associated with the games, including Department of Defense Acquisition Authority (DAA), stakeholders, warfighters, and potential contractors, War-Gaming Engines (WGEs) played by DAA, WGEs played by Contractor (KTR), and the players' Payoff and Cost functions (PCFs). The AGMF presented here addresses both complete and incomplete information cases. The proposed framework provides a recipe for the DAA and USAF-Space and Missile Systems Center (SMC) to acquire future space systems optimally.
Compendium : graduate student papers on advanced surface transportation systems, 1999
DOT National Transportation Integrated Search
1999-08-01
This document is the culmination of the ninth offering of an innovative transportation engineering graduate course at Texas A&M : University entitled, Advanced Surface Transportation Systems. The ninth offering of the course was presented durin...
[Research-oriented experimental course of plant cell and gene engineering for undergraduates].
Xiaofei, Lin; Rong, Zheng; Morigen, Morigen
2015-04-01
Research-oriented comprehensive experimental course for undergraduates is an important part for their training of innovation. We established an optional course of plant cell and gene engineering for undergraduates using our research platform. The course is designed to study the cellular and molecular basis and experimental techniques for plant tissue culture, isolation and culture of protoplast, genetic transformation, and screening and identification of transgenic plants. To develop undergraduates' ability in experimental design and operation, and inspire their interest in scientific research and innovation consciousness, we integrated experimental teaching and practice in plant genetic engineering on the tissue, cellular, and molecular levels. Students in the course practiced an experimental teaching model featured by two-week teaching of principles, independent experimental design and bench work, and ready-to-access laboratory. In this paper, we describe the contents, methods, evaluation system and a few issues to be solved in this course, as well as the general application and significance of the research-oriented experimental course in reforming undergraduates' teaching and training innovative talents.
NASA Technical Reports Server (NTRS)
1989-01-01
The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the space Transportation Booster Engine (STBE) Configuration Study were: (1) to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and (2) to explore innovative approaches to the follow-on Full-Scale Development (FSD) phase for the STBE.
Technology Transfer and Technology Transfer Intermediaries
ERIC Educational Resources Information Center
Bauer, Stephen M.; Flagg, Jennifer L.
2010-01-01
A standard and comprehensive model is needed to evaluate and compare technology transfer systems and the stakeholders within these systems. The principle systems considered include federal laboratories, U.S. universities, the rehabilitation engineering research centers (RERCs), and large small business innovation research programs. An earlier…
Becker, Judith; Gießelmann, Gideon; Hoffmann, Sarah Lisa; Wittmann, Christoph
Since its discovery 60 years ago, Corynebacterium glutamicum has evolved into a workhorse for industrial biotechnology. Traditionally well known for its remarkable capacity to produce amino acids, this Gram-positive soil bacterium, has become a flexible, efficient production platform for various bulk and fine chemicals, materials, and biofuels. The central turnstile of all these achievements is our excellent understanding of its metabolism and physiology. This knowledge base, together with innovative systems metabolic engineering concepts, which integrate systems and synthetic biology into strain engineering, has upgraded C. glutamicum into one of the most successful industrial microorganisms in the world.
Integration of magnetic bearings in the design of advanced gas turbine engines
NASA Technical Reports Server (NTRS)
Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.
1994-01-01
Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.
Innovations of Engineering Company and Competitiveness in the Mining Equipment Market
NASA Astrophysics Data System (ADS)
Pogrebnoi, Vladislav; Samorodova, Lyudmila; Shut'ko, Larisa; Yakunina, Yulia; Lyubimov, Oleg
2017-11-01
The article deals with issues related to the development of innovative projects by engineering companies and effective marketing policy as a factor of increasing their competitiveness in the mining equipment market. The paper presents the results of the development of innovative technology in the segment of extensible belt conveyors. The necessity of marketing the innovative project is proved by the example of the development of technology for the production of the motor-drum of a belt conveyor with an adjustable drive on continuous current magnets by the engineering company "Transport-Electroprivod" (LLC). The authors consider the effective marketing strategy of an engineering company as an attractor of increasing demand for innovation and competitiveness in the mining equipment market. The methods of marketing promotion and promotion of innovations are considered within the framework of the ecosystem concept of J. Moore.
An innovative system for supplying air and fuel mixture to a combustion chamber of an engine
NASA Astrophysics Data System (ADS)
Saikumar, G. R. Bharath
2018-04-01
Conventional carburetors are being used since decades to ensure that the desired ratio of air and fuel enters the combustion chamber for combustion for the purpose of generating power in an Spark Ignition(SI) internal combustion engine. However to increase the efficiency, the carburetor system is gradually being replaced by fuel injection systems. Fuel injection systems use injectors to supply pressurized fuel into the combustion chamber. Owing to the high initial and maintenance cost, carburetors are still ruling in the low cost vehicle domain. An innovative concept is conceived, which is an alternative method to the carburetor system to supply the air and fuel mixture to a combustion chamber of an engine. This system comprises of an inner hollow cylinder with minute holes drilled along its length with an outer cylinder capable of sliding along its length or its longitudinal axis. This system is placed in the venturi instead of the conventional carburetor system. Fuel enters from the bottom inlet of the inner cylinder and flows out through the holes provided along its length. The fuel flow from the inner cylinder is dependent on the size and the number of holes exposed at that instance by the sliding outer cylinder which in turn is connected to the throttle or accelerator.
An Engineering Educator's Decision Support Tool for Improving Innovation in Student Design Projects
ERIC Educational Resources Information Center
Ozaltin, Nur Ozge; Besterfield-Sacre, Mary; Clark, Renee M.
2015-01-01
Learning how to design innovatively is a critical process skill for undergraduate engineers in the 21st century. To this end, our paper discusses the development and validation of a Bayesian network decision support tool that can be used by engineering educators to make recommendations that positively impact the innovativeness of product designs.…
An Overview of SBIR Phase 2 Airbreathing Propulsion Technologies
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.; Bitler, Dean W.
2014-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Airbreathing Propulsion which is one of six core competencies at NASA Glenn Research Center. There are twenty technologies featured with emphasis on a wide spectrum of applications such as with a Turbo-Brayton cryocooler for aircraft superconducting systems, braided composite rotorcraft structures, engine air brake, combustion control valve, flexible composite driveshaft, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency programs. This report highlights 11 of the innovative SBIR 2014 Phase I and II projects from 2010 to 2012 that focus on one of NASA Glenn Research Center's six core competencies-In-Space Propulsion and Cryogenic Fluids Management. The technologies cover a wide spectrum of applications such as divergent field annular ion engines, miniature nontoxic nitrous oxide-propane propulsion, noncatalytic ignition systems for high-performance advanced monopropellant thrusters, nontoxic storable liquid propulsion, and superconducting electric boost pumps for nuclear thermal propulsion. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
Han, Xueying; Stocking, Galen; Gebbie, Matthew A; Appelbaum, Richard P
2015-01-01
The U.S. currently enjoys a position among the world's foremost innovative and scientifically advanced economies but the emergence of new economic powerhouses like China and India threatens to disrupt the global distribution of innovation and economic competitiveness. Among U.S. policy makers, the promotion of advanced education, particularly in the STEM (Science, Technology, Engineering and Mathematics) fields, has become a key strategy for ensuring the U.S.'s position as an innovative economic leader. Since approximately one third of science and engineering post-graduate students in the U.S. are foreign born, the future of the U.S. STEM educational system is intimately tied to issues of global competitiveness and American immigration policy. This study utilizes a combination of national education data, a survey of foreign-born STEM graduate students, and in-depth interviews of a sub-set of those students to explain how a combination of scientists' and engineers' educational decisions, as well as their experience in school, can predict a students' career path and geographical location, which can affect the long-term innovation environment in their home and destination country. This study highlights the fact that the increasing global competitiveness in STEM education and the complex, restrictive nature of U.S. immigration policies are contributing to an environment where the American STEM system may no longer be able to comfortably remain the premier destination for the world's top international students.
Innovative assessment paradigm to enhance student learning in engineering education
NASA Astrophysics Data System (ADS)
El-Maaddawy, Tamer
2017-11-01
Incorporation of student self-assessment (SSA) in engineering education offers opportunities to support and encourage learner-led-learning. This paper presents an innovative assessment paradigm that integrates formative, summative, and SSA to enhance student learning. The assessment innovation was implemented in a senior-level civil engineering design course. Direct evidence of the impact of employing this innovation on student learning and achievement was derived by monitoring student academic performance in direct assessment tasks throughout the semester. Students' feedback demonstrated the effectiveness of this innovation to improve their understanding of course topics build their autonomy, independent judgement, and self-regulated learning skills.
Second Generation RLV Space Vehicle Concept
NASA Astrophysics Data System (ADS)
Bailey, M. D.; Daniel, C. C.
2002-01-01
NASA has a long history of conducting development programs and projects in a consistant fashion. Systems Engineering within those programs and projects has also followed a given method outlined by such documents as the NASA Systems Engineering Handbook. The relatively new NASA Space Launch Initiative (SLI) is taking a new approach to developing a space vehicle, with innovative management methods as well as new Systems Engineering processes. With the program less than a year into its life cycle, the efficacy of these new processes has yet to be proven or disproven. At 776M for phase I, SLI represents a major portion of the NASA focus; however, the new processes being incorporated are not reflected in the training provided by NASA to its engineers. The NASA Academy of Program and Project Leadership (APPL) offers core classes in program and project management and systems engineering to NASA employees with the purpose of creating a "knowledge community where ideas, skills, and experiences are exchanged to increase each other's capacity for strong leadership". The SLI program is, in one sense, a combination of a conceptual design program and a technology program. The program as a whole doesn't map into the generic systems engineering project cycle as currently, and for some time, taught. For example, the NASA APPL Systems Engineering training course teaches that the "first step in developing an architecture is to define the external boundaries of the system", which will require definition of the interfaces with other systems and the next step will be to "define all the components that make up the next lower level of the system hierarchy" where fundamental requirements are allocated to each component. Whereas, the SLI technology risk reduction approach develops architecture subsystem technologies prior to developing architectures. The higher level architecture requirements are not allowed to fully develop and undergo decomposition and allocation down to the subsystems before the subsystems must develop allocated requirements based on the highest level of requirements. In the vernacular of the project cycles prior to the mid 1990's, the architecture definition portion of the program appears to be at a generic Phase A stage, while the subsystems are operating at Phase B. Even the management structure of the SLI program is innovative in its approach to Systems Engineering and is not reflected in the APPL training modules. The SLI program has established a Systems Engineering office as an office separate from the architecture development or the subsystem technology development, while that office does have representatives within these other offices. The distributed resources of the Systems Engineering Office are co=located with the respect Project Offices. This template is intended to provide systems engineering as an integrated function at the Program Level. . Undoubtedly, the program management of SLI and the NIAT agree that "program/project managers and the systems engineering team must work closely together towards the single objective of delivering quality products that meet the customer needs". This paper will explore the differences between the methods being taught by NASA, which represent decades of ideas, and those currently in practice in SLI. Time will tell if the innovation employed by SLI will prove to be the model of the future. For now, it is suggested that the training of the present exercise the flexibility of recognizing the new processes employed by a major new NASA program.
Second Generation RLV Space Vehicle Concept
NASA Technical Reports Server (NTRS)
Bailey, Michelle; Daniel, Charles; Throckmorton, David A. (Technical Monitor)
2002-01-01
NASA has a long history of conducting development programs and projects in a consistent fashion. Systems Engineering within those programs and projects has also followed a given method outlined by such documents as the NASA Systems Engineering Handbook. The relatively new NASA Space Launch Initiative (SLI) is taking a new approach to developing a space vehicle, with innovative management methods as well as new Systems Engineering processes. With the program less than a year into its life cycle, the efficacy of these new processes has yet to be proven or disproven. At $776M for phase 1, SLI represents a major portion of the NASA focus; however, the new processes being incorporated are not reflected in the training provided by NASA to its engineers. The NASA Academy of Program and Project Leadership (APPL) offers core classes in program and project management and systems engineering to NASA employees with the purpose of creating a "knowledge community where ideas, skills, and experiences are exchanged to increase each other's capacity for strong leadership". The SLI program is, in one sense, a combination of a conceptual design program and a technology program. The program as a whole doesn't map into the generic systems engineering project cycle as currently, and for some time, taught. For example, the NASA APPL Systems Engineering training course teaches that the "first step in developing an architecture is to define the external boundaries of the system", which will require definition of the interfaces with other systems and the next step will be to "define all the components that make up the next lower level of the system hierarchy" where fundamental requirements are allocated to each component. Whereas, the SLI technology risk reduction approach develops architecture subsystem technologies prior to developing architectures. The higher level architecture requirements are not allowed to fully develop and undergo decomposition and allocation down to the subsystems before the subsystems must develop allocated requirements based on the highest level of requirements. In the vernacular of the project cycles prior to the mid 1990's, the architecture definition portion of the program appears to be at a generic Phase A stage, while the subsystems are operating at Phase B. Even the management structure of the SLI program is innovative in its approach to Systems Engineering and is not reflected in the APPL training modules. The SLI program has established a Systems Engineering office as an office separate from the architecture development or the subsystem technology development, while that office does have representatives within these other offices. The distributed resources of the Systems Engineering Office are co-located with the respective Project Offices. This template is intended to provide systems engineering as an integrated function at the Program Level. the program management of SLI and the MAT agree that "program/project managers and the systems engineering team must work closely together towards the single objective of delivering quality products that meet the customer needs". This paper will explore the differences between the methods being taught by NASA, which represent decades of ideas, and those currently in practice in SLI. Time will tell if the innovation employed by SLI will prove to be the model of the future. For now, it is suggested that the training of the present exercise the flexibility of recognizing the new processes employed by a major new NASA program.
Sustainability of Agricultural Systems: Concept to Application
Agriculture not only feeds the planet, it also is the biggest overall factor affecting the environment. Thus, innovative sustainable farming systems that produce healthy food and protect the environment at the same time are very much needed. We, as agricultural engineers, need ...
Human Centered Hardware Modeling and Collaboration
NASA Technical Reports Server (NTRS)
Stambolian Damon; Lawrence, Brad; Stelges, Katrine; Henderson, Gena
2013-01-01
In order to collaborate engineering designs among NASA Centers and customers, to in clude hardware and human activities from multiple remote locations, live human-centered modeling and collaboration across several sites has been successfully facilitated by Kennedy Space Center. The focus of this paper includes innovative a pproaches to engineering design analyses and training, along with research being conducted to apply new technologies for tracking, immersing, and evaluating humans as well as rocket, vehic le, component, or faci lity hardware utilizing high resolution cameras, motion tracking, ergonomic analysis, biomedical monitoring, wor k instruction integration, head-mounted displays, and other innovative human-system integration modeling, simulation, and collaboration applications.
NREL Next Generation Drivetrain: Mechanical Design and Test Plan (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, J.; Halse, C.
The Department of Energy and industry partners are sponsoring a $3m project for design and testing of a 'Next Generation' wind turbine drivetrain at the National Renewable Energy Laboratory (NREL). This poster focuses on innovative aspects of the gearbox design, completed as part of an end-to-end systems engineering approach incorporating innovations that increase drivetrain reliability, efficiency, torque density and minimize capital cost.
Smith, B R
2009-01-01
Most major cities worldwide face urban water management challenges relating to drinking supply, stormwater and wastewater treatment, and ecological preservation. In light of climate change and finite natural resources, addressing these challenges in sustainable ways will require innovative solutions arising from interdisciplinary collaboration. This article summarizes five major urban water management strategies that bridge the fields of engineering, ecology, landscape architecture, and urban planning. A conceptual implementation of these strategies is demonstrated through a design for a small constructed wetland treatment system in San Francisco, California. The proposed decentralized system described in this article consists of a detention basin, vegetated and open free water surface wetlands, and ultraviolet disinfection. In wet weather, the system would detain and treat combined sewer discharges (CSD), and in dry weather it would treat residential greywater for toilet flushing and irrigation in a nearby neighborhood. It is designed to adapt over time to changing climatic conditions and treatment demands. Importantly, this proposal demonstrates how constructed wetland engineers can incorporate multiple benefits into their systems, offering a vision of how wastewater infrastructure can be an attractive community, educational, recreational, and habitat amenity through the integration of engineering, ecology, and landscape design.
Systems Metabolic Engineering of Escherichia coli.
Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup
2016-05-01
Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.
Systems Metabolic Engineering of Escherichia coli.
Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup
2017-03-01
Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.
Mechatronics as a Technological Basis for an Innovative Learning Environment in Engineering
ERIC Educational Resources Information Center
Garner, Gavin Thomas
2009-01-01
Mechatronic systems that couple mechanical and electrical systems with the help of computer control are forcing a paradigm shift in the design, manufacture, and implementation of mechanical devices. The inherently interdisciplinary nature of these systems generates exciting new opportunities for developing a hands-on, inventive, and…
Spaceport Command and Control System Automated Testing
NASA Technical Reports Server (NTRS)
Stein, Meriel
2017-01-01
The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administrations (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires high quality testing that will properly measure the capabilities of the system. Automating the test procedures would save the project time and money. Therefore, the Electrical Engineering Division at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.
Spaceport Command and Control System Automation Testing
NASA Technical Reports Server (NTRS)
Hwang, Andrew
2017-01-01
The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administrations (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires high quality testing that will properly measure the capabilities of the system. Automating the test procedures would save the project time and money. Therefore, the Electrical Engineering Division at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.
Egami, Mime; Haraguchi, Yuji; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo
2014-01-01
Cell sheet engineering, which allows tissue engineering to be realized without the use of biodegradable scaffolds as an original approach, using a temperature-responsive intelligent surface, has been applied in regenerative medicine for various tissues, and a number of clinical studies have been already performed for life-threatening diseases. By using the results and findings obtained from the initial clinical studies, additional investigative clinical studies in several tissues with cell sheet engineering are currently in preparation stage. For treating many patients effectively by cell sheet engineering, an automated system integrating cell culture, cell-sheet fabrication, and layering is essential, and the system should include an advanced three-dimensional suspension cell culture system and an in vitro bioreactor system to scale up the production of cultured cells and fabricate thicker vascularized tissues. In this paper, cell sheet engineering, its clinical application, and further the authors' challenge to develop innovative cell culture systems under newly legislated regulatory platform in Japan are summarized and discussed.
A Return to Innovative Engineering Design, Critical Thinking and Systems Engineering
NASA Technical Reports Server (NTRS)
Camarda, Charles J.
2007-01-01
I believe we are facing a critical time where innovative engineering design is of paramount importance to the success of our aerospace industry. However, the very qualities and attributes necessary for enhancing, educating, and mentoring a creative spirit are in decline in important areas. The importance of creativity and innovation in this country was emphasized by a special edition of the Harvard Business Review OnPoint entitled: "The Creative Company" which compiled a series of past and present articles on the subject of creativity and innovation and stressed its importance to our national economy. There is also a recognition of a lack of engineering, critical thinking and problem-solving skills in our education systems and a trend toward trying to enhance those skills by developing K-12 educational programs such as Project Lead the Way, "Science for All Americans", Benchmarks 2061 , etc. In addition, with respect to spacecraft development, we have a growing need for young to mid-level engineers with appropriate experience and skills in spacecraft design, development, analysis, testing, and systems engineering. As the Director of Engineering at NASA's Johnson Space Center, I realized that sustaining engineering support of an operational human spacecraft such as the Space Shuttle is decidedly different than engineering design and development skills necessary for designing a new spacecraft such as the Crew Exploration Vehicle of the Constellation Program. We learned a very important lesson post Columbia in that the Space Shuttle is truly an experimental and not an operational vehicle and the strict adherence to developed rules and processes and chains of command of an inherently bureaucratic organizational structure will not protect us from a host of known unknowns let alone unknown unknowns. There are no strict rules, processes, or procedures for understanding anomalous results of an experiment, anomalies with an experimental spacecraft like Shuttle, or in the conceptual design of a spacecraft. Engineering design is as much an art as it is a science. The critical thinking skills necessary to uncover lurking problems in an experimental design and creatively develop solutions are some of the same skills necessary to design a new spacecraft. Thus, I believe engineers unfamiliar with or removed from design and development need time to transition and develop the required skill set to be effective spacecraft designers. I believe the creative process necessary in design can be enhanced and even taught as early as grades K-12 and should continue to be nurtured and developed at the university level and beyond. I am going to present a strategy for developing learning teams to address complex multidisciplinary problems and to creatively develop solutions to those problems rapidly at minimal cost. I will frame a real problem, the development of on-orbit thermal protection system repair of the Space Shuttle, and step through the series of skills necessary to enhance the creative process. The case study I will illustrate is based on a real project, the R&D Reinforced Carbon-Carbon (RCC) Repair Team's development of on-orbit repair concepts for damaged Space Shuttle RCC nose cap and/or leading edges.
A Phenomenographic Investigation of the Ways Engineering Students Experience Innovation
ERIC Educational Resources Information Center
Fila, Nicholas David
2017-01-01
Innovation has become an important phenomenon in engineering and engineering education. By developing novel, feasible, viable, and valued solutions to complex technical and human problems, engineers support the economic competitiveness of organizations, make a difference in the lives of users and other stakeholders, drive societal and scientific…
Potential of Cognitive Computing and Cognitive Systems
NASA Astrophysics Data System (ADS)
Noor, Ahmed K.
2015-01-01
Cognitive computing and cognitive technologies are game changers for future engineering systems, as well as for engineering practice and training. They are major drivers for knowledge automation work, and the creation of cognitive products with higher levels of intelligence than current smart products. This paper gives a brief review of cognitive computing and some of the cognitive engineering systems activities. The potential of cognitive technologies is outlined, along with a brief description of future cognitive environments, incorporating cognitive assistants - specialized proactive intelligent software agents designed to follow and interact with humans and other cognitive assistants across the environments. The cognitive assistants engage, individually or collectively, with humans through a combination of adaptive multimodal interfaces, and advanced visualization and navigation techniques. The realization of future cognitive environments requires the development of a cognitive innovation ecosystem for the engineering workforce. The continuously expanding major components of the ecosystem include integrated knowledge discovery and exploitation facilities (incorporating predictive and prescriptive big data analytics); novel cognitive modeling and visual simulation facilities; cognitive multimodal interfaces; and cognitive mobile and wearable devices. The ecosystem will provide timely, engaging, personalized / collaborative, learning and effective decision making. It will stimulate creativity and innovation, and prepare the participants to work in future cognitive enterprises and develop new cognitive products of increasing complexity. http://www.aee.odu.edu/cognitivecomp
An engineering approach to modelling, decision support and control for sustainable systems.
Day, W; Audsley, E; Frost, A R
2008-02-12
Engineering research and development contributes to the advance of sustainable agriculture both through innovative methods to manage and control processes, and through quantitative understanding of the operation of practical agricultural systems using decision models. This paper describes how an engineering approach, drawing on mathematical models of systems and processes, contributes new methods that support decision making at all levels from strategy and planning to tactics and real-time control. The ability to describe the system or process by a simple and robust mathematical model is critical, and the outputs range from guidance to policy makers on strategic decisions relating to land use, through intelligent decision support to farmers and on to real-time engineering control of specific processes. Precision in decision making leads to decreased use of inputs, less environmental emissions and enhanced profitability-all essential to sustainable systems.
NASA Astrophysics Data System (ADS)
Millet, Charlyne; Oget, David; Cavallucci, Denis
2017-11-01
Innovation is a key component to the success and longevity of companies. Our research opens the 'black box' of creativity and innovation in R&D teams. We argue that understanding the nature of R&D projects in terms of creativity/innovation, efficiency/inefficiency, is important for designing education policies and improving engineering curriculum. Our research addresses the inventive design process, a lesser known aspect of the innovation process, in 197 R&D departments of industrial sector companies in France. One fundamental issue facing companies is to evaluate processes and results of innovation. Results show that the evaluation of innovation is confined by a lack of methodology of inventive projects. We will be establishing the foundations of a formal ontology for inventive design projects and finally some recommendations for engineering education.
Patterson, P E
2007-01-01
In our new global economy, biomedical product development teams need to be even more innovative in an environment constrained by fewer resources with less time from concept to market. Teams are often comprised of individuals spread around the world. To simulate this setting, we revised an existing course to incorporate teams of on-campus and distance students, with each team including both engineers and other specialties. Through interactive lectures and projects, we presented a systematic approach to innovation that should be useful to engineers and non-engineers alike. Students found the course challenging and exciting, displaying an improved ability to work in distributed teams and in developing innovative design solutions.
NASA Technical Reports Server (NTRS)
1987-01-01
The Unducted Fan (UDF) engine is an innovative aircraft engine concept based on an ungeared, counterrotating, unducted, ultra-high-bypass turbofan configuration. This engine is being developed to provide a high thrust-to-weight ratio power plant with exceptional fuel efficiency for subsonic aircraft application. This report covers the successful ground testing of this engine. A test program exceeding 100-hr duration was completed, in which all the major goals were achieved. The following accomplishments were demonstrated: (1) full thrust (25,000 lb); (2) full counterrotating rotor speeds (1393+ rpm); (3) low specific fuel consumption (less than 0.24 lb/hr/lb); (4) new composite fan design; (5) counterrotation of structures, turbines, and fan blades; (6) control system; (7) actuation system; and (8) reverse thrust.
Development of a Thermoacoustic Stirling Engine Technology Demonstrator
NASA Astrophysics Data System (ADS)
Reissner, Alexander; Gerger, Joachim; Hummel, Stefan; Reißig, Jannis; Pawelke, Roland
2014-08-01
Waste heat is a primary source of energy loss in many aerospace and terrestrial applications. FOTEC, an Austrian Research Company located in Wiener Neustadt, is presently developing a micro power converter, promising high efficiencies even for small- scale applications. The converter is based on an innovative thermoacoustic stirling engine concept without any moving parts. Such a maintenance-free engine system would be particularly suitable for advanced space power systems (radioisotope, waste heat) or even within the scope of terrestrial energy harvesting. This paper will summarizes the status of our ongoing efforts on this micro power converter technology.
ERIC Educational Resources Information Center
White, Christina; Wood, Kristin; Jensen, Dan
2012-01-01
The heart and soul of engineering is innovation and our ability to improve the human condition through design. To enrich engineering education, it is critical that we advance our teaching in innovation and design processes. This research focuses on the ideation component of innovation through the investigation of a suite of concept generation…
NASA Astrophysics Data System (ADS)
Violante, Maria Grazia; Vezzetti, Enrico
2017-11-01
In the twenty-first century, meeting our technological challenges demands educational excellence, a skilled populace that is ready for the critical challenges society faces. There is widespread consensus, however, that education systems are failing to adequately prepare all students with the essential twenty-first century knowledge and skills necessary to succeed in life, career, and citizenship. The purpose of this paper is to understand how twenty-first century knowledge and skills can be appropriately embedded in engineering education finalised to innovative product development by using additive manufacturing (AM). The study designs a learning model by which to achieve effective AM education to address the requirements of twenty-first century and to offer students the occasion to experiment with STEM (Science, technology, engineering, and mathematics) concepts. The study is conducted using the quality function deployment (QFD) methodology.
Ye, X. W.; Su, Y. H.; Han, J. P.
2014-01-01
In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250
Ye, X W; Su, Y H; Han, J P
2014-01-01
In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.
Training of Engineering Personnel for the Innovative Coal Industry: Problems and Ways of Solution
NASA Astrophysics Data System (ADS)
Zaruba, Natalya; Fraltsova, Tamara; Snegireva, Tatyana
2017-11-01
The article is written based on some results of the long-term scientific research of the problem related to the urgent need to find the ways of training personnel for the innovative coal industry in the higher education system. This is due to the fundamental changes in the Russian social and economic conditions: the change in the social system and the owner of the coal industry, the emergence of new technologies in the field of coal mining and processing, and in the management of these processes. At the same time, the system of training specialists for the coal industry in the higher education institutions has largely remained unchanged: technologies and principles of training, scientific approaches and concepts take little account of the changed situation, traditional views of specialists work-ing in the university continue to dominate innovative ideas. Many innovations, especially related to technology and the principles of education, struggle to make their way into the higher education system. The article substantiates the urgency of the problem of training personnel for the innovative coal industry in the higher education system, as well as the importance of scientific analysis of the problem in order to find the ways to solve it.
Nadkarni, Devika; Elhajj, Imad; Dawy, Zaher; Ghattas, Hala; Zaman, Muhammad H
2017-01-01
Conflict and the subsequent displacement of populations creates unique challenges in the delivery of quality health care to the affected population. Equitable access to quality care demands a multi-pronged strategy with a growing need, and role, for technological innovation to address these challenges. While there have been significant contributions towards alleviating the burden of conflict via data informatics and analytics, communication technology, and geographic information systems, little has been done within biomedical engineering. This article elaborates on the causes for gaps in biomedical innovation for refugee populations affected by conflict, tackles preconceived notions, takes stock of recent developments in promising technologies to address these challenges, and identifies tangible action items to create a stronger and sustainable pipeline for biomedical technological innovation to improve the health and well-being of an increasing group of vulnerable people around the world.
Damage-Tolerant, Affordable Composite Engine Cases Designed and Fabricated
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Roberts, Gary D.; Pereira, J. Michael; Bowman, Cheryl L.
2005-01-01
An integrated team of NASA personnel, Government contractors, industry partners, and university staff have developed an innovative new technology for commercial fan cases that will substantially influence the safety and efficiency of future turbine engines. This effective team, under the direction of the NASA Glenn Research Center and with the support of the Federal Aviation Administration, has matured a new class of carbon/polymer composites and demonstrated a 30- to 50-percent improvement in specific containment capacity (blade fragment kinetic energy/containment system weight). As the heaviest engine component, the engine case/containment system greatly affects both the safety and efficiency of aircraft engines. The ballistic impact research team has developed unique test facilities and methods for screening numerous candidate material systems to replace the traditional heavy, metallic engine cases. This research has culminated in the selection of a polymer matrix composite reinforced with triaxially braided carbon fibers and technology demonstration through the fabrication of prototype engine cases for three major commercial engine manufacturing companies.
Sustainable NREL: From Integration to Innovation
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-09-01
NREL's sustainability practices are integrated throughout the laboratory and are essential to our mission to develop clean energy and energy efficiency technologies and practices, advance related science and engineering, and provide knowledge and innovations to integrate energy systems at all scales. Sustainability initiatives are integrated through our campus, our staff, and our environment allowing NREL to provide leadership in modeling a sustainability energy future for companies, organizations, governments, and communities.
ERIC Educational Resources Information Center
Ybarra, Gary A.; Collins, Leslie M.; Huettel, Lisa G.; Brown, April S.; Coonley, Kip D.; Massoud, Hisham Z.; Board, John A.; Cummer, Steven A.; Choudhury, Romit Roy; Gustafson, Michael R.; Jokerst, Nan M.; Brooke, Martin A.; Willett, Rebecca M.; Kim, Jungsang; Absher, Martha S.
2011-01-01
The field of electrical and computer engineering has evolved significantly in the past two decades. This evolution has broadened the field of ECE, and subfields have seen deep penetration into very specialized areas. Remarkable devices and systems arising from innovative processes, exotic materials, high speed computer simulations, and complex…
ERIC Educational Resources Information Center
Lehmann, M.; Christensen, P.; Du, X.; Thrane, M.
2008-01-01
In a world where systems are increasingly larger, where their boundaries are often difficult to identify, and where societal rather than technical issues play increasingly bigger roles, problems cannot be solved by applying a technical solution alone. It thus becomes important for engineers to be skilled not only in terms of their particular…
13th Annual Systems Engineering Conference: Tues- Wed
2010-10-28
greater understanding/documentation of lessons learned – Promotes SE within the organization • Justification for continued funding of SE Infrastructure...educational process – Addresses the development of innovative learning tools, strategies, and teacher training • Research and Development – Promotes ...technology, and mathematics • More commitment to engaging young students in science, engineering, technology and mathematics • More rigor in defining
Redefining What's Possible for Renewable Energy: Grid Integration
Cochran, Jaquelin; Milligan, Michael; Bloom, Aaron; Lopez, Anthony; Mai, Trieu
2018-05-16
The Energy Department's National Renewable Energy Laboratory (NREL) is spearheading engineering innovations that will help optimize the entire energy system, and the lab's analysis capabilities complement that engineering work by identifying ways to integrate renewable energy effectively and economically. This 3-minute video shows how NREL research and analysis are redefining whatâs possible for renewable energy on the grid.
ERIC Educational Resources Information Center
McLurkin, J.; Rykowski, J.; John, M.; Kaseman, Q.; Lynch, A. J.
2013-01-01
This paper describes the experiences of using an advanced, low-cost robot in science, technology, engineering, and mathematics (STEM) education. It presents three innovations: It is a powerful, cheap, robust, and small advanced personal robot; it forms the foundation of a problem-based learning curriculum; and it enables a novel multi-robot…
ERIC Educational Resources Information Center
Davis, C. E.; Yeary, M. B.; Sluss, J. J., Jr.
2012-01-01
This paper discusses an all-encompassing approach to increase the number of students in engineering through innovative outreach, recruiting, and retention programs. Prior to adopting these programs, the School of Electrical and Computer Engineering (ECE) at the University of Oklahoma (OU), Norman, experienced a reduction in engineering enrollment…
The Technology of Forming of Innovative Content for Engineering Education
ERIC Educational Resources Information Center
Kayumova, Lilija A.; Savva, Lubov I.; Soldatchenko, Aleksandr L.; Sirazetdinov, Rustem M.; Akhmetov, Linar G.
2016-01-01
The relevance of the study is conditioned by the modernization of engineering education aimed at specialists' training to solve engineering and economic problems effectively. The goal of the paper is to develop the technology of the innovative content's formation for engineering education. The leading method to the study of this problem is a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodge, Martha; Coulter, John
2014-09-25
Program Purpose and Position: The mission of the Master of Engineering in Energy Systems Engineering program is to invigorate the pipeline of new engineering graduates interested in energy oriented careers and thus produce a new generation of technical leaders for the energy and power industries. Over the next decade, nearly 50% of the skilled workers and technical leaders in the gas and electric utility industries will retire -- a much larger void than the current available and qualified professionals could fill [CEWD, 2012 survey]. The Masters of Engineering in Energy System Engineering program provides an opportunity for cross-discipline education formore » graduates interested in a career in the energy industry. It focuses on electric power and the challenges and opportunities to develop a sustainable, reliable and resilient system that meets human needs in an increasingly sustainable manner through the use of environmentally sound energy resources and delivery. Both graduates and employers benefit from a well-trained professional workforce that is ready to hit the road running and be immediately productive in meeting these challenges, through this innovative and unique program.« less
The Advanced Exploration Systems Water Recovery Project: Innovation on 2 Fronts
NASA Technical Reports Server (NTRS)
Sarguisingh, Miriam M.; Neumeyer, Derek; Shull, Sarah
2012-01-01
As NASA looks forward to sending humans farther away from Earth, we will have to develop a transportation architecture that is highly reliable and that can sustain life for long durations without the benefit of Earth s proximity for continuous resupply or even operational guidance. NASA has consistently been challenged with performing great feats of innovation, but particularly in this time of economic stress, we are challenged to go farther with less. The Advanced Exploration Systems (AES) projects were implemented to address both of these needs by not only developing innovative technologies, but by incorporating innovative management styles and processes that foster the needed technical innovation given a small amount of resources. This presentation explains how the AES Water Recovery Project is exhibiting innovation on both fronts; technical and process. The AES Water Recovery Project (WRP) is actively engineering innovative technologies in order to maximize the efficiency of water recovery. The development of reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support (ECLS) is critical to enable long-duration human missions outside of low-Earth orbit. Recycling of life support consumables is necessary to reduce resupply mass and provide for vehicle autonomy. To address this, the WRP is working on a rotary distiller that has shown enhanced performance over the state-of-the-art (SOA). Additionally, the WRP is looking at innovative ways to address issues present in the state-of-the-art (SOA) systems pertaining to toxicity and calcium scale buildup. As an AES project, the WRP has a more streamlined Skunk Works like approach to technology development intended to reduce overhead but achieve a more refined end product. The project has incorporated key partnerships between NASA centers as well as between NASA and industry. A minimal project management style has been implemented such that risks are managed and milestones tracked without overburdening the team with reporting demands that take them away from their work. A lean Systems Engineering (SE) approach has been implemented where project objectives are defined and vetted early without overprescribing the process or limiting the ability to innovate. Finally, we are working with existing flight hardware support organizations like operations, safety, materials and others to impact the system design at the breadboard level. This type of early input is a key to ensuring that the technologies are developed on the right track to becoming space flight worthy.
ERIC Educational Resources Information Center
Schlager, Kenneth J.
2008-01-01
This report describes a communications system engineering planning process that demonstrates an ability to design and deploy cost-effective broadband networks in low density rural areas. The emphasis in on innovative solutions and systems optimization because of the marginal nature of rural telecommunications infrastructure investments. Otherwise,…
Measuring the style of innovative thinking among engineering students
NASA Astrophysics Data System (ADS)
Passig, David; Cohen, Lizi
2014-01-01
Background: Many tools have been developed to measure the ability of workers to innovate. However, all of them are based on self-reporting questionnaires, which raises questions about their validity Purpose: The aim was to develop and validate a tool, called Ideas Generation Implementation (IGI), to objectively measure the style and potential of engineering students in generating innovative technological ideas. The cognitive framework of IGI is based on the Architectural Innovation Model (AIM). Tool description: The IGI tool was designed to measure the level of innovation in generating technological ideas and their potential to be implemented. These variables rely on the definition of innovation as 'creativity, implemented in a high degree of success'. The levels of innovative thinking are based on the AIM and consist of four levels: incremental innovation, modular innovation, architectural innovation and radical innovation. Sample: Sixty experts in technological innovation developed the tool. We checked its face validity and calculated its reliability in a pilot study (kappa = 0.73). Then, 145 undergraduate students were sampled at random from the seven Israeli universities offering engineering programs and asked to complete the questionnaire. Design and methods: We examined the construct validity of the tool by conducting a variance analysis and measuring the correlations between the innovator's style of each student, as suggested by the AIM, and the three subscale factors of creative styles (efficient, conformist and original), as suggested by the Kirton Adaptors and Innovators (KAI) questionnaire. Results: Students with a radical innovator's style inclined more than those with an incremental innovator's style towards the three creative cognitive styles. Students with an architectural innovator's style inclined moderately, but not significantly, towards the three creative styles. Conclusions: The IGI tool objectively measures innovative thinking among students, thus allowing screening of potential employees at an early stage, during their undergraduate studies. The tool was found to be reliable and valid in measuring the style and potential of technological innovation among engineering students.
Integrated exhaust gas analysis system for aircraft turbine engine component testing
NASA Technical Reports Server (NTRS)
Summers, R. L.; Anderson, R. C.
1985-01-01
An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks.
Next-Generation RS-25 Engines for the NASA Space Launch System
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2017-01-01
The utilization of heritage RS-25 engines, also known as the Space Shuttle Main Engine (SSME), has enabled rapid progress in the development and certification of the NASA Space Launch System (SLS) toward operational flight status. The RS-25 brings design maturity and extensive experience gained through 135 missions, 3000+ ground tests, and over 1 million seconds total accumulated hot-fire time. In addition, there were also 16 flight engines and 2 development engines remaining from the Space Shuttle program that could be leveraged to support the first four flights. Beyond these initial SLS flights, NASA must have a renewed supply of RS-25 engines that must reflect program affordability imperatives as well as technical requirements imposed by the SLS Block-1B vehicle (i.e., 111% RPL power level, reduced service life). Recognizing the long lead times needed for the fabrication, assembly and acceptance testing of flight engines, design activities are underway to improve system affordability and eliminate obsolescence concerns. These key objectives are enabled largely by utilizing modern materials and fabrication technologies, but also by innovations in systems engineering and integration (SE&I) practices.
Perspectives on knowledge in engineering design
NASA Technical Reports Server (NTRS)
Rasdorf, W. J.
1985-01-01
Various perspectives are given of the knowledge currently used in engineering design, specifically dealing with knowledge-based expert systems (KBES). Constructing an expert system often reveals inconsistencies in domain knowledge while formalizing it. The types of domain knowledge (facts, procedures, judgments, and control) differ from the classes of that knowledge (creative, innovative, and routine). The feasible tasks for expert systems can be determined based on these types and classes of knowledge. Interpretive tasks require reasoning about a task in light of the knowledge available, where generative tasks create potential solutions to be tested against constraints. Only after classifying the domain by type and level can the engineer select a knowledge-engineering tool for the domain being considered. The critical features to be weighed after classification are knowledge representation techniques, control strategies, interface requirements, compatibility with traditional systems, and economic considerations.
ERIC Educational Resources Information Center
California State Univ., Engineering Council for Teaching and Learning.
This document provides the keynote address and papers delivered at the 1991 California State University Conference on Innovation in Engineering Education which focused on the pre-engineering curriculum. The conference was convened as a collaborative effort by faculty to address the following issues in engineering education: (1) the attraction and…
NASA Technical Reports Server (NTRS)
1999-01-01
Duncan Technologies, Inc., (DTI) developed an infrared imaging system for detection of hydrogen flames in the Space Shuttle Main Engines. The product is the result of a NASA Small Business Innovation Research (SBIR) award from the Stennis Space Center.
Innovative Assessment Paradigm to Enhance Student Learning in Engineering Education
ERIC Educational Resources Information Center
El-Maaddawy, Tamer
2017-01-01
Incorporation of student self-assessment (SSA) in engineering education offers opportunities to support and encourage learner-led-learning. This paper presents an innovative assessment paradigm that integrates formative, summative, and SSA to enhance student learning. The assessment innovation was implemented in a senior-level civil engineering…
Practical Application of Model-based Programming and State-based Architecture to Space Missions
NASA Technical Reports Server (NTRS)
Horvath, Gregory A.; Ingham, Michel D.; Chung, Seung; Martin, Oliver; Williams, Brian
2006-01-01
Innovative systems and software engineering solutions are required to meet the increasingly challenging demands of deep-space robotic missions. While recent advances in the development of an integrated systems and software engineering approach have begun to address some of these issues, they are still at the core highly manual and, therefore, error-prone. This paper describes a task aimed at infusing MIT's model-based executive, Titan, into JPL's Mission Data System (MDS), a unified state-based architecture, systems engineering process, and supporting software framework. Results of the task are presented, including a discussion of the benefits and challenges associated with integrating mature model-based programming techniques and technologies into a rigorously-defined domain specific architecture.
Mazda's new V-6 gasoline engine and its innovative induction system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatamura, K.; Morishita, K.; Asanomi, K.
1987-01-01
Mazda succeeded in the development of a new V-type 6-cylinder engine series comprising 2-liter JF naturally aspirated and turbocharged units and also a 3-liter JE naturally aspirated unit. This engine is 60-degree-banked and has 18 valves: two intake valves and one exhaust valve per cylinder. Various techniques, such as High Rigidity Cylinder Block and HLA, are adopted to upgrade quietness and smoothness. The Dynamic Charge Effects system, a combination of inertia and resonance charge effects, is modeled on the principle of two-degree-of-freedom system. The application of this principle helped develop the Induction system that is compatible with the three enginemore » types. The turbocharger adopted on the JF engine is of a twin scroll type to considerably improve power response quality and increase torque at low speed. Triple Port Induction Control System is used to help improve fuel economy and running performance.« less
ERIC Educational Resources Information Center
Ross, Julia Myers; Peterman, Karen; Daugherty, Jenny L.; Custer, Rodney L.
2018-01-01
An Engineering Innovation Tool was designed to support science teachers as they navigate the opportunities and challenges the inclusion of engineering affords by providing a useful tool to be used within the professional development environment and beyond. The purpose of this manuscript is to share the design, development and substance of the tool…
Changing the Conversation: Messages for Improving Public Understanding of Engineering
ERIC Educational Resources Information Center
National Academies Press, 2008
2008-01-01
Can the United States continue to lead the world in innovation? The answer may hinge in part on how well the public understands engineering, a key component of the "innovation engine." A related concern is how to encourage young people--particularly girls and under-represented minorities--to consider engineering as a career option.…
Rezvani, Zahra; Venugopal, Jayarama R; Urbanska, Aleksandra M; Mills, David K; Ramakrishna, Seeram; Mozafari, Masoud
2016-10-01
Tissue engineering aims to develop therapeutic products that utilize a combination of scaffolds with viable cell systems or responsive biomolecules derived from such cells, for the repair, restoration/regeneration of tissues. Here, the main goal is to enable the body to heal itself by the introduction of electrospun scaffolds, such that the body recognizes them as its own and in turn uses them to regenerate "neo-native" functional tissues. During the last decade, innovative nanofibrous scaffolds have attracted substantial interest in bone tissue engineering. The electrospinning process makes it possible to fabricate appropriate scaffolds for bone tissue engineering from different categories of nanobiomaterials having the ability of controlled delivery of drugs in the defective tissues. It is expected that with the progress in science and technology, better bone constructs will be proposed in the future. This review discusses the innovative approaches into electrospinning techniques for the fabrication of nanofibrous scaffolds for bone tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.
Team-Based Development of Medical Devices: An Engineering-Business Collaborative.
Eberhardt, Alan W; Johnson, Ophelia L; Kirkland, William B; Dobbs, Joel H; Moradi, Lee G
2016-07-01
There is a global shift in the teaching methodology of science and engineering toward multidisciplinary, team-based processes. To meet the demands of an evolving technical industry and lead the way in engineering education, innovative curricula are essential. This paper describes the development of multidisciplinary, team-based learning environments in undergraduate and graduate engineering curricula focused on medical device design. In these programs, students actively collaborate with clinicians, professional engineers, business professionals, and their peers to develop innovative solutions to real-world problems. In the undergraduate senior capstone courses, teams of biomedical engineering (BME) and business students have produced and delivered numerous functional prototypes to satisfied clients. Pursuit of commercialization of devices has led to intellectual property (IP) disclosures and patents. Assessments have indicated high levels of success in attainment of student learning outcomes and student satisfaction with their undergraduate design experience. To advance these projects toward commercialization and further promote innovative team-based learning, a Master of Engineering (MEng) in Design and Commercialization was recently launched. The MEng facilitates teams of graduate students in engineering, life sciences, and business who engage in innovation-commercialization (IC) projects and coursework that take innovative ideas through research and development (R&D) to create marketable devices. The activities are structured with students working together as a "virtual company," with targeted outcomes of commercialization (license agreements and new start-ups), competitive job placement, and/or career advancement.
NASA Astrophysics Data System (ADS)
Zurbuchen, Thomas H.
2007-04-01
There is a need for a motivated and innovative work force for the U.S. aerospace industry. The education of such engineers and scientists typically revolves around a fundamental knowledge of basic important technologies, such as the mechanics relevant to orbit-design, structures, avionics, and many others. A few years ago, the University of Michigan developed a Masters of Engineering program that provides students with skills that are not taught as part of a typical engineering curriculum. This program is focused on open problem solving, space systems, and space policy, as well as other classes that further their understanding of the connections between technologies and the nontechnical aspects of managing a space mission. The value of such an education is substantially increased through a direct connection to industry. An innovative problem-oriented approach has been developed that enables direct connections between industry and classroom teaching. The class works as a system study group and addresses problems of interest to and defined by a company with a specific application. We discuss such an application, a near-space lidar wind measurement system to enhance weather predictions, as well as the approach taken to link educational rationales.
NASA Technical Reports Server (NTRS)
2010-01-01
A fast growing approach in determining the best design concept for a problem is to hold a competition in which the rules are based on requirements similar to the actual problem. By going public with such competitions, sponsoring entities receive some of the most innovative engineering solutions in a fraction of the time and cost it would have taken to develop such concepts internally. Space exploration is a large benefactor of such design competitions as seen by the results of X-Prize Foundation and NASA lunar excavation competitions [1]. The results of NASA's past lunar excavator challenges has led to the need for an effective means of collecting lunar regolith in the absence of human beings. The 2010 Exploration Systems Mission Directorate (ESMD) Lunar Excavation Challenge was created "to engage and retain students in science, technology, engineering, and mathematics, or STEM, in a competitive environment that may result in innovative ideas and solutions, which could be applied to actual lunar excavation for NASA." [2]. The ESMD Challenge calls for "teams to use telerobotics or autonomous operations to excavate at least 10kg of lunar regolith simulant in a 15 minute time limit" [2]. The Systems Engineering approach was used in accordance with Auburn University's mechanical engineering senior design course (MECH 4240-50) to develop a telerobotic lunar excavator, seen in Fig. 1, that fulfilled requirements imposed by the NASA ESMD Competition Rules. The goal of the senior design project was to have a validated lunar excavator that would be used in the NASA ESMD lunar excavation challenge.
Environmental engineering education: examples of accreditation and quality assurance
NASA Astrophysics Data System (ADS)
Caporali, E.; Catelani, M.; Manfrida, G.; Valdiserri, J.
2013-12-01
Environmental engineers respond to the challenges posed by a growing population, intensifying land-use pressures, natural resources exploitation as well as rapidly evolving technology. The environmental engineer must develop technically sound solutions within the framework of maintaining or improving environmental quality, complying with public policy, and optimizing the utilization of resources. The engineer provides system and component design, serves as a technical advisor in policy making and legal deliberations, develops management schemes for resources, and provides technical evaluations of systems. Through the current work of environmental engineers, individuals and businesses are able to understand how to coordinate society's interaction with the environment. There will always be a need for engineers who are able to integrate the latest technologies into systems to respond to the needs for food and energy while protecting natural resources. In general, the environment-related challenges and problems need to be faced at global level, leading to the globalization of the engineering profession which requires not only the capacity to communicate in a common technical language, but also the assurance of an adequate and common level of technical competences, knowledge and understanding. In this framework, the Europe-based EUR ACE (European Accreditation of Engineering Programmes) system, currently operated by ENAEE - European Network for Accreditation of Engineering Education can represent the proper framework and accreditation system in order to provide a set of measures to assess the quality of engineering degree programmes in Europe and abroad. The application of the accreditation model EUR-ACE, and of the National Italian Degree Courses Accreditation System, promoted by the Italian National Agency for the Evaluation of Universities and Research Institutes (ANVUR), to the Environmental Engineering Degree Courses at the University of Firenze is presented. In particular, the accreditation models of the multidisciplinary first cycle degree in Civil, Building and Environmental Engineering and the more specific second cycle degree in Environmental Engineering are discussed. The critical issues to assure the quality and the status of environmental engineering graduates, in terms of applying knowledge capacities and technical innovative competences, according to the more engineering focused EUR-ACE skill descriptors as well as with respect to the Dublin descriptors, at local and global scale are also compared. The involvement of the professional working world in the definition of goals in skills, of typical expectations of achievements and abilities is also described. The system for educating engineers in communicating knowledge and understanding, making informed judgments and choices, capacities to lifelong learning is in addition assessed. The promotion of innovative aspects related with the environmental engineering education, and of the role that science and technology could play in environmental engineering education is also taken into consideration.
Integrated nuclear data utilisation system for innovative reactors.
Yamano, N; Hasegawa, A; Kato, K; Igashira, M
2005-01-01
A five-year research and development project on an integrated nuclear data utilisation system was initiated in 2002, for developing innovative nuclear energy systems such as accelerator-driven systems. The integrated nuclear data utilisation system will be constructed as a modular code system, which consists of two sub-systems: the nuclear data search and plotting sub-system, and the nuclear data processing and utilisation sub-system. The system will be operated with a graphical user interface in order to enable easy utilisation through the Internet by both nuclear design engineers and nuclear data evaluators. This paper presents an overview of the integrated nuclear data utilisation system, describes the development of a prototype system to examine the operability of the user interface and discusses specifications of the two sub-systems.
NASA Technical Reports Server (NTRS)
Asbury, Scott C.; Yetter, Jeffrey A.
2000-01-01
The NASA Langley Configuration Aerodynamics Branch has conducted an experimental investigation to study the static performance of innovative thrust reverser concepts applicable to high-bypass-ratio turbofan engines. Testing was conducted on a conventional separate-flow exhaust system configuration, a conventional cascade thrust reverser configuration, and six innovative thrust reverser configurations. The innovative thrust reverser configurations consisted of a cascade thrust reverser with porous fan-duct blocker, a blockerless thrust reverser, two core-mounted target thrust reversers, a multi-door crocodile thrust reverser, and a wing-mounted thrust reverser. Each of the innovative thrust reverser concepts offer potential weight savings and/or design simplifications over a conventional cascade thrust reverser design. Testing was conducted in the Jet-Exit Test Facility at NASA Langley Research Center using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0. All tests were conducted with no external flow and cold, high-pressure air was used to simulate core and fan exhaust flows. Results show that the innovative thrust reverser concepts achieved thrust reverser performance levels which, when taking into account the potential for system simplification and reduced weight, may make them competitive with, or potentially more cost effective than current state-of-the-art thrust reverser systems.
Public Sector Agricultural Extension System Reform and the Challenges Ahead
ERIC Educational Resources Information Center
Rivera, William M.
2011-01-01
This paper is organized into two main sections. The first section examines extension as an engine for innovation and reviews the numerous priorities confronting extension systems. Section two highlights the current knowledge imperative and the critical connection of extension to post-secondary higher education and training, organizational…
Laser Pointers: Low-Cost, Low-Tech Innovative, Interactive Instruction Tool
ERIC Educational Resources Information Center
Zdravkovska, Nevenka; Cech, Maureen; Beygo, Pinar; Kackley, Bob
2010-01-01
This paper discusses the use of laser pointers at the Engineering and Physical Sciences Library, University of Maryland, College Park, as a personal response system (PRS) tool to encourage student engagement in and interactivity with one-shot, lecture-based information literacy sessions. Unlike more sophisticated personal response systems like…
NASA Astrophysics Data System (ADS)
Doursat, René
Exploding growth growth in computational systems forces us to gradually replace rigid design and control with decentralization and autonomy. Information technologies will progress, instead, by"meta-designing" mechanisms of system self-assembly, self-regulation and evolution. Nature offers a great variety of efficient complex systems, in which numerous small elements form large-scale, adaptive patterns. The new engineering challenge is to recreate this self-organization and let it freely generate innovative designs under guidance. This article presents an original model of artificial system growth inspired by embryogenesis. A virtual organism is a lattice of cells that proliferate, migrate and self-pattern into differentiated domains. Each cell's fate is controlled by an internal gene regulatory network network. Embryomorphic engineering emphasizes hyperdistributed architectures, and their development as a prerequisite of evolutionary design.
ManTech Implementing a Strategy to Deliver Weapon Systems Affordability
2010-11-01
Tile 2007 – Translational Friction Stir Welding 2006 – Uncooled Focal Plane Array Producibility 2006 – Engine Rotor Life Extension 2005...compelling ideas will continue to help drive our Department’s innovative engine and ensure our Nation maintains its competitive edge on the...Sheets Composite Vertical Stabilizer Apache AH-64 NAVY The Challenge: Butt welding exterior ship panels produces a weld protrusion that exceeds the
Innovative Technology Development for Comprehensive Air Quality Characterization from Open Burning
2012-04-01
Burning/Open Detonation (OB/OD) has been used as a safe, effective , and economic way to demilitarize munitions for energetic material disposal. Field...target analyte i (lb/lb i in ordnance) ERDC-CERL Engineer Research Development Center, Construction Engineering Research Laboratory GC/FID gas ...chromatograph(y) - flame ionization detector GC/MS gas chromatography/mass spectrometry GPS global positioning system ISO International Organization for
Critical materials: a reason for sustainable education of industrial designers and engineers
NASA Astrophysics Data System (ADS)
Köhler, Andreas R.; Bakker, Conny; Peck, David
2013-08-01
Developed economies have become highly dependent on a range of technology metals with names such as neodymium and terbium. Stakeholders have warned of the impending scarcity of these critical materials. Difficulties in materials supply can affect the high-tech industries as well as the success of sustainable innovation strategies that are based on sophisticated technology. Industrial designers and engineers should therefore increase their awareness of the limits in availability of critical materials. In this paper, it is argued that materials' criticality can give a fresh impetus to the higher education of industrial design engineers. It is important to train future professionals to apply a systems perspective to the process of technology innovation, enabling them to thrive under circumstances of constrained material choices. The conclusions outline ideas on how to weave the topic into existing educational programmes of future technology developers.
Innovative railroad information displays for dispatch and train engineer functions
DOT National Transportation Integrated Search
1996-02-29
A useful information display system must be able to maintain the users sense of : context by keeping the important information clearly viewable and conserving : important relationships, while subduing information not currently relevant. : The Visible...
Preliminary study, analysis and design for a power switch for digital engine actuators
NASA Technical Reports Server (NTRS)
Beattie, E. C.; Zickwolf, H. C., Jr.
1979-01-01
Innovative control configurations using high temperature switches to operate actuator driving solenoids were studied. The impact on engine control system life cycle costs and reliability of electronic control and (ECU) heat dissipation due to power conditioning and interface drivers were addressed. Various power supply and actuation schemes were investigated, including optical signal transmission and electronics on the actuator, engine driven alternator, and inside the ECU. The use of a switching shunt power conditioner results in the most significant decrease in heat dissipation within the ECU. No overall control system reliability improvement is projected by the use of remote high temperature switches for solenoid drivers.
Human Motion Tracking and Glove-Based User Interfaces for Virtual Environments in ANVIL
NASA Technical Reports Server (NTRS)
Dumas, Joseph D., II
2002-01-01
The Army/NASA Virtual Innovations Laboratory (ANVIL) at Marshall Space Flight Center (MSFC) provides an environment where engineers and other personnel can investigate novel applications of computer simulation and Virtual Reality (VR) technologies. Among the many hardware and software resources in ANVIL are several high-performance Silicon Graphics computer systems and a number of commercial software packages, such as Division MockUp by Parametric Technology Corporation (PTC) and Jack by Unigraphics Solutions, Inc. These hardware and software platforms are used in conjunction with various VR peripheral I/O (input / output) devices, CAD (computer aided design) models, etc. to support the objectives of the MSFC Engineering Systems Department/Systems Engineering Support Group (ED42) by studying engineering designs, chiefly from the standpoint of human factors and ergonomics. One of the more time-consuming tasks facing ANVIL personnel involves the testing and evaluation of peripheral I/O devices and the integration of new devices with existing hardware and software platforms. Another important challenge is the development of innovative user interfaces to allow efficient, intuitive interaction between simulation users and the virtual environments they are investigating. As part of his Summer Faculty Fellowship, the author was tasked with verifying the operation of some recently acquired peripheral interface devices and developing new, easy-to-use interfaces that could be used with existing VR hardware and software to better support ANVIL projects.
Developing Teaching of Mathematics to First Year Engineering Students
ERIC Educational Resources Information Center
Jaworski, Barbara; Matthews, Janette
2011-01-01
Engineering Students Understanding Mathematics (ESUM) is a developmental research project at a UK university. The motivating aim is that engineering students should develop a more conceptual understanding of mathematics through their participation in an innovation in teaching. A small research team has both studied and contributed to innovation,…
Sense and Sensibility: The Case for the Nationwide Inclusion of Engineering in the K-12 Curriculum
NASA Technical Reports Server (NTRS)
Lindberg, Robert E.; Pinelli, Thomas E.; Batterson, James G.
2008-01-01
The competitive status of the United States is inextricably linked to innovation just as innovation is inseparable from science, technology, engineering, and mathematics. To stay competitive in innovation requires that the United States produce a 21st century workforce complete with requisite education, training, skills, and motivation. If we accept a priori that science, technology, engineering, and mathematics education are crucial to competitiveness and innovation and that, in terms of innovation, mathematics, science, and engineering are interdependent, why are mathematics and science uniformly ubiquitous in the K-12 curriculum while engineering is conspicuously absent? We are passionate in our belief that the uniform addition of engineering to the K-12 curriculum will help ensure that the nation has "the right" 21st Century workforce. Furthermore, we believe that a nationwide effort, led by a coalition of engineering academics, practitioners, and societies is required to turn this goal into reality. However, accomplishing this goal necessitates, as we are reminded by the title of Jane Austen's timeless novel, "Sense and Sensibility", a workable solution that seeks the "middle ground" between passion and reason. We begin our paper by making two essential points: Engineers are not scientists. Engineering exists separate from science, has its own specialized knowledge community apart from science, and it is largely responsible for many of the most significant advancements and improvements in the quality of our life. Our workable solution requires that K-12 education, nationwide, accommodate the inclusion of engineering as a stand alone curriculum and we offer three reasons to support our position: (1) workforce development, (2) stimulating interest in STEM (science, technology, engineering, and mathematics) courses and careers, and (3) creating a technologically literate society. We conclude with some thoughts on how this important goal can be accomplished.
Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Songgang
2013-05-15
The primary purpose of this project is to develop and validate an innovative, scalable phase change salt thermal energy storage (TES) system that can interface with Infinia’s family of free-piston Stirling engines (FPSE). This TES technology is also appropriate for Rankine and Brayton power converters. Solar TES systems based on latent heat of fusion rather than molten salt temperature differences, have many advantages that include up to an order of magnitude higher energy storage density, much higher temperature operation, and elimination of pumped loops for most of Infinia’s design options. DOE has funded four different concepts for solar phase changemore » TES, including one other Infinia awarded project using heat pipes to transfer heat to and from the salt. The unique innovation in this project is an integrated TES/pool boiler heat transfer system that is the simplest approach identified to date and arguably has the best potential for minimizing the levelized cost of energy (LCOE). The Phase 1 objectives are to design, build and test a 1-hour TES proof-of-concept lab demonstrator integrated with an Infinia 3 kW Stirling engine, and to conduct a preliminary design of a 12-hour TES on-sun prototype.« less
Recent Advances in Genome Editing Using CRISPR/Cas9.
Ding, Yuduan; Li, Hong; Chen, Ling-Ling; Xie, Kabin
2016-01-01
The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system is a versatile tool for genome engineering that uses a guide RNA (gRNA) to target Cas9 to a specific sequence. This simple RNA-guided genome-editing technology has become a revolutionary tool in biology and has many innovative applications in different fields. In this review, we briefly introduce the Cas9-mediated genome-editing method, summarize the recent advances in CRISPR/Cas9 technology, and discuss their implications for plant research. To date, targeted gene knockout using the Cas9/gRNA system has been established in many plant species, and the targeting efficiency and capacity of Cas9 has been improved by optimizing its expression and that of its gRNA. The CRISPR/Cas9 system can also be used for sequence-specific mutagenesis/integration and transcriptional control of target genes. We also discuss off-target effects and the constraint that the protospacer-adjacent motif (PAM) puts on CRISPR/Cas9 genome engineering. To address these problems, a number of bioinformatic tools are available to help design specific gRNAs, and new Cas9 variants and orthologs with high fidelity and alternative PAM specificities have been engineered. Owing to these recent efforts, the CRISPR/Cas9 system is becoming a revolutionary and flexible tool for genome engineering. Adoption of the CRISPR/Cas9 technology in plant research would enable the investigation of plant biology at an unprecedented depth and create innovative applications in precise crop breeding.
Management System for Engineering Ethics
NASA Astrophysics Data System (ADS)
Yashiro, Tomonari
In the context of independent profession based societies, ethics charter/codes of professional bodies have significant influence on the conduct of engineers. Contrarily in Japan, most of active engineers are in-house and feel immediate identity as the member of firm or institution, rather than professional bodies. Therefore, establishment and operation of engineering ethics management system (E2ms) is essential for incentive to make innovative and ethical decision with confidence. The paper introduces the outline of the educational kit for E2ms developed by the author. The kit aims to enhance ability of management relevant to E2ms. The kit also involves ten cases for case method teaching. The test use of the kit indicates the potential to create satisfactory educational achievement.
Wave Phase-Sensitive Transformation of 3d-Straining of Mechanical Fields
NASA Astrophysics Data System (ADS)
Smirnov, I. N.; Speranskiy, A. A.
2015-11-01
It is the area of research of oscillatory processes in elastic mechanical systems. Technical result of innovation is creation of spectral set of multidimensional images which reflect time-correlated three-dimensional vector parameters of metrological, and\\or estimated, and\\or design parameters of oscillations in mechanical systems. Reconstructed images of different dimensionality integrated in various combinations depending on their objective function can be used as homeostatic profile or cybernetic image of oscillatory processes in mechanical systems for an objective estimation of current operational conditions in real time. The innovation can be widely used to enhance the efficiency of monitoring and research of oscillation processes in mechanical systems (objects) in construction, mechanical engineering, acoustics, etc. Concept method of vector vibrometry based on application of vector 3D phase- sensitive vibro-transducers permits unique evaluation of real stressed-strained states of power aggregates and loaded constructions and opens fundamental innovation opportunities: conduct of continuous (on-line regime) reliable monitoring of turboagregates of electrical machines, compressor installations, bases, supports, pipe-lines and other objects subjected to damaging effect of vibrations; control of operational safety of technical systems at all the stages of life cycle including design, test production, tuning, testing, operational use, repairs and resource enlargement; creation of vibro-diagnostic systems of authentic non-destructive control of anisotropic characteristics of materials resistance of power aggregates and loaded constructions under outer effects and operational flaws. The described technology is revolutionary, universal and common for all branches of engineering industry and construction building objects.
Pathways and Challenges to Innovation in Aerospace
NASA Technical Reports Server (NTRS)
Terrile, Richard J.
2010-01-01
This paper explores impediments to innovation in aerospace and suggests how successful pathways from other industries can be adopted to facilitate greater innovation. Because of its nature, space exploration would seem to be a ripe field of technical innovation. However, engineering can also be a frustratingly conservative endeavor when the realities of cost and risk are included. Impediments like the "find the fault" engineering culture, the treatment of technical risk as almost always evaluated in terms of negative impact, the difficult to account for expansive Moore's Law growth when making predictions, and the stove-piped structural organization of most large aerospace companies and federally funded research laboratories tend to inhibit cross-cutting technical innovation. One successful example of a multi-use cross cutting application that can scale with Moore's Law is the Evolutionary Computational Methods (ECM) technique developed at the Jet Propulsion Lab for automated spectral retrieval. Future innovations like computational engineering and automated design optimization can potentially redefine space exploration, but will require learning lessons from successful innovators.
Communications and Intelligent Systems Division Overview
NASA Technical Reports Server (NTRS)
Emerson, Dawn
2017-01-01
Provides expertise, and plans, conducts and directs research and engineering development in the competency fields of advanced communications and intelligent systems technologies for applications in current and future aeronautics and space systems.Advances communication systems engineering, development and analysis needed for Glenn Research Center's leadership in communications and intelligent systems technology. Focus areas include advanced high frequency devices, components, and antennas; optical communications, health monitoring and instrumentation; digital signal processing for communications and navigation, and cognitive radios; network architectures, protocols, standards and network-based applications; intelligent controls, dynamics and diagnostics; and smart micro- and nano-sensors and harsh environment electronics. Research and discipline engineering allow for the creation of innovative concepts and designs for aerospace communication systems with reduced size and weight, increased functionality and intelligence. Performs proof-of-concept studies and analyses to assess the impact of the new technologies.
Team-Based Development of Medical Devices: An Engineering–Business Collaborative
Eberhardt, Alan W.; Johnson, Ophelia L.; Kirkland, William B.; Dobbs, Joel H.; Moradi, Lee G.
2016-01-01
There is a global shift in the teaching methodology of science and engineering toward multidisciplinary, team-based processes. To meet the demands of an evolving technical industry and lead the way in engineering education, innovative curricula are essential. This paper describes the development of multidisciplinary, team-based learning environments in undergraduate and graduate engineering curricula focused on medical device design. In these programs, students actively collaborate with clinicians, professional engineers, business professionals, and their peers to develop innovative solutions to real-world problems. In the undergraduate senior capstone courses, teams of biomedical engineering (BME) and business students have produced and delivered numerous functional prototypes to satisfied clients. Pursuit of commercialization of devices has led to intellectual property (IP) disclosures and patents. Assessments have indicated high levels of success in attainment of student learning outcomes and student satisfaction with their undergraduate design experience. To advance these projects toward commercialization and further promote innovative team-based learning, a Master of Engineering (MEng) in Design and Commercialization was recently launched. The MEng facilitates teams of graduate students in engineering, life sciences, and business who engage in innovation-commercialization (IC) projects and coursework that take innovative ideas through research and development (R&D) to create marketable devices. The activities are structured with students working together as a “virtual company,” with targeted outcomes of commercialization (license agreements and new start-ups), competitive job placement, and/or career advancement. PMID:26902869
Toyoda, Tetsuro
2011-01-01
Synthetic biology requires both engineering efficiency and compliance with safety guidelines and ethics. Focusing on the rational construction of biological systems based on engineering principles, synthetic biology depends on a genome-design platform to explore the combinations of multiple biological components or BIO bricks for quickly producing innovative devices. This chapter explains the differences among various platform models and details a methodology for promoting open innovation within the scope of the statutory exemption of patent laws. The detailed platform adopts a centralized evaluation model (CEM), computer-aided design (CAD) bricks, and a freemium model. It is also important for the platform to support the legal aspects of copyrights as well as patent and safety guidelines because intellectual work including DNA sequences designed rationally by human intelligence is basically copyrightable. An informational platform with high traceability, transparency, auditability, and security is required for copyright proof, safety compliance, and incentive management for open innovation in synthetic biology. GenoCon, which we have organized and explained here, is a competition-styled, open-innovation method involving worldwide participants from scientific, commercial, and educational communities that aims to improve the designs of genomic sequences that confer a desired function on an organism. Using only a Web browser, a participating contributor proposes a design expressed with CAD bricks that generate a relevant DNA sequence, which is then experimentally and intensively evaluated by the GenoCon organizers. The CAD bricks that comprise programs and databases as a Semantic Web are developed, executed, shared, reused, and well stocked on the secure Semantic Web platform called the Scientists' Networking System or SciNetS/SciNeS, based on which a CEM research center for synthetic biology and open innovation should be established. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
2005-01-01
The goal of this research is to develop and demonstrate innovative adaptive seal technologies that can lead to dramatic improvements in engine performance, life, range, and emissions, and enhance operability for next generation gas turbine engines. This work is concentrated on the development of self-adaptive clearance control systems for gas turbine engines. Researchers have targeted the high-pressure turbine (HPT) blade tip seal location for following reasons: Current active clearance control (ACC) systems (e.g., thermal case-cooling schemes) cannot respond to blade tip clearance changes due to mechanical, thermal, and aerodynamic loads. As such they are prone to wear due to the required tight running clearances during operation. Blade tip seal wear (increased clearances) reduces engine efficiency, performance, and service life. Adaptive sealing technology research has inherent impact on all envisioned 21st century propulsion systems (e.g. distributed vectored, hybrid and electric drive propulsion concepts).
Air-steam hybrid engine : an alternative to internal combustion.
DOT National Transportation Integrated Search
2011-03-01
In this Small Business Innovation Research (SBIR) Phase 1 project, an energy-efficient air-steam propulsion system has been developed and patented, and key performance attributes have been demonstrated to be superior to those of internal combustion e...
DOT National Transportation Integrated Search
1974-12-01
A study was conducted to determine the potential reduction in automotive fuel consumption based on the use of innovative systems and improved components. Technological areas investigated were: spark ignited engines with and without turbocharging, ele...
Study of Technological Improvements in Automobile Fuel Consumption : Volume 1. Executive Summary.
DOT National Transportation Integrated Search
1974-02-01
A study was conducted to determine the potential reduction in automotive fuel consumption based on the use of innovative systems and improved components. Technological areas investigated were: spark ignited engines with and without turbocharging, ele...
Spaceport Command and Control System Software Development
NASA Technical Reports Server (NTRS)
Glasser, Abraham
2017-01-01
The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administration's (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires a large amount of intensive testing that will properly measure the capabilities of the system. Automating the test procedures would save the project money from human labor costs, as well as making the testing process more efficient. Therefore, the Exploration Systems Division (formerly the Electrical Engineering Division) at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.
Innovations for ISS Plug-In Plan (IPiP) Operations
NASA Technical Reports Server (NTRS)
Moore, Kevin D.
2013-01-01
Limited resources and increasing requirements will continue to influence decisions on ISS. The ISS Plug-In Plan (IPiP) supports power and data for utilization, systems, and daily operations through the Electrical Power System (EPS) Secondary Power/Data Subsystem. Given the fluid launch schedule, the focus of the Plug-In Plan has evolved to anticipate future requirements by judicious development and delivery of power supplies, power strips, Alternating Current (AC) power inverters, along with innovative deployment strategies. A partnership of ISS Program Office, Engineering Directorate, Mission Operations, and International Partners poses unique solutions with existing on-board equipment and resources.
ERIC Educational Resources Information Center
Jorgensen, Frances; Kofoed, Lise Busk
2007-01-01
In this paper, a study is presented in which engineering students at a Danish university developed Continuous Improvement (CI) and innovation capabilities through action research and experiential learning methods. The paper begins with a brief overview of the literature on CI and innovation, followed by an account of how the students designed and…
2008-03-01
foods such as fruits, vegetables, and beverages (U.S. FDA, 2004). If the U.S. EPA ultimately establishes a drinking water standard for perchlorate...TREAT PERCHLORATE-CONTAMINATED WATER THESIS Daniel A. Craig, Captain, USAF AFIT/GEM/ENV/08-M06 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY...OF AN INNOVATIVE TECHNOLOGY TO TREAT PERCHLORATE- CONTAMINATED WATER THESIS Presented to the Faculty Department of Systems and Engineering
Systems biology solutions for biochemical production challenges.
Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus; Herrgård, Markus J
2017-06-01
There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains for biofuels and -chemicals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Developing a Sand Management Plan for Galveston Island
2015-10-16
Engineer Coastal & Hydraulics Laboratory Engineer Research & Development Center On behalf of the Project Team: Andrew Morang, David King, and Robert...Budget Objectives • Identify sources and sinks of sediment in coastal system Beach fills Littoral and offshore sources Dredge data...more than 100 ft of erosion After 10 years After 50 years Innovative solutions for a safer, better world BUILDING STRONG® Beach Fills (West End
The emergent field of industrial ecology (IE) has been described as the "science and engineering of sustainability" and the "technological core of sustainability." Some proponents of IE draw on metaphors from systems ecology and suggest that a design revolution is necessary t...
Continuous-Grouped-Self-Learning: In the Perspective of Lecturers, Tutors and Laboratory Instructors
ERIC Educational Resources Information Center
Azau, Mohd Azrin Mohd; Yao, Low Ming; Aik, Goo Soon; Yeong, Chin Kock; Nor, Mohamad Nizam; Abdullah, Ahmad Yusri; Jamil, Mohd Hafidz Mohamad; Yahya, Nasiruddin; Abas, Ahmad Fauzi; Saripan, M. Iqbal
2009-01-01
This paper presents the perception of lecturers, tutors and lab instructors towards the implemented Continuous-Group-Self-Learning (CGSL) in the Department of Computer and Communication System Engineering (CCSE), Universiti Putra Malaysia. This innovative system introduces mock teaching and student-lecturer role as a technique of delivery. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaskell, D.R.; Hager, J.P.; Hoffmann, J.E.
1987-01-01
This book contains papers that cover the following topics: high intensity smelting, novel aspects of gold recovery, resin membrane applications in hydrometallurgy, process analysis and characterization, fundamental studies in pyrometallurgical systems, advances in electroextraction, new process chemistry, process engineering in pyrometallurgical systems, and developments in hydrometallurgy.
Engineering the Future: The Social Necessity of Communicative Engineers
ERIC Educational Resources Information Center
Ravesteijn, Wim; De Graaff, Erik; Kroesen, Otto
2006-01-01
It is a long and winding road from invention to innovation. Starting from this observation, this paper presents a historical perspective on the capabilities engineers should possess to do their work. The importance of the "communicative competence" involved in creating a social base for innovation is underpinned. We will present a…
Animation of Heliopause Electrostatic Rapid Transport System (HERTS)
2016-04-20
Animation of Heliopause Electrostatic Rapid Transport System (HERTS) concept. NASA engineers are conducting tests to develop models for the Heliopause Electrostatic Rapid Transport System. HERTS builds upon the electric sail invention of Dr. Pekka Janhunen of the Finnish Meteorological Institute. An electric sail could potentially send scientific payloads to the edge of our solar system, the heliopause, in less than 10 years. The research is led by Bruce M. Wiegmann, an engineer in the Advanced Concepts Office at NASA's Marshall Space Flight Center. The HERTS E-Sail development and testing is funded by NASA’s Space Technology Mission Directorate through the NASA Innovative Advanced Concepts Program.
Noise and Fuel Burn Reduction Potential of an Innovative Subsonic Transport Configuration
NASA Technical Reports Server (NTRS)
Guo, Yueping; Nickol, Craig L.; Thomas, Russell H.
2014-01-01
A study is presented for the noise and fuel burn reduction potential of an innovative double deck concept aircraft with two three-shaft direct-drive turbofan engines. The engines are mounted from the fuselage so that the engine inlet is over the main wing. It is shown that such an aircraft can achieve a cumulative Effective Perceived Noise Level (EPNL) about 28 dB below the current aircraft noise regulations of Stage 4. The combination of high bypass ratio engines and advanced wing design with laminar flow control technologies provide fuel burn reduction and low noise levels simultaneously. For example, the fuselage mounted engine position provides more than 4 EPNLdB of noise reduction by shielding the inlet radiated noise. To identify the potential effect of noise reduction technologies on this concept, parametric studies are presented to reveal the system level benefits of various emerging noise reduction concepts, for both engine and airframe noise reduction. These concepts are discussed both individually to show their respective incremental noise reduction potential and collectively to assess their aggregate effects on the total noise. Through these concepts approximately about 8 dB of additional noise reduction is possible, bringing the cumulative noise level of this aircraft to 36 EPNLdB below Stage 4, if the entire suite of noise reduction technologies would mature to practical application. In a final step, an estimate is made for this same aircraft concept but with higher bypass ratio, geared, turbofan engines. With this geared turbofan propulsion system, the noise is estimated to reach as low as 40-42 dB below Stage 4 with a fuel burn reduction of 43-47% below the 2005 best-in-class aircraft baseline. While just short of the NASA N+2 goals of 42 dB and 50% fuel burn reduction, for a 2025 in service timeframe, this assessment shows that this innovative concept warrants refined study. Furthermore, this design appears to be a viable potential future passenger aircraft, not only in meeting the regulatory requirements, but also in competing with aircraft of different advanced designs within this N+2 timeframe and goal framework.
Micro-Electro-Mechanical Systems (MEMS) Fabrication Course Projects Review for FY15
2015-09-01
TECHNICAL DOCUMENT 3298 September 2015 Micro-Electro-Mechanical Systems (MEMS) Fabrication Course Projects Review for FY15 Paul D. Swanson...Naval Warfare Systems Center Pacific (SSC Pacific), San Diego, CA. SSC Pacific’s Naval Innovative Science and Engineering (NISE) Program provided...for Miniaturized Flow Cytometer o Howard Dyckman: 71730 Infrared Waveguides o Teresa Emery: 55360 Bistable MEMS systems for Energy
Dew Point Evaporative Comfort Cooling
2012-11-01
assisting with the installation of the data acquisition system and multiyear performance testing. Fort Carson engineers worked with the project...partners to design and integrate the Coolerado units into five facilities and designed an innovative rain water catchment system for four units at the...Theater. Mountain Energy Partnership provided invaluable assistance with the design and installation of the data acquisition system , as well as data
Scientific Computing Strategic Plan for the Idaho National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiting, Eric Todd
Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory’s (INL’s) challenge and charge, and is central to INL’s ongoing success. Computing is an essential part of INL’s future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing numbermore » of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.« less
Integrated Data Visualization and Virtual Reality Tool
NASA Technical Reports Server (NTRS)
Dryer, David A.
1998-01-01
The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.
Innovative Environments In Health Care: Where And How New Approaches To Care Are Succeeding.
Bates, David W; Sheikh, Aziz; Asch, David A
2017-03-01
Organizations seeking to create innovative environments in health care need to pay attention to a number of factors. These include making available sufficient resources, notably money and physical space, but also coordination and consultation regarding intellectual property and licensing; enabling access to engineers, software developers, and behavioral scientists; making providers and patients available to innovators; having a sufficiently long-term view; and insulating the innovation group from operational demands. If there is a single essential key to success, it is making innovation a strategic priority. Academic health systems are enormous generators of innovation in the form of generalizable research in biomedical sciences. Typically, much of that innovation is externally supported, and little is directed to improving care processes internally. In industries other than health care, organizations invest their own funds in research and development to promote innovation, and this investment is seen as a metric for a firm's commitment to its future. Increased investment in care-process innovation is long overdue. Project HOPE—The People-to-People Health Foundation, Inc.
Systems Engineering Programmatic Estimation Using Technology Variance
NASA Technical Reports Server (NTRS)
Mog, Robert A.
2000-01-01
Unique and innovative system programmatic estimation is conducted using the variance of the packaged technologies. Covariance analysis is performed on the subsystems and components comprising the system of interest. Technological "return" and "variation" parameters are estimated. These parameters are combined with the model error to arrive at a measure of system development stability. The resulting estimates provide valuable information concerning the potential cost growth of the system under development.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and the in-use emission rate without the technology. Multiply this difference by the number of engines... HEAVY-DUTY HIGHWAY ENGINES Special Compliance Provisions § 1036.610 Innovative technology credits and... judgment. We recommend that you base your credit/adjustment on A to B testing of pairs of engines/vehicles...
Code of Federal Regulations, 2013 CFR
2013-07-01
... and the in-use emission rate without the technology. Multiply this difference by the number of engines... HEAVY-DUTY HIGHWAY ENGINES Special Compliance Provisions § 1036.610 Innovative technology credits and... judgment. We recommend that you base your credit/adjustment on A to B testing of pairs of engines/vehicles...
Code of Federal Regulations, 2012 CFR
2012-07-01
... and the in-use emission rate without the technology. Multiply this difference by the number of engines... HEAVY-DUTY HIGHWAY ENGINES Special Compliance Provisions § 1036.610 Innovative technology credits and... judgment. We recommend that you base your credit/adjustment on A to B testing of pairs of engines/vehicles...
Computing in Hydraulic Engineering Education
NASA Astrophysics Data System (ADS)
Duan, J. G.
2011-12-01
Civil engineers, pioneers of our civilization, are rarely perceived as leaders and innovators in modern society because of retardations in technology innovation. This crisis has resulted in the decline of the prestige of civil engineering profession, reduction of federal funding on deteriorating infrastructures, and problems with attracting the most talented high-school students. Infusion of cutting-edge computer technology and stimulating creativity and innovation therefore are the critical challenge to civil engineering education. To better prepare our graduates to innovate, this paper discussed the adaption of problem-based collaborative learning technique and integration of civil engineering computing into a traditional civil engineering curriculum. Three interconnected courses: Open Channel Flow, Computational Hydraulics, and Sedimentation Engineering, were developed with emphasis on computational simulations. In Open Channel flow, the focuses are principles of free surface flow and the application of computational models. This prepares students to the 2nd course, Computational Hydraulics, that introduce the fundamental principles of computational hydraulics, including finite difference and finite element methods. This course complements the Open Channel Flow class to provide students with in-depth understandings of computational methods. The 3rd course, Sedimentation Engineering, covers the fundamentals of sediment transport and river engineering, so students can apply the knowledge and programming skills gained from previous courses to develop computational models for simulating sediment transport. These courses effectively equipped students with important skills and knowledge to complete thesis and dissertation research.
NASA Astrophysics Data System (ADS)
Gembalska-Kwiecień, Anna
2016-12-01
The article discusses innovative forms of participation of employees in the work safety system. It also presents the advantages of these forms of employees' involvement. The aim of empirical studies was the analysis of their behavior and attitude towards health and safety at work. The issues considered in the article have a significant impact on the improvement of methods of prevention related to work safety and aided the creation of a healthy society.
2014-06-23
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, University of Colorado Boulder graduate students Heather Hava, far left, and Daniel Zukowski, second from the left, describe a computerized SmartPot, or SPOT, which could be used to grow plants in a deep-space habitat. The SPOTs could be tended by a Remotely Operated Gardening Rover, or ROGR, seen on the left. The system is being developed by the graduate students participating in the eXploration HABitat X-Hab Academic Innovation Challenge. From the left are Hava, Zukowski, Gioia Massa of the NASA International Space Station Ground Processing and Research Project Office, Tracy Gill of the NASA Center Planning and Development Directorate, Morgan Simpson of the NASA Ground Processing Directorate, and Ray Wheeler of the NASA Engineering and Technology Directorate. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in science, technology, engineering and math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Daniel Casper
2014-06-23
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, University of Colorado Boulder graduate students Heather Hava, far left, and Daniel Zukowski, second from the left, pose with a computerized SmartPot, or SPOT, which could be used to grow plants in a deep-space habitat. To the right of the SPOT is a Remotely Operated Gardening Rover, or ROGR. The system is being developed by the graduate students participating in the eXploration HABitat X-Hab Academic Innovation Challenge. From the left are Zukowski, Hava, Gioia Massa of the NASA International Space Station Ground Processing and Research Project Office, Tracy Gill of the NASA Center Planning and Development Directorate, Morgan Simpson of the NASA Ground Processing Directorate, and Ray Wheeler of the NASA Engineering and Technology Directorate. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in science, technology, engineering and math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Daniel Casper
Denver airport pumping systems achieve optimal [Delta] T's
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannion, G.F.; Krist, G.D.
1994-07-01
This article describes how the pumping and generating systems at the new Denver Airport operate efficiently with the user loops in the buildings producing design temperature rise at all load levels. Fifteen miles east of Denver's Stapleton International Airport lies the newly completed Denver International Airport (DIA)--the world's largest and most high-tech airport. Besides being one of the largest construction projects in the works, it has many of the latest technical innovations available. Of particular interest to the HVAC industry is the design of the heating and cooling water systems. These systems provide environmental cooling and heating water to themore » three concourses, the airport office building, and the main terminal. The mechanical engineers for the project were all from the Denver area. The central plant design was the work of Behrent Engineering Co.; the three concourses were designed by Swanson-Rink Associates; and the main terminal and administrative office building were designed by Abeyta Engineering Consultants. The overall system concept was developed during the initial design phase by engineers from these firms, members of the DIA staff, and application engineers from several manufacturers.« less
DOT National Transportation Integrated Search
1974-12-01
A study was conducted to determine the potential reduction in automotive fuel consumption based on the use of innovative systems and improved components. Technological areas investigated were: spark ignited engines with and without turbocharging, ele...
DOT National Transportation Integrated Search
1974-12-01
A study was conducted to determine the potential reduction in automotive fuel consumption based on the use of innovative systems and improved components. Technological areas investigated were: spark ignited engines with and without turbocharging, ele...
ERIC Educational Resources Information Center
Núñez, Cristina; Guinea, Ana; Callau, Sara; Bengoa, Christophe; Basco, Josep; Gavaldà, Jordi
2017-01-01
The Bachelor's Degree Final Project (BDFP) of our school aims to develop a real constructive project, enhance cooperative teamwork and increase productivity of students. We present a real case study, related with engineering and scientific innovation results obtained by BDFP, which has led to an innovative scientific study presented at the 7th…
Next-Generation RS-25 Engines for the NASA Space Launch System
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2017-01-01
The utilization of heritage RS-25 engine, also known as the Space Shuttle Main Engine (SSME), has enabled rapid progress in the development and certification of the NASA Space Launch System (SLS) toward operational flight status. The RS-25 brings design maturity and extensive experience gained through 135 missions, 3000+ ground tests, and over a million seconds total accumulated hot-fire time. In addition, there were also over a dozen functional flight assets remaining from the Space Shuttle program that could be leveraged to support the first four flights. Beyond these initial SLS flights, NASA must have a renewed supply of RS-25 engines that must reflect program affordability imperatives as well as technical requirements imposed by the SLS Block-1B vehicle (i.e., 111% RPL power level, reduced service life). Recognizing the long lead times needed for the fabrication, assembly and acceptance testing of flight engines, design activities are underway at NASA and the RS-25 engine provider, Aerojet Rocketdyne, to improve system affordability and eliminate obsolescence concerns. This paper describes how the achievement of these key objectives are enabled largely by utilizing modern materials and fabrication technologies, but also by innovations in systems engineering and integration (SE&I) practices.
Education in Action: An Engine of Change, Creativity, Innovation, Leadership and Social Commitment
ERIC Educational Resources Information Center
Ulate Sanchez, Rosita
2014-01-01
In this commentary, Rosita Ulate Sanchez states that Venezuela, like other Latin American countries, begins the 21st century by confronting realities that require changes in its learning and education systems. The purpose of Venezuela's education system is to generate social renovation and economic development. It seeks to achieve this through…
Waves at Navigation Structures
2014-10-27
upgrades the Coastal Modeling System’s (CMS) wave model CMS-Wave, a phase-averaged spectral wave model, and BOUSS-2D, a Boussinesq -type nonlinear wave...nearshore wave processes in practical applications. These capabilities facilitate optimization of innovative infrastructure for navigation systems to...navigation systems . The advanced models develop probabilistic engineering design estimates for rehabilitation of coastal structures to evaluate the
2012-09-30
Development of Sand Properties 103 Advanced Modeling Dataset.. 105 High Strength Low Alloy (HSLA) Steels 107 Steel Casting and Engineering Support...to achieve the performance goals required for new systems. The dramatic reduction in weight and increase in capability will require high performance...for improved weapon system reliability. SFSA developed innovative casting design and manufacturing processes for high performance parts. SFSA is
Recent Advances in Genome Editing Using CRISPR/Cas9
Ding, Yuduan; Li, Hong; Chen, Ling-Ling; Xie, Kabin
2016-01-01
The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system is a versatile tool for genome engineering that uses a guide RNA (gRNA) to target Cas9 to a specific sequence. This simple RNA-guided genome-editing technology has become a revolutionary tool in biology and has many innovative applications in different fields. In this review, we briefly introduce the Cas9-mediated genome-editing method, summarize the recent advances in CRISPR/Cas9 technology, and discuss their implications for plant research. To date, targeted gene knockout using the Cas9/gRNA system has been established in many plant species, and the targeting efficiency and capacity of Cas9 has been improved by optimizing its expression and that of its gRNA. The CRISPR/Cas9 system can also be used for sequence-specific mutagenesis/integration and transcriptional control of target genes. We also discuss off-target effects and the constraint that the protospacer-adjacent motif (PAM) puts on CRISPR/Cas9 genome engineering. To address these problems, a number of bioinformatic tools are available to help design specific gRNAs, and new Cas9 variants and orthologs with high fidelity and alternative PAM specificities have been engineered. Owing to these recent efforts, the CRISPR/Cas9 system is becoming a revolutionary and flexible tool for genome engineering. Adoption of the CRISPR/Cas9 technology in plant research would enable the investigation of plant biology at an unprecedented depth and create innovative applications in precise crop breeding. PMID:27252719
Research on reform plan of civil engineering adult education graduation design
NASA Astrophysics Data System (ADS)
Su, Zhibin; Sun, Shengnan; Cui, Shicai
2017-12-01
As for civil engineering adult education graduation design, reform program is put forward combined with our school. The main points of reform include the following aspects. New pattern of graduation design which is consisted of basic training of engineering design, technical application and engineering innovation training is formed. Integration model of graduation design and employment is carried out. Multiple professional guidance graduation design pattern is put forward. Subject of graduation design is chosen based on the school actual circumstance. A “three stage” quality monitoring system is established. Performance evaluation pattern that concludes two oral examinations of the dissertation is strictly carried out.
The Tailoring of Traditional Systems Engineering for the Morpheus Project
NASA Technical Reports Server (NTRS)
Devolites, Jennifer L.; Hart, Jeremy J.
2013-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. The team has produced innovative ways to create an infrastructure and approach that would challenge existing systems engineering processes while still enabling successful implementation of the current Morpheus Project. This paper describes the tailored systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in FY11. Lessons learned from these trials have the potential to be scaled up and improve efficiency on a larger projects or programs.
NASA Technical Reports Server (NTRS)
2012-01-01
Topics include: Bioreactors Drive Advances in Tissue Engineering; Tooling Techniques Enhance Medical Imaging; Ventilator Technologies Sustain Critically Injured Patients; Protein Innovations Advance Drug Treatments, Skin Care; Mass Analyzers Facilitate Research on Addiction; Frameworks Coordinate Scientific Data Management; Cameras Improve Navigation for Pilots, Drivers; Integrated Design Tools Reduce Risk, Cost; Advisory Systems Save Time, Fuel for Airlines; Modeling Programs Increase Aircraft Design Safety; Fly-by-Wire Systems Enable Safer, More Efficient Flight; Modified Fittings Enhance Industrial Safety; Simulation Tools Model Icing for Aircraft Design; Information Systems Coordinate Emergency Management; Imaging Systems Provide Maps for U.S. Soldiers; High-Pressure Systems Suppress Fires in Seconds; Alloy-Enhanced Fans Maintain Fresh Air in Tunnels; Control Algorithms Charge Batteries Faster; Software Programs Derive Measurements from Photographs; Retrofits Convert Gas Vehicles into Hybrids; NASA Missions Inspire Online Video Games; Monitors Track Vital Signs for Fitness and Safety; Thermal Components Boost Performance of HVAC Systems; World Wind Tools Reveal Environmental Change; Analyzers Measure Greenhouse Gasses, Airborne Pollutants; Remediation Technologies Eliminate Contaminants; Receivers Gather Data for Climate, Weather Prediction; Coating Processes Boost Performance of Solar Cells; Analyzers Provide Water Security in Space and on Earth; Catalyst Substrates Remove Contaminants, Produce Fuel; Rocket Engine Innovations Advance Clean Energy; Technologies Render Views of Earth for Virtual Navigation; Content Platforms Meet Data Storage, Retrieval Needs; Tools Ensure Reliability of Critical Software; Electronic Handbooks Simplify Process Management; Software Innovations Speed Scientific Computing; Controller Chips Preserve Microprocessor Function; Nanotube Production Devices Expand Research Capabilities; Custom Machines Advance Composite Manufacturing; Polyimide Foams Offer Superior Insulation; Beam Steering Devices Reduce Payload Weight; Models Support Energy-Saving Microwave Technologies; Materials Advance Chemical Propulsion Technology; and High-Temperature Coatings Offer Energy Savings.
Multi-Reflex Propulsion Systems for Space and Air Vehicles and Energy Transfer for Long Distance
NASA Astrophysics Data System (ADS)
Bolonkin, A.
The purpose of this article is to call attention to the revolutionary idea of light multi-reflection. This idea allows the design of new engines, space and air propulsion systems, storage (of a beam and solar energy), transmitters of energy (to millions of kilometers), creation of new weapons, etc. This method and the main innovations were offered by the author in 1983 in the former USSR. Now the author shows in a series of articles the immense possibilities of this idea in many fields of engineering - astronautics, aviation, energy, optics, direct converter of light (laser beam) energy to mechanical energy (light engine), to name a few. This article considers the multi-reflex propulsion systems for space and air vehicles and energy transmitter for long distances in space.
Shuttle avionics software trials, tribulations and success
NASA Technical Reports Server (NTRS)
Henderson, O. L.
1985-01-01
The early problems and the solutions developed to provide the required quality software needed to support the space shuttle engine development program are described. The decision to use a programmable digital control system on the space shuttle engine was primarily based upon the need for a flexible control system capable of supporting the total engine mission on a large complex pump fed engine. The mission definition included all control phases from ground checkout through post shutdown propellant dumping. The flexibility of the controller through reprogrammable software allowed the system to respond to the technical challenges and innovation required to develop both the engine and controller hardware. This same flexibility, however, placed a severe strain on the capability of the software development and verification organization. The overall development program required that the software facility accommodate significant growth in both the software requirements and the number of software packages delivered. This challenge was met by reorganization and evolution in the process of developing and verifying software.
ERIC Educational Resources Information Center
Garcia, Oscar N.; Varanasi, Murali R.; Acevedo, Miguel F.; Guturu, Parthasarathy
2011-01-01
We analyze and study the beginning of a new Electrical Engineering Department, supported by an NSF Departmental Level Reform award, within a new College of Engineering in the 21st Century and also describe the academic approach and influences of an innovative cognitive-based approach to curriculum development. In addition, the approach taken…
ERIC Educational Resources Information Center
Frontiers in Education Conference (MS), 2012
2012-01-01
The lifetime of Frontiers in Education (FIE), 42 years and counting, has been a time of many innovations in engineering and computing education. The FIE Conference has become the premiere conference for presentation and discussion of excellent educational research and innovative curricula in engineering education. This accomplishment would not…
2014-06-23
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, University of Colorado Boulder graduate students Daniel Zukowski, left, and Heather Hava describe a Remotely Operated Gardening Rover, or ROGR, which could tend to plants grown in a deep-space habitat. The system is being developed by the students participating in the eXploration HABitat X-Hab Academic Innovation Challenge. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in science, technology, engineering and math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Daniel Casper
2014-06-23
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, Daniel Zukowski, a University of Colorado Boulder graduate student, describes a Remotely Operated Gardening Rover, or ROGR, which could tend to plants grown in one of the SmartPots, or SPOTS, seen on the right. The system is being developed by the graduate students participating in the eXploration HABitation X-Hab Academic Innovation Challenge. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in science, technology, engineering and math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Daniel Casper
Marine Fouling and Thermal Dissipation of Undersea Wireless Power Transfer
2014-09-01
Warfare Systems Center Pacific (SSC Pacific), San Diego, CA. The Naval Innovative Science and Engineering (NISE) Program at SSC Pacific funded this team...FLIR Systems , Inc. MG Chemicals® is registered trademarks of MG Chemicals Ltd. Released by J. Spenser, Head Radiation Technologies Branch...Under authority of M. H. Berry. Head Maritime Systems Division iii EXECUTIVE SUMMARY This report describes the thermal effects and marine
NIH-IEEE 2015 Strategic Conference on Healthcare Innovations and Point-of-Care Technologies for Prec
NIH and the Institute for Electrical and Electronics Engineering, Engineering in Medicine and Biology Society (IEEE/EMBS) hosted the third iteration of the Healthcare Innovations and Point-of-Care Technologies Conference last week.
Hypothetical Scenario Generator for Fault-Tolerant Diagnosis
NASA Technical Reports Server (NTRS)
James, Mark
2007-01-01
The Hypothetical Scenario Generator for Fault-tolerant Diagnostics (HSG) is an algorithm being developed in conjunction with other components of artificial- intelligence systems for automated diagnosis and prognosis of faults in spacecraft, aircraft, and other complex engineering systems. By incorporating prognostic capabilities along with advanced diagnostic capabilities, these developments hold promise to increase the safety and affordability of the affected engineering systems by making it possible to obtain timely and accurate information on the statuses of the systems and predicting impending failures well in advance. The HSG is a specific instance of a hypothetical- scenario generator that implements an innovative approach for performing diagnostic reasoning when data are missing. The special purpose served by the HSG is to (1) look for all possible ways in which the present state of the engineering system can be mapped with respect to a given model and (2) generate a prioritized set of future possible states and the scenarios of which they are parts.
An Overview of 2014 SBIR Phase I and Phase II Materials Structures for Extreme Environments
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.
2015-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Materials and Structures for Extreme Environments. The technologies cover a wide spectrum of applications such as high temperature environmental barrier coating systems, deployable space structures, solid oxide fuel cells, and self-lubricating hard coatings for extreme temperatures. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
Clarens, Andres F.; Peters, Catherine A.
2016-01-01
Abstract Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on “The science and innovation of emerging subsurface energy technologies,” provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others. PMID:28031695
Clarens, Andres F; Peters, Catherine A
2016-10-01
Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on "The science and innovation of emerging subsurface energy technologies," provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others.
Performance of a High-Fidelity 4kW-Class Engineering Model PPU and Integration with HiVHAc System
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Kamhawi, Hani; Shilo, Vladislav
2016-01-01
The High Voltage Hall Accelerator (HiVHAc) propulsion system consists of a thruster,power processing unit (PPU), and propellant feed system. An engineering model PPU was developed by Colorado Power Electronics, Inc. funded by NASA's Small Business Innovative Research Program. This PPU uses an innovative 3-phase resonant converter to deliver 4 kW of discharge power over a wide range of input and output voltage conditions.The PPU includes a digital control interface unit that automatically controls the PPU and a xenon flow control module (XFCM). It interfaces with a control computer to receive high level commands and relay telemetry through a MIL-STD-1553B interface. The EM PPU was thoroughly tested at GRC for functionality and performance at temperature extremes and demonstrated total efficiencies a high as 95 percent. It was integrated with the HiVHAc thruster and the XFCM to demonstrate closed-loop control of discharge current with anode flow. Initiation of the main discharge and power throttling were also successfully demonstrated and discharge oscillations were characterized.
Performance of a High-Fidelity 4kW-Class Engineering Model PPU and Integration with HiVHAc System
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Kamhawi, Hani; Shilo, Vlad
2016-01-01
The High Voltage Hall Accelerator (HiVHAc) propulsion system consists of a thruster, power processing unit (PPU), and propellant feed system. An engineering model PPU was developed by Colorado Power Electronics, Inc. funded by NASA's Small Business Innovative Research Program. This PPU uses an innovative 3-phase resonant converter to deliver 4 kW of discharge power over a wide range of input and output voltage conditions. The PPU includes a digital control interface unit that automatically controls the PPU and a xenon flow control module (XFCM). It interfaces with a control computer to receive highlevel commands and relay telemetry through a MIL-STD-1553B interface. The EM PPU was thoroughly tested at GRC for functionality and performance at temperature limits and demonstrated total efficiencies a high as 95 percent. Integrated testing of the unit was performed with the HiVHAc thruster and the XFCM to demonstrate closed-loop control of discharge current with anode flow. Initiation of the main discharge and power throttling were also successfully demonstrated and discharge oscillations were characterized.
Pre-Engineered Buildings and School Construction.
ERIC Educational Resources Information Center
Jurney, Douglas M.
1979-01-01
A preengineered building has the advantages of factory production and computerized quality control. Insulation efficiency and a roofing system that enables the entire roof membrane to react a full two inches to any temperature-induced movement are two of the innovations of preengineered building research. (Author/MLF)
Han, Xueying; Stocking, Galen; Gebbie, Matthew A.; Appelbaum, Richard P.
2015-01-01
The U.S. currently enjoys a position among the world’s foremost innovative and scientifically advanced economies but the emergence of new economic powerhouses like China and India threatens to disrupt the global distribution of innovation and economic competitiveness. Among U.S. policy makers, the promotion of advanced education, particularly in the STEM (Science, Technology, Engineering and Mathematics) fields, has become a key strategy for ensuring the U.S.’s position as an innovative economic leader. Since approximately one third of science and engineering post-graduate students in the U.S. are foreign born, the future of the U.S. STEM educational system is intimately tied to issues of global competitiveness and American immigration policy. This study utilizes a combination of national education data, a survey of foreign-born STEM graduate students, and in-depth interviews of a sub-set of those students to explain how a combination of scientists’ and engineers’ educational decisions, as well as their experience in school, can predict a students’ career path and geographical location, which can affect the long-term innovation environment in their home and destination country. This study highlights the fact that the increasing global competitiveness in STEM education and the complex, restrictive nature of U.S. immigration policies are contributing to an environment where the American STEM system may no longer be able to comfortably remain the premier destination for the world’s top international students. PMID:25760327
Strain System for the Motion Base Shuttle Mission Simulator
NASA Technical Reports Server (NTRS)
Huber, David C.; Van Vossen, Karl G.; Kunkel, Glenn W.; Wells, Larry W.
2010-01-01
The Motion Base Shuttle Mission Simulator (MBSMS) Strain System is an innovative engineering tool used to monitor the stresses applied to the MBSMS motion platform tilt pivot frames during motion simulations in real time. The Strain System comprises hardware and software produced by several different companies. The system utilizes a series of strain gages, accelerometers, orientation sensor, rotational meter, scanners, computer, and software packages working in unison. By monitoring and recording the inputs applied to the simulator, data can be analyzed if weld cracks or other problems are found during routine simulator inspections. This will help engineers diagnose problems as well as aid in repair solutions for both current as well as potential problems.
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria R.; Seifert, Colleen M.; Papalambros, Panos Y.
2012-01-01
The design of large-scale complex engineered systems (LaCES) such as an aircraft is inherently interdisciplinary. Multiple engineering disciplines, drawing from a team of hundreds to thousands of engineers and scientists, are woven together throughout the research, development, and systems engineering processes to realize one system. Though research and development (R&D) is typically focused in single disciplines, the interdependencies involved in LaCES require interdisciplinary R&D efforts. This study investigates the interdisciplinary interactions that take place during the R&D and early conceptual design phases in the design of LaCES. Our theoretical framework is informed by both engineering practices and social science research on complex organizations. This paper provides preliminary perspective on some of the organizational influences on interdisciplinary interactions based on organization theory (specifically sensemaking), data from a survey of LaCES experts, and the authors experience in the research and design. The analysis reveals couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their significant benefit to the engineered system, such as innovation and problem mitigation. Substantial obstacles to interdisciplinarity are uncovered beyond engineering that include communication and organizational challenges. Addressing these challenges may ultimately foster greater efficiencies in the design and development of LaCES and improved system performance by assisting with the collective integration of interdependent knowledge bases early in the R&D effort. This research suggests that organizational and human dynamics heavily influence and even constrain the engineering effort for large-scale complex systems.
Design type air engine Di Pietro
NASA Astrophysics Data System (ADS)
Zwierzchowski, Jaroslaw
The article presents a pneumatic engine constructed by Angelo Di Pietro. 3D solid models of pneumatic engine components were presented therein. A directional valve is a key element of the control system. The valve functions as a camshaft distributing air to particular engine chambers. The construction designed by Angelo Di Pietro is modern and innovative. A pneumatic engine requires low pressure to start rotary movement. With the use of CFD software, the fields of velocity vectors' distribution were determined. Moreover, the author determined the distribution of pressure values in engine inlet and outlet channels. CFD model studies on engine operation were conducted for chosen stages of operating cycles. On the basis of simulation tests that were conducted, the values of flow rates for the engine were determined. The distribution of pressure values made it possible to evaluate the torque value on the rotating shaft.
On November 17-19, 1992, the U.S. Environmental Protection Agency's Technology Innovation Office and Risk Reduction Engineering Laboratory, Department of Energy, Corps of Engineers, and California Environmental Preotection Agency, hosted an International conference in San Francis...
Defense Innovation Unit Experimental (DIUX): Innovative or Excessive
2017-04-06
DIUx, and the short history of DIUx. Innovation principles from authors Vijay Govindarajan, Michael Docherty, and Clayton Christensen are then...innovation principles such as performance engine & innovative team, collective / open innovation, and disruptive technology and its implications – is...various innovation principles drawing primarily from work by authors Vijay Govindarajan and Chris Trimble, Michael Docherty, and Clayton Christenson
Systems Engineering Applications for Small Business Innovative Research (SBIR) Projects
2012-09-01
7 2. DAG Processes and Roles of the PM and SE................................................................8 3. DAG SE Processes...also defines the role of the Program Manager and Chief Engineer illustrated in figure 2 below. The DAG also separates the above 16 SE processes...into two areas shown in figure 3. Table 2: DAG Processes and Roles of the PM and SE (DAG Table 4.1.1T1, 2012) 9 Table 3: DAG SE Processes (DAG
NASA Technical Reports Server (NTRS)
Topousis, Daria E.; Murphy, Keri; Robinson, Greg
2008-01-01
In 2004, NASA faced major knowledge sharing challenges due to geographically isolated field centers that inhibited personnel from sharing experiences and ideas. Mission failures and new directions for the agency demanded better collaborative tools. In addition, with the push to send astronauts back to the moon and to Mars, NASA recognized that systems engineering would have to improve across the agency. Of the ten field centers, seven had not built a spacecraft in over 30 years, and had lost systems engineering expertise. The Systems Engineering Community of Practice came together to capture the knowledge of its members using the suite of collaborative tools provided by the NASA Engineering Network (NEN.) The NEN provided a secure collaboration space for over 60 practitioners across the agency to assemble and review a NASA systems engineering handbook. Once the handbook was complete, they used the open community area to disseminate it. This case study explores both the technology and the social networking that made the community possible, describes technological approaches that facilitated rapid setup and low maintenance, provides best practices that other organizations could adopt, and discusses the vision for how this community will continue to collaborate across the field centers to benefit the agency as it continues exploring the solar system.
ERIC Educational Resources Information Center
Zadahmad, Manouchehr; Yousefzadehfard, Parisa
2016-01-01
Mobile Cloud Computing (MCC) aims to improve all mobile applications such as m-learning systems. This study presents an innovative method to use web technology and software engineering's best practices to provide m-learning functionalities hosted in a MCC-learning system as service. Components hosted by MCC are used to empower developers to create…
ERIC Educational Resources Information Center
Repenning, Alexander; Webb, David C.; Koh, Kyu Han; Nickerson, Hilarie; Miller, Susan B.; Brand, Catharine; Her Many Horses, Ian; Basawapatna, Ashok; Gluck, Fred; Grover, Ryan; Gutierrez, Kris; Repenning, Nadia
2015-01-01
An educated citizenry that participates in and contributes to science technology engineering and mathematics innovation in the 21st century will require broad literacy and skills in computer science (CS). School systems will need to give increased attention to opportunities for students to engage in computational thinking and ways to promote a…
Cognition and thinking on Applied Optics course's reformation and innovation
NASA Astrophysics Data System (ADS)
Chen, Jingjing; Ji, Feng; Liu, Zhijian; Xia, Haojie; Shu, Shuangbao
2017-08-01
The course of "Applied Optics" is professional and foundational for the specialty of photo-electric information and engineering. According to the characteristics of the specialty, the teaching contents, teaching means, innovations and appraisal methods are mainly discussed in this paper. Firstly, one of the most difficult part to comprehend, the Fermat principle is taken as an example in the teaching content. By using the development history of optics and interesting natural phenomenon, students' understanding of the optical knowledge can be enhanced. Secondly, in various means of teaching art, ZEMAX provides students with a platform of training innovative consciousness and engineering capacity, and it make high cohesion in teaching and scientific research. Thirdly, in the teaching innovation, photoelectric contest can stimulate students' innovative thinking, innovation awareness, and cultivate undergraduate students' optics, mechanics, electricity, numerology integrated design capabilities. Lastly, the reform in the appraisal methods guide students from focusing on the examination results to pay attention to the learning process. Eventually, students' study interest has improved, demand of the engineering practice has adapted, and the well teaching effect has realized.
Innovative Mobile Smart Photonic Dimensional, Color and Spectral Measurement Engineering
NASA Astrophysics Data System (ADS)
Hofmann, Dr Dietrich, Prof; Dittrich (B. Eng. , Paul-Gerald; Höfner (B. Eng. , Dieter; Kraus, Daniel
2015-02-01
Aim of the paper is the demonstration of a paradigm shift in dimensional, color and spectral measurements in industry, biology/medicine, farming/environmental protection and security, as well as in education and training: Measurement engineering and quality assurance become mobile, modular and smart. Smartpads, smartphones and smartwatches (smartcomps) in combination with innovative hardware apps (hwapps) and conventional software apps (swapps) are fundamental enablers for the transformation from conventional stationary working places towards innovative mobile working places with in-field measurements and point-of-care (POC) diagnostics. Furthermore mobile open online courses (MOOCs) are transforming the study habits. Practical examples for the application of innovative photonic micro dimensiometers, colorimeters and spectrometers will be given. The innovative approach opens so far untapped enormous markets for measurement science, engineering, applications, education and training. These innovative working conditions will be fast accepted due to their convenience, reliability and affordability. A highly visible advantage of smartcomps is the huge number of their real distribution, their worldwide connectivity via Internet and cloud services, the standardized interfaces like USB and HDMI and the experienced capabilities of their users for practical operations, obtained with their private smartcomps.
Evaluation of Shipbuilding CAD/CAM/CIM Systems - Phase II (Requirements for Future Systems)
1997-02-01
INNOVATION MARINE INDUSTRY STANDARDS WELDING INDUSTRIAL ENGINEERING EDUCATION AND TRAINING THE NATIONAL SHIPBUILDING RESEARCH PROGRAM February 1997 NSRP 0479...an analysis of CAD/CAM/CIM in shipyards, ship-design software firms, and alIied industries in Europe, Japan and the U.S. The purpose of the analysis...possible: Black and Veatch Hitachi Ariake Works Industrial Technology Institute Intergraph Corporation Kockums Computer Systems Mitsubishi Heavy Industries
NASA Astrophysics Data System (ADS)
Qianyi, Zhang; Xiaoshun, Li; Ping, Hu; Lu, Ning
2018-03-01
With the promotion of undergraduate training mode of “3+1” in Beijing University of Agriculture, the mode and direction of applied and compound talents training should be further visualized, at the same time, in order to make up for the shortage of Double Teachers in the school and the lack of teaching cases that cover the advanced technology in the industry, the school actively encourages the cooperation between the two teaching units and enterprises, and closely connects the enterprise resources with the school teaching system, using the “1” in “3+1” to carry out innovative training work for students. This method is beneficial for college students to integrate theory into practice and realize the purpose of applying knowledge in Higher Education. However, in the actual student training management, this kind of cooperation involves three party units and personnel, so it is difficult to form a unified management, on the other hand, it may also result from poor communication, which leads to unsatisfactory training results. At the same time, there is no good training supervision mechanism, causes the student training work specious. To solve the above problem,this paper designs a training management system of student innovation and Entrepreneurship Based on school enterprise cooperation,the system can effectively manage the relevant work of students’ training, and effectively solve the above problems. The subject is based on the training of innovation and entrepreneurship in the school of computer and information engineering of Beijing University of Agriculture. The system software architecture is designed using B/S architecture technology, the system is divided into three layers, the application of logic layer includes student training management related business, and realized the user’s basic operation management for student training, users can not only realize the basic information management of enterprises, colleges and students through the system, at the same time, it also realizes the information operation of student training management [1]. The data layer of the system creates database applications through Mysql technology, and provides data storage for the whole system.
NASA Astrophysics Data System (ADS)
Ponomarev, Vasily
SPLDESS development with the elements of a multimedia illustration of traditional hypertext search results by Internet search engine provides research of information propagation innovative effect during the public access information-recruiting networks of information kiosks formation at the experimental stage with the mirrors at the constantly updating portal for Internet users. Author of this publication put the emphasis on a condition of pertinent search engine results of the total answer by the user inquiries, that provide the politically correct and not usurping socially-network data mining effect at urgent monitoring. Development of the access by devices of the new communication types with the newest technologies of data transmission, multimedia and an information exchange from the first innovation line usage support portal is presented also (including the device of social-psycho-linguistic determination according the author's conception).
Study of launch site processing and facilities for future launch vehicles
NASA Astrophysics Data System (ADS)
Shaffer, Rex
1995-03-01
The purpose of this research is to provide innovative and creative approaches to assess the impact to the Kennedy Space Center and other launch sites for a range of candidate manned and unmanned space transportation systems. The general scope of the research includes the engineering activities, analyses, and evaluations defined in the four tasks below: (1) development of innovative approaches and computer aided tools; (2) operations analyses of launch vehicle concepts and designs; (3) assessment of ground operations impacts; and (4) development of methodologies to identify promising technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawyer, Karma; Green, Johney; Jackson, Roderick
ORNL and many industry partners developed the Additive Manufacturing Integrated Energy (AMIE) demonstration to address electricity supply and reliability challenges via an integrated approach to power generation, storage, and use. AMIE demonstrates rapid innovation through additive manufacturing (3D printing) to connect a natural gas-powered hybrid electric vehicle to a high-performance building that produces, consumes, and stores renewable energy. To offset power supply disruptions, the vehicle’s engine can provide complementary power to the building. Fitted with an advanced power control system and then scaled up, this concept can support electricity needs worldwide.
Sawyer, Karma; Green, Johney; Jackson, Roderick; Love, Lonnie
2018-01-16
ORNL and many industry partners developed the Additive Manufacturing Integrated Energy (AMIE) demonstration to address electricity supply and reliability challenges via an integrated approach to power generation, storage, and use. AMIE demonstrates rapid innovation through additive manufacturing (3D printing) to connect a natural gas-powered hybrid electric vehicle to a high-performance building that produces, consumes, and stores renewable energy. To offset power supply disruptions, the vehicleâs engine can provide complementary power to the building. Fitted with an advanced power control system and then scaled up, this concept can support electricity needs worldwide.
Study of launch site processing and facilities for future launch vehicles
NASA Technical Reports Server (NTRS)
Shaffer, Rex
1995-01-01
The purpose of this research is to provide innovative and creative approaches to assess the impact to the Kennedy Space Center and other launch sites for a range of candidate manned and unmanned space transportation systems. The general scope of the research includes the engineering activities, analyses, and evaluations defined in the four tasks below: (1) development of innovative approaches and computer aided tools; (2) operations analyses of launch vehicle concepts and designs; (3) assessment of ground operations impacts; and (4) development of methodologies to identify promising technologies.
A Design of Innovative Engineering Drawing Teaching Materials
NASA Astrophysics Data System (ADS)
Mujiarto; Djohar, A.; Komaro, M.
2018-02-01
Good teaching is influenced by several things such as effective school leaders and skilled teachers who are able to use information communication technology as a medium of learning. The purpose of this research in general is to develop innovative teaching materials in the form of multimedia animation for engineering drawing in the field of technology and engineering at vocational high school. Research method used research and development (research and development / R & D). The results showed that the E-book Multimedia Animation Engineering Drawing (E-MMAED) is easy to possess and contains complete material. Students stated that the use of E-MMAED adds to learning motivation and improves learning outcomes (student competencies). We recommend that teachers apply E-MMAED as a learning medium and create other innovations to improve student competences.
Development of a Turbofan Engine Simulation in a Graphical Simulation Environment
NASA Technical Reports Server (NTRS)
Parker, Khary I.; Guo, Ten-Heui
2003-01-01
This paper presents the development of a generic component level model of a turbofan engine simulation with a digital controller, in an advanced graphical simulation environment. The goal of this effort is to develop and demonstrate a flexible simulation platform for future research in propulsion system control and diagnostic technology. A previously validated FORTRAN-based model of a modern, high-performance, military-type turbofan engine is being used to validate the platform development. The implementation process required the development of various innovative procedures, which are discussed in the paper. Open-loop and closed-loop comparisons are made between the two simulations. Future enhancements that are to be made to the modular engine simulation are summarized.
Pfister, Kai F.; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J.
2017-01-01
Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering. PMID:28630908
Pfister, Kai F; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J
2017-06-01
Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering.
Acoustic Liner for Turbomachinery Applications
NASA Technical Reports Server (NTRS)
Huff, Dennis L.; Sutliff, Daniel L.; Jones, Michael G.; Hebsur, Mohan G.
2010-01-01
The purpose of this innovation is to reduce aircraft noise in the communities surrounding airports by significantly attenuating the noise generated by the turbomachinery, and enhancing safety by providing a containment barrier for a blade failure. Acoustic liners are used in today's turbofan engines to reduce noise. The amount of noise reduction from an acoustic liner is a function of the treatment area, the liner design, and the material properties, and limited by the constraints of the nacelle or casement design. It is desirable to increase the effective area of the acoustic treatment to increase noise suppression. Modern turbofan engines use wide-chord rotor blades, which means there is considerable treatment area available over the rotor tip. Turbofan engines require containment over the rotors for protection from blade failure. Traditional methods use a material wrap such as Kevlar integrated with rub strips and sometimes metal layers (sandwiches). It is possible to substitute the soft rub-strip material with an open-cell metallic foam that provides noise-reduction benefits and a sacrificial material in the first layer of the containment system. An open-cell foam was evaluated that behaves like a bulk acoustic liner, serves as a tip rub strip, and can be integrated with a rotor containment system. Foams can be integrated with the fan-containment system to provide sufficient safety margins and increased noise attenuation. The major innovation is the integration of the foam with the containment.
Systems engineering in practice: can rigour and creativity co-exist?
NASA Astrophysics Data System (ADS)
Schnetler, Hermine; Rees, Philip; Egan, Ian
2006-06-01
Systems engineering as a discipline has been established for many years, being utilised to good effect most notably, in the defence industry. Its introduction in a formalised way to the UK ATC is relatively recent. Although a good start has been made in embedding the process within the lifecycle model, much work is still required to refine the systems engineering elements to cope with the complex (internationally collaborative) business model, the need to nurture creativity in the design process and the translation into a highly challenging cost-driven technology domain. This paper explores the current status of systems engineering at the UK ATC, shows where further work is needed, and how improvements can be made to meet the challenges of next generation telescopes and instrumentation. It is shown why the discipline is necessary, especially given that projects often comprise diverse global teams (both small and large), and it indicates the pitfalls of a tendency in the early stages of a project to focus on solutions rather than robust requirements capture. Finally, despite the obvious value and yet often ill-understood rigours of system engineering, it is shown how innovation and creativity can be promoted rather than stifled.
Cultivating engineering innovation ability based on optoelectronic experimental platform
NASA Astrophysics Data System (ADS)
Li, Dangjuan; Wu, Shenjiang
2017-08-01
As the supporting experimental platform of the Xi'an Technological University education reform experimental class, "optical technological innovation experimental platform" integrated the design and comprehensive experiments of the optical multi-class courses. On the basis of summing up the past two years teaching experience, platform pilot projects were improve. It has played a good role by making the use of an open teaching model in the cultivating engineering innovation spirit and scientific thinking of the students.
Using Innovative Technologies for Manufacturing and Evaluating Rocket Engine Hardware
NASA Technical Reports Server (NTRS)
Betts, Erin M.; Hardin, Andy
2011-01-01
Many of the manufacturing and evaluation techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing and evaluating hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) and white light scanning are being adopted and evaluated for their use on J-2X, with hopes of employing both technologies on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powdered metal manufacturing process in order to produce complex part geometries. The white light technique is a non-invasive method that can be used to inspect for geometric feature alignment. Both the DMLS manufacturing method and the white light scanning technique have proven to be viable options for manufacturing and evaluating rocket engine hardware, and further development and use of these techniques is recommended.
2012-04-20
NASA Administrator Charles Bolden (r) discusses the upcoming testing of Blue Origin's BE-3 engine thrust chamber assembly with Steve Knowles, Blue Origin project manager, at the E-1 Test Stand during an April 20, 2012, visit to Stennis Space Center. Blue Origin is one of NASA's partners developing innovative systems to reach low-Earth orbit.
ERIC Educational Resources Information Center
Bagley, James R.; Galpin, Andrew J.
2015-01-01
Interdisciplinary exploration is vital to education in the 21st century. This manuscript outlines an innovative laboratory-based teaching method that combines elements of biochemistry/molecular biology, kinesiology/health science, computer science, and manufacturing engineering to give students the ability to better conceptualize complex…
Innovations for Requirements Engineering
2008-01-01
bidding decision system. Trade Managemen t Production Management Cost Management Settlement Forecasting & Decision LDAS Electricity Market MDAS Figure...i NAVAL POSTGRADUATE SCHOOL Monterey, California 93943-5000 Daniel T . Oliver Leonard A. Ferrari...Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Microwave and radiofrequency techniques for clinical hyperthermia.
Cheung, A. Y.
1982-01-01
Biological and practical constraints on the use of clinical hyperthermia for the management of cancer are discussed. Commonly used electromagnetic techniques for producing clinical hyperthermia are reviewed and compared. Innovative engineering designs leading to the realization of an integrated, safe and reliable clinical hyperthermia system are also presented. PMID:6950753
1986-09-01
opportunities will determine career success (7:9). Air Force Regulation (AFR) 36-23 states that the goals of the officer assignment system are to "fulfill present...goals" (4:3). In his AFIT thesis, Cady identifies some career profiles of successful civil engineering officers. He defines career success as an...single type of experience or prescribed plan that will guarantee career success . He found’that general officers have adaptive and innovative careers with
NREL Leads Energy Systems Integration, Continuum Magazine: Issue 4 (Book)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-04-01
Continuum Magazine showcases NREL's latest and most impactful clean energy innovations. This issue, 'NREL Leads Energy Systems Integration' explores the discipline of energy systems integration, in particular the role of the laboratory's new, one-of-a-kind Energy System Integration Facility. NREL scientists, engineers, and analysts deeply understand the fundamental science and technologies underpinning major energy producing and consuming systems, as well as the transmission infrastructure and communications and data networks required to integrate energy systems at all scales.
78 FR 60918 - Innovation Corps Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-02
... NATIONAL SCIENCE FOUNDATION Innovation Corps Advisory Committee; Notice of Meeting In accordance... announces the following meeting: Name: Innovation Corps (I-Corps) for Advisory Committee, 80463. Date/Time.... Contact Person: Rathindra DasGupta, Program Director, Innovation Corps (I-Corps), Engineering Directorate...
Using Innovative Technologies for Manufacturing Rocket Engine Hardware
NASA Technical Reports Server (NTRS)
Betts, E. M.; Eddleman, D. E.; Reynolds, D. C.; Hardin, N. A.
2011-01-01
Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As the United States enters into the next space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, rapid manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on NASA s Space Launch System (SLS) upper stage engine, J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator (GG) discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using a workhorse gas generator (WHGG) test fixture at MSFC's East Test Area, the duct was subjected to extreme J-2X hot gas environments during 7 tests for a total of 537 seconds of hot-fire time. The duct underwent extensive post-test evaluation and showed no signs of degradation. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.
Engineering Encounters: The Tightrope Challenge
ERIC Educational Resources Information Center
Burton, Bill
2014-01-01
In order to prepare students to become the next innovators, teachers need to provide real-world challenges that allow children to exercise their innovation muscles. Innovation starts with a problem and innovators work to solve a problem by planning, creating, and testing. The real-world innovation process does not happen on a worksheet, and it…
Third, K; Fun, O M; Bowen, J; Micenko, A; Grey, V; Prohasky, T
2009-01-01
The community of Tenganan in eastern Bali, Indonesia, has requested technical assistance from Engineers Without Borders Australia (EWB) to improve the quantity and quality of water delivered through their water supply system. This is a unique development project in which the Tenganan people have identified their own needs and developed their own conceptual solution to the problem. For the first time, EWB is undertaking the design phase for the water system by an off-shore design team and project assistance team (PAT) based in Australia. This allows EWB to draw on resources and experience of EWB members and their employing companies in Australia. It also enables young engineers to develop skills and experience in development work without having to leave the country. However, the innovative approach also presented significant challenges to the project members, particularly in establishing appropriate design criteria and the co-ordination of simultaneous activities across Australia. This paper describes the approach taken by EWB and makes a preliminary assessment of the benefits and limitations inherent in this approach. The overall aim of the project is to produce a successful "bottom-up" development action that will deliver a sustainable solution to the Tenganan community.
NASA Technical Reports Server (NTRS)
Gavert, Raymond B.
1990-01-01
Some experiences of NASA configuration management in providing concurrent engineering support to the Space Station Freedom program for the achievement of life cycle benefits and total quality are discussed. Three change decision experiences involving tracing requirements and automated information systems of the electrical power system are described. The potential benefits of concurrent engineering and total quality management include improved operational effectiveness, reduced logistics and support requirements, prevention of schedule slippages, and life cycle cost savings. It is shown how configuration management can influence the benefits attained through disciplined approaches and innovations that compel consideration of all the technical elements of engineering and quality factors that apply to the program development, transition to operations and in operations. Configuration management experiences involving the Space Station program's tiered management structure, the work package contractors, international partners, and the participating NASA centers are discussed.
Predicting the performance and innovativeness of scientists and engineers.
Keller, Robert T
2012-01-01
A study of 644 scientists and engineers from 5 corporate research and development organizations investigated hypotheses generated from an interactionist framework of 4 individual characteristics as longitudinal predictors of performance and innovativeness. An innovative orientation predicted 1-year-later and 5-years-later supervisory job performance ratings and 5-years-later counts of patents and publications. An internal locus of control predicted 5-years-later patents and publications, and self-esteem predicted performance ratings for both times and patents. Team-level nonroutine tasks moderated the individual-level relationships between an innovative orientation and performance ratings and patents such that the relationships were stronger in a nonroutine task environment. Implications for an interactionist framework of performance and innovativeness for knowledge workers are discussed.
Solar energy innovation and Silicon Valley
NASA Astrophysics Data System (ADS)
Kammen, Daniel M.
2015-03-01
The growth of the U. S. and global solar energy industry depends on a strong relationship between science and engineering innovation, manufacturing, and cycles of policy design and advancement. The mixture of the academic and industrial engine of innovation that is Silicon Valley, and the strong suite of environmental policies for which California is a leader work together to both drive the solar energy industry, and keep Silicon Valley competitive as China, Europe and other area of solar energy strength continue to build their clean energy sectors.
1981-01-01
systems. Fifty-three references are presented for pressure systems and four- teen reterences are presented for vacuum systems. An additional twenty...unit is recommended for ease in maintenance and protection from vandalism and weather. Concrete foot- ings and anchors are nearly always required for... vandalism , etc. Recycled toilet systems are recommended in certain areas of Washington State. 40 ( 2* 14. 11 . S. FTA Re spo ns e t o P1, 9 2- 5001 Re a ti
ERIC Educational Resources Information Center
Roberts, Julia Link
2015-01-01
How do schools with a focus on science, technology, engineering, and mathematics (STEM) fit in with state goals to increase innovation and to boost the economy? This article briefly discusses how educators can encourage creativity and innovation.
Vilcahuaman, L; Rivas, R
2010-01-01
In the Peruvian Health System, Clinical Engineering does not exist as a topic of intervention. 59% of biomedical equipment is officially classified as operational, however next to apply the correct classification methodology and include security issues, only 10% of the equipment are suitable for use in patients. The serious consequences for patients, is opposite to the increased public investment in the health sector. Reversing this context leads to structural changes at all levels of the organization and they will be achievable only through an appropriate educational program. A strategy focused on joint of capacities called Health Technopole has managed to implement an innovative Model of Education in Healthcare Technology Management HTM and Clinical Engineering CE aimed at solving this problem. The proposal focused on strategies to strengthen the educational goals such as creating HTM & CE Units in hospitals, the implementation of the methodology: Problem Based Learning and Project Management in HTM & CE in classroom and on line courses. The process includes an effective interaction with global organizations through teleconferences, Internships, Workshops and Seminars. A key component was the sustained multidisciplinary approach. Health Technopole CENGETS is an expert adviser for the Ministry of Health and is called for trainings, design training programs for regional governments and also supports global organizations such as PAHO / WHO and ORAS / CONHU. The proposal of innovation applied to HTM & CE Education is effective and is a benchmark for similar countries.
Importance And Role Of Competence In Professional Career Of Product Develop Engineers
NASA Astrophysics Data System (ADS)
Miltenović, Aleksandar; Banić, Milan; Miltenović, Vojislav
2015-07-01
Product development is a creative task where is systematically created a new product, which makes possible to firms to offer attractive, innovative and market oriented products. In conditions of fierce competition and saturated markets, companies that do not innovate are stagnating and disappear from the market. Innovation is therefore every intervention which can reduce production costs, enables optimum utilization of available human, energy and material resources, improve product quality, improve the placement, which leads to an increase in competitiveness. A prerequisite for fulfillment of the above-mentioned tasks is that the companies have engineers with the appropriate competencies, which are able to, through creativity, innovation and fascinating technique of creating new or improving existing products and lunch it on the market. The paper discusses the role and importance of the competences that are necessary for a successful professional career of product development engineers.
Hydrogen Fuel Cell on a Helicopter: A System Engineering Approach
NASA Astrophysics Data System (ADS)
Nesheiwat, Rod
Hydrogen fuel cells have been previously investigated as a viable replacement to traditional gas turbine auxiliary power unit onboard fixed wing commercial jets. However, so far no study has attempted to extend their applicability to rotary wing aircrafts. To aid in the advancement of such innovative technologies, a holistic technical approach is required to ensure risk reduction and cost effectiveness throughout the product lifecycle. This paper will evaluate the feasibility of replacing a gas turbine auxiliary power unit on a helicopter with a direct hydrogen, air breathing, proton exchange membrane fuel cell, all while emphasizing a system engineering approach that utilize a specialized set of tools and artifacts.
ERIC Educational Resources Information Center
Ahmed, Hanaa Ouda Khadri
2016-01-01
STEM (Science, Technology, Engineering and Mathematics) education has been achieving growing international attention. As the world economy is becoming more diversified and dependent on innovation, Science, Technology, Engineering, and Math (STEM) skills and expertise are progressively more needed for competition and development. Egyptian students…
ERIC Educational Resources Information Center
Wang, Lipeng; Li, Mingqiu
2012-01-01
Currently, it has become a fundamental goal for the engineering major to cultivate high-quality engineering technicians with innovation ability in scientific research which is an important academic ability necessary for them. This paper mainly explores the development of comprehensive and designing experiments in automation based on scientific…
ERIC Educational Resources Information Center
Killen, Catherine P.
2015-01-01
This paper outlines a novel approach to engineering education research that provides three dimensions of learning through an experiential class activity. A simulated decision activity brought current research into the classroom, explored the effect of experiential activity on learning outcomes and contributed to the research on innovation decision…
Partnering: An Engine for Innovation - Continuum Magazine | NREL
Schroeder, NREL Collaborative research truly is an engine for innovation. While the term "partnership (DOE) National Renewable Energy Laboratory (NREL) engages in research with the public and private agreements as in the case of NREL and HP. NREL set requirements, and then the lab and HP collaborated on the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, Martin L.; /SLAC
In this talk I discuss a range of topics on developing creativity and innovation in engineering and science: the constraints on creativity and innovation such as the necessity of a fitting into the realities of the physical world; necessary personal qualities; getting a good idea in engineering and science; the art of obsession; the technology you use; and the technology of the future.
ERIC Educational Resources Information Center
Nielsen, Natalie
2011-01-01
Numerous teaching, learning, assessment, and institutional innovations in undergraduate science, technology, engineering, and mathematics (STEM) education have emerged in the past decade. Because virtually all of these innovations have been developed independently of one another, their goals and purposes vary widely. Some focus on making science…
An Overview of 2014 SBIR Phase 1 and Phase 2 Communications Technology and Development
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.
2015-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights eight of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Communication Technology and Development. The technologies cover a wide spectrum of applications such as X-ray navigation, microsensor instrument for unmanned aerial vehicle airborne atmospheric measurements, 16-element graphene-based phased array antenna system, interferometric star tracker, ultralow power fast-response sensor, and integrated spacecraft navigation and communication. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
Assessment of Innovative Emergency Department Information Displays in a Clinical Simulation Center
McGeorge, Nicolette; Hegde, Sudeep; Berg, Rebecca L.; Guarrera-Schick, Theresa K.; LaVergne, David T.; Casucci, Sabrina N.; Hettinger, A. Zachary; Clark, Lindsey N.; Lin, Li; Fairbanks, Rollin J.; Benda, Natalie C.; Sun, Longsheng; Wears, Robert L.; Perry, Shawna; Bisantz, Ann
2016-01-01
The objective of this work was to assess the functional utility of new display concepts for an emergency department information system created using cognitive systems engineering methods, by comparing them to similar displays currently in use. The display concepts were compared to standard displays in a clinical simulation study during which nurse-physician teams performed simulated emergency department tasks. Questionnaires were used to assess the cognitive support provided by the displays, participants’ level of situation awareness, and participants’ workload during the simulated tasks. Participants rated the new displays significantly higher than the control displays in terms of cognitive support. There was no significant difference in workload scores between the display conditions. There was no main effect of display type on situation awareness, but there was a significant interaction; participants using the new displays showed improved situation awareness from the middle to the end of the session. This study demonstrates that cognitive systems engineering methods can be used to create innovative displays that better support emergency medicine tasks, without increasing workload, compared to more standard displays. These methods provide a means to develop emergency department information systems—and more broadly, health information technology—that better support the cognitive needs of healthcare providers. PMID:27974881
Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches
Silva, Tiago H.; Alves, Anabela; Popa, Elena G.; Reys, Lara L.; Gomes, Manuela E.; Sousa, Rui A.; Silva, Simone S.; Mano, João F.; Reis, Rui L.
2012-01-01
Biomedical field is constantly requesting for new biomaterials, with innovative properties. Natural polymers appear as materials of election for this goal due to their biocompatibility and biodegradability. In particular, materials found in marine environment are of great interest since the chemical and biological diversity found in this environment is almost uncountable and continuously growing with the research in deeper waters. Moreover, there is also a slower risk of these materials to pose illnesses to humans. In particular, sulfated polysaccharides can be found in marine environment, in different algae species. These polysaccharides don’t have equivalent in the terrestrial plants and resembles the chemical and biological properties of mammalian glycosaminoglycans. In this perspective, are receiving growing interest for application on health-related fields. On this review, we will focus on the biomedical applications of marine algae sulfated polymers, in particular on the development of innovative systems for tissue engineering and drug delivery approaches. PMID:23507892
Investigation of Exoskeletal Engine Propulsion System Concept
NASA Technical Reports Server (NTRS)
Roche, Joseph M.; Palac, Donald T.; Hunter, James E.; Myers, David E.; Snyder, Christopher A.; Kosareo, Daniel N.; McCurdy, David R.; Dougherty, Kevin T.
2005-01-01
An innovative approach to gas turbine design involves mounting compressor and turbine blades to an outer rotating shell. Designated the exoskeletal engine, compression (preferable to tension for high-temperature ceramic materials, generally) becomes the dominant blade force. Exoskeletal engine feasibility lies in the structural and mechanical design (as opposed to cycle or aerothermodynamic design), so this study focused on the development and assessment of a structural-mechanical exoskeletal concept using the Rolls-Royce AE3007 regional airliner all-axial turbofan as a baseline. The effort was further limited to the definition of an exoskeletal high-pressure spool concept, where the major structural and thermal challenges are represented. The mass of the high-pressure spool was calculated and compared with the mass of AE3007 engine components. It was found that the exoskeletal engine rotating components can be significantly lighter than the rotating components of a conventional engine. However, bearing technology development is required, since the mass of existing bearing systems would exceed rotating machinery mass savings. It is recommended that once bearing technology is sufficiently advanced, a "clean sheet" preliminary design of an exoskeletal system be accomplished to better quantify the potential for the exoskeletal concept to deliver benefits in mass, structural efficiency, and cycle design flexibility.
Innovative Airbreathing Propulsion Concepts for Access to Space
NASA Technical Reports Server (NTRS)
Whitlow, Jr., Woodrow; Blech, Richard A.; Blankson, Isaiah M.
2001-01-01
This paper will present technologies and concepts for novel aeropropulsion systems. These technologies will enhance the safety of operations, reduce life cycle costs, and contribute to reduced costs of air travel and access to space. One of the goals of the NASA program is to reduce the carbon-dioxide emissions of aircraft engines. Engine concepts that use highly efficient fuel cell/electric drive technologies in hydrogen-fueled engines will be presented in the proposed paper. Carbon-dioxide emissions will be eliminated by replacing hydrocarbon fuel with hydrogen, and reduce NOx emissions through better combustion process control. A revolutionary exoskeletal engine concept, in which the engine drum is rotated, will be shown. This concept has the potential to allow a propulsion system that can be used for subsonic through hypersonic flight. Dual fan concepts that have ultra-high bypass ratios, low noise, and low drag will be presented. Flow-controlled turbofans and control-configured turbofans also will be discussed. To increase efficiency, a system of microengines distributed along lifting surfaces and on the fuselage is being investigated. This concept will be presented in the paper. Small propulsion systems for affordable, safe personal transportation vehicles will be discussed. These low-oil/oilless systems use technologies that enable significant cost and weight reductions. Pulse detonation engine-based hybrid-cycle and combined-cycle propulsion systems for aviation and space access will be presented.
The biomedical engineer as a driver for Health Technology innovation.
Colas Fustero, Javier; Guillen Arredondo, Alejandra
2010-01-01
Health Technology has played a mayor role on most of the fundamental advances in medicine, in the last 30 years. Right now, beginning the XXI Century, it is well accepted that the most important revolution expected in Health Care is the empowerment of the individuals on their own health management. Innovation in health care technologies will continue being paramount, not only in the advances of medicine and in the self health management of patients but also in allowing the sustainability of the public health care becomes more important, the role of the biomedical engineer will turn to be more crucial for the society. The paper targets the development of new curricula for the Biomedical Engineers, The needs of evolving on his different fields in which the contribution of the Biomedical Engineer is becoming fundamental to drive the innovation that Health Care Technology Industry must provide to continue improving human health through cross-disciplinary activities that integrate the engineering sciences with the biomedical sciences and clinical practice.
Robust detection, isolation and accommodation for sensor failures
NASA Technical Reports Server (NTRS)
Emami-Naeini, A.; Akhter, M. M.; Rock, S. M.
1986-01-01
The objective is to extend the recent advances in robust control system design of multivariable systems to sensor failure detection, isolation, and accommodation (DIA), and estimator design. This effort provides analysis tools to quantify the trade-off between performance robustness and DIA sensitivity, which are to be used to achieve higher levels of performance robustness for given levels of DIA sensitivity. An innovations-based DIA scheme is used. Estimators, which depend upon a model of the process and process inputs and outputs, are used to generate these innovations. Thresholds used to determine failure detection are computed based on bounds on modeling errors, noise properties, and the class of failures. The applicability of the newly developed tools are demonstrated on a multivariable aircraft turbojet engine example. A new concept call the threshold selector was developed. It represents a significant and innovative tool for the analysis and synthesis of DiA algorithms. The estimators were made robust by introduction of an internal model and by frequency shaping. The internal mode provides asymptotically unbiased filter estimates.The incorporation of frequency shaping of the Linear Quadratic Gaussian cost functional modifies the estimator design to make it suitable for sensor failure DIA. The results are compared with previous studies which used thresholds that were selcted empirically. Comparison of these two techniques on a nonlinear dynamic engine simulation shows improved performance of the new method compared to previous techniques
ERIC Educational Resources Information Center
Violante, Maria Grazia; Vezzetti, Enrico
2017-01-01
In the twenty-first century, meeting our technological challenges demands educational excellence, a skilled populace that is ready for the critical challenges society faces. There is widespread consensus, however, that education systems are failing to adequately prepare all students with the essential twenty-first century knowledge and skills…
USDA-ARS?s Scientific Manuscript database
We have designed an innovative system to to deploy a novel pair of recombinase enzymes, namely Bxb1 and CinH, for performing precise genetic engineering of citrus (Thomson et al. 2012). They control the integration and the excision of sequences based on the presence and orientation of specific recog...
The control of manual entry accuracy in management/engineering information systems, phase 1
NASA Technical Reports Server (NTRS)
Hays, Daniel; Nocke, Henry; Wilson, Harold; Woo, John, Jr.; Woo, June
1987-01-01
It was shown that clerical personnel can be tested for proofreading performance under simulated industrial conditions. A statistical study showed that errors in proofreading follow an extreme value probability theory. The study showed that innovative man/machine interfaces can be developed to improve and control accuracy during data entry.
A New Internet Tool for Automatic Evaluation in Control Systems and Programming
ERIC Educational Resources Information Center
Munoz de la Pena, D.; Gomez-Estern, F.; Dormido, S.
2012-01-01
In this paper we present a web-based innovative education tool designed for automating the collection, evaluation and error detection in practical exercises assigned to computer programming and control engineering students. By using a student/instructor code-fusion architecture, the conceptual limits of multiple-choice tests are overcome by far.…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-28
... construction time and traffic congestion; C. The development of engineering design criteria for innovative products, materials, and structural systems for use in highway bridges and structures; D. The reduction of... construction, repair, and rehabilitation of bridges and other highway structures. This program was funded by...
John, Łukasz
2018-07-01
Well-defined and tailor-made spherosilicates and POSS-based (POSS = Polyhedral Oligomeric Silsesquioxanes) (nano)composites with interesting chemical and mechanical properties have applications in the widely-regarded field of innovative biomaterials. They can serve as delivery systems, three-dimensional scaffolds for specific tissue engineering, biomaterials for orthopedic, cardiovascular, and reconstructive surgery, etc. Such organic-inorganic hybrids are much more effective biomaterials than pure polymers, bioglasses, metals, alloys, and ceramics currently used in medical applications and are considered as next-generation systems in innovative medical approaches. This range of applications creates a strong impetus for novel, cheap, and easy-to-scale-up methods for their synthesis. In this review (highlights since 2006), selected biomaterials consisting of various polymeric derivatives such as polymethacrylates, polylactides, polycaprolactones, polyurethanes, etc., which serve as organic side-arms of POSS and can create polymer platforms for precisely localized spherosilicates among organic matrices, are discussed as a new generation of silicon-based biosystems using spherosilicates, promising biomaterials with a particular use in soft- and hard-tissue engineering. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashley, S.
1991-05-01
Ford's new concept car achieves weight, size, and cost savings with an innovative lightweight aluminum space frame composed of simple extrusions that are fitted together like Lego blocks and adhesively bonded. On the outside, the design is a blend of art and technology that is a modern restatement of a large luxury car. The other major focus of the design is the Contour's compact T-drive powertrain configuration (also shared by the Mystique). This consists of a transversely mounted engine stuffed into the front of the chassis with a longitudinally positioned transmission right behind it. The T-drive arrangement shrinks the car'smore » engine bay and overall length while expanding the passenger compartment. In addition, powerplants with from four to eight cylinders as well as front-wheel-, rear-wheel-, and four-wheel-drive transmission systems can all be incorporated into the T-drive. Other technical innovations on the Contour include an unusual ducted cooling system, a compact brake assembly, a lightweight high-efficiency air conditioner, centralized single-source lighting, and simple but effective suspension technology.« less
Innovating on Japanese Cooperative Education in Miyagi National College of Technology
NASA Astrophysics Data System (ADS)
Ikeda, Senri; Itoh, Masahiko; Nakamura, Tomio; Suzuki, Katsuhiko; Utsumi, Yasuo
The work integrated learning (WIL) is quite essential for students of engineer education to solve the various problems in manufacturing products. The term of the Japanese internship for students is too short to bridge the gap of “School to Work” . As the cooperative education (CE) systems, like the German “Dual-systems” , in western countries are very different from the internship in Japan, there are many kinds of difficulties to be overcome before adopting them. Miyagi National College of Technology (MNCT) has innovated in a new program to establish CE systems regularly in Japan. This time, two teams, made up from not only the institution but also administrations and companies, were delegated for benchmarking after European WACE (World Association for CE) countries, i.e. UK, Sweden, Finland, and Germany. The concept of the Engineer Training Center (ETC, or “TORESEN” ) , that will be offered thorough CE in order to bring up students to “expert engineers” , was proposed. This has another major scheme that is a grassroots program to produce “good teachers” as a faculty development (FD) program.
Technology Innovations from NASA's Next Generation Launch Technology Program
NASA Technical Reports Server (NTRS)
Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.
2004-01-01
NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.
A Possible Approach for Addressing Neglected Human Factors Issues of Systems Engineering
NASA Technical Reports Server (NTRS)
Johnson, Christopher W.; Holloway, C. Michael
2011-01-01
The increasing complexity of safety-critical applications has led to the introduction of decision support tools in the transportation and process industries. Automation has also been introduced to support operator intervention in safety-critical applications. These innovations help reduce overall operator workload, and filter application data to maximize the finite cognitive and perceptual resources of system operators. However, these benefits do not come without a cost. Increased computational support for the end-users of safety-critical applications leads to increased reliance on engineers to monitor and maintain automated systems and decision support tools. This paper argues that by focussing on the end-users of complex applications, previous research has tended to neglect the demands that are being placed on systems engineers. The argument is illustrated through discussing three recent accidents. The paper concludes by presenting a possible strategy for building and using highly automated systems based on increased attention by management and regulators, improvements in competency and training for technical staff, sustained support for engineering team resource management, and the development of incident reporting systems for infrastructure failures. This paper represents preliminary work, about which we seek comments and suggestions.
de Ruijter, V; Halvax, P; Dallemagne, B; Swanström, L; Marescaux, J; Perretta, S
2015-01-01
Technological innovation in surgical science and healthcare is vital and calls for close collaboration between engineering and surgery. To meet this objective, BEST was designed as a free sustainable innovative teaching method for young professionals, combining surgery, engineering, and business in a multidisciplinary, high-quality, low-cost, and learning-by-doing philosophy. This paper reviews the initial outcomes of the program and discusses lessons learned and future directions of this innovative educational method. BEST educational method is delivered in two parts: the first component consisting of live streaming or pre-recorded online lectures, with an interdisciplinary profile focused on surgery, engineering, and business. The second component is an annual 5-day on-site course, organized at IRCAD-IHU, France. The program includes workshops in engineering, entrepreneurship team projects, and in-depth hands-on experience in laparoscopy, robotic surgery, interventional radiology, and flexible endoscopy with special emphasis on the interdisciplinary aspect of the training. A panel of surgeons, engineers, well-established entrepreneurs, and scientists assessed the team projects for potential patent application. From November 2011 till September 2013, 803 individual and institutional users from 79 different countries attended the online course. In total, 134 young professionals from 32 different countries applied to the onsite course. Sixty participants were selected each year for the onsite course. In addition, five participants were selected for a web-based team. Thirteen provisional patents were filed for the most promising projects. BEST proved to be a global talent incubator connecting students to high-quality education despite institutional and economical boundaries. Viable and innovative ideas arose from this revolutionary approach which is likely to spin-off significant technology transfer and lead the way for future interdisciplinary hybrid surgical education programs and career paths.
Systems design analysis applied to launch vehicle configuration
NASA Technical Reports Server (NTRS)
Ryan, R.; Verderaime, V.
1993-01-01
As emphasis shifts from optimum-performance aerospace systems to least lift-cycle costs, systems designs must seek, adapt, and innovate cost improvement techniques in design through operations. The systems design process of concept, definition, and design was assessed for the types and flow of total quality management techniques that may be applicable in a launch vehicle systems design analysis. Techniques discussed are task ordering, quality leverage, concurrent engineering, Pareto's principle, robustness, quality function deployment, criteria, and others. These cost oriented techniques are as applicable to aerospace systems design analysis as to any large commercial system.
Mechatronics as a technological basis for an innovative learning environment in engineering
NASA Astrophysics Data System (ADS)
Garner, Gavin Thomas
Mechatronic systems that couple mechanical and electrical systems with the help of computer control are forcing a paradigm shift in the design, manufacture, and implementation of mechanical devices. The inherently interdisciplinary nature of these systems generates exciting new opportunities for developing a hands-on, inventive, and creativity-focused educational program while still embracing rigorous scientific fundamentals. The technologies associated with mechatronics are continually evolving (e.g., integrated circuit chips, miniature and new types of sensors, and state-of-the-art actuators). As a result, a mechatronics curriculum must prepare students to adapt along with these rapidly changing technologies---and perhaps even advance these technologies themselves. Such is the inspiring and uncharted new world that is presented for student exploration and experimentation in the University of Virginia's Mechatronics Laboratory. The underlying goal of this research has been to develop a framework for teaching mechatronics that helps students master fundamental concepts and build essential technical and analytical skills. To this end, two courses involving over fifty hours worth of technologically-innovative and educationally-effective laboratory experiments have been developed along with open-ended projects in response to the unique and new challenges associated with teaching mechatronics. These experiments synthesize an unprecedentedly vast array of skills from many different disciplines and enable students to haptically absorb the fundamental concepts involved in designing mechatronic systems. They have been optimized through several iterations to become highly efficient. Perspectives on the development of these courses and on the field of mechatronics in general are included. Furthermore, this dissertation demonstrates the integration of new technologies within a learning environment specifically designed to teach mechatronics to mechanical engineers. For mechanical engineering in particular, mechatronics poses considerable challenges, and necessitates a fundamental evolution in the understanding of the relationship between the various engineering disciplines. Consequently, this dissertation helps to define the role that mechatronics must play in mechanical engineering and presents unique laboratory experiments, creative projects, and modeling and simulation exercises as effective tools for teaching mechatronics to the modern mechanical engineering student.
NASA Astrophysics Data System (ADS)
Killen, Catherine P.
2015-09-01
This paper outlines a novel approach to engineering education research that provides three dimensions of learning through an experiential class activity. A simulated decision activity brought current research into the classroom, explored the effect of experiential activity on learning outcomes and contributed to the research on innovation decision making. The 'decision task' was undertaken by more than 480 engineering students. It increased their reported measures of learning and retention by an average of 0.66 on a five-point Likert scale, and revealed positive correlations between attention, enjoyment, ongoing interest and learning and retention. The study also contributed to innovation management research by revealing the influence of different data visualisation methods on decision quality, providing an example of research-integrated education that forms part of the research process. Such a dovetailing of different research studies demonstrates how engineering educators can enhance educational impact while multiplying the outcomes from their research efforts.
Geist, Melissa J; Sanders, Robby; Harris, Kevin; Arce-Trigatti, Andrea; Hitchcock-Cass, Cary
2018-05-24
A faculty team from nursing and chemical engineering developed a course that brought together students from each discipline for cross-disciplinary, team-based clinical immersion and collaboration. Health care processes and devices are rapidly changing, and nurses are uniquely positioned to be bedside innovators to improve patient care delivery. During each clinical immersion, the student teams rotated through various hospital units where they identified problems and worked together in the university's makerspace (iMaker Space) to design and build prototypes to improve health outcomes. Data from the Critical thinking Assessment Test provided evidence of gains in critical-thinking and problem-solving skills, while the problems identified in the clinical setting and prototypes developed demonstrated the impact of bringing nursing and engineering students together to design innovations. When challenged to identify authentic problems during their clinical immersion, the teams of nursing and engineering students proposed creative solutions and developed commercially viable prototypes.
Mann, Alfred E
2006-01-01
In this wide-ranging interview, Alfred Mann describes the activities of several medical technology enterprises with which he is engaged. Several of them are companies that he formed; one is a nonprofit foundation, the Alfred E. Mann Foundation for Biomedical Engineering, founded to establish research-oriented institutes on a dozen university campuses and support their work in developing marketable innovations. Mann discusses the need to consider the cost implications of technology, in the context of U.S. health system reform, and describes several important innovations that have emerged from his companies over the years.
Schlötelburg, C; Becks, T; Stieglitz, T
2010-08-01
Biomedical engineering is characterized by the interdisciplinary co-operation of technology, science, and ways of thinking, probably more than any other technological area. The close interaction of engineering and information sciences with medicine and biology results in innovative products and methods, but also requires high standards for the interdisciplinary transfer of ideas into products for patients' benefits. This article describes the situation of biomedical engineering in Germany. It displays characteristics of the medical device industry and ranks it with respect to the international market. The research landscape is described as well as up-to-date research topics and trends. The national funding situation of research in biomedical engineering is reviewed and existing innovation barriers are discussed.
ERIC Educational Resources Information Center
Dailey, Debbie; Cotabish, Alicia; Jackson, Nykela
2018-01-01
Present and future challenges in our society demand a solid science, technology, engineering, and mathematics (STEM) knowledge base, innovative thinking, and the ability to ask the right questions to generate multiple solutions. To prepare innovators to meet these challenges, we must recognize and develop their talents. This advancement and growth…
Overview of the Turbine Based Combined Cycle Discipline
NASA Technical Reports Server (NTRS)
Thomas, Scott R.; Walker, James F.; Pittman, James L.
2009-01-01
The NASA Fundamental Aeronautics Hypersonics project is focused on technologies for combined cycle, airbreathing propulsions systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments and offer improved safety. The potential to realize more aircraft-like operations with expanded launch site capability and reduced system maintenance are additional benefits. The most critical TBCC enabling technologies as identified in the National Aeronautics Institute (NAI) study were: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development, 3) transonic aero-propulsion performance, 4) low-Mach-number dual-mode scramjet operation, 5) innovative 3-D flowpath concepts and 6) innovative turbine based combined cycle integration. To address several of these key TBCC challenges, NASA s Hypersonics project (TBCC Discipline) initiated an experimental mode transition task that includes an analytic research endeavor to assess the state-of-the-art of propulsion system performance and design codes. This initiative includes inlet fluid and turbine performance codes and engineering-level algorithms. This effort has been focused on the Combined Cycle Engine Large-Scale Inlet Mode Transition Experiment (CCE LIMX) which is a fully integrated TBCC propulsion system with flow path sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment is being tested in the NASA-GRC 10 x 10 Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle-engine issues: (1) dual integrated inlet operability and performance issues unstart constraints, distortion constraints, bleed requirements, controls, and operability margins, (2) mode-transition constraints imposed by the turbine and the ramjet/scramjet flow paths (imposed variable geometry requirements), (3) turbine engine transients (and associated time scales) during transition, (4) high-altitude turbine engine re-light, and (5) the operating constraints of a Mach 3-7 combustor (specific to the TBCC). The model will be tested in several test phases to develop a unique TBCC database to assess and validate design and analysis tools and address operability, integration, and interaction issues for this class of advanced propulsion systems. The test article and all support equipment is complete and available at the facility. The test article installation and facility build-up in preparation for the inlet performance and operability characterization is near completion and testing is planned to commence in FY11.
An engineering perspective on 3D printed personalized scaffolds for tracheal suspension technique
An, Jia
2016-01-01
3D printing is a large family of many distinct technologies covering a wide range of topics. From an engineering point of view, there should be considerations for selection of design, material, and process when using 3D printing for surgical technique innovation such as personalized scaffolds. Moreover, cost should also be considered if there are equally effective alternatives to the innovation. Furthermore, engineering considerations and options should be clearly communicated and readily available to surgeons for advancement in future. PMID:28149624
Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li
2013-01-01
This paper briefly analyzes the bottlenecks and major technical requirements for pharmaceutical industry of Chinese medicine, providing current status of pharmaceutical engineering of Chinese medicine. The innovation directions and strategies of the pharmaceutical engineering for manufacturing Chinese medicine are proposed along with the framework of their core technology. As a consequence, the development of the third-generation pharmaceutical technology for Chinese medicine, featured as "precision, digital and intelligent", is recommended. The prospects of the pharmaceutical technology are also forecasted.
An engineering perspective on 3D printed personalized scaffolds for tracheal suspension technique.
An, Jia; Chua, Chee Kai
2016-12-01
3D printing is a large family of many distinct technologies covering a wide range of topics. From an engineering point of view, there should be considerations for selection of design, material, and process when using 3D printing for surgical technique innovation such as personalized scaffolds. Moreover, cost should also be considered if there are equally effective alternatives to the innovation. Furthermore, engineering considerations and options should be clearly communicated and readily available to surgeons for advancement in future.
2013-09-12
MARSHALL CENTER DIRECTOR PATRICK SCHEUERMANN, RIGHT, DISCUSSES THE FINER POINTS OF USING ADDITIVE MANUFACTURING TO BUILD ENGINE PARTS WITH DAVID EDDLEMAN, A COMPONENT ENGINEER WITH THE ENGINEERING DIRECTORATE, DURING INNOVATION & TECHNOLOGY DAY
Fan noise control using Herschel-Quincke resonators on a production turbofan engine
NASA Astrophysics Data System (ADS)
Burdisso, Ricardo A.; Gerhold, Carl H.
2002-05-01
The Herschel-Quincke (HQ) resonator concept is an innovative technique that consists of installing circumferential arrays of HQ waveguides around the inlet of a turbofan engine. An HQ waveguide is essentially a hollow side tube that travels along (but not necessarily parallel to) the engine axis and attaches to the inlet at each of the two ends of the tube. To investigate the potential of the concept, the approach was tested on a full-scale production Honeywell TFE731-60 engine. An HQ-inlet system containing two arrays was designed to attenuate the blade passage frequency (BPF) tone at approach condition, i.e., 60% engine power. However, the system was tested over the full range of engine power settings. The effects of each array both individually and together were evaluated as compared to the hard-wall case. Both far-field and induct data were recorded during the tests. The results show good attenuation of both the BPF tone and broadband components. Furthermore, reduction of ``buzz-saw'' tones, i.e., additional tones radiated from the inlet when the fan-tip speed goes supersonic, was observed with the HQ system. Some fan distortion effects and increase in noise was observed at higher engine speeds. [Work supported by NASA Langley Research Center.
Engineering of mechanical manufacturing from the cradle to cradle
NASA Astrophysics Data System (ADS)
Peralta, M. E.; Aguayo, F.; Lama, J. R.
2012-04-01
The sustainability of manufacturing processes lies in industrial planning and productive activity. Industrial plants are characterized by the management of resource (inputs and outputs), processing and conversion processes, which usually are organized in a linear system. Good planning will optimize the manufacturing and promoting the quality of the industrial system. Cradle to Cradle is a new paradigm for engineering and sustainable manufacturing that integrates projects (industrial parks, manufacturing plants, systems and products) in a framework consistent with the environment, adapted to the society and technology and economically viable. To carry it out, we implement this paradigm in the MGE2 (Genomic Model of Eco-innovation and Eco-design), as a methodology for designing and developing products and manufacturing systems with an approach from the cradle to cradle.
Geodesy and the UNAVCO Consortium: Three Decades of Innovations
NASA Astrophysics Data System (ADS)
Rowan, L. R.; Miller, M. M.; Meertens, C. M.; Mattioli, G. S.
2015-12-01
UNAVCO, a non-profit, university consortium that supports geoscience research using geodesy, began with the ingenious recognition that the nascent Global Positioning System constellation (GPS) could be used to investigate earth processes. The consortium purchased one of the first commercially available GPS receivers, Texas Instrument's TI-4100 NAVSTAR Navigator, in 1984 to measure plate deformation. This early work was highlighted in a technology magazine, GPSWorld, in 1990. Over a 30-year period, UNAVCO and the community have helped advance instrument design for mobility, flexibility, efficiency and interoperability, so research could proceed with higher precision and under ever challenging conditions. Other innovations have been made in data collection, processing, analysis, management and archiving. These innovations in tools, methods and data have had broader impacts as they have found greater utility beyond research for timing, precise positioning, safety, communication, navigation, surveying, engineering and recreation. Innovations in research have expanded the utility of geodetic tools beyond the solid earth science through creative analysis of the data and the methods. For example, GPS sounding of the atmosphere is now used for atmospheric and space sciences. GPS reflectrometry, another critical advance, supports soil science, snow science and ecological research. Some research advances have had broader impacts for society by driving innovations in hazards risk reduction, hazards response, resource management, land use planning, surveying, engineering and other uses. Furthermore, the geodetic data is vital for the design of space missions, testing and advancing communications, and testing and dealing with interference and GPS jamming. We will discuss three decades (and counting) of advances by the National Science Foundation's premiere geodetic facility, consortium and some of the many geoscience principal investigators that have driven innovations in research, instrumentation, data management, cyberinfrastructure and other applications.
Practical skills of the future innovator
NASA Astrophysics Data System (ADS)
Kaurov, Vitaliy
2015-03-01
Physics graduates face and often are disoriented by the complex and turbulent world of startups, incubators, emergent technologies, big data, social network engineering, and so on. In order to build the curricula that foster the skills necessary to navigate this world, we will look at the experiences at the Wolfram Science Summer School that gathers annually international students for already more than a decade. We will look at the examples of projects and see the development of such skills as innovative thinking, data mining, machine learning, cloud technologies, device connectivity and the Internet of things, network analytics, geo-information systems, formalized computable knowledge, and the adjacent applied research skills from graph theory to image processing and beyond. This should give solid ideas to educators who will build standard curricula adapted for innovation and entrepreneurship education.
The Cutting Edge of High-Temperature Composites
NASA Technical Reports Server (NTRS)
2006-01-01
NASA s Ultra-Efficient Engine Technology (UEET) program was formed in 1999 at Glenn Research Center to manage an important national propulsion program for the Space Agency. The UEET program s focus is on developing innovative technologies to enable intelligent, environmentally friendly, and clean-burning turbine engines capable of reducing harmful emissions while maintaining high performance and increasing reliability. Seven technology projects exist under the program, with each project working towards specific goals to provide new technology for propulsion. One of these projects, Materials and Structures for High Performance, is concentrating on developing and demonstrating advanced high-temperature materials to enable high-performance, high-efficiency, and environmentally compatible propulsion systems. Materials include ceramic matrix composite (CMC) combustor liners and turbine vanes, disk alloys, turbine airfoil material systems, high-temperature polymer matrix composites, and lightweight materials for static engine structures.
Preparing synthetic biology for the world
Moe-Behrens, Gerd H. G.; Davis, Rene; Haynes, Karmella A.
2013-01-01
Synthetic Biology promises low-cost, exponentially scalable products and global health solutions in the form of self-replicating organisms, or “living devices.” As these promises are realized, proof-of-concept systems will gradually migrate from tightly regulated laboratory or industrial environments into private spaces as, for instance, probiotic health products, food, and even do-it-yourself bioengineered systems. What additional steps, if any, should be taken before releasing engineered self-replicating organisms into a broader user space? In this review, we explain how studies of genetically modified organisms lay groundwork for the future landscape of biosafety. Early in the design process, biological engineers are anticipating potential hazards and developing innovative tools to mitigate risk. Here, we survey lessons learned, ongoing efforts to engineer intrinsic biocontainment, and how different stakeholders in synthetic biology can act to accomplish best practices for biosafety. PMID:23355834
ERIC Educational Resources Information Center
Atkinson, Robert D.; Mayo, Merrilea
2010-01-01
Is the United States getting it wrong when it comes to educating tomorrow's innovators in critical fields? It has been known for years that the only way to compete globally in information technology, engineering, nanotechnology, robotics and other fields is to give students the best educational opportunities possible. But do individuals have a…
ERIC Educational Resources Information Center
Benbow, Camilla Persson
2012-01-01
Calls to strengthen education in science, technology, engineering, and mathematics (STEM) are underscored by employment trends and the importance of STEM innovation for the economy. The Study of Mathematically Precocious Youth (SMPY) has been tracking over 5,000 talented individuals longitudinally for 40 years, throwing light on critical questions…
FY2011 Engineering Innovations, Research, and Technology Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, Kip; Martz, Harry E.; Poyneer, Lisa A.
2012-04-24
This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory’s Engineering Directorate for FY2011. These efforts exemplify Engineering’s nearly 60-year history of developing and applying the technology innovations needed for the Laboratory’s national security missions, and embody Engineering’s mission to “Enable program success today and ensure the Laboratory’s vitality tomorrow.
Infrared Imaging Sharpens View in Critical Situations
NASA Technical Reports Server (NTRS)
2007-01-01
Innovative Engineering and Consulting (IEC) Infrared Systems, a leading developer of thermal imaging systems and night vision equipment, received a Glenn Alliance for Technology Exchange (GATE) award, half of which was in the form of additional NASA assistance for new product development. IEC Infrared Systems worked with electrical and optical engineers from Glenn's Diagnostics and Data Systems Branch to develop a commercial infrared imaging system that could differentiate the intensity of heat sources better than other commercial systems. The research resulted in two major thermal imaging solutions: NightStalkIR and IntrudIR Alert. These systems are being used in the United States and abroad to help locate personnel stranded in emergency situations, defend soldiers on the battlefield abroad, and protect high-value facilities and operations. The company is also applying its advanced thermal imaging techniques to medical and pharmaceutical product development with a Cleveland-based pharmaceutical company.
China's science, technology, engineering, and mathematics (STEM) research environment: A snapshot.
Han, Xueying; Appelbaum, Richard P
2018-01-01
In keeping with China's President Xi Jinping's "Chinese Dream," China has set a goal of becoming a world-class innovator by 2050. China's higher education Science, Technology, Engineering, and Math (STEM) research environment will play a pivotal role in influencing whether China is successful in transitioning from a manufacturing-based economy to an innovation-driven, knowledge-based economy. Past studies on China's research environment have been primarily qualitative in nature or based on anecdotal evidence. In this study, we surveyed STEM faculty from China's top 25 universities to get a clearer understanding of how faculty members view China's overall research environment. We received 731 completed survey responses, 17% of which were from individuals who received terminal degrees from abroad and 83% of which were from individuals who received terminal degrees from domestic institutions of higher education. We present results on why returnees decided to study abroad, returnees' decisions to return to China, and differences in perceptions between returnees and domestic degree holders on the advantages of having a foreign degree. The top five challenges to China's research environment identified by survey respondents were: a promotion of short-term thinking and instant success (37% of all respondents); research funding (33%); too much bureaucratic or governmental intervention (31%); the evaluation system (27%); and a reliance on human relations (26%). Results indicated that while China has clearly made strides in its higher education system, there are numerous challenges that must be overcome before China can hope to effectively produce the kinds of innovative thinkers that are required if it is to achieve its ambitious goals. We also raise questions about the current direction of education and inquiry in China, particularly indications that government policy is turning inward, away from openness that is central to innovative thinking.
ERIC Educational Resources Information Center
Leang, K. K.; Zou, Q.; Pannozzo, G.
2010-01-01
Piezoelectric actuators (or piezoactuators) are known for their nanoresolution and high-speed positioning capabilities. Therefore, they are used in scanning probe microscopes and in the design of innovative surgical tools and biomedical devices. The expected growth of engineering jobs in the nano- and bio-related fields, in which piezoactuators…
Keeping It Real: A Toledo Public School Prepares Students for College and Career
ERIC Educational Resources Information Center
Dubin, Jennifer
2014-01-01
In this article, author Jennifer Dubin offers a look into the innovations taking place in the Toledo Technology Academy (TTA), a career-tech school within the public school system in Toledo, Ohio. TTA teaches students in grades 7 through 12 using a science, technology, engineering, and math (STEM) curriculum, in addition to the traditional…
Search Engine Technology Impetus for the Knowledge Revolution in Business Education
ERIC Educational Resources Information Center
Hall, Owen P., Jr.
2004-01-01
Two equally powerful forces are helping shape the future of business education. First is the growing requirement for competent business managers on a worldwide basis. Second are the changing demands on our academic libraries as a result of the ongoing digital revolution. These dynamics call for new and innovative education systems such as…
Spanakis, Emmanouil G; Santana, Silvina; Tsiknakis, Manolis; Marias, Kostas; Sakkalis, Vangelis; Teixeira, António; Janssen, Joris H; de Jong, Henri; Tziraki, Chariklia
2016-06-24
New community-based arrangements and novel technologies can empower individuals to be active participants in their health maintenance, enabling people to control and self-regulate their health and wellness and make better health- and lifestyle-related decisions. Mobile sensing technology and health systems responsive to individual profiles combined with cloud computing can expand innovation for new types of interoperable services that are consumer-oriented and community-based. This could fuel a paradigm shift in the way health care can be, or should be, provided and received, while lessening the burden on exhausted health and social care systems. Our goal is to identify and discuss the main scientific and engineering challenges that need to be successfully addressed in delivering state-of-the-art, ubiquitous eHealth and mHealth services, including citizen-centered wellness management services, and reposition their role and potential within a broader context of diverse sociotechnical drivers, agents, and stakeholders. We review the state-of-the-art relevant to the development and implementation of eHealth and mHealth services in critical domains. We identify and discuss scientific, engineering, and implementation-related challenges that need to be overcome to move research, development, and the market forward. Several important advances have been identified in the fields of systems for personalized health monitoring, such as smartphone platforms and intelligent ubiquitous services. Sensors embedded in smartphones and clothes are making the unobtrusive recognition of physical activity, behavior, and lifestyle possible, and thus the deployment of platforms for health assistance and citizen empowerment. Similarly, significant advances are observed in the domain of infrastructure supporting services. Still, many technical problems remain to be solved, combined with no less challenging issues related to security, privacy, trust, and organizational dynamics. Delivering innovative ubiquitous eHealth and mHealth services, including citizen-centered wellness and lifestyle management services, goes well beyond the development of technical solutions. For the large-scale information and communication technology-supported adoption of healthier lifestyles to take place, crucial innovations are needed in the process of making and deploying usable empowering end-user services that are trusted and user-acceptable. Such innovations require multidomain, multilevel, transdisciplinary work, grounded in theory but driven by citizens' and health care professionals' needs, expectations, and capabilities and matched by business ability to bring innovation to the market.
Santana, Silvina; Tsiknakis, Manolis; Marias, Kostas; Sakkalis, Vangelis; Teixeira, António; Janssen, Joris H; de Jong, Henri; Tziraki, Chariklia
2016-01-01
Background New community-based arrangements and novel technologies can empower individuals to be active participants in their health maintenance, enabling people to control and self-regulate their health and wellness and make better health- and lifestyle-related decisions. Mobile sensing technology and health systems responsive to individual profiles combined with cloud computing can expand innovation for new types of interoperable services that are consumer-oriented and community-based. This could fuel a paradigm shift in the way health care can be, or should be, provided and received, while lessening the burden on exhausted health and social care systems. Objective Our goal is to identify and discuss the main scientific and engineering challenges that need to be successfully addressed in delivering state-of-the-art, ubiquitous eHealth and mHealth services, including citizen-centered wellness management services, and reposition their role and potential within a broader context of diverse sociotechnical drivers, agents, and stakeholders. Methods We review the state-of-the-art relevant to the development and implementation of eHealth and mHealth services in critical domains. We identify and discuss scientific, engineering, and implementation-related challenges that need to be overcome to move research, development, and the market forward. Results Several important advances have been identified in the fields of systems for personalized health monitoring, such as smartphone platforms and intelligent ubiquitous services. Sensors embedded in smartphones and clothes are making the unobtrusive recognition of physical activity, behavior, and lifestyle possible, and thus the deployment of platforms for health assistance and citizen empowerment. Similarly, significant advances are observed in the domain of infrastructure supporting services. Still, many technical problems remain to be solved, combined with no less challenging issues related to security, privacy, trust, and organizational dynamics. Conclusions Delivering innovative ubiquitous eHealth and mHealth services, including citizen-centered wellness and lifestyle management services, goes well beyond the development of technical solutions. For the large-scale information and communication technology-supported adoption of healthier lifestyles to take place, crucial innovations are needed in the process of making and deploying usable empowering end-user services that are trusted and user-acceptable. Such innovations require multidomain, multilevel, transdisciplinary work, grounded in theory but driven by citizens’ and health care professionals’ needs, expectations, and capabilities and matched by business ability to bring innovation to the market. PMID:27342137
Computer-aided dental prostheses construction using reverse engineering.
Solaberrieta, E; Minguez, R; Barrenetxea, L; Sierra, E; Etxaniz, O
2014-01-01
The implementation of computer-aided design/computer-aided manufacturing (CAD/CAM) systems with virtual articulators, which take into account the kinematics, constitutes a breakthrough in the construction of customised dental prostheses. This paper presents a multidisciplinary protocol involving CAM techniques to produce dental prostheses. This protocol includes a step-by-step procedure using innovative reverse engineering technologies to transform completely virtual design processes into customised prostheses. A special emphasis is placed on a novel method that permits a virtual location of the models. The complete workflow includes the optical scanning of the patient, the use of reverse engineering software and, if necessary, the use of rapid prototyping to produce CAD temporary prostheses.
Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System
NASA Technical Reports Server (NTRS)
Crocker, Andy; Graham, Bart
2016-01-01
Dynetics has designed innovative structure assemblies; manufactured them using Friction Stir Welding (FSW) to leverage NASA investments in tools, facilities, and processes; conducted proof and burst testing, demonstrating viability of design/build processes Dynetics/AR has applied state-of-the-art manufacturing and processing techniques to the heritage F-1, reducing risk for engine development Dynetics/AR has also made progress on technology demonstrations for ORSC cycle engine, which offers affordability and performance for both NASA and other launch vehicles Full-scale integrated oxidizer-rich test article. Testing will evaluate performance and combustion stability characteristics. Contributes to technology maturation for ox-rich staged combustion engines.
Technological innovation in the United States.
Kilgour, F G
1965-01-01
This paper presents nearly three and a half centuries of American invention, and is particularly concerned with primary invention as distinct from development, production, and service engineering. One apparent but not real exception to this statement is that one section will be devoted to the American invention of production engineering. Various factors have stimulated, guided, and inhibited American inventiveness; indeed, colonial status during nearly half the historical period being examined all but stifled technological innovation. It will also become clear that American disenchantment with basic scientific activity diminished the relative magnitude of her innovations after the advent of the technique of applied research in Europe following the middle of the nineteenth century. This circumstance is particularly obvious in the cases of chemical and electrical engineering, the first of the applied sciences.
NASA Technical Reports Server (NTRS)
Barr, B. G.
1986-01-01
A technology transfer program utilizing graduate students in mechanical engineering at the University of Kansas was initiated in early 1981. The objective of the program was to encourage industrial innovation in the Midwest through improved industry/university cooperation and the utilization of NASA technology. A related and important aspect of the program was the improvement of graduate engineering education through the involvement of students in the identification and accomplishment of technological objectives in cooperation with scientists at NASA centers and engineers in industry. The pilot NASA/University Industrial Innovation Program was an outstanding success based on its ability to: attract top graduate students; secure industry support; and stimulate industry/university cooperation leading to enhanced university capability and utilization of advanced technology by industry.
NASA Technical Reports Server (NTRS)
Malroy, Eric
2010-01-01
Nanotechnology is rapidly affecting all engineering disciplines as new products and applications are being found and brought to market. This session will present an overview of nanotechnology and let you learn about the advances in the field and how it could impact you. Some of the areas touched upon will be nanomaterials with their multifunctional capabilities, nanotechnology impact on energy systems, nanobiotechnology including nanomedicine, and nanotechnology relevant to space systems with a focus on ECLSS. Also, some important advances related to thermal systems will be presented as well as future predictions on nanotechnology.
A Systems Engineering Analysis of Unmanned Maritime Systems for U.S. Coast Guard Missions
2013-06-01
accidental, are apparent when considering the Fukushima Daiichi nuclear disaster and its follow -on radiation hazards [52]. In addition, recent increases in...on the maritime domain increases innovative approaches such as UMS will be vital in gaining awareness , especially in remote locations such as the...Horizon oil disaster clean-up employed a limited use of UMS, specifically Remotely Op- erated Vehicles [20]. As oil drilling increases throughout the
Manufacturing Methods and Technology Program Plan, CY 1980.
1980-09-01
AD-A092 2Ii3 &RMY INDUSTRIAL BASE ENGINEERING ACTIVITY ROCK ISLAND IL FIG 1346 ..ANIJPACTRItd METH4OS AND TECNOLOGY PROGRAM PLAN. CY 1960. (U) %EP 60... innovative solutions. For example, material handling, process tools and inspection systems must be computerized to achieve the desired operating economics and...to decrease expensive direct labor; however, the new systems must also be capable of economic layaway for periods of ten years or more, a situation
NASA Astrophysics Data System (ADS)
Murr, L. E.
2006-07-01
Biological systems and processes have had, and continue to have, important implications and applications in materials extraction, processing, and performance. This paper illustrates some interdisciplinary, biological issues in materials science and engineering. These include metal extraction involving bacterial catalysis, galvanic couples, bacterial-assisted corrosion and degradation of materials, biosorption and bioremediation of toxic and other heavy metals, metal and material implants and prostheses and related dental and medical biomaterials developments and applications, nanomaterials health benefits and toxicity issue, and biomimetics and biologically inspired materials developments. These and other examples provide compelling evidence and arguments for emphasizing biological sicences in materials science and engineering curricula and the implementation of a bio-materials paradigm to facilitate the emergence of innovative interdisciplinarity involving the biological sciences and materials sciences and engineering.
Genetic tool development and systemic regulation in biosynthetic technology.
Dai, Zhongxue; Zhang, Shangjie; Yang, Qiao; Zhang, Wenming; Qian, Xiujuan; Dong, Weiliang; Jiang, Min; Xin, Fengxue
2018-01-01
With the increased development in research, innovation, and policy interest in recent years, biosynthetic technology has developed rapidly, which combines engineering, electronics, computer science, mathematics, and other disciplines based on classical genetic engineering and metabolic engineering. It gives a wider perspective and a deeper level to perceive the nature of life via cell mechanism, regulatory networks, or biological evolution. Currently, synthetic biology has made great breakthrough in energy, chemical industry, and medicine industries, particularly in the programmable genetic control at multiple levels of regulation to perform designed goals. In this review, the most advanced and comprehensive developments achieved in biosynthetic technology were represented, including genetic engineering as well as synthetic genomics. In addition, the superiority together with the limitations of the current genome-editing tools were summarized.
The Utility-Scale Future - Continuum Magazine | NREL
Spring 2011 / Issue 1 Continuum. Clean Energy Innovation at NREL The Utility-Scale Future Continuum facility will lead the way. Wind Innovation Enables Utility-Scale 02 Wind Innovation Enables Utility-Scale Archives 9 Beyond R&D: Market Impact 8 NREL Analysis 7 Partnering: An Engine for Innovation 6 Energy
NASA Technical Reports Server (NTRS)
Hornstein, Rhoda Shaller; Willoughby, John K.
1991-01-01
Traditional practice of systems engineering management assumes requirements can be precisely determined and unambiguously defined prior to system design and implementation; practice further assumes requirements are held static during implementation. Human-computer decision support systems for service planning and scheduling applications do not conform well to these assumptions. Adaptation to the traditional practice of systems engineering management are required. Basic technology exists to support these adaptations. Additional innovations must be encouraged and nutured. Continued partnership between the programmatic and technical perspective assures proper balance of the impossible with the possible. Past problems have the following origins: not recognizing the unusual and perverse nature of the requirements for planning and scheduling; not recognizing the best starting point assumptions for the design; not understanding the type of system that being built; and not understanding the design consequences of the operations concept selected.
ERIC Educational Resources Information Center
Starkweather, Kendall N.
2005-01-01
The National Innovation Initiative (NII) defines innovation as "the intersection of invention and insight, leading to the creation of social and economic value." Innovation has been fundamental in exploration, opportunity, and discovery. It is the story of how technology has advanced, is used, and powers the economic engines of a country. NII…
Cultivation of students' engineering designing ability based on optoelectronic system course project
NASA Astrophysics Data System (ADS)
Cao, Danhua; Wu, Yubin; Li, Jingping
2017-08-01
We carry out teaching based on optoelectronic related course group, aiming at junior students majored in Optoelectronic Information Science and Engineering. " Optoelectronic System Course Project " is product-designing-oriented and lasts for a whole semester. It provides a chance for students to experience the whole process of product designing, and improve their abilities to search literature, proof schemes, design and implement their schemes. In teaching process, each project topic is carefully selected and repeatedly refined to guarantee the projects with the knowledge integrity, engineering meanings and enjoyment. Moreover, we set up a top team with professional and experienced teachers, and build up learning community. Meanwhile, the communication between students and teachers as well as the interaction among students are taken seriously in order to improve their team-work ability and communicational skills. Therefore, students are not only able to have a chance to review the knowledge hierarchy of optics, electronics, and computer sciences, but also are able to improve their engineering mindset and innovation consciousness.
2010-06-09
A group of Jet Propulsion Laboratory (JPL) engineers are recognized during the kick off of NASA's Summer of Innovation program at JPL in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)
An Overview of SBIR Phase 2 Communications Technology and Development
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are eighteen technologies featured with emphasis on a wide spectrum of applications such as with a security-enhanced autonomous network management, secure communications using on-demand single photons, cognitive software-defined radio, spacesuit audio systems, multiband photonic phased-array antenna, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.
An Overview of Air-Breathing Propulsion Efforts for 2015 SBIR Phase I
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 24 of the innovative SBIR 2015 Phase I projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as hybrid nanocomposites for efficient aerospace structures; plasma flow control for drag reduction; physics-based aeroanalysis methods for open rotor conceptual designs; vertical lift by series hybrid power; fast pressure-sensitive paint systems for production wind tunnel testing; rugged, compact, and inexpensive airborne fiber sensor interrogators based on monolithic tunable lasers; and high sensitivity semiconductor sensor skins for multi-axis surface pressure characterization. Each featured technology describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
An Overview of 2014 SBIR Phase 1 and Phase 2 Air-Breathing Propulsion
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.
2015-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as development of X-ray computed tomography (CT) imaging method for the measurement of complex 3D ice shapes, phased array techniques for low signal-to-noise ratio wind tunnels, compact kinetic mechanisms for petroleum-derived and alternative aviation fuels, and hybrid electric propulsion systems for a multirotor aircraft. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides as an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
An Overview of SBIR Phase 2 In-Space Propulsion and Cryogenic Fluids Management
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in In-Space Propulsion and Cryogenic Fluids Management which is one of six core competencies at NASA Glenn Research Center. There are nineteen technologies featured with emphasis on a wide spectrum of applications such as high-performance Hall thruster support system, thruster discharge power converter, high-performance combustion chamber, ion thruster design tool, green liquid monopropellant thruster, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.
NASA Technical Reports Server (NTRS)
Dominick, Wayne D.
1987-01-01
This grant final report executive summary documents a major, long-term program addressing innovative educational issues associated with the development, administration, evaluation, and widespread distribution of transportable educational programs for scientists and engineers to increase their knowledge of, and facilitate their utilization of automated scientific and technical information storage and retrieval systems. This educational program is of very broad scope, being targeted at Colleges of Engineering and Colleges of Physical sciences at a large number of colleges and universities throughout the United States. The educational program is designed to incorporate extensive hands-on, interactive usage of the NASA RECON system and is supported by a number of microcomputer-based software systems to facilitate the delivery and usage of the educational course materials developed as part of the program.
Roberts, Ian N; Oliver, Stephen G
2011-03-01
The aim of this article is to review how yeast has contributed to contemporary biotechnology and to seek underlying principles relevant to its future exploitation for human benefit. Recent advances in systems biology combined with new knowledge of genome diversity promise to make yeast the eukaryotic workhorse of choice for production of everything from probiotics and pharmaceuticals to fuels and chemicals. The ability to engineer new capabilities through introduction of controlled diversity based on a complete understanding of genome complexity and metabolic flux is key. Here, we briefly summarise the history that has led to these apparently simple organisms being employed in such a broad range of commercial applications. Subsequently, we discuss the likely consequences of current yeast research for the future of biotechnological innovation.
Pasquali, Irene; Bettini, Ruggero; Giordano, Ferdinando
2008-02-14
Solid-state, crystallographic purity and careful monitoring of the polymorphism of drugs and excipients are currently an integral part of the development of modern drug delivery systems. The reproducible preparation of organic crystals in a specific form and size is a major issue that must be addressed. A recent approach for obtaining pharmaceutical materials in pure physical form is represented by the technologies based on supercritical fluids. The present work aims to provide a critical review of the recent advances in the use of supercritical fluids for the preparation and control of the specific physical form of pharmaceutical substances with particular attention to those fluids used for drug delivery systems. These innovative technologies are highly promising for future application in particle design and engineering.
Switching bonds in a DNA gel: an all-DNA vitrimer.
Romano, Flavio; Sciortino, Francesco
2015-02-20
We design an all-DNA system that behaves like vitrimers, innovative plastics with self-healing and stress-releasing properties. The DNA sequences are engineered to self-assemble first into tetra- and bifunctional units which, upon further cooling, bind to each other forming a fully bonded network gel. An innovative design of the binding regions of the DNA sequences, exploiting a double toehold-mediated strand displacement, generates a network gel which is able to reshuffle its bonds, retaining at all times full bonding. As in vitrimers, the rate of bond switching can be controlled via a thermally activated catalyst, which in the present design is very short DNA strands.
Innovative intelligent technology of distance learning for visually impaired people
NASA Astrophysics Data System (ADS)
Samigulina, Galina; Shayakhmetova, Assem; Nuysuppov, Adlet
2017-12-01
The aim of the study is to develop innovative intelligent technology and information systems of distance education for people with impaired vision (PIV). To solve this problem a comprehensive approach has been proposed, which consists in the aggregate of the application of artificial intelligence methods and statistical analysis. Creating an accessible learning environment, identifying the intellectual, physiological, psychophysiological characteristics of perception and information awareness by this category of people is based on cognitive approach. On the basis of fuzzy logic the individually-oriented learning path of PIV is con- structed with the aim of obtaining high-quality engineering education with modern equipment in the joint use laboratories.
New technology for food systems and security.
Yau, N J Newton
2009-01-01
In addition to product trade, technology trade has become one of the alternatives for globalization action around the world. Although not all technologies employed on the technology trade platform are innovative technologies, the data base of international technology trade still is a good indicator for observing innovative technologies around world. The technology trade data base from Sinew Consulting Group (SCG) Ltd. was employed as an example to lead the discussion on security or safety issues that may be caused by these innovative technologies. More technologies related to processing, functional ingredients and quality control technology of food were found in the data base of international technology trade platform. The review was conducted by categorizing technologies into the following subcategories in terms of safety and security issues: (1) agricultural materials/ingredients, (2) processing/engineering, (3) additives, (4) packaging/logistics, (5) functional ingredients, (6) miscellaneous (include detection technology). The author discusses examples listed for each subcategory, including GMO technology, nanotechnology, Chinese medicine based functional ingredients, as well as several innovative technologies. Currently, generation of innovative technology advance at a greater pace due to cross-area research and development activities. At the same time, more attention needs to be placed on the employment of these innovative technologies.
NASA Astrophysics Data System (ADS)
Regnell, Björn; Höst, Martin; Nilsson, Fredrik; Bengtsson, Henrik
When developing software-intensive products for a market-place it is important for a development organisation to create innovative features for coming releases in order to achieve advantage over competitors. This paper focuses on assessment of innovation capability at team level in relation to the requirements engineering that is taking place before the actual product development projects are decided, when new business models, technology opportunities and intellectual property rights are created and investigated through e.g. prototyping and concept development. The result is a measurement framework focusing on four areas: innovation elicitation, selection, impact and ways-of-working. For each area, candidate measurements were derived from interviews to be used as inspiration in the development of a tailored measurement program. The framework is based on interviews with participants of a software team with specific innovation responsibilities and validated through cross-case analysis and feedback from practitioners.
A Modelica-based Model Library for Building Energy and Control Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetter, Michael
2009-04-07
This paper describes an open-source library with component models for building energy and control systems that is based on Modelica, an equation-based objectoriented language that is well positioned to become the standard for modeling of dynamic systems in various industrial sectors. The library is currently developed to support computational science and engineering for innovative building energy and control systems. Early applications will include controls design and analysis, rapid prototyping to support innovation of new building systems and the use of models during operation for controls, fault detection and diagnostics. This paper discusses the motivation for selecting an equation-based object-oriented language.more » It presents the architecture of the library and explains how base models can be used to rapidly implement new models. To demonstrate the capability of analyzing novel energy and control systems, the paper closes with an example where we compare the dynamic performance of a conventional hydronic heating system with thermostatic radiator valves to an innovative heating system. In the new system, instead of a centralized circulation pump, each of the 18 radiators has a pump whose speed is controlled using a room temperature feedback loop, and the temperature of the boiler is controlled based on the speed of the radiator pump. All flows are computed by solving for the pressure distribution in the piping network, and the controls include continuous and discrete time controls.« less
Design and Fabrication of an MRI-Compatible, Autonomous Incubation System.
Khalilzad-Sharghi, Vahid; Xu, Huihui
2015-10-01
Tissue engineers have long sought access to an autonomous, imaging-compatible tissue incubation system that, with minimum operator handling, can provide real-time visualization and quantification of cells, tissue constructs, and organs. This type of screening system, capable of operating noninvasively to validate tissue, can overcome current limitations like temperature shock, unsustainable cellular environments, sample contamination, and handling/stress. However, this type of system has been a major challenge, until now. Here, we describe the design, fabrication, and characterization of an innovative, autonomous incubation system that is compatible with a 9.4 T magnetic resonance imaging (MRI) scanner. Termed the e-incubator (patent pending; application number: 13/953,984), this microcontroller-based system is integrated into an MRI scanner and noninvasively screens cells and tissue cultures in an environment where temperature, pH, and media/gas handling are regulated. The 4-week study discussed herein details the continuous operation of the e-incubator for a tissue-engineered osteogenic construct, validated by LIVE/DEAD(®) cell assays and histology. The evolving MR quantitative parameters of the osteogenic construct were used as biomarkers for bone tissue engineering and to further validate the quality of the product noninvasively before harvesting. Importantly, the e-incubator reliably facilitates culturing cells and tissue constructs to create engineered tissues and/or investigate disease therapies.
2017-11-01
Shaun Daly, an integration engineer in the Launch Services Program, explains a new outreach activity for young students during the 2017 Innovation Expo showcase at NASA's Kennedy Space Center in Florida. The purpose of the annual two-day event is to help foster innovation and creativity among the Kennedy workforce. The event included several keynote speakers, training opportunities, an innovation showcase and the KSC Kickstart competition.
ERIC Educational Resources Information Center
Millet, Charlyne; Oget, David; Cavallucci, Denis
2017-01-01
Innovation is a key component to the success and longevity of companies. Our research opens the "black box" of creativity and innovation in R&D teams. We argue that understanding the nature of R&D projects in terms of creativity/innovation, efficiency/inefficiency, is important for designing education policies and improving…
Robotic Mining Competition - Awards Ceremony
2018-05-18
NASA's 9th Annual Robotic Mining Competition concludes with an awards ceremony May 18, 2018, at the Apollo/Saturn V Center at the Kennedy Space Center Visitor Complex in Florida. The University of Alabama Team Astrobotics received first place for their Systems Engineering Paper. At left is retired NASA astronaut Jerry Ross. At right is Jonette Stecklein, lead systems engineering paper judge. More than 40 student teams from colleges and universities around the U.S. participated in the competition, May 14-18, by using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Robotic Mining Competition - Awards Ceremony
2018-05-18
NASA's 9th Annual Robotic Mining Competition concludes with an awards ceremony May 18, 2018, at the Apollo/Saturn V Center at the Kennedy Space Center Visitor Complex in Florida. The team from The University of Akron received third place for their Systems Engineering Paper. At left is retired NASA astronaut Jerry Ross. At right is Jonette Stecklein, lead systems engineering paper judge. More than 40 student teams from colleges and universities around the U.S. participated in the competition, May 14-18, by using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Engineering for Liberal Arts and Engineering Students.
ERIC Educational Resources Information Center
The Weaver, 1986
1986-01-01
Describes courses designed to develop approaches for teaching engineering concepts, applied mathematics and computing skills to liberal arts undergraduates, and to teach the history of scientific and technological innovation and application to engineering and science majors. Discusses courses, course materials, enrichment activities, and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Joseph J; Doris, Elizabeth S; Farrar, Sara L
The U.S. Department of Energy (DOE) Solar Decathlon is a collegiate competition that challenges student teams to design and build full-size, solar-powered houses. Because of balanced design priorities of architecture, engineering, innovation, performance, and energy use, teams have focused on a range of technologies in the built environment, from wall materials to home control systems, from electric lighting to HVAC equipment, and from geothermal to solar photovoltaic technology. This report provides insights into building technology innovation from a review of the Solar Decathlon competition entry designs, anecdotal experiences, and related market reports. The report describes example case studies of themore » evolution of technology solutions over time to illustrate the innovative, market-driving nature of the Solar Decathlon. It charts technologies utilized in the team designs over seven competitions and compares those to broader market adoption. It is meant to illustrate the technology innovation aspects of the competition, not to be a comprehensive or quantitative analysis. Solar Decathlon also has impacts on public perception of innovative technologies as well as workforce development through the thousands of participating students. The focus of these case studies is to showcase how it contributes to marketplace adoption of innovative energy technologies.« less
Toolsets Maintain Health of Complex Systems
NASA Technical Reports Server (NTRS)
2010-01-01
First featured in Spinoff 2001, Qualtech Systems Inc. (QSI), of Wethersfield, Connecticut, adapted its Testability, Engineering, and Maintenance System (TEAMS) toolset under Small Business Innovation Research (SBIR) contracts from Ames Research Center to strengthen NASA's systems health management approach for its large, complex, and interconnected systems. Today, six NASA field centers utilize the TEAMS toolset, including TEAMS-Designer, TEAMS-RT, TEAMATE, and TEAMS-RDS. TEAMS is also being used on industrial systems that generate power, carry data, refine chemicals, perform medical functions, and produce semiconductor wafers. QSI finds TEAMS can lower costs by decreasing problems requiring service by 30 to 50 percent.
NASA Technical Reports Server (NTRS)
Gunn, Jody M.
2006-01-01
The state-of-the-practice for engineering and development of Ground Systems has evolved significantly over the past half decade. Missions that challenge ground system developers with significantly reduced budgets in spite of requirements for greater and previously unimagined functionality are now the norm. Making the right trades early in the mission lifecycle is one of the key factors to minimizing ground system costs. The Mission Operations Strategic Leadership Team at the Jet Propulsion Laboratory has spent the last year collecting and working through successes and failures in ground systems for application to future missions.
Design and integrated operation of an innovative thermodynamic vent system concept
NASA Astrophysics Data System (ADS)
Fazah, Michel M.; Lak, Tibor; Nguyen, Han; Wood, Charles C.
1993-06-01
A unique zero-g thermodynamic vent system (TVS) is being developed by NASA's Marshall Space Flight Center (MSFC) and Rockwell International to meet cryogenic propellant management requirements for future space missions. The design is highly innovative in that it integrates the functions of a spray-bar tank mixer and a TVS. This concept not only satisfies the requirement for efficient tank mixing and zero-g venting but also accommodates thermal conditioning requirements for other components (e.g., engine feed lines, turbopumps, and liquid acquisition devices). In addition, operations can be extended to accomplish tank chill-down, no-vent fill, and emergency venting during zero-g propellant transfer. This paper describes the system performance characterization and future test activities that are part of MSFC's Multipurpose Hydrogen Test Bed (MHTB) program. The testing will demonstrate the feasibility and merit of the design, and serve as a proof-of-concept development activity.
Transition From NASA Space Communication Systems to Commerical Communication Products
NASA Technical Reports Server (NTRS)
Ghazvinian, Farzad; Lindsey, William C.
1994-01-01
Transitioning from twenty-five years of space communication system architecting, engineering and development to creating and marketing of commercial communication system hardware and software products is no simple task for small, high-tech system engineering companies whose major source of revenue has been the U.S. Government. Yet, many small businesses are faced with this onerous and perplexing task. The purpose of this talk/paper is to present one small business (LinCom) approach to taking advantage of the systems engineering expertise and knowledge captured in physical neural networks and simulation software by supporting numerous National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD) projects, e.g., Space Shuttle, TDRSS, Space Station, DCSC, Milstar, etc. The innovative ingredients needed for a systems house to transition to a wireless communication system products house that supports personal communication services and networks (PCS and PCN) development in a global economy will be discussed. Efficient methods for using past government sponsored space system research and development to transition to VLSI communication chip set products will be presented along with notions of how synergy between government and industry can be maintained to benefit both parties.
NASA Astrophysics Data System (ADS)
Endryansyah; Wanarti Rusimamto, Puput; Ridianto, Adam; Sugiarto, Hariyadi
2018-04-01
In the Department of Electrical Engineering FT Unesa, there are 3 majors: S1 Electrical Engineering Education, S1 Electrical Engineering, and D3 Electrical Engineering. Courses the Basic System Settings go to in the curriculum of the three programs. Team lecturer college of basic system settings seek learning innovation, focused on the development of trainer to student practicum at the laboratory of systems control. Trainer developed is a servo motor along with the lab module that contains a wide variety of theories about the servo motor and guide the practicum. This research type is development research using methods Research & development (R & D). In which the steps are applied in this study is as follows: pay attention to the potential and existing problems, gather information and study the literature, design the product, validate the design, revise the design, a limited trial. The results of the validation of learning device in the form of modules and trainer obtained as follows: score validation of learning device is 3,64; score validation lab module Servo Motor is 3,47; and questionnaire responses of students is 3,73. The result of the whole validation value is located in the interval >of 3.25 s/d 4 with the category of “Very Valid”, so it can be concluded that all instruments have a level of validity “Very Valid” and worthy of use for further learning.
The adjustable intelligent atrium sunshade
NASA Astrophysics Data System (ADS)
Ni, Xin; Sun, Jianhua; Wang, Bo
2017-05-01
This article is focused on the specific design techniques of the adjustable atrium sunshade, on the basis of the engineering analyses and practices, it is expected to alter the conventional atrium sunshade design concepts; with its uniqueness and technical excellence, this innovative atrium sunshade system exhibits rich emotions and artistry, creates an inspiring and romantic atmosphere at the atrium area of the building.
NASA Ares I Crew Launch Vehicle Upper Stage Overview
NASA Technical Reports Server (NTRS)
Davusm Daniel J.; McArthur, J. Craig
2008-01-01
By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA's Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program's transportation system.
NASA Ares I Crew Launch Vehicle Upper State Overview
NASA Technical Reports Server (NTRS)
Davis, Daniel J.
2008-01-01
By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA s Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program s transportation system.
Friedman, C D; Costantino, P D; Takagi, S; Chow, L C
1998-01-01
BoneSource-hydroxyapatite cement is a new self-setting calcium phosphate cement biomaterial. Its unique and innovative physical chemistry coupled with enhanced biocompatibility make it useful for craniofacial skeletal reconstruction. The general properties and clinical use guidelines are reviewed. The biomaterial and surgical applications offer insight into improved outcomes and potential new uses for hydroxyapatite cement systems.
ERIC Educational Resources Information Center
Young, Hollie
2005-01-01
To maintain the legacy of cutting edge scientific innovation in the United States our country must address the many pressing issues facing science education today. One of the most important issues relating to science education is the under-representation of African Americans and Hispanics in the science, technology, and engineering workforce.…
Ethernet direct display: a new dimension for in-vehicle video connectivity solutions
NASA Astrophysics Data System (ADS)
Rowley, Vincent
2009-05-01
To improve the local situational awareness (LSA) of personnel in light or heavily armored vehicles, most military organizations recognize the need to equip their fleets with high-resolution digital video systems. Several related upgrade programs are already in progress and, almost invariably, COTS IP/Ethernet is specified as the underlying transport mechanism. The high bandwidths, long reach, networking flexibility, scalability, and affordability of IP/Ethernet make it an attractive choice. There are significant technical challenges, however, in achieving high-performance, real-time video connectivity over the IP/Ethernet platform. As an early pioneer in performance-oriented video systems based on IP/Ethernet, Pleora Technologies has developed core expertise in meeting these challenges and applied a singular focus to innovating within the required framework. The company's field-proven iPORTTM Video Connectivity Solution is deployed successfully in thousands of real-world applications for medical, military, and manufacturing operations. Pleora's latest innovation is eDisplayTM, a smallfootprint, low-power, highly efficient IP engine that acquires video from an Ethernet connection and sends it directly to a standard HDMI/DVI monitor for real-time viewing. More costly PCs are not required. This paper describes Pleora's eDisplay IP Engine in more detail. It demonstrates how - in concert with other elements of the end-to-end iPORT Video Connectivity Solution - the engine can be used to build standards-based, in-vehicle video systems that increase the safety and effectiveness of military personnel while fully leveraging the advantages of the lowcost COTS IP/Ethernet platform.
PREFACE: Trends in Aerospace Manufacturing 2009 International Conference
NASA Astrophysics Data System (ADS)
Ridgway, Keith; Gault, Rosemary; Allen, Adrian
2011-12-01
The aerospace industry is rapidly changing. New aircraft structures are being developed and aero-engines are becoming lighter and more environmentally friendly. In both areas, innovative materials and manufacturing methods are used in an attempt to get maximum performance for minimum cost. At the same time, the structure of the industry has changed and there has been a move from large companies designing, manufacturing components and assembling aircraft to one of large global supply chains headed by large system integrators. All these changes have forced engineers and managers to bring in innovations in design, materials, manufacturing technologies and supply chain management. In September 2009, the Advanced Manufacturing Research Centre (AMRC) at the University of Sheffield held the inaugural Trends in Aerospace Manufacturing conference (TRAM09). This brought together 28 speakers over two days, who presented in sessions on advanced manufacturing trends for the aerospace sector. Areas covered included new materials, including composites, advanced machining, state of the art additive manufacturing techniques, assembly and supply chain issues.
NASA Astrophysics Data System (ADS)
Chakroun, Mahmoud; Gogu, Grigore; Pacaud, Thomas; Thirion, François
2014-09-01
This study proposes an eco-innovative design process taking into consideration quality and environmental aspects in prioritizing and solving technical engineering problems. This approach provides a synergy between the Life Cycle Assessment (LCA), the nonquality matrix, the Theory of Inventive Problem Solving (TRIZ), morphological analysis and the Analytical Hierarchy Process (AHP). In the sequence of these tools, LCA assesses the environmental impacts generated by the system. Then, for a better consideration of environmental aspects, a new tool is developed, the non-quality matrix, which defines the problem to be solved first from an environmental point of view. The TRIZ method allows the generation of new concepts and contradiction resolution. Then, the morphological analysis offers the possibility of extending the search space of solutions in a design problem in a systematic way. Finally, the AHP identifies the promising solution(s) by providing a clear logic for the choice made. Their usefulness has been demonstrated through their application to a case study involving a centrifugal spreader with spinning discs.
NASA Workshop on Hybrid (Mixed-Actuator) Spacecraft Attitude Control
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.; Kunz, Nans
2014-01-01
At the request of the Science Mission Directorate Chief Engineer, the NASA Technical Fellow for Guidance, Navigation & Control assembled and facilitated a workshop on Spacecraft Hybrid Attitude Control. This multi-Center, academic, and industry workshop, sponsored by the NASA Engineering and Safety Center (NESC), was held in April 2013 to unite nationwide experts to present and discuss the various innovative solutions, techniques, and lessons learned regarding the development and implementation of the various hybrid attitude control system solutions investigated or implemented. This report attempts to document these key lessons learned with the 16 findings and 9 NESC recommendations.
Grand challenges in space synthetic biology
Montague, Michael G.; Cumbers, John; Hogan, John A.
2015-01-01
Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth. PMID:26631337
Precision manufacturing for clinical-quality regenerative medicines.
Williams, David J; Thomas, Robert J; Hourd, Paul C; Chandra, Amit; Ratcliffe, Elizabeth; Liu, Yang; Rayment, Erin A; Archer, J Richard
2012-08-28
Innovations in engineering applied to healthcare make a significant difference to people's lives. Market growth is guaranteed by demographics. Regulation and requirements for good manufacturing practice-extreme levels of repeatability and reliability-demand high-precision process and measurement solutions. Emerging technologies using living biological materials add complexity. This paper presents some results of work demonstrating the precision automated manufacture of living materials, particularly the expansion of populations of human stem cells for therapeutic use as regenerative medicines. The paper also describes quality engineering techniques for precision process design and improvement, and identifies the requirements for manufacturing technology and measurement systems evolution for such therapies.
Becker, Judith; Wittmann, Christoph
2015-03-09
Corynebacterium glutamicum, Escherichia coli, and Saccharomyces cerevisiae in particular, have become established as important industrial workhorses in biotechnology. Recent years have seen tremendous progress in their advance into tailor-made producers, driven by the upcoming demand for sustainable processes and renewable raw materials. Here, the diversity and complexity of nature is simultaneously a challenge and a benefit. Harnessing biodiversity in the right manner through synergistic progress in systems metabolic engineering and chemical synthesis promises a future innovative bio-economy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Building biological foundries for next-generation synthetic biology.
Chao, Ran; Yuan, YongBo; Zhao, HuiMin
2015-07-01
Synthetic biology is an interdisciplinary field that takes top-down approaches to understand and engineer biological systems through design-build-test cycles. A number of advances in this relatively young field have greatly accelerated such engineering cycles. Specifically, various innovative tools were developed for in silico biosystems design, DNA de novo synthesis and assembly, construct verification, as well as metabolite analysis, which have laid a solid foundation for building biological foundries for rapid prototyping of improved or novel biosystems. This review summarizes the state-of-the-art technologies for synthetic biology and discusses the challenges to establish such biological foundries.
General Aviation Light Aircraft Propulsion: From the 1940's to the Next Century
NASA Technical Reports Server (NTRS)
Burkardt, Leo A.
1998-01-01
Current general aviation light aircraft are powered by engines that were originally designed in the 1940's. This paper gives a brief history of light aircraft engine development, explaining why the air-cooled, horizontally opposed piston engine became the dominant engine for this class of aircraft. Current engines are fairly efficient, and their designs have been updated through the years, but their basic design and operational characteristics are archaic in comparison to modem engine designs, such as those used in the automotive industry. There have been some innovative engine developments, but in general they have not been commercially successful. This paper gives some insight into the reasons for this lack of success. There is now renewed interest in developing modem propulsion systems for light aircraft, in the fore-front of which is NASA's General Aviation Propulsion (GAP) program. This paper gives an overview of the engines being developed in the GAP program, what they will mean to the general aviation community, and why NASA and its industry partners believe that these new engine developments will bring about a new era in general aviation light aircraft.
Innovation and Competition: Conflicts over Intellectual Property Rights in New Technologies.
ERIC Educational Resources Information Center
Samuelson, Pamela
1987-01-01
Addresses conditions and concerns involved in accommodating the interests of both innovators of new technologies and the general public. Discusses the tension that exists in intellectual property law between innovators and competitors. Focuses on cases dealing with computer software and semiconductor chip designs, genetically-engineered life…
Characteristics of Well-Propagated Teaching Innovations in Undergraduate STEM
ERIC Educational Resources Information Center
Khatri, Raina; Henderson, Charles; Cole, Renee; Froyd, Jeffrey E.; Friedrichsen, Debra; Stanford, Courtney
2017-01-01
Background: The undergraduate science, technology, engineering, and mathematics (STEM) education community has developed a large number of innovative teaching strategies and materials, but the majority of these go unused by instructors. To help understand how to improve adoption of evidence-based education innovations, this study focuses on…
Innovation 101: Promoting Undergraduate Innovation through a Two-Day Boot Camp
ERIC Educational Resources Information Center
West, Richard E.; Tateishi, Isaku; Wright, Geoffrey A.; Fonoimoana, Melia
2012-01-01
Over the years, many training methods for creativity and innovation have been developed. Despite these programs and research, further improvement is necessary, particularly in schools of technology and engineering education, where previous efforts have focused on developing solutions to defined problems, not in identifying and defining the…
Thoughts on Education and Innovation
ERIC Educational Resources Information Center
Whitehead, Diane P.
2008-01-01
The word "innovate" can be traced back to the 1400s, where it originated from the Middle French word "innovacyon" meaning "renewal" or "new way of doing things." Typically, innovation is considered an activity of technology, engineering, and other specialized, scientifically based fields that employ approaches and strategies to spark connectivity,…
Innovative Allies: Spatial and Creative Abilities
ERIC Educational Resources Information Center
Coxon, Steve V.
2012-01-01
Spatial and creative abilities are important for innovations in science, technology, engineering, and math (STEM) fields, but talents are rarely developed from these abilities by schools, including among gifted children and adolescents who have a high potential to become STEM innovators. This article provides an overview of each ability and makes…
An Overview of Power, Energy Storage, and Conversion Efforts for 2014 SBIR Phases I and II
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 15 of the innovative SBIR 2014 Phase I and II projects that focus on one of NASA Glenn Research Center's six core competencies-Power, Energy Storage and Conversion. The technologies cover a wide spectrum of applications such as high-radiation-tolerant ceramic voltage isolators, development of hermetic sealing glasses for solid oxide fuel cells, rechargeable lithium metal cells, high-efficiency direct methane solid oxide fuel cell systems, Li metal protection for high-energy space batteries, isolated bidirectional direct current converters for distributed battery energy applications, and high-efficiency rad-hard ultrathin Si photovoltaic cell technology for space. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
NASA Technical Reports Server (NTRS)
Kopasakis, George
2005-01-01
This year, an improved adaptive-feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for meeting the low-emission goals of the NASA Ultra-Efficient Engine Technology (UEET) Project.
STEM Mentor Breakfast at Debus Center
2017-05-25
Jonette Stecklein (in the blue shirt), a flight systems engineer from Johnson Space Center in Houston, talks to students during a Women in STEM mentoring breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
ERIC Educational Resources Information Center
Ransom, Tafaya
2013-01-01
Science, technology, engineering and mathematics (STEM) fields are widely credited as the primary drivers of economic growth through innovation, with engineering universally identified as especially critical. Yet as other nations have strengthened their engineering talent pools, the United States has struggled to cultivate an engineering workforce…
The History of Chemical Engineering and Pedagogy: The Paradox of Tradition and Innovation
ERIC Educational Resources Information Center
Wankat, Phillip C.
2009-01-01
The Massachusetts Institute of Technology started the first US chemical engineering program six score years ago. Since that time, the chemical engineering curriculum has evolved. The latest versions of the curriculum are attempts to broaden chemical engineering to add product engineering, biology and nanotechnology to the traditional process…
Promoting Innovative Methods in Technology Education
ERIC Educational Resources Information Center
Al-Nasra, Moayyad M.
2012-01-01
The engineering profession is very sensitive to the new changes in the engineering job market demand. The engineering job market is changing in a much faster rate than the engineering/engineering technology education. A 13-year study will be presented. The study focuses on the factors affecting the survival rate, student academic performance,…
Innovations in biomedical nanoengineering: nanowell array biosensor.
Seo, YoungTae; Jeong, Sunil; Lee, JuKyung; Choi, Hak Soo; Kim, Jonghan; Lee, HeaYeon
2018-01-01
Nanostructured biosensors have pioneered biomedical engineering by providing highly sensitive analyses of biomolecules. The nanowell array (NWA)-based biosensing platform is particularly innovative, where the small size of NWs within the array permits extremely profound sensing of a small quantity of biomolecules. Undoubtedly, the NWA geometry of a gently-sloped vertical wall is critical for selective docking of specific proteins without capillary resistances, and nanoprocessing has contributed to the fabrication of NWA electrodes on gold substrate such as molding process, e-beam lithography, and krypton-fluoride (KrF) stepper semiconductor method. The Lee group at the Mara Nanotech has established this NW-based biosensing technology during the past two decades by engineering highly sensitive electrochemical sensors and providing a broad range of detection methods from large molecules (e.g., cells or proteins) to small molecules (e.g., DNA and RNA). Nanosized gold dots in the NWA enhance the detection of electrochemical biosensing to the range of zeptomoles in precision against the complementary target DNA molecules. In this review, we discuss recent innovations in biomedical nanoengineering with a specific focus on novel NWA-based biosensors. We also describe our continuous efforts in achieving a label-free detection without non-specific binding while maintaining the activity and stability of immobilized biomolecules. This research can lay the foundation of a new platform for biomedical nanoengineering systems.
Innovations in biomedical nanoengineering: nanowell array biosensor
NASA Astrophysics Data System (ADS)
Seo, YoungTae; Jeong, Sunil; Lee, JuKyung; Choi, Hak Soo; Kim, Jonghan; Lee, HeaYeon
2018-04-01
Nanostructured biosensors have pioneered biomedical engineering by providing highly sensitive analyses of biomolecules. The nanowell array (NWA)-based biosensing platform is particularly innovative, where the small size of NWs within the array permits extremely profound sensing of a small quantity of biomolecules. Undoubtedly, the NWA geometry of a gently-sloped vertical wall is critical for selective docking of specific proteins without capillary resistances, and nanoprocessing has contributed to the fabrication of NWA electrodes on gold substrate such as molding process, e-beam lithography, and krypton-fluoride (KrF) stepper semiconductor method. The Lee group at the Mara Nanotech has established this NW-based biosensing technology during the past two decades by engineering highly sensitive electrochemical sensors and providing a broad range of detection methods from large molecules (e.g., cells or proteins) to small molecules (e.g., DNA and RNA). Nanosized gold dots in the NWA enhance the detection of electrochemical biosensing to the range of zeptomoles in precision against the complementary target DNA molecules. In this review, we discuss recent innovations in biomedical nanoengineering with a specific focus on novel NWA-based biosensors. We also describe our continuous efforts in achieving a label-free detection without non-specific binding while maintaining the activity and stability of immobilized biomolecules. This research can lay the foundation of a new platform for biomedical nanoengineering systems.
Proven Innovations and New Initiatives in Ground System Development
NASA Technical Reports Server (NTRS)
Gunn, Jody M.
2006-01-01
The state-of-the-practice for engineering and development of Ground Systems has evolved significantly over the past half decade. Missions that challenge ground system developers with significantly reduced budgets in spite of requirements for greater and previously unimagined functionality are now the norm. Making the right trades early in the mission lifecycle is one of the key factors to minimizing ground system costs. The Mission Operations Strategic Leadership Team at the Jet Propulsion Laboratory has spent the last year collecting and working through successes and failures in ground systems for application to future missions.
Owen, Richard; Goldberg, Nicola
2010-11-01
Significant time lags between the development of novel innovations (e.g., nanotechnologies), understanding of their wider impacts, and subsequent governance (e.g., regulation) have led to repeated calls for more anticipatory and adaptive approaches that promote the responsible emergence of new technologies in democratic societies. A key challenge is implementation in a pragmatic way. Results are presented of a study with the Engineering and Physical Sciences Research Council, the largest public funder of basic innovation research in the United Kingdom who, for the first time, asked applicants to submit a risk register identifying the wider potential impacts and associated risks (environment, health, societal, and ethical) of their proposed research. This focused on nanoscience for carbon capture and utilization. Risk registers were completed conservatively, with most identified impacts concerning researchers' health associated with nanoparticle synthesis, handling, and prototype device fabrication, i.e., risks that could be identified and managed with a reasonable level of certainty. Few wider environmental impacts and no future impacts on society were identified, reflecting the often uncertain and unpredictable nature of innovation. However, some applicants addressed this by including investigators with expertise beyond engineering and nanosciences supporting integrated activities that included life cycle and real-time technology assessment, which in some cases were also framed by stakeholder and/or public engagement. Proposals underpinned by a strong commitment to responsible science and innovation promoted continuous reflexivity, embedding a suite of multidisciplinary approaches around the innovation research core to support decisions modulating the trajectory of their innovation research in real-time.
Fearis, Kristy; Petrie, Aidan
2017-03-01
Kristy Fearis is the founder and president of KPConsulting. She has held various positions in the medical device and research industry. She has led programs for medical industry leaders Medtronic, Edward Lifesciences, and Kimberly-Clark Healthcare to develop and commercialize Class II and III devices. Although a true quality management systems specialist at heart, Kristy has a passion for effectively and efficiently applying quality systems principles to early stage development to maximize benefit while minimizing impact on resources and time to market. Kristy works with both precommercial and commercial companies to build and implement quality systems that are "right sized" and support both an effective business model and high product quality. Aidan Petrie is the cofounder and chief innovation officer of Ximedica. Aidan drives innovation in Ximedica's core markets of medical device development and consumer healthcare. With a focus on human-centered design, usability, technical innovation and industrial design, Aidan has helped bring hundreds of products to market. Ranging from simple drug compliance aids to wearable therapeutics, home monitoring products, and complex surgical systems, Aidan challenges his teams to rethink the role design plays in the success of each product. Covering topics around usability, sensor and wearable technology, and current trends in medical design and development, Aidan is a sought-after industry speaker and widely published author. In addition to his role at Ximedica, Aidan advises multiple startups in the healthcare space and has interests in a number of related companies. He sits on the Board of MassArt and teaches and lectures at the Rhode Island School of Design, Massachusetts Institute of Technology, the Harvard iLab, and others. Aidan holds an undergraduate degree from Central St Martins in product design/engineering and a Masters in industrial design from the Rhode Island School of Design. Copyright © 2016 Elsevier Inc. All rights reserved.
Teambuilding, Innovation and the Engineering Communication Interface
ERIC Educational Resources Information Center
Prescott, David; El-Sakran, Tharwat; Albasha, Lutfi; Aloul, Fadi; Al-Assaf, Yousef
2012-01-01
Recent engineering industry-based research has identified a number of skill deficiencies in graduating engineers. Emphasis on communication and teamwork informed by attributes of self management, problem solving and mutual accountability have been recognized as important needs by The Engineering Accreditation Commission of ABET of the United…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saffer, Shelley
2014-12-01
This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.
2010-06-09
Julie Townsend, JPL Engineer, talks about her experiences to teachers and middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)
Towards a framework of human factors certification of complex human-machine systems
NASA Technical Reports Server (NTRS)
Bukasa, Birgit
1994-01-01
As far as total automation is not realized, the combination of technical and social components in man-machine systems demands not only contributions from engineers but at least to an equal extent from behavioral scientists. This has been neglected far too long. The psychological, social and cultural aspects of technological innovations were almost totally overlooked. Yet, along with expected safety improvements the institutionalization of human factors is on the way. The introduction of human factors certification of complex man-machine systems will be a milestone in this process.
2012-04-30
to the Secretary of the Army. He served as commander of the Software Engineering Center-Belvoir (SEC-B). He was then assigned as the project manager ... Science in systems management from the Naval Postgraduate School, and a PhD in business administration from Madison University. He also has graduate...Configuration Management System (Warehouse) • Markings Scan • Metrics Scan • Standards Scan • Static Assessment • Build Audit / Build • Quick
Interface Anywhere: Development of a Voice and Gesture System for Spaceflight Operations
NASA Technical Reports Server (NTRS)
Thompson, Shelby; Haddock, Maxwell; Overland, David
2013-01-01
The Interface Anywhere Project was funded through Innovation Charge Account (ICA) at NASA JSC in the Fall of 2012. The project was collaboration between human factors and engineering to explore the possibility of designing an interface to control basic habitat operations through gesture and voice control; (a) Current interfaces require the users to be physically near an input device in order to interact with the system; and (b) By using voice and gesture commands, the user is able to interact with the system anywhere they want within the work environment.
Design of Mechanically Actuated Aerodynamic Braking System on a Formula Student Race Car
NASA Astrophysics Data System (ADS)
Muralidharan, Vivek; Balakrishnan, Abhijith; Vardhan, Vinit Ketan; Meena, Nikita; Kumar, Y. Suresh
2018-04-01
Every second in a racing competition counts the performance of a team against the other. Many innovative and sophisticated techniques are being employed to overcome loses in time and add to the performance of the vehicle. Especially in a car racing challenge there is more freedom to install these innovative systems to empower the car to maximum efficiency due to availability of more space. At the global spectrum there are few events which encourage such innovations. Formula Student Racing competitions are one of the global events organized by the Society of Automotive Engineers of different countries which gives opportunity to university students to build and race formula style cars. Like any other racing competitions in this high octane event having an inch over their opponents is always an advantage. Not just better acceleration and high velocities but also good deceleration is required to excel in the competition. Aerodynamic braking system is utilizing the aerodynamic drag force to create high deceleration. This mechanism can be installed on any car with spoilers with minimum modification. Being a student event great amount of care needs to be given to the safety concerns of the driver.
NASA Technical Reports Server (NTRS)
Trevino, Luis; Brown, Terry; Crumbley, R. T. (Technical Monitor)
2001-01-01
The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to improve overall vehicle system safety, reliability, and rocket engine performance by development of a qualitative and reliable engine control system (QRECS). Specifically, this will be addressed by enhancing rocket engine control using SCT, innovative data mining tools, and sound software engineering practices used in Marshall's Flight Software Group (FSG). The principle goals for addressing the issue of quality are to improve software management, software development time, software maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control methodologies, but to provide alternative design choices for control, implementation, performance, and sustaining engineering, all relative to addressing the issue of reliability. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion (system level), software engineering for embedded flight software systems, and soft computing technologies (i.e., neural networks, fuzzy logic, data mining, and Bayesian belief networks); some of which are briefed in this paper. For this effort, the targeted demonstration rocket engine testbed is the MC-1 engine (formerly FASTRAC) which is simulated with hardware and software in the Marshall Avionics & Software Testbed (MAST) laboratory that currently resides at NASA's Marshall Space Flight Center, building 4476, and is managed by the Avionics Department. A brief plan of action for design, development, implementation, and testing a Phase One effort for QRECS is given, along with expected results. Phase One will focus on development of a Smart Start Engine Module and a Mainstage Engine Module for proper engine start and mainstage engine operations. The overall intent is to demonstrate that by employing soft computing technologies, the quality and reliability of the overall scheme to engine controller development is further improved and vehicle safety is further insured. The final product that this paper proposes is an approach to development of an alternative low cost engine controller that would be capable of performing in unique vision spacecraft vehicles requiring low cost advanced avionics architectures for autonomous operations from engine pre-start to engine shutdown.
Pipelining in a changing competitive environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, E.G.; Wishart, D.M.
1996-12-31
The changing competitive environment for the pipeline industry presents a broad spectrum of new challenges and opportunities: international cooperation; globalization of opportunities, organizations and competition; and integrated systems approach to system configuration, financing, contracting strategy, materials sourcing, and operations; cutting edge and emerging technologies; adherence to high standards of environmental protection; an emphasis on safety; innovative approaches to project financing; and advances in technology and programs to maintain the long term, cost effective integrity of operating pipeline systems. These challenges and opportunities are partially a result of the increasingly competitive nature of pipeline development and the public`s intolerance to incidentsmore » of pipeline failure. A creative systems approach to these challenges is often the key to the project moving ahead. This usually encompasses collaboration among users of the pipeline, pipeline owners and operators, international engineering and construction companies, equipment and materials suppliers, in-country engineers and constructors, international lending agencies and financial institutions.« less
Stimulating Creativity and Innovation through Intelligent Fast Failure
ERIC Educational Resources Information Center
Tahirsylaj, Armend S.
2012-01-01
Literature on creativity and innovation has discussed the issue of failure in the light of its benefits and limitations for enhancing human potential in all domains of life, but in business, science, engineering, and industry more specifically. In this paper, the Intelligent Fast Failure (IFF) as a useful tool of creativity and innovation for…
Educational Affordances That Support Development of Innovative Thinking Skills in Large Classes
ERIC Educational Resources Information Center
Fowlin, Julaine; Amelink, Catherine; Scales, Glenda
2013-01-01
Innovative thinking skills are among the top characteristics that employers look for when hiring engineers. Universities are therefore charged with investigating and providing the type of learning environments that will foster the development of innovative thinking especially in large classes. This involves considering multiple factors such as the…
Creating a High Impact Learning Environment for Engineering Technology Students
ERIC Educational Resources Information Center
Zhan, Wei; Wang, Jyhwen; Vanajakumari, Manoj; Johnson, Michael D.
2018-01-01
This paper discusses an initiative called Product Innovation and Development (PID) that was launched at Texas A&M University. The goal of PID is to create a high impact learning environment that focuses on innovative product development. Undergraduate students are hired to develop innovative new products. The student teams generate ideas for…
1982-09-01
Offshore Industry U.S. DEPARTMENT OF THE NAVY CARDEROCK DIVISION, NAVAL SURFACE WARFARE CENTER Report Documentation Page Form ApprovedOMB No . 0704...INNOVATION MARINE INDUSTRY STANDARDS WELDING INDUSTRIAL ENGINEERING EDUCATION AND TRAINING THE NATIONAL SHIPBUILDING RESEARCH PROGRAM September 1982 NSRP 0009...Proceedings of the IREAPS Technical Symposium Paper No . 24: MAPLIS: An On-Line Materials Resource Planning System Tailored to the Shipbuilding and
UCSD's Institute of Engineering in Medicine: fostering collaboration through research and education.
Chien, Shu
2012-07-01
The University of California, San Diego (UCSD) was established in 1961 as a new research university that emphasizes innovation, excellence, and interdisciplinary research and education. It has a School of Medicine (SOM) and the Jacobs School of Engineering (JSOE) in close proximity, and both schools have national rankings among the top 15. In 1991, with the support of the Whitaker Foundation, the Whitaker Institute of Biomedical Engineering was formed to foster collaborations in research and education. In 2008, the university extended the collaboration further by establishing the Institute of Engineering in Medicine (IEM), with the mission of accelerating the discoveries of novel science and technology to enhance health care through teamwork between engineering and medicine, and facilitating the translation of innovative technologies for delivery to the public through clinical application and commercialization.
Engineering Sustainable Solutions Program: Critical Literacies for Engineers Portfolio
ERIC Educational Resources Information Center
Paten, Cheryl J. K.; Palousis, Nicholas; Hargroves, Karlson; Smith, Michael
2005-01-01
Purpose: While a number of universities in Australia have embraced concepts such as project/problem-based learning and design of innovative learning environments for engineering education, there has been a lack of national guidance on including sustainability as a "critical literacy" into all engineering streams. This paper was presented…
Systems Engineering Metrics: Organizational Complexity and Product Quality Modeling
NASA Technical Reports Server (NTRS)
Mog, Robert A.
1997-01-01
Innovative organizational complexity and product quality models applicable to performance metrics for NASA-MSFC's Systems Analysis and Integration Laboratory (SAIL) missions and objectives are presented. An intensive research effort focuses on the synergistic combination of stochastic process modeling, nodal and spatial decomposition techniques, organizational and computational complexity, systems science and metrics, chaos, and proprietary statistical tools for accelerated risk assessment. This is followed by the development of a preliminary model, which is uniquely applicable and robust for quantitative purposes. Exercise of the preliminary model using a generic system hierarchy and the AXAF-I architectural hierarchy is provided. The Kendall test for positive dependence provides an initial verification and validation of the model. Finally, the research and development of the innovation is revisited, prior to peer review. This research and development effort results in near-term, measurable SAIL organizational and product quality methodologies, enhanced organizational risk assessment and evolutionary modeling results, and 91 improved statistical quantification of SAIL productivity interests.
ERIC Educational Resources Information Center
Atkinson, Robert; Mayo, Merrilea
2010-01-01
Innovation has powered America's economy, creating good jobs and a high standard of living. Yet, the U.S. share of innovation-based industries is in decline, jeopardizing our status as the world's innovation leader. And one reason is that the United States has been unable to produce enough of its own workers with sufficient skills in science,…
Biorefineries - New Green Strategy For Development Of Smart And Innovative Industry
NASA Astrophysics Data System (ADS)
Płaza, Grażyna A.; Wandzich, Dorota
2016-09-01
Ecological engineering or ecotechnology is defined as the design of sustainable production that integrate human society with the natural environment for the benefit of both. In order to reach the goal of sustainability therefore important that bioproduct production systems are converted from to natural cycle oriented. In natural cycles there are not waste, but products are generated at different stages of the cycle. The ecotechnology creates a sustainable bioeconomy using biomass in a smart and efficient way. The biorefining sector, which uses smart, innovative and efficient technologies to convert biomass feedstocks into a range of bio-based products including fuels, chemicals, power, food, and renewable oils, currently presents the innovative and efficient bio-based production can revitalize existing industries. The paper presents the concept of biorefinery as the ecotechnological approach for creating a sustainable bioeconomy using biomass in a smart and efficient way.
Defense Small Business Innovation Research Program (SBIR). Abstracts of Phase 2 Awards 1992
1992-01-01
tV:iiisatuir packace. and 12 MNI IC itiphefilInciaiiti itl o threebitdpstier lAP RI .Sl:ARCI I INC I-opte#.1ý" M 1 )25 II0& X144RI Ali! 27()3 (U lAIR ...achieve high gain in a refraction - or nonuniformity -compensated, twin-target system, and construct a portable x-ray laser engineering prototype. This
Analytic innovations for air quality modeling | Science ...
The presentation provides an overview of ongoing research activities at the U.S. EPA, focusing on improving long-term emission projections and the development of decision support systems for coordinated environmental, climate and energy planning. This presentation will be given on October 10th, 2016, at the Johns Hopkins Dept. of Environmental Health and Engineering as part of the Environmental Science and Management Seminar Series.
ERIC Educational Resources Information Center
Hughes, Bill; Mona, Lynn; Wilson, Greg; McAninch, Steve; Seamans, Jeff; Stout, Heather
2017-01-01
Science, Technology, Engineering, and Math (STEM) have developed broad prevalence in the American (U.S.) education system over the last decade. Academic, government, and business experts emphasize that attracting K-12-university students to STEM subject matter is crucial for expanding the innovation capacity of the U.S. and preparing citizens for…
Systems Thinking for the Enterprise: A Thought Piece
NASA Astrophysics Data System (ADS)
Rebovich, George
This paper suggests a way of managing the acquisition of capabilities for large-scale government enterprises that is different from traditional "specify and build" approaches commonly employed by U.S. government agencies in acquiring individual systems or systems of systems (SoS). Enterprise capabilities evolve through the emergence and convergence of information and other technologies and their integration into social, institutional and operational organizations and processes. Enterprise capabilities evolve whether or not the enterprise has processes in place to actively manage them. Thus the critical role of enterprise system engineering (ESE) processes should be to shape, enhance and accelerate the "natural" evolution of enterprise capabilities. ESE processes do not replace or add a layer to traditional system engineering (TSE) processes used in developing individual systems or SoS. ESE processes should complement TSE processes by shaping outcome spaces and stimulating interactions among enterprise participants through marketlike mechanisms to reward those that create innovation which moves and accelerates the evolution of the enterprise.
Women as a resource for the flexibility required for high technology innovation
NASA Technical Reports Server (NTRS)
Marlaire, Ruth Dasso
1994-01-01
What do women scientists need to know for career advancement into senior level positions? Our declining economic conditions have been the cause for major political and technological changes. The U.S. Congress is turning toward technology to increase our competitive edge in the world. Allowing women scientists, and women engineers in particular, more voice in the decision making process may be an innovative alternative for the diversity and flexibility needed for the unknown technological problems of the future. But first women scientists need to know how the system measures scientific achievement and how to identify the processes needed to increase our technological capability in order for them to formidably compete and win higher ranking positions.
Engineering and commercialization of human-device interfaces, from bone to brain.
Knothe Tate, Melissa L; Detamore, Michael; Capadona, Jeffrey R; Woolley, Andrew; Knothe, Ulf
2016-07-01
Cutting edge developments in engineering of tissues, implants and devices allow for guidance and control of specific physiological structure-function relationships. Yet the engineering of functionally appropriate human-device interfaces represents an intractable challenge in the field. This leading opinion review outlines a set of current approaches as well as hurdles to design of interfaces that modulate transfer of information, i.a. forces, electrical potentials, chemical gradients and haptotactic paths, between endogenous and engineered body parts or tissues. The compendium is designed to bridge across currently separated disciplines by highlighting specific commonalities between seemingly disparate systems, e.g. musculoskeletal and nervous systems. We focus on specific examples from our own laboratories, demonstrating that the seemingly disparate musculoskeletal and nervous systems share common paradigms which can be harnessed to inspire innovative interface design solutions. Functional barrier interfaces that control molecular and biophysical traffic between tissue compartments of joints are addressed in an example of the knee. Furthermore, we describe the engineering of gradients for interfaces between endogenous and engineered tissues as well as between electrodes that physically and electrochemically couple the nervous and musculoskeletal systems. Finally, to promote translation of newly developed technologies into products, protocols, and treatments that benefit the patients who need them most, regulatory and technical challenges and opportunities are addressed on hand from an example of an implant cum delivery device that can be used to heal soft and hard tissues, from brain to bone. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Passive Gamma-Ray Emission for Underwater Sediment-Disturbance Detection
2017-07-18
Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops innovative...solutions in civil and military engineering , geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense...Sediment-Disturbance Detection Jay L. Clausen U.S. Army Engineer Research and Development Center (ERDC) Cold Regions Research and Engineering
NASA Astrophysics Data System (ADS)
Bandaru, Sunith; Deb, Kalyanmoy
2011-09-01
In this article, a methodology is proposed for automatically extracting innovative design principles which make a system or process (subject to conflicting objectives) optimal using its Pareto-optimal dataset. Such 'higher knowledge' would not only help designers to execute the system better, but also enable them to predict how changes in one variable would affect other variables if the system has to retain its optimal behaviour. This in turn would help solve other similar systems with different parameter settings easily without the need to perform a fresh optimization task. The proposed methodology uses a clustering-based optimization technique and is capable of discovering hidden functional relationships between the variables, objective and constraint functions and any other function that the designer wishes to include as a 'basis function'. A number of engineering design problems are considered for which the mathematical structure of these explicit relationships exists and has been revealed by a previous study. A comparison with the multivariate adaptive regression splines (MARS) approach reveals the practicality of the proposed approach due to its ability to find meaningful design principles. The success of this procedure for automated innovization is highly encouraging and indicates its suitability for further development in tackling more complex design scenarios.
NASA Astrophysics Data System (ADS)
Harris, E.
Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars Reconnaissance Orbiter and Lunar Base construction scenarios. Innovative solutions utilizing Immersive Visualization provide the key to streamlining the mission planning and optimizing engineering design phases of future aerospace missions.
ERIC Educational Resources Information Center
Filippi, Alyssa; Agarwal, Dipali
2017-01-01
There is a need for individuals in science, technology, engineering, and mathematics (STEM) careers to drive the innovation and research potential of Europe. Yet, there is expected to be a decrease in the number of STEM professionals, as there is less student interest in STEM fields of the study. Studies show that STEM classes that focus on…
NASA team hosts STEM-Ulate actvities
2010-07-13
Young visitors to NASA's John C. Stennis Space Center prepare to launch 'stomp rockets' during STEM-Ulate to Innovate activities at the facility July 13. The NASA Foundations of Influence, Relationships, Success and Teamwork (FIRST) Team sponsored STEM-Ulate to Innovate for more than 100 children ages 9-11. Children from area Boys & Girls Clubs participated in hands-on activities, presentations and demonstrations by professional engineers, all designed to promote the relevance of science, technology, engineering and mathematics (STEM).
Innovative Techniques Simplify Vibration Analysis
NASA Technical Reports Server (NTRS)
2010-01-01
In the early years of development, Marshall Space Flight Center engineers encountered challenges related to components in the space shuttle main engine. To assess the problems, they evaluated the effects of vibration and oscillation. To enhance the method of vibration signal analysis, Marshall awarded Small Business Innovation Research (SBIR) contracts to AI Signal Research, Inc. (ASRI), in Huntsville, Alabama. ASRI developed a software package called PC-SIGNAL that NASA now employs on a daily basis, and in 2009, the PKP-Module won Marshall s Software of the Year award. The technology is also used in many industries: aircraft and helicopter, rocket engine manufacturing, transportation, and nuclear power."
2014-06-23
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, Heather Hava, who is working on a doctorate in aerospace engineering sciences at the University of Colorado Boulder, makes adjustments on a Remotely Operated Gardening Rover, or ROGR, which could tend plants on a deep-space habitat. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in science, technology, engineering and math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Daniel Casper
Competitive intelligence information management and innovation in small technology-based companies
NASA Astrophysics Data System (ADS)
Tanev, Stoyan
2007-05-01
In this article we examine how (i) company type and (ii) the competitive intelligence information used by small technology-based companies affect their innovation performance. The focus is on the specific information types used and not on the information sources. Information topics are classified in four groups - customers (10), company (9), competitor (11) and industry (12). The sample consists of 45 small new technology-based companies, specialized suppliers, and service companies from a variety of sectors - software, photonics, telecommunications, biomedical engineering and biotech, traditional manufacturing etc. The results suggest that the total number of intelligence information topics companies use to make decisions about innovation is not associated with the number of their new products, processes, services and patents. Therefore the companies in our sample do not seem to have the resources, processes or value systems required to use different competitive intelligence information when making decisions on innovation or may rely more on their own internal logic than on external information. Companies are classified using a Pavitt-like taxonomy. Service companies are considered as a separate company type. This allows for explicitly studying both, the innovative role of new services in product driven companies, and the role of new product development in service companies.
An Overview of Materials Structures for Extreme Environments Efforts for 2015 SBIR Phases I and II
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2017-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency projects. This report highlights innovative SBIR 2015 Phase I and II projects that specifically address areas in Materials and Structures for Extreme Environments, one of six core competencies at NASA Glenn Research Center. Each article describes an innovation, defines its technical objective, and highlights NASA applications as well as commercial and industrial applications. Ten technologies are featured: metamaterials-inspired aerospace structures, metallic joining to advanced ceramic composites, multifunctional polyolefin matrix composite structures, integrated reacting fluid dynamics and predictive materials degradation models for propulsion system conditions, lightweight inflatable structural airlock (LISA), copolymer materials for fused deposition modeling 3-D printing of nonstandard plastics, Type II strained layer superlattice materials development for space-based focal plane array applications, hydrogenous polymer-regolith composites for radiation-shielding materials, a ceramic matrix composite environmental barrier coating durability model, and advanced composite truss printing for large solar array structures. This report serves as an opportunity for NASA engineers, researchers, program managers, and other personnel to learn about innovations in this technology area as well as possibilities for collaboration with innovative small businesses that could benefit NASA programs and projects.
NASA Astrophysics Data System (ADS)
Birtas, A.; Boicea, N.; Draghici, F.; Chiriac, R.; Croitoru, G.; Dinca, M.; Dascalu, T.; Pavel, N.
2017-10-01
Performance and exhaust emissions of spark ignition engines are strongly dependent on the development of the combustion process. Controlling this process in order to improve the performance and to reduce emissions by ensuring rapid and robust combustion depends on how ignition stage is achieved. An ignition system that seems to be able for providing such an enhanced combustion process is that based on plasma generation using a Q-switched solid state laser that delivers pulses with high peak power (of MW-order level). The laser-spark devices used in the present investigations were realized using compact diffusion-bonded Nd:YAG/Cr4+:YAG ceramic media. The laser igniter was designed, integrated and built to resemble a classical spark plug and therefore it could be mounted directly on the cylinder head of a passenger car engine. In this study are reported the results obtained using such ignition system provided for a K7M 710 engine currently produced by Renault-Dacia, where the standard calibrations were changed towards the lean mixtures combustion zone. Results regarding the performance, the exhaust emissions and the combustion characteristics in optimized spark timing conditions, which demonstrate the potential of such an innovative ignition system, are presented.
Precision Time Protocol-Based Trilateration for Planetary Navigation
NASA Technical Reports Server (NTRS)
Murdock, Ron
2015-01-01
Progeny Systems Corporation has developed a high-fidelity, field-scalable, non-Global Positioning System (GPS) navigation system that offers precision localization over communications channels. The system is bidirectional, providing position information to both base and mobile units. It is the first-ever wireless use of the Institute of Electrical and Electronics Engineers (IEEE) Precision Time Protocol (PTP) in a bidirectional trilateration navigation system. The innovation provides a precise and reliable navigation capability to support traverse-path planning systems and other mapping applications, and it establishes a core infrastructure for long-term lunar and planetary occupation. Mature technologies are integrated to provide navigation capability and to support data and voice communications on the same network. On Earth, the innovation is particularly well suited for use in unmanned aerial vehicles (UAVs), as it offers a non-GPS precision navigation and location service for use in GPS-denied environments. Its bidirectional capability provides real-time location data to the UAV operator and to the UAV. This approach optimizes assisted GPS techniques and can be used to determine the presence of GPS degradation, spoofing, or jamming.
New frontiers in design synthesis
NASA Technical Reports Server (NTRS)
Goldin, D. S.; Venneri, S. L.; Noor, A. K.
1999-01-01
The Intelligent Synthesis Environment (ISE), which is one of the major strategic technologies under development at NASA centers and the University of Virginia, is described. One of the major objectives of ISE is to significantly enhance the rapid creation of innovative affordable products and missions. ISE uses a synergistic combination of leading-edge technologies, including high performance computing, high capacity communications and networking, human-centered computing, knowledge-based engineering, computational intelligence, virtual product development, and product information management. The environment will link scientists, design teams, manufacturers, suppliers, and consultants who participate in the mission synthesis as well as in the creation and operation of the aerospace system. It will radically advance the process by which complex science missions are synthesized, and high-tech engineering Systems are designed, manufactured and operated. The five major components critical to ISE are human-centered computing, infrastructure for distributed collaboration, rapid synthesis and simulation tools, life cycle integration and validation, and cultural change in both the engineering and science creative process. The five components and their subelements are described. Related U.S. government programs are outlined and the future impact of ISE on engineering research and education is discussed.
Mobile healthcare applications: system design review, critical issues and challenges.
Baig, Mirza Mansoor; GholamHosseini, Hamid; Connolly, Martin J
2015-03-01
Mobile phones are becoming increasingly important in monitoring and delivery of healthcare interventions. They are often considered as pocket computers, due to their advanced computing features, enhanced preferences and diverse capabilities. Their sophisticated sensors and complex software applications make the mobile healthcare (m-health) based applications more feasible and innovative. In a number of scenarios user-friendliness, convenience and effectiveness of these systems have been acknowledged by both patients as well as healthcare providers. M-health technology employs advanced concepts and techniques from multidisciplinary fields of electrical engineering, computer science, biomedical engineering and medicine which benefit the innovations of these fields towards healthcare systems. This paper deals with two important aspects of current mobile phone based sensor applications in healthcare. Firstly, critical review of advanced applications such as; vital sign monitoring, blood glucose monitoring and in-built camera based smartphone sensor applications. Secondly, investigating challenges and critical issues related to the use of smartphones in healthcare including; reliability, efficiency, mobile phone platform variability, cost effectiveness, energy usage, user interface, quality of medical data, and security and privacy. It was found that the mobile based applications have been widely developed in recent years with fast growing deployment by healthcare professionals and patients. However, despite the advantages of smartphones in patient monitoring, education, and management there are some critical issues and challenges related to security and privacy of data, acceptability, reliability and cost that need to be addressed.
ERIC Educational Resources Information Center
Sandler, Heidi J.
2016-01-01
The purpose of this grounded theory study was to examine the relationship between corporate culture (artifacts, values, and assumptions) and the creative endeavor of innovation in the software development industry. Innovation, the active implementation of creative ideas, is a widespread enterprise in the corporate world, especially in the areas of…
President Barack Obama Honors Teachers
2010-01-06
U.S. President Barack Obama speaks in the East Room of the White House in Washington, Wednesday, Jan. 6, 2010, during an 'Educate to Innovate' event where he honored teachers who received awards for excellence in Science, Technology, Engineering and Math (STEM) education. NASA's 'Summer of Innovation' program supports the President's 'Educate to Innovate' campaign. Photo Credit: (NASA/Bill Ingalls)
French, Jennifer; Lujan, J Luis; Bardot, Dawn; Graczyk, Emily Lauren; Hess-Dunning, Allison; Triolo, Ronald J; Moynahan, Megan; Tan, Winny; Zbrzeski, Adeline
2018-05-21
Neural Engineering is a discipline at the intersection of neuroscience, engineering, and clinical care. Recent major efforts by government and industry aimed at bringing forth personalized therapies, increasing the potential of the neural engineering industry for future growth, eg. the National Institutes of Health (NIH) Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative and Stimulating Peripheral Activity to Relieve Conditions (SPARC) Common Fund Program, the Defense Advanced Research Projects Agency (DARPA) Electrical Prescriptions (ElectRx) and Systems-Based Neurotechnology for Emerging Therapies (SUBNETS) Programs, and the GlaxoSmithKline Bioelectric Medicines Initiative. However, the incremental development of neural technologies can easily become a case of advancing technology for its own sake. This mindset can lead to a solution looking for a problem, without taking into consideration the patient/consumer point of view. Creative Commons Attribution license.
Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector
1985-01-01
TECHNOLOGY TRANSFER: A THINK TANK APPROACH TO MANAGING INNOVATION IN THE PUBLIC SECTOR CISIRIBUTIOtl STATEMENT A Approved for Public Release...NAVAL FACILITIES ENGINEERING COMMAND TECHNOLOGY TRANSFER: A THINK TANK APPROACH TO MANAGING INNOVATION IN THE PUBLIC SECTOR Edited by J. W. Creighton...Publication of this book, Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector, was in part supported by funds from the U.S
Engineering Education for Leadership in the 21st Century.
ERIC Educational Resources Information Center
Wirasinghe, Chan
The engineering profession and, consequently, the education process for engineers must respond to several new realities in order to be successful in the 21st century. Some aspects of the new reality that are relevant to engineering education are as follows: the globalization of commerce; the information revolution; innovations in technology; the…
A Renaissance in Engineering PhD Education
ERIC Educational Resources Information Center
Akay, Adnan
2008-01-01
This paper addresses the role of engineering PhD education and its relationship to innovation and technology, and the need to reconsider how we educate PhD engineers. Much of the effort on engineering education in the last two decades focused on undergraduate education with a few exceptions that relate to master degree programs. Doctoral education…
Do-It-Yourself Additives Recharge Auto Air Conditioning
NASA Technical Reports Server (NTRS)
2010-01-01
In planning for a return mission to the Moon, NASA aimed to improve the thermal control systems that keep astronauts comfortable and cool while inside a spacecraft. Goddard Space Flight Center awarded a Small Business Innovation Research (SBIR) contract to Mainstream Engineering Corporation, of Rockledge, Florida, to develop a chemical/mechanical heat pump. IDQ Inc., of Garland, Texas, exclusively licensed the technology and incorporates it into its line of Arctic Freeze products for automotive air conditioning applications. While working on the design, Mainstream Engineering came up with a unique liquid additive called QwikBoost to enhance the performance of the advanced heat pump design.
NASA Astrophysics Data System (ADS)
Bolonkin, A.
The purpose of this article is to call attention to the revolutionary idea of multi-reflection. This idea allows the design of new engines, space propulsion systems, storage of a beam and solar energy, transmission of energy over millions of kilometers, a new weapon, etc. This method and its main innovations were offered by the author in 1983 in the former USSR. Now the author shows in a series of articles the huge possibilities of this idea in many fields such as space, aviation, energy, energy transmission, beam amplification, light transformation and so on. This article considers the direct transfer of light beam energy to mechanical energy and back.
Engineering and control of biological systems: A new way to tackle complex diseases.
Menolascina, Filippo; Siciliano, Velia; di Bernardo, Diego
2012-07-16
The ongoing merge between engineering and biology has contributed to the emerging field of synthetic biology. The defining features of this new discipline are abstraction and standardisation of biological parts, decoupling between parts to prevent undesired cross-talking, and the application of quantitative modelling of synthetic genetic circuits in order to guide their design. Most of the efforts in the field of synthetic biology in the last decade have been devoted to the design and development of functional gene circuits in prokaryotes and unicellular eukaryotes. Researchers have used synthetic biology not only to engineer new functions in the cell, but also to build simpler models of endogenous gene regulatory networks to gain knowledge of the "rules" governing their wiring diagram. However, the need for innovative approaches to study and modify complex signalling and regulatory networks in mammalian cells and multicellular organisms has prompted advances of synthetic biology also in these species, thus contributing to develop innovative ways to tackle human diseases. In this work, we will review the latest progress in synthetic biology and the most significant developments achieved so far, both in unicellular and multicellular organisms, with emphasis on human health. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Price-Weight Relationships of General Aviation, Helicopters, Transport Aircraft and Engines
NASA Technical Reports Server (NTRS)
Anderson, Joseph L.
1981-01-01
The NASA must assess its aeronautical research program with economic as well as performance measures. It thus is interested in what price a new technology aircraft would carry to make it attractive to the buyer. But what price a given airplane or helicopter will carry is largely a reflection of the manufacturer's assessment of the competitive market into which the new aircraft will be introduced. The manufacturer must weigh any new aerodynamic or system technology innovation he would add to an aircraft by the impact of this innovation upon the aircraft's cost to manufacture, economic attractiveness and price. The intent of this paper is to give price standards against which new technologies and the NASA's research program can be assessed. Using reported prices for sailplanes, general aviation, agriculture, helicopter, business and transport aircraft, price estimating relations in terms of engine and airframe characteristics have been developed. The relations are given in terms of the aircraft type, its manufactured empty weight, engine weight, horsepower or thrust. Factors for the effects of inflation are included to aid in making predictions of future aircraft prices. There are discussions of aircraft price in terms of number of passenger seats, airplane size and research and development costs related to an aircraft model, and indirectly how new technologies, aircraft complexity and inflation have affected these.
Education for Professional Engineering Practice
ERIC Educational Resources Information Center
Bramhall, Mike D.; Short, Chris
2014-01-01
This paper reports on a funded collaborative large-scale curriculum innovation and enhancement project undertaken as part of a UK National Higher Education Science, Technology Engineering and Mathematics (STEM) programme. Its aim was to develop undergraduate curricula to teach appropriate skills for professional engineering practice more…
PREFACE: 2nd International Conference on Innovative Materials, Structures and Technologies
NASA Astrophysics Data System (ADS)
Ručevskis, Sandris
2015-11-01
The 2nd International Conference on Innovative Materials, Structures and Technologies (IMST 2015) took place in Riga, Latvia from 30th September - 2nd October, 2015. The first event of the conference series, dedicated to the 150th anniversary of the Faculty of Civil Engineering of Riga Technical University, was held in 2013. Following the established tradition, the aim of the conference was to promote and discuss the latest results of industrial and academic research carried out in the following engineering fields: analysis and design of advanced structures and buildings; innovative, ecological and energy efficient building materials; maintenance, inspection and monitoring methods; construction technologies; structural management; sustainable and safe transport infrastructure; and geomatics and geotechnics. The conference provided an excellent opportunity for leading researchers, representatives of the industrial community, engineers, managers and students to share the latest achievements, discuss recent advances and highlight the current challenges. IMST 2015 attracted over 120 scientists from 24 countries. After rigorous reviewing, over 80 technical papers were accepted for publication in the conference proceedings. On behalf of the organizing committee I would like to thank all the speakers, authors, session chairs and reviewers for their efficient and timely effort. The 2nd International Conference on Innovative Materials, Structures and Technologies was organized by the Faculty of Civil Engineering of Riga Technical University with the support of the Latvia State Research Programme under the grant agreement "INNOVATIVE MATERIALS AND SMART TECHNOLOGIES FOR ENVIRONMENTAL SAFETY, IMATEH". I would like to express sincere gratitude to Juris Smirnovs, Dean of the Faculty of Civil Engineering, and Andris Chate, manager of the Latvia State Research Programme. Finally, I would like to thank all those who helped to make this event happen. Special thanks go to Diana Bajare, Laura Sele, Liga Radina and Jana Galilejeva for their major contribution to organizing the conference and to the literary editor Tatjana Smirnova and technical editor Daira Erdmane for their hard work on the conference proceedings.
NASA Astrophysics Data System (ADS)
Zhang, Min; He, Weiyi
2018-06-01
Under the guidance of principal-agent theory and modular theory, the collaborative innovation of green technology-based companies, design contractors and project builders based on united agency will provide direction for the development of green construction supply chain in the future. After analyzing the existing independent agencies, this paper proposes the industry-university-research bilateral collaborative innovation network architecture and modularization with the innovative function of engineering design in the context of non-standard transformation interfaces, analyzes the innovation responsibility center, and gives some countermeasures and suggestions to promote the performance of bilateral cooperative innovation network.
[Stressor and stress reduction strategies for computer software engineers].
Asakura, Takashi
2002-07-01
First, in this article we discuss 10 significant occupational stressors for computer software engineers, based on the review of the scientific literature on their stress and mental health. The stressors include 1) quantitative work overload, 2) time pressure, 3) qualitative work load, 4) speed and diffusion of technological innovation, and technological divergence, 5) low discretional power, 6) underdeveloped career pattern, 7) low earnings/reward from jobs, 8) difficulties in managing a project team for software development and establishing support system, 9) difficulties in customer relations, and 10) personality characteristics. In addition, we delineate their working and organizational conditions that cause such occupational stressors in order to find strategies to reduce those stressors in their workplaces. Finally, we suggest three stressor and stress reduction strategies for software engineers.
A Boiling-Potassium Fluoride Reactor for an Artificial-Gravity NEP Vehicle
NASA Technical Reports Server (NTRS)
Sorensen, Kirk; Juhasz, Albert
2007-01-01
Several years ago a rotating manned spacecraft employing nuclear-electric propulsion was examined for Mars exploration. The reactor and its power conversion system essentially served as the counter-mass to an inflatable manned module. A solid-core boiling potassium reactor based on the MPRE concept of the 1960s was baselined in that study. This paper proposes the use of a liquid-fluoride reactor, employing direct boiling of potassium in the core, as a means to overcome some of the residual issues with the MPRE reactor concept. Several other improvements to the rotating Mars vehicle are proposed as well, such as Canfield joints to enable the electric engines to track the inertial thrust vector during rotation, and innovative "cold-ion" engine technologies to improve engine performance.
NASA Technical Reports Server (NTRS)
Lunsford, Myrtis Leigh
1998-01-01
The Army-NASA Virtual Innovations Laboratory (ANVIL) was recently created to provide virtual reality tools for performing Human Engineering and operations analysis for both NASA and the Army. The author's summer research project consisted of developing and refining these tools for NASA's Reusable Launch Vehicle (RLV) program. Several general simulations were developed for use by the ANVIL for the evaluation of the X34 Engine Changeout procedure. These simulations were developed with the software tool dVISE 4.0.0 produced by Division Inc. All software was run on an SGI Indigo2 High Impact. This paper describes the simulations, various problems encountered with the simulations, other summer activities, and possible work for the future. We first begin with a brief description of virtual reality systems.
High-temperature optical fiber instrumentation for gas flow monitoring in gas turbine engines
NASA Astrophysics Data System (ADS)
Roberts, Adrian; May, Russell G.; Pickrell, Gary R.; Wang, Anbo
2002-02-01
In the design and testing of gas turbine engines, real-time data about such physical variables as temperature, pressure and acoustics are of critical importance. The high temperature environment experienced in the engines makes conventional electronic sensors devices difficult to apply. Therefore, there is a need for innovative sensors that can reliably operate under the high temperature conditions and with the desirable resolution and frequency response. A fiber optic high temperature sensor system for dynamic pressure measurement is presented in this paper. This sensor is based on a new sensor technology - the self-calibrated interferometric/intensity-based (SCIIB) sensor, recently developed at Virginia Tech. State-of-the-art digital signal processing (DSP) methods are applied to process the signal from the sensor to acquire high-speed frequency response.
Facilities | Computational Science | NREL
technology innovation by providing scientists and engineers the ability to tackle energy challenges that scientists and engineers to take full advantage of advanced computing hardware and software resources
Forging the Solution to the Energy Challenge: The Role of Materials Science and Materials Scientists
NASA Astrophysics Data System (ADS)
Wadsworth, Jeffrey
2010-04-01
The energy challenge is central to the most important strategic problems facing the United States and the world. It is increasingly clear that even large-scale deployments of the best technologies available today cannot meet the rising energy demands of a growing world population. Achieving a secure and sustainable energy future will require full utilization of, and substantial improvements in, a comprehensive portfolio of energy systems and technologies. This goal is complicated by several factors. First, energy strategies are inextricably linked to national security and health issues. Second, in developing and deploying energy technologies, it is vital to consider not only environmental issues, such as global climate change, but also economic considerations, which strongly influence both public and political views on energy policy. Third, a significant and sustained effort in basic and applied research and development (R&D) will be required to deliver the innovations needed to ensure a desirable energy future. Innovations in materials science and engineering are especially needed to overcome the limits of essentially all energy technologies. A wealth of historical evidence demonstrates that such innovations are also the key to economic prosperity. From the development of the earliest cities around flint-trading centers, to the Industrial Revolution, to today’s silicon-based global economy, the advantage goes to those who lead in exploiting materials. I view our challenge by considering the rate of innovation and the transition of discovery to the marketplace as the relationship among R&D investment, a skilled and talented workforce, business innovations, and the activities of competitors. Most disturbing in analyzing this relationship is the need for trained workers in science, technology, engineering, and mathematics (STEM). To develop the STEM workforce needed for innovation, we need sustainable, positive change in STEM education at all levels from preschool through postgraduate. Materials sciences can be a significant magnet in attracting students to STEM areas, and a focused effort is needed to ensure that it is included in STEM programs. From this effort will come the next generation of materials scientists and the innovations that will enable us to overcome the energy challenge.
Forging the Solution to the Energy Challenge: The Role of Materials Science and Materials Scientists
NASA Astrophysics Data System (ADS)
Wadsworth, Jeffrey
2010-05-01
The energy challenge is central to the most important strategic problems facing the United States and the world. It is increasingly clear that even large-scale deployments of the best technologies available today cannot meet the rising energy demands of a growing world population. Achieving a secure and sustainable energy future will require full utilization of, and substantial improvements in, a comprehensive portfolio of energy systems and technologies. This goal is complicated by several factors. First, energy strategies are inextricably linked to national security and health issues. Second, in developing and deploying energy technologies, it is vital to consider not only environmental issues, such as global climate change, but also economic considerations, which strongly influence both public and political views on energy policy. Third, a significant and sustained effort in basic and applied research and development (R&D) will be required to deliver the innovations needed to ensure a desirable energy future. Innovations in materials science and engineering are especially needed to overcome the limits of essentially all energy technologies. A wealth of historical evidence demonstrates that such innovations are also the key to economic prosperity. From the development of the earliest cities around flint-trading centers, to the Industrial Revolution, to today’s silicon-based global economy, the advantage goes to those who lead in exploiting materials. I view our challenge by considering the rate of innovation and the transition of discovery to the marketplace as the relationship among R&D investment, a skilled and talented workforce, business innovations, and the activities of competitors. Most disturbing in analyzing this relationship is the need for trained workers in science, technology, engineering, and mathematics (STEM). To develop the STEM workforce needed for innovation, we need sustainable, positive change in STEM education at all levels from preschool through postgraduate. Materials sciences can be a significant magnet in attracting students to STEM areas, and a focused effort is needed to ensure that it is included in STEM programs. From this effort will come the next generation of materials scientists and the innovations that will enable us to overcome the energy challenge.
China’s science, technology, engineering, and mathematics (STEM) research environment: A snapshot
2018-01-01
In keeping with China’s President Xi Jinping’s “Chinese Dream,” China has set a goal of becoming a world-class innovator by 2050. China’s higher education Science, Technology, Engineering, and Math (STEM) research environment will play a pivotal role in influencing whether China is successful in transitioning from a manufacturing-based economy to an innovation-driven, knowledge-based economy. Past studies on China’s research environment have been primarily qualitative in nature or based on anecdotal evidence. In this study, we surveyed STEM faculty from China’s top 25 universities to get a clearer understanding of how faculty members view China’s overall research environment. We received 731 completed survey responses, 17% of which were from individuals who received terminal degrees from abroad and 83% of which were from individuals who received terminal degrees from domestic institutions of higher education. We present results on why returnees decided to study abroad, returnees’ decisions to return to China, and differences in perceptions between returnees and domestic degree holders on the advantages of having a foreign degree. The top five challenges to China’s research environment identified by survey respondents were: a promotion of short-term thinking and instant success (37% of all respondents); research funding (33%); too much bureaucratic or governmental intervention (31%); the evaluation system (27%); and a reliance on human relations (26%). Results indicated that while China has clearly made strides in its higher education system, there are numerous challenges that must be overcome before China can hope to effectively produce the kinds of innovative thinkers that are required if it is to achieve its ambitious goals. We also raise questions about the current direction of education and inquiry in China, particularly indications that government policy is turning inward, away from openness that is central to innovative thinking. PMID:29614123
Legacy of the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Sullivan, Steven J.
2010-01-01
This slide presentation reviews many of the innovations from Kennedy Space Center engineering for ground operations that were made during the shuttle program. The innovations are in the areas of detection, image analysis, protective equipment, software development and communications.
Diaphragm Stirling engine heat-actuated heat pump development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, R.A.; Swenson, P.
1981-01-01
The objective of this program is to develop and demonstrate the performance of a diaphragm Stirling engine heat-actuated heat pump power module. The power module, consisting of a free displacer, resonant Stirling engine, hydraulic transmission, and resonant Rankine refrigerant (F-22) compressor, embodies several innovative concepts in free-piston Stirling engine heat pump design that will advance the state of the art of this technology. Progress is reported in three areas of the program. First, a compressor/engine matching analysis and a stability analysis have shown that the power module, which is representative of a two-degree-of-freedom resonant system, will operate stably over themore » full range of heat pump conditions. Second, a compressor design has evolved that has met criteria for performance and cost; and third, tests employing a hydraulic simulator test rig has shown that the transmission losses are less than had been predicted, and that properly designed and fabricated diaphragms can attain long life.« less
Space Shuttle Main Engine: Thirty Years of Innovation
NASA Technical Reports Server (NTRS)
Jue, F. H.; Hopson, George (Technical Monitor)
2002-01-01
The Space Shuttle Main Engine (SSME) is the first reusable, liquid booster engine designed for human space flight. This paper chronicles the 30-year history and achievements of the SSME from authority to proceed up to the latest flight configuration - the Block 2 SSME.
Mitragotri, S
2013-01-01
Transdermal drug delivery continues to provide an advantageous route of drug administration over injections. While the number of drugs delivered by passive transdermal patches has increased over the years, no macromolecule is currently delivered by the transdermal route. Substantial research efforts have been dedicated by a large number of researchers representing varied disciplines including biology, chemistry, pharmaceutics and engineering to understand, model and overcome the skin's barrier properties. This article focuses on engineering contributions to the field of transdermal drug delivery. The article pays tribute to Prof. Robert Langer, who pioneered the engineering approach towards transdermal drug delivery. Over a period spanning nearly 25 years since his first publication in the field of transdermal drug delivery, Bob Langer has deeply impacted the field by quantitative analysis and innovative engineering. At the same time, he has inspired several generations of engineers by collaborations and mentorship. His scientific insights, innovative technologies, translational efforts and dedicated mentorship have transformed the field. © 2013 S. Karger AG, Basel.
The European Project Semester at ISEP: the challenge of educating global engineers
NASA Astrophysics Data System (ADS)
Malheiro, Benedita; Silva, Manuel; Ribeiro, Maria Cristina; Guedes, Pedro; Ferreira, Paulo
2015-05-01
Current engineering education challenges require approaches that promote scientific, technical, design and complementary skills while fostering autonomy, innovation and responsibility. The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) (EPS@ISEP) is a one semester project-based learning programme (30 European Credit Transfer Units (ECTU)) for engineering students from diverse scientific backgrounds and nationalities that intends to address these goals. The students, organised in multidisciplinary and multicultural teams, are challenged to solve real multidisciplinary problems during one semester. The EPS package, although on project development (20 ECTU), includes a series of complementary seminars aimed at fostering soft, project-related and engineering transversal skills (10 ECTU). Hence, the students enrolled in this programme improve their transversal skills and learn, together and with the team of supervisors, subjects distinct from their core training. This paper presents the structure, implementation and results of the EPS@ISEP that was created in 2011 to apply the best engineering practices and promote internationalisation and engineering education innovation at ISEP.
Gas Engine-Driven Heat Pump with Desiccant Dehumidification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Abu-Heiba, Ahmad
About 40% of total U.S. energy consumption was consumed in residential and commercial buildings. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. This paper describes the development of an innovative natural gas, propane, LNG or bio-gas IC engine-driven heat pump (GHP) with desiccant dehumidification (GHP/DD). This integrated system has higher overall efficiencies than conventional equipment for space cooling, addresses both new and existing commercial buildings, and more effectively controls humidity in humid areas. Waste heat is recovered from the GHP to provide energy for regenerating themore » desiccant wheel and to augment heating capacity and efficiency. By combining the two technologies, an overall source COP of greater that 1.5 (hot, humid case) can be achieved by utilizing waste heat from the engine to reduce the overall energy required to regenerate the desiccant. Moreover, system modeling results show that the sensible heat ratio (SHR- sensible heat ratio) can be lowered to less 60% in a dedicated outdoor air system application with hot, humid cases.« less
Polymers for Drug Delivery Systems
Liechty, William B.; Kryscio, David R.; Slaughter, Brandon V.; Peppas, Nicholas A.
2012-01-01
Polymers have played an integral role in the advancement of drug delivery technology by providing controlled release of therapeutic agents in constant doses over long periods, cyclic dosage, and tunable release of both hydrophilic and hydrophobic drugs. From early beginnings using off-the-shelf materials, the field has grown tremendously, driven in part by the innovations of chemical engineers. Modern advances in drug delivery are now predicated upon the rational design of polymers tailored for specific cargo and engineered to exert distinct biological functions. In this review, we highlight the fundamental drug delivery systems and their mathematical foundations and discuss the physiological barriers to drug delivery. We review the origins and applications of stimuli-responsive polymer systems and polymer therapeutics such as polymer-protein and polymer-drug conjugates. The latest developments in polymers capable of molecular recognition or directing intracellular delivery are surveyed to illustrate areas of research advancing the frontiers of drug delivery. PMID:22432577
Simulation of a spiking neuron circuit using carbon nanotube transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Najari, Montassar, E-mail: malnjar@jazanu.edu.sa; IKCE unit, Jazan University, Jazan; El-Grour, Tarek, E-mail: grour-tarek@hotmail.fr
2016-06-10
Neuromorphic engineering is related to the existing analogies between the physical semiconductor VLSI (Very Large Scale Integration) and biophysics. Neuromorphic systems propose to reproduce the structure and function of biological neural systems for transferring their calculation capacity on silicon. Since the innovative research of Carver Mead, the neuromorphic engineering continues to emerge remarkable implementation of biological system. This work presents a simulation of an elementary neuron cell with a carbon nanotube transistor (CNTFET) based technology. The model of the cell neuron which was simulated is called integrate and fire (I&F) model firstly introduced by G. Indiveri in 2009. This circuitmore » has been simulated with CNTFET technology using ADS environment to verify the neuromorphic activities in terms of membrane potential. This work has demonstrated the efficiency of this emergent device; i.e CNTFET on the design of such architecture in terms of power consumption and technology integration density.« less
NASA Astrophysics Data System (ADS)
de la Haba, M. J.; Taguas, E. V.; del Campillo, M. C.; Guerrero, J. E.; Pérez-Marín, M. D.
2012-04-01
The internationalization of the curricula and the development of skills for the labor market are core objectives of the Bologna Process. In this work, the structure and the organization of a Master Course "Innovation and New Technologies in Agrifood Engineering", in the University of Cordoba is presented. The theorist contents are focused on: 1) the opportunities (public and private) for the creation of Technology-Based Innovative Enterprises (TBIE) by emphasizing cooperation between stakeholders to enhance the skills of students; 2) the role of the University for supporting them and for collaborating in the "Open Innovation" among companies in different European countries. In the practical topics, the students must use that information for preparing a real innovation project of agrifood products which is tutored by the teachers and is presented and evaluated by a member of CTA (Corporación Tecnológica de Andalucía), an institution of sponsoring of innovation and technological projects. The evaluation of the students about its utility and the organization aspects corresponding to the course 2010-2011 was 4.2 in scale from 0 to 5. In this context, teachers have noted that innovation processes have improved the employability of students as they have been prepared to face the market challenges and opportunities.
Static Performance of a Wing-Mounted Thrust Reverser Concept
NASA Technical Reports Server (NTRS)
Asbury, Scott C.; Yetter, Jeffrey A.
1998-01-01
An experimental investigation was conducted in the Jet-Exit Test Facility at NASA Langley Research Center to study the static aerodynamic performance of a wing-mounted thrust reverser concept applicable to subsonic transport aircraft. This innovative engine powered thrust reverser system is designed to utilize wing-mounted flow deflectors to produce aircraft deceleration forces. Testing was conducted using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0, a supercritical left-hand wing section attached via a pylon, and wing-mounted flow deflectors attached to the wing section. Geometric variations of key design parameters investigated for the wing-mounted thrust reverser concept included flow deflector angle and chord length, deflector edge fences, and the yaw mount angle of the deflector system (normal to the engine centerline or parallel to the wing trailing edge). All tests were conducted with no external flow and high pressure air was used to simulate core and fan engine exhaust flows. Test results indicate that the wing-mounted thrust reverser concept can achieve overall thrust reverser effectiveness levels competitive with (parallel mount), or better than (normal mount) a conventional cascade thrust reverser system. By removing the thrust reverser system from the nacelle, the wing-mounted concept offers the nacelle designer more options for improving nacelle aero dynamics and propulsion-airframe integration, simplifying nacelle structural designs, reducing nacelle weight, and improving engine maintenance access.
Martinetti, Alberto; Chatzimichailidou, Maria Mikela; Maida, Luisa; van Dongen, Leo
2018-04-24
Occupational health and safety (OHS) represents an important field of exploration for the research community: in spite of the growth of technological innovations, the increasing complexity of systems involves critical issues in terms of degradation of the safety levels. In such a situation, new safety management approaches are now mandatory in order to face the safety implications of the current technological evolutions. Along these lines, performing risk-based analysis alone seems not to be enough anymore. The evaluation of robustness, antifragility and resilience of a socio-technical system is now indispensable in order to face unforeseen events. This article will briefly introduce the topics of Safety I and Safety II, resilience engineering and antifragility engineering, explaining correlations, overlapping aspects and synergies. Secondly, the article will discuss the applications of those paradigms to a real accident, highlighting how they can challenge, stimulate and inspire research for improving OHS conditions.
Puncture Self-Healing Polymers for Aerospace Applications
NASA Technical Reports Server (NTRS)
Gordon, Keith L.; Penner, Ronald K.; Bogert, Phil B.; Yost, W. T.; Siochi, Emilie J.
2011-01-01
Space exploration launch costs on the order of $10K per pound provide ample incentive to seek innovative, cost-effective ways to reduce structural mass without sacrificing safety and reliability. Damage-tolerant structural systems can provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show great promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to heal instantaneously following projectile penetration while retaining structural integrity. Poly(ethylene-co-methacrylic acid) (EMMA), also known as Surlyn is an ionomer-based copolymer that undergoes puncture reversal (self-healing) following high impact puncture at high velocities. However EMMA is not a structural engineering polymer, and will not meet the demands of aerospace applications requiring self-healing engineering materials. Current efforts to identify candidate self-healing polymer materials for structural engineering systems are reported. Rheology, high speed thermography, and high speed video for self-healing semi-crystalline and amorphous polymers will be reported.
Integrating reliability and maintainability into a concurrent engineering environment
NASA Astrophysics Data System (ADS)
Phillips, Clifton B.; Peterson, Robert R.
1993-02-01
This paper describes the results of a reliability and maintainability study conducted at the University of California, San Diego and supported by private industry. Private industry thought the study was important and provided the university access to innovative tools under cooperative agreement. The current capability of reliability and maintainability tools and how they fit into the design process is investigated. The evolution of design methodologies leading up to today's capability is reviewed for ways to enhance the design process while keeping cost under control. A method for measuring the consequences of reliability and maintainability policy for design configurations in an electronic environment is provided. The interaction of selected modern computer tool sets is described for reliability, maintainability, operations, and other elements of the engineering design process. These tools provide a robust system evaluation capability that brings life cycle performance improvement information to engineers and their managers before systems are deployed, and allow them to monitor and track performance while it is in operation.
Engineering Software Suite Validates System Design
NASA Technical Reports Server (NTRS)
2007-01-01
EDAptive Computing Inc.'s (ECI) EDAstar engineering software tool suite, created to capture and validate system design requirements, was significantly funded by NASA's Ames Research Center through five Small Business Innovation Research (SBIR) contracts. These programs specifically developed Syscape, used to capture executable specifications of multi-disciplinary systems, and VectorGen, used to automatically generate tests to ensure system implementations meet specifications. According to the company, the VectorGen tests considerably reduce the time and effort required to validate implementation of components, thereby ensuring their safe and reliable operation. EDASHIELD, an additional product offering from ECI, can be used to diagnose, predict, and correct errors after a system has been deployed using EDASTAR -created models. Initial commercialization for EDASTAR included application by a large prime contractor in a military setting, and customers include various branches within the U.S. Department of Defense, industry giants like the Lockheed Martin Corporation, Science Applications International Corporation, and Ball Aerospace and Technologies Corporation, as well as NASA's Langley and Glenn Research Centers
Sustainability-Related Publications Calendar Years 2015- 2016
The Center for the Advancement of Sustainability Innovations (CASI) was established by the U.S. Army Engineer Research and Development Center (ERDC...and around the globe. CASI teams strive to measure sustainability innovations against the Triple Bottom Line of mission, environment, and community...CASI focuses on cost savings, innovation , collaborative solutions, and continuous learning which directly link sustainability to Army policy and guidance
Women in Engineering: The Impact of the College Internship on Persistence into an Engineering Field
ERIC Educational Resources Information Center
Brush, Kimberly M.
2013-01-01
The development of a diverse engineering workforce, with a variety of skills and interests is essential to the future of American innovation. Historically, the engineering field has been grounded in a series of standards that often benefit men while creating barriers for women. Thus, strategies for overcoming barriers to women's successful…
ERIC Educational Resources Information Center
Law, Kris M. Y.; Breznik, Kristijan
2017-01-01
This study attempted to explore the impacts of attitudinal antecedents on students' entrepreneurial intention. Comparisons between students of engineering and non-engineering backgrounds and gender groups were made. Total of 998 students from universities in Hong Kong were surveyed, leading to a number of highlights in the study. First, it is…
Educational Innovation in the Design of an Online Nuclear Engineering Curriculum
ERIC Educational Resources Information Center
Hall, Simin; Jones, Brett D.; Amelink, Catherine; Hu, Deyu
2013-01-01
The purpose of this paper is to describe the development and implementation phases of online graduate nuclear engineering courses that are part of the Graduate Nuclear Engineering Certificate program at Virginia Tech. Virginia Tech restarted its nuclear engineering program in the Fall of 2007 with 60 students, and by 2009, the enrollment had grown…
Lockheed Martin approach to a Reusable Launch Vehicle (RLV)
NASA Astrophysics Data System (ADS)
Elvin, John D.
1996-03-01
This paper discusses Lockheed Martin's perspective on the development of a cost effective Reusable Launch Vehicle (RLV). Critical to a successful Single Stage To Orbit (SSTO) program are; an economic development plan sensitive to fiscal constraints; a vehicle concept satisfying present and future US launch needs; and an operations concept commensurate with a market driven program. Participation in the economic plan by government, industry, and the commercial sector is a key element of integrating our development plan and funding profile. The RLV baseline concept design, development evolution and several critical trade studies illustrate the superior performance achieved by our innovative approach to the problem of SSTO. Findings from initial aerodynamic and aerothermodynamic wind tunnel tests and trajectory analyses on this concept confirm the superior characteristics of the lifting body shape combined with the Linear Aerospike rocket engine. This Aero Ballistic Rocket (ABR) concept captures the essence of The Skunk Works approach to SSTO RLV technology integration and system engineering. These programmatic and concept development topics chronicle the key elements to implementing an innovative market driven next generation RLV.
Innovations in Science Education in Europe
NASA Astrophysics Data System (ADS)
Schuepbach, E.
2001-12-01
At many European Universities, the retention of skilled science graduates is hindered mainly by organisational structures. In particular, women students are often under-represented in sciences, and career progression is in general difficult. The linear system of knowhow transfer is inefficient from the pedagogical point of view and unsatisfactory for many students. Owing to fast changes in society and the working environment, a re-building of curricula in tertiary education (including University Education) has begun. Conceptual visions aim at influencing the investment in the largely untapped human capital and preparing the students for quick adaptation and enhanced flexiblity. Traditional methods of classroom teaching and knowhow transfer are increasingly complemented by New Learning Technologies and Mentoring. The EU Project INDECS (Potentials of Interdisciplinary Degree Courses in Engineering, Information Technology, Natural and Socio-Economic Sciences in a Changing Society) examines such pedagogical aspects in European degree courses combining engineering, IT, physical sciences and socio-economic sciences. Inclusion of specific IT and social science topics in modular form is examined. How innovation in University Teaching will meet the attractiveness to both students and employers in Europe is major focus of the study.
ARPA-E: Creating Practical, Affordable Natural Gas Storage Solutions
Boysen, Dane; Loukus, Josh; Hansen, Rita
2018-05-11
Allowing people to refuel natural gas vehicles at home could revolutionize the way we power our cars and trucks. Currently, our nation faces two challenges in enabling natural gas for transportation. The first is improving the way gas tanks are built for natural gas vehicles; they need to be conformable, allowing them to fit tightly into the vehicle. The second challenge is improving the way those tanks are refueled while maintaining cost-effectiveness, safety, and reliability. This video highlights two ARPA-E project teams with innovative solutions to these challenges. REL is addressing the first challenge by developing a low-cost, conformable natural gas tank with an interconnected core structure. Oregon State University and OnBoard Dynamics are addressing the second challenge by developing a self-refueling natural gas vehicle that integrates a compressor into its engine-using one of the engine's cylinders to compress gas eliminates the need for an expensive at-home refueling system. These two distinct technologies from ARPA-E's MOVE program illustrate how the Agency takes a multi-pronged approach to problem solving and innovation.
Implementing Sustainable Engineering Education through POPBL
NASA Astrophysics Data System (ADS)
Lioe, D. X.; Subhashini, G. K.
2013-06-01
This paper presents the implementation of sustainable engineering education to undergraduate student in Asia Pacific University of Technology and Innovation, Malaysia (APU) through Project-Oriented Problem Based Learning (POPBL). Sustainable engineering has already been the paramount term where it is no longer limited to environment, but also to the entire lifetime of the individual engineer. To inculcate every engineering individual with sustainability, education is the way to start off.
Faulkner, Alex; Kent, Julie; Geesink, Ingrid; FitzPatrick, David
2006-11-01
This paper examines the development of innovation in human tissue technologies as a form of regenerative medicine, firstly by applying 'pollution ideas' to contemporary trends in its risk regulation and to the processes of regulatory policy formation, and secondly by analysing the classificatory processes deployed in regulatory policy. The analysis draws upon data from fieldwork and documentary materials with a focus on the UK and EU (2002-05) and explores four arenas: governance and regulatory policy; commercialisation and the market; 'evidentiality' manifest in evidence-based policy; and publics' and technology users' values and ethics. The analysis suggests that there is a trend toward 'purification' across these arenas, both material and socio-political. A common process of partitioning is found in stakeholders' attempts to define a clear terrain, which the field of tissue-engineered technology might occupy. We conclude that pollution ideas and partitioning processes are useful in understanding regulatory ordering and innovation in the emerging technological zone of human tissue engineering.
Architectures for mission control at the Jet Propulsion Laboratory
NASA Technical Reports Server (NTRS)
Davidson, Reger A.; Murphy, Susan C.
1992-01-01
JPL is currently converting to an innovative control center data system which is a distributed, open architecture for telemetry delivery and which is enabling advancement towards improved automation and operability, as well as new technology, in mission operations at JPL. The scope of mission control within mission operations is examined. The concepts of a mission control center and how operability can affect the design of a control center data system are discussed. Examples of JPL's mission control architecture, data system development, and prototype efforts at the JPL Operations Engineering Laboratory are provided. Strategies for the future of mission control architectures are outlined.
Advanced helmet vision system (AHVS) integrated night vision helmet mounted display (HMD)
NASA Astrophysics Data System (ADS)
Ashcraft, Todd W.; Atac, Robert
2012-06-01
Gentex Corporation, under contract to Naval Air Systems Command (AIR 4.0T), designed the Advanced Helmet Vision System to provide aircrew with 24-hour, visor-projected binocular night vision and HMD capability. AHVS integrates numerous key technologies, including high brightness Light Emitting Diode (LED)-based digital light engines, advanced lightweight optical materials and manufacturing processes, and innovations in graphics processing software. This paper reviews the current status of miniaturization and integration with the latest two-part Gentex modular helmet, highlights the lessons learned from previous AHVS phases, and discusses plans for qualification and flight testing.
Optically transparent microwave screens based on engineered graphene layers.
Grande, M; Bianco, G V; Vincenti, M A; de Ceglia, D; Capezzuto, P; Petruzzelli, V; Scalora, M; Bruno, G; D'Orazio, A
2016-10-03
We propose an innovative approach for the realization of a microwave absorber fully transparent in the optical regime. This device is based on the Salisbury screen configuration, which consists of a lossless spacer, sandwiched between two graphene sheets whose sheet resistances are different and properly engineered. Experimental results show that it is possible to achieve near-perfect electromagnetic absorption in the microwave X-band. These findings are fully supported by an analytical approach based on an equivalent circuital model. Engineering and integration of graphene sheets could facilitate the realization of innovative microwave absorbers with additional electromagnetic and optical functionalities that could circumvent some of the major limitations of opaque microwave absorbers.
Personal Aircraft Point to the Future of Transportation
NASA Technical Reports Server (NTRS)
2010-01-01
NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, as well as a number of Agency innovations, have helped Duluth, Minnesota-based Cirrus Design Corporation become one of the world's leading manufacturers of general aviation aircraft. SBIRs with Langley Research Center provided the company with cost-effective composite airframe manufacturing methods, while crashworthiness testing at the Center increased the safety of its airplanes. Other NASA-derived technologies on Cirrus SR20 and SR22 aircraft include synthetic vision systems that help pilots navigate and full-plane parachutes that have saved the lives of more than 30 Cirrus pilots and passengers to date. Today, the SR22 is the world's top-selling Federal Aviation Administration (FAA)-certified single-engine airplane.
Match your innovation strategy to your innovation ecosystem.
Adner, Ron
2006-04-01
High-definition televisions should, by now, be a huge success. Philips, Sony, and Thompson invested billions of dollars to develop TV sets with astonishing picture quality. From a technology perspective, they've succeeded: Console manufacturers have been ready for the mass market since the early 1990s. Yet the category has been an unmitigated failure, not because of deficiencies, but because critical complements such as studio production equipment were not developed or adopted in time. Under-performing complements have left console producers in the position of offering a Ferrari in a world without gasoline or highways--an admirable engineering feat, but not one that creates value for customers. The HDTV story exemplifies the promise and peril of innovation ecosystems--the collaborative arrangements through which firms combine their individual offers into a coherent, customer-facing solution. When they work, innovation ecosystems allow companies to create value that no one firm could have created alone. The benefits of these systems are real. But for many organizations the attempt at ecosystem innovation has been a costly failure. This is because, along with new opportunities, innovation ecosystems also present a new set of risks that can brutally derail a firm's best efforts. Innovation ecosystems are characterized by three fundamental types of risk: initiative risks--the familiar uncertainties of managing a project; interdependence risks--the uncertainties of coordinating with complementary innovators; and integration risks--the uncertainties presented by the adoption process across the value chain. Firms that assess ecosystem risks holistically and systematically will be able to establish more realistic expectations, develop a more refined set of environmental contingencies, and arrive at a more robust innovation strategy. Collectively, these actions will lead to more effective implementation and more profitable innovation.
Evaluation of engineering properties for the use of leached brown coal ash in soil covers.
Mudd, Gavin M; Chakrabarti, Srijib; Kodikara, Jayantha
2007-01-31
The need to engineer cover systems for the successful rehabilitation or remediation of a wide variety of solid wastes is increasing. Some common applications include landfills, hazardous waste repositories, or mine tailings dams and waste rock/overburden dumps. The brown coal industry of the Latrobe Valley region of Victoria, Australia, produces significant quantities of coal ash and overburden annually. There are some site-specific acid mine drainage (AMD) issues associated with overburden material. This needs to be addressed both during the operational phase of a project and during rehabilitation. An innovative approach was taken to investigate the potential to use leached brown coal ash in engineered soil covers on this overburden dump. The basis for this is two-fold: first, the ash has favourable physical characteristics for use in cover systems (such as high storage capacity/porosity, moderately low permeability, and an ability to act as a capillary break layer generating minimal leachate or seepage); and second, the leachate from the ash is mildly alkaline (which can help to mitigate and reduce the risk of AMD). This paper will review the engineering issues involved in using leached brown coal ash in designing soil covers for potentially acid-forming overburden dumps. It presents the results of laboratory work investigating the technical feasibility of using leached brown coal ash in engineered solid waste cover systems.
NASA Astrophysics Data System (ADS)
Rangaswamy, T.; Vidhyashankar, S.; Madhusudan, M.; Bharath Shekar, H. R.
2015-04-01
The current trends of engineering follow the basic rule of innovation in mechanical engineering aspects. For the engineers to be efficient, problem solving aspects need to be viewed in a multidimensional perspective. One such methodology implemented is the fusion of technologies from other disciplines in order to solve the problems. This paper mainly deals with the application of Neural Networks in order to analyze the performance parameters of an XD3P Peugeot engine (used in Ministry of Defence). The basic propaganda of the work is divided into two main working stages. In the former stage, experimentation of an IC engine is carried out in order to obtain the primary data. In the latter stage the primary database formed is used to design and implement a predictive neural network in order to analyze the output parameters variation with respect to each other. A mathematical governing equation for the neural network is obtained. The obtained polynomial equation describes the characteristic behavior of the built neural network system. Finally, a comparative study of the results is carried out.
Temperature Sensing for Oil, Gas, and Structural Analysis
NASA Technical Reports Server (NTRS)
2006-01-01
In 1996, Systems and Processes Engineering Corporation (SPEC), of Austin, Texas, undertook a NASA Small Business Innovation Research (SBIR) contract with Langley Research Center to develop a compact and lightweight digital thermal sensing (DTS) system for monitoring the cryogenic tanks on the X-33 prototype aircraft. That technology, along with a processor developed by SPEC for Goddard Space Flight Center, was space-qualified and integrated into several NASA missions. SPEC formed an ancillary organization, SensorTran, Inc., to continue work developing the DTS technology for a variety of commercial and industrial applications.
Concurrent Engineering for Composites
1991-10-01
1990), 44. Cooper, R.G. and Kleinschmidt, E.J., Journal of Product Innovation Management . 3[2], (1986), 71.. Drucker, P.F., Harvard Business Review...Journal of Product Innovation Management 6(1], (1989), 43. Hollins, B. and Pugh, S., Successful Product Design, Buttcrworths, London, 1990. Johnson
Innovative Programs in Education for the Professions.
ERIC Educational Resources Information Center
Leslie, Larry L.
This document describes innovative programs in education for various professions including law, health services, social work, teaching, agriculture-related professions, architecture, business, and engineering. Programs of health services are further divided into those for physicians, physician assistants, nurses, and dentists. Information is…
Worldwide Topology of the Scientific Subject Profile: A Macro Approach in the Country Level
Moya-Anegón, Félix; Herrero-Solana, Víctor
2013-01-01
Background Models for the production of knowledge and systems of innovation and science are key elements for characterizing a country in view of its scientific thematic profile. With regard to scientific output and publication in journals of international visibility, the countries of the world may be classified into three main groups according to their thematic bias. Methodology/Principal Findings This paper aims to classify the countries of the world in several broad groups, described in terms of behavioural models that attempt to sum up the characteristics of their systems of knowledge and innovation. We perceive three clusters in our analysis: 1) the biomedical cluster, 2) the basic science & engineering cluster, and 3) the agricultural cluster. The countries are conceptually associated with the clusters via Principal Component Analysis (PCA), and a Multidimensional Scaling (MDS) map with all the countries is presented. Conclusions/Significance As we have seen, insofar as scientific output and publication in journals of international visibility is concerned, the countries of the world may be classified into three main groups according to their thematic profile. These groups can be described in terms of behavioral models that attempt to sum up the characteristics of their systems of knowledge and innovation. PMID:24349467
Closed-cycle hydrogen-fueled engine
NASA Technical Reports Server (NTRS)
Laumann, E. A.; Reynolds, R. K.
1977-01-01
Innovation avoids pollution by retaining combustion products. Potential uses include applicability to pollution-free powerplant using intermittent solar energy. Engine parts are fabricated from silicon carbide, silicon nitride, stainless steel, and other high-tensile strength materials.
NASA Astrophysics Data System (ADS)
Nail, K.
2015-06-01
In the period from 3 to 5 December 2014 the city of Kazan hosted the International Scientific Conference ''Innovative mechanical engineering technologies, equipment and materials - 2014'' (ISC ''vIMETEM - 2014''). The event was followed by the 14th International specialized exhibition ''Engineering. Metalworking. Kazan'' The main objective of the annual conference was for participants to discuss scientific and technical achievements in the design and manufacture of engineering products, the expansion of cooperation between scientific organizations and enterprises of machine-building complex and the definition of perspective ways of creation and development of new techniques, technologies and materials. The conference ''IMETEM'' was devoted to the 90th anniversary of Fayzrahman Salahovich Yunusov, who made a great contribution in the field of aviation technology. Kashapov Nail, D.Sc., professor (Kazan Federal University)
TRIZ theory in NEA photocathode preparation system
NASA Astrophysics Data System (ADS)
Qiao, Jianliang; Huang, Dayong; Li, Xiangjiang; Gao, Youtang
2016-09-01
The solutions to the engineering problems were provided according to the innovation principle based on the theory of TRIZ. The ultra high vacuum test and evaluation system for the preparation of negative electron affinity (NEA) photocathode has the characteristics of complex structure and powerful functions. Segmentation principle, advance function principle, curved surface principle, dynamic characteristics principle and nested principle adopted by the design of ultra high vacuum test and evaluation system for cathode preparation were analyzed. The applications of the physical contradiction and the substance-field analysis method of the theory of TRIZ in the cathode preparation ultra high vacuum test and evaluation system were discussed.
75 FR 73083 - Sunshine Act Meeting; Open Commission Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-29
... Street, SW., Washington, DC. Item No. Bureau Subject 1 OFFICE OF ENGINEERING AND TITLE: Innovation in the... sharing and generating increased value within the VHF band. 2 OFFICE OF ENGINEERING AND TITLE: Promoting... Regulations--Part 2 Administered by the Office of Engineering and Technology (OET) (ET Docket No. 06-105...
Integrating Innovation Skills in an Introductory Engineering Design-Build Course
ERIC Educational Resources Information Center
Liebenberg, Leon; Mathews, Edward Henry
2012-01-01
Modern engineering curricula have started to emphasize design, mostly in the form of design-build experiences. Apart from instilling important problem-solving skills, such pedagogical frameworks address the critical social skill aspects of engineering education due to their team-based, project-based nature. However, it is required of the…
Enterprise 3.0 in Engineering Education
ERIC Educational Resources Information Center
Ahrens, Andreas; Zascerinska, Jelena
2011-01-01
Enterprise 3.0 offers potential solutions for the quality, maintenance and sustainable development of services. The synergy between Enterprise 3.0 and engineering education advances the development of innovative products, processes and services in the European economy. Aim of the research is to analyze student engineers' use of Enterprise 3.0…
USDA-ARS?s Scientific Manuscript database
An innovative synthesis was developed to produce engineered biochar from magnesium (Mg) enriched tomato tissues through slow pyrolysis in a N2 environment. The resulting Mg-biochar composites showed excellent sorption ability to phosphate in aqueous solutions. The engineered biochar contained nanosc...
ERIC Educational Resources Information Center
Fisher, Dara R.; Bagiati, Aikaterini; Sarma, Sanjay
2017-01-01
As nations have sought to keep pace with rapid technological innovation, governments have renewed their focus on science, technology, engineering, and mathematics (STEM) education, with emphasis on developing both technical and non-technical skills in STEM students. This article examines which engineering-relevant skills may be developed by…
Leading Practice in Space Education: Successful Approaches by Specialist Schools
ERIC Educational Resources Information Center
Schools Network, 2010
2010-01-01
The aim of the Government's Science, Technology, Engineering and Mathematics (STEM) programme is to ensure Britain's future success as a major centre for science, engineering and innovation. Specialist science, technology, engineering and maths & computing colleges help to drive this programme by becoming centres of excellence in STEM…
Why Research-Informed Teaching in Engineering Education? A Review of the Evidence
ERIC Educational Resources Information Center
Bubou, Gordon Monday; Offor, Ibebietei Temple; Bappa, Abubakar Saddiq
2017-01-01
Challenges of today's engineering education (EE) are emergent, necessitating calls for its reformation to empower future engineers function optimally as innovative leaders, in both local and international contexts. These challenges: keeping pace with technological dynamism; high attrition; and most importantly, quality teaching/learning require…
Robert Henry Thurston: Professionalism and Engineering Education
ERIC Educational Resources Information Center
Nienkamp, Paul
2016-01-01
Robert Henry Thurston is presented in this article. He provides one the most significant examples of professionalizing engineering through innovative education and promoting scientific education practices in the late nineteenth century. The son of a draftsmen and steam engine mechanic, Thurston spent his early years in Providence, Rhode Island.…
Career Pathways of Science, Engineering and Technology Research Postgraduates
ERIC Educational Resources Information Center
Giles, Marnie; Ski, Chantal; Vrdoljak, Davorin
2009-01-01
Suitably qualified scientists and engineers are essential for research and development, innovation and, in turn, the growth of the economy. Science, engineering and technology skills are therefore necessary for Australia to remain competitive in a global market. This article reports findings from a nationwide study investigating the career…
Enhanced and Conventional Project-Based Learning in an Engineering Design Module
ERIC Educational Resources Information Center
Chua, K. J.; Yang, W. M.; Leo, H. L.
2014-01-01
Engineering education focuses chiefly on students' ability to solve problems. While most engineering students are proficient in solving paper questions, they may not be proficient at providing optimal solutions to pragmatic project-based problems that require systematic learning strategy, innovation, problem-solving, and execution. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washiya, Tadahiro; Komaki, Jun; Funasaka, Hideyuki
Japan Atomic Energy Agency (JAEA) has been developing the new aqueous reprocessing system named 'NEXT' (New Extraction system for TRU recovery)1-2, which provides many advantages as waste volume reduction, cost savings by advanced components and simplification of process operation. Advanced head-end systems in the 'NEXT' process consist of fuel disassembly system, fuel shearing system and continuous dissolver system. We developed reliable fuel disassembly system with innovative procedure, and short-length shearing system and continuous dissolver system can be provided highly concentrated dissolution to adapt to the uranium crystallization process. We have carried out experimental studies, and fabrication of engineering-scale test devicesmore » to confirm the systems performance. In this paper, research and development of advanced head-end systems are described. (authors)« less
ERIC Educational Resources Information Center
Spence, Paul; Liu, Gi-Zen
2013-01-01
The global high-tech industry is characterized by extreme competitiveness, innovation, and widespread use of English. Consequently, Taiwanese high-tech companies require engineers that are talented in both their engineering and English abilities. In response to the lack of knowledge regarding the English skills needed by engineers in Taiwan's…
SWCC Prediction: Seep/W Add-In Functions
2017-06-01
The U.S. Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops...innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department...Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199 Final report Approved for public release; distribution is