Associate Degree Curriculum for Engineering Technology.
ERIC Educational Resources Information Center
Campbell, Clifton P.
Presented is a two-year associate degree curriculum for Engineering Technology. Specializations are provided in civil, electronics, and mechanical technology. The civil engineering technology specialization facilitates three major areas of study, and mechanical technology includes design and production options. Each curriculum was designed to…
Electromechanical Engineering Technology Curriculum.
ERIC Educational Resources Information Center
Georgia State Univ., Atlanta. Dept. of Vocational and Career Development.
This guide offers information and procedures necessary to train electromechanical engineering technicians. Discussed first are the rationale and objectives of the curriculum. The occupational field of electromechanical engineering technology is described. Next, a curriculum model is set forth that contains information on the standard…
Mechanical Engineering Technology Curriculum.
ERIC Educational Resources Information Center
Georgia State Univ., Atlanta. Dept. of Vocational and Career Development.
This guide offers information and procedures necessary to train mechanical engineering technicians. Discussed first are the rationale and objectives of the curriculum. The occupational field of mechanical engineering technology is described. Next, a curriculum model is set forth that contains information on the standard mechanical engineering…
Civil Engineering Technology Program Guide.
ERIC Educational Resources Information Center
Georgia Univ., Athens. Dept. of Vocational Education.
This program guide presents civil engineering technology curriculum for technical institutes in Georgia. The general information section contains the following: purpose and objectives; program description, including admissions, typical job titles, and accreditation and certification; and curriculum model, including standard curriculum sequence and…
ERIC Educational Resources Information Center
Ballinger, Jack T.; Wolf, Lawrence J.
This study guide is part of an interdisciplinary program of studies entitled the Science and Engineering Technician (SET) Curriculum. This curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic…
Massachusetts Science and Technology Engineering Curriculum Framework
ERIC Educational Resources Information Center
Massachusetts Department of Education, 2006
2006-01-01
This 2006 "Massachusetts Science and Technology/Engineering Curriculum Framework" provides a guide for teachers and curriculum coordinators regarding specific content to be taught from PreK through high school. Following this "Organization" chapter, the "Framework" contains the following sections: (1) Philosophy and…
ERIC Educational Resources Information Center
Lindberg, Andrew; And Others
This study guide is part of a curriculum entitled Science and Engineering Technician (SET) Curriculum, a program of studies which integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The purpose of this national curriculum development project was to provide a framework for…
ERIC Educational Resources Information Center
Shields, C. J.
2007-01-01
Technology education (TE) has come to encompass many facets of curriculum, ranging from industrial arts (IA) to integrating problem-solving and engineering concepts into the curriculum. For technology educators who have chosen the pre-engineering problem-solving route there is a pre-engineering curriculum called Project Lead The Way (PLTW), that…
ERIC Educational Resources Information Center
Dixon, Peggy; And Others
This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The objective of this curriculum development project is to train technicians in the use of…
ERIC Educational Resources Information Center
Lomask, Michal; Crismond, David; Hacker, Michael
2018-01-01
This paper reports on the use of teaching portfolios to assist in curriculum revision and the exploration of instructional practices used by middle school technology and engineering education teachers. Two new middle school technology and engineering education units were developed through the Engineering for All (EfA) project. One EfA unit focused…
Mathematics in Technology & Engineering Education: Judgments of Grade-Level Appropriateness
ERIC Educational Resources Information Center
Flowers, Jim; Rose, Mary Annette
2014-01-01
Technology and engineering (TE) educators have long championed the infusion of mathematics into technology curriculum, especially to enhance TE learning goals and demonstrate "connections between technology and other fields of study." There is a need for curriculum development and professional development initiatives to purposefully…
A Bachelor of Engineering Technology Curriculum in Water Quality Management: Course Guides.
ERIC Educational Resources Information Center
Cole, Charles A.; And Others
Contained are course guides for a Bachelor of Engineering Technology (BET) Curriculum in Water Quality Management. Detailed course content, as well as instructional resources, are included in this volume. Each guide is written in behavioral terms using the instructional objective format. A suggested curriculum is shown with methods of…
ERIC Educational Resources Information Center
Lindberg, Andrew; Bay, Robert
This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic instruments and their…
ERIC Educational Resources Information Center
McNeill, Perry R.; And Others
Described is a project initiated to evaluate and disseminate the Electrical Power Engineering Technology Curriculum developed at Oklahoma State University. The objective of the evaluation phase, to have the original model curriculum evaluated by both present and potential employers, was accomplished in a two-day workshop with participation of…
ERIC Educational Resources Information Center
Tough, David T.
2009-01-01
The purpose of this online study was to create a ranking of essential core competencies and technologies required by AET (audio engineering technology) programs 10 years in the future. The study was designed to facilitate curriculum development and improvement in the rapidly expanding number of small to medium sized audio engineering technology…
NASA Astrophysics Data System (ADS)
Killingsworth, John
Low degree completion in technical and engineering degrees is a growing concern for policymakers and educators in the United States. This study was an examination of the behaviors of adolescents specific to career decisions related to technology and engineering. The central research question for this study was: do rural, Midwestern high school technical and engineering curricula serve to engage students sufficiently to encourage them to persist through high school while sustaining their interests in technology and engineering careers? Engaging students in technology and engineering fields is the challenge for educators throughout the country and the Midwest. Rural schools have the additional challenge of meeting those issues because of resource limitations. Students in three Midwestern schools were surveyed to determine the level of interest in technology and engineering. The generalized likelihood ratio test was used to overcome concerns for small sample sizes. Accounting for dependent variables, multiple independent variables are examined using descriptive statistics to determine which have greater influence on career decisions, specifically those related to technology and engineering. A typical science curriculum is defined for rural Midwestern high schools. This study concludes that such curriculum achieves the goal of maintaining or increasing student interest and engagement in STEM careers. Furthermore, those schools that incorporate contextual and experiential learning activities into the curriculum demonstrate increased results in influencing student career choices toward technology and engineering careers. Implications for parents, educators, and industry professionals are discussed.
Engineering Curriculum in the Preschool Classroom: The Teacher's Experience
ERIC Educational Resources Information Center
Bagiati, Aikaterini; Evangelou, Demetra
2015-01-01
The study presented here focuses on the development of an early education Science, Technology, Engineering and Mathematics (STEM) curriculum with emphasis on engineering. This article presents the teacher's experience as she undertook the task of familiarising herself with the new content and using the curriculum in a university based…
Engineering Technology Education: Bibliography 1989.
ERIC Educational Resources Information Center
Dyrud, Marilyn A., Comp.
1990-01-01
Over 200 references divided into 24 different areas are presented. Topics include administration, aeronautics, architecture, biomedical technology, CAD/CAM, civil engineering, computers, curriculum, electrical/electronics engineering, industrial engineering, industry and employment, instructional technology, laboratories, lasers, liberal studies,…
Marginalized Student Access to Technology Education
ERIC Educational Resources Information Center
Kurtcu, Wanda M.
2017-01-01
The purpose of this paper is to investigate how a teacher can disrupt an established curriculum that continues the cycle of inequity of access to science, technology, engineering, and math (STEM) curriculum by students in alternative education. For this paper, I will focus on the technology components of the STEM curriculum. Technology in the…
ERIC Educational Resources Information Center
Craig, Jerry; Stapleton, Jerry
This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum was developed for the purpose of training technicians in the use of electronic instruments and their applications. It integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology,…
The History of Chemical Engineering and Pedagogy: The Paradox of Tradition and Innovation
ERIC Educational Resources Information Center
Wankat, Phillip C.
2009-01-01
The Massachusetts Institute of Technology started the first US chemical engineering program six score years ago. Since that time, the chemical engineering curriculum has evolved. The latest versions of the curriculum are attempts to broaden chemical engineering to add product engineering, biology and nanotechnology to the traditional process…
ERIC Educational Resources Information Center
Li, Jing; Zhang, Yu; Tsang, Mun; Li, Manli
2015-01-01
With the increasing attention to STEM (Science, Technology, Engineering, and Math), hands-on Curriculum Practical Training (CPT) has been expanding rapidly worldwide as a requirement of the undergraduate engineering education. In China, a typical CPT for undergraduate engineering students requires several weeks of hands-on training in the…
American Studies and the Technical Curriculum: Man and Technology.
ERIC Educational Resources Information Center
St. Germain, Amos
An approach to teaching American studies at a Southern institute of engineering technology is described. The curriculum of this school is technically oriented to the professional engineer. Elective humanities courses must attract their own market and justify their places to both the students and the faculty. Two courses entitled "Man and…
Introducing Emerging Technologies in the Curriculum through a Multidisciplinary Research Experience.
ERIC Educational Resources Information Center
Newell, James A.; Farrell, Stephanie H.; Hesketh, Robert P.; Slater, C. Stewart
2001-01-01
Describes the multidisciplinary teaching approach implemented at Rowan University's engineering department. Explains how emerging technologies are integrated into the curriculum. (Contains 19 references.) (YDS)
A study of female students enrollment in engineering technology stem programs
NASA Astrophysics Data System (ADS)
Habib, Ihab S.
The problem studied in this research project was the enrollment of female STEM Engineering Technology students and the impact of professional mentoring and financial incentives on their enrollment, retention, and completion of engineering curriculum. Several tasks were presented in researchers' professional position; to recruit more students to the program, especially female as a minority in the Engineering Technology Department, make appropriate changes to the curriculum, and make improvements in mentoring students to improve rates of enrollment, retention, and completion of the program. A survey was created to study the effects of Science Engineering Technology and Mathematics for Engineering Technology (STEM ENGT) students' perceptions, mentorship, and scholarships availability, enrollment, retention, and program completion by enrolled student gender. Other studies have discovered that more scholarship and faculty mentorship support provided for female students resulted in improved diversity within engineering curricula student bodies (Sorcinelli, 2007).
Developing a Pre-Engineering Curriculum for 3D Printing Skills for High School Technology Education
ERIC Educational Resources Information Center
Chien, Yu-Hung
2017-01-01
This study developed an integrated-STEM CO[subscript 2] dragster design course using 3D printing technology. After developing a pre-engineering curriculum, we conducted a teaching experiment to assess students' differences in creativity, race forecast accuracy, and learning performance. We compared student performance in both 3D printing and…
ERIC Educational Resources Information Center
Chalmers, Christina; Carter, Merilyn; Cooper, Tom; Nason, Rod
2017-01-01
Although education experts are increasingly advocating the incorporation of integrated Science, Technology, Engineering, and Mathematics (STEM) curriculum units to address limitations in much current STEM teaching and learning, a review of the literature reveals that more often than not such curriculum units are not mediating the construction of…
A Contemporary Preservice Technology Education Program
ERIC Educational Resources Information Center
Flanigan, Rod; Becker, Kurt; Stewardson, Gary
2012-01-01
In order to teach engineering education, today's engineering and technology education teachers must be equipped with lesson plans to teach engineering design, among other principles, to the 6th-12th grade levels. At Utah State University (USU), curriculum has been developed for preservice engineering and technology education teachers that…
ERIC Educational Resources Information Center
Shields, F. K.; And Others
In order to meet the educational needs for a separate curriculum at the secondary level for technological training related to pollution and corrosion measurement and control, a 3-year, 1080-hour vocational program was developed for use in an area vocational high school. As one of four programs in the technology careers area, this curriculum design…
ERIC Educational Resources Information Center
Kerr, Janel M.
2013-01-01
The purpose of this study was to explore the role of mental models in Idaho's Engineering and Technology Education teachers' in decision making when faced with major curriculum changes. Senge (1990) defined mental models as, "deeply ingrained assumptions, generalizations, or even pictures or images that influence how we understand the world…
ERIC Educational Resources Information Center
Rennie, Leonie, Ed.; Venville, Grady, Ed.; Wallace, John, Ed.
2012-01-01
How can curriculum integration of school science with the related disciplines of technology, engineering and mathematics (STEM) enhance students' skills and their ability to link what they learn in school with the world outside the classroom? Featuring actual case studies of teachers' attempts to integrate their curriculum, their reasons for doing…
ERIC Educational Resources Information Center
Kelley, Todd; Brenner, Daniel C.; Pieper, Jon T.
2010-01-01
A comparative study was conducted to compare two approaches to engineering design curriculum between different schools (inter-school) and between two curricular approaches, "Project Lead the Way" (PLTW) and "Engineering Projects in Community Service" (EPIC High) (inter-curricular). The researchers collected curriculum…
Sense and Sensibility: The Case for the Nationwide Inclusion of Engineering in the K-12 Curriculum
NASA Technical Reports Server (NTRS)
Lindberg, Robert E.; Pinelli, Thomas E.; Batterson, James G.
2008-01-01
The competitive status of the United States is inextricably linked to innovation just as innovation is inseparable from science, technology, engineering, and mathematics. To stay competitive in innovation requires that the United States produce a 21st century workforce complete with requisite education, training, skills, and motivation. If we accept a priori that science, technology, engineering, and mathematics education are crucial to competitiveness and innovation and that, in terms of innovation, mathematics, science, and engineering are interdependent, why are mathematics and science uniformly ubiquitous in the K-12 curriculum while engineering is conspicuously absent? We are passionate in our belief that the uniform addition of engineering to the K-12 curriculum will help ensure that the nation has "the right" 21st Century workforce. Furthermore, we believe that a nationwide effort, led by a coalition of engineering academics, practitioners, and societies is required to turn this goal into reality. However, accomplishing this goal necessitates, as we are reminded by the title of Jane Austen's timeless novel, "Sense and Sensibility", a workable solution that seeks the "middle ground" between passion and reason. We begin our paper by making two essential points: Engineers are not scientists. Engineering exists separate from science, has its own specialized knowledge community apart from science, and it is largely responsible for many of the most significant advancements and improvements in the quality of our life. Our workable solution requires that K-12 education, nationwide, accommodate the inclusion of engineering as a stand alone curriculum and we offer three reasons to support our position: (1) workforce development, (2) stimulating interest in STEM (science, technology, engineering, and mathematics) courses and careers, and (3) creating a technologically literate society. We conclude with some thoughts on how this important goal can be accomplished.
Diesel Technology: Engines. [Teacher and Student Editions.
ERIC Educational Resources Information Center
Barbieri, Dave; Miller, Roger; Kellum, Mary
Competency-based teacher and student materials on diesel engines are provided for a diesel technology curriculum. Seventeen units of instruction cover the following topics: introduction to engine principles and procedures; engine systems and components; fuel systems; engine diagnosis and maintenance. The materials are based on the…
A Study of Mathematics Infusion in Middle School Technology Education Classes
ERIC Educational Resources Information Center
Burghardt, M. David; Hecht, Deborah; Russo, Maria; Lauckhardt, James; Hacker, Michael
2010-01-01
The present study examined the impact of introducing a mathematics infused engineering/technology education (ETE) curriculum on students' mathematics content knowledge and attitudes toward mathematics. The purpose of the present study was to: (a) compare the effects of a mathematics infused ETE curriculum and a control curriculum on student…
ERIC Educational Resources Information Center
Mosley, Pauline Helen; Liu, Yun; Hargrove, S. Keith; Doswell, Jayfus T.
2010-01-01
This paper gives an overview of a new pre-engineering program--Robotics Technician Curriculum--that uses robots to solicit underrepresented students pursuing careers in science, technology, engineering, and mathematics (STEM). The curriculum uses a project-based learning environment, which consists of part lecture and part laboratory. This program…
TechXcite: Discover Engineering--A New STEM Curriculum
ERIC Educational Resources Information Center
Sallee, Jeff; Schmitt-McQuitty, Lynn; Swint, Sherry; Meek, Amanda; Ybarra, Gary; Dalton, Rodger
2015-01-01
TechXcite is an engineering-focused, discovery-based after-school science, technology, engineering, and math (STEM) program. The free curriculum is downloadable from http://techxcite.pratt.duke.edu/ and is comprised of eight Modules, each with four to five 45-minute activities that exercise the science and math learned in school by using…
Engineering Technology Education: Bibliography, 1988.
ERIC Educational Resources Information Center
Dyrud, Marilyn A.
1989-01-01
Lists articles and books related to engineering technology education published in 1988. Items are grouped administration, aeronautical, architectural, CAD/CAM, civil, computers, curriculum, electrical/electronics, industrial, industry/government/employers, instructional technology, laboratories, lasers, liberal studies, manufacturing, mechanical,…
Integrating Engineering Design into Technology Education: Georgia's Perspective
ERIC Educational Resources Information Center
Denson, Cameron D.; Kelley, Todd R.; Wicklein, Robert C.
2009-01-01
This descriptive research study reported on Georgia's secondary level (grades 6-12) technology education programs capability to incorporate engineering concepts and/or engineering design into their curriculum. Participants were middle school and high school teachers in the state of Georgia who currently teach technology education. Participants…
A Curriculum Guide for Power Technology, Grades 9-12.
ERIC Educational Resources Information Center
Callahan, J. Thomas
Designed to help the high school industrial arts instructor in teaching power technology, this curriculum guide concentrates on seven subject areas: exploratory power technology, electricity, electronics, small gas engines, automotive repair, transportation, and alternate energy sources. The general course objectives are identified as enabling the…
Engineering Technology Education Bibliography, 1990.
ERIC Educational Resources Information Center
Dyrud, Marilyn A.
1991-01-01
Lists over 340 materials published in 1990 related to engineering technology education and grouped under the following headings: administration; architectural; computer-assisted design/management (CAD/CAM); civil; computers; curriculum; electrical/electronics; industrial; industry/government/employers; instructional technology; laboratories;…
ERIC Educational Resources Information Center
Merrill, Chris; Custer, Rodney L.; Daugherty, Jenny; Westrick, Martin; Zeng, Yong
2007-01-01
Within primary and secondary school technology education, engineering has been proposed as an avenue to bring about technological literacy. Different initiatives such as curriculum development projects (i.e., Project ProBase and Project Lead The Way) and National Science Foundation funded projects such as the National Center for Engineering and…
ERIC Educational Resources Information Center
Hacker, Michael; Barak, Moshe
2017-01-01
Engineering and technology education (ETE) are receiving increased attention as components of STEM education. Curriculum development should be informed by perceptions of academic engineering educators (AEEs) and classroom technology teachers (CTTs) as both groups educate students to succeed in the technological world. The purpose of this study was…
Engineering Technology Programs. Preliminary Curriculum Planning Guide.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
Developed as a resource to assist in a major revision underway in Georgia area technical schools to change curricula for preparing engineering technicians, this preliminary program-planning guide describes curriculum structures for specialized programs in three major areas--electronics, electromechanics, and mechanics. The handbook, which is…
ERIC Educational Resources Information Center
Kelley, Todd R.; Wicklein, Robert C.
2009-01-01
Based on the efforts to infuse engineering practices within the technology education curriculum it is appropriate to now investigate how technology education teachers are assessing engineering design activities within their classrooms. This descriptive study drew a full sample of high school technology teachers from the current International…
1986 Bibliography of Information on Engineering Technology Education.
ERIC Educational Resources Information Center
Gourley, Frank A., Jr.
1987-01-01
Lists articles, papers, and reports on engineering technology education that were published in 1986. Categorizes the citations under headings of administration, computers, curriculum, electronics, industry/government/employers, instructional technology, laboratories, liberal studies, manufacturing, mechanical, minorities, research, robotics, and…
Business Technology Education in the Early 21st Century: The Ongoing Quest for Relevance
ERIC Educational Resources Information Center
Andriole, Stephen J.
2006-01-01
The field of information technology is changing and those responsible for educating the next generation of technology professionals have responded with a new computing curriculum, which identifies five distinct technology majors: computer engineering, computer science, software engineering, information systems and information technology.…
Hierarchy curriculum for practical skills training in optics and photonics
NASA Astrophysics Data System (ADS)
Zheng, XiaoDong; Wang, XiaoPing; Liu, Xu; Liu, XiangDong; Lin, YuanFang
2017-08-01
The employers in optical engineering fields hope to recruit students who are capable of applying optical principles to solve engineering problems and have strong laboratory skills. In Zhejiang University, a hierarchy curriculum for practical skill training has been constructed to satisfy this demand. This curriculum includes "Introductive practicum" for freshmen, "Opto-mechanical systems design", "Engineering training", "Electronic system design", "Student research training program (SRTP)", "National University Students' Optical-Science-Technology Competition game", and "Offcampus externship". Without cutting optical theory credit hours, this hierarchy curriculum provides a step-by-step solution to enhance students' practical skills. By following such a hierarchy curriculum, students can smoothly advance from a novice to a qualified professional expert in optics. They will be able to utilize optical engineering tools to design, build, analyze, improve, and test systems, and will be able to work effectively in teams to solve problems in engineering and design.
Adaptive Core Requirements for an Ever Changing Electrical Engineering Curriculum.
ERIC Educational Resources Information Center
Daneshvar, K.; Tranjan, F. M.
Although in the liberal arts the main concern is comprehensive education, it is generally accepted that an engineering curriculum, while providing the fundamentals, can change continuously to accommodate technological, industrial, and economical interests. Meanwhile, in recent years many new forms of learning have been proposed that are quite…
Updating the biomedical engineering curriculum: Inclusion of Health Technology Assessment subjects.
Martinez Licona, Fabiola; Urbina, Edmundo Gerardo; Azpiroz-Leehan, Joaquin
2010-01-01
This paper describes the work being carried out at Metropolitan Autonomous University (UAM) in Mexico City with regard to the continuous evaluation and updating of the Biomedical Engineering (BME) curriculum. In particular the courses regarded as part of the BME basic branch are reduced and new sets of elective subjects are proposed in order to bring closer the research work at UAM with the subjects in the BME curriculum. Special emphasis is placed on subjects dealing with Health Technology Assessment (HTA) and Health economics, as this branch of the BME discipline is quite promising in Mexico, but there are very few professionals in the field with adequate qualifications.
Structural Engineering. Technology Learning Activity. Teacher Edition. Technology Education Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This curriculum guide provides technology learning activities designed to prepare students in grades 6-10 to work in the world of the future. The 8-day course provides exploratory, hands-on learning activities and information that can enhance the education of students of all types in an integrated curriculum that provides practical applications of…
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the course sequences in the civil technology programs cluster. Presented in the introductory section are a description of the program and suggested course sequence. Section I lists baseline competencies, and section…
Bruck, Hugh A; Gershon, Alan L; Golden, Ira; Gupta, Satyandra K; Gyger, Lawrence S; Magrab, Edward B; Spranklin, Brent W
2007-12-01
The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include the development of a bio-inspired design repository, a concurrent fabrication and assembly manufacturing technology, a series of undergraduate curriculum modules and a new senior elective in the bio-inspired robotics area. This paper first presents an overview of the two new design and manufacturing technologies that enable students to realize bio-inspired products, and describes how these technologies are integrated into the undergraduate educational experience. Then, the undergraduate curriculum modules are presented, which provide students with the fundamental design and manufacturing principles needed to support bio-inspired product and device development. Finally, an elective bio-inspired robotics project course is present, which provides undergraduates with the opportunity to demonstrate the application of the knowledge acquired through the curriculum modules in their senior year using the new design and manufacturing technologies.
ERIC Educational Resources Information Center
Bauch, Klaus Dieter
The study was designed to investigate the effects of Numerical Control Technology and Computer-Aided Manufacturing (NC/CAM) in American industry on industrial education and engineering technology education. The specific purpose was to identify a data base and rationale for curriculum development in NC/CAM through a comparison of views by…
Making Sense of Curriculum--The Transition into Science and Engineering University Programmes
ERIC Educational Resources Information Center
Ulriksen, Lars; Holmegaard, Henriette T.; Madsen, Lene Møller
2017-01-01
Research on students' transition, retention and experiences in science, technology, engineering and mathematics (STEM) has increasingly focused on identity formation and on students' integration in the study programmes. However, studies focusing on the role of the curriculum in this process at the level of higher education are scarce. The present…
Engineering Concepts Curriculum Project Newsletter, Volume 4, Number 2. The Man Made World.
ERIC Educational Resources Information Center
Liao, T.
Contained in this newsletter are several articles pertaining to activities of the Engineering Concepts Curriculum Project at the Polytechnic Institute of Brooklyn, New York. Two are of major concern. One deals with the development of a laboratory science course for senior high school students to improve technological literacy and entitled…
ERIC Educational Resources Information Center
Teo, Tang Wee; Osborne, Margery
2012-01-01
In this paper, we present a microanalysis of a specialized STEM (science, technology, engineering, and mathematics) high school teacher's experience of self-initiated science inquiry curriculum reform. We examine the meanings of these two constructs: "inquiry curriculum" and "curriculum change" through the process lens of interactions, actions,…
How an Integrative STEM Curriculum Can Benefit Students in Engineering Design Practices
ERIC Educational Resources Information Center
Fan, Szu-Chun; Yu, Kuang-Chao
2017-01-01
STEM-oriented engineering design practice has become recognized increasingly by technology education professionals in Taiwan. This study sought to examine the effectiveness of the application of an integrative STEM approach within engineering design practices in high school technology education in Taiwan. A quasi-experimental study was conducted…
The Empire Strikes Back--Putting the "E" into STEM
ERIC Educational Resources Information Center
Loughran, Melissa
2017-01-01
The challenge schools face when creating a science, technology, engineering and mathematics (STEM) program is how to incorporate the "E" into the curriculum. The author's school was meeting the National (U. K.) Curriculum Science, Technology and Maths learning objectives, so how could they justify adding another subject into the mix…
Integration of e-Management, e-Development and e-Learning Technologies for Blended Course Delivery
ERIC Educational Resources Information Center
Johnson, Lynn E.; Tang, Michael
2005-01-01
This paper describes and assesses a pre-engineering curriculum development project called Foundations of Engineering, Science and Technology (FEST). FEST integrates web-based technologies into an inter-connected system to enable delivery of a blended program at multiple institutions. Tools and systems described include 1) technologies to deliver…
ERIC Educational Resources Information Center
Schon, James F.
In order to identify the distinguishing characteristics of technical education programs in engineering and industrial technology currently offered by post-secondary institutions in California, a body of data was collected by visiting 25 community colleges, 5 state universities, and 8 industrial firms; by a questionnaire sampling of 72 California…
Adapting Wood Technology to Teach Design and Engineering
ERIC Educational Resources Information Center
Rummel, Robert A.
2012-01-01
Technology education has changed dramatically over the last few years. The transition of industrial arts to technology education and more recently the pursuit of design and engineering has resulted in technology education teachers often needing to change their curriculum and course activities to meet the demands of a rapidly changing profession.…
ERIC Educational Resources Information Center
Buelin, Jennifer; Clark, Aaron C.; Ernst, Jeremy V.
2016-01-01
In this study, the 14 Grand Challenges for Engineering in the 21st Century identified by the National Academy of Engineering were examined by a panel of experts in an effort to identify prospective curricular integration opportunities in the field of technology and engineering education. The study utilized a three-round modified Delphi methodology…
Incorporating Disciplinary Literacy in Technology and Engineering Education
ERIC Educational Resources Information Center
Loveland, Thomas
2014-01-01
This article presents an overview of how to relate reading to a content area, specifically technology education. The author notes that, with the new focus on Common Core English Language Arts State Standards and state-developed standards, technology and engineering teachers should include disciplinary literacy in their curriculum. Academic…
ERIC Educational Resources Information Center
Ballinger, Jack T.; Wolf, Lawrence J.
This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed to provide a framework for training technicians in the use of electronic instruments and their applications. This interdisciplinary course of study integrates elements from the disciplines of chemistry, physics, mathematics,…
ERIC Educational Resources Information Center
Mowery, Donald R.
This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed for the purpose of training technicians in the use of electronic instruments and their applications. The program integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and…
ERIC Educational Resources Information Center
Marulcu, Ismail; Barnett, Michael
2016-01-01
Background: Elementary Science Education is struggling with multiple challenges. National and State test results confirm the need for deeper understanding in elementary science education. Moreover, national policy statements and researchers call for increased exposure to engineering and technology in elementary science education. The basic…
Engineering Encounters: Sailing into the Digital Era
ERIC Educational Resources Information Center
Bellavance, Janet; Truchon, Amy
2015-01-01
This article describes how Janet Bellavance teamed with technology integration specialist, Amy Truchon to incorporate iPads into her Engineering is Elementary (EiE) unit--a curriculum that engages elementary students in engineering simple technologies. In an EiE unit, students design, test, and then, based on test results, improve their design,…
Teacher Challenges to Implement Engineering Design in Secondary Technology Education
ERIC Educational Resources Information Center
Kelley, Todd R.; Wicklein, Robert C.
2009-01-01
This descriptive study examined the current status of technology education teacher practices with respect to engineering design. This article is the third article in a three-part series presenting the results of this study. The first article in the series titled "Examination of Engineering Design Curriculum Content" highlighted the research…
Abdulhay, Enas; Khnouf, Ruba; Haddad, Shireen; Al-Bashir, Areen
2017-08-04
Improvement of medical content in Biomedical Engineering curricula based on a qualitative assessment process or on a comparison with another high-standard program has been approached by a number of studies. However, the quantitative assessment tools have not been emphasized. The quantitative assessment tools can be more accurate and robust in cases of challenging multidisciplinary fields like that of Biomedical Engineering which includes biomedicine elements mixed with technology aspects. The major limitations of the previous research are the high dependence on surveys or pure qualitative approaches as well as the absence of strong focus on medical outcomes without implicit confusion with the technical ones. The proposed work presents the development and evaluation of an accurate/robust quantitative approach to the improvement of the medical content in the challenging multidisciplinary BME curriculum. The work presents quantitative assessment tools and subsequent improvement of curriculum medical content applied, as example for explanation, to the ABET (Accreditation Board for Engineering and Technology, USA) accredited biomedical engineering BME department at Jordan University of Science and Technology. The quantitative results of assessment of curriculum/course, capstone, exit exam, course assessment by student (CAS) as well as of surveys filled by alumni, seniors, employers and training supervisors were, first, mapped to the expected students' outcomes related to the medical field (SOsM). The collected data were then analyzed and discussed to find curriculum weakness points by tracking shortcomings in every outcome degree of achievement. Finally, actions were taken to fill in the gaps of the curriculum. Actions were also mapped to the students' medical outcomes (SOsM). Weighted averages of obtained quantitative values, mapped to SOsM, indicated accurately the achievement levels of all outcomes as well as the necessary improvements to be performed in curriculum. Mapping the improvements to SOsM also helps in the assessment of the following cycle. The suggested assessment tools can be generalized and extended to any other BME department. Robust improvement of medical content in BME curriculum can subsequently be achieved.
ERIC Educational Resources Information Center
Hollowell, Gail P.; Osler, James E.; Hester, April L.
2015-01-01
This paper provides an applied research rational for a longitudinal investigation that involved teaching a "Technology Engineered Science Education Course" via an Interactive Laboratory Based Genomics Curriculum. The Technology st Engineering [TE] methodology was first introduced at the SAPES: South Atlantic Philosophy of Education…
The Creation of an Integrated Sustainability Curriculum and Student Praxis Projects
ERIC Educational Resources Information Center
Bacon, Christopher M.; Mulvaney, Dustin; Ball, Tamara B.; DuPuis, E. Melanie; Gliessman, Stephen R.; Lipschutz, Ronnie D.; Shakouri, Ali
2011-01-01
Purpose: The purpose of this paper is to share the content and early results from an interdisciplinary sustainability curriculum that integrates theory and practice (praxis). The curriculum links new topical courses concerning renewable energy, food, water, engineering and social change with specialized labs that enhance technological and…
Electrical Power Engineering Technology: Designing a New Two-Plus-Two Curriculum
ERIC Educational Resources Information Center
Burson, Jack
1978-01-01
An upper-division two-year program in electrical power engineering technology developed at Oklahoma State University is described. The typical two-plus-two program in mechanical, electronics, electromechanical, or other related technologies consists of two years of study at the associate level followed by two years at the bachelor's level. (MF)
ERIC Educational Resources Information Center
Perry, Paula Christine
2013-01-01
Science, Technology, Engineering, and Mathematics (STEM) education curriculum is designed to strengthen students' science and math achievement through project based learning activities. As part of a STEM initiative, SeaPerch was developed at Massachusetts Institute of Technology. SeaPerch is an innovative underwater robotics program that instructs…
42 CFR 136.370 - Pregraduate scholarship grants.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., preveterinary medicine, or prepodiatry curriculum or equivalent. (b) Students enrolled in accredited health..., audiology, medical technology, dental hygiene, dental technicians, engineering, radiologic technology...
42 CFR 136.370 - Pregraduate scholarship grants.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., preveterinary medicine, or prepodiatry curriculum or equivalent. (b) Students enrolled in accredited health..., audiology, medical technology, dental hygiene, dental technicians, engineering, radiologic technology...
42 CFR 136.370 - Pregraduate scholarship grants.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., preveterinary medicine, or prepodiatry curriculum or equivalent. (b) Students enrolled in accredited health..., audiology, medical technology, dental hygiene, dental technicians, engineering, radiologic technology...
42 CFR 136.370 - Pregraduate scholarship grants.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., preveterinary medicine, or prepodiatry curriculum or equivalent. (b) Students enrolled in accredited health..., audiology, medical technology, dental hygiene, dental technicians, engineering, radiologic technology...
NASA Astrophysics Data System (ADS)
Crenshaw, Mark VanBuren
This study examined the perceptions held by Georgia Science, Technology, Engineering, and Mathematics (STEM) Career Cluster Engineering and Technology Education (ETE) high school pathway teachers and Georgia's Career, Technical and Agriculture Education (CTAE) administrators regarding the ETE pathway and its effect on implementation within their district and schools. It provides strategies for ETE teaching methods, curriculum content, STEM integration, and how to improve the ETE pathway program of study. Current teaching and curricular trends were examined in ETE as well as the role ETE should play as related to STEM education. The study, using the Characteristics of Engineering and Technology Education Survey, was conducted to answer the following research questions: (a) Is there a significant difference in the perception of ETE teaching methodology between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (b) Is there a significant difference in the perception of ETE curriculum content between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (c) Is there a significant difference in the perception of STEM integration in the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? and (d) Is there a significant difference in the perception of how to improve the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? Suggestions for further research also were offered.
Increasing student confidence in technical and professional skills through project based learning
NASA Astrophysics Data System (ADS)
Robinson, Alice L.
This work focuses on developing undergraduate students' technical and professional skills through a project-based spiral curriculum in the Agricultural & Biological Engineering department at Purdue that can be implemented campus wide. Through this curriculum, Purdue engineers will be prepared for leadership roles in responding to the global technological, economic, and societal challenges of the 21st century by exposure to the relationships between engineering and its impacts on real world needs and challenges. Project-based learning uses projects as the focus of instruction and has shown increased understanding, motivation, and confidence through application of engineering principles to real-world problems. The strength of a spiral curriculum is that it continually revisits basic ideas and themes with increasing complexity and sophistication. The proposed spiral curriculum incorporates the target attributes of the Purdue Engineer of 2020 through project based courses during sophomore, junior, and senior year. These courses will build on concepts taught during first year engineering as well. The Engineer of 2020 (NAE and Purdue) target attributes include strong technical and professional skills to solve societal and technological burdens. A prototype course has been developed, taught, and evaluated during the previous two fall semesters in the sophomore level of the Biological and Food Process Engineering curriculum. The target students met 3 hours a week in a traditional lecture setting plus 2 hours a week in a project based lab setting. The control group met only 3 hours a week in a traditional lecture setting. Peer and self assessment results from student surveys show increased confidence in every area surveyed. Focus groups revealed student reactions to the course. Students enjoyed the course but felt it difficult to handle ambiguity with project work. Future work includes course revisions to the content, assessment, and pedagogy of the prototype class, development of the remaining project courses in the curriculum, and increasing graduate student instruction in the courses to gain teaching and leadership experience.
ERIC Educational Resources Information Center
Moomaw, Sally; Davis, Jaumall A.
2010-01-01
Math and science and the related technology and engineering are natural pairings. These four disciplines form the acronym STEM (Science, Technology, Engineering, and Math) and can be readily combined into an integrated curriculum for early childhood classrooms. Many educators believe that children learn best when disciplines are interconnected. An…
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the course sequences in the diesel equipment technology programs cluster. Presented in the introductory section are a description of the program and suggested course sequence. Section I lists baseline competencies,…
Design of an Information Technology Undergraduate Program to Produce IT Versatilists
ERIC Educational Resources Information Center
Koohang, Alex; Riley, Liz; Smith, Terry; Floyd, Kevin
2010-01-01
This paper attempts to present a model for designing an IT undergraduate program that is based on the recommendations of the Association for Computer Machinery/Institute of Electrical and Electronics Engineers--Information Technology (ACM/IEEE--IT) Curriculum Model. The main intent is to use the ACM/IEEE--IT Curriculum Model's recommendations as a…
Social, Economic, and Political Change: Portents for Reform in Engineering Curricula.
ERIC Educational Resources Information Center
Wenk, Edward, Jr.
1988-01-01
Discusses the needs and properties of human systems including issues of safety and the holistic approach in engineering. Lists a suggested introductory engineering curriculum. Describes characteristics of future realities in managing technology. (YP)
ERIC Educational Resources Information Center
National Science Foundation, Arlington, VA. Div. of Undergraduate Education.
The Undergraduate Course and Curriculum Development Program of the National Science Foundation supports the development of courses in all disciplines to improve the quality of undergraduate courses and curricula in science, mathematics, engineering, and technology. The purpose of the program in Curriculum Development in Mathematics: Calculus and…
ERIC Educational Resources Information Center
McFadden, Justin R.; Roehrig, Gillian H.
2017-01-01
Background: This study presents two teacher design teams (TDTs) during a professional development experience centered on science, technology, engineering, and mathematics (STEM)-integrated curriculum development. The main activity of the study, curriculum design, was framed as a design problem in order to better understand how teachers engaged…
Laser Electro-Optic Engineering Technology. Florida Vocational Program Guide.
ERIC Educational Resources Information Center
University of South Florida, Tampa. Dept. of Adult and Vocational Education.
This program guide identifies particular considerations in the organization, operation, and evaluation of laser electro-optic engineering technology programs. Contents include an occupational description and information on the following: program content, including a curriculum framework that details major concepts and intended outcomes and a list…
ERIC Educational Resources Information Center
Yelamarthi, Kumar
2012-01-01
Multidisciplinary projects involving electrical engineering (EE), mechanical engineering (ME), and computer engineering (CE) students are both exciting and difficult to conceptualize. Answering this challenge, this paper presents a multidisciplinary educational platform on radio frequency identification-based assistive devices. The combination of…
Science Technology and Engineering Teachers' Emotional Intelligence vis-à-vis Classroom Management
ERIC Educational Resources Information Center
Llego, Jordan Hiso
2017-01-01
This study aimed to determine the relationship of emotional intelligence of science STE teachers' with their classroom management. This study used descriptive-correlational using survey questionnaire with total population sampling who are offering Science, Technology and Engineering curriculum in Region 1, Philippines with 113 respondents.…
STEAM by Another Name: Transdisciplinary Practice in Art and Design Education
ERIC Educational Resources Information Center
Costantino, Tracie
2018-01-01
The recent movement to include art and design in Science, Technology, Engineering, and Mathematics (STEM) education has made Science, Technology, Engineering, Arts, and Mathematics (STEAM) an increasingly common acronym in the education lexicon. The STEAM movement builds on existing models of interdisciplinary curriculum, but what makes the union…
Humanitarian engineering in the engineering curriculum
NASA Astrophysics Data System (ADS)
Vandersteen, Jonathan Daniel James
There are many opportunities to use engineering skills to improve the conditions for marginalized communities, but our current engineering education praxis does not instruct on how engineering can be a force for human development. In a time of great inequality and exploitation, the desire to work with the impoverished is prevalent, and it has been proposed to adjust the engineering curriculum to include a larger focus on human needs. This proposed curriculum philosophy is called humanitarian engineering. Professional engineers have played an important role in the modern history of power, wealth, economic development, war, and industrialization; they have also contributed to infrastructure, sanitation, and energy sources necessary to meet human need. Engineers are currently at an important point in time when they must look back on their history in order to be more clear about how to move forward. The changing role of the engineer in history puts into context the call for a more balanced, community-centred engineering curriculum. Qualitative, phenomenographic research was conducted in order to understand the need, opportunity, benefits, and limitations of a proposed humanitarian engineering curriculum. The potential role of the engineer in marginalized communities and details regarding what a humanitarian engineering program could look like were also investigated. Thirty-two semi-structured research interviews were conducted in Canada and Ghana in order to collect a pool of understanding before a phenomenographic analysis resulted in five distinct outcome spaces. The data suggests that an effective curriculum design will include teaching technical skills in conjunction with instructing about issues of social justice, social location, cultural awareness, root causes of marginalization, a broader understanding of technology, and unlearning many elements about the role of the engineer and the dominant economic/political ideology. Cross-cultural engineering development placements are a valuable pedagogical experience but risk benefiting the student disproportionately more than the receiving community. Local development placements offer different rewards and liabilities. To conclude, a major adjustment in engineering curriculum to address human development is appropriate and this new curriculum should include both local and international placements. However, the great force of altruism must be directed towards creating meaningful and lasting change.
Environmental engineering education at Ghent University, Flanders (Belgium).
Demeestere, K; Dewulf, J; Janssen, C; Van Langenhove, H
2004-01-01
Since the 1980s, environmental engineering education has been a rapidly growing discipline in many universities. This paper discusses the history, the current status and the near future of environmental engineering education at Ghent University. This university, with about 50% of the Flemish university environmental engineering students, can be considered as representative for the situation in Flanders, Belgium. In contrast to many other universities, environmental engineering education at Ghent University does not have its historical roots in civil engineering, but has been developed from the curricula organized by the former Faculty of Agricultural Sciences. As part of a reorganisation of the education and research activities at this faculty, a curriculum leading to the degree of "bio-engineer in environmental technology" was established in 1991. This curriculum covers a 5-year study and is constructed around 8 main components. Exchange of students with other European universities, e.g. within the Socrates framework, has become a prominent aspect of student life and education. This paper also briefly describes the employment opportunities of graduated bio-engineers in environmental technology. Finally, the current implementation of the bachelor's-master's structure, leading to a "master of science in environmental technology" degree is summarized.
ERIC Educational Resources Information Center
Guzey, Siddika Selcen; Nyachwaya, James; Moore, Tamara J.; Roehrig, Gillian H.
2014-01-01
A wind energy focused curriculum for grades 4-8 was designed and implemented to promote the understanding of wind energy concepts with American Indian students. 57 students who participated in the 2009 summer program of the "Reach for the Sky" (RFTS) Science, Technology, Engineering, and Mathematics (STEM) received the curriculum. The…
ERIC Educational Resources Information Center
Southern Regional Education Board (SREB), 2012
2012-01-01
Schools that give students access to STEM (science, technology, engineering and mathematics) studies are accomplishing several objectives: introducing students to higher-level academic and career studies, expanding project-based learning in the curriculum, enticing students to remain in school until graduation, and preparing students for…
Students' Guide to Engineering Schools.
ERIC Educational Resources Information Center
National Action Council for Minorities in Engineering, Inc., New York, NY.
Designed for minority students considering careers in engineering, this guide provides descriptions of every undergraduate engineering college in the United States with at least one curriculum approved by the Accreditation Board for Engineering and Technology, and guidelines for assessing educational wants and needs. Entries for each of the 261…
Mitcham, Carl; Englehardt, Elaine E
2016-08-22
The movements to teach the responsible conduct of research (RCR) and engineering ethics at technological universities are often unacknowledged aspects of the ethics across the curriculum (EAC) movement and could benefit from explicit alliances with it. Remarkably, however, not nearly as much scholarly attention has been devoted to EAC as to RCR or to engineering ethics, and RCR and engineering ethics educational efforts are not always presented as facets of EAC. The emergence of EAC efforts at two different institutions-the Illinois Institute of Technology and Utah Valley University (UVU)-provide counter examples. The remarkably successful UVU initiative gave birth to EAC as a scholarly movement and to the associated Society for Ethics Across the Curriculum. EAC initiatives at the Colorado School of Mines, however, point up continuing institutional resistances to EAC. Finally, comparative reflection on successes and failures can draw some lessons for the future. One suggestion is that increasing demands for accountability and pedagogical research into what works in teaching and learning offers special opportunities.
ERIC Educational Resources Information Center
Eekels, J.
1987-01-01
Emphasizes that the concept of design is fundamental in innovation. Outlines the work of the European Society for Engineering Education-Working group on Innovation. Describes the innovation-management stream in the curriculum of the faculty of Industrial Design Engineering at Delft University of Technology, Netherlands. (CW)
Approaches to Integrating Engineering in STEM Units and Student Achievement Gains
ERIC Educational Resources Information Center
Crotty, Elizabeth A.; Guzey, Selcen S.; Roehrig, Gillian H.; Glancy, Aran W.; Ring-Whalen, Elizabeth A.
2017-01-01
This study examined different approaches to integrating engineering practices in science, technology, engineering, and mathematics (STEM) curriculum units. These various approaches were correlated with student outcomes on engineering assessment items. There are numerous reform documents in the USA and around the world that emphasize the need to…
ERIC Educational Resources Information Center
Kelley, Todd; Sung, Euisuk
2017-01-01
The introduction of engineering practices within the "Next Generation Science Standards" provides technology educators with opportunities to help STEM educators infuse engineering design within a core curriculum. The introduction of teaching engineering design in early elementary grades also provides opportunities to conduct research…
ERIC Educational Resources Information Center
Venkateswarlu, P.
2017-01-01
Reforms in undergraduate engineering curriculum to produce engineers with entrepreneurial skills should address real-world problems relevant to industry and society with active industry support. Technology-assisted, hands-on projects involving experimentation, design simulation and prototyping will transform graduates into professionals with…
Marine Propulsion Technology Program Meets the Demand
ERIC Educational Resources Information Center
Fowler, Howard G.
1974-01-01
The marine technology program cluster at Florida Keys Community College is described. Technicians are trained to maintain and repair engines and selected marine accessories through a marine propulsion technology curriculum (certificate program and associate in science degree). (EA)
Marginalized Student Access to Technology Education
NASA Astrophysics Data System (ADS)
Kurtcu, Wanda M.
The purpose of this paper is to investigate how a teacher can disrupt an established curriculum that continues the cycle of inequity of access to science, technology, engineering, and math (STEM) curriculum by students in alternative education. For this paper, I will focus on the technology components of the STEM curriculum. Technology in the United States, if not the world economy, is developing at a rapid pace. Many areas of day to day living, from applying for a job to checking one's bank account online, involve a component of science and technology. The 'gap' in technology education is emphasized between the 'haves and have-nots', which is delineated along socio-economic lines. Marginalized students in alternative education programs use this equipment for little else than remedial programs and credit recovery. This level of inequity further widens in alternative education programs and affects the achievement of marginalized students in credit recovery or alternative education classes instead of participation technology classes. For the purposes of this paper I focus on how can I decrease the inequity of student access to 21st century technology education in an alternative education program by addressing the established curriculum of the program and modifying structural barriers of marginalized student access to a technology focused curriculum.
Creating an Agile ECE Learning Environment through Engineering Clinics
ERIC Educational Resources Information Center
Jansson, P. M.; Ramachandran, R. P.; Schmalzel, J. L.; Mandayam, S. A.
2010-01-01
To keep up with rapidly advancing technology, numerous innovations to the electrical and computer engineering (ECE) curriculum, learning methods and pedagogy have been envisioned, tested, and implemented. It is safe to say that no single approach will work for all of the diverse ECE technologies and every type of learner. However, a few key…
Tech-Prep Competency Profiles within the Engineering Technologies Cluster.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This document contains 12 competency profiles for tech prep courses within the engineering technologies cluster. The document consists of the following sections: (1) systemic curriculum reform philosophy--Ohio's vision of tech prep and its six critical components; (2) an explanation of the process of developing the tech prep competencies; (3) a…
Education for Professional Engineering Practice
ERIC Educational Resources Information Center
Bramhall, Mike D.; Short, Chris
2014-01-01
This paper reports on a funded collaborative large-scale curriculum innovation and enhancement project undertaken as part of a UK National Higher Education Science, Technology Engineering and Mathematics (STEM) programme. Its aim was to develop undergraduate curricula to teach appropriate skills for professional engineering practice more…
ERIC Educational Resources Information Center
Osler, James E.; Hollowell, Gail P.; Nichols, Stacy M.
2012-01-01
Technology Engineering is an innovative component of a much larger arena of teaching that effectively uses interactive technology as a method of enhancing learning and the learning environment. Using this method to teach science and math content empowers the teacher and enhances the curriculum as the classroom becomes more efficient and effective.…
A Case for the Nationwide Inclusion of Engineering in the K-12 Curriculum via Technology Education
ERIC Educational Resources Information Center
Pinelli, Thomas E.; Haynie, W. James, III
2010-01-01
This paper resulted from discussions between a technology teacher educator and a colleague who has served in various education outreach roles with NASA. The basis of the paper was developed by the NASA director and two engineers, one serving with NASA and the other with the National Institute of Aerospace. The technology teacher educator read the…
NASA Astrophysics Data System (ADS)
Seagroves, S.; Hunter, L.
2010-12-01
The Akamai Workforce Initiative (AWI) is an interdisciplinary effort to improve science/engineering education in the state of Hawai'i, and to train a diverse population of local students in the skills needed for a high-tech economy. In 2009, the AWI undertook a survey of industry partners on Maui and the Big Island of Hawai'i to develop an engineering technology skills framework that will guide curriculum development at the U. of Hawai'i - Maui (formerly Maui Community College). This engineering skills framework builds directly on past engineering-education developments within the Center for Adaptive Optics Professional Development Program, and draws on curriculum development frameworks and engineering skills standards from the literature. Coupling that previous work with reviews of past Akamai Internship projects and information from previous conversations with the local high-tech community led to a structured-interview format where engineers and managers could contribute meaningful commentary to this framework. By incorporating these local high-tech companies' needs for entry-level engineers and technicians, a skills framework emerges that is unique and illuminating. Two surprising features arise in this framework: (1) "technician-like" skills of making existing technology work are on similar footing with "engineer-like" skills of creating new technology; in fact, both engineers and technicians at these workplaces use both sets of skills; and (2) project management skills are emphasized by employers even for entry-level positions.
ERIC Educational Resources Information Center
Abu-Jdayil, Basim; Al-Attar, Hazim
2010-01-01
The chemical engineering programme at the United Arab Emirates University is designed to fulfil the Accreditation Board for Engineering and Technology (ABET) (A-K) EC2000 criteria. The Department of Chemical & Petroleum Engineering has established a well-defined process for outcomes assessment for the chemical engineering programme in order to…
Epistemology, Ontology and Ethics: "Galaxies Away from the Engineering World"?
ERIC Educational Resources Information Center
Christensen, Steen Hyldgaard; Erno-Kjolhede, Erik
2008-01-01
Philosophy of technology/philosophy of science has recently become part of the curriculum of engineering degree programmes in Denmark. However, to what extent do teachers of engineering see it as meaningful for students to work with relatively abstract philosophical concepts such as epistemology, ontology and ethics as part of engineering degree…
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. Directorate for Education and Human Resources.
This report describes the efforts of the National Science Foundation (NSF) and its Division of Undergraduate Education (DUE) to provide educational support to two-year colleges to strengthen science, technology, engineering, and mathematics programs through grants, collaborative efforts, and support for curriculum materials and teacher activities.…
ERIC Educational Resources Information Center
James, Jamie Smith
2014-01-01
The purpose of this quantitative research study was to evaluate to what degree Science, Technology, Engineering and Mathematics (STEM) education influenced mathematics and science achievement of seventh grade students in one Middle Tennessee school district. This research used an independent samples t test at the a = 0.05 level to evaluate…
Greening the Engineering and Technology Curriculum via Real Life Hands-on Projects
USDA-ARS?s Scientific Manuscript database
This paper aims at demonstrating how greening efforts can be embedded into science and engineering courses without major curricular changes. In this regard, examples of final projects assigned in a statistical quality control, a 500-level, graduate engineering course, focusing on campus sustainabili...
Would Increasing Engineering Literacies Enable Untapped Opportunities for STEM Education?
ERIC Educational Resources Information Center
Redman, Christine
2017-01-01
The main focus here is to examine the benefits of defining and developing an engineering curriculum for elementary schools. Like many other international educational systems, Australian educational settings have been seeking to effectively implement science, technology, engineering, and mathematics (STEM) education. However, current assumptions…
Engineering Technology Enrollments Fall 1986.
ERIC Educational Resources Information Center
Ellis, Richard A.
1988-01-01
Provides some of the results of the Engineering Manpower Commission's fall 1986 survey of enrollments in engineering education. Includes tabular data on those enrollments categorized by students in all institutions surveyed and for just those students in accredited programs, as well as by curriculum and by school and state. (TW)
The Teaching of Crystallography to Materials Scientists and Engineers.
ERIC Educational Resources Information Center
Wuensch, Bernhardt J.
1988-01-01
Provides a framework of the disciplines of materials science and engineering as they have developed. Discusses the philosophy, content, and approach to teaching these courses. Indicates the range of crystallographic topics contained in the materials science and engineering curriculum at the Massachussetts Institute of Technology. (CW)
ERIC Educational Resources Information Center
Ritz, John M.; And Others
This document--intended to help technology education teachers plan their classroom curriculum for secondary school and college students--contains units on satellite communication, the nature and properties of engineering materials, careers in technology, new developments in printing, composite materials, ceramics, ceramic materials, and personal…
Training a New Breed of Automated Manufacturing Technology Practitioners.
ERIC Educational Resources Information Center
Bainter, Jack J.
1986-01-01
A boom in industrial robotics has led numerous vocational institutions to launch extensive training programs in this specialty. ITT Educational Services offers two curriculum programs to train future manufacturing engineers. The firm's national director describes this model curriculum for meeting the needs of today's workforce. (JN)
Web-Based Learning in the Computer-Aided Design Curriculum.
ERIC Educational Resources Information Center
Sung, Wen-Tsai; Ou, S. C.
2002-01-01
Applies principles of constructivism and virtual reality (VR) to computer-aided design (CAD) curriculum, particularly engineering, by integrating network, VR and CAD technologies into a Web-based learning environment that expands traditional two-dimensional computer graphics into a three-dimensional real-time simulation that enhances user…
NASA Astrophysics Data System (ADS)
Celedón-Pattichis, Sylvia; LópezLeiva, Carlos Alfonso; Pattichis, Marios S.; Llamocca, Daniel
2013-12-01
There is a strong need in the United States to increase the number of students from underrepresented groups who pursue careers in Science, Technology, Engineering, and Mathematics. Drawing from sociocultural theory, we present approaches to establishing collaborations between computer engineering and mathematics/bilingual education faculty to address this need. We describe our work through the Advancing Out-of-School Learning in Mathematics and Engineering project by illustrating how an integrated curriculum that is based on mathematics with applications in image and video processing can be designed and how it can be implemented with middle school students from underrepresented groups.
Incorporating service-learning within engineering and technology education in secondary schools
NASA Astrophysics Data System (ADS)
Smiley, Craig L.
This study focuses the status of service-learning incorporated into the secondary engineering and technology classroom in the State of Indiana. Post-secondary engineering service-learning programs have been found to increase student interest in engineering to attract females into engineering (Coyle, Jamieson, & Oakes, 2005). Engineering, Design, and Development (EDD) is the capstone class of Project Lead The Way (PLTW) curriculum taught in many schools across Indiana, in which students design and develop a project that addresses an open-ended engineering problem. Of all the courses offered in the PLTW curriculum, this has the greatest potential for students to engage in a service-learning project, because the open-ended engineering problem could be used to help the community. A Likert-type survey was sent to the 62 secondary technology education teachers in Indiana who were certified to teach EDD during the 2011-2012 school year to identify the frequency at which the core components of service-learning, as identified by the National Service-Learning Clearinghouse (2006), were being implemented in the EDD curriculum. Fifteen teachers completed the survey by the end of the 2011-2012 academic calendar. Four of the 15 EDD teachers (27%) reported that a majority of their students' projects addressed a need in the community, and therefore were considered to be service-learning projects. The percentage of projects that were called service-learning projects by the respondents appeared to have a direct relationship with the total number of students enrolled in the PLTW program, and an inverse relationship with the number of years the teacher had been teaching technology education. Upon further study, only 2 of these EDD teachers (13%) were guiding students to collaborate with their community partner frequently enough to have an experience indicative of high quality service-learning according to the National Service-Learning Clearinghouse.
NASA Astrophysics Data System (ADS)
Grusenmeyer, Linda Huey
This study examines the personal and curricular resources available to Delaware's elementary teachers during a time of innovative curriculum change, i.e., their knowledge, goals and beliefs regarding elementary engineering curriculum and the pedagogical support to teach two Science and Engineering Practices provided by science teaching materials. Delaware was at the forefront of K-12 STEM movement, first to adopt statewide elementary curriculum materials to complement existing science units, and one of the first to adopt the new science standards--Next Generation Science Standards. What supports were available to teachers as they adapted and adopted this new curriculum? To investigate this question, I examined (1) teachers' beliefs about engineering and the engineering curriculum, and (2) the pedagogical supports available to teachers in selected science and engineering curriculum. Teachers' knowledge, goals, and beliefs regarding Delaware's adoption of new elementary engineering curriculum were surveyed using an adapted version of the Design, Engineering, and Technology Survey (Hong, Purser, & Gardella, 2011; Yaser, Baker, Carpius, Krauss, & Roberts, 2006). Also, three open ended questions sought to reveal deeper understanding of teacher knowledge and understanding of engineering; their concerns about personal and systemic resources related to the new curriculum, its logistics, and feasibility; and their beliefs about the potential positive impact presented by the engineering education initiative. Teacher concerns were analyzed using the Concerns-Based Adoption Model (Hall & Hord, 2010). Lay understandings of engineering were analyzed by contrasting naive representations of engineering with three key characteristics of engineering adapted from an earlier study (Capobianco Diefes-Dux, Mena, & Weller, 2011). Survey findings for teachers who had attended training and those who have not yet attended professional development in the new curriculum were compared with few notable differences. Almost all elementary teacher respondents were familiar with engineering and able to define it using one or more key characteristics. They valued the inclusion of engineering in the elementary curriculum; however trained and untrained teachers reported they were not confident about teaching it and were unaware of the new standards related to engineering. Teachers saw potential advantages or benefits of the new curriculum as helping improve science and math understanding, an opportunity to increase vocational awareness, and engaging students and motivating them to learn. Most teachers saw similar barriers to implementation- lack of teacher knowledge, lack of time to learn about engineering and how to teach engineering, and lack of administrative support. Almost all were open to additional in-service training to learn more about this new curriculum. Three fifth grade science units were examined for evidence of teacher pedagogical support in teaching two Science and Engineering Practices (SEP) advocated by the Next Generation Science Standards. An analytic framework was developed based upon two NGSS SEPs: Asking questions, defining problems and Engaging in argument from evidence. Findings revealed that the kits varied greatly in their pedagogical approaches to the two SEPs and differences might be explained by each kit's underlying orientations to the teaching-learning process. Findings from these investigations have implications for the design of professional development and for engineering curricula. They highlight the importance of considering teacher beliefs about curriculum implementation and subject matter, as well as the importance of creating curriculum materials that focus teacher attention toward student thinking and the language rich science and engineering practices. Recommendations also include ongoing professional development to allow teachers time to try out and revise pedagogical routines that support the SEPs studied here.
Engineering Education 2001. The Samuel Neaman Institute--Technion Report.
ERIC Educational Resources Information Center
Engineering Education, 1987
1987-01-01
Presents a view of future engineering education as perceived by the Technion faculty group on the basis of their own analysis and the insights gathered from workshop discussions. Contrasts basic and specialized education. Reviews the technologies and skills of the future engineer. Gives an overview of curriculum requirements. (CW)
Engaging Undergraduates in an Interdisciplinary Program: Developing a Biomaterial Technology Program
ERIC Educational Resources Information Center
Liang, Jia-chi; Kung, Shieh-shiuh; Sun, Yi-ming
2009-01-01
Yuan Ze University targeted Biomaterials Science and developed a curriculum related to Biotechnology, Biochemical Engineering, and Biomaterials for engineering students to cultivate talents for both engineering and biotechnology. After several years of operation, recruiting students has succeeded, and students are satisfied with the course design…
Reference Points: Engineering Technology Education Bibliography, 1987.
ERIC Educational Resources Information Center
Engineering Education, 1989
1989-01-01
Lists articles and books published in 1987. Selects the following headings: administration, aeronautical, architectural, CAD/CAM, civil, computers, curriculum, electrical/electronics, industrial, industry/government/employers, instructional technology, laboratories, liberal studies, manufacturing, mechanical, minorities, research, robotics,…
The Changing Science Curriculum
ERIC Educational Resources Information Center
Ediger, Marlow
2014-01-01
Science, as a curriculum area, has gone through many changes recently with the oncoming of the Common Core State Standards (CCSS), Science, Technology, Engineering, and Mathematics (STEM), as well as the Next Generation Science Standards (NGSS). Science is a part of everyday life which individuals experience. Even the drying up of a puddle of…
ERIC Educational Resources Information Center
Delale, Feridun; Liaw, Benjamin M.; Jiji, Latif M.; Voiculescu, Ioana; Yu, Honghui
2011-01-01
From October 2003 to April 2008 a systemic reform of the Mechanical Engineering program at The City College of New York was undertaken with the goal of incorporating emerging technologies (such as nanotechnology, biotechnology, Micro-Electro-Mechanical Systems (MEMS), intelligent systems) and new teaching methodologies (such as project based…
ERIC Educational Resources Information Center
Commission on Engineering Education, Washington, DC.
THIS STUDENTS' MANUAL FOR THE ENGINEERING CONCEPTS CURRICULUM PROJECT'S (ECCP) HIGH SCHOOL COURSE, "THE MAN MADE WORLD," IS THE THIRD DRAFT OF THE EXPERIMENTAL VERSION. THE MATERIAL WRITTEN BY SCIENTISTS, ENGINEERS, AND EDUCATORS, EMPHASIZES THE THEORIES AND TECHNIQUES WHICH CONTRIBUTE TO OUR TECHNOLOGICAL CIVILIZATION. RESOURCES OF THE MAN-MADE…
ERIC Educational Resources Information Center
Sullivan, Amanda; Bers, Marina Umaschi
2016-01-01
In recent years there has been an increasing focus on the missing "T" of technology and "E" of engineering in early childhood STEM (science, technology, engineering, mathematics) curricula. Robotics offers a playful and tangible way for children to engage with both T and E concepts during their foundational early childhood…
ERIC Educational Resources Information Center
Chen, Woei-Kae; Chang, Liang-Te
A study examined the technological competencies of the electronic engineering departments of junior colleges in Taiwan. It used a combination of two methods--a revised DACUM (Developing a Curriculum) process and a revised V-TECS (Vocational-Technical Education Consortium of States) process--to analyze the duty/task profile and task/element list of…
Practice on Upbringing Young Engineers Collaborated with Local Enterprises
NASA Astrophysics Data System (ADS)
Hiraki, Yutaka; Uno, Naotsugu; Tanaka, Yuichi; Iyama, Hirofumi; Yamashita, Toru; Miyamoto, Noritaka
The ministry of Economics and Industry started the project collaborated with National Colleges of Technology titled “Upbringing Young Engineers in small and medium-sized enterprises” , in 2006. In our college, the authors planed the upbringing-program for the die-cast engineer in automobile industries collaborated with several enterprises in neighboring area and applied for the project. The program was adopted and worked out the concrete curriculum for the first year. The curriculum contains the training of the base of mechanical design with 3D-CAD/CAE/CAM systems and the practical training on manufacturing, by means of Problem Based Learning method. The program carried out in September and finished in December successfully. This paper reports the outline of the curriculum and the results in the program.
NASA Astrophysics Data System (ADS)
Kage, Hiroyuki
New reformation project on engineering education, which is supported from 2005 to 2008FY by Support Program for Contemporary Educational Needs of Ministry of Education, Culture, Sports, Science and Technology, started in Kyushu Institute of Technology. In this project, teaching experience of students is introduced into the curriculum of Faculty of Engineering. In the curriculum students try to prepare teaching materials and to teach local school pupils with them by themselves. Teaching experience is remarkably effective for them to strengthen their self-dependence and learning motivation. Science Education Center, Science Laboratory and Super Teachers College were also organized to promote the area cooperation on the education of science and mathematics.
Automotive Technology. Career Education Guide.
ERIC Educational Resources Information Center
Dependents Schools (DOD), Washington, DC. European Area.
The curriculum guide is designed to provide students with realistic training in automotive technology theory and practice within the secondary educational framework and to prepare them for entry into an occupation or continuing postsecondary education. The learning modules are grouped into three areas: small engines, automotive technology, and…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Pool, Robert
2016-01-01
On February 16, 2016, the National Academy of Engineering held a forum to discuss proposed changes to criteria used by ABET (formerly the Accreditation Board for Engineering and Technology) to accredit engineering programs in colleges and universities around the world. The Forum on Proposed Revisions to ABET Engineering Accreditation Commission…
ERIC Educational Resources Information Center
Meznarich, R. A.; Shava, R. C.; Lightner, S. L.
2009-01-01
Engineering design graphics courses taught in colleges or universities should provide and equip students preparing for employment with the basic occupational graphics skill competences required by engineering and technology disciplines. Academic institutions should introduce and include topics that cover the newer and more efficient graphics…
Technology Education to Engineering: A Good Move?
ERIC Educational Resources Information Center
Williams, P. John
2010-01-01
Recent curriculum changes in the educational system of Australia have resulted in allowing optional Engineering course work to count for university entrance for students choosing to apply to a university. In other educational systems, Engineering is playing an increasingly important role, either as a stand-alone subject or as part of an integrated…
Conditions and Decisions of Urban Elementary Teachers Regarding Instruction of STEM Curriculum
ERIC Educational Resources Information Center
Smith, Erica L.; Parker, Carolyn A.; McKinney, David; Grigg, Jeffrey
2018-01-01
The study was situated in a National Science Foundation supported Math Science Partnership between a private university and an urban school district. This study sought to understand the decision-making process of elementary teachers as they implement an integrated science, technology, engineering, and mathematics (STEM) curriculum in their…
Mapping Curriculum Innovation in STEM Schools to Assessment Requirements: Tensions and Dilemmas
ERIC Educational Resources Information Center
Tan, Aik-Ling; Leong, Woon Foong
2014-01-01
Specialized science, technology, engineering, and mathematics (STEM) schools create niche areas in an attempt to attract the best students, establish the school status, and justify their privilege to valuable resources. One Singapore STEM school does this in applied science learning to differentiate its curriculum from the national prescribed…
A Journey from STEM to STEAM: A Middle School Case Study
ERIC Educational Resources Information Center
Hunter-Doniger, Tracey; Sydow, Lindsey
2016-01-01
This article examines the initial journey of a middle school in South Carolina from a STEM (science, technology, engineering, and math) curriculum to a STEAM (STEM + art) curriculum. This is the first of a three-year longitudinal study that investigated the perceptions of the effectiveness, relative importance, and sustainability of a STEAM…
ERIC Educational Resources Information Center
Soares, Joao B. P.; Penlidis, Alexander; Hamielec, Archie E.
1998-01-01
Describes how interaction with several polymer manufacturing companies through industrial short courses and research projects has led to the development of dynamic and up-to-date undergraduate and graduate curriculums in polymer science and engineering technology. (DDR)
ERIC Educational Resources Information Center
Hoisington, Cynthia; Winokur, Jeff
2015-01-01
Early childhood educators have long debated how science should be introduced and taught to preschoolers. In the current Science, Technology, Engineering, and Mathematics (STEM) education climate, this conversation has expanded to include the role of engineering in the preschool curriculum. Instructors and coaches in the professional development…
Implementing Entrepreneurial Assignments in a Multidisciplinary, Sophomore-Level Design Course
ERIC Educational Resources Information Center
Dahm, Kevin; Riddell, William; Merrill, Thomas; Harvey, Roberta; Weiss, Leigh
2013-01-01
Many engineering programs stress the importance of technological innovation by offering entrepreneurship electives and programs. Integration of entrepreneurship into the required engineering curriculum has predominantly focused on senior capstone design courses. This paper describes a strategy for integrating entrepreneurship into a…
ERIC Educational Resources Information Center
BOUDREAU, HOWARD E.; PURCELL, CHARLES A.
THE FAYETTEVILLE TECHNICAL INSTITUTE IN NORTH CAROLINA ESTABLISHED ITS PROGRAM IN SANITARY ENGINEERING TECHNOLOGY IN 1964, WITH ITS FIRST GRADUATING CLASS PLANNED FOR SPRING 1966. IN COOPERATION WITH THE CURRICULUM LABORATORY AND THE STATE DEPARTMENT OF COMMUNITY COLLEGES, AN ADVISORY COMMITTEE WAS FORMED, MADE UP OF SPECIALISTS IN MANY AREAS OF…
Portable Inspiration: The Necessity of STEM Outreach Investment
ERIC Educational Resources Information Center
Kressly, Rich
2009-01-01
Running a successful technology education lab and delivering curriculum in today's educational environment can be busy, misunderstood, and downright exhausting. Keeping up with growing and emerging technologies, educating the school and community on what a program is really all about, and running after-school technology and engineering clubs…
3-D Geometric Modeling for the 21st Century.
ERIC Educational Resources Information Center
Ault, Holly K.
1999-01-01
Describes new geometric computer models used in contemporary computer-aided design (CAD) software including wire frame, surface, solid, and parametric models. Reviews their use in engineering design and discusses the impact of these new technologies on the engineering design graphics curriculum. (Author/CCM)
ERIC Educational Resources Information Center
Nelson, Regina K.
2013-01-01
A mixed-methods research study was designed to test whether undergraduate engineering students were better prepared to learn advanced topics in biomedical engineering if they learned physiology via a quantitative, concept-based approach rather than a qualitative, system-based approach. Experiments were conducted with undergraduate engineering…
Engineering-Based Problem Solving in the Middle School: Design and Construction with Simple Machines
ERIC Educational Resources Information Center
English, Lyn D.; Hudson, Peter; Dawes, Les
2013-01-01
Incorporating engineering concepts into middle school curriculum is seen as an effective way to improve students' problem-solving skills. A selection of findings is reported from a science, technology, engineering and mathematics (STEM)-based unit in which students in the second year (grade 8) of a three-year longitudinal study explored…
ERIC Educational Resources Information Center
Celedón-Pattichis, Sylvia; LópezLeiva, Carlos Alfonso; Pattichis, Marios S.; Llamocca, Daniel
2013-01-01
There is a strong need in the United States to increase the number of students from underrepresented groups who pursue careers in Science, Technology, Engineering, and Mathematics. Drawing from sociocultural theory, we present approaches to establishing collaborations between computer engineering and mathematics/bilingual education faculty to…
NASA Astrophysics Data System (ADS)
Berry, Ayora
The purpose of this study was to investigate the effects of a curriculum design-based (CDB) professional development model on K-12 teachers' capacity to integrate engineering education in the classroom. This teacher professional development approach differs from other training programs where teachers learn how to use a standard curriculum and adopt it in their classrooms. In a CDB professional development model teachers actively design lessons, student resources, and assessments for their classroom instruction. In other science, technology, engineering and mathematics (STEM) disciplines, CDB professional development has been reported to (a) position teachers as architects of change, (b) provide a professional learning vehicle for educators to reflect on instructional practices and develop content knowledge, (c) inspire a sense of ownership in curriculum decision-making among teachers, and (d) use an instructional approach that is coherent with teachers' interests and professional goals. The CDB professional development program in this study used the Explore-Create-Share (ECS) framework as an instructional model to support teacher-led curriculum design and implementation. To evaluate the impact of the CDB professional development and associated ECS instructional model, three research studies were conducted. In each study, the participants completed a six-month CDB professional development program, the PTC STEM Certificate Program, that included sixty-two instructional contact hours. Participants learned about industry and education engineering concepts, tested engineering curricula, collaborated with K-12 educators and industry professionals, and developed project-based engineering curricula using the ECS framework. The first study evaluated the impact of the CDB professional development program on teachers' engineering knowledge, self-efficacy in designing engineering curriculum, and instructional practice in developing project-based engineering units. The study included twenty-six teachers and data was collected pre-, mid-, and post-program using teacher surveys and a curriculum analysis instrument. The second study evaluated teachers' perceptions of the ECS model as a curriculum authoring tool and the quality of the curriculum units they developed. The study included sixty-two participants and data was collected post-program using teacher surveys and a curriculum analysis instrument. The third study evaluated teachers' experiences implementing ECS units in the classroom with a focus on identifying the benefits, challenges and solutions associated with project-based engineering in the classroom. The study included thirty-one participants and data was collected using an open-ended survey instrument after teachers completed implementation of the ECS curriculum unit. Results of these three studies indicate that teachers can be prepared to integrate engineering in the classroom using a CDB professional development model. Teachers reported an increase in engineering content knowledge, improved their self-efficacy in curriculum planning, and developed high quality instructional units that were aligned to engineering design practices and STEM educational standards. The ECS instructional model was acknowledged as a valuable tool for developing and implementing engineering education in the classroom. Teachers reported that ECS curriculum design aligned with their teaching goals, provided a framework to integrate engineering with other subject-area concepts, and incorporated innovative teaching strategies. After implementing ECS units in the classroom, teachers reported that the ECS model engaged students in engineering design challenges that were situated in a real world context and required the application of interdisciplinary content knowledge and skills. Teachers also reported a number of challenges related to scheduling, content alignment, and access to resources. In the face of these obstacles, teachers presented a number of solutions that included optimization of one's teaching practice, being resource savvy, and adopting a growth mindset.
ERIC Educational Resources Information Center
Velez, Jonathan J.; Lambert, Misty D.; Elliott, Kristopher M.
2015-01-01
The purpose of this study was to begin examining the impact of the Curriculum for Agricultural Science Education (CASE). Under development since 2008, the curriculum is intended to integrate core academics and Science, Technology, Engineering, and Math (STEM) into agricultural education programs. This longitudinal descriptive correlational study…
The Wheels on the Bot Go Round and Round: Robotics Curriculum in Pre-Kindergarten
ERIC Educational Resources Information Center
Sullivan, Amanda; Kazakoff, Elizabeth R.; Bers, Marina Umashi
2013-01-01
This paper qualitatively examines the implementation of an intensive weeklong robotics curriculum in three Pre-Kindergarten classrooms (N = 37) at an early childhood STEM (science, technology, engineering, and math) focused magnet school in the Harlem area of New York City. Children at the school spent one week participating in computer…
2012-10-20
John C. Stennis Space Center educators and area teachers partnered together during a professional development workshop Oct. 20 to learn about the LEGO Bricks in Space curriculum issued by NASA. The curriculum is designed to encourage students in areas of science, technology, engineering and mathematics. The Stennis Space Center Educator Resource Center hosted the workshop to equip teachers of grades 3-12.
Wireless Rover Meets 3D Design and Product Development
ERIC Educational Resources Information Center
Deal, Walter F., III; Hsiung, Steve C.
2016-01-01
Today there are a number of 3D printing technologies that are low cost and within the budgets of middle and high school programs. Educational technology companies offer a variety of 3D printing technologies and parallel curriculum materials to enable technology and engineering teachers to easily add 3D learning activities to their programs.…
ERIC Educational Resources Information Center
Gottwig, Bruce Ryan
2013-01-01
The proliferation of information communication technology (ICT) has placed educational institutions in the forefront in educating and training students as skilled consumers, engineers, and technicians of this widely used technology. Corporations that develop and use ICT are continually building a skilled workforce; however, because of the growth…
NASA Astrophysics Data System (ADS)
Marulcu, Ismail; Barnett, Michael
2016-01-01
Background: Elementary Science Education is struggling with multiple challenges. National and State test results confirm the need for deeper understanding in elementary science education. Moreover, national policy statements and researchers call for increased exposure to engineering and technology in elementary science education. The basic motivation of this study is to suggest a solution to both improving elementary science education and increasing exposure to engineering and technology in it. Purpose/Hypothesis: This mixed-method study examined the impact of an engineering design-based curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. We hypothesize that the LEGO-engineering design unit is as successful as the inquiry-based unit in terms of students' science content learning of simple machines. Design/Method: We used a mixed-methods approach to investigate our research questions; we compared the control and the experimental groups' scores from the tests and interviews by using Analysis of Covariance (ANCOVA) and compared each group's pre- and post-scores by using paired t-tests. Results: Our findings from the paired t-tests show that both the experimental and comparison groups significantly improved their scores from the pre-test to post-test on the multiple-choice, open-ended, and interview items. Moreover, ANCOVA results show that students in the experimental group, who learned simple machines with the design-based unit, performed significantly better on the interview questions. Conclusions: Our analyses revealed that the design-based Design a people mover: Simple machines unit was, if not better, as successful as the inquiry-based FOSS Levers and pulleys unit in terms of students' science content learning.
Engineering at the Elementary Level
ERIC Educational Resources Information Center
McGrew, Cheryl
2012-01-01
Can engineering technology be taught at the elementary level? Designing and building trebuchets, catapults, solar cars, and mousetrap vehicles in a west central Florida elementary class was considered very unusual in recent years. After a review of current research on failing schools and poor curriculum, the author wondered what her school could…
Holistic Development of Computer Engineering Curricula Using Y-Chart Methodology
ERIC Educational Resources Information Center
Rashid, Muhammad; Tasadduq, Imran A.
2014-01-01
The exponential growth of advancing technologies is pushing curriculum designers in computer engineering (CpE) education to compress more and more content into the typical 4-year program, without necessarily paying much attention to the cohesiveness of those contents. The result has been highly fragmented curricula consisting of various…
Greening the curriculum: augmenting engineering and technology courses with sustainability topics
USDA-ARS?s Scientific Manuscript database
Duties of engineers and technologists often entail designing and implementing solutions to problems. It is their responsibility to be cognizant of the impacts of their designs on, and thus their accountability to society in general. They must also be aware of subsequent effects upon the environment....
Deconstruction Geography: A STEM Approach
ERIC Educational Resources Information Center
Gehlhar, Adam M.; Duffield, Stacy K.
2015-01-01
This article will define the engineering design process used to create an integrated curriculum at STEM Center Middle School, and it features the planning, implementation, and revision of the Deconstruction Geography unit. The Science Technology Engineering and Math (STEM) Center opened in the fall of 2009 as a way to relieve overcrowding at the…
The Engineering Design Process as a Model for STEM Curriculum Design
ERIC Educational Resources Information Center
Corbett, Krystal Sno
2012-01-01
Engaging pedagogics have been proven to be effective in the promotion of deep learning for science, technology, engineering, and mathematics (STEM) students. In many cases, academic institutions have shown a desire to improve education by implementing more engaging techniques in the classroom. The research framework established in this…
ERIC Educational Resources Information Center
Kazakeviciute, Agne; Urbone, Renata; Petraite, Monika
2016-01-01
University-based entrepreneurship education is facing a paradigm shift between the classical "business school" and the contemporary cross-disciplinary "technology venturing" approach, mainly advocated by engineering schools and other communities outside business schools. The conflict is between structured "business…
ERIC Educational Resources Information Center
Riojas, Mario
2012-01-01
The significance of teaching the basics of engineering education in middle- and high-schools is generally acknowledged by policy makers, teachers and researchers in the U.S.A. as well as a number of developed and developing countries. Nevertheless, engineering topics are rarely covered by precollege curriculums. A key contributing factor is that…
ERIC Educational Resources Information Center
Zinser, Richard; Poledink, Paul
2005-01-01
The Ford Motor Company launched a new pre-engineering curriculum for high schools in the Fall of 2004. Building on an earlier manufacturing program, the development process for the Ford Partnership for Advanced Studies took approximately three years. Ford and the course designers wanted the new program to incorporate the best principles and…
ERIC Educational Resources Information Center
Görlitz, Katja; Gravert, Christina
2018-01-01
This paper evaluates the effects of a high school curriculum reform on students' probability to enroll at university and to choose a Science, Technology, Engineering or Mathematics (STEM) major. The reform increased the difficulty of graduating from high school by increasing the instruction time in core subjects and by raising the graduation…
NASA Astrophysics Data System (ADS)
Hamid, Nasri A.; Mujaini, Madihah; Mohamed, Abdul Aziz
2017-01-01
The Center for Nuclear Energy (CNE), College of Engineering, Universiti Tenaga Nasional (UNITEN) has a great responsibility to undertake educational activities that promote developing human capital in the area of nuclear engineering and technology. Developing human capital in nuclear through education programs is necessary to support the implementation of nuclear power projects in Malaysia in the near future. In addition, the educational program must also meet the nuclear power industry needs and requirements. In developing a certain curriculum, the contents must comply with the university's Outcomes Based Education (OBE) philosophy. One of the important courses in the nuclear curriculum is in the area of nuclear security. Basically the nuclear security course covers the current issues of law, politics, military strategy, and technology with regard to weapons of mass destruction and related topics in international security, and review legal regulations and political relationship that determine the state of nuclear security at the moment. In addition, the course looks into all aspects of the nuclear safeguards, builds basic knowledge and understanding of nuclear non-proliferation, nuclear forensics and nuclear safeguards in general. The course also discusses tools used to combat nuclear proliferation such as treaties, institutions, multilateral arrangements and technology controls. In this paper, we elaborate the development of undergraduate nuclear security course at the College of Engineering, Universiti Tenaga Nasional. Since the course is categorized as mechanical engineering subject, it must be developed in tandem with the program educational objectives (PEO) of the Bachelor of Mechanical Engineering program. The course outcomes (CO) and transferrable skills are also identified. Furthermore, in aligning the CO with program outcomes (PO), the PO elements need to be emphasized through the CO-PO mapping. As such, all assessments and distribution of Bloom Taxonomy levels are assigned in accordance with the CO-PO mapping. Finally, the course has to fulfill the International Engineering Alliance (IEA) Graduate Attributes of the Washington Accord.
NASA Astrophysics Data System (ADS)
Marulcu, Ismail
This mixed method study examined the impact of a LEGO-based, engineering-oriented curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. This study takes a social constructivist theoretical stance that science learning involves learning scientific concepts and their relations to each other. From this perspective, students are active participants, and they construct their conceptual understanding through the guidance of their teacher. With the goal of better understanding the use of engineering education materials in classrooms the National Academy of Engineering and National Research Council in the book "Engineering in K-12 Education" conducted an in-depth review of the potential benefits of including engineering in K--12 schools as (a) improved learning and achievement in science and mathematics, (b) increased awareness of engineering and the work of engineers, (c) understanding of and the ability to engage in engineering design, (d) interest in pursuing engineering as a career, and (e) increased technological literacy (Katehi, Pearson, & Feder, 2009). However, they also noted a lack of reliable data and rigorous research to support these assertions. Data sources included identical written tests and interviews, classroom observations and videos, teacher interviews, and classroom artifacts. To investigate the impact of the design-based simple machines curriculum compared to the scientific inquiry-based simple machines curriculum on student learning outcomes, I compared the control and the experimental groups' scores on the tests and interviews by using ANCOVA. To analyze and characterize the classroom observation videotapes, I used Jordan and Henderson's (1995) method and divide them into episodes. My analyses revealed that the design-based Design a People Mover: Simple Machines unit was, if not better, as successful as the inquiry-based FOSS Levers and Pulleys unit in terms of students' content learning. I also found that students in the engineering group outperformed students in the control group in regards to their ability to answer open-ended questions when interviewed. Implications for students' science content learning and teachers' professional development are discussed.
Science & Technology: A New Alliance.
ERIC Educational Resources Information Center
Lux, Donald G.
Understandings and cooperation must be improved between researchers in pure science and applied science, and in this case, industrial arts. Technology has crept into science but is seldom an organized part of the science curriculum. Few science teachers have contact with engineers or technologists, while industrial arts teachers typically have…
ERIC Educational Resources Information Center
Kahler, Jim; Valentine, Nancy
2011-01-01
America has a gap when it comes to youth pursuing science and technology careers. In an effort to improve the knowledge and application of science, technology, engineering, and math (STEM), after-school programs can work in conjunction with formal in-school curriculum to improve science education. One organization that actively addresses this…
A Theoretical Framework to Guide the Re-Engineering of Technology Education
ERIC Educational Resources Information Center
Kelley, Todd; Kellam, Nadia
2009-01-01
Before leaders in technology education are able to identify a theoretical framework upon which a curriculum is to stand, they must first grapple with two opposing views of the purpose of technology education--education for all learners or career/technical education. Dakers (2006) identifies two opposing philosophies that can serve as a framework…
The Chemical Engineer's Toolbox: A Glass Box Approach to Numerical Problem Solving
ERIC Educational Resources Information Center
Coronell, Daniel G.; Hariri, M. Hossein
2009-01-01
Computer programming in undergraduate engineering education all too often begins and ends with the freshman programming course. Improvements in computer technology and curriculum revision have improved this situation, but often at the expense of the students' learning due to the use of commercial "black box" software. This paper describes the…
A Modular Approach to Integrating Biofuels Education into ChE Curriculum Part I--Learning Materials
ERIC Educational Resources Information Center
He, Q. Peter; Wang, Jin; Zhang, Rong; Johnson, Donald; Knight, Andrew; Polala, Ravali
2016-01-01
In view of potential demand for skilled engineers and competent researchers in the biofuels field, we have identified a significant gap between advanced biofuels research and undergraduate biofuels education in chemical engineering. To help bridge this gap, we created educational materials that systematically integrate biofuels technologies into…
Insights from a Convocation: Integrating Discovery-Based Research into the Undergraduate Curriculum
ERIC Educational Resources Information Center
Elgin, Sarah C. R.; Bangera, Gita; Decatur, Sean M.; Dolan, Erin L.; Guertin, Laura; Newstetter, Wendy C.; San Juan, Elvyra F.; Smith, Mary A.; Weaver, Gabriela C.; Wessler, Susan R.; Brenner, Kerry A.; Labov, Jay B.
2016-01-01
Recommendation 2 of the February 2012 report "Engage to Excel" from the President's Council of Advisors on Science and Technology (PCAST 2012) urges the science, technology, engineering, and mathematics (STEM) education community and funding agencies to "advocate and provide support for replacing standard laboratory courses with…
IS 2010 and ABET Accreditation: An Analysis of ABET-Accredited Information Systems Programs
ERIC Educational Resources Information Center
Saulnier, Bruce; White, Bruce
2011-01-01
Many strong forces are converging on information systems academic departments. Among these forces are quality considerations, accreditation, curriculum models, declining/steady student enrollments, and keeping current with respect to emerging technologies and trends. ABET, formerly the Accrediting Board for Engineering and Technology, is at…
Home, but not Alone: Information and Communication Technology and Internationalisation at Home.
ERIC Educational Resources Information Center
Joris, Michael; van den Berg, Christiaan; van Ryssen, Stefaan
2003-01-01
Discusses information and communication technology (ICT) within the context of "internationalization at home" efforts in higher education. Examines issues involved in introducing ICT as a tool in educational development, particularly in course and student management, and as an engine for international curriculum development. Addresses quality…
ERIC Educational Resources Information Center
Center for the Study of Mathematics Curriculum, 2012
2012-01-01
In 2009-10 a series of Workshops was organized to focus on STEM (science, technology, engineering, and mathematics) learning design for young students and adolescents. The objective was to provide visionary leadership to the education community by: (a) identifying and analyzing the needs and opportunities for future STEM curriculum development and…
NASA Astrophysics Data System (ADS)
Miller, Brant Gregory
Mainstream curricula have struggled to provide American Indian students with meaningful learning experiences. This research project studied a novel approach to engaging students with science, technology, engineering, and mathematics (STEM) content through a culturally-based context. The traditional American Indian game of Snow Snakes (shushumeg in Ojibwe) presented a highly engaging context for delivering STEM content. Through the engaging context of snow snakes, the designed STEM curriculum explicitly applied mathematics (scaling and data), and science (force and motion) to an engineering prototype iteration that used available materials and tools (technology) for success. It was hypothesized that by engaging students through the carefully integrated STEM curriculum, driven by the culturally based context of snow snakes, students would exhibit an increase in science agency and achievement. The overarching research question explored for this study was: How does a culturally-based and integrated STEM curriculum impact student's science agency? Associated sub-questions were: (1) What does science agency look like for 6th grade students? (2) What key experiences are involved in the development of science agency through a culturally-based STEM curriculum context? And (3) What are the impacts on the community associated with the implementation of a culturally-based STEM curriculum? A case study research design was implemented for this research. Yin (2003) defines a case study as investigating a phenomenon (e.g. science agency) which occurs within authentic contexts (e.g. snow snakes, Adventure Learning, and Eagle Soaring School) especially when the boundaries between phenomenon and context are unclear. For this case study Eagle Soaring School acted as the bounded case with students from the 6th grade class representing the embedded units. Science agency was the theoretical framework for data analysis. Major findings were categorized as science and STEM learning, agency, and community impact. Concerning agency, students displayed science agency through: connecting snow snake experiences to outside contexts; students emerging as leaders; and students commanding a facility with science. This research lays the foundation for future inquiry into the development of science agency in students using culturally-based contexts.
NASA Technical Reports Server (NTRS)
Williams, L., Jr.
1978-01-01
The applicability of the tele-conference method of curriculum sharing as well as the sharing of scientific research results between universities and industrial organizations was evaluated in relation to other techniques and methods. Ten universities cooperated with NC A&T State University in an effort to increase the number of minority scientists and engineers in the USA via the utilization of the communication features of satellites. Research activities, experiments and studies in curriculum sharing are described as well as the techniques, interconnections and equipment utilized. Suggested methods and recommendations for a continuation of innovative applications of satellite technology in higher education at NC A&T State University are included.
NASA Astrophysics Data System (ADS)
Welch, C.; Osborne, B.
The UK national STEM Ambassadors programme provides inspiring role models for school students in science, technology, engineering, mathematics (STEM) subjects. STEMNET, the national body responsible for STEM Ambassa- dors aims to provide more than 27,000 STEM Ambassadors nationwide by the end of 2011. This paper reports on a project at Kingston University to embed STEM Ambassador training and activity in Year 2 of the undergraduate Aerospace Engineering, Astronautics and Space Technology degree. The project, known as KUSPACE (Kingston University Students Providing Amazing Classroom Experiences), was conceived to develop students' communication, planning and presentation skills and build links between different cohort years, while providing a valuable contribution to local primary schools' STEM programmes and simultaneously raising the public engagement profile of the university. This paper describes the pedagogical conception of the KUSPACE, its implementation in the curriculum, the delivery of it in the university and schools and its effect on the undergraduate students, as well as identifying good practice and drawing attention to lessons learned.STEMNET (www.stemnet.org) is the UK's Science, Technol- ogy, Engineering and Mathematics Network. Working with a broad range of UK partners and funded by the UK govern- ment's Department for Business Innovation and Skills, STEMNET plays a significant role in ensuring that five to nineteen year olds and their teachers can experience a wide range of activities and schemes which enhance and enrich the school curriculum [1]. Covering all aspects of Science, Tech- nology, Engineering and Maths (STEM), these activities and schemes are designed both to increase STEM awareness and literacy in the young people and also to encourage more of them to undertake post-16 STEM qualifications and associated careers [2]. STEMNET operates through forty-five local con- tract holders around the UK which help the network deliver its programmes to schools and organisations in their particular areas, mainly through the STEM Ambassador Programme (see below) and the Schools STEM Advisory Network.In support of its vision - `To increase young people's choice and chances through science, technology, engineering, and mathematics ' - STEMNET seeks to be a recognised leader in enabling all young people to achieve their potential in STEM by:
NASA Astrophysics Data System (ADS)
Phaneuf, Tiffany
The implementation of sustainable development in higher education is a global trend. Engineers, as gatekeepers of technological innovation, confront increasingly complex world issues ranging from economic and social to political and environmental. Recently, a multitude of government reports have argued that solving such complex problems requires changes in the pedagogy of engineering education, such as that prescribed by the Science, Technology, Society, and education (STS) movement that grew out of the environmental movement in the 70s. In STS students are engaged in the community by understanding that scientific progress is innately a sociopolitical process that involves dimensions of power, wealth and responsibility. United States accreditation criteria now demand "the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context" (ABET Engineering Accreditation Commission 2005). With such emphasis on STS education as necessary to address complex world issues, it is vital to assess the barriers in the traditional engineering curriculum that may inhibit the success of such educational reform. This study identifies barriers to STS goals and pedagogy in post secondary science education by using the Francis College of Engineering at UMASS Lowell as a single case study. The study draws on existing literature to develop a theoretical framework for assessing four hypothesized barriers to STS education in undergraduate engineering. Identification of barriers to STS education in engineering generates a critical reflection of post secondary science education and its role in preparing engineers to be active citizens in shaping a rapidly globalizing world. The study offers policy recommendations for enabling post secondary science education to incorporate STS education into its curriculum.
The First ECPD Accredited Environmental B. Tech. Program
ERIC Educational Resources Information Center
Rowe, Donald R.; Russell, John P.
1975-01-01
Describes the first bachelor of science program in environmental engineering technology, with objectives of providing adequate training in the control of air, water, and land pollution. Includes a four-year curriculum plan. (MLH)
[Master course in biomedical engineering].
Jobbágy, Akos; Benyó, Zoltán; Monos, Emil
2009-11-22
The Bologna Declaration aims at harmonizing the European higher education structure. In accordance with the Declaration, biomedical engineering will be offered as a master (MSc) course also in Hungary, from year 2009. Since 1995 biomedical engineering course has been held in cooperation of three universities: Semmelweis University, Budapest Veterinary University, and Budapest University of Technology and Economics. One of the latter's faculties, Faculty of Electrical Engineering and Informatics, has been responsible for the course. Students could start their biomedical engineering studies - usually in parallel with their first degree course - after they collected at least 180 ECTS credits. Consequently, the biomedical engineering course could have been considered as a master course even before the Bologna Declaration. Students had to collect 130 ECTS credits during the six-semester course. This is equivalent to four-semester full-time studies, because during the first three semesters the curriculum required to gain only one third of the usual ECTS credits. The paper gives a survey on the new biomedical engineering master course, briefly summing up also the subjects in the curriculum.
Solar cell and photonics outreach for middle school students and teachers
NASA Astrophysics Data System (ADS)
Gilchrist, Pamela O.; Alexander, Alonzo B.
2017-08-01
This paper will describe the curriculum development process employed to develop a solar cell and photonics curriculum unit for students underrepresented in science, technology, engineering and mathematics fields. Information will explain how the curriculum unit was piloted with middle and high school teachers from public schools in North Carolina, high school students from underrepresented groups in an informal science program, and workshop settings. Measures used to develop the curriculum materials for middle school students will be presented along with program findings documenting students' urban versus rural interest in STEM, career aspirations, and 21st century learning skills in informal learning settings.
Utility operations review of North Carolina State University BSNE curriculum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, E.A.; Faggart, E.M.; Jackson, G.D.
1988-01-01
The industry advisors group of the North Carolina State University (NCSU) Department of Nuclear Engineering raised the question of how well the curriculum for a bachelor of science in nuclear engineering (BSNE) meets the needs of educating students to enter the nuclear operations field. The concern was that the nuclear industry has evolved from a design to an operations mode, but that the BSNE curriculum may not have responded to this evolution. To address this issue, a group of four persons qualified as senior reactor operators with operational experience from different utilities was selected. The authors are the members ofmore » this review group. All are degreed personnel, with three BSNE graduates from NCSU, and all have participated in nuclear plant startups and currently work at nuclear plant sites. The group prepared by reviewing the curriculum before arriving on campus, including the report developed for the Accreditation Board for Engineering and Technology. During our two-day campus visit, we reviewed course materials, interviewed professors, and toured laboratory and reactor facilities in order to get more insight into the breadth and thrust of the BSNE curriculum. The observations and recommendations contained in this paper were developed based on these reviews and discussions and represent the opinions of the authors and not necessarily their companies.« less
ERIC Educational Resources Information Center
Basitere, Moses; Ivala, Eunice
2015-01-01
This paper reports on a study carried out at a University of Technology, South Africa, aimed at identifying the existence of the mathematical knowledge gap and evaluating the intervention designed to bridge the knowledge gap amongst students studying first year mathematics at the Chemical Engineering Extended Curriculum Program (ECP). In this…
ERIC Educational Resources Information Center
Nair, Priya; Ankeny, Casey J.; Ryan, Justin; Okcay, Murat; Frakes, David H.
2016-01-01
We investigated the use of a new system, HemoFlow™, which utilizes state of the art technologies such as particle image velocimetry to test endovascular devices as part of an undergraduate biomedical engineering curriculum. Students deployed an endovascular stent into an anatomical model of a cerebral aneurysm and measured intra-aneurysmal flow…
ERIC Educational Resources Information Center
Kim, Donghwi; Kamoua, Ridha; Pacelli, Andrea
2006-01-01
Nanoelectronics has the potential, and is indeed expected, to revolutionize information technology by the use of the impressive characteristics of nano-devices such as carbon nanotube transistors, molecular diodes and transistors, etc. A great effort is being put into creating an introductory course in nano-technology. However, practically all…
Introducing Wind Power: Essentials for Bringing It into the Classroom
ERIC Educational Resources Information Center
Swapp, Andy; Schreuders, Paul; Reeve, Edward
2011-01-01
As a renewable source of energy, wind energy will play a significant role in the future. Public, commercial, and privately owned organizations are increasingly finding the value and profits in wind power. Including wind power in a technology and engineering education curriculum teaches students about an important technology that may effect their…
Engineering and Technology Students' Perceptions of Courses
ERIC Educational Resources Information Center
Mativo, John M.; Womble, Myra N.; Jones, Karen H.
2013-01-01
As cultural, social, political and economic changes take place, the secondary or high school curriculum should reflect and respond to changing needs and aspirations of students. Technology Education has been proactive in this arena as it has transformed over the decades to meet ever-changing societal needs. The most recent change to the discipline…
Capacity-oriented curriculum system of optoelectronics in the context of large category cultivation
NASA Astrophysics Data System (ADS)
Luo, Yuan; Hu, Zhangfang; Zhang, Yi
2017-08-01
In order to cultivate the innovative talents with the comprehensive development to meet the talents demand for development of economic society, Chongqing University of Posts and Telecommunications implements cultivation based on broadening basic education and enrolment in large category of general education. Optoelectronic information science and engineering major belongs to the electronic engineering category. The "2 +2" mode is utilized for personnel training, where students are without major in the first and second year and assigned to a major within the major categories in the end of the second year. In the context of the comprehensive cultivation, for the changes in the demand for professionals in the global competitive environment with the currently rapid development, especially the demand for the professional engineering technology personnel suitable to industry and development of local economic society, the concept of CDIO engineering ability cultivation is used for reference. Thus the curriculum system for the three-node structure optoelectronic information science and engineering major is proposed, which attaches great importance to engineering practice and innovation cultivation under the background of the comprehensive cultivation. The conformity between the curriculum system and the personnel training objectives is guaranteed effectively, and the consistency between the teaching philosophy and the teaching behavior is enhanced. Therefore, the idea of major construction is clear with specific characteristics.
NASA Astrophysics Data System (ADS)
Cordero, E.; Centeno, D.
2015-12-01
Over the last four years, the Green Ninja Project (GNP) has been developing educational media (e.g., videos, games and online lessons) to help motivate student interest and engagement around climate science and solutions. Inspired by the new emphasis in NGSS on climate change, human impact and engineering design, the GNP is developing a technology focused, integrative, and yearlong science curriculum focused around solutions to climate change. Recognizing the importance of teacher training on the successful implementation of NGSS, we have also integrated teacher professional development into our curriculum. During the presentation, we will describe the design philosophy around our middle school curriculum and share data from a series of classes that are piloting the curriculum during Fall 2015. We will also share our perspectives on how data, media creation and engineering can be used to create educational experiences that model the type of 'three-dimensional learning' encouraged by NGSS.
Advanced Technology for Engineering Education
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)
1998-01-01
This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.
Training needs analysis for engineering technicians in Oman
NASA Astrophysics Data System (ADS)
Al-Mughairi, Abdulkarim Sultan
This thesis examines the transition from the Omani Colleges of Technology (CT) to employment of its engineering graduates. It arises out of concerns that the transition to the labour market for engineering graduate is problematical. The research was carried out to identify the knowledge, skills, and abilities (KSA) of engineering technicians required in the Omani market place. The aim is to provide local curriculum designers in the Colleges of Technology with sufficient information about the required KSA in order to create and enhance the engineering curriculum so that it has greater capacity to meet the needs of a variety of stakeholders and of employers in particular. This in turn has the potential to bridge the gap between what is presently taught and what the workplace demands. Personnel psychologists identify views concerning the skills that are required for different jobs. One of these is based on the assumption that quite different skills are required in different jobs (SCANS, 1990). This view generates approaches within job analysis: the worker-oriented and the task-oriented approaches. This research uses Position Analysis Questionnaire (PAQ), which is a worker-oriented job analysis instrument, to investigate the KSA required to perform some of the engineering technician jobs in Omani industries. In addition, semi-structured interviews were used to investigate the factors that either hinder or entirely prevent the new graduates from Colleges of Technology from being accepted in the workforce pool. The major research findings concern the dimensions of knowledge, skills, and abilities of six engineering technician job titles and the major factors that hinder or (prevent) the technical college graduates from being accepted in the market place in Oman. These findings would definitely help design better transition route and bridge the gap between the CT technicians engineering programmes and the workplace demands.
Teaching smartphone and microcontroller systems using "Android Java"
NASA Astrophysics Data System (ADS)
Tigrek, Seyitriza
Mobile devices are becoming indispensable tools for many students and educators. Mobile technology is starting a new era in the computing methodologies in many engineering disciplines and laboratories. Microcontroller extension that communicates with mobile devices will take the data acquisition and control process into a new level in the sensing technology and communication. The purpose of this thesis is to develop a framework to incorporate the new mobile platform with robust embedded systems into the engineering curriculum. For this purpose a course material is developed "Introduction to Programming Java on a Mobile Platform" to teach novice programmers how to create applications, specifically on Android. Combining an introductory level programming class with the Android platform can appeal to non-programming individuals in multiple disciplines. The proposed course curriculum reduces the learning time, and allows senior engineering students to use the new framework for their specific needs in the labs such as mobile data acquisition and control projects. This work provides techniques for instructors with modest programming background to teach cutting edge technology, which is smartphone programming. Techniques developed in this work minimize unnecessary information carried into current teaching approaches with hands-on practice. It also helps the students with minimal background requirements overcome the barriers that have evolved around computer programming. The motivation of this thesis is to create a tailored programming introductory course to teach Java programming on Android by incorporating selected efficient methods from extant literature. The mechanism proposed in this thesis is to keep students motivated by an active approach based on student-centered learning with collaborative work. Teamwork through pair programming is adapted in this teaching process. Bloom's taxonomy, along with a knowledge survey, is used as a guide to classify the information and exercise problems. A prototype curriculum is a deliverable of this research that is suitable for novice programmers-such as engineering freshmen students. It also contains advanced material that allows senior students to use mobile phone and a microcontroller system to enhance engineering laboratories.
Business, Education Partnerships -- Bridging the Paradigm Divide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anne L. Seifert; Louis S. Nadelson
2013-01-01
The authors discuss the integrated science, technology, engineering, and mathematics (i-STEM) curriculum in business and industry comparing it with the traditional STEM K-12 curriculum in the U.S. Topics discussed includes limitations associated with the traditional STEM education, advantages of i-STEM such as enhancing professional development of educators to enhance their capacity to make youth capable for i-STEM careers, and i-STEM tools such as a project-based learning.
ERIC Educational Resources Information Center
McLurkin, J.; Rykowski, J.; John, M.; Kaseman, Q.; Lynch, A. J.
2013-01-01
This paper describes the experiences of using an advanced, low-cost robot in science, technology, engineering, and mathematics (STEM) education. It presents three innovations: It is a powerful, cheap, robust, and small advanced personal robot; it forms the foundation of a problem-based learning curriculum; and it enables a novel multi-robot…
ERIC Educational Resources Information Center
Lewis, Theodore
2006-01-01
This article examines the merits of the proposition that design and inquiry are conceptual parallels. It does so by first looking closely at the inquiry-related discourse within science education, then at aspects of the design discourse within engineering, and finally within technology education. Convergences and divergences of these two streams…
Keeping It Real: A Toledo Public School Prepares Students for College and Career
ERIC Educational Resources Information Center
Dubin, Jennifer
2014-01-01
In this article, author Jennifer Dubin offers a look into the innovations taking place in the Toledo Technology Academy (TTA), a career-tech school within the public school system in Toledo, Ohio. TTA teaches students in grades 7 through 12 using a science, technology, engineering, and math (STEM) curriculum, in addition to the traditional…
ERIC Educational Resources Information Center
Brown, Josh; Brown, Ryan; Merrill, Chris
2012-01-01
Science, Technology, Engineering, and Mathematics (STEM) teachers teach multiple concepts that lend themselves to possible collaboration on a daily basis. Much like Metz's (2009) insightful discussion about the importance of science educators creating partnerships in the community "outside the school walls," integrative STEM teaching also requires…
ERIC Educational Resources Information Center
Pinkard, Nichole; Erete, Sheena; Martin, Caitlin K.; McKinney de Royston, Maxine
2017-01-01
Women use technology to mediate numerous aspects of their professional and personal lives. Yet, few design and create these technologies given that women, especially women of color, are grossly underrepresented in computer science and engineering courses. Decisions about participation in STEM are frequently made prior to high school, and these…
ERIC Educational Resources Information Center
Kim, Dongryeul; Bolger, Molly
2017-01-01
Integrated curricula have become a major educational focus in Korea. Policy changes began in 2009 when the Korea Ministry of Education, Science, and Technology announced a new curriculum incorporating Science, Technology, Engineering, Arts, and Mathematics (STEAM). Various stages of educational reform have occurred since that time. This study…
NASA Astrophysics Data System (ADS)
Sánchez-Martín, Jesús; Álvarez-Gragera, García J.; Dávila-Acedo, M. Antonia; Mellado, Vicente
2017-11-01
The interest on engineering and scientific studies can be raised up even from the early years of academic instructional process. This vocation may be linked to emotions and aptitudes towards technological education. Particularly, students get in touch with these technological issues (namely STEM) during the Compulsory Secondary Education in Spain (12-16 years old).This work presents a preliminary evaluation of how relevant is Gardner's multiple intelligence theory (MIT) in the teaching-learning process within the Technology Lessons. In this sense, MIT was considered as an explanation variable of the emotional response within the different educational parts (so-called syllabus units, SU) in the Technology spanish curriculum. Different intelligence style (IS) will orient the student to a vision of the engineering and technology. This work tries to identify which relationships can be established between IS and specific technology and engineering learning. This research involved up to 135 students were subsequently tested about their predominant (IS) and on the emotions that arouse in them when working with each SU. The results were statistically significant and only those with a Logic-arithmetic or Environmental IS were not affected by the SU.Best teaching and learning practicesare required for encouraging further engineering studies.
Developing a New Industrial Engineering Curriculum Using a Systems Engineering Approach
ERIC Educational Resources Information Center
Buyurgan, Nebil; Kiassat, Corey
2017-01-01
This paper reports on the development of an engineering curriculum for a new industrial engineering programme at a medium-sized private university in the northeast United States. A systems engineering process has been followed to design and develop the new curriculum. Considering the programme curriculum as a system, first the stakeholders have…
NASA Astrophysics Data System (ADS)
Meda, Lawrence; Swart, Arthur James
2018-05-01
Learning outcomes are essential to any curriculum in education, where they need to be clear, observable and measurable. However, some academics structure learning outcomes in a way that does not promote student learning. The purpose of this article is to present the analyses of learning outcomes of an Electrical Engineering curriculum offered at a University of Technology in South Africa, in order to determine if academics are structuring them in a way that enables student learning. A qualitative case study is used where the learning outcomes from 33 study guides are reviewed using illustrative verbs derived from Bloom's Taxonomy. Results indicate that 9% of all the learning outcomes are unclear, 10% are unobservable and 23% are unmeasurable. A key recommendation is to provide regular workshops to assist academics in reviewing their learning outcomes using the illustrative verbs derived from Bloom's Taxonomy, thereby ensuring that their learning outcomes promote student learning.
Interdisciplinary innovations in biomedical and health informatics graduate education.
Demiris, G
2007-01-01
Biomedical and health informatics (BHI) is a rapidly growing domain that relies on the active collaboration with diverse disciplines and professions. Educational initiatives in BHI need to prepare students with skills and competencies that will allow them to function within and even facilitate interdisciplinary teams (IDT). This paper describes an interdisciplinary educational approach introduced into a BHI graduate curriculum that aims to prepare informatics researchers to lead IDT research. A case study of the "gerontechnology" research track is presented which highlights how the curriculum fosters collaboration with and understanding of the disciplines of Nursing, Engineering, Computer Science, and Health Administration. Gerontechnology is a new interdisciplinary field that focuses on the use of technology to support aging. Its aim is to explore innovative ways to use information technology and develop systems that support independency and increase quality of life for senior citizens. As a result of a large research group that explores "smart home" technologies and the use of information technology, we integrated this new domain into the curriculum providing a platform for computer scientists, engineers, nurses and physicians to explore challenges and opportunities with our informatics students and faculty. The interdisciplinary educational model provides an opportunity for health informatics students to acquire the skills for communication and collaboration with other disciplines. Numerous graduate and postgraduate students have already participated in this initiative. The evaluation model of this approach is presented. Interdisciplinary educational models are required for health informatics graduate education. Such models need to be innovative and reflect the needs and trends in the domains of health care and information technology.
NASA Technical Reports Server (NTRS)
Sullivan, Steven J.
2014-01-01
"Rocket University" is an exciting new initiative at Kennedy Space Center led by NASA's Engineering and Technology Directorate. This hands-on experience has been established to develop, refine & maintain targeted flight engineering skills to enable the Agency and KSC strategic goals. Through "RocketU", KSC is developing a nimble, rapid flight engineering life cycle systems knowledge base. Ongoing activities in RocketU develop and test new technologies and potential customer systems through small scale vehicles, build and maintain flight experience through balloon and small-scale rocket missions, and enable a revolving fresh perspective of engineers with hands on expertise back into the large scale NASA programs, providing a more experienced multi-disciplined set of systems engineers. This overview will define the Program, highlight aspects of the training curriculum, and identify recent accomplishments and activities.
NASA Astrophysics Data System (ADS)
Chatman, Lawrence M., Jr.
If the United States is to remain technologically competitive, persistence in engineering programs must improve. This study on student persistence employed a mixed-method design to identify the cognitive and noncognitive factors which contribute to students remaining in an engineering science curriculum or switching from an engineering curriculum at a community college in the northeast United States. Records from 372 students were evaluated to determine the characteristics of two groups: those students that persisted with the engineering curriculum and those that switched from engineering; also, the dropout phenomenon was evaluated. The quantitative portion of the study used a logistic regression analyses on 22 independent variables, while the qualitative portion of the study used group interviews to investigate the noncognitive factors that influenced persisting or switching. The qualitative portion of the study added depth and credibility to the results from the quantitative portion. The study revealed that (1) high grades in first year calculus, physics and chemistry courses, (2) fewer number of semesters enrolled, (3) attendance with full time status, and (4) not participating in an English as a Second Language (ESL) program were significant variables used to predict student persistence. The group interviews confirmed several of these contributing factors. Students that dropped out of college began with (1) the lowest levels of remediation, (2) the lowest grade point averages, and (3) the fewest credits earned.
ERIC Educational Resources Information Center
Razzouk, Rabieh; Dyehouse, Melissa; Santone, Adam; Carr, Ronald
2014-01-01
Teachers typically teach subjects separately, but integrated science, technology, engineering, and mathematics (STEM) curriculums that focus on real-world practices are gaining momentum (NAE and NRC 2009). Before release of the "Next Generation of Science Standards" ("NGSS") (NGSS Lead States 2013), 36 states already had a…
75 FR 456 - Agency Information Collection Activities: Proposed Collection, Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-05
..., technology, engineering, and mathematics (STEM) participation and retention among American Indians, Alaska Natives, and Native Hawaiians through the support of quality STEM teaching through faculty development, STEM degree and curriculum enhancement, and undergraduate research and training opportunities. The...
Teaching Design in Middle-School: Instructors' Concerns and Scaffolding Strategies
NASA Astrophysics Data System (ADS)
Bamberger, Yael M.; Cahill, Clara S.
2013-04-01
This study deals with engineering education in the middle-school level. Its focus is instructors' concerns in teaching design, as well as scaffolding strategies that can help teachers deal with these concerns. Through participatory action research, nine instructors engaged in a process of development and instruction of a curriculum about energy along with engineering design. A 50-h curriculum was piloted during a summer camp for 38 middle-school students. Data was collected through instructors' materials: observation field notes, daily reflections and post-camp discussions. In addition, students' artifacts and planning graphical models were collected in order to explore how instructors' concerns were aligned with students' learning. Findings indicate three main tensions that reflect instructors' main concerns: how to provide sufficient scaffolding yet encourage creativity, how to scaffold hands-on experiences that promote mindful planning, and how to scaffold students' modeling practices. Pedagogical strategies for teaching design that developed through this work are described, as well as the ways they address the National Research Council (A framework for K-12 science education: practices, crosscutting concepts, and core ideas. National Academies Press, Washington, DC, 2011) core ideas of engineering education and the International Technological Literacy standards (ITEA in Standards for technological literacy, 3rd edn. International Technology education Association, Reston, VA, 2007).
ERIC Educational Resources Information Center
Spence, Allen; Campus, Raymond
2007-01-01
As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…
Integrating Leadership Development throughout the Undergraduate Science Curriculum
ERIC Educational Resources Information Center
Reed, Kelynne E.; Aiello, David P.; Barton, Lance F.; Gould, Stephanie L.; McCain, Karla S.; Richardson, John M.
2016-01-01
This article discusses the STEM (science, technology, engineering, and mathematics) Teaching and Research (STAR) Leadership Program, developed at Austin College, which engages students in activities integrated into undergraduate STEM courses that promote the development of leadership behaviors. Students focus on interpersonal communication,…
DOT National Transportation Integrated Search
2006-07-01
The objectives of the peer exchange were to explore: : -Project Selection: Models/modifications that might be considered : -Project Management: Highest value/best use of our two Research Engineers : -Research Implementation: Core Curriculum developme...
ERIC Educational Resources Information Center
Brown, Ryan, Ed.; Ernst, Jeremy, Ed.; Clark, Aaron, Ed.; DeLuca, Bill, Ed.; Kelly, Daniel, Ed.
2017-01-01
This professional development activity on STEM Education is designed to keep Technology and Engineering teachers up to date regarding current and important issues in the discipline. This article describes why there is a focus on STEM Education, defines STEM Education, and discusses curriculum integration and its elements.
Integration of Research Into Grade Nine-Graduate Level Curricula
NASA Astrophysics Data System (ADS)
Bonner, J.; Callicott, K.; Page, C.
2004-05-01
Research on the Kolb Learning Cycle, engineering education, and recent cognitive learning research indicates that learning occurs through knowledge application. Moreover, experts in a given discipline will differ from novices with regard to their ability to transfer their knowledge by application to new contexts. We have developed a suite of educational opportunities to bridge the gap between research and the classroom, with activities spanning the educational spectrum from high school through graduate school. One mechanism for transferring of research into undergraduate/graduate curricula is through our National Science Foundation (NSF) funded Combined Research-Curriculum Development (CRCD) project ("Environmental Informatics in Coastal Margins"). This project modifies engineering curricula to provide the nation with the next generation of engineers who can utilize the latest environmental modeling tools. The project revises/creates three undergraduate courses forming the environmental informatics (EI) track of the civil engineering curriculum and two graduate courses integrating GIS and environmental measurements. Curriculum development efforts are guided by an expert team drawn from nearby campuses and both regional and national industry, and includes an expert in assessing the pedagogical value of the curriculum and developing suitable metrics to evaluate student learning experiences. Another NSF-funded project integrating research into an undergraduate educational setting is our Research Experience for Undergraduates (REU) project ("Undergraduate Research in Biodiversity and Ecological Processes in Fluctuating Environments"). Research includes overlapping topics in environmental engineering and life sciences. The summer research experience provides students an opportunity to integrate engineering and life science technologies and to the study of ecological processes associated with biodiversity and environmental quality. Students orally present their project and submit in-depth papers. Over twenty publications/proceedings papers have been generated thus far. A third project involves our collaborations with the ITS Center ("Information Technology in Science Center for Teaching and Learning") on the A&M campus. As an investment in "project team growing", the Center is collaborating with us to collect data on implementation of an engineering science and math enhancement module in Hearne Independent School District. The specific activity involves a CRCD engineering class and an educational psychology undergraduate class. The engineering students give group presentations, where each presentation addresses a scenario that focuses on an environmental topic presented in the class. The students present the technical material to the education students who serve as a non-technical lay audience, emulating a city council, for example. The education students adapt the material for presentation to high school students, working with mentor teachers to enhance content, relevance and hands on experience while learning to apply teaching pedagogy.
NASA Technical Reports Server (NTRS)
Monroe, Joseph; Kelkar, Ajit
2003-01-01
The NASA PAIR program incorporated the NASA-Sponsored research into the undergraduate environment at North Carolina Agricultural and Technical State University. This program is designed to significantly improve undergraduate education in the areas of mathematics, science, engineering, and technology (MSET) by directly benefiting from the experiences of NASA field centers, affiliated industrial partners and academic institutions. The three basic goals of the program were enhancing core courses in MSET curriculum, upgrading core-engineering laboratories to compliment upgraded MSET curriculum, and conduct research training for undergraduates in MSET disciplines through a sophomore shadow program and through Research Experience for Undergraduates (REU) programs. Since the inception of the program nine courses have been modified to include NASA related topics and research. These courses have impacted over 900 students in the first three years of the program. The Electrical Engineering circuit's lab is completely re-equipped to include Computer controlled and data acquisition equipment. The Physics lab is upgraded to implement better sensory data acquisition to enhance students understanding of course concepts. In addition a new instrumentation laboratory in the department of Mechanical Engineering is developed. Research training for A&T students was conducted through four different programs: Apprentice program, Developers program, Sophomore Shadow program and Independent Research program. These programs provided opportunities for an average of forty students per semester.
ERIC Educational Resources Information Center
Hallstrom, Jonas
2009-01-01
The aim of this article is to identify a technical domain of knowledge in the curriculum of the Swedish elementary school and views on elementary school technology of two interest groups--school teachers and engineers. Gradually during the early to mid-1920s there was increased technical content in the Swedish elementary school, if we look at the…
ERIC Educational Resources Information Center
Lewis, Theodore
2004-01-01
In the long march from manual training, the subject which today is called technology education has always had to contend with the question of its legitimacy as valid school knowledge. In this regard, it shares a similar history of struggle with other subjects whose initial entry into the curriculum was based on a utilitarian rather than an…
ERIC Educational Resources Information Center
Basitere, Moses; Ndeto Ivala, Eunice
2017-01-01
Today's 21st century students are regarded as "digital natives," who are influenced by digital environments for acquisition of information, communication and interaction. With the emergence of new technologies, educators are encouraged to find meaningful ways of incorporating these technologies into their classrooms. The practice…
ERIC Educational Resources Information Center
Dancz, Claire L. A.; Ketchman, Kevin J.; Burke, Rebekah D.; Hottle, Troy A.; Parrish, Kristen; Bilec, Melissa M.; Landis, Amy E.
2017-01-01
While many institutions express interest in integrating sustainability into their civil engineering curriculum, the engineering community lacks consensus on established methods for infusing sustainability into curriculum and verified approaches to assess engineers' sustainability knowledge. This paper presents the development of a sustainability…
Wind Energy Workforce Development: Engineering, Science, & Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc
2013-03-29
Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Mastersmore » degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.« less
Voss, Georgina
2013-09-01
This paper examines how young peoples' lived experiences with personal technologies can be used to teach engineering ethics in a way which facilitates greater engagement with the subject. Engineering ethics can be challenging to teach: as a form of practical ethics, it is framed around future workplace experience in a professional setting which students are assumed to have no prior experience of. Yet the current generations of engineering students, who have been described as 'digital natives', do however have immersive personal experience with digital technologies; and experiential learning theory describes how students learn ethics more successfully when they can draw on personal experience which give context and meaning to abstract theories. This paper reviews current teaching practices in engineering ethics; and examines young people's engagement with technologies including cell phones, social networking sites, digital music and computer games to identify social and ethical elements of these practices which have relevance for the engineering ethics curricula. From this analysis three case studies are developed to illustrate how facets of the use of these technologies can be drawn on to teach topics including group work and communication; risk and safety; and engineering as social experimentation. Means for bridging personal experience and professional ethics when teaching these cases are discussed. The paper contributes to research and curriculum development in engineering ethics education, and to wider education research about methods of teaching 'the net generation'.
The fully integrated biomedical engineering programme at Eindhoven University of Technology.
Slaaf, D W; van Genderen, M H P
2009-05-01
The development of a fully integrated biomedical engineering programme (life sciences included from the start) is described. Details are provided about background, implementation, and didactic concept: design centred learning combined with courses. The curriculum has developed into a bachelor-master's programme with two different master's degrees: Master's Degree in Biomedical Engineering and Master's Degree in Medical Engineering. Recently, the programme has adopted semester programming, has included a major and minor in the bachelor's degree phase, and a true bachelor's degree final project. Details about the programme and data about where graduates find jobs are provided in this paper.
EAST: Developing an Electronic Assessment and Storage Tool.
ERIC Educational Resources Information Center
Edwards, Katherine I.; Fernandez, Eugenia; Milionis, Tracey M.; Williamson, David M.
2002-01-01
Describes the purpose, development, analysis, prototyping, and features of the Electronic Assessment and Storage Tool (EAST). The Web-based system aids curriculum assessment at Purdue School of Engineering and Technology at Indiana University Purdue University Indianapolis through the ability to easily store artifacts in electronic form, support…
Cases on STEAM Education in Practice
ERIC Educational Resources Information Center
Bazler, Judith, Ed.; Van Sickle, Meta, Ed.
2017-01-01
Curriculums for STEM education programs have been successfully implemented into numerous school systems for many years. Recently, the integration of arts education into such programs has proven to be significantly beneficial to students, resulting in a new method of teaching including science, technology, engineering, art, and mathematics.…
Integrating Asynchronous Digital Design Into the Computer Engineering Curriculum
ERIC Educational Resources Information Center
Smith, S. C.; Al-Assadi, W. K.; Di, J.
2010-01-01
As demand increases for circuits with higher performance, higher complexity, and decreased feature size, asynchronous (clockless) paradigms will become more widely used in the semiconductor industry, as evidenced by the International Technology Roadmap for Semiconductors' (ITRS) prediction of a likely shift from synchronous to asynchronous design…
Large-scale visualization projects for teaching software engineering.
Müller, Christoph; Reina, Guido; Burch, Michael; Weiskopf, Daniel
2012-01-01
The University of Stuttgart's software engineering major complements the traditional computer science major with more practice-oriented education. Two-semester software projects in various application areas offered by the university's different computer science institutes are a successful building block in the curriculum. With this realistic, complex project setting, students experience the practice of software engineering, including software development processes, technologies, and soft skills. In particular, visualization-based projects are popular with students. Such projects offer them the opportunity to gain profound knowledge that would hardly be possible with only regular lectures and homework assignments.
Career and Technology Center Guides Students in Real-Life Careers | Poster
By Carolynne Keenan, Contributing Writer Frederick County Public School students have a unique opportunity—a chance to get a real-world, hands-on experience in biomedical science and biotechnology before they even graduate from high school, thanks to the Frederick County Career and Technology Center (CTC). Several years ago, the CTC established its biomedical sciences program with a curriculum from Project Lead the Way (PLTW), a nonprofit, nationwide developer of science, technology, engineering, and mathematics (STEM) education in elementary, middle, and high schools.
ERIC Educational Resources Information Center
Cobbs, Georgia A.; Cranor-Buck, Edith
2011-01-01
This article describes a particular activity, the Motorized Toy unit, which supports science, technology, engineering, and mathematics (STEM) goals and teaches students the basic concept of ratio. The unit addresses both mathematics and science standards and is part of a team-teaching activity. The unit comes from a curriculum titled A World In…
STEM and Career Exploratory Classes
ERIC Educational Resources Information Center
Chase, Darrell
2010-01-01
Districts face increasing pressure to improve students' mastery of curriculum in the fields of science, technology, engineering and mathematics (STEM). Yet the number of students enrolling in science and math courses drops dramatically in middle and high school. At Sylvester Middle School, Chinook Middle School and Cascade Middle School of the…
34 CFR 694.22 - What other activities may all GEAR UP projects provide?
Code of Federal Regulations, 2013 CFR
2013-07-01
... curriculum. (f) Providing special programs or tutoring in science, technology, engineering, or mathematics... ensure secondary school completion and postsecondary education enrollment of at-risk children, such as: (1) Identification of at-risk children. (2) After-school and summer tutoring. (3) Assistance to at...
34 CFR 694.22 - What other activities may all GEAR UP projects provide?
Code of Federal Regulations, 2014 CFR
2014-07-01
... curriculum. (f) Providing special programs or tutoring in science, technology, engineering, or mathematics... ensure secondary school completion and postsecondary education enrollment of at-risk children, such as: (1) Identification of at-risk children. (2) After-school and summer tutoring. (3) Assistance to at...
34 CFR 694.22 - What other activities may all GEAR UP projects provide?
Code of Federal Regulations, 2011 CFR
2011-07-01
... curriculum. (f) Providing special programs or tutoring in science, technology, engineering, or mathematics... ensure secondary school completion and postsecondary education enrollment of at-risk children, such as: (1) Identification of at-risk children. (2) After-school and summer tutoring. (3) Assistance to at...
34 CFR 694.22 - What other activities may all GEAR UP projects provide?
Code of Federal Regulations, 2012 CFR
2012-07-01
... curriculum. (f) Providing special programs or tutoring in science, technology, engineering, or mathematics... ensure secondary school completion and postsecondary education enrollment of at-risk children, such as: (1) Identification of at-risk children. (2) After-school and summer tutoring. (3) Assistance to at...
Integrated Language Education--A Means of Enhancing Engineers' Social Competences
ERIC Educational Resources Information Center
Lappalainen, P.
2010-01-01
The changes facing industries are necessitating a concomitant change in university curriculum. Before instigating a reform, however, education providers need to acquire an understanding of the most pertinent development needs essential for filling industrial competence gaps. The Language Centre at the Helsinki University of Technology in Finland…
The ROOT and STEM of a Fruitful Business Education
ERIC Educational Resources Information Center
Badua, Frank
2015-01-01
The author discusses the role of the liberal arts in a business curriculum for an increasingly science, technology, engineering, and mathematics (STEM)-centered world. The author introduces the rhetoric, orthography, ontology, and teleology (ROOT) disciplines, and links them to the traditional liberal arts foundation of higher education. The…
Improving FCS Accountability: Increasing STEM Awareness with Interior Design Modules
ERIC Educational Resources Information Center
Etheredge, Jessica; Moody, Dana; Cooper, Ashley
2014-01-01
This paper demonstrates ways in which family and consumer sciences (FCS) educators can explore more opportunities to integrate Science, Technology, Engineering, and Math (STEM) principles into secondary education curriculum. Interior design is used as a case study for creating learning modules that incorporate STEM principles in a creative and…
From Skeletons to Bridges & Other STEM Enrichment Exercises for High School Biology
ERIC Educational Resources Information Center
Riechert, Susan E.; Post, Brian K.
2010-01-01
The national Science, Technology, Engineering, and Math (STEM) Education Initiative favors a curriculum shift from the compartmentalization of math and science classes into discrete subject areas to an integrated, multidisciplinary experience. Many states are currently implementing programs in high schools that provide greater integration of math,…
STEM: The 21st Century Sputnik
ERIC Educational Resources Information Center
Garrett, Joyce Lynn
2008-01-01
The author of this article argues that, just as Americans were shocked into action, when the Soviet Union launched Sputnik in 1957, by strengthening STEM (science, technology, engineering, and mathematics) in the educational curriculum, Americans must be shocked again. The nation must address the failure of its leaders to provide adequate funding…
Physics First: Impact on SAT Math Scores
ERIC Educational Resources Information Center
Bouma, Craig E.
2013-01-01
Improving science, technology, engineering, and mathematics (STEM) education has become a national priority and the call to modernize secondary science has been heard. A Physics First (PF) program with the curriculum sequence of physics, chemistry, and biology (PCB) driven by inquiry- and project-based learning offers a viable alternative to the…
Not Your Grandparents' Vocational School
ERIC Educational Resources Information Center
Schachter, Ron
2012-01-01
Manufacturing biodiesel fuel, building a geodesic-domed greenhouse, measuring the environmental impact of abandoned industrial canals--these might well fit the mission of cutting-edge companies specializing in green technologies, or they could be part of the curriculum at an institution of advanced science and engineering such as MIT or Cal Tech.…
Students Learn Programming Faster through Robotic Simulation
ERIC Educational Resources Information Center
Liu, Allison; Newsom, Jeff; Schunn, Chris; Shoop, Robin
2013-01-01
Schools everywhere are using robotics education to engage kids in applied science, technology, engineering, and mathematics (STEM) activities, but teaching programming can be challenging due to lack of resources. This article reports on using Robot Virtual Worlds (RVW) and curriculum available on the Internet to teach robot programming. It also…
Future of Chemical Engineering: Integrating Biology into the Undergraduate ChE Curriculum
ERIC Educational Resources Information Center
Mosto, Patricia; Savelski, Mariano; Farrell, Stephanie H.; Hecht, Gregory B.
2007-01-01
Integrating biology in the chemical engineering curriculum seems to be the future for chemical engineering programs nation and worldwide. Rowan University's efforts to address this need include a unique chemical engineering curriculum with an intensive biology component integrated throughout from freshman to senior years. Freshman and Sophomore…
Engineering education in 21st century
NASA Astrophysics Data System (ADS)
Alam, Firoz; Sarkar, Rashid; La Brooy, Roger; Chowdhury, Harun
2016-07-01
The internationalization of engineering curricula and engineering practices has begun in Europe, Anglosphere (English speaking) nations and Asian emerging economies through the Bologna Process and International Engineering Alliance (Washington Accord). Both the Bologna Process and the Washington Accord have introduced standardized outcome based engineering competencies and frameworks for the attainment of these competencies by restructuring existing and undertaking some new measures for an intelligent adaptation of the engineering curriculum and pedagogy. Thus graduates with such standardized outcome based curriculum can move freely as professional engineers with mutual recognition within member nations. Despite having similar or near similar curriculum, Bangladeshi engineering graduates currently cannot get mutual recognition in nations of Washington Accord and the Bologna Process due to the non-compliance of outcome based curriculum and pedagogy. This paper emphasizes the steps that are required to undertake by the engineering educational institutions and the professional body in Bangladesh to make the engineering competencies, curriculum and pedagogy compliant to the global engineering alliance. Achieving such compliance will usher in a new era for the global mobility and global engagement by Bangladesh trained engineering graduates.
NASA Astrophysics Data System (ADS)
Vessel, Kanika Nicole
2011-12-01
There is an increasing demand for individuals with engineering education and skills of varying fields in everyday life. With the proper education students of high-needs schools can help meet the demand for a highly skilled and educated workforce. Researchers have assumed the supply and demand has not been met within the engineering workforce as a result of students' collegiate educational experiences, which are impacted by experiences in K-12 education. Although factors outside of the classroom contribute to the inability of universities to meet the increasing demand for the engineering workforce, most noted by researchers is the academic unpreparedness of freshman engineering students. The unpreparedness of entering freshman engineering students is a result of K-12 classroom experiences. This draws attention not only to the quality and competence of teachers present in the K-12 classroom, but the type of engineering instruction these students are receiving. This paper was an effort to systematically address one of the more direct and immediate factors impacting freshman engineering candidates, the quality of secondary engineering educators. Engineers develop new ideas using the engineering design process, which is taught at the collegiate level, and has been argued to be the best approach to teach technological literacy to all K-12 students. However, it is of importance to investigate whether technology educators have the knowledge and understanding of engineering design, how to transfer that knowledge in the classroom to students through instructional strategies, and their perception of their ability to do that. Therefore, the purpose of this study is to show the need for examining the degree to which technology and non-technology educators are implementing elements of engineering design in the curriculum.
Wind energy curriculum development at GWU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Stephen M
A wind energy curriculum has been developed at the George Washington University, School of Engineering and Applied Science. Surveys of student interest and potential employers expectations were conducted. Wind industry desires a combination of mechanical engineering training with electrical engineering training. The curriculum topics and syllabus were tested in several graduate/undergraduate elective courses. The developed curriculum was then submitted for consideration.
Educating next-generation civil engineers about smart structures technology
NASA Astrophysics Data System (ADS)
Zhang, Yunfeng
2005-05-01
The implementation of smart structures technology in the design, construction and maintenance of civil and mechanical systems have been shown beneficial to the performance enhancement, operating efficiency and reliability of structural systems. However, most of today's engineering students are unaware of the remarkable properties of smart sensors and many applications of smart structures technology. It is thus desirable to prepare the future engineers of the society for the cutting-edge technologies in smart structures, for which they may see broad application in their generation. Pioneering work in incorporating smart structures technologies into civil engineering curriculum has been done by the writer at Lehigh University and is described in this paper. In particular, a graduate-level course entitled "Smart Structural Systems" has been taught in the Spring Semester of Year 2004 at Lehigh University. To better convey the course material to students, a smart structures test-bed, which is used not only to showcase various technological aspects of a smart structural system but also offer students an opportunity to gain hands-on experience by doing experiments has been under development at Lehigh University. The hands-on experience that could be developed with the smart structures test-bed is believed being essential for students to have a good understanding and mastering of the smart structures technologies.
ERIC Educational Resources Information Center
Davis, Martha E.; Cunningham, Christine M.; Lachapelle, Cathy P.
2017-01-01
Engineering is Elementary (EiE) is a curriculum project of the Museum of Science, Boston, that promotes and supports engineering literacy and educational equity for all children. Building on the success of its award-winning curriculum for grades 1-5, the team has recently turned its attention to Wee Engineer, a research-based engineering…
NASA Astrophysics Data System (ADS)
Clark, J.; Bloom, N.
2017-12-01
Data driven design practices should be the basis for any effective educational product, particularly those used to support STEM learning and literacy. Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center, and the Museum of Science Boston are partners in developing, piloting, and researching the impact of three out of school time units. Two units are for middle grades youth and one is for upper elementary aged youth. The presentation will highlight the data driven development process of the educational products used to provide support for educators teaching these curriculum units. This includes how data from the project needs assessment, curriculum pilot testing, and professional support product field tests are used in the design of products for out of school time educators. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices in education and gives guidance on methods, for example, to develop cultural relevancy for underrepresented students. Tier 4 helps make connections to other NASA or educational products that support STEM learning in out of school settings. Examples of the tiers of support will be provided.
ERIC Educational Resources Information Center
Drury, Sara A. Mehltretter
2015-01-01
The author argues that deliberation is an innovative method for teaching communication skills, particularly group communication, in the undergraduate science, technology, engineering, and math (STEM) curriculum. A case study using a deliberation activity on global climate change in an introductory biology course demonstrates how deliberative…
THE MAN MADE WORLD, LABORATORY MANUAL.
ERIC Educational Resources Information Center
Commission on Engineering Education, Washington, DC.
THIS LABORATORY MANUAL, THE COMPANION VOLUME TO THE STUDENT'S TEXT FOR THE "MAN MADE WORLD" HIGH SCHOOL COURSE, CONTAINS 31 EXPERIMENTS DEALING WITH THE THEORY, CIRCUITRY, AND OPERATION OF COMPUTERS, AND RELATED TECHNOLOGY. THE COURSE WAS WRITTEN BY SCIENTISTS, ENGINEERS, AND EDUCATORS, AND IS INTENDED AS A PART OF THE CULTURAL CURRICULUM FOR ALL…
Promoting STEM to Young Students by Renewable Energy Applications
ERIC Educational Resources Information Center
Pecen, Recayi; Humston, Jill L.; Yildiz, Faruk
2012-01-01
The Math-Science-Engineering Technology in Iowa on Applied Renewable Energy Areas (MSETI-AREA) projects are aimed at providing area school teachers with an applied mathematics and science curriculum package based on photovoltaic (PV) power, wind power, human power and hydrogen fuel-cell fundamentals. The MSETI-AREA project has established a…
Speedometry: A Vehicle for Promoting Interest and Engagement through Integrated STEM Instruction
ERIC Educational Resources Information Center
Sinatra, Gale M.; Mukhopadhyay, Ananya; Allbright, Taylor N.; Marsh, Julie A.; Polikoff, Morgan S.
2017-01-01
The curriculum, Hot Wheels Speedometry (Mattel, El Segundo, CA, USA), was designed to align with the Next Generation Science Standards for science and the Common Core State Standards for mathematics. Our objective was to develop, implement, and evaluate the impact of this integrated science, technology, engineering, and mathematics (STEM)…
Florida Polytechnic University Annual Accountability Report, 2013-14
ERIC Educational Resources Information Center
Board of Governors, State University System of Florida, 2014
2014-01-01
Florida Polytechnic University offers industry focused, cutting-edge STEM degree programs in the College of Engineering and the College of Innovation and Technology. As a new university, they have the ability to adapt and be responsive to their industry partners' needs in a timely manner. The curriculum is cross-discipline and includes lab and…
Understanding Accountability from a Microanalysis of Power Dynamics in a Specialized STEM School
ERIC Educational Resources Information Center
Teo, Tang Wee; Osborne, Margery
2014-01-01
The central thesis of this article is that conceptualizations of accountability systems need to be more encompassing to accommodate the current diversity of school choice. This article examines an emerging type of school that specializes in advanced STEM (science, technology, engineering, and mathematics) curriculum for gifted and academically…
ERIC Educational Resources Information Center
Robinson, Ann; Dailey, Debbie; Hughes, Gail; Cotabish, Alicia
2014-01-01
To develop Science, Technology, Engineering, and Mathematics (STEM) talents, both researchers and policy developers recommend that educators begin early. In this randomized study, we document the efficacy of teacher professional development and a rich problem-based inquiry curriculum to develop the science talent of elementary students. The…
Creating STEM Kits for the Classroom
ERIC Educational Resources Information Center
Carroll, Kimberly; Scott, Catherine
2017-01-01
The Next Generation Science Standards (NGSS) bring new attention to the role of STEM (science, technology, engineering, and math) in the preK-3 curriculum. However, research indicates that early-childhood preservice teachers feel ill-prepared to teach STEM due to a lack of content knowledge and pedagogical content knowledge. The goal of teacher…
STEMming the Tide: STEAMing Ahead by Including World Language Education
ERIC Educational Resources Information Center
Murphy-Judy, Kathryn
2017-01-01
The author argues for the inclusion of language in science, technology, engineering, mathematics (STEM) curriculum. She begins by examining the American Association of Arts and Sciences (AAAS) statistical report of U.S. language study. Language instruction in public and private schools has been declining throughout the years while pressures from…
Technology and Engineering Education and the Common Core Standards
ERIC Educational Resources Information Center
Rust, Terrie
2012-01-01
The nearly unanimous state acceptance of the Common Core State Standards (CCSS) in mathematics and English Language Arts (ELA) jolted many teachers out of their complacency. How was this major change going to impact their teaching and their curriculum? What changes would be made in student assessments and teacher accountability? The good news is…
"Real World" Experiences Bring T and E Alive
ERIC Educational Resources Information Center
Rust, Terrie
2011-01-01
Informal education (IE) refers to activities that occur outside the school setting, and that were not primarily developed for school use or as part of a school curriculum. Informal education is an important component of the teaching of technology and engineering education, adding relevance to student experiences. The practice of informal education…
Developing a new industrial engineering curriculum using a systems engineering approach
NASA Astrophysics Data System (ADS)
Buyurgan, Nebil; Kiassat, Corey
2017-11-01
This paper reports on the development of an engineering curriculum for a new industrial engineering programme at a medium-sized private university in the northeast United States. A systems engineering process has been followed to design and develop the new curriculum. Considering the programme curriculum as a system, first the stakeholders have been identified, and some preliminary analysis on their needs and requirements has been conducted. Following that, the phases of conceptual design, preliminary design, and detailed design have been pursued during which different levels of validation, assessment, and evaluation processes have been utilised. In addition, a curriculum assessment and continuous improvement process have been developed to assess the curriculum and the courses frequently. The resulting curriculum is flexible, allowing the pursuit of accelerated graduate programmes, a second major, various minor options, and study-abroad; relevant, tailored to the needs of industry partners in the vicinity; and practical, providing hands-on education, resulting in employment-ready graduates.
BKCASE(TM) Body of Knowledge and Curriculum to Advance Systems Engineering
2010-04-28
Lawson, Lawson Konsult AB, Sweden Johann Amsenga, Eclipse RDC, South Africa Alex Lee , Defence Science and Technology Agency, Singapore Erik Aslaksen...Engineering Division, US Tim Ferris, University of South Australia and INCOSE, Australia Jean-Claude Roussel, EADS, France Kevin Forsberg, Center for...Systems Management and INCOSE, US Sven-Olaf Schulze, Berner & Mattner Systemtechnik GmbH, Germany Richard Freeman, Air Force Center for Systems
Future NASA Power Technologies for Space and Aero Propulsion Applications
NASA Technical Reports Server (NTRS)
Soeder, James F.
2015-01-01
To achieve the ambitious goals that NASA has outlined for the next decades considerable development of power technology will be necessary. This presentation outlines the development objectives for both space and aero applications. It further looks at the various power technologies that support these objectives and examines drivers that will be a driving force for future development. Finally, the presentation examines what type of non-traditional learning areas should be emphasized in student curriculum so that the engineering needs of the third decade of the 21st Century are met.
Winters, J M
1995-01-01
A perspective is offered on rehabilitation engineering educational strategies, with a focus on the bachelor's and master's levels. Ongoing changes in engineering education are summarized, especially as related to the integration of design and computers throughout the curriculum; most positively affect rehabilitation engineering training. The challenge of identifying long-term "niches" for rehabilitation engineers within a changing rehabilitation service delivery process is addressed. Five key training components are identified and developed: core science and engineering knowledge, synthesized open-ended problem-solving skill development, hands-on design experience, rehabilitation breadth exposure, and a clinical internship. Two unique abilities are identified that help demarcate the engineer from other providers: open-ended problem-solving skills that include quantitative analysis when appropriate, and objective quantitative evaluation of human performance. Educational strategies for developing these abilities are addressed. Finally, a case is made for training "hybrid" engineers/therapists, in particular bachelor-level engineers who go directly to graduate school to become certified orthotists/prosthetists or physical/occupational therapists, pass the RESNA-sponsored assistive technology service provision exam along the way, then later in life obtain a professional engineer's license and an engineering master's degree.
Space science curriculum design and research at NC A&T state university
NASA Astrophysics Data System (ADS)
Kebede, Abebe; Nair, Jyoti; Smith, Galen
2007-12-01
Recently, North Carolina Agricultural and Technical State University (NCAT) won one of the largest awards from NASA to develop curriculum and research capability in space science in partnership with NASA centres, National Institute of Aerospace, the North Carolina Space Grant, the American Astronomical Society and a number of institutions affiliated with NASA. The plan is to develop curricula and research platforms that prepare science, technology, engineering and mathematics (STEM) students to be employed by NASA. The research programme initially focuses on the study of space and atmospheric physics, and the development of a general capability in atmospheric/space science.
NASA Astrophysics Data System (ADS)
Shea, John E.
The structure of engineering curricula currently in place at most colleges and universities has existed since the early 1950's, and reflects an historical emphasis on a solid foundation in math, science, and engineering science. However, there is often not a close match between elements of the traditional engineering education, and the skill sets that graduates need to possess for success in the industrial environment. Considerable progress has been made to restructure engineering courses and curricula. What is lacking, however, are tools and methodologies that incorporate the many dimensions of college courses, and how they are structured to form a curriculum. If curriculum changes are to be made, the first objective must be to determine what knowledge and skills engineering graduates need to possess. To accomplish this, a set of engineering competencies was developed from existing literature, and used in the development of a comprehensive mail survey of alumni, employers, students and faculty. Respondents proposed some changes to the topics in the curriculum and recommended that work to improve the curriculum be focused on communication, problem solving and people skills. The process of designing a curriculum is similar to engineering design, with requirements that must be met, and objectives that must be optimized. From this similarity came the idea for developing a linear, additive, multi-objective model that identifies the objectives that must be considered when designing a curriculum, and contains the mathematical relationships necessary to quantify the value of a specific alternative. The model incorporates the three primary objectives of engineering topics, skills, and curriculum design principles and uses data from the survey. It was used to design new courses, to evaluate various curricula alternatives, and to conduct sensitivity analysis to better understand their differences. Using the multi-objective model to identify the highest scoring curriculum from a catalog of courses is difficult because of the many factors being considered. To assist this process, the multi-objective model and the curriculum requirements were incorporated in a linear program to select the "optimum" curriculum. The application of this tool was also beneficial in identifying the active constraints that limit curriculum development and content.
Hydrogen Technology and Energy Curriculum (HyTEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagle, Barbara
The Lawrence Hall of Science of the University of California, Berkeley has collaborated with scientists and engineers, a local transit agency, school districts, and a commercial curriculum publisher to develop, field-test nationally, and publish a two-week curriculum module on hydrogen and fuel cells for high school science. Key partners in this project are the Schatz Energy Research Center (SERC) of Humboldt State University, the Alameda-Contra Costa Transit District (AC Transit), FilmSight Productions, Lab-Aids, Inc., and 32 teachers and 2,370 students in field-test classrooms in California, Connecticut, Ohio, New York, South Carolina, and Washington. Field-test teachers received two to three daysmore » of professional development before teaching the curriculum and providing feedback used for revision of the curriculum. The curriculum, titled Investigating Alternative Energy: Hydrogen and Fuel Cells and published by Lab-Aids, Inc., includes a teachers guide (with lesson plans, resources, and student handout pages), two interactive computer animations, a video, a website, and a laboratory materials kit. The project has been disseminated to over 950 teachers through awareness workshops at state, regional, and national science teacher conferences.« less
NASA Astrophysics Data System (ADS)
Venkateswarlu, P.
2017-07-01
Reforms in undergraduate engineering curriculum to produce engineers with entrepreneurial skills should address real-world problems relevant to industry and society with active industry support. Technology-assisted, hands-on projects involving experimentation, design simulation and prototyping will transform graduates into professionals with necessary skills to create and advance knowledge that meets global standards. To achieve this goal, this paper proposes establishing a central facility, 'Centre for Engineering Experimentation and Design Simulation' (CEEDS) in autonomous engineering colleges in India. The centre will be equipped with the most recent technology resources and computational facilities where students execute novel interdisciplinary product-oriented projects benefiting both industry and society. Students undertake two projects: a short-term project aimed at an engineering solution to a problem in energy, health and environment and the other a major industry-supported project devoted to a product that enhances innovation and creativity. The paper presents the current status, the theoretical and pedagogical foundation for the centre's relevance, an activity plan and its implementation in the centre for product-based learning with illustrative examples.
NASA Astrophysics Data System (ADS)
Liu, Yucheng
2017-11-01
In this work, an industry-based and team-oriented education model was established based on a traditional mechanical engineering (ME) senior design class in order to better prepare future engineers and leaders so as to meet the increasing demand for high-quality engineering graduates. In the renovated curriculum, industry-sponsored projects became the most important course component and critical assessment tool, from which problem-solving skills as well as employability skills of the ME students can be fully developed. Hands-on experiences in finite element analysis (FEA) modelling and simulation were also added into the renovated curriculum to promote the application of FEA on engineering design and assessment. Evaluation of the renovated course was conducted using two instruments and the results have shown that the course made the ME senior students more prepared for their future career and a win-win model was created between the industry partner and the ME programme through it. Impact of the renovated syllabus on Accreditation Board for Engineering Technology goals was discussed. Based on the current progress, a more substantial change is being planned to further improve the effectiveness and practicability of this design course. The renovated course was started to offer to the ME senior students at Mississippi State University.
Herkert, Joseph R
2005-07-01
Engineering ethics entails three frames of reference: individual, professional, and social. "Microethics" considers individuals and internal relations of the engineering profession; "macroethics" applies to the collective social responsibility of the profession and to societal decisions about technology. Most research and teaching in engineering ethics, including online resources, has had a "micro" focus. Mechanisms for incorporating macroethical perspectives include: integrating engineering ethics and science, technology and society (STS); closer integration of engineering ethics and computer ethics; and consideration of the influence of professional engineering societies and corporate social responsibility programs on ethical engineering practice. Integrating macroethical issues and concerns in engineering ethics involves broadening the context of ethical problem solving. This in turn implies: developing courses emphasizing both micro and macro perspectives, providing faculty development that includes training in both STS and practical ethics; and revision of curriculum materials, including online resources. Multidisciplinary collaboration is recommended 1) to create online case studies emphasizing ethical decision making in individual, professional, and societal contexts; 2) to leverage existing online computer ethics resources with relevance to engineering education and practice; and 3) to create transparent linkages between public policy positions advocated by professional societies and codes of ethics.
Engineering Curriculum Development: Balancing Employer Needs and National Interest--A Case Study.
ERIC Educational Resources Information Center
Buniyamin, Norlida; Mohamad, Zainuddin
The Faculty of Mechanical Engineering at the University Teknologi MARA, Malaysia, developed an undergraduate-level engineering curriculum that balances national interests with those of employers and academics. The curriculum was based on materials posted at the Internet sites of universities in the United States, United Kingdom, and Malaysia…
Building International Experiences into an Engineering Curriculum--A Design Project-Based Approach
ERIC Educational Resources Information Center
Maldonado, Victor; Castillo, Luciano; Carbajal, Gerardo; Hajela, Prabhat
2014-01-01
This paper is a descriptive account of how short-term international and multicultural experiences can be integrated into early design experiences in an aerospace engineering curriculum. Such approaches are considered as important not only in fostering a student's interest in the engineering curriculum, but also exposing them to a multicultural…
Developing a Technology Enhanced CS0 Course for Engineering Students
ERIC Educational Resources Information Center
Lokkila, Erno; Kaila, Erkki; Lindén, Rolf; Laakso, Mikko-Jussi; Sutinen, Erkki
2016-01-01
The CS0 course in the curriculum typically has the role of introducing students into basic concepts and terminology of computer science. Hence, it is used to form a base on which the subsequent programming courses can build on. However, much of the effort to build better methodologies for courses is spent on introductory programming courses…
Building Potemkin Schools: Science Curriculum Reform in a STEM School
ERIC Educational Resources Information Center
Teo, Tang Wee
2012-01-01
"Potemkin schools" is used as the phrase to capture what a US science, technology, engineering, and mathematics (STEM) public speciality high school becomes as a result of its institutional branding. By way of an examination of the efforts of one teacher drawn into school branding through his "inquiry-based reform" of an Advanced Chemistry course,…
ERIC Educational Resources Information Center
Mandinach, Ellen B.; Hauk, Shandy
2017-01-01
A range of education initiatives in the U.S. are focusing on ways to improve curriculum, instruction, teacher development, and student assessment related to science, technology, engineering, and mathematics (STEM) education. Key indicators to monitor the quality of STEM education have been proposed by the National Research Council. This paper is…
"I Like Science but It's Not for Me": The Need to Improve STEM Careers Education
ERIC Educational Resources Information Center
Archer, Louise; Tomei, Anthony
2014-01-01
There is widespread agreement that more needs to be done to increase and diversify post-16 participation in science, technology, engineering and mathematics (STEM). Here we discuss recent research evidence on what influences participation in science. We introduce a proposal for integrating awareness of STEM careers into the science curriculum for…
Supporting the T and the E in STEM: 2004-2010
ERIC Educational Resources Information Center
Harrison, Matthew
2011-01-01
Engineering, the "E" in STEM, is seldom taught as a distinct curriculum subject in English and Welsh schools to pupils under the age of 14 years. This contrasts with design and technology (D&T), taken in this paper to represent the largest contributor to the "T" in STEM (the remainder being taken to be the computing and…
STEM Policy and Science Education: Scientistic Curriculum and Sociopolitical Silences
ERIC Educational Resources Information Center
Gough, Annette
2015-01-01
This essay responds to the contribution of Volny Fages and Virginia Albe, in this volume, to the field of research in science education, and places it in the context of the plethora of government and industry policy documents calling for more Science, Technology, Engineering and Mathematics (STEM) education in schools and universities and the…
ERIC Educational Resources Information Center
Clifford, Betsey A.
2016-01-01
The Massachusetts Department of Elementary and Secondary Education (DESE) released proposed Science and Technology/Engineering standards in 2013 outlining the concepts that should be taught at each grade level. Previously, standards were in grade spans and each district determined the method of implementation. There are two different methods used…
Integrated STEM Curriculum: Improving Educational Outcomes for Head Start Children
ERIC Educational Resources Information Center
Aldemir, Jale; Kermani, Hengameh
2017-01-01
In this study, the researchers aimed to design, plan and implement a Science, Technology, Engineering and Math (STEM) model to support Pre-K children's skills and knowledge in STEM as well as to improve Pre-K teachers' attitudes and professional skills to plan and integrate STEM concepts in their daily classroom activities. Four classrooms from a…
Toward a STEM + Arts Curriculum: Creating the Teacher Team
ERIC Educational Resources Information Center
Wynn, Toni; Harris, Juliette
2012-01-01
The acronym STEM--the teaching of science, technology, engineering, and math--now a familiar term in education, is evolving into STEAM--STEM plus "A" for art. Educational researcher Martin Storksdieck's studies have shown that infusing art into STEM allows for "a different way of perceiving and knowing and dealing with the world, as a means to…
2014-09-01
The NATO Science and Technology Organization Science & Technology (S& T ) in the NATO context is defined as the selective and rigorous...generation and application of state-of-the-art, validated knowledge for defence and security purposes. S& T activities embrace scientific research...engineering, operational research and analysis, synthesis, integration and validation of knowledge derived through the scientific method. In NATO, S& T is
A systematic approach to engineering ethics education.
Li, Jessica; Fu, Shengli
2012-06-01
Engineering ethics education is a complex field characterized by dynamic topics and diverse students, which results in significant challenges for engineering ethics educators. The purpose of this paper is to introduce a systematic approach to determine what to teach and how to teach in an ethics curriculum. This is a topic that has not been adequately addressed in the engineering ethics literature. This systematic approach provides a method to: (1) develop a context-specific engineering ethics curriculum using the Delphi technique, a process-driven research method; and (2) identify appropriate delivery strategies and instructional strategies using an instructional design model. This approach considers the context-specific needs of different engineering disciplines in ethics education and leverages the collaboration of engineering professors, practicing engineers, engineering graduate students, ethics scholars, and instructional design experts. The proposed approach is most suitable for a department, a discipline/field or a professional society. The approach helps to enhance learning outcomes and to facilitate ethics education curriculum development as part of the regular engineering curriculum.
ERIC Educational Resources Information Center
Chen, Chi-Kuang; Jiang, Bernard C.; Hsu, Kuang-Yiao
2005-01-01
The objective of this paper is to examine the effectiveness of a creativity-fostering program in industrial engineering and management (IE&M) curriculum reform. Fostering creativity in students has become a crucial issue in industrial engineering education. In a survey of previous studies, we found few on IE&M curriculum reform. In…
ERIC Educational Resources Information Center
Robinson, Ann; Adelson, Jill L.; Kidd, Kristy A.; Cunningham, Christine M.
2018-01-01
Guided by the theoretical framework of curriculum as a platform for talent development, this quasi-experimental field study investigated an intervention focused on engineering curriculum and curriculum based on a biography of a scientist through a comparative design implemented in low-income schools. Student outcome measures included science…
A Project-based Spiral Curriculum for Introductory Courses in ChE: Part 2. Implementation.
ERIC Educational Resources Information Center
Dixon, Anthony G.; Clark, William M.; DiBiasio, David
2000-01-01
Reports the development, delivery, and assessment of a project-based spiral curriculum for the first sequence chemical engineering courses. Technical proficiency of students under the spiral curriculum was equal to or better than that of students under a traditional curriculum. Attitudes toward chemical engineering and teamwork were better, and…
A New Approach to A Science Magnet School - Classroom and Museum Integration
NASA Astrophysics Data System (ADS)
Franklin, Samuel
2009-03-01
The Pittsburgh Science & Technology Academy is a place where any student with an interest in science, technology, engineering or math can develop skills for a career in life sciences, environmental sciences, computing, or engineering. The Academy isn't just a new school. It's a new way to think about school. The curriculum is tailored to students who have a passion for science, technology, engineering or math. The environment is one of extraordinary support for students, parents, and faculty. And the Academy exists to provide opportunities, every day, for students to Dream. Discover. Design. That is, Academy students set goals and generate ideas, research and discover answers, and design real solutions for the kinds of real-world problems that they'll face after graduation. The Academy prepares students for their future, whether they go on to higher education or immediate employment. This talk will explain the unique features of the Pittsburgh Science & Technology Academy, lessons learned from its two-year design process, and the role that the Carnegie Museums have played and will continue to play as the school grows.
Integrating medical informatics into the medical undergraduate curriculum.
Khonsari, L S; Fabri, P J
1997-01-01
The advent of healthcare reform and the rapid application of new technologies have resulted in a paradigm shift in medical practice. Integrating medical Informatics into the full spectrum of medical education is a viral step toward implementing this new instructional model, a step required for the understanding and practice of modern medicine. We have developed an informatics curriculum, a new educational paradigm, and an intranet-based teaching module which are designed to enhance adult-learning principles, life-long self education, and evidence-based critical thinking. Thirty two, fourth year medical students have participated in a one month, full time, independent study focused on but not limited to four topics: mastering the windows-based environment, understanding hospital based information management systems, developing competence in using the internet/intranet and world wide web/HTML, and experiencing distance communication and TeleVideo networks. Each student has completed a clinically relevant independent study project utilizing technology mastered during the course. This initial curriculum offering was developed in conjunction with faculty from the College of Medicine, College of Engineering, College of Education, College of Business, College of Public Health. Florida Center of Instructional Technology, James A. Haley Veterans Hospital, Moffitt Cancer Center, Tampa General Hospital, GTE, Westshore Walk-in Clinic (paperless office), and the Florida Engineering Education Delivery System. Our second step toward the distributive integration process was the introduction of Medical Informatics to first, second and third year medical students. To date, these efforts have focused on undergraduate medical education. Our next step is to offer workshops in Informatics to college of medicine faculty, to residents in post graduate training programs (GME), and ultimately as a method of distance learning in continuing medical education (CME).
Establishment of Systematical Education Program of Engineering Ethics for a Technical College
NASA Astrophysics Data System (ADS)
Kobayashi, Yukito
Engineering ethics education deals with a wide range of matters. Therefore it should not be treated within a single subject, but in a whole curriculum of a college. In Yatsushiro National College of Technology, we have designed a systematic education program of engineering ethics on the basis of “Yatsushiro National College Synthetic Education Program” , which was established in 2002. This education program, including education for formation of character and morality as well, has two distinctive features : five or seven-year successive course of study and cooperation among the departments and teaching staffs. This interactive scheme has produced highly educational effects.
Improving student retention in computer engineering technology
NASA Astrophysics Data System (ADS)
Pierozinski, Russell Ivan
The purpose of this research project was to improve student retention in the Computer Engineering Technology program at the Northern Alberta Institute of Technology by reducing the number of dropouts and increasing the graduation rate. This action research project utilized a mixed methods approach of a survey and face-to-face interviews. The participants were male and female, with a large majority ranging from 18 to 21 years of age. The research found that participants recognized their skills and capability, but their capacity to remain in the program was dependent on understanding and meeting the demanding pace and rigour of the program. The participants recognized that curriculum delivery along with instructor-student interaction had an impact on student retention. To be successful in the program, students required support in four domains: academic, learning management, career, and social.
Engineering design skills coverage in K-12 engineering program curriculum materials in the USA
NASA Astrophysics Data System (ADS)
Chabalengula, Vivien M.; Mumba, Frackson
2017-11-01
The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.
Hinds Community College MSEIP program
2005-06-24
Student Assistant Antoinette Davis (left) of Utica; Carmella Forsythe, 13, of Clinton; Terri Henderson, 14, of Clinton; Tyra Greer, 12, of Port Gibson; and Kala Battle, 14, of Edwards, answer curriculum questions about NASA's Return to Flight mission exhibit at StenniSphere, the visitor center at NASA's Stennis Space Center (SSC) near Bay St. Louis, Miss. The girls were on a field trip to StenniSphere with fellow participants in Hinds Community College's MSEIP (Minority Science Engineering Improvement Program) summer program. MSEIP encourages students to pursue and prepare for careers in science, technology, engineering and math.
Reactor physics teaching and research in the Swiss nuclear engineering master
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chawla, R.; Paul Scherrer Inst., CH-5232 Villigen PSI
Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)
Hinds Community College MSEIP program
NASA Technical Reports Server (NTRS)
2005-01-01
Student Assistant Antoinette Davis (left) of Utica; Carmella Forsythe, 13, of Clinton; Terri Henderson, 14, of Clinton; Tyra Greer, 12, of Port Gibson; and Kala Battle, 14, of Edwards, answer curriculum questions about NASA's Return to Flight mission exhibit at StenniSphere, the visitor center at NASA's Stennis Space Center (SSC) near Bay St. Louis, Miss. The girls were on a field trip to StenniSphere with fellow participants in Hinds Community College's MSEIP (Minority Science Engineering Improvement Program) summer program. MSEIP encourages students to pursue and prepare for careers in science, technology, engineering and math.
NASA Astrophysics Data System (ADS)
LeBeau, Brandon; Harwell, Michael; Monson, Debra; Dupuis, Danielle; Medhanie, Amanuel; Post, Thomas R.
2012-04-01
Background: The importance of increasing the number of US college students completing degrees in science, technology, engineering or mathematics (STEM) has prompted calls for research to provide a better understanding of factors related to student participation in these majors, including the impact of a student's high-school mathematics curriculum. Purpose: This study examines the relationship between various student and high-school characteristics and completion of a STEM major in college. Of specific interest is the influence of a student's high-school mathematics curriculum on the completion of a STEM major in college. Sample: The sample consisted of approximately 3500 students from 229 high schools. Students were predominantly Caucasian (80%), with slightly more males than females (52% vs 48%). Design and method: A quasi-experimental design with archival data was used for students who enrolled in, and graduated from, a post-secondary institution in the upper Midwest. To be included in the sample, students needed to have completed at least three years of high-school mathematics. A generalized linear mixed model was used with students nested within high schools. The data were cross-sectional. Results: High-school predictors were not found to have a significant impact on the completion of a STEM major. Significant student-level predictors included ACT mathematics score, gender and high-school mathematics GPA. Conclusions: The results provide evidence that on average students are equally prepared for the rigorous mathematics coursework regardless of the high-school mathematics curriculum they completed.
NASA Astrophysics Data System (ADS)
Cordero, E.; Centeno Delgado, D. C.
2017-12-01
Over the last five years, Green Ninja has been developing educational media to help motivate student interest and engagement around climate science and solutions. The adoption of the Next Generation Science Standards (NGSS) offers a unique opportunity where schools are changing both what they teach in a science class and how they teach. Inspired by the new emphasis in NGSS on climate change, human impact and engineering design, Green Ninja developed a technology focused, integrative, and yearlong science curriculum (6th, 7th and 8th grade) focused broadly around solutions to environmental problems. The use of technology supports the development of skills valuable for students, while also offering real-time metrics to help measure both student learning and environmental impact of student actions. During the presentation, we will describe the design philosophy around our middle school curriculum and share data from a series of classes that have created environmental benefits that transcend the traditional classroom. The notion that formal education, if done correctly, can be leveraged as a viable climate mitigation strategy will be discussed.
Incorporating a Product Archaeology Paradigm across the Mechanical Engineering Curriculum
ERIC Educational Resources Information Center
Moore-Russo, Deborah; Cormier, Phillip; Lewis, Kemper; Devendorf, Erich
2013-01-01
Historically, the teaching of design theory in an engineering curriculum has been relegated to a senior capstone design experience. Presently, however, engineering design concepts and courses can be found through the entirety of most engineering programs. Educators have recognized that engineering design provides a foundational platform that can…
ERIC Educational Resources Information Center
Case, Jennifer M.; Fraser, Duncan M.; Kumar, Anil; Itika, Ambrose
2016-01-01
Curriculum reform is a key topic in the engineering education literature, but much of this discussion proceeds with little engagement with the impact of the local context in which the programme resides. This article thus seeks to understand the influence of local contextual dynamics on curriculum reform in engineering education. The empirical…
Integrative Approach for a Transformative Freshman-Level STEM Curriculum
Curran, Kathleen L.; Olsen, Paul E.; Nwogbaga, Agashi P.; Stotts, Stephanie
2016-01-01
In 2014 Wesley College adopted a unified undergraduate program of evidence-based high-impact teaching practices. Through foundation and federal and state grant support, the college completely revised its academic core curriculum and strengthened its academic support structures by including a comprehensive early alert system for at-risk students. In this core, science, technology, engineering, and mathematics (STEM) faculty developed fresh manifestations of integrated concept-based introductory courses and revised upper-division STEM courses around student-centered learning. STEM majors can participate in specifically designed paid undergraduate research experiences in directed research elective courses. Such a college-wide multi-tiered approach results in institutional cultural change. PMID:27064213
Connecting mathematics learning through spatial reasoning
NASA Astrophysics Data System (ADS)
Mulligan, Joanne; Woolcott, Geoffrey; Mitchelmore, Michael; Davis, Brent
2018-03-01
Spatial reasoning, an emerging transdisciplinary area of interest to mathematics education research, is proving integral to all human learning. It is particularly critical to science, technology, engineering and mathematics (STEM) fields. This project will create an innovative knowledge framework based on spatial reasoning that identifies new pathways for mathematics learning, pedagogy and curriculum. Novel analytical tools will map the unknown complex systems linking spatial and mathematical concepts. It will involve the design, implementation and evaluation of a Spatial Reasoning Mathematics Program (SRMP) in Grades 3 to 5. Benefits will be seen through development of critical spatial skills for students, increased teacher capability and informed policy and curriculum across STEM education.
ERIC Educational Resources Information Center
Quigley, Cassie F.; Herro, Dani
2016-01-01
In response to a desire to strengthen the economy, educational settings are emphasizing science, technology, engineering, and mathematics (STEM) curriculum and programs. Yet, because of the narrow approach to STEM, educational leaders continue to call for a more balanced approach to teaching and learning, which includes the arts, design, and…
ERIC Educational Resources Information Center
De Philippis, Marta
2016-01-01
Increasing the number of Science, Technology, Engineering and Math (STEM) university graduates is considered a key element for long-term productivity and competitiveness in the global economy. Still, little is known about what actually drives and shapes students' choices. This paper focusses on secondary school students at the very top of the…
ERIC Educational Resources Information Center
Silva, E.; Almeida, J.; Martins, A.; Baptista, J. P.; Campos Neves, B.
2013-01-01
Robotics research in Portugal is increasing every year, but few students embrace it as one of their first choices for study. Until recently, job offers for engineers were plentiful, and those looking for a degree in science and technology would avoid areas considered to be demanding, like robotics. At the undergraduate level, robotics programs are…
ERIC Educational Resources Information Center
Drew, Jennifer C.; Galindo-Gonzalez, Sebastian; Ardissone, Alexandria N.; Triplett, Eric W.
2016-01-01
The Microbiology and Cell Science (MCS) Department at the University of Florida (UF) developed a new model of a 2 + 2 program that uses a hybrid online approach to bring its science, technology, engineering, and mathematics (STEM) curriculum to students. In this paradigm, 2-year graduates transfer as online students into the Distance Education in…
ERIC Educational Resources Information Center
Jeong, Sophia; Kim, Hyoungbum
2015-01-01
Korea has recently started to implement a STEM-like approach in K-12 education, titled STEAM (Science, Technology, Engineering, Arts, and Mathematics) curriculum, to educate the next generation of students to become creative innovators. As this approach has been shown to increase educational success, it is vital to prepare and develop interest in…
ERIC Educational Resources Information Center
Gottfried, Michael A.; Sublett, Cameron
2018-01-01
Over the most recent two decades, federal policy has urged high schools to embed applied science, technology, engineering, and mathematics (STEM) courses into the curriculum to reinforce concepts learned in traditional math and science classes as well as to motivate students' interests and long-term pursuits in STEM areas. While prior research has…
ERIC Educational Resources Information Center
Ring, Elizabeth A.
2017-01-01
There has been a nation-wide push for an increase in the use of integrated science, technology, engineering, and mathematics (STEM) education in the United States. With this shift in epistemological, pedagogical, and curricular content, there is a need to develop an understanding as to what integrated STEM education is, particularly among…
From STEM to STEAM: How Early Childhood Educators Can Apply Fred Rogers' Approach
ERIC Educational Resources Information Center
Sharapan, Hedda
2012-01-01
For many in early childhood education, STEAM is a new term. It began in this decade as STEM, an acronym for Science, Technology, Engineering, and Math. These curriculum areas have become a major focus in education because of the concern that the United States is falling behind in scientific innovation. With a new and familiar addition to the…
ERIC Educational Resources Information Center
Newhouse, Christopher Paul
2017-01-01
The well-being of modern economies and societies is increasingly requiring citizens to possess capabilities in integrating knowledge and skills in science, technology, engineering and science to solve problems. However, by the end of schooling, the majority of Australian students show little interest in these discipline areas and have no plans to…
ERIC Educational Resources Information Center
Hardcastle, Joseph; Herrmann-Abell, Cari F.; DeBoer, George E.
2017-01-01
Energy is a critically important topic in the K-12 science curriculum, with many applications in the earth, physical, and life sciences and in engineering and technology. To meet the challenges associated with teaching energy, new tools and assessment instruments are needed. In this work we describe the development of a three-tier assessment…
ERIC Educational Resources Information Center
Wong, Sissy S.; Firestone, Jonah B.; Ronduen, Lionnel G.; Bang, EunJin
2016-01-01
Science, Technology, Engineering, and Mathematics (STEM) education has become one of the main priorities in the United States. Science education communities and researchers advocate for integration of STEM disciplines throughout the teaching curriculum. This requires teacher knowledge in STEM disciplines, as well as competence in scientific…
ERIC Educational Resources Information Center
Yoon, Susan
Even though we live in an age of advancing technology and changing structure of science, especially in genetics engineering, there appears to be a great lack of understanding of these basic concepts by society in general. Society carries responsibilities to both living and non-living things; this lack of understanding may result in combined…
NASA Astrophysics Data System (ADS)
Briseno, Luis Miguel
This paper reflects future direction for early Science Technology Engineering and Mathematics (STEM) education, science in particular. Washington State stakeholders use guidelines including: standards, curriculums and assessments to gauge young children's development and learning, in early childhood education (ECE). Next Generation Science Standards (NGSS), and the Framework for K-12 programs (National Research Council, 2011) emphasizes the need for reconfiguration of standards: "Too often standards are a long list of detailed and disconnected facts... this approach alienates young people, it also leaves them with fragments of knowledge and little sense of the inherent logic and consistency of science and of its universality." NGSS' position elevates the concern and need for learners to experience teaching and learning from intentionally designed cohesive curriculum units, rather than as a series of unrelated and isolated lessons. To introduce the argument the present study seeks to examine Washington State early learning standards. To evaluate this need, I examined balance and coverage/depth. Analysis measures the level of continuum in high-quality guidelines from which Washington State operates to serve its youngest citizens and their families.
Emerging high technology fields and thoughts on reshaping the engineering curriculum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzay, T. M.
1999-04-09
In the early part of this workshop, I believe Dr. Bergles made a statement indicating that certain schools in America are planning to take the traditional heat transfer and fluid mechanics courses out of their curriculum and that some may have already done so. That statement created some excitement, and I did respond to that in some fashion and make some suggestions. Then Dr. Bergles said ''well maybe these matters should be included in a separate discussion period,'' which is this forum. Because I am working at the Advanced Photon Source at Argonne National Laboratory, I have the opportunity tomore » witness the type of research being done in high technology areas today with the most advanced x-rays, which gives me some sort of advantage for telling you what I see as future research directions. Hence, I would like to reflect on all of this along a different avenue, and really my presentation will stress the educational side: essentially engineering education and what our role should be at the universities in teaching the next generation of students coming in and also what our role should be in retraining researchers for the demands of the emerging fields and markets.« less
NASA Astrophysics Data System (ADS)
Graves, Catherine
The science, engineering, mathematics, and aerospace academy (SEMAA) is a federally-funded national out-of-school time (OST) science, technology, engineering, and mathematics (STEM) program that provides K-12 grade participants with hands-on activities and access to an aerospace education laboratory with the goals of increasing participants' engagement and interest in STEM and STEM careers. The SEMAA also provides support, resources, and training for SEMAA participants' parents through the Family Cafe. This multiple-case study investigated participants' and their parents' reasons for enrolling in the SEMAA and characterized the SEMAA in terms of its operations and infrastructure, instructors, learning environment, curriculum and instruction, and parental engagement. This study also assessed the role of the SEMAA in supporting participants' STEM college degree and career interests. Additionally, this study assessed the participants' attitudes towards science and science motivation factors. The findings of this study have implications for SEMAA and other OST STEM program providers related to: (a) recruitment and retention, (b) operations and infrastructure, (c) learning environments, (d) instructors, (e) curriculum and instruction, (f) parental engagement, and (g) OST STEM program outcomes.
NASA Astrophysics Data System (ADS)
Yotsuyanagi, Takao; Ikeda, Senri; Suzuki, Katsuhiko; Kobayashi, Hiroshi; Sakuraba, Hiroshi; Shoji, Akira; Itoh, Masahiko
Creativity is the most fundamental keyword for engineers to solve the various problems in manufacturing products. This engineering “learning” cannot be achieved without the real experiences, especially by the teens who have the curiosity to know everything. New educational program has been innovated in Miyagi National College of Technology. This new curriculum started as “03C” in 2003. It involves two laboratories for mixed-departments type grouping, which intend to cultivate the creative ability for the 2nd year students in College Course and the 1st year students in Advanced Course as Engineering Design. This paper presents the trial of the new educational program on the cultivating creative ability designed for teen-agers, and discusses the processes in detail, results and further problems. This program will progress still more with continuous improvement of manufacturing subjects in cooperative with educational-industrial complex.
Mathematical and Scientific Foundations for an Integrative Engineering Curriculum.
ERIC Educational Resources Information Center
Carr, Robin; And Others
1995-01-01
Describes the Mathematical and Scientific Foundations of Engineering curriculum which emphasizes the mathematical and scientific concepts common to all engineering fields. Scientists and engineers together devised topics and experiments that emphasize the relevance of theory to real-world applications. Presents material efficiently while building…
Arino de la Rubia, Leigh S
2012-09-01
The Minority Institution Astrobiology Collaborative (MIAC) began working with the NASA Goddard Center for Astrobiology in 2003 to develop curriculum materials for high school chemistry and Earth science classes based on astrobiology concepts. The Astrobiology in Secondary Classrooms (ASC) modules emphasize interdisciplinary connections in astronomy, biology, chemistry, geoscience, physics, mathematics, and ethics through hands-on activities that address national educational standards. Field-testing of the Astrobiology in Secondary Classrooms materials occurred over three years in eight U.S. locations, each with populations that are underrepresented in the career fields of science, technology, engineering, and mathematics. Analysis of the educational research upon the high school students participating in the ASC project showed statistically significant increases in students' perceived knowledge and science reasoning. The curriculum is in its final stages, preparing for review to become a NASA educational product.
Mechatronics education at Virginia Tech
NASA Astrophysics Data System (ADS)
Bay, John S.; Saunders, William R.; Reinholtz, Charles F.; Pickett, Peter; Johnston, Lee
1998-12-01
The advent of more complex mechatronic systems in industry has introduced new opportunities for entry-level and practicing engineers. Today, a select group of engineers are reaching out to be more knowledgeable in a wide variety of technical areas, both mechanical and electrical. A new curriculum in mechatronics developed at Virginia Tech is starting to bring students from both the mechanical and electrical engineering departments together, providing them wit an integrated perspective on electromechanical technologies and design. The course is cross-listed and team-taught by faculty from both departments. Students from different majors are grouped together throughout the course, each group containing at least one mechanical and one electrical engineering student. This gives group members the ability to learn from one another while working on labs and projects.
Manimaran, S; Jayakumar, S; Lakshmi, K Bhagya
2016-11-14
Education Management Information System (EMIS) is a widely acceptable and developing technology within the Information Technology field. The advancement in technology in this century is being collaborated with scientific invention or explorer and information strengthening or development. This paper presents the results and experiences gained from applying students oriented EMIS for monitoring and managing mental health. The Mental Health of students depends on the acquiring adequate knowledge on basic concepts within a time period or academic schedule. It's obviously significance to evaluate and appraise the stress stimulators as a challenge or threat. The theoretical framework for the study was designed for analyzing the stress stimulators, academic performance and EMIS accessibility. The sample examined in this study was stratified random sample from 75 students specifically all engineering college in Dindigul District of Tamilnadu. The primary factor is the academic stress stimulators that form one module of EMIS for each of the key variable such as curriculum & instruction related stressors, placement related, teamwork related and assessment related. The Mental Health related stress stimulators namely curriculum & syllabus, placement related, assessment related and team work related have a significant influence on academic performance by students in various institution. The important factor leading to the EMIS application in monitoring stress stimulators is curriculum & syllabus related and assessment related.
Planetary Science Educational Materials for Out-of-School Time Educators
NASA Astrophysics Data System (ADS)
Barlow, Nadine G.; Clark, Joelle G.
2017-10-01
Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) and Department of Physics and Astronomy (P&A) at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center (USGS ASC), and the Museum of Science Boston (MoS) are partners in developing, piloting, and researching the impact of three out-of-school time units. Planetary scientists at USGS ASC and P&A have developed two units for middle grades youth and one for upper elementary aged youth. The two middle school units focus on greywater recycling and remote sensing of planetary surfaces while the elementary unit centers on exploring space hazards. All units are designed for small teams of ~4 youth to work together to investigate materials, engineer tools to assist in the explorations, and utilize what they have learned to solve a problem. Youth participate in a final share-out with adults and other youth of what they learned and their solution to the problem. Curriculum pilot testing of the two middle school units has begun with out-of-school time educators. A needs assessment has been conducted nationwide among educators and evaluation of the curriculum units is being conducted by CSTL during the pilot testing. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices in education and gives guidance on methods, for example, to develop cultural relevancy for underrepresented students. Tier 4 helps make connections to other NASA or educational products that support STEM learning in out of school settings.
NASA Astrophysics Data System (ADS)
Kling, Richard R.
The purpose of this study is to survey the experiences of the 9-12 grade students who have and have not been enrolled in an HOI-STEM curriculum in order to determine how/if enrollment in such a curriculum influences their choices toward continued study in STEM fields. The study found that indeed the students enrolled in the hands-on type of classes were excited about their education and the classes they enrolled in. The students who had not enrolled in HOI-STEM echoed the same sentiment. They may have been enrolled in art, or music, or social studies but they also reported that being able to interact with the curriculum, to be engaged in non-traditional hands-on activities enabled them to become more immersed in their education. The researcher can then report that the concept of "Hands On Integrated-Science Technology Engineering Math", (HOI-STEM), classes should be expanded and integrated into the curriculum for K-12 classes.
Teaching Heliophysics Science to Undergraduates in an Engineering Context
NASA Astrophysics Data System (ADS)
Baker, J. B.; Sweeney, D. G.; Ruohoniemi, J.
2013-12-01
In recent years, space research at Virginia Tech has experienced rapid growth since the initiation of the Center for Space Science and Engineering Research (Space@VT) during the summer of 2007. The Space@VT center resides in the College of Engineering and currently comprises approximately 30-40 faculty and students. Space@VT research encompasses a wide spectrum of science and engineering activities including: magnetosphere-ionosphere data analysis; ground- and space-based instrument development; spacecraft design and environmental interactions; and numerical space plasma simulations. In this presentation, we describe how Space@VT research is being integrated into the Virginia Tech undergraduate engineering curriculum via classroom instruction and hands-on group project work. In particular, we describe our experiences teaching a new sophomore course titled 'Exploration of the Space Environment' which covers a broad range of scientific, engineering, and societal aspects associated with the exploration and technological exploitation of space. Topics covered include: science of the space environment; space weather hazards and societal impacts; elementary orbital mechanics and rocket propulsion; spacecraft engineering subsystems; and applications of space-based technologies. We also describe a high-altitude weather balloon project which has been offered as a 'hands-on' option for fulfilling the course project requirements of the course.
Curriculum: Integrating Health and Safety Into Engineering Curricula.
ERIC Educational Resources Information Center
Talty, John T.
1985-01-01
National Institute for Occupational Safety and Health instituted a project in 1980 to encourage engineering educators to focus on occupational safety and health issues in engineering curricula. Progress to date is outlined, considering specific results in curriculum development, engineering society interaction, and formation of a teaching…
Global challenges as inspiration: a classroom strategy to foster social responsibility.
Vanasupa, Linda; Slivovsky, Lynn; Chen, Katherine C
2006-04-01
Social responsibility is at the heart of the Engineer's Creed embodied in the pledge that we will dedicate [our] professional knowledge and skill to the advancement and betterment of human welfare... [placing] public welfare above all other considerations. However, half century after the original creed was written, we find ourselves in a world with great technological advances and great global-scale technologically-enabled peril. These issues can be naturally integrated into the engineering curriculum in a way that enhances the development of the technological skill set. We have found that these global challenges create a natural opportunity to foster social responsibility within the engineering students whom we educate. In freshman through senior-level materials engineering courses, we used five guiding principles to shape several different classroom activities and assignments. Upon testing an initial cohort of 28 students had classroom experiences based on these five principles, we saw a shift in attitude: before the experience, 18% of the cohort viewed engineers as playing an active role in solving global problems; after the experiences, 79% recognized the engineer's role in solving global-scale problems. In this paper, we present how global issues can be used to stimulate thinking for socially-responsible engineering solutions. We set forth five guiding principles that can foster the mindset for socially responsible actions along with examples of how these principles translate into classroom activities.
Aerospace engineering curriculum for the 21st century
NASA Technical Reports Server (NTRS)
Simitses, George J.
1995-01-01
The second year of the study was devoted to completing the information-gathering phase of this redesign effort, using the conclusions from that activity to prepare the initial structure for the new curriculum, publicizing activities to a wider engineering forum, and preparing the department faculty (Aerospace Engineering and Engineering Mechanics at University of Cincinnati) for the roles they will play in the curriculum redesign and implementation. These activities are summarized briefly in this progress report. Attached is a paper resulting from the data acquisition of this effort, 'Educating Aerospace Engineers for the Twenty-First Century: Results of a Survey.'
Taebi, Behnam; Kastenberg, William E
2016-07-13
A joint effort by the University of California at Berkeley and Delft University of Technology to develop a graduate engineering ethics course for PhD students encountered two types of challenges: academic and institutional. Academically, long-term collaborative research efforts between engineering and philosophy faculty members might be needed before successful engineering ethics courses can be initiated; the teaching of ethics to engineering graduate students and collaborative research need to go hand-in-hand. Institutionally, both bottom-up approaches at the level of the faculty and as a joint research and teaching effort, and top-down approaches that include recognition by a University's administration and the top level of education management, are needed for successful and sustainable efforts to teach engineering ethics.
Development Cooperation as Methodology for Teaching Social Responsibility to Engineers
ERIC Educational Resources Information Center
Lappalainen, Pia
2011-01-01
The role of engineering in promoting global well-being has become accentuated, turning the engineering curriculum into a means of dividing well-being equally. The gradual fortifying calls for humanitarian engineering have resulted in the incorporation of social responsibility themes in the university curriculum. Cooperation, communication,…
ERIC Educational Resources Information Center
Marulcu, Ismail
2010-01-01
This mixed method study examined the impact of a LEGO-based, engineering-oriented curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. This study takes a social constructivist theoretical stance that science learning involves learning scientific concepts and their relations to each other. From…
ERIC Educational Resources Information Center
Lowenstein, Michael Z.; Orsak, Charles
Phase 1 of a project in curriculum design and course development identified and is now developing a two-year solar engineering curriculum in response to the immediate need for trained solar manpower as indicated by research. The student-centered curriculum involves courses flowing from device to theory, intermixing of support and technical courses…
Norland, Ryan; Muchnick, Matthew; Harmon, Zachary; Chin, Tiffany; Kakar, Rumit Singh
2016-04-01
As rehabilitation specialists, physical therapists must continue to stay current with advances in technologies to provide appropriate rehabilitation protocols, improve patient outcomes, and be the preferred clinician of choice. To accomplish this vision, the physical therapy profession must begin to develop a culture of lifelong learning at the early stages of education and clinical training in order to embrace cutting-edge advancements such as stem cell therapies, tissue engineering, and robotics, to name a few. The purposes of this article are: (1) to provide a current perspective on faculty and graduate student awareness of regenerative rehabilitation concepts and (2) to advocate for increased integration of these emerging technologies within the doctor of physical therapy (DPT) curriculum. An online survey was designed to gauge awareness of principles in regenerative rehabilitation and to determine whether the topic was included and assessed in doctoral curricula. The survey yielded 1,006 responses from 82 DPT programs nationwide and indicated a disconnect in familiarity with the term "regenerative rehabilitation" and awareness of the inclusion of this material in the curriculum. To resolve this disconnect, the framework of the curriculum can be used to integrate new material via guest lecturers, interdisciplinary partnerships, and research opportunities. Successfully mentoring a generation of clinicians and rehabilitation scientists who incorporate new medical knowledge and technology into their own clinical and research practice depends greatly on sharing the responsibility among graduate students, professors, the American Physical Therapy Association (APTA), and DPT programs. Creating an interdisciplinary culture and integrating regenerative medicine and rehabilitation concepts into the curriculum will cultivate individuals who will be advocates for interprofessional behaviors and will ensure that the profession meets the goals stated in APTA Vision 2020. © 2016 American Physical Therapy Association.
ERIC Educational Resources Information Center
Weisblat, Gina; McClellan, Jeffrey
2013-01-01
MC Squared STEM High School is part of the Cleveland Metropolitan School District. It has a project-based curriculum that focuses on the core stem skills: science, technology, engineering, and math. As the school celebrated its first graduating class in 2012, administrators felt it was the right time to look back and evaluate the school's…
ERIC Educational Resources Information Center
Wong, Sissy S.
2016-01-01
Understanding teachers' beliefs is important because beliefs influence teacher decisions. In science, teacher beliefs have an impact on how science curriculum is interpreted and implemented in the classroom. With the push for science, technology, engineering, and mathematics (STEM) education in the United States, it is also critical to examine the…
ERIC Educational Resources Information Center
Lebeaume, Joel
2011-01-01
The French school system is a subjects-centred curriculum from the beginning of 1960s. This deep-rooted organisation tends to block the several attempts made to integrate the teaching of scientific school subjects. From an historical point of view, this paper describes the curricular system and the issue of its current change. It focuses on the…
ERIC Educational Resources Information Center
Hand, Brian; Therrien, William; Shelley, Mack
2013-01-01
The U.S. began a new national standards movement in the area of K-12 science education curriculum reform in the 1980s known as "Science for All" to develop a population that is literate in economic and democratic agendas for a global market focused on science, technology, engineering, and mathematics (STEM) (Duschl, 2008). The National…
ERIC Educational Resources Information Center
Hardcastle, Joseph; Herrmann-Abell, Cari F.; DeBoer, George E.
2017-01-01
Energy is a critically important topic in the K-12 science curriculum, with many applications in the earth, physical, and life sciences and in engineering and technology. To meet the challenges associated with teaching energy, new tools and assessment instruments are needed. In this work we describe the development of a three-tier assessment…
Optics in engineering education: stimulating the interest of first-year students
NASA Astrophysics Data System (ADS)
Blanco-García, Jesús; Vazquez-Dorrío, Benito
2014-07-01
The work here presented deals with stimulating the interest for optics in first-year students of an Engineering School, which are not specifically following Optical Engineering studies. Optic-based technologies are nowadays wide spread, and growing, in almost all the engineering fields (from non destructive testing or alignments to power laser applications, fiber optic communications, memory devices, etc.). In general, the first year curriculum doesn't allow a detailed review of the main light properties, least its technical applications. We present in this paper our experience in showing some basic optic concepts and related technologies to the students of our school. Based on the fact that they have a very basic training in this branch of physics, we have designed a series of experimental demonstrations with the dual purpose of making them understand the basic principles of these technologies, and to know the potential of applications to engineering they offer. We assembled these experiments in the laboratory and invited students to pass to get to know them, giving them an explanation in which we focused on the possible range of application of each technique. The response was very good, not only by the number of students who attended the invitation but also by the interest demonstrated by their questions and opinions.
A System-Science Approach towards Model Construction for Curriculum Development.
ERIC Educational Resources Information Center
Chang, Ren-Jung; Yang, Hui-Chin
A new morphological model based on modern system science and engineering is constructed and proposed for curriculum research and development. A curriculum system is recognized as an engineering system that constitutes three components: clients, resources, and knowledge. Unlike the objective models that are purely rational and neatly sequential in…
A Competency Based Curriculum Guide: Ethanol Spark Ignition Engine Conversion.
ERIC Educational Resources Information Center
Blair, Brittain A.
This guide is a competency-based vocational curriculum designed to provide educators with viable ethanol (100 percent alcohol) engine conversion procedures stated in simple terms and set in a flexible educational environment. The curriculum is designed so that educators can form various combinations of instructional activities and resource…
ERIC Educational Resources Information Center
Azapagic, Adisa; Perdan, Slobodan; Shallcross, David
2005-01-01
This paper addresses the issue of engineering education for sustainable development. In an attempt to facilitate a better integration of sustainability teaching into the engineering curriculum, it seeks to provide answers to the following fundamental questions: (1) How much do engineering students know about sustainable development? (2) What are…
Instructional design considerations promoting engineering design self-efficacy
NASA Astrophysics Data System (ADS)
Jackson, Andrew M.
Engineering design activities are frequently included in technology and engineering classrooms. These activities provide an open-ended context for practicing critical thinking, problem solving, creativity, and innovation---collectively part of the 21st Century Skills which are increasingly needed for success in the workplace. Self-efficacy is a perceptual belief that impacts learning and behavior. It has been shown to directly impact each of these 21st Century Skills but its relation to engineering design is only recently being studied. The purpose of this study was to examine how instructional considerations made when implementing engineering design activities might affect student self-efficacy outcomes in a middle school engineering classroom. Student responses to two self-efficacy inventories related to design, the Engineering Design Self-Efficacy Instrument and Creative Thinking Self-Efficacy Inventory, were collected before and after participation in an engineering design curriculum. Students were also answered questions on specific factors of their experience during the curriculum which teachers may exhibit control over: teamwork and feedback. Results were analyzed using Pearson's correlation coefficients, paired and independent t-tests, and structural equation modeling to better understand patterns for self-efficacy beliefs in students. Results suggested that design self-efficacy and creative thinking self-efficacy are significantly correlated, r(1541) = .783, p < .001, and increased following participation in a design curriculum, M diff = 1.32, t(133) = 7.60, p < .001 and Mdiff = 0.79, t(124) = 4.19, p < .001 respectively. Structural models also showed that students perceive team inclusion and feedback as significant contributors to their self-efficacy beliefs, while team diversity was not related to self-efficacy. Separate models for each predictor demonstrated good fit. Recommendations are made based on the corresponding nature of engineering design self-efficacy and creative thinking self-efficacy: strategies encouraging self-efficacy in these domains may be transferrable. Instructors are made aware of the significant impact of classroom strategies for increasing self-efficacy and given specific recommendations related to teamwork and feedback to support students. Finally, although there were weaknesses in the study related to the survey administration, future research opportunities are presented which may build from this work.
Standardized Curriculum for Small Engine Repair.
ERIC Educational Resources Information Center
Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.
This curriculum guide for small engine repair was developed by the state of Mississippi to standardize vocational education course titles and core contents. The objectives contained in this document are common to all small engine repair programs in the state. The guide contains objectives for small engine repair I and II courses. Units in course I…
Engineering Students for the 21st Century: Student Development through the Curriculum
ERIC Educational Resources Information Center
Cheville, Alan; Bunting, Chuck
2011-01-01
Through support of the National Science Foundation's Department Level Reform program, "Engineering Students for the 21st Century" (ES21C) has implemented a ten-course sequence designed to help students develop into engineers. Spread across the Electrical and Computer Engineering (ECE) curriculum at Oklahoma State University, these…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This individualized, self-paced course for independent study in engine principles has been adapted from military curriculum materials for vocational education use. The course provides the student with basic information on engine principles including different kinds of combustion engines, lubrication systems, and cooling systems. It is organized…
ERIC Educational Resources Information Center
Busch-Vishniac, Ilene; Kibler, Tom; Campbell, Patricia B.; Patterson, Eann; Guillaume, Darrell; Jarosz, Jeffrey; Chassapis, Constantin; Emery, Ashley; Ellis, Glenn; Whitworth, Horace; Metz, Susan; Brainard, Suzanne; Ray, Pradosh
2011-01-01
The goal of the Deconstructing Engineering Education Programmes project is to revise the mechanical engineering undergraduate curriculum to make the discipline more able to attract and retain a diverse community of students. The project seeks to reduce and reorder the prerequisite structure linking courses to offer greater flexibility for…
Building an Evaluation Strategy for an Integrated Curriculum in Chemical Engineering
ERIC Educational Resources Information Center
McCarthy, Joseph J.; Parker, Robert S.; Abatan, Adetola; Besterfield-Sacre, Mary
2011-01-01
Increasing knowledge integration has gained wide-spread support as an important goal in engineering education. The Chemical Engineering Pillars curriculum at the University of Pittsburgh, unique for its use of block scheduling, is one of the first four-year, integrated curricula in engineering, and is specifically designed to facilitate knowledge…
ERIC Educational Resources Information Center
Ramkrishna, D.; And Others
1989-01-01
This is a summary of a seminar for changing the undergraduate chemical engineering curriculum in India. Identifies and describes biotechnology, materials for structural and microelectronic catalysis, and new separation processes as emerging areas. Evaluates the current curriculum, including basic science, engineering lore, chemical engineering,…
NASA Astrophysics Data System (ADS)
Yamano, Masahiro; Matsuki, Noriaki; Numayama, Keiko; Takeda, Motohiro; Hayasaka, Tomoaki; Ishikawa, Takuji; Yamaguchi, Takami
We developed new bio-medical engineering curriculum for industrial engineers, and we confirmed that the engineer's needs and the educative effects by holding a trail program. This study in Tohoku University was supported by the Ministry of Economy, Trade and Industry (METI) . We named the curriculum as “ESTEEM” which is acronym of project title “Education through the Synergetic Training for the Engineering Enhanced Medicine” . In Tohoku University, the “REDEEM” curriculum which is an entry level course of bio-medical engineering for engineers has been already held. The positioning of “ESTEEM” program is an advanced course to enhance knowledge and experience in clinical point of view. The program is consisted of the problem based learning (PBL) style lectures, practical training, and observation learning in hospital. It is a unique opportunity to have instruction by doctors, from diagnosis to surgical operation, from traditional technique to front-line medical equipment. In this paper, we report and discuss on the progress of the new bio-medical engineering curriculum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-07
This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineering; Appendix D - Non-degree Certificate Program; Appendix E - Curriculum for Associate Degree Program; Appendix F - Curriculum for NCC Program; Appendix G - Information 1991 Teleconference Series; Appendix H - Information on 1992 Teleconference Series; Appendix I - WERC interactive Television Courses; Appendix J - WERC Research Seminar Series; Appendix K - Sites for Hazardous/Radioactive Waste Management Series; Appendix L- Summary of Technology Development of the Second Year; Appendix M -more » List of Major Publications Resulting from WERC; Appendix N - Types of Equipment at WERC Laboratories.« less
Waste-Management Education and Research Consortium (WERC) annual progress report, 1991--1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maji, A. K.; Thomson, Bruce M.; Samani, Zohrab A.
1992-04-07
This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineering; Appendix D - Non-degree Certificate Program; Appendix E - Curriculum for Associate Degree Program; Appendix F - Curriculum for NCC Program; Appendix G - Information 1991 Teleconference Series; Appendix H - Information on 1992 Teleconference Series; Appendix I - WERC interactive Television Courses; Appendix J - WERC Research Seminar Series; Appendix K - Sites for Hazardous/Radioactive Waste Management Series; Appendix L- Summary of Technology Development of the Second Year; Appendix M -more » List of Major Publications Resulting from WERC; Appendix N - Types of Equipment at WERC Laboratories.« less
NASA Astrophysics Data System (ADS)
Zhou, Andrew F.
2014-07-01
Bringing research into an undergraduate curriculum is a proven and powerful practice with many educational benefits to students and the professional rewards to faculty mentors. In recent years, undergraduate research has gained national prominence as an effective problem-based learning strategy. Developing and sustaining a vibrant undergraduate research program of high quality and productivity is an outstanding example of the problem-based learning. To foster student understanding of the content learned in the classroom and nurture enduring problem-solving and critical-thinking abilities, we have created a collaborative learning environment by building research into the Electro-Optics curriculum for the first- and second-year students. The teaching methodology is described and examples of the research projects are given. Such a research-integrated curriculum effectively enhances student learning and critical thinking skills, and strengthens the research culture for the first- and second-year students.
Mechatronics: the future of mechanical engineering; past, present, and a vision for the future
NASA Astrophysics Data System (ADS)
Ramasubramanian, M. K.
2001-08-01
Mechatronics is the synergistic integration of precision mechanical engineering, electronics, computational hardware and software in the design of products and processes. Mechatronics, the term coined in Japan in the '70s, has evolved to symbolize what mechanical design engineers do today worldwide. The revolutionary introduction of the microprocessor (or microcontroller) in the early '80s and ever increasing performance-cost ratio has changed the paradigm of mechanical design forever, and has broadened the original definition of mechatronics to include intelligent control and autonomous decision-making. Today, increasing number of new products is being developed at the intersection between traditional disciplines of Engineering, and Computer and Material Sciences. New developments in these traditional disciplines are being absorbed into mechatronics design at an ever-increasing pace. In this paper, a brief history of mechatronics, and several examples of this rapid adaptation of technologies into product design is presented. With the ongoing information technology revolution, especially in wireless communication, smart sensors design (enabled by MEMS technology), and embedded systems engineering, mechatronics design is going through another step change in capabilities and scope. The implications of these developments in mechatronics design in the near future are discussed. Finally, deficiencies in our engineering curriculum to address the needs of the industry to cope up with these rapid changes, and proposed remedies, will also be discussed.
Analog and Digital Electronics. A Study Guide of the Science and Engineering Technician Curriculum.
ERIC Educational Resources Information Center
Cavanaugh, Vince; Greer, Marlin
This study guide is part of an interdisciplinary curriculum entitled the Science and Engineering Technician (SET) Curriculum devised to provide basic information to train technicians in the use of electronic instruments and their application. The program of study integrates elements from the disciplines of chemistry, physics, mathematics,…
NASA Astrophysics Data System (ADS)
Dittrich, T. M.
2015-12-01
Much attention has been devoted in recent years to the importance of Science, Technology, Engineering, and Math (STEM) education in K-12 curriculum for developing a capable workforce. Equally important is the role of the voting public in understanding STEM-related issues that impact public policy debates such as the potential impacts of climate change, hydraulic fracturing in oil and gas exploration, mining impacts on water quality, and science funding. Since voted officials have a major impact on the future of these policies, it is imperative that the general public have an understanding of the basic science behind these issues. By engaging with the public in a more fundamental way, university students can play an important role in educating the public while at the same time enhancing their communication skills and gaining valuable teaching experience. I will talk about my own experiences in (1) evaluating and publishing water chemistry and hazardous waste cleanup curriculum on the K-12 engineering platform TeachEngineering.org, (2) organizing public tours of water and energy sites (e.g., abandoned mine sites, coal power plants, wastewater treatment plants, hazardous waste treatment facilities), and (3) other outreach and communication activities including public education of environmental issues through consultations with customers of a landscaping/lawn mowing company. The main focus of this presentation will be the role that graduate students can play in engaging and educating their local community and lessons learned from community projects (Dittrich, 2014; 2012; 2011). References: Dittrich, T.M. 2014. Adventures in STEM: Lessons in water chemistry from elementary school to graduate school. Abstract ED13E-07 presented at 2014 Fall Meeting, AGU, San Francisco, Calif., 15-19 Dec. Dittrich, T.M. 2012. Collaboration between environmental water chemistry students and hazardous waste treatment specialists on the University of Colorado-Boulder campus. Abstract ED53C-0932 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3-7 Dec. Dittrich, T.M. 2011. Taking advantage of STEM (science, technology, engineering, and math) popularity to enhance student/public engagement. Abstract ED44A-03 presented at 2011 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec.
ERIC Educational Resources Information Center
California State Univ., Engineering Council for Teaching and Learning.
This document provides the keynote address and papers delivered at the 1991 California State University Conference on Innovation in Engineering Education which focused on the pre-engineering curriculum. The conference was convened as a collaborative effort by faculty to address the following issues in engineering education: (1) the attraction and…
Problems Associated with a Lack of Cohesive Policy in K-12 Pre-College Engineering
ERIC Educational Resources Information Center
Chandler, John; Fontenot, A. Dean; Tate, Derrick
2011-01-01
This article identifies a number of issues associated with current STEM education reform efforts, especially with regard to efforts to integrate engineering education into the K-12 curriculum. Precollege engineering is especially problematic in STEM reform since there is no well-established tradition of engineering in the K-12 curriculum. This…
A New Introductory Course in the Engineering Education at the University of Tromsø
ERIC Educational Resources Information Center
Arne, Gjengedal; Tor, Schive
2016-01-01
In 2011 a new national curriculum for the education of engineers was established in Norway. The objective of the curriculum is to ascertain that engineering education is professionally oriented, integrated, research-based and has a high academic standard. Institutions are instructed to facilitate a holistic approach to the engineering profession,…
NASA Astrophysics Data System (ADS)
Clifford, Betsey A.
The Massachusetts Department of Elementary and Secondary Education (DESE) released proposed Science and Technology/Engineering standards in 2013 outlining the concepts that should be taught at each grade level. Previously, standards were in grade spans and each district determined the method of implementation. There are two different methods used teaching middle school science: integrated and discipline-based. In the proposed standards, the Massachusetts DESE uses grade-by-grade standards using an integrated approach. It was not known if there is a statistically significant difference in student achievement on the 8th grade science MCAS assessment for students taught with an integrated or discipline-based approach. The results on the 8th grade science MCAS test from six public school districts from 2010 -- 2013 were collected and analyzed. The methodology used was quantitative. Results of an ANOVA showed that there was no statistically significant difference in overall student achievement between the two curriculum models. Furthermore, there was no statistically significant difference for the various domains: Earth and Space Science, Life Science, Physical Science, and Technology/Engineering. This information is useful for districts hesitant to make the change from a discipline-based approach to an integrated approach. More research should be conducted on this topic with a larger sample size to better support the results.
A Subject Matter Expert View of Curriculum Development.
NASA Astrophysics Data System (ADS)
Milazzo, M. P.; Anderson, R. B.; Edgar, L. A.; Gaither, T. A.; Vaughan, R. G.
2017-12-01
In 2015, NASA selected for funding the PLANETS project: Planetary Learning that Advances the Nexus of Engineering, Technology, and Science. The PLANETS partnership develops planetary science and engineering curricula for out of classroom time (OST) education settings. This partnership is between planetary science Subject Matter Experts (SMEs) at the US Geological Survey (USGS), curriculum developers at the Boston Museum of Science (MOS) Engineering is Everywhere (EiE), science and engineering teacher professional development experts at Northern Arizona University (NAU) Center for Science Teaching and Learning (CSTL), and OST teacher networks across the world. For the 2016 and 2017 Fiscal Years, our focus was on creating science material for two OST modules designed for middle school students. We have begun development of a third module for elementary school students. The first model teaches about the science and engineering of the availability of water in the Solar System, finding accessible water, evaluating it for quality, treating it for impurities, initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. This module is described in more detail in the abstract by L. Edgar et al., Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration (233008) The second module involves the science and engineering of remote sensing in planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In these activities and discussions, we include observation and measurement techniques and tools as well as collection and use of specific data of interest to scientists. This module is described in more detail in the abstract by R. Anderson et al., Remote Sensing Mars Landing Sites: An Out-of-School Time Planetary Science Education Activity for Middle School Students (232683) The third module, described by R.G. Vaughan, Hazards in the Solar System: Out-of-School Time Student Activities Focused on Engineering Protective Space Gloves (262143), focuses on hazards in the Solar System and the engineering approach to designing space gloves to protect against those hazards.
NASA Astrophysics Data System (ADS)
Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.
2017-12-01
"Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of "Water in the Solar System" and lessons learned.
A case study of intersections between a physics classroom and industry
NASA Astrophysics Data System (ADS)
Jadonath, Capildeo
The purpose of this study was to describe a journey for one teacher and his students. This journey involved bridging the gap between his classroom and high-tech workplaces, while engaging students in an integrated physics curriculum called Advanced Technology Education (ATE). This integrated curriculum is grounded in physics and interwoven with both Principles of Technology (PT) and Integrated Systems Technology (IST). ATE integrates the learning of technical skills, people skills, and academics through real world applications in manufacturing, production and engineering technology. The study was qualitative and employed a specific genre of research, the case study and it included both qualitative and quantitative data collection. This case study design originated from anthropology and has the following four characteristics: particularistic, descriptive, heuristic, and inductive. Data were collected over a 2-year period (August 1996-June 1998), by the researcher who was simultaneously the participants' instructor. This allowed me to be the prime instrument for the study and also become an "insider". The techniques of data collection were guided primarily by the research questions. Multiple sources of evidence included: documents, interviews, archival records, direct observations, participant observations, physical artifacts, and surveys (students, parents, and faculty).
What Is Technology Education? A Review of the "Official Curriculum"
ERIC Educational Resources Information Center
Brown, Ryan A.; Brown, Joshua W.
2010-01-01
Technology education, not to be confused with educational technology, has an "official curriculum." This article explores this "official curriculum" and answers the following questions; what are the goals of technology education, what should technology education look like in classrooms, and why technology education is important. This article…
ERIC Educational Resources Information Center
Berry, Ayora
2017-01-01
The purpose of this study was to investigate the effects of a curriculum design-based (CDB) professional development model on K-12 teachers' capacity to integrate engineering education in the classroom. This teacher professional development approach differs from other training programs where teachers learn how to use a standard curriculum and…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This volume of student materials for a secondary/postsecondary level course in principles of marine diesel engines is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The purpose of the individualized, self-paced course is to acquaint…
Discussion on teaching reform of environmental planning and management
NASA Astrophysics Data System (ADS)
Zhang, Qiugen; Chen, Suhua; Xie, Yu; Wei, Li'an; Ding, Yuan
2018-05-01
The curriculum of environmental planning and management is an environmental engineering major curriculum established by the teaching steering committee of environmental science and engineering of Education Ministry, which is the core curriculum of Chinese engineering education professional certification. It plays an important role in cultivating environmental planning and environmental management ability of environmental engineering major. The selection and optimization of the course teaching content of environmental planning and management were discussed which including curriculum teaching content updating and optimizing and teaching resource system construction. The comprehensive application of teaching method was discussed which including teaching method synthesis and teaching method. The final combination of the assessment method was also discussed which including the formative assessment normal grades and the final result of the course examination. Through the curriculum comprehensive teaching reform, students' knowledge had been broadened, the subject status and autonomy of learning had been enhanced, students' learning interest had been motivated, the ability of students' finding, analyzing and solving problems had been improved. Students' innovative ability and positive spirit had been well cultivated.
Standardized Curriculum for Outboard Marine Engine Mechanics.
ERIC Educational Resources Information Center
Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.
This curriculum guide for outboard marine engine mechanics was developed by the state of Mississippi to standardize vocational education course titles and core contents. The objectives contained in this document are common to all outboard marine engine mechanics programs in the state. The guide contains objectives for outboard marine engine…
Small Engines and Outboard Marine Mechanics Curriculum.
ERIC Educational Resources Information Center
Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.
This competency-based curriculum guide is a handbook for the development of small engine and outboard marine mechanics programs. Based on a survey of Alaskan small engines and marine mechanics employers, it includes all competencies a student should acquire in such a mechanics program. The handbook stresses the importance of understanding the…
Diversity Issues in the Engineering Curriculum
ERIC Educational Resources Information Center
Ihsen, Susanne; Gebauer, Sabrina
2009-01-01
Teaching engineering studies students about diversity issues as part of the curriculum in engineering programs is an essential part of preparing the students for their professional life. By teaching them what this is and what it means for their (professional) lives sensitises them towards more responsibility. The idea is to connect diversity…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piyush Sabharwall; Jesse Rebol
The engineering discipline is a profession of acquiring and applying technical knowledge, and the focus of engineering psychology is to optimize the effectiveness and efficiency with which human activities are conducted. Having human factors and engineering psychology be a permanent part of the engineering curriculum will make students aware of them, so they can learn from past experiences and avoid making the same mistakes their peers made. (Should be close to 200 words)
NASA Astrophysics Data System (ADS)
Scribner, J. Adam
Numerous studies have demonstrated that educators having degrees in their subjects significantly enhances student achievement, particularly in secondary mathematics and science (Chaney, 1995; Goe, 2007; Rowan, Chiang, & Miller, 1997; Wenglinsky, 2000). Yet, science teachers in states that adopt the Next Generation Science Standards will be facilitating classroom engineering activities despite the fact that few have backgrounds in engineering. This quantitative study analyzed ex-post facto WaterBotics (an innovative underwater robotics curriculum for middle and high school students) data to determine if educators having backgrounds in engineering (i.e., undergraduate and graduate degrees in engineering) positively affected student learning on two engineering outcomes: 1) the engineering design process, and 2) understanding of careers in engineering (who engineers are and what engineers do). The results indicated that educators having backgrounds in engineering did not significantly affect student understanding of the engineering design process or careers in engineering when compared to educators having backgrounds in science, mathematics, technology education, or other disciplines. There were, however, statistically significant differences between the groups of educators. Students of educators with backgrounds in technology education had the highest mean score on assessments pertaining to the engineering design process while students of educators with disciplines outside of STEM had the highest mean scores on instruments that assess for student understanding of careers in engineering. This might be due to the fact that educators who lack degrees in engineering but who teach engineering do a better job of "sticking to the script" of engineering curricula.
Computing in Hydraulic Engineering Education
NASA Astrophysics Data System (ADS)
Duan, J. G.
2011-12-01
Civil engineers, pioneers of our civilization, are rarely perceived as leaders and innovators in modern society because of retardations in technology innovation. This crisis has resulted in the decline of the prestige of civil engineering profession, reduction of federal funding on deteriorating infrastructures, and problems with attracting the most talented high-school students. Infusion of cutting-edge computer technology and stimulating creativity and innovation therefore are the critical challenge to civil engineering education. To better prepare our graduates to innovate, this paper discussed the adaption of problem-based collaborative learning technique and integration of civil engineering computing into a traditional civil engineering curriculum. Three interconnected courses: Open Channel Flow, Computational Hydraulics, and Sedimentation Engineering, were developed with emphasis on computational simulations. In Open Channel flow, the focuses are principles of free surface flow and the application of computational models. This prepares students to the 2nd course, Computational Hydraulics, that introduce the fundamental principles of computational hydraulics, including finite difference and finite element methods. This course complements the Open Channel Flow class to provide students with in-depth understandings of computational methods. The 3rd course, Sedimentation Engineering, covers the fundamentals of sediment transport and river engineering, so students can apply the knowledge and programming skills gained from previous courses to develop computational models for simulating sediment transport. These courses effectively equipped students with important skills and knowledge to complete thesis and dissertation research.
BKCASE (trademark): Body of Knowledge and Curriculum to Advance Systems Engineering
2010-10-01
Association Francaise d‘lingeniere Systeme, France Tim Ferris University of South Australia, Australia Kevin Forsberg Center for Systems Management US 7... Lee Defence Science and Technology Agency, Singapore Ray Madachy Naval Postgraduate School, US James Martin Aerospace Corporation US , Greg...Pyster Stevens Institute of Technology, US Garry Roedler Lockheed Martin, US Jean‐Claude Roussel EADS, France 9/2010 Sven‐Olaf Schulze Berner & Mattner
GSFC Technical Outreach: The Capitol College Model
NASA Technical Reports Server (NTRS)
Marius, Julio L.; Wagner, David
2008-01-01
In February 2005, as part of the National Aeronautic and Space Administration (NASA) Technical Outreach Program, Goddard Space Flight Center (GSFC) awarded Capitol College of Laurel, Maryland an Educational Grant to establish a Space Operation academic curriculum to meet the future needs of mission operations engineers. This was in part due to the aerospace industry and GSFC concerns that a large number of professional engineers are projected to retire in the near term with evidence showing that current enrollment in engineering schools will not produce sufficient number of space operation trained engineers that will meet industry and government demands. Capitol College, under the agreement of the Educational Grant, established the Space Operations Institute (SOI) with a new curriculum in Space Operations that was approved and certified by the State of Maryland. The SO1 programs focuses on attracting, recruiting, and training a pipeline of highly qualified engineers with experience in mission operations, system engineering and development. The selected students are integrated as members of the engineering support team in any of the missions supported by the institute. The students are mentored by professional engineers from several aerospace companies that support GSFC. Initially, the institute was involved in providing console engineers and mission planning trainees for the Upper Atmosphere Research Satellite (UARS), the Earth Radiation Budget Satellite (ERBS) and the Total Ozone Mapping Spectrometer mission (TOMS). Subsequently, the students were also involved in the technology refresh of the TOMS ground system and other mission operations development. Further mission assignment by GSFC management included participation in the Tropical Rainfall Measuring Mission (TRMM) mission operations and ground system technology refresh. The SOI program has been very successful. Since October 2005, sixty-four students have been enrolled in the SOI program and twenty-five have already graduated from the program, nineteen of whom are employed by company's supporting GSFC. Due to the success of the program, the initial grant period was extended for another period of two years. This paper presents the process that established the SOI as a viable pipeline of mission operations engineers, the lessons learned in the process of dealing with grants, and experience gained in mentoring engineering students that are responsible for particular areas of expertise and functionality. This paper can also be considered a case study and model for integrating a student team with government and industry professionals in the real world of mission operations.
Quantitative Literacy: Geosciences and Beyond
NASA Astrophysics Data System (ADS)
Richardson, R. M.; McCallum, W. G.
2002-12-01
Quantitative literacy seems like such a natural for the geosciences, right? The field has gone from its origin as a largely descriptive discipline to one where it is hard to imagine failing to bring a full range of mathematical tools to the solution of geological problems. Although there are many definitions of quantitative literacy, we have proposed one that is analogous to the UNESCO definition of conventional literacy: "A quantitatively literate person is one who, with understanding, can both read and represent quantitative information arising in his or her everyday life." Central to this definition is the concept that a curriculum for quantitative literacy must go beyond the basic ability to "read and write" mathematics and develop conceptual understanding. It is also critical that a curriculum for quantitative literacy be engaged with a context, be it everyday life, humanities, geoscience or other sciences, business, engineering, or technology. Thus, our definition works both within and outside the sciences. What role do geoscience faculty have in helping students become quantitatively literate? Is it our role, or that of the mathematicians? How does quantitative literacy vary between different scientific and engineering fields? Or between science and nonscience fields? We will argue that successful quantitative literacy curricula must be an across-the-curriculum responsibility. We will share examples of how quantitative literacy can be developed within a geoscience curriculum, beginning with introductory classes for nonmajors (using the Mauna Loa CO2 data set) through graduate courses in inverse theory (using singular value decomposition). We will highlight six approaches to across-the curriculum efforts from national models: collaboration between mathematics and other faculty; gateway testing; intensive instructional support; workshops for nonmathematics faculty; quantitative reasoning requirement; and individual initiative by nonmathematics faculty.
Renewable Microgrid STEM Education & Colonias Outreach Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
To provide Science, Technology, Engineering, and Math (STEM) outreach and education to secondary students to encourage them to select science and engineering as a career by providing an engineering-based problem-solving experience involving renewable energy systems such as photovoltaic (PV) panels or wind turbines. All public and private schools, community colleges, and vocational training programs would be eligible for participation. The Power Microgrids High School Engineering Experience used renewable energy systems (PV and wind) to provide a design capstone experience to secondary students. The objective for each student team was to design a microgrid for the student’s school using renewable energymore » sources under cost, schedule, performance, and risk constraints. The students then implemented their designs in a laboratory environment to evaluate the completeness of the proposed design, which is a unique experience even for undergraduate college students. This application-based program was marketed to secondary schools in the 28th Congressional District through the Texas Education Agency’s (TEA) Regional Service Centers. Upon application, TEES identified regionally available engineers to act as mentors and supervisors for the projects. Existing curriculum was modified to include microgrid and additional renewable technologies and was made available to the schools.« less
ERIC Educational Resources Information Center
Hamlin, Larry
This document contains a curriculum guide and lesson plans for a general mechanical repair course with three sections: minor automotive maintenance, small engine repair, and welding. The curriculum guide begins with a matrix that relates the lesson plans to essential elements of math, science, language arts, and social studies and to Texas…
ERIC Educational Resources Information Center
Meda, Lawrence; Swart, Arthur James
2018-01-01
Learning outcomes are essential to any curriculum in education, where they need to be clear, observable and measurable. However, some academics structure learning outcomes in a way that does not promote student learning. The purpose of this article is to present the analyses of learning outcomes of an Electrical Engineering curriculum offered at a…
ERIC Educational Resources Information Center
Roure, Bastien; Anand, Chirjiv; Bisaillon, Véronique; Amor, Ben
2018-01-01
Purpose: The purpose of this paper is to provide a consistent and systematic integration framework of sustainable development (SD) in a civil engineering (CE) curriculum, given the connection between the two. Curriculum integration is a challenging project and requires the development of certain protocols to ensure success.…
ERIC Educational Resources Information Center
Chan, Cecilia K. Y.; Wong, George C. K.; Law, Ada K. H.; Zhang, T.; Au, Francis T. K.
2017-01-01
This study aimed to provide evidence-based conclusions from students concerning a capstone-design course in a civil engineering programme in Hong Kong. The evidence was generated by designing a student-experience questionnaire. The questionnaire instrument was assessed for internal consistency in four scales (curriculum and structure changes;…
ERIC Educational Resources Information Center
Rutland, Marion; Owen-Jackson, Gwyneth
2015-01-01
In England, food technology is part of the curriculum for design and technology but the purpose of food technology education is not clear. Over the years, food on the school curriculum has generally been seen as a practical, learning to cook, activity initially for girls to prepare them for domestic employment or housewifery. As society has…
Effectiveness of E-Learning for Students Vocational High School Building Engineering Program
NASA Astrophysics Data System (ADS)
Soeparno; Muslim, Supari
2018-04-01
Implementation of vocational learning in accordance with the 2013 curriculum must meet the criteria, one of which is learning to be consistent with advances in technology and information. Technology-based learning in vocational commonly referred to as E-Learning, online (in the network) and WBL (Web-Based Learning). Facts on the ground indicate that based learning technology and information on Vocational High School of Building Engineering is still not going well. The purpose of this research is to know: advantages and disadvantages of learning with E-Learning, conformity of learning with E-Learning with characteristics of students on Vocational High School of Building Engineering and effective learning method based on E-Learning for students on Vocational High School of Building Engineering. Research done by literature method, get the following conclusion as follow: the advantages of E-Learning is learning can be done anywhere and anytime, efficient in accessing materials and tasks, ease of communication and discussion; while the shortage is the need for additional costs for good internet access and lack of social interaction between teachers and students. E-learning is appropriate to basic knowledge competencies, and not appropriate at the level of advanced competencies and skills. Effective E-Learning Based Learning Method on Vocational High School of Building Engineering is a Blended method that is a mix between conventional method and e-learning.
ERIC Educational Resources Information Center
Gupta, Anju
2015-01-01
This one-day workshop for pre-service teachers was aimed at implementing a uniquely designed and ready-to-implement chemical engineering curriculum in high school coursework. This educational and professional development opportunity introduced: 1) chemical engineering curriculum and career opportunities, 2) basic industrial processes and flow…
Engineering in Elementary STEM Education: Curriculum Design, Instruction, Learning, and Assessment
ERIC Educational Resources Information Center
Cunningham, Christine M.
2018-01-01
Bolstered by new standards and new initiatives to promote STEM education, engineering is making its way into the school curriculum. This comprehensive introduction will help elementary educators integrate engineering into their classroom, school, or district in age-appropriate, inclusive, and engaging ways. Building on the work of a Museum of…
Curriculum Outline for Introduction to Engineering Chemistry. First Edition. Review Cycle-Annual.
ERIC Educational Resources Information Center
Schlenker, Richard M.
This curriculum outline consists of behavioral objectives (called terminal and enabling objectives) for Introduction to Engineering Chemistry, a one-semester, post-secondary course consisting of four 1-hour lectures each week. Course goal is to introduce marine engineering students to the rudiments of basic/introductory inorganic chemistry. The…
ERIC Educational Resources Information Center
Klein, Stacy S.; Sherwood, Robert D.
2005-01-01
This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This course, adapted from military curriculum materials for vocational and technical education, teaches students to restore diesel engine performance to the manufacturer's specifications through troubleshooting and analyzing diesel engine fuel systems and to make minor and major adjustments to those components that directly affect engine…
A Curriculum of Value Creation and Management in Engineering
ERIC Educational Resources Information Center
Yannou, Bernard; Bigand, Michel
2004-01-01
As teachers and researchers belonging to two sister French engineering schools, we are convinced that the processes of value creation and management are essential in today's teaching of industrial engineering and project managers. We believe that such processes may be embedded in a three-part curriculum composed of value management and innovation…
ERIC Educational Resources Information Center
Eskandari, Hamidreza; Sala-Diakanda, Serge; Furterer, Sandra; Rabelo, Luis; Crumpton-Young, Lesia; Williams, Kent
2007-01-01
Purpose: This paper aims to present the results of an initial research study conducted to identify the desired professional characteristics of an industrial engineer with an undergraduate degree and the emerging topic areas that should be incorporated into the curriculum to prepare industrial engineering (IE) graduates for the future workforce.…
Science and Engineering Technician Curriculum Development Project. Final Report.
ERIC Educational Resources Information Center
Mowery, Donald R.; Wolf, Lawrence J.
Project SET (Science and Engineering for Technicians) developed a series of study guides designed to teach generic science and engineering skills to students interested in becoming technicians. An entire 2-year curriculum is encompassed by these guides, geared for 2-year college students. Described in this final report are the project's rationale,…
"I Take Engineering with Me": Epistemological Transitions across an Engineering Curriculum
ERIC Educational Resources Information Center
Winberg, Christine; Winberg, Simon; Jacobs, Cecilia; Garraway, James; Engel-Hills, Penelope
2016-01-01
In this paper we study epistemological transitions across an intended engineering curriculum and recommend strategies to assist students in attaining the increasingly complex concepts and insights that are necessary for transition to advanced levels of study. We draw on Legitimation Code Theory [Maton, Karl. 2014, "Knowledge and Knowers:…
Can Diversity in the Undergraduate Engineering Population BE Enhanced Through Curricular Change?
NASA Astrophysics Data System (ADS)
Busch-Vishniac, Ilene J.; Jarosz, Jeffrey P.
The lack of diversity in the engineering workforce is a persistent problem, with no signs of pending improvement. The situation continues despite a serious technical workforce shortage in the United States. Efforts to promote diversity in the student body in U.S. engineering schools, such as industrial partnerships, academic services, and the establishment of social networks, have produced modest gains. The authors intend to pursue a distinctly different approach to the problem of encouraging a diverse engineering student population, one that focuses on the curriculum. This study reviews curricular innovations attempted to date as a basis for rebuilding the undergraduate engineering curriculum from the ground up. The goal is to produce a curriculum that retains the salient technical material but enhances the link between fundamentals and applications, reduces critical path lengths in the course sequence, introduces team experiences into all courses, and creates an atmosphere of inclusion rather than exclusion. The new curriculum will require trial, assessment, and revision before it is ready for adoption.
Enriching STEM with the arts to better prepare 21st century citizens
NASA Astrophysics Data System (ADS)
Taylor, Peter Charles
2018-01-01
Why should we consider integrating the Arts with Science, Technology, Engineering and Mathematics? Is this just another curriculum fad? In this paper I argue that STEAM (STEM + Arts) Education is an important response to the pressing need to prepare young people with higher-order abilities to deal positively and productively with 21st Century global crises that are impacting the economy, the natural environment and our diverse cultural heritage.
NASA Astrophysics Data System (ADS)
Lamore, Brian
2016-10-01
For years the fan cart has provided physics students with an excellent resource for exploring fundamental mechanics concepts such as acceleration, Newton's laws, impulse, momentum, work-energy, and energy conversions. The Physics Teacher has even seen some excellent do-it-yourself (DIY) fan carts and activities. If you are interested in developing the `E' portion of your and your students' STEM (science, technology, engineering, and math) skills, one way to accomplish this is to revisit the DIY fan cart. In this article I share a design of a new edition of the DIY fan cart and some ideas for incorporating the engineering design process into your high school curriculum.
A Future-Oriented, Globally Based Curriculum Model for Industrial Technology.
ERIC Educational Resources Information Center
Hacker, Michael
1982-01-01
Presents a future-oriented curriculum approach for industrial technology programs. Major global issues provide the basic structure for curriculum development. These issues include energy management, resource management, technological advancement, and international relations. Rationales for industrial technology are discussed and a curriculum…
Technology Curriculum and Planning for Technology in Schools: The Flemish Case
ERIC Educational Resources Information Center
Vanderlinde, Ruben; van Braak, Johan; De Windt, Vicky; Tondeur, Jo; Hermans, Ruben; Sinnaeve, Ilse
2008-01-01
As a significant step in the consolidation of the importance of technology in education, the Flemish Government recently (September 2007) introduced a formal technology curriculum for schools. This compulsory curriculum replaces already existing but non-binding technology guidelines and is an important action in the Flemish policy of educational…
Evaluation of an Integrated Curriculum in Physics, Mathematics, Engineering, and Chemistry
NASA Astrophysics Data System (ADS)
Beichner, Robert
1997-04-01
An experimental, student centered, introductory curriculum called IMPEC (for Integrated Mathematics, Physics, Engineering, and Chemistry curriculum) is in its third year of pilot-testing at NCSU. The curriculum is taught by a multidisciplinary team of professors using a combination of traditional lecturing and alternative instructional methods including cooperative learning, activity-based class sessions, and extensive use of computer modeling, simulations, and the world wide web. This talk will discuss the research basis for our design and implementation of the curriculum, the qualitative and quantitative methods we have been using to assess its effectiveness, and the educational outcomes we have noted so far.
A case study of non-traditional students re-entry into college physics and engineering
NASA Astrophysics Data System (ADS)
Langton, Stewart Gordon
Two groups of students in introductory physics courses of an Access Program for engineering technologies were the subjects of this study. Students with a wide range of academic histories and abilities were enrolled in the program; many of the students were re-entry and academically unprepared for post-secondary education. Five years of historical data were evaluated to use as a benchmark for revised instruction. Data were gathered to describe the pre-course academic state of the students and their academic progress during two physics courses. Additional information was used to search for factors that might constrain academic success and as feedback for the instructional methods. The data were interpreted to regulate constructivist design features for the physics courses. The Engineering Technology Access Program was introduced to meet the demand from non-traditional students for admission to two-year engineering' technology programs, but who did not meet normal academic requirements. The duration of the Access Program was two terms for electronic and computer engineering students and three terms for civil and mechanical engineering students. The sequence of mathematics and physics courses was different for the two groups. The Civil/Mechanical students enrolled in their first mathematics course before undertaking their first physics course. The first mathematics and physics courses for the Electronics students were concurrent. Academic success in the two groups was affected by this difference. Over a five-year period the success rate of students graduating with a technology diploma was approximately twenty-five percent. Results from this study indicate that it was possible to reduce the very high attrition in the combined Access/Technology Programs. While the success rate for the Electronics students increased to 38% the rate for the Civil/Mechanical students increased dramatically to 77%. It is likely that several factors, related to the extra term in the Access Program for the Civil/Mechanical students, contributed to this high retention rate. Additional time, with less academic pressure in the first term of the Access Program, provided the Civil/Mechanical students with the opportunity to develop academic skills and maturity resulting in improved self-concept and academic identity. These students may have been better equipped to take advantage of the alternate instructional setting of the revised physics courses. Results from a wide range of studies in Physics Education Research provide ideas and opportunities to improve instruction and students conceptual understanding in introductory physics courses. Most studies focus on traditional students and curriculum. The development and implementation of alternate curriculum and instruction may improve outcomes for different groups of students, particularly for students in disciplines indirectly related to the sciences.
The Effective Use of Professional Software in an Undergraduate Mining Engineering Curriculum
ERIC Educational Resources Information Center
Kecojevic, Vladislav; Bise, Christopher; Haight, Joel
2005-01-01
The use of professional software is an integral part of a student's education in the mining engineering curriculum at The Pennsylvania State University. Even though mining engineering represents a limited market across U.S. educational institutions, the goal still exists for using this type of software to enrich the learning environment with…
ERIC Educational Resources Information Center
Grusenmeyer, Linda Huey
2017-01-01
This study examines the personal and curricular resources available to Delaware's elementary teachers during a time of innovative curriculum change, i.e., their knowledge, goals and beliefs regarding elementary engineering curriculum and the pedagogical support to teach two Science and Engineering Practices provided by science teaching materials.…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This course, adapted from military curriculum materials for use in vocational and technical education, teaches students to perform a complete engine tune-up using appropriate hand tools, special tools, and testing equipment. Students completing the course will be able to diagnose gasoline-engine performance and perform corrective measures to…
ERIC Educational Resources Information Center
Wendell, Kristen Bethke
2011-01-01
This research illustrates how varying enactments of an engineering-design-based science curriculum shaped the development of students' domain-specific scientific ideas and practices. In this comparative case study rooted in the analytical perspectives of activity theory and learning environments, student and teacher participants in three…
Integrating Surface Modeling into the Engineering Design Graphics Curriculum
ERIC Educational Resources Information Center
Hartman, Nathan W.
2006-01-01
It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…
Response Strategies for Curriculum Change in Engineering
ERIC Educational Resources Information Center
Kolmos, Anette; Hadgraft, Roger G.; Holgaard, Jette Egelund
2016-01-01
During the last 25 years, there have been many calls for new engineering competencies and a corresponding gradual change in both curriculum and pedagogy in engineering education. This has been a global trend, in the US, Europe, Australia and now emerging in the rest of the world. Basically, there have been two main types of societal challenges…
ERIC Educational Resources Information Center
Goodridge, Wade H.; Lawanto, Oenardi; Santoso, Harry B.
2017-01-01
The implementation of a successful engineering program to a synchronous online curriculum is subject to many impacting factors. One such factor, that has not seen much investigation, concerns learning styles. Student learning styles may have a dramatic influence on the success of a synchronous online deliverable engineering graphics curriculum.…
NASA Astrophysics Data System (ADS)
Cała, Marek; Borowski, Marek
2018-03-01
The AGH University of Science and Technology collaborates closely with other universities, economic units, governmental and local administrative bodies. International cooperation plays a very important role in the academic research. The AGH University of Science and Technology has signed many collaboration agreements. They aim at multidimensional cooperation in the fields of education and academic research. AGH UST has always focused on collaboration with business and industry. In recent years, the global economy is undergoing massive transformations, what creates new challenges to companies and educational institutions that cater to the needs of industry. The expansion of business enterprises is largely dependent on their employees' expertise, skills and levels of competence. Certified engineers are provided by universities. Therefore, the qualifications of the graduates are determined by the curriculum and teaching methods, as well as the available educational and research facilities. Of equal importance is the qualified academic staff. Human activities in the field of engineering require finding solutions to problems of various nature and magnitude. An engineer's work consists in the design, construction, modification and maintenance of useful devices, processes and systems, using scientific and technical knowledge. In order to design complex engineering solutions, an engineer uses his imagination, experience, analytical skills, logical reasoning and makes conscious use of his knowledge. At the Faculty of Mining and Geoengineering of the AGH University of Science and Technology in Cracow, 15 engineers from Vietnam are studying Mining and Geology at the second-cycle studies (specialization: mine ventilation). The solutions proposed in the field of the engineers' education guarantee that foreign students gain both engineering knowledge and problem-solving skills. Therefore, the study programme was complemented by a series of practical aspects.
NASA Astrophysics Data System (ADS)
2000-03-01
Delcam, a manufacturing software developer, has supplied substantial funding towards a UK Government initiative intended to revolutionize the study of design and technology in schools. The computer-aided design software for schools (CAD-CAM) programme will give students a bridge into industry by enabling them to employ video links with engineers at companies such as British Aerospace and Rolls Royce. They will then be able to convert their virtual reality designs into a finished product. When the revised National Curriculum comes into effect this year, CAD-CAM will become compulsory from Key Stage 3, reflecting the greater focus on work-related learning, as well as the added importance being given to Information and Communications Technology (ICT) within the curriculum. Under the new scheme, schools can use a range of software designed in the UK (currently used for such items as jet aircraft and Formula One racing cars), which is being made available free of charge. The Design and Technology Association is monitoring the programme and the schools taking part have had to propose targets, focused on curriculum innovation, pupil outcomes and staff development. Still on the theme of design is the `Young Foresight' project launched in January and inviting 13 to 14 year-olds to tackle the challenges of the future through designing a new product for the world of 2020. The aim here is to encourage creativity, enterprise and innovation among young people by giving them an idea of what is involved in the design and development of a successful product. The students will be supported by mentors drawn from the local business community and there will be related BBC schools television programmes early in March with classroom resources, teacher training and an interactive website. The first phase of the initiative, based on 100 schools from across England and Wales, should be completed by autumn 2000, with phase 2 for 3000 schools over a three-year period incorporating a further nine programmes reflecting the work of the national Foresight Panels. The national Foresight programme is about preparing for the future by identifying market drivers, threats and opportunities and using that knowledge to inform the decisions that need to be taken today. Details can be viewed at www.foresight.gov.uk And for those with any remaining untapped ingenuity, the deadline is fast approaching for this year's `Young Engineer for Britain' competition. Young people, either individually or in teams of up to four, are invited to demonstrate their engineering skills in an event with a total prize value of over £65 000. The individual winner takes away a personal prize of £2500 plus a trophy, and their school receives an additional £2500 for engineering teaching equipment. Entry details can be obtained from Young Engineers for Britain, Engineering Council, 10 Maltravers Street, London WC2R 3ER and the closing date is 28 April 2000 .
NASA Astrophysics Data System (ADS)
Huebner, P.
2003-12-01
Bridging the geographic boundaries and providing educational opportunities is the goal of American Indian Programs at Arizona State University East. Since its inception in 1997, American Indian Programs has established programs and partnerships to provide opportunities and resources to Tribal communities throughout Arizona. From educational programs to enhance student achievement at the K-12 level to recruitment and retention of American Indian students at the post secondary level, American Indian Programs provides the resources to further the success of students in science, math, engineering and technology. Resource convergence is critical in providing opportunities to ensure the success of Indian students in science, math, engineering and technology. American Indian Programs has built successful programs based on partnerships between federal grant programs, corporate, federal and state agencies. Providing professional development for teachers, school assessment, science and math curriculum and data collection are the primary efforts at the K-12 level to increase student achievement. Enrichment programs to enhance K-12 activities include the development of the Arizona American Indian Science and Engineering Fair (the only State fair for American Indiana's in the country) supported entirely through corporate support, summer residential programs, after school activities and dual enrollment programs for high school students. ASU East's retention rate for first year students is 92 percent and 1in 6 graduating students enter graduate programs. American Indian Programs strives to build student relationships with federal, state and corporate agencies through internships and coops. This effort has led to the development of an E-mentoring program that allows students (and K-12 teachers) to work directly with practicing scientists, and engineers in research activities. New programs look to increase technology not only in Tribal schools but increase technology in the homes of students as well.
Formula student as part of a mechanical engineering curriculum
NASA Astrophysics Data System (ADS)
Davies, Huw Charles
2013-10-01
Formula Student (FS) is a multi-university student design competition managed by the UK Institution of Mechanical Engineers. Students are required to demonstrate and prove their creativity and engineering skills through the design, manufacture and financing of a small formula style race car. This paper seeks to explore the educational value that derives from the FS activity through a series of semi-structured interviews with key stakeholders. Through the analysis of the interview data, it was found that the FS activity supported development of student skills and competencies in the following areas: use of engineering knowledge to support the application of existing and emerging technology; application of theoretical and practical knowledge to the solution of engineering problems; development of technical and commercial management skills; development of effective interpersonal skills, including communication skills; and demonstration of personal commitment to professional development. In addition, a number of areas for implementing 'good practise' have been identified. The information herein supports educators in their responsibility to help meet the needs of the engineering industry for high quality graduates.
42 CFR 86.13 - Project requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
...), a school of nursing, a school of public health or its equivalent, and a school of engineering or its... career categories, e.g., industrial toxicology, biostatistics, epidemiology, and ergonomics. Training... engineering, among others, by providing curriculum materials and consultation for curriculum/course...
Engine & Vehicle Mechanics Curriculum.
ERIC Educational Resources Information Center
Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.
This competency-based curriculum includes all competencies a student will acquire in an engine and vehicle mechanics educational program. It follows guidelines established for automobile technician training programs leading toward certification and addresses requirements of the National Institute for Automotive Service Excellence (ASE). The…
Final Technical Report: Hydrogen Energy in Engineering Education (H2E3)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, Peter A.; Cashman, Eileen; Lipman, Timothy
2011-09-15
Schatz Energy Research Center's Hydrogen Energy in Engineering Education curriculum development project delivered hydrogen energy and fuel cell learning experiences to over 1,000 undergraduate engineering students at five California universities, provided follow-on internships for students at a fuel cell company; and developed commercializable hydrogen teaching tools including a fuel cell test station and a fuel cell/electrolyzer experiment kit. Monitoring and evaluation tracked student learning and faculty and student opinions of the curriculum, showing that use of the curriculum did advance student comprehension of hydrogen fundamentals. The project web site (hydrogencurriculum.org) provides more information.
Technology in Sustainable Development Context
NASA Astrophysics Data System (ADS)
Uno, Kimio
The economic and demographic growth in Asia has put increased importance to this part of the world whose contribution to the global community is vital in meeting global challenges. International cooperation in engineering education assumes a pivotal role in providing access to the frontiers of scientific and technological knowledge to the growing youths in the region. The thrust for advancement has been provided by the logic coming from the academic world itself, whereas expectations are high that the engineering education responds to challenges that are coming from outside the universities, such as environmental management, disaster management, and provision of common knowledge platform across disciplinary lines. Some cases are introduced in curriculum development that incorporates fieldwork and laboratory work intended to enhance the ability to cooperate. The new mode is discussed with focus on production, screening, storing/delivery, and leaning phases of knowledge. The strength of shared information will be enhanced through international cooperation.
ERIC Educational Resources Information Center
Garcia, Oscar N.; Varanasi, Murali R.; Acevedo, Miguel F.; Guturu, Parthasarathy
2011-01-01
We analyze and study the beginning of a new Electrical Engineering Department, supported by an NSF Departmental Level Reform award, within a new College of Engineering in the 21st Century and also describe the academic approach and influences of an innovative cognitive-based approach to curriculum development. In addition, the approach taken…
ERIC Educational Resources Information Center
Cogger, Steven D.; Miley, Daniel H.
2012-01-01
This paper proposes that project-based active learning is a key part of engineering education at the middle school level. One project from a comprehensive middle school engineering curriculum developed by the authors is described to show how active learning and state frameworks can coexist. The theoretical basis for learning and assessment in a…
Changes in Transferable Knowledge Resulting from Study in a Graduate Software Engineering Curriculum
ERIC Educational Resources Information Center
Bareiss, Ray; Sedano, Todd; Katz, Edward
2012-01-01
This paper presents the initial results of a study of the evolution of students' knowledge of software engineering from the beginning to the end of a master's degree curriculum in software engineering. Students were presented with a problem involving the initiation of a complex new project at the beginning of the program and again at the end of…
An Emerging Technology Curriculum. Education for Technology Employment Project. Final Report.
ERIC Educational Resources Information Center
Harms, Dan; And Others
Individualized, competency-based curriculum materials were developed for a course on Principles of Technology, Units 1-6. New and updated curriculum materials in Drafting and Electronics and the Principles of Technology units were pilot tested in area vocational center settings in Illinois. A computer maintenance program was also developed but not…
Aerospace engineering educational program
NASA Technical Reports Server (NTRS)
Craft, William; Klett, David; Lai, Steven
1992-01-01
The principle goal of the educational component of NASA CORE is the creation of aerospace engineering options in the mechanical engineering program at both the undergraduate and graduate levels. To accomplish this goal, a concerted effort during the past year has resulted in detailed plans for the initiation of aerospace options in both the BSME and MSME programs in the fall of 1993. All proposed new courses and the BSME aerospace option curriculum must undergo a lengthy approval process involving two cirriculum oversight committees (School of Engineering and University level) and three levels of general faculty approval. Assuming approval is obtained from all levels, the options will officially take effect in Fall '93. In anticipation of this, certain courses in the proposed curriculum are being offered during the current academic year under special topics headings so that current junior level students may graduate in May '94 under the BSME aerospace option. The proposed undergraduate aerospace option curriculum (along with the regular mechanical engineering curriculum for reference) is attached at the end of this report, and course outlines for the new courses are included in the appendix.
Improving Conceptual Understanding and Representation Skills Through Excel-Based Modeling
NASA Astrophysics Data System (ADS)
Malone, Kathy L.; Schunn, Christian D.; Schuchardt, Anita M.
2018-02-01
The National Research Council framework for science education and the Next Generation Science Standards have developed a need for additional research and development of curricula that is both technologically model-based and includes engineering practices. This is especially the case for biology education. This paper describes a quasi-experimental design study to test the effectiveness of a model-based curriculum focused on the concepts of natural selection and population ecology that makes use of Excel modeling tools (Modeling Instruction in Biology with Excel, MBI-E). The curriculum revolves around the bio-engineering practice of controlling an invasive species. The study takes place in the Midwest within ten high schools teaching a regular-level introductory biology class. A post-test was designed that targeted a number of common misconceptions in both concept areas as well as representational usage. The results of a post-test demonstrate that the MBI-E students significantly outperformed the traditional classes in both natural selection and population ecology concepts, thus overcoming a number of misconceptions. In addition, implementing students made use of more multiple representations as well as demonstrating greater fascination for science.
Necessity and Role of Introductory Education in the Engineering Education in University Level
NASA Astrophysics Data System (ADS)
Endo, Ginro
In the faculties of “Engineering” or “Science and Technology” of many universities, faculty stuffs are teaching the academic foundations of technology to the students. From the standing point of the students in engineering course, first their study should be started to be accustomed to the new studying situations in their universities or colleges, and then the students proceed to be adjusted to study engineering specialty. The former is or should be realized through liberal arts education in university level and extracurricular activities in the universities. However, the latter needs special education schemes. In the past, educational courses in universities were clearly divided into a liberal arts period and a specialty education period in Japan. In that system, the students in engineering were accustomed to the specialty education after their promotion to their engineering curriculum. At present, the students in the faculties must be engrossed in the study of engineering from their first year of the university education, because the science and technology have been very rapidly progressed and have made increase in the level and quantity of engineering education. In this article, the author discusses how should the faculty give the scholastic ability to the students in engineering from the early years of the university courses, and introduces the case studies of introductory education (or the first-year education) in the engineering education that has been done in a faculty to that the author belongs.
Sustainability in Chemical Engineering Curriculum
ERIC Educational Resources Information Center
Glassey, Jarka; Haile, Sue
2012-01-01
Purpose: The purpose of this paper is to describe a concentrated strategy to embed sustainability teaching into a (chemical) engineering undergraduate curriculum throughout the whole programme. Innovative teaching approaches in subject-specific context are described and their efficiency investigated. Design/methodology/approach: The activities in…
NASA Astrophysics Data System (ADS)
Arino de La Rubia, L.; Butler, J.; Gary, T.; Stockman, S.; Mumma, M.; Pfiffner, S.; Davis, K.; Edmonds, J.
2009-12-01
The Minority Institution Astrobiology Collaborative began working with the NASA Goddard Center for Astrobiology in 2003 to develop curriculum materials for high school chemistry and Earth science classes based on astrobiology concepts. The Astrobiology in Secondary Classrooms modules are being developed to emphasize interdisciplinary connections in astronomy, biology, chemistry, geoscience, physics, mathematics, and ethics through hands-on activities that address national educational standards. Since this time, more NASA Astrobiology Institute Teams have joined this education and public outreach (EPO)effort. Field-testing of the Astrobiology in Secondary Classrooms materials began in 2007 in five US locations, each with populations that are underrepresented in the career fields of science, technology, engineering, and mathematics.
NASA Astrophysics Data System (ADS)
Semali, Ladislaus M.; Hristova, Adelina; Owiny, Sylvia A.
2015-12-01
This study examines the relationship between informal science and indigenous innovations in local communities in which students matured. The discussion considers methods for bridging the gap that exists between parents' understanding of informal science ( Ubunifu) and what students learn in secondary schools in Kenya, Tanzania, and Uganda. In an effort to reconcile the difference between students' lived experiences and Science, Technology, Engineering, and Mathematics (STEM) taught in classrooms, this study presents an experiential iSPACES instructional model as an example of curriculum integration in science classrooms. The culmination is presentation of lessons learned from history, including Africa's unique contributions to science, theory, and indigenous innovations, in the hope that these lessons can spur the development of new instructional practices, standards, curriculum materials, professional and community development, and dialogue among nations.
Proposed Curriculum Design for a 2-Year College of Technology.
ERIC Educational Resources Information Center
Wang, Yen-Zen
This paper presents a curriculum-oriented model focusing on curriculum revision of the design and structures of two-year academic institutes of technology. This research uses the Department of Business and Technology Management, which is being set up in the Far East Institute of Technology (Taiwan), as an example and works out the new models…
Maintaining Small Engines. Vocational Preparation Curriculum.
ERIC Educational Resources Information Center
Herd, Amon
Intended for instructors serving the occupational needs of disadvantaged and handicapped students, this curriculum guide contains 16 units for a small engine maintenance program. Its purposes are to provide minimum skills of students already mainstreamed, and provide vocational instructional materials for the modified classroom. Teachers should…
National Geographic Society Kids Network: Report on 1994 teacher participants
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
In 1994, National Geographic Society Kids Network, a computer/telecommunications-based science curriculum, was presented to elementary and middle school teachers through summer programs sponsored by NGS and US DOE. The network program assists teachers in understanding the process of doing science; understanding the role of computers and telecommunications in the study of science, math, and engineering; and utilizing computers and telecommunications appropriately in the classroom. The program enables teacher to integrate science, math, and technology with other subjects with the ultimate goal of encouraging students of all abilities to pursue careers in science/math/engineering. This report assesses the impact of the networkmore » program on participating teachers.« less
Autobody Technology Curriculum Guide.
ERIC Educational Resources Information Center
Idaho State Dept. of Education, Boise. Div. of Vocational Education.
This Idaho state curriculum guide provides lists of tasks, performance objectives, and enabling objectives for instruction in auto body technology. Following a curriculum framework that explains major content, laboratory activities, and intended outcomes, the document lists all tasks covered in the curriculum. The bulk of the document consists of…
ERIC Educational Resources Information Center
Gavin, K. G.
2010-01-01
This paper describes the design of the curriculum for a Master of Engineering programme in civil engineering at University College Dublin. The revised programme was established to meet the requirements of the Bologna process and this paper specifically considers the design of a new, second-cycle master's component of the programme. In addition to…
Automotive Technology Curriculum Guide.
ERIC Educational Resources Information Center
Idaho State Dept. of Education, Boise. Div. of Vocational Education.
This Idaho state curriculum guide provides lists of tasks, performance objectives, and enabling objectives for instruction in automotive technology. The document begins with a list of all tasks covered by the curriculum, a short course outline, and a curriculum framework that explains major content, laboratory activities, and intended outcomes.…
Comprehensive Small Engine Repair.
ERIC Educational Resources Information Center
Hires, Bill; And Others
This curriculum guide contains the basic information needed to repair all two- and four-stroke cycle engines. The curriculum covers four areas, each consisting of one or more units of instruction that include performance objectives, suggested activities for teacher and students, information sheets, assignment sheets, job sheets, visual aids,…
Viewpoint: The Time Has Come for the B.S. in Astronautical Engineering.
ERIC Educational Resources Information Center
Brodsky, R. F.
1985-01-01
Argues in favor of establishing an accreditable curriculum in "pure" astronautical engineering (leading to a bachelor of science degree in this field), giving reasons why such reform is needed (including equating "astronautics" with "aeronautics") and why a new curriculum is needed. (JN)
Humanitarian Engineering Placements in Our Own Communities
ERIC Educational Resources Information Center
VanderSteen, J. D. J.; Hall, K. R.; Baillie, C. A.
2010-01-01
There is an increasing interest in the humanitarian engineering curriculum, and a service-learning placement could be an important component of such a curriculum. International placements offer some important pedagogical advantages, but also have some practical and ethical limitations. Local community-based placements have the potential to be…
BioSIGHT: Interactive Visualization Modules for Science Education
NASA Technical Reports Server (NTRS)
Wong, Wee Ling
1998-01-01
Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high-speed network capabilities. The BioSIGHT project at is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches toward the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross-disciplinary in nature and requires expertise from many areas including Biology, Computer Science Electrical Engineering, Education, and the Cognitive Sciences. The BioSIGHT team includes a scientific illustrator, educational software designer, computer programmers as well as IMSC graduate and undergraduate students.
ERIC Educational Resources Information Center
Hermann, Janice R.; Johnston, Jan H.; Brosi, Whitney A.; Jaco, Linda
2012-01-01
The Empowering Older Adults with Assistive Technology to Shop, Cook and Eat curriculum was designed to provide education about concepts of empowerment and assistive technology for grocery shopping, preparing food, and eating. The curriculum included examples and hands-on demonstrations of assistive technology devices for grocery shopping, food…
NASA Astrophysics Data System (ADS)
Wells, Jennifer Gayle
The Next Generation Science Standards represent a significant challenge for K--12 school reform in the United States in the science, technology, engineering and mathematics (STEM) disciplines (NSTA, 2012). One important difference between the National Science Education Standards (NRC, 1996) and the Next Generation Science Standards (Achieve, 2013) is the more extensive inclusion of nanoscale science and technology. Teacher PD is a key vehicle for implementing this STEM education reform effort (NRC, 2012; Smith, 2001). The context of this dissertation study is Project Nanoscience and Nanotechnology Outreach (NANO), a secondary level professional development program for teachers that provides a summer workshop, academic year coaching and the opportunity for teacher participants to borrow a table-top Phenom scanning electron microscope and a research grade optical microscope for use in their classrooms. This designed-based descriptive case study examined the thinking of secondary teachers in the 2012 Project NANO cohort as they negotiated the inclusion of novel science concepts and technology into secondary science curriculum. Teachers in the Project NANO 2012 summer workshop developed a two-week, inquiry-based unit of instruction drawing upon one or more of nine big ideas in nanoscale science and technology as defined by Stevens, Sutherland, and Krajcik (2011). This research examined teacher participants' metastrategic thinking (Zohar, 2006) which they used to inform their pedagogical content knowledge (Shulman, 1987) by focusing on the content knowledge teachers chose to frame their lessons, their rationales for such choices as well as the teaching strategies that they chose to employ in their Project NANO unit of instruction. The study documents teachers various entry points on a learning progression as teachers negotiated the inclusion of nanoscale science and technology into the curriculum for the first time. Implications and recommendations for teacher professional development are offered.
Modern Technology Curriculum Material for a Community College Level Course.
ERIC Educational Resources Information Center
Visich, Marian, Jr., Ed.
This collection of curriculum guides sets forth curriculum plans for teaching concepts in several areas relating to science, environment, and technology. The topics covered individually in this collection include: Air Pollution, Solid Waste Disposal, Data Technology - A Pollutant, Power Generation, and Noise Pollution. Each section includes a…
How Early Childhood Educators Are Initally Integrating Tablet Technology in the Curriculum
ERIC Educational Resources Information Center
Leonard, Jessica Alexis
2013-01-01
This qualitative research examined how two early childhood educators initially integrated tablet technology in the curriculum through classroom observation, interviews and a review of documentation. The overall question was: how are early childhood educators initially integrating tablet technologies in the curriculum? The researcher also asked…
Curriculum Consonance and Dissonance in Technology Education Classrooms
ERIC Educational Resources Information Center
Brown, Ryan A.
2009-01-01
In a time of increased accountability, a tightened curriculum, and fewer curricular choices for students, technology education in the United States is in the position of defending itself by "carving a niche" in the school curriculum. Justifying the place of technology education is becoming increasingly difficult, as there has been little…
Technology and Curriculum: Will the Promised Revolution Take Place?
ERIC Educational Resources Information Center
Mojkowski, Charles
1987-01-01
To take advantage of the emerging technological revolution, education must undertake its own revolution. Otherwise, technology will never be successfully integrated into the curriculum and may effect change without improvement. Primary focus must be on the future of curriculum and instruction, particularly discipline-specific process skills and…
Comparison of engagement with ethics between an engineering and a business program.
Culver, Steven M; Puri, Ishwar K; Wokutch, Richard E; Lohani, Vinod
2013-06-01
Increasing university students' engagement with ethics is becoming a prominent call to action for higher education institutions, particularly professional schools like business and engineering. This paper provides an examination of student attitudes regarding ethics and their perceptions of ethics coverage in the curriculum at one institution. A particular focus is the comparison between results in the business college, which has incorporated ethics in the curriculum and has been involved in ethics education for a longer period, with the engineering college, which is in the nascent stages of developing ethics education in its courses. Results show that student attitudes and perceptions are related to the curriculum. In addition, results indicate that it might be useful for engineering faculty to use business faculty as resources in the development of their ethics curricula.
European virtual campus for biomedical engineering EVICAB.
Malmivuo, Jaakko A; Nousiainen, Juha O; Lindroos, Kari V
2007-01-01
European Commission has funded building a curriculum on Biomedical Engineering to the Internet for European universities under the project EVICAB. EVICAB forms a curriculum which will be free access and available free of charge. Therefore, in addition to the European universities, it will be available worldwide. EVICAB will make high quality education available for everyone, not only for the university students, and facilitate the development of the discipline of Biomedical Engineering.
NASA Astrophysics Data System (ADS)
Linn, Marcia C.
1995-06-01
Designing effective curricula for complex topics and incorporating technological tools is an evolving process. One important way to foster effective design is to synthesize successful practices. This paper describes a framework called scaffolded knowledge integration and illustrates how it guided the design of two successful course enhancements in the field of computer science and engineering. One course enhancement, the LISP Knowledge Integration Environment, improved learning and resulted in more gender-equitable outcomes. The second course enhancement, the spatial reasoning environment, addressed spatial reasoning in an introductory engineering course. This enhancement minimized the importance of prior knowledge of spatial reasoning and helped students develop a more comprehensive repertoire of spatial reasoning strategies. Taken together, the instructional research programs reinforce the value of the scaffolded knowledge integration framework and suggest directions for future curriculum reformers.
Rationale for Incorporating Health and Safety into the Curriculum.
ERIC Educational Resources Information Center
Fleischman, Marvin
1988-01-01
Presents a philosophical commentary on the need and rationale for incorporating safety and health into the chemical engineering curriculum. Proposes safety and health assessments as useful teaching methods. Describes an approach to bringing safety and health into undergraduate engineering curricula. Gives examples of integration of these curricula…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
These military-developed curriculum materials for turboprop propulsion mechanics are targeted for use in grades 11-adult. Organized in five instructional blocks, the materials deal with the following topics: fundamentals of turboprop propulsion mechanics; engine and propeller systems operation; propeller maintenance; engine repair; and engine…
Bringing Knowledge Management into an Engineering Curriculum
ERIC Educational Resources Information Center
Winberg, S. L.; Schach, S. R.; Inggs, M. R.
2007-01-01
The use of effective knowledge management is becoming an essential part of technical development projects in order to enable developers to handle the growing complexity of these projects. In this article we discuss an innovative approach to address this concern from the perspective of an undergraduate engineering curriculum. Instead of adding…
Engineering Curriculum as Affected by Corporate Giving.
ERIC Educational Resources Information Center
Pettigrew, Chenits, Jr.; Hiatt, Diana Buell
This study investigated the effects of corporate financial support on the University of California Los Angeles (UCLA) School of Engineering and Applied Sciences (SEAS) curriculum. The study evolved out of growing concerns that many university educators have related to the mushrooming of university efforts to secure corporate financial support…
Creating meaningful learning experiences: Understanding students' perspectives of engineering design
NASA Astrophysics Data System (ADS)
Aleong, Richard James Chung Mun
There is a societal need for design education to prepare holistic engineers with the knowledge, skills, and attitudes to innovate and compete globally. Design skills are paramount to the espoused values of higher education, as institutions of higher learning strive to develop in students the cognitive abilities of critical thinking, problem solving, and creativity. To meet these interests from industry and academia, it is important to advance the teaching and learning of engineering design. This research aims to understand how engineering students learn and think about design, as a way for engineering educators to optimize instructional practice and curriculum development. Qualitative research methodology was used to investigate the meaning that engineering students' ascribe to engineering design. The recruitment of participants and corresponding collection of data occurred in two phases using two different data collection techniques. The first phase involved the distribution of a one-time online questionnaire to all first year, third year, and fourth year undergraduate engineering students at three Canadian Universities. After the questionnaire, students were asked if they would be willing to participate in the second phase of data collection consisting of a personal interview. A total of ten students participated in interviews. Qualitative data analysis procedures were conducted on students' responses from the questionnaire and interviews. The data analysis process consisted of two phases: a descriptive phase to code and categorize the data, followed by an interpretative phase to generate further meaning and relationships. The research findings present a conceptual understanding of students' descriptions about engineering design, structured within two educational orientations: a learning studies orientation and a curriculum studies orientation. The learning studies orientation captured three themes of students' understanding of engineering design: awareness, relevance, and transfer. With this framework of student learning, engineering educators can enhance learning experiences by engaging all three levels of students' understanding. The curriculum studies orientation applied the three holistic elements of curriculum---subject matter, society, and the individual---to conceptualize design considerations for engineering curriculum and teaching practice. This research supports the characterization of students' learning experiences to help educators and students optimize their teaching and learning of design education.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E. (Editor); Sullivan, Shannon (Editor); Sanchez, Alicia (Editor)
2008-01-01
This NASA Conference Publication features select papers and PowerPoint presentations from the Education and Training Track of MODSIM World 2007 Conference and Expo. Invited speakers and panelists of national and international renown, representing academia, industry and government, discussed how modeling and simulation (M&S) technology can be used to accelerate learning in the K-16 classroom, especially when using M&S technology as a tool for integrating science, technology, engineering and mathematics (STEM) classes. The presenters also addressed the application ofM&S technology to learning and training outside of the classroom. Specific sub-topics of the presentations included: learning theory; curriculum development; professional development; tools/user applications; implementation/infrastructure/issues; and workforce development. There was a session devoted to student M&S competitions in Virginia too, as well as a poster session.
A Pilot Computer-Aided Design and Manufacturing Curriculum that Promotes Engineering
NASA Technical Reports Server (NTRS)
2002-01-01
Elizabeth City State University (ECSU) is located in a community that is mostly rural in nature. The area is economically deprived when compared to the rest of the state. Many businesses lack the computerized equipment and skills needed to propel upward in today's technologically advanced society. This project will close the ever-widening gap between advantaged and disadvantaged workers as well as increase their participation with industry, NASA and/or other governmental agencies. Everyone recognizes computer technology as the catalyst for advances in design, prototyping, and manufacturing or the art of machining. Unprecedented quality control and cost-efficiency improvements are recognized through the use of computer technology. This technology has changed the manufacturing industry with advanced high-tech capabilities needed by NASA. With the ever-widening digital divide, we must continue to provide computer technology to those who are socio-economically disadvantaged.
Development of an Aviation Maintenance Curriculum in an Aerospace Engineering Department.
ERIC Educational Resources Information Center
Miau, Jiun-Jih; Chiu, Huei-Huang; Wu, Yuh-Yi; Lin, Chin-E; Choi, Siu-Tong; Yang, Shih-Ming; Jenq, Syh-Tsang
This paper describes the motivation of developing the Aviation Maintenance Curriculum, at National Chang Kung University (seven elective courses) contents of the elective courses, and university-industry collaborations developed along with the Curriculum. The curriculum represents an effort to respond to the needs of manpower in the aviation…
Curriculum optimization of College of Optical Science and Engineering
NASA Astrophysics Data System (ADS)
Wang, Xiaoping; Zheng, Zhenrong; Wang, Kaiwei; Zheng, Xiaodong; Ye, Song; Zhu, Yuhui
2017-08-01
The optimized curriculum of College of Optical Science and Engineering is accomplished at Zhejiang University, based on new trends from both research and industry. The curriculum includes general courses, foundation courses such as mathematics and physics, major core courses, laboratory courses and several module courses. Module courses include optical system designing, optical telecommunication, imaging and vision, electronics and computer science, optoelectronic sensing and metrology, optical mechanics and materials, basics and extension. These curricula reflect the direction of latest researches and relates closely with optoelectronics. Therefore, students may combine flexibly compulsory courses with elective courses, and establish the personalized curriculum of "optoelectronics + X", according to their individual strengths and preferences.
NASA Astrophysics Data System (ADS)
Zheng, Jihong; Fuhrmann, Thomas; Xu, Boqing; Schreiner, Rupert; Jia, Hongzhi; Zhang, Wei; Wang, Ning; Seebauer, Gudrun; Zhu, Jiyan
2017-08-01
Different higher education backgrounds in China and Germany led to challenges in the curriculum design at the beginning of our cooperative bachelor program in Optoelectronics Engineering. We see challenges in different subject requirements from both sides and in the German language requirements for Chinese students. The curriculum was optimized according to the ASIIN criteria, which makes it acceptable and understandable by both countries. German students are integrated into the Chinese class and get the same lectures like their Chinese colleagues. Intercultural and curriculum challenges are successfully solved. The results are summarized to provide an example for other similar international programs.
NASA Astrophysics Data System (ADS)
Clark, J.; Bloom, N.
2016-12-01
Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is five-year interdisciplinary and cross-institutional partnership to develop and disseminate out-of-school time curricular and professional development modules that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU), the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Museum of Science (MOS) Boston are partners in developing, piloting, and researching the impact of three out of school time planetary science and engineering curriculum and related professional development units over the life of the project. Critical to the success of out-of-school time curriculum implementation is to consider the needs of the informal education leaders. The CSTL at NAU is conducting a needs-assessment of OST educators nationwide to identify the gaps between current knowledge and abilities of OST educators and the knowledge and abilities necessary in order to facilitate effective STEM educational experiences for youth. The research questions are: a. What are current conditions of OST programs and professional development for OST educators? b. What do OST educators and program coordinators already know and think about facilitating meaningful and high quality STEM instruction? c. What are perceived needs of OST educators and program coordinators in order to implement meaningful and high quality STEM instruction? d. What design decisions will make professional development experiences more accessible, acceptable and useful to OST educators and program coordinators? In this presentation we will share the preliminary results of the national survey. The information about the needs of informal STEM educators can inform other NASA Science Mission Directorate educational partners in their program development in addition to AGU members designing informal education outreach.
The Technology Transfer of the ICT Curriculum in Taiwan
ERIC Educational Resources Information Center
Huang, Teng
2015-01-01
Focusing on the process of "technology transfer", this paper aims to critically examine the production and usage of the information and communication technology (ICT) curriculum, and discusses its possibilities. It is found that the goals in both of the two stages of the ICT curriculum in Taiwan were rather "rhetorical". Three…
NASA Astrophysics Data System (ADS)
Teo, Tang Wee; Osborne, Margery
2012-09-01
In this paper, we present a microanalysis of a specialized STEM (science, technology, engineering, and mathematics) high school teacher's experience of self-initiated science inquiry curriculum reform. We examine the meanings of these two constructs: inquiry curriculum and curriculum change through the process lens of interactions, actions, and interpretations. Symbolic interactionism is the theoretical framework we used to frame our analysis of how this teacher, Darren Daley (a pseudonym) and various stakeholders purposefully and strategically engaged in "face-work" and act out lines of actions to advocate or oppose curriculum change. Symbols are used in this world of face-to-face encounters to communicate, imply, and assert, meanings through socially flexible and adjustable processes. We scrutinize how Daley (un)consciously engaged all of these to defend his decisions, actions, and outcomes and "look" to others as doing inquiry reform. The meanings of such work are not intrinsically driven or reactions to psychological and extraneous factors and forces, but emergent through interactions. The data collection methods include interviews with Daley, school administrators, students, and parents, lesson observations in Daley's class, and gathering of school website pages, brochures, and curriculum materials. We represent data in narratives describing storied history, voices, interactions, anecdotal accounts from individuals' experiences, and interpretations. The analysis and findings illuminate the nature of teacher agency—how it is reclaimed, sustained, reinforced, contested, exercised, and modified in more nuanced ways, hence offering an alternative lens to theorizing and empirically analyzing this construct.
Development cooperation as methodology for teaching social responsibility to engineers
NASA Astrophysics Data System (ADS)
Lappalainen, Pia
2011-12-01
The role of engineering in promoting global well-being has become accentuated, turning the engineering curriculum into a means of dividing well-being equally. The gradual fortifying calls for humanitarian engineering have resulted in the incorporation of social responsibility themes in the university curriculum. Cooperation, communication, teamwork, intercultural cooperation, sustainability, social and global responsibility represent the socio-cultural dimensions that are becoming increasingly important as globalisation intensifies the demands for socially and globally adept engineering communities. This article describes an experiment, the Development Cooperation Project, which was conducted at Aalto University in Finland to integrate social responsibility themes into higher engineering education.
Change is necessary in a biological engineering curriculum.
Johnson, Arthur T; Montas, Hubert; Shirmohammadi, Adel; Wheaton, Fredrick W
2006-01-01
Success of a Biological Engineering undergraduate educational program can be measured in a number of ways, but however it is measured, a presently successful program can translate into an unsuccessful program if it cannot adjust to different conditions posed by technical advances, student characteristics, and academic pressures. Described in this paper is a Biological Engineering curriculum that has changed significantly since its transformation from Agricultural Engineering in 1993. As a result, student numbers have continued to climb, specific objectives have emerged, and unique courses have been developed. The Biological Resources Engineering program has evolved into a program that emphasizes breadth, fundamentals, communications skills, diversity, and practical engineering judgment.
Technology-Based Healthcare for Nursing Education Within The Netherlands: Past, Present and Future.
Koster, Ybranda; van Houwelingen, Cornelis T M
2017-01-01
At the present time, nearly all Dutch nursing schools are searching for suitable ways to implement technology-based healthcare in their curriculum. Some Universities chose elective education, others a mandatory solution. Several studies were executed to determine competencies needed by nurses in order to work with technology-based healthcare. In 2016 a nationwide new curriculum for nurses has been published. Providing technology-based healthcare is included under the core competencies of this new curriculum. All baccalaureate nursing educational institutes must implement this new curriculum at the start of 2016 which will have a huge impact on the implementation of technology-based healthcare in the education programs. In the future, technology centers from Universities will collaborate and specialize, partner with technology companies and crossovers between information and communication technology and healthcare education will be expanded.
NASA Resources for Educators and Public
NASA Technical Reports Server (NTRS)
Morales, Lester
2012-01-01
A variety of NASA Classroom Activities, Educator Guides, Lithographs, Posters and more are available to Pre ]service and In ]service Educators through Professional Development Workshops. We are here for you to engage, demonstrate, and facilitate the use of educational technologies, the NASA Website, NASA Education Homepage and more! We are here for you to inspire you by providing in-service and pre- service training utilizing NASA curriculum support products. We are here for you to partner with your local, state, and regional educational organizations to better educate ALL! NASA AESP specialists are experienced professional educators, current on education issues and familiar with the curriculum frameworks, educational standards, and systemic architecture of the states they service. These specialists provide engaging and inspiring student presentations and teacher training right at YOUR school at no cost to you! Experience free out-of-this-world interactive learning with NASA's Digital Learning Network. Students of all ages can participate in LIVE events with NASA Experts and Education Specialists. The Exploration Station provides NASA educational programs that introduce the application of Science, Technology, Engineering, & Mathematics, to students. Students participate in a variety of hands-on activities that compliment related topics taught by the classroom teacher. NASA KSC ERC can create Professional Development Workshops for teachers in groups of fifteen or more. Education/Information Specialists also assist educators in developing lessons to meet Sunshine State and national curriculum standards.
NASA Astrophysics Data System (ADS)
Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting
2016-08-01
With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear program of school-based research. The foci of this paper is on the design principles of the curriculum and its enactment, and the establishment of a teacher learning community. Through elucidating the design features of the innovative curriculum and evaluating teacher and student involvement in science instruction and learning, we introduce the science curriculum, called Mobilized 5E Science Curriculum (M5ESC), and present a representative case study of how one experienced teacher and her class adopted the curriculum. The findings indicate the intervention promoted this teacher's questioning competency, enabled her to interact with students frequently and flexibly in class, and supported her technology use for promoting different levels of cognition. Student learning was also improved in terms of test achievement and activity performance in and out of the classroom. We propose that the study can be used to guide the learning design of mobile technology-supported curricula, as well as teacher professional development for curriculum enactment.
Microsoft Excel Software Usage for Teaching Science and Engineering Curriculum
ERIC Educational Resources Information Center
Singh, Gurmukh; Siddiqui, Khalid
2009-01-01
In this article, our main objective is to present the use of Microsoft Software Excel 2007/2003 for teaching college and university level curriculum in science and engineering. In particular, we discuss two interesting and fascinating examples of interactive applications of Microsoft Excel targeted for undergraduate students in: 1) computational…
Illustrations for a Competency Based Curriculum Guide: Ethanol Spark Ignition Engine Conversion.
ERIC Educational Resources Information Center
Illinois State Board of Education, Springfield. Dept. of Adult, Vocational and Technical Education.
This document contains 56 illustrations for use in an Illinois-developed competency-based course in ethanol spark ignition engine conversion. Each illustration is related to a specific competency in the course curriculum guide. Illustrations, which include photographs and line drawings, cover some of the following topics: carburetion, compression,…
Hazardous Waste Processing in the Chemical Engineering Curriculum.
ERIC Educational Resources Information Center
Dorland, Dianne; Baria, Dorab N.
1995-01-01
Describes a sequence of two courses included in the chemical engineering program at the University of Minnesota, Duluth that deal with the processing of hazardous wastes. Covers course content and structure, and discusses developments in pollution prevention and waste management that led to the addition of these courses to the curriculum.…
ERIC Educational Resources Information Center
Rains, Larry
This module is the third of nine modules in the competency-based Missouri Auto Mechanics Curriculum Guide. Six units cover: fuel supply systems; carburetion; carburetor service; gasoline engine electronic fuel injection; diesel fuel injection; and exhaust systems and turbochargers. Introductory materials include a competency profile and…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This individualized, self-paced course for independent study in soils engineering was adapted from military curriculum materials for use in vocational education. The course is designed to acquaint students with various soil types and their characteristics using various procedures, tests, and recording forms. Some of these duties are determining…
DOT National Transportation Integrated Search
2012-06-01
The use of visual simulation tools to convey complex concepts has become a useful tool in education as well as in research. : This report describes a project that developed curriculum and visualization tools to train transportation engineering studen...
Application of Plagiarism Screening Software in the Chemical Engineering Curriculum
ERIC Educational Resources Information Center
Cooper, Matthew E.; Bullard, Lisa G.
2014-01-01
Plagiarism is an area of increasing concern for written ChE assignments, such as laboratory and design reports, due to ease of access to text and other materials via the internet. This study examines the application of plagiarism screening software to four courses in a university chemical engineering curriculum. The effectiveness of plagiarism…
Incorporating Computer-Aided Software in the Undergraduate Chemical Engineering Core Courses
ERIC Educational Resources Information Center
Alnaizy, Raafat; Abdel-Jabbar, Nabil; Ibrahim, Taleb H.; Husseini, Ghaleb A.
2014-01-01
Introductions of computer-aided software and simulators are implemented during the sophomore-year of the chemical engineering (ChE) curriculum at the American University of Sharjah (AUS). Our faculty concurs that software integration within the curriculum is beneficial to our students, as evidenced by the positive feedback received from industry…
Project-Based Learning as a Contributing Factor to Graduates' Work Readiness
ERIC Educational Resources Information Center
Jollands, Margaret; Jolly, Lesley; Molyneaux, Tom
2012-01-01
This paper explores what work readiness means for two cohorts of graduate engineers, one from a traditional curriculum, the second from a largely project-based curriculum. Professional bodies and employers have defined a set of attributes for engineering graduates so that graduates will be "work ready". Problem-based learning (PBL) is…
ERIC Educational Resources Information Center
El Paso Community Coll., TX.
Curriculum guides are provided for plastics technology, industrial maintenance, and computer numerical control. Each curriculum is divided into a number of courses. For each course these instructor materials are presented in the official course outline: course description, course objectives, unit titles, texts and materials, instructor resources,…
Curriculum Stasis: The Disconnect between Music and Technology in the Australian Curriculum
ERIC Educational Resources Information Center
Crawford, Renée; Southcott, Jane
2017-01-01
Technology is a dominant mediating factor impacting on current human behaviour and social change, which both acts on and is acted upon by other phenomena. This changing social landscape, along with new expectations and requirements, drives our educational priorities and curriculum agenda. There is no denying the prevalence of technology found in…
Technical writing in the radiologic technology curriculum.
Bell, R
1979-01-01
Although courses in technical writing are no longer suggested in the Curriculum Guide for Programs in Radiologic Technology, the writer believes that writing is essential to the growth of the profession and development of the professional. Emphasis is placed on some of the benefits that accrue to students who are exposed to technical writing as part of their technology curriculum.
ERIC Educational Resources Information Center
Landers, Jack M.
This curriculum guide is an aid to administrators and instructors of industrial arts and vocational-technical school programs for the development of meaningful curriculum in plastics. The materials are intended for use at four levels: level I, exploring plastic technology; Level II, basic plastic technology; and levels III and IV, applied plastic…
Customization of Curriculum Materials in Science: Motives, Challenges, and Opportunities
NASA Astrophysics Data System (ADS)
Romine, William L.; Banerjee, Tanvi
2012-02-01
Exemplary science instructors use inquiry to tailor content to student's learning needs; traditional textbooks treat science as a set of facts and a rigid curriculum. Publishers now allow instructors to compile pieces of published and/or self-authored text to make custom textbooks. This brings numerous advantages, including the ability to produce smaller, cheaper text and added flexibility on the teaching models used. Moreover, the internet allows instructors to decentralize textbooks through easy access to educational objects such as audiovisual simulations, individual textbook chapters, and scholarly research articles. However, these new opportunities bring with them new problems. With educational materials easy to access, manipulate and duplicate, it is necessary to define intellectual property boundaries, and the need to secure documents against unlawful copying and use is paramount. Engineers are developing and enhancing information embedding technologies, including steganography, cryptography, watermarking, and fingerprinting, to label and protect intellectual property. While these are showing their utility in securing information, hackers continue to find loop holes in these protection schemes, forcing engineers to constantly assess the algorithms to make them as secure as possible. As newer technologies rise, people still question whether custom publishing is desirable. Many instructors see the process as complex, costly, and substandard in comparison to using traditional text. Publishing companies are working to improve attitudes through advertising. What lacks is peer reviewed evidence showing that custom publishing improves learning. Studies exploring the effect of custom course materials on student attitude and learning outcomes are a necessary next step.
Evaluating virtual STEM mentoring programs: The SAGANet.org experience
NASA Astrophysics Data System (ADS)
Som, S. M.; Walker, S. I.; Miller, E.; Anbar, M.; Kacar, B.; Forrester, J. H.
2014-12-01
Many school districts within the United States continue to seek new ways of engaging students within Science, Technology, Engineering, and Mathematics (STEM) disciplines. SAGANet.org, a web-based 501c3 Astrobiology outreach initiative, works with a number of schools, partnering K-12 students and their families with professional scientist mentors from around the world to teach and inspire students using virtual technology platforms. Current programs include two mentoring partnerships: pairing scientist-mentors with at-risk youth at the Pittsburg Community School in Pittsburg CA, and pairing scientist-mentors with families from the Kyrene del Cielo Elementary School in Chandler AZ. These programs represent two very different models for utilizing the virtual media platform provided by SAGANet.org to engage K-12 students and their families in STEM. For the former, scientists mentor the students of the Pittsburg School as part of the formal in-class curriculum. For the latter, scientists work with K-5 students and their families through Cielo's Science & Engineering Discovery Room to develop a science project as part of an informal learning experience that is independent of the formal curriculum. In this presentation, we (1) discuss the challenges and successes of engaging these two distinct audiences through virtual media, (2) present the results of how these two very-different mentoring partnership impact K-12 students science self-efficacy, interest in science, and STEM career awareness, and (3) share the impact of the mentoring experience on the mentor's confidence and self-efficacy with communicating science to the public.
ERIC Educational Resources Information Center
Mountain-Plains Education and Economic Development Program, Inc., Glasgow AFB, MT.
The document lists the Mountain-Plains curriculum by job title (where applicable), including support courses. The curriculum areas covered are mathematics skills, communication skills, office education, lodging services, food services, marketing and distribution, welding support, automotive, small engines, career guidance, World of Work, health…
On the structural logic of curriculum system for the optical instrument major
NASA Astrophysics Data System (ADS)
Yan, Yufeng; Yan, Juncen; Li, Yang; Shi, Lixia
2017-08-01
The theories of optical instrument are the Interdisciplinary of Optical Engineering and Instrument Science and Technology. The undergraduates should study the knowledge about the optics, precision machine and electronics. The courses such as Theory of Machine, Engineering Optics, even include some courses about Accuracy Analysis of Instrument are offered in the college. There are a lot of correlatives among these courses. This paper focuses on the structural logic of these courses. The order of these courses is researched, The aims of all the courses are clear completely to avoid the same topics to be taught twice in different courses. Therefore, the undergraduates would get the main line of the knowledge, and the professors would teach efficiently.
Planetary Exploration Education: As Seen From the Point of View of Subject Matter Experts
NASA Astrophysics Data System (ADS)
Milazzo, M. P.; Anderson, R. B.; Gaither, T. A.; Vaughan, R. G.
2016-12-01
Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) was selected as one of 27 new projects to support the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice. Our goal is to develop and disseminate out-of-school time (OST) curricular and related educator professional development modules that integrate planetary science, technology, and engineering. We are a partnership between planetary science Subject Matter Experts (SMEs), curriculum developers, science and engineering teacher professional development experts and OST teacher networks. The PLANETS team includes the Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU); the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Boston Museum of Science (MOS). Here, we present the work and approach by the SMEs at Astrogeology. As part of this overarching project, we will create a model for improved integration of SMEs, curriculum developers, professional development experts, and educators. For the 2016 and 2017 Fiscal Years, our focus is on creating science material for two OST modules designed for middle school students. We will begin development of a third module for elementary school students in the latter part of FY2017. The first module focuses on water conservation and treatment as applied on Earth, the International Space Station, and at a fictional Mars base. This unit involves the science and engineering of finding accessible water, evaluating it for quality, treating it for impurities (i.e., dissolved and suspended), initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. The second module involves the science and engineering of remote sensing as it is related to Earth and planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In these activities and discussions we include observation and measurement techniques and tools, as well as collection and use of specific data of interest to scientists. These two modules will be tested and refined based on educator and student feedback, with expected final release in late summer of 2017.
Mechatronics as a technological basis for an innovative learning environment in engineering
NASA Astrophysics Data System (ADS)
Garner, Gavin Thomas
Mechatronic systems that couple mechanical and electrical systems with the help of computer control are forcing a paradigm shift in the design, manufacture, and implementation of mechanical devices. The inherently interdisciplinary nature of these systems generates exciting new opportunities for developing a hands-on, inventive, and creativity-focused educational program while still embracing rigorous scientific fundamentals. The technologies associated with mechatronics are continually evolving (e.g., integrated circuit chips, miniature and new types of sensors, and state-of-the-art actuators). As a result, a mechatronics curriculum must prepare students to adapt along with these rapidly changing technologies---and perhaps even advance these technologies themselves. Such is the inspiring and uncharted new world that is presented for student exploration and experimentation in the University of Virginia's Mechatronics Laboratory. The underlying goal of this research has been to develop a framework for teaching mechatronics that helps students master fundamental concepts and build essential technical and analytical skills. To this end, two courses involving over fifty hours worth of technologically-innovative and educationally-effective laboratory experiments have been developed along with open-ended projects in response to the unique and new challenges associated with teaching mechatronics. These experiments synthesize an unprecedentedly vast array of skills from many different disciplines and enable students to haptically absorb the fundamental concepts involved in designing mechatronic systems. They have been optimized through several iterations to become highly efficient. Perspectives on the development of these courses and on the field of mechatronics in general are included. Furthermore, this dissertation demonstrates the integration of new technologies within a learning environment specifically designed to teach mechatronics to mechanical engineers. For mechanical engineering in particular, mechatronics poses considerable challenges, and necessitates a fundamental evolution in the understanding of the relationship between the various engineering disciplines. Consequently, this dissertation helps to define the role that mechatronics must play in mechanical engineering and presents unique laboratory experiments, creative projects, and modeling and simulation exercises as effective tools for teaching mechatronics to the modern mechanical engineering student.
Innovations in science education: infusing social emotional principles into early STEM learning
NASA Astrophysics Data System (ADS)
Garner, Pamela W.; Gabitova, Nuria; Gupta, Anuradha; Wood, Thomas
2017-10-01
We report on the development of an after-school and summer-based science, technology, engineering, and mathematics curriculum infused with the arts and social emotional learning content (STEAM SEL). Its design was motivated by theory and research that suggest that STEM education is well-suited for teaching empathy and other emotion-related skills. In this paper, we describe the activities associated with the development and design of the program and the curriculum. We provide expert-ratings of the STEAM and social emotional elements of the program and present instructor and participant feedback about the program's content and its delivery. Our results revealed that infusing the arts and social emotional learning content into science education created a holistic STEM-related curriculum that holds potential for enhancing young children's interest in and appreciation for science and its applications. The data also suggested that the program was well-developed and, generally well-executed. However, experts rated the STEAM elements of the program more positively than the SEL elements, especially with regard to sequencing of lessons and integration among the lessons and hands-on activities, indicating that program revisions are warranted.
NASA Astrophysics Data System (ADS)
Yidong, Xu; Ping, Wu; Jian, Chen; Jiansheng, Shen
2018-05-01
In view of the shortcomings of the current civil engineering management discipline, this paper investigates the necessity of the course design reform. Based on the analysis of basic occupation requirements of civil engineering management discipline, the basic ideas and implementation strategies of the integrated reform of curriculum design system are proposed, which can not only improve the students’ overall understanding of knowledge and skills, but also enhance the system of student learning.
Illinois Manufacturing Technology Curriculum.
ERIC Educational Resources Information Center
Cliffe, Roger; And Others
This manufacturing technology curriculum involves students in learning problem-solving, communication, team building, quality control, safety, math, science, and technical skills. The document begins with a section on implementation, which gives background information on the purposes and development of the curriculum, explains its rationale,…
NASA Astrophysics Data System (ADS)
Danos, Xenia; Barr, Ronald; Górska, Renata; Norman, Eddie
2014-11-01
Curriculum planning for the development of graphicacy capability has not been systematically included in general education to coincide with the graphicacy needs of human society. In higher education, graphicacy curricula have been developed to meet the needs of certain disciplines, for example medical and teacher training and engineering, among others. A framework for graphicacy curricula, anticipating the graphicacy needs in higher education, has yet to be strategically planned for general education. This is partly a result of lack of research effort in this area, but also a result of lack of systematic curriculum planning in general. This paper discusses these issues in the context of graphicacy curricula for engineering. The paper presents three broad individual case studies spanning Europe and the USA, brought together by the common denominator, graphicacy. The case studies are based on: an analysis of graphicacy within general education curricula, an analysis of graphicacy for engineering education in Europe and an analysis of graphicacy for engineering education in the USA. These three papers were originally presented in a plenary session at the American Society for Engineering Education, Engineering Design Graphics Division at the University of Limerick in November 2012. The case studies demonstrate the potential for strategic curriculum planning in regard to the development of graphicacy in general education and an overview of a methodology to achieve that. It also offers further evidence towards the importance of the systematic classification of graphics capabilities in Engineering and how the lack of a developed theoretical framework in this area undermines the case for the importance of graphics within engineering education.
NASA Astrophysics Data System (ADS)
Großmann, Jürgen; Schmauss, Bernhard
2017-08-01
The Master's Program in Advanced Optical Technologies (MAOT) was established at the Friedrich-Alexander Universität Erlangen-Nürnberg in 2007 as part of the Elite Network of Bavaria (ENB), an initiative by the Bavarian State Government comprising about 40 elite Master's programs and doctoral programs. MAOT can be studied after a Bachelor in physics or an engineering subject. The Master's program realizes an innovative concept combining three core elements: (1) Interdisciplinarity: The program integrates courses and researchers from five engineering subjects and from physics. The degree of interdisciplinarity goes far beyond traditional programs. (2) Internationality: The program is taught entirely in English and special support is given to international students. (3). Individuality: The course curriculum was adapted at several points based on the experience in the initial years. The same is true for the way in which international students are supported and the type of support they need. The students are given an unusually high degree of freedom to develop an individual curriculum and to pursue research projects. Crucial experience and lessons learned are: (1) Lecturers and researchers have to be coordinated and the perspectives of the different disciplines have to be integrated within one program. Students must be guided in order to deal with the demands and challenges of the different disciplines. (2) International students need support with settling in Germany and with learning and working in a German cultural environment. They need support with administrative issues. Furthermore, they need to analyze and understand cultural differences and how they impact on the cooperation between lecturers and students and on the work in research groups. (3) Students must be helped to develop their own curriculum. They must learn how to combine their first-degree qualification with the specialized qualification which they gain after completing their Master's program. They need to develop the skills to match their preferences with what is realistic and feasible.
ERIC Educational Resources Information Center
Papanastasiou, Natalie
2012-01-01
The curriculum is a governance technology of knowledge production and is also itself governed by complex dynamics within European education policy space. This article focuses on how the curriculum is governed by comparative knowledge; in particular, it identifies how this facet of governance has manifested itself within the policy space of…
A Technological Teacher Education Program Planning Model.
ERIC Educational Resources Information Center
Hansen, Ronald E.
1993-01-01
A model for technology teacher education curriculum has three facets: (1) purpose (experiential learning, personal development, technological enlightenment, economic well-being); (2) content (professional knowledge, curriculum development competence, pedagogical knowledge and skill, technological foundations); and (3) process (planned reflection,…
3D Game-Based Learning System for Improving Learning Achievement in Software Engineering Curriculum
ERIC Educational Resources Information Center
Su,Chung-Ho; Cheng, Ching-Hsue
2013-01-01
The advancement of game-based learning has encouraged many related studies, such that students could better learn curriculum by 3-dimension virtual reality. To enhance software engineering learning, this paper develops a 3D game-based learning system to assist teaching and assess the students' motivation, satisfaction and learning achievement. A…
ERIC Educational Resources Information Center
Atai, Mahmood Reza; Shoja, Leila
2011-01-01
Even though English for Specific Academic Purposes (ESAP) courses constitute a significant part of the Iranian university curriculum, curriculum developers have generally developed the programs based on intuition. This study assessed the present and target situation academic language needs of undergraduate students of computer engineering. To this…
ERIC Educational Resources Information Center
Herber, Daniel R.; Deshmukh, Anand P.; Mitchell, Marlon E.; Allison, James T.
2016-01-01
This paper presents an effort to revitalize a large introductory engineering course for incoming freshman students that teaches them analytical design through a project-based curriculum. This course was completely transformed from a seminar-based to a project-based course that integrates hands-on experimentation with analytical work. The project…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This course, adapted from military curriculum materials for use in vocational and technical education, is the first of a two-course series that teaches students to maintain and repair automotive and construction equipment using either gasoline or diesel engines. It covers basic combustion engine principles and electrical system principles as well…
ERIC Educational Resources Information Center
Rains, Larry
This engine performance (emission control systems) module is one of a series of competency-based modules in the Missouri Auto Mechanics Curriculum Guide. Topics of this module's five units are: positive crankcase ventilation (PCV) and evaporative emission control systems; exhaust gas recirculation (EGR); air injection and catalytic converters;…
Improving Professionalism in the Engineering Curriculum through a Novel Use of Oral Presentations
ERIC Educational Resources Information Center
Berjano, Enrique; Sales-Nebot, Laura; Lozano-Nieto, Albert
2013-01-01
This hypothesis is based on the fact that oral presentations in the context of engineering education could be used not only to develop oral communication skills but also to augment the professionalism in the curriculum. The methodological innovation is first described, which allows encouraging the capacity of summarising ideas, teamwork,…
ERIC Educational Resources Information Center
Okudan Kremer, Gül E.; Simpson, Timothy W.; Ashour, Omar M.
2013-01-01
In this paper, we present our efforts in embedding product archeology inspired curricula into two engineering courses along with assessment results. The assessment focuses on the effectiveness of the embedded curricula in enhancing students' understanding on the global, societal, environmental, and economic (GSEE) implications of engineering…
ERIC Educational Resources Information Center
Gharaibeh, Khaled; Harb, Bassam; Salameh, Haythem Bany; Zoubi, Asem; Shamali, Ahmed; Murphy, Noel; Brennan, Conor
2013-01-01
This article presents the methodology and results of the curriculum review of the Masters of Science programme in Wireless Communications offered by the Telecommunications Engineering Department at Yarmouk University in Jordan. The review is based on expert opinion collected through questionnaires and meetings about the programme and focuses on…
Integrating STEM into the Primary School Curriculum
ERIC Educational Resources Information Center
Qureshi, Asima
2015-01-01
Science has always been a valued subject at Meadowbrook Primary School, and the head teacher has a real vision for the school to embrace engineering as part of the science curriculum to give the children the opportunity to be more creative with their projects. To get started, teachers attended an engineering workshop run by Science Oxford Schools…
Time for a Tune-Up: Comprehensive Curriculum Evaluation
ERIC Educational Resources Information Center
Meyers, Lisa H.
2005-01-01
How important is a high-quality curriculum? A school without a quality curriculum is like a car without an engine--neither goes anywhere. One responsibility of a school administrator is to ensure that quality curriculum is designed, adopted, and implemented. The No Child Left Behind act (NCLB) has focused the attention of an entire nation on the…
NASA Astrophysics Data System (ADS)
Quigley, Cassie F.; Herro, Dani
2016-06-01
In response to a desire to strengthen the economy, educational settings are emphasizing science, technology, engineering, and mathematics (STEM) curriculum and programs. Yet, because of the narrow approach to STEM, educational leaders continue to call for a more balanced approach to teaching and learning, which includes the arts, design, and humanities. This desire created space for science, technology, engineering, arts, and mathematics (STEAM) education, a transdisciplinary approach that focuses on problem-solving. STEAM-based curricula and STEAM-themed schools are appearing all over the globe. This growing national and global attention to STEAM provides an opportunity for teacher education to explore the ways in which teachers implement STEAM practices, examining the successes and challenges, and how teachers are beginning to make sense of this innovative teaching practice. The purpose of this paper is to examine the implementation of STEAM teaching practices in science and math middle school classrooms, in hopes to provide research-based evidence on this emerging topic to guide teacher educators.
Computational Experiments for Science and Engineering Education
NASA Technical Reports Server (NTRS)
Xie, Charles
2011-01-01
How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.
Health systems engineering fellowship: curriculum and program development.
Watts, Bradley V; Shiner, Brian; Cully, Jeffrey A; Gilman, Stuart C; Benneyan, James C; Eisenhauer, William
2015-01-01
Industrial engineering and related disciplines have been used widely in improvement efforts in many industries. These approaches have been less commonly attempted in health care. One factor limiting application is the limited workforce resulting from a lack of specific education and professional development in health systems engineering (HSE). The authors describe the development of an HSE fellowship within the United States Department of Veterans Affairs, Veterans Health Administration (VA). This fellowship includes a novel curriculum based on specifically established competencies for HSE. A 1-year HSE curriculum was developed and delivered to fellows at several VA engineering resource centers over several years. On graduation, a majority of the fellows accepted positions in the health care field. Challenges faced in developing the fellowship are discussed. Advanced educational opportunities in applied HSE have the potential to develop the workforce capacity needed to improve the quality of health care. © 2014 by the American College of Medical Quality.
Practice Oriented Master's in Optics
NASA Technical Reports Server (NTRS)
Dimmock, John O.
1998-01-01
The development of an interdisciplinary Masters Program with a concentration in Optics and Photonics Technology has been is described. This program was developed under the U.S. Manufacturing Education and Training Activity of the Technology Reinvestment Project. This development was a collaboration between the University of Alabama in Huntsville (UAH), Alabama A&M University, Northwest Shoals Community College, the NASA Marshall Space Flight Center (MSFC), the U.S. Army Missile Command, Oak Ridge National Laboratory (ORNL), Advanced Optical Systems Inc., Dynetics, Inc., Hughes Danbury Optical Systems, Inc., Nichols Research and Speedring Inc. These organizations as well as the National Institute for Standards and Technology and SCI, Inc. have been participating fully in the design, development and implementation of this program. This goal of the program is to produce highly trained graduates who can also solve practical problems. To this end, the program includes an on-site practicum at a manufacturing location. The broad curriculum of this program emphasizes the fundamentals of optics, optical systems manufacturing and testing, and the principles of design and manufacturing to cost for commercial products. The Master's of Science (MS) in Physics and Master's of Science in Engineering (MSE) in Electrical Engineering Degrees with concentration in Optics and Photonics Technology are offered by the respective UAH academic departments with support from and in consultation with a Steering Committee composed of representatives from each of the participating organizations, and a student representative from UAH. The origins of the programs are described. The curricula of the programs is described. The course outlines of the new courses which were developed for the new curriculum are included. Also included are samples of on-site practicums which the students have been involved in. Also included as attachments are samples of the advertisements, which includes flyers, and the program description given to prospective students. The expenditures in the development and information about the cost sharing among the participating organizations is also included. Finally a listing membership of the steering committee is attached.
NASA Astrophysics Data System (ADS)
Buzby, C. K.; Jona, K.
2009-12-01
The Watershed Dynamics project is a partnership between Northwestern University, the Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI), and the GLOBE Program (Global Learning and Observations to Benefit the Environment). The goal of the project is to develop inquiry-based educational materials that use authentic scientific data and analysis techniques to teach students about the watershed. The relationship between Northwestern, CUAHSI, and GLOBE allows each partner to contribute to the development of the project in the area of their expertise. Science researchers from CUAHSI share science content knowledge and data access through the development of their Hydrologic Information System (HIS). Curriculum developers at Northwestern write inquiry-based curriculum using GIS technology to access and analyze live data. The GLOBE Program is a worldwide hands-on, primary and secondary school-based science education program that provides teacher training opportunities to a network of teachers around the world. This partnership allows each partner to bring their area of expertise to the project and make the best use of one another's resources. The Watershed Dynamics project can serve as a model for future partnerships between the science and education communities. The Office of Science, Technology, Engineering, and Math Education Partnerships (OSEP) at Northwestern is a service organization that supports Northwestern researchers in developing proposals and implementing research projects that incorporate K-12 educational components, particularly in the fields of science, technology, engineering and mathematics (STEM). OSEP assists faculty with the development of sound plans for education and outreach that reflect current research on learning and educational reform and provides expertise in STEM education materials development, learning technologies, and professional development for K-12 teachers and facilitators in informal education institutions. Resources such as OSEP can pair scientists with educational organizations so that science outreach programs can be sustainable.