Sample records for engineering technology faculty

  1. Faculty Collaboration on Multidisciplinary Web-Based Education.

    ERIC Educational Resources Information Center

    Saad, Ashraf; Uskov, Vladimir L.; Cedercreutz, Kettil; Geonetta, Sam; Spille, Jack; Abel, Dick

    In 1998, faculty members at the University of Cincinnati started a project as an interdepartmental collaboration to investigate the use of World Wide Web-based instructional (WBI) tools. The project team included representatives from various areas such as information engineering technology, mechanical engineering technology, chemical technology,…

  2. A Joint Venture Model for Teaching Required Courses in "Ethics and Engineering" to Engineering Students

    ERIC Educational Resources Information Center

    Zandvoort, H.; Van Hasselt, G. J.; Bonnet, J. A. B. A. F.

    2008-01-01

    We present our experience, spanning more than 10 years of teaching a course on "ethics and engineering" for a group of MSc programmes in applied sciences at Delft University of Technology. The course is taught by a team of teachers from the faculty of Applied Sciences and from the department of Philosophy of the Faculty of Technology,…

  3. A Study To Determine the Job Satisfaction of the Engineering/Industrial Technology Faculty at Delgado Community College.

    ERIC Educational Resources Information Center

    Satterlee, Brian

    A study assessed job satisfaction among Engineering/Industrial Technology faculty at Delgado Community College (New Orleans, Louisiana). A secondary purpose was to confirm Herzberg's Two-Factor Theory of Job Satisfaction (1966) that workers derived satisfaction from the work itself and that causes of dissatisfaction stemmed from conditions…

  4. Success Factors of Black Science, Technology, Engineering and Mathematics Faculty at Predominantly White Institutions

    ERIC Educational Resources Information Center

    Currie, Michelle A.

    2012-01-01

    Black faculty at predominantly White institutions (PWIs) have historically been underrepresented and made to endure with academic isolation, scholarship marginalization and other challenges to the tenure process. When it comes to science, technology, engineering and math, also known as STEM, as it relates to race and success, little is known of…

  5. How Do Science, Technology, Engineering, and Mathematics Minority Faculty Members Describe Their Experiences of Graduate Student and Faculty Socialization?

    ERIC Educational Resources Information Center

    Johnson, Ayana M.

    2012-01-01

    To remain globally competitive in science, technology, engineering, and mathematics (STEM), we must increase our number of underrepresented minority scientists (URMs) as our country's population becomes more diverse. For URMs to move up the educational and professional ranks, they need to be properly socialized as graduate students and…

  6. Teaching-as-Research Internships: A Model for the Development of Future Chemistry Faculty and the Improvement of Teaching in Science, Technology, Engineering, and Math

    ERIC Educational Resources Information Center

    Gillian-Daniel, Donald L.; Walz, Kenneth A.

    2016-01-01

    Over the past decade, the University of Wisconsin-Madison (UW-Madison) and Madison Area Technical College (Madison College) partnered to create an internship pathway for graduate students pursuing careers as future science, technology, engineering and math (STEM) faculty members. Since 2003, 10 doctoral students from the university completed…

  7. Factors That Female Higher Education Faculty in Select Science, Technology, Engineering, and Mathematics (STEM) Fields Perceive as Being Influential to Their Success and Persistence in Their Chosen Professions

    ERIC Educational Resources Information Center

    Opare, Phyllis Bernice

    2012-01-01

    The purpose of this study was to determine factors female higher education faculty in select science, technology, engineering, and mathematics (STEM) fields perceived as influential to their success and persistence in their chosen professions. Females are underrepresented in STEM professions including academia, despite the fact that female…

  8. Science and Technology Resources on the Internet: Standards Resources for Engineering and Technology

    ERIC Educational Resources Information Center

    Phillips, Margaret; Huber, Sarah

    2017-01-01

    The goal of this webliography is to provide an introduction to standards resources for librarians that support post-secondary engineering and technology programs, as well as engineering and technology faculty members and students. It serves as a reference on standards collection development and integrating standards information literacy into…

  9. Multiphysics Modeling of Electric-Swing Adsorption System with In-Vessel Condensation (POSTPRINT)

    DTIC Science & Technology

    2007-04-01

    Petkovska, Danijela Antov-Bozalo, Ana Markovic Department of Chemical Engineering Faculty of Technology and Metallurgy University of Belgrade Belgrade...Government. M. Petkovska () · D. Antov-Bozalo · A. Markovic Department of Chemical Engineering, Faculty of Technology and Metallurgy , University of...distributions in a resistance-heated gran- ular activated- charcoal bed. Theor. Found. Chem. Eng. 36, 141– 144 (2002) Yu, F.D., Luo, L.A., Grevillot, G

  10. Examining E-Learning Barriers as Perceived by Faculty Members of Engineering Colleges in the Jordanian Universities

    ERIC Educational Resources Information Center

    Al-Alawneh, Muhammad K.

    2014-01-01

    Employing computer's technology that includes e-learning system in the field of Engineering is a vital issue which needs to be discussed. Therefore, this study purposed to examine e-learning barriers as perceived by faculty members of engineering in three major universities in Jordan (Yarmouk University, Jordan University of Science and…

  11. Necessity and Role of Introductory Education in the Engineering Education in University Level

    NASA Astrophysics Data System (ADS)

    Endo, Ginro

    In the faculties of “Engineering” or “Science and Technology” of many universities, faculty stuffs are teaching the academic foundations of technology to the students. From the standing point of the students in engineering course, first their study should be started to be accustomed to the new studying situations in their universities or colleges, and then the students proceed to be adjusted to study engineering specialty. The former is or should be realized through liberal arts education in university level and extracurricular activities in the universities. However, the latter needs special education schemes. In the past, educational courses in universities were clearly divided into a liberal arts period and a specialty education period in Japan. In that system, the students in engineering were accustomed to the specialty education after their promotion to their engineering curriculum. At present, the students in the faculties must be engrossed in the study of engineering from their first year of the university education, because the science and technology have been very rapidly progressed and have made increase in the level and quantity of engineering education. In this article, the author discusses how should the faculty give the scholastic ability to the students in engineering from the early years of the university courses, and introduces the case studies of introductory education (or the first-year education) in the engineering education that has been done in a faculty to that the author belongs.

  12. Assessment of an Engineering Technology Outreach Program for 4th-7th Grade Girls

    ERIC Educational Resources Information Center

    Dell, Elizabeth M.; Christman, Jeanne; Garrick, Robert D.

    2011-01-01

    This paper describes a workshop led by female Engineering Technology students, with support from female faculty, to provide an introduction to Engineering Technology to 4th-7th grade girls through a series of interactive laboratory experiments. This outreach program was developed to improve attitudes towards science and engineering in middle…

  13. Spanish Faculty Preferences and Usage of Library Services in the Field of Science and Technology

    ERIC Educational Resources Information Center

    Pinto, Maria; Fernandez-Ramos, Andres

    2010-01-01

    The authors compare Spanish faculty use of library services and the interest they express in value-added services and improvement actions. The results are based on data from a survey of 546 faculty in the field of science and technology. The study differentiates between the areas of pure science, engineering and architecture, and life sciences.…

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 20: Engineers as information processors: A survey of US aerospace engineering faculty and students

    NASA Technical Reports Server (NTRS)

    Holland, Maurita Peterson; Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1991-01-01

    U.S. aerospace engineering faculty and students were surveyed as part of the NASA/DoD Aerospace Knowledge Research Project. Faculty and students were viewed as information processors within a conceptual framework of information seeking behavior. Questionnaires were received from 275 faculty members and 640 students, which were used to determine: (1) use and importance of information sources; (2) use of specific print sources and electronic data bases; (3) use of information technology; and (4) the influence of instruction on the use of information sources and the products of faculty and students. Little evidence was found to support the belief that instruction in library or engineering information use has significant impact either on broadening the frequency or range of information products and sources used by U.S. aerospace engineering students.

  15. Facilitating a Faculty Learning Community: Determining Consensus Using Q Methodology

    ERIC Educational Resources Information Center

    Ramlo, Susan

    2011-01-01

    With plans to improve a Technical Report Writing course, writing faculty and engineering technology faculty formed a faculty learning community (FLC). Although discussions were often productive, it was often difficult to gauge consensus and differing views among the group members. In a previous study, Q methodology, a measure of subjectivity, was…

  16. The Faculty Self-Reported Assessment Survey (FRAS): Differentiating Faculty Knowledge and Experience in Assessment

    ERIC Educational Resources Information Center

    Hanauer, David I.; Bauerle, Cynthia

    2015-01-01

    Science, technology, engineering, and mathematics education reform efforts have called for widespread adoption of evidence-based teaching in which faculty members attend to student outcomes through assessment practice. Awareness about the importance of assessment has illuminated the need to understand what faculty members know and how they engage…

  17. Professional development of Russian HEIs' management and faculty in CDIO standards application

    NASA Astrophysics Data System (ADS)

    Chuchalin, Alexander; Malmqvist, Johan; Tayurskaya, Marina

    2016-07-01

    The paper presents the approach to complex training of managers and faculty staff for system modernisation of Russian engineering education. As a methodological basis of design and implementation of the faculty development programme, the CDIO (Conceive-Design-Implement-Operate) Approach was chosen due to compliance of its concept to the purposes and tasks of engineering education development in Russia. The authors describe the structure, the content and implementation technology of the programme designed by Tomsk Polytechnic University and Skolkovo Institute of Science and Technology with the assistance of Chalmers University of Technology and KTH Royal Institute of Technology and other members of the CDIO Initiative. The programme evaluation based on the questionnaire results showed that the programme content is relevant, has high practical value and high level of novelty for all categories of participants. Therefore, the CDIO approach was recommended for implementation to improve various elements of the engineering programme such as learning outcomes, content and structure, teaching, learning and assessment methods. Besides, the feedback results obtained through programme participants' survey contribute to identification of problems preventing development of engineering education in Russia and thus serve as milestones for further development of the programme.

  18. Movers, Shakers, & Everyone in Between: Faculty Personas Surrounding Active Learning in the Undergraduate STEM Classroom

    ERIC Educational Resources Information Center

    Guy, Batsheva R.

    2017-01-01

    This qualitative study explores the attitudes that STEM (Science, Technology, Engineering, and Mathematics) faculty have about active learning (AL), the barriers that STEM faculty face when implementing AL, and what would encourage STEM faculty to use AL. Data was gathered using a modified Group-Level Assessment (GLA), a participatory method meant…

  19. Aligning Information Literacy with the Faculty Teaching and Learning Agenda

    ERIC Educational Resources Information Center

    Dearden, Richard; Dermoudy, Julian; Evans, Christine; Barmuta, Leon; Jones, Susan; Magierowski, Regina; Osborn, Jon; Sargison, Jane; Waters, David

    2005-01-01

    In 2004, the Faculty of Science, Engineering and Technology at the University of Tasmania undertook a project to evaluate students' information literacy skills and to get a picture of how and where information literacy is taught in the faculty. This paper outlines how relationship-building between the Science Library and faculty led to the…

  20. The Reforming of Vocational Teacher Training Colleges in Turkey

    NASA Astrophysics Data System (ADS)

    Çavuşoğlu, Abdullah; Günay, Durmuş

    In Turkey, for many decades college level technical education has been in the form of two main tracks: namely the "Faculty of Engineering" and the "Faculty of Technical Education". The Faculties of Engineering are very similar to engineering schools and colleges around the world; they train engineering students. The "Faculties of Technical Education" are similar to the "Schools of Applied Sciences" that many European countries have. The graduates of these schools are either employed at high schools as teachers at technical or vocational high schools, self employed or employed at other governmental organizations as technical staff. Due to the employability problems that the graduates of these schools have faced in recent years and the suggestions made by the The Council of the Higher Education of Turkey (CoHE), Turkish parliament has recently took a decision to close down these colleges and open new colleges called "Faculty of Technology" in November of 2009. According to the CoHE, these new faculties will train engineering students. The graduates of these faculties can also become teachers at the technical or vocational high schools if they get teaching certificate. This paper discusses the content, outlook, and prospects of this recent reform.

  1. A Pharmacokinetic Study of the Effects of Stress on Chemical Exposure.

    DTIC Science & Technology

    2000-03-01

    CHEMICAL EXPOSURE THESIS Presented to the Faculty of the Graduate School of Engineering and Management of the Air Force Institute of Technology Air...EFFECTS OF STRESS ON CHEMICAL EXPOSURE THESIS Sierra H. Suhajda, B.S. Lieutenant, USAF Presented to the Faculty of the Graduate School of Engineering ...War Syndrome: Dueling studies focus on stress versus environmental exposures as cause of ills," Chemical and Engineering News, 75: 4-5 (13 January

  2. Faculty Perceptions of Student Recruitment and Retention in STEM Fields

    ERIC Educational Resources Information Center

    Gandhi-Lee, Eshani; Skaza, Heather; Marti, Erica; Schrader, P. G.; Orgill, MaryKay

    2017-01-01

    According to the President's Council of Advisors on Science and Technology (PCAST, 2012), there is a need to produce one million more STEM (Science, Technology, Engineering, and Mathematics) graduates in the U.S. over the next decade. Thus, more students must be recruited into and retained in STEM degrees of study. Because faculty are considered…

  3. Let's GO Tech to Pursue Sustainability and Happiness

    ERIC Educational Resources Information Center

    Lee, Lung-Sheng

    2012-01-01

    Technology refers to making or doing things to extend human capability to meet our needs or wants. Both technology and engineering are closely related. The majority of faculty and students in both Kisarazu National College of Technology (Kisarazu Kosen or KNCT) and National United University (NUU) are in the field of engineering. Based upon a…

  4. "Different People Have Different Priorities": Work-Family Balance, Gender, and the Discourse of Choice

    ERIC Educational Resources Information Center

    Beddoes, Kacey; Pawley, Alice L.

    2014-01-01

    This paper contributes new perspectives on the underrepresentation of female faculty in science, technology, engineering and mathematics (STEM) disciplines by identifying how faculty themselves conceptualize or make sense of the problem. We conducted in-depth interviews with 19 STEM faculty members. The interviews were employed to identify…

  5. Gender Differences in Career Satisfaction among Postsecondary Faculty in Stem Disciplines

    ERIC Educational Resources Information Center

    Martin, Cynthia L.

    2011-01-01

    While years of effort to attract more women into higher education careers in science, technology, engineering, and mathematics (collectively known as STEM disciplines) has shown some success, retaining women faculty once they are hired has been much less successful. Their retention is essential in order to maintain diversity among faculty.…

  6. Latino Faculty in STEM Disciplines: Motivation to Engage in Research Activities

    ERIC Educational Resources Information Center

    Lechuga, Vicente M.

    2012-01-01

    The scarcity of underrepresented faculty members in the science, technology, engineering, and mathematics (STEM) disciplines is an issue of great concern to education researchers and scholars alike. Despite their low representation, many minority faculty are able to remain motivated, even when facing barriers due to their ethnicity. I present…

  7. Education and Experience in Engineering, the E3 Program: Program Details.

    ERIC Educational Resources Information Center

    Illinois Inst. of Tech., Chicago.

    Presented is a description of the Education and Experience in Engineering (E3) Program at the Illinois Institute of Technology. Included are the objectives, how the program works, faculty, dissemination of E3 information, integration of science and technology into the E3 program, and the integration of liberal arts and engineering. A chapter is…

  8. Faculty Recommendations for Web Tools: Implications for Course Management Systems

    ERIC Educational Resources Information Center

    Oliver, Kevin; Moore, John

    2008-01-01

    A gap analysis of web tools in Engineering was undertaken as one part of the Digital Library Network for Engineering and Technology (DLNET) grant funded by NSF (DUE-0085849). DLNET represents a Web portal and an online review process to archive quality knowledge objects in Engineering and Technology disciplines. The gap analysis coincided with the…

  9. A Comparative Analysis of Preferred Learning and Teaching Styles for Engineering, Industrial, and Technology Education Students and Faculty

    ERIC Educational Resources Information Center

    Katsioloudis, Petros; Fantz, Todd D.

    2012-01-01

    In the spring semester of 2010, a materials process course was selected as a means to perform a preferred learning style research study. This course was selected because it contained three groups of students: technology education, engineering technology, and industrial technology. The researchers believed that the differences in the students'…

  10. Gendered Microaggressions in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Yang, Yang; Carroll, Doris Wright

    2018-01-01

    Women remain underrepresented in both science, technology, engineering, and mathematics (STEM) workforce and academia. In this quantitative study, we focused on female faculty across STEM disciplines and their experiences in higher educational institutions through the lens of microaggressions theory. Two questions were addressed: (a) whether and…

  11. The Ties That Bind: The Experiences of Women of Color Faculty in STEM

    ERIC Educational Resources Information Center

    Wilkins, Ashlee Nichole

    2017-01-01

    As women of color (WOC) enter the science, technology, engineering, and math (STEM) pipeline with aspirations to join the faculty ranks, it is important that the academy is prepared to address their unique needs to ensure they are supported as they engage in scientific and technological research, support students, and advance in their career.…

  12. Dissecting a Gendered Organization: Implications for Career Trajectories for Mid-Career Faculty Women in STEM

    ERIC Educational Resources Information Center

    Hart, Jeni

    2016-01-01

    This paper traces the workplace practices within which mid-career women faculty in science, technology, engineering, and mathematics (STEM) carry out their careers. Findings from this case study of 25 faculty at one research university revealed three institutional processes that constrained their careers: (a) access to and integration into career…

  13. Changing academic culture to improve undergraduate STEM education.

    PubMed

    Suchman, Erica L

    2014-12-01

    Improving undergraduate science, technology, engineering, and math (STEM) education requires faculty with the skills, resources, and time to create active learning environments that foster student engagement. Current faculty hiring, promotion, and tenure practices at many universities do not measure, reward, nor encourage faculty pursuit of these skills. A cultural change is needed to foster improvement. Published by Elsevier Ltd.

  14. Evaluating the Impact of a Faculty Learning Community on STEM Teaching and Learning

    ERIC Educational Resources Information Center

    Smith, Tori Rhoulac; McGowan, Jill; Allen, Andrea R.; Johnson, Wayne David, II; Dickson, Leon A., Jr.; Najee-ullah, Muslimah Ali; Peters, Monique

    2008-01-01

    The faculty learning community project at Howard University involved a diverse group of men and women, tenured, tenure-track, and future faculty across science, technology, engineering, and mathematics (STEM) disciplines. The purpose of the group was to engage in the scholarship of teaching and learning by learning about teaching, reflecting on…

  15. Team Problem Solving Strategies with a Survey of These Methods Used by Faculty Members in Engineering Technology

    ERIC Educational Resources Information Center

    Marcus, Michael L.; Winters, Dixie L.

    2004-01-01

    Students from science, engineering, and technology programs should be able to work together as members of project teams to find solutions to technical problems. The exercise in this paper describes the methods actually used by a project team from a Biomedical Instrumentation Corporation in which scientists, technicians, and engineers from various…

  16. Environmental engineering education at Ghent University, Flanders (Belgium).

    PubMed

    Demeestere, K; Dewulf, J; Janssen, C; Van Langenhove, H

    2004-01-01

    Since the 1980s, environmental engineering education has been a rapidly growing discipline in many universities. This paper discusses the history, the current status and the near future of environmental engineering education at Ghent University. This university, with about 50% of the Flemish university environmental engineering students, can be considered as representative for the situation in Flanders, Belgium. In contrast to many other universities, environmental engineering education at Ghent University does not have its historical roots in civil engineering, but has been developed from the curricula organized by the former Faculty of Agricultural Sciences. As part of a reorganisation of the education and research activities at this faculty, a curriculum leading to the degree of "bio-engineer in environmental technology" was established in 1991. This curriculum covers a 5-year study and is constructed around 8 main components. Exchange of students with other European universities, e.g. within the Socrates framework, has become a prominent aspect of student life and education. This paper also briefly describes the employment opportunities of graduated bio-engineers in environmental technology. Finally, the current implementation of the bachelor's-master's structure, leading to a "master of science in environmental technology" degree is summarized.

  17. An Investigation of How Black STEM Faculty at Historically Black Colleges and Universities Approach the National Science Foundation Merit Review Process

    ERIC Educational Resources Information Center

    Rankins, Falcon

    2017-01-01

    This qualitative inquiry explored the ways in which US-born, Black faculty member participants in science, technology, engineering, and mathematics (STEM) disciplines at Historically Black Colleges and Universities (HBCUs) interact with the National Science Foundation (NSF). Eight Black HBCU STEM faculty members with a range of involvement in…

  18. When Do Faculty Inputs Matter? A Panel Study of Racial/Ethnic Differences in Engineering Bachelor's Degree Production

    ERIC Educational Resources Information Center

    Ransom, Tafaya

    2013-01-01

    Science, technology, engineering and mathematics (STEM) fields are widely credited as the primary drivers of economic growth through innovation, with engineering universally identified as especially critical. Yet as other nations have strengthened their engineering talent pools, the United States has struggled to cultivate an engineering workforce…

  19. Guidelines for Engineering Teachers Concerning Educating the Engineer for Innovative and Entrepreneurial Activity.

    ERIC Educational Resources Information Center

    Eekels, J.

    1987-01-01

    Emphasizes that the concept of design is fundamental in innovation. Outlines the work of the European Society for Engineering Education-Working group on Innovation. Describes the innovation-management stream in the curriculum of the faculty of Industrial Design Engineering at Delft University of Technology, Netherlands. (CW)

  20. The 1975 NASA/ASEE summer faculty fellowship research program. [research in the areas of aerospace engineering, aerospace systems, and information systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A research program was conducted to further the professional knowledge of qualified engineering and science faculty members, to stimulate an exchange of ideas between participants and NASA engineers and scientists, and to enrich the research activities of the participants' institutions. Abstracts of reports submitted at the end of the program are presented. Topics investigated include multispectral photography, logic circuits, gravitation theories, information systems, fracture mechanics, holographic interferometry, surface acoustic wave technology, ion beams in the upper atmosphere, and hybrid microcircuits.

  1. Stirring the Pot: Supporting and Challenging General Education Science, Technology, Engineering, and Mathematics Faculty to Change Teaching and Assessment Practice

    ERIC Educational Resources Information Center

    Stieha, Vicki; Shadle, Susan E.; Paterson, Sharon

    2016-01-01

    Evidence-based instructional practices (ebips) have been associated with positive student outcomes; however, institutions struggle to catalyze widespread adoption of these practices in general education science, technology, engineering, and mathematics (stem) courses. Further, linking ebips with integrated learning assessment is rarely discussed…

  2. American Studies and the Technical Curriculum: Man and Technology.

    ERIC Educational Resources Information Center

    St. Germain, Amos

    An approach to teaching American studies at a Southern institute of engineering technology is described. The curriculum of this school is technically oriented to the professional engineer. Elective humanities courses must attract their own market and justify their places to both the students and the faculty. Two courses entitled "Man and…

  3. Effective Engineering Presentations through Teaching Visual Literacy Skills.

    ERIC Educational Resources Information Center

    Kerns, H. Dan; And Others

    This paper describes a faculty resource team in the Bradley University (Illinois) Department of Industrial Engineering that works with student project teams in an effort to improve their visualization and oral presentation skills. Students use state of the art technology to develop and display their visuals. In addition to technology, students are…

  4. A Study on the Attitudes and Opinions of Engineering Students from the University of Baja California, Mexico, on Science, Technology, and Society

    ERIC Educational Resources Information Center

    Oliveros Ruiz, Maria Amparo; Sevilla Garcia, Juan Jose; Schorr, Michael

    2010-01-01

    A proposal is presented for the incorporation of the concepts of STS into the teaching of science and technology at the Faculty of Engineering, Mexicali Campus, of the University of Baja California. The method outlined for the development of research and the application of the "Opinions Questionnaire on Science, Technology and Society"…

  5. Investing in Faculty.

    ERIC Educational Resources Information Center

    New Directions for Higher Education, 2002

    2002-01-01

    Discusses why it is essential to look at costs related to science, technology, engineering, and mathematics (STEM) faculty not simply as a critical expense, but as part of an intentional investment strategy meant to produce an important and significant value-added benefit. Offers advice on planning, financing, and assessing this investment. (EV)

  6. STEM Faculty and Indirect Costs: What Administrators Need to Know

    ERIC Educational Resources Information Center

    Gossman, Susan

    2016-01-01

    The focus of this single site, qualitative case study was on public research university STEM (science, technology, engineering and mathematics) faculty and their perspectives on, and behavior towards, indirect cost recovery. The explanatory scheme was derived from anthropological theory and incorporated organizational culture, resource dependency…

  7. The Scholarship of Teaching: The CEET Initiative on Teaching and Learning. A Faculty Development Program on Teaching and Learning and Classroom Research. Volumes 1-4. October 2005-December 2006

    ERIC Educational Resources Information Center

    Scarborough, Jule Dee

    2007-01-01

    This Northern Illinois University College of Engineering and Engineering Technology (CEET) initiative represents the authors' first attempt to prepare engineering and technology professors for teaching to improve student learning and the Scholarship of Teaching. This college portfolio is nontraditional in that it combines a learning paper approach…

  8. Selected engagement factors and academic learning outcomes of undergraduate engineering students

    NASA Astrophysics Data System (ADS)

    Justice, Patricia J.

    The concept of student engagement and its relationship to successful student performance and learning outcomes has a long history in higher education (Kuh, 2007). Attention to faculty and student engagement has only recently become of interest to the engineering education community. This interest can be attributed to long-standing research by George Kuh's, National Survey of Student Engagement (NSSE) at the Indiana University Center for Postsecondary Research. In addition, research projects sponsored by the National Science Foundation, the Academic Pathway Study (APS) at the Center for the Advancement of Engineering Education (CAEE) and the Center for the Advancement of Scholarship on Engineering Education (CASEE), Measuring Student and Faculty Engagement in Engineering Education, at the National Academy of Engineering. These research studies utilized the framework and data from the Engineering Change study by the Center for the Study of Higher Education, Pennsylvania State, that evaluated the impact of the new Accreditation Board of Engineering and Technology (ABET) EC2000 "3a through k" criteria identify 11 learning outcomes expected of engineering graduates. The purpose of this study was to explore the extent selected engagement factors of 1. institution, 2. social, 3. cognitive, 4. finance, and 5. technology influence undergraduate engineering students and quality student learning outcomes. Through the descriptive statistical analysis indicates that there maybe problems in the engineering program. This researcher would have expected at least 50% of the students to fall in the Strongly Agree and Agree categories. The data indicated that the there maybe problems in the engineering program problems in the data. The problems found ranked in this order: 1). Dissatisfaction with faculty instruction methods and quality of instruction and not a clear understanding of engineering majors , 2). inadequate Engineering faculty and advisors availability especially applicable to career paths, 4) engineering program objectives not aligned with student learning outcomes, 5. lack of encouragement to join engineering association for professional development. This study determined statistically that the factors having the most significant influence on undergraduate engineering student and learning outcome is the role that faculty plays inside and outside the classroom. The satisfaction of students regarding faculty on availability and feedback was negative. Engineering programs appear to have issues with alignment of ABET learning outcomes from a student perspective on knowledge, ability of engineering skills and ability acquired at the time of this study. The researcher believes that the findings are valid viewing the maturity of the majority of responses were from upper-class juniors and seniors. In addition, gender and racial/ethnicity disparity were found with low number of females compared to males. The racial/ ethnicity disparity was especially noted for Hispanic and Native American students.

  9. Meteorology Meets Engineering: An Interdisciplinary STEM Module for Middle and Early Secondary School Students

    ERIC Educational Resources Information Center

    Barrett, Bradford S.; Moran, Angela L.; Woods, John E.

    2014-01-01

    Background: Given the continued need to educate the public on both the meteorological and engineering hazards posed by the severe winds of a tornado, an interdisciplinary science, technology, engineering, and mathematics (STEM) module designed by the faculty from the Oceanography and Mechanical Engineering Departments at the United States Naval…

  10. Mapping Beliefs about Teaching to Patterns of Instruction within Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Allendoerfer, Cheryl; Wilson, Denise; Kim, Mee Joo; Burpee, Elizabeth

    2014-01-01

    In this paper, we identify beliefs about teaching and patterns of instruction valued and emphasized by science, technology, engineering, and mathematics faculty in higher education in the USA. Drawing on the notion that effective teaching is student-centered rather than teacher-centered and must include a balance of knowledge-, learner-,…

  11. Improving Postsecondary STEM Education: Strategies for Successful Interdisciplinary Collaborations and Brokering Engagement with Education Research and Theory

    ERIC Educational Resources Information Center

    Bouwma-Gearhart, Jana; Perry, Kristen H.; Presley, Jennifer B.

    2014-01-01

    This article describes factors that influence the success of collaborations involving science, technology, engineering, and mathematics (STEM) and Education faculty at research-focused universities who work toward postsecondary STEM education improvement. We provide insight into how interdisciplinary faculty may successfully collaborate given…

  12. Mentored Discussions of Teaching: An Introductory Teaching Development Program for Future STEM Faculty

    ERIC Educational Resources Information Center

    Baiduc, Rachael R.; Linsenmeier, Robert A.; Ruggeri, Nancy

    2016-01-01

    Today's science, technology, engineering, and mathematics (STEM) graduate students and postdoctoral fellows are tomorrow's new faculty members; but these junior academicians often receive limited pedagogical training. We describe four iterations of an entry-level program with a low time commitment, Mentored Discussions of Teaching (MDT). The…

  13. Engineering Education 2001. The Samuel Neaman Institute--Technion Report.

    ERIC Educational Resources Information Center

    Engineering Education, 1987

    1987-01-01

    Presents a view of future engineering education as perceived by the Technion faculty group on the basis of their own analysis and the insights gathered from workshop discussions. Contrasts basic and specialized education. Reviews the technologies and skills of the future engineer. Gives an overview of curriculum requirements. (CW)

  14. Project support of practical training in biophysics.

    PubMed

    Mornstein, V; Vlk, D; Forytkova, L

    2006-01-01

    The Department of Biophysics ensures practical training in biophysics and related subjects for students of medical and health study programmes. Demonstrations of medical technology are an important part of this training. Teaching for Faculty of Sciences in biophysical study programmes becomes also very important. Some lectures and demonstrations of technology are involved, but the practical trainig is missing. About 1 mil. CZK for additional laboratory equipment was obtained from the HEIDF project No. 1866/ 2005 "The demonstration and measuring technology for education in medical biophysics and radiological physics" for measuring system DEWETRON for high frequency signal analysis, Fluke Ti30 IR camera, PM 9000B patient monitor, ARSENAL AF 1 fluorescence microscope, and Nikon Coolpix 4500 digital camera with accessories for microphotography. At the present time, further financial resources are being provided by a development project of Ministry of Education "Inter-university co-operation in biomedical technology and engineering using top technologies" in total amount of almost 5 mil CZK, whereas over 2 mil CZK from this project are reserved for student laboratory equipment. The main goal of this project is to ensure the participation of Medical Faculty in educational co-operation in the biomedical technology and engineering, namely with the Faculty of Electrical Engineering and Communication (FEEC), Brno University of Technology. There will be taught those areas of biophysics which are not covered by FEEC, thus forming a separate subject "General Biophysics". The following instruments will be installed: UV-VIS spectrophotometers, rotation viscometers, tensiometers, microscopes with digital image processing, cooled centrifuge, optical benches, and some smaller instruments for practical measurements.

  15. A Survey of Former Drafting & Engineering Design Technology Students. Summary Findings of Respondents District-Wide.

    ERIC Educational Resources Information Center

    Glyer-Culver, Betty

    In fall 2001 staff of the Los Rios Community College District Office of Institutional Research collaborated with occupational deans, academic deans, and faculty to develop and administer a survey of former Drafting and Engineering Design Technology students. The survey was designed to determine how well courses had met the needs of former drafting…

  16. uCollaborator: Framework for STEM Project Collaboration among Geographically-Dispersed Student/Faculty Teams

    ERIC Educational Resources Information Center

    Fiore, Stephen M.; Rodriguez, Walter E.; Carstens, Deborah S.

    2012-01-01

    This paper presents a framework for facilitating communication among STEM project teams that are geographically dispersed in synchronous or asynchronous online courses. The framework has been developed to: (a) improve how engineering and technology students and faculty work with collocated and geographically-dispersed teams; and (b) to connect the…

  17. Relations with Faculty as Social Capital for College Students: Evidence from Puerto Rico

    ERIC Educational Resources Information Center

    Dika, Sandra L.

    2012-01-01

    In this study, a social capital framework was adopted to investigate the extent to which academically focused interactions with faculty and other institutional agents serve as social capital for college students, using National Survey of Student Engagement data from a large, science, technology, engineering and math-focused institution in Puerto…

  18. Surveying the Landscape of Professional Development Research: Suggestions for New Perspectives in Design and Research

    ERIC Educational Resources Information Center

    Manduca, Cathryn A.

    2017-01-01

    Science, technology, engineering, and mathematics (STEM) higher education is in need of improved teaching methods to increase learning for all students. Faculty professional development programs are a widespread strategy for fostering this improvement. Studies of faculty development programs have focused on program design and the impact of…

  19. Perceptions of Active Learning between Faculty and Undergraduates: Differing Views among Departments

    ERIC Educational Resources Information Center

    Patrick, Lorelei E.; Howell, Leigh Anne; Wischusen, William

    2016-01-01

    There have been numerous calls recently to increase the use of active learning in university science, technology, engineering, and math (STEM) classrooms to more actively engage students and enhance student learning. However, few studies have investigated faculty and student perceptions regarding the effectiveness of active learning or the…

  20. Technical Writing Resources. A Handbook for Engineering and Technology Faculty at Purdue.

    ERIC Educational Resources Information Center

    Cheek, Madelon

    Ideas for technical writing assistance and resources that are available to Purdue University faculty who incorporate a writing component into their courses are presented in this guide. Following an introduction containing the purpose, background, and scope of the guide, three main topics and their subtopics form the guide's structure: (1)…

  1. To Stay or Not to Stay: Retention of Asian International Faculty in STEM Fields

    ERIC Educational Resources Information Center

    Lawrence, Janet H.; Celis, Sergio; Kim, Hee Sun; Lipson, Sarah Ketchen; Tong, Ximeng

    2014-01-01

    The present study identifies characteristics of individuals and work settings that influence Asian international faculty members' intentions to continue their employment in US research universities. Given the demand for researchers in science, technology, engineering and mathematics fields (STEM), the higher rate of turnover among untenured…

  2. Encouraged or Weeded Out: Perspectives of Students of Color in the STEM Disciplines on Faculty Interactions

    ERIC Educational Resources Information Center

    McCoy, Dorian L.; Luedke, Courtney L.; Winkle-Wagner, Rachelle

    2017-01-01

    For this multisite qualitative case study, framed in Bourdieu's social reproduction theory, we examined mentoring experiences among Students of Color majoring in science, technology, engineering and mathematics (STEM) disciplines at both a predominantly White institution and a historically Black institution. Findings revealed that faculty served…

  3. Examining the Flexibility Bind in American Tenure and Promotion Processes: An Institutional Ethnographic Approach

    ERIC Educational Resources Information Center

    Jones, Kyle; Beddoes, Kacey; Banerjee, Dina; Pawley, Alice L.

    2014-01-01

    This paper analyses the role that forms of documentation play in faculty members' experiences of tenure and promotion. Taking an institutional ethnography approach, it examines inconsistencies and ambiguities in documents and connects them to the experiences of science, technology, engineering and mathematics (STEM) faculty at one institution in…

  4. The Search Is on: Engendering Faculty Diversity through More Effective Search and Recruitment

    ERIC Educational Resources Information Center

    Bilimoria, Diana; Buch, Kimberly K.

    2010-01-01

    The underrepresentation of women and minority faculty in the science, technology, engineering, and mathematics (STEM) disciplines continues to be a major concern to university leaders, policy makers, and scientists. While a number of complex factors across the entire academic pipeline play significant roles in this problem, important contributing…

  5. Bringing Engineering Research Coupled With Art Into The K-12 Classroom

    NASA Astrophysics Data System (ADS)

    Cola, J.

    2016-12-01

    The Partnerships for Research, Innovation and Multi-Scale Engineering Program, a Research Experiences for K-12 Teachers at Georgia Institute of Technology demonstrates a successful program that blends the fine arts with engineering research. Teachers selected for the program improve their science and engineering content knowledge, as well as their understanding of how to use STEAM to increase student comprehension and engagement. Participants in the program designed Science, Technology, Engineering, Art, and Mathematics (STEAM)- based lessons based on faculty engineering research. Examples of some STEAM lessons created will be discussed along with lessons learned.

  6. The 2004 NASA Faculty Fellowship Program Research Reports

    NASA Technical Reports Server (NTRS)

    Pruitt, J. R.; Karr, G.; Freeman, L. M.; Hassan, R.; Day, J. B. (Compiler)

    2005-01-01

    This is the administrative report for the 2004 NASA Faculty Fellowship Program (NFFP) held at the George C. Marshall Space Flight Center (MSFC) for the 40th consecutive year. The NFFP offers science and engineering faculty at U.S. colleges and universities hands-on exposure to NASA s research challenges through summer research residencies and extended research opportunities at participating NASA research Centers. During this program, fellows work closely with NASA colleagues on research challenges important to NASA's strategic enterprises that are of mutual interest to the fellow and the Center. The nominal starting and .nishing dates for the 10-week program were June 1 through August 6, 2004. The program was sponsored by NASA Headquarters, Washington, DC, and operated under contract by The University of Alabama, The University of Alabama in Huntsville, and Alabama A&M University. In addition, promotion and applications are managed by the American Society for Engineering Education (ASEE) and assessment is completed by Universities Space Research Association (USRA). The primary objectives of the NFFP are to: Increase the quality and quantity of research collaborations between NASA and the academic community that contribute to the Agency s space aeronautics and space science mission. Engage faculty from colleges, universities, and community colleges in current NASA research and development. Foster a greater public awareness of NASA science and technology, and therefore facilitate academic and workforce literacy in these areas. Strengthen faculty capabilities to enhance the STEM workforce, advance competition, and infuse mission-related research and technology content into classroom teaching. Increase participation of underrepresented and underserved faculty and institutions in NASA science and technology.

  7. Metrics for Emitter Selection for Multistatic Synthetic Aperture Radar

    DTIC Science & Technology

    2013-09-01

    the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Insitute of Technology Air...130 5.2 Test Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.2.1 Weighting of Criteria...Ratio Test . . . . . . . . . . . . . . . . . . . . 20 CNR Clutter to Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 QNR

  8. A study of female students enrollment in engineering technology stem programs

    NASA Astrophysics Data System (ADS)

    Habib, Ihab S.

    The problem studied in this research project was the enrollment of female STEM Engineering Technology students and the impact of professional mentoring and financial incentives on their enrollment, retention, and completion of engineering curriculum. Several tasks were presented in researchers' professional position; to recruit more students to the program, especially female as a minority in the Engineering Technology Department, make appropriate changes to the curriculum, and make improvements in mentoring students to improve rates of enrollment, retention, and completion of the program. A survey was created to study the effects of Science Engineering Technology and Mathematics for Engineering Technology (STEM ENGT) students' perceptions, mentorship, and scholarships availability, enrollment, retention, and program completion by enrolled student gender. Other studies have discovered that more scholarship and faculty mentorship support provided for female students resulted in improved diversity within engineering curricula student bodies (Sorcinelli, 2007).

  9. One more thing: Faculty response to increased emphasis on project teams in undergraduate engineering education

    NASA Astrophysics Data System (ADS)

    Hunter, Jane

    Tenured and tenure-track faculty members at institutions of higher education, especially those at Research I institutions, are being asked to do more than ever before. With rapidly changing technology, significant decreases in public funding, the shift toward privately funded research, and the ever increasing expectations of students for an education that adequately prepares them for professional careers, engineering faculty are particularly challenged by the escalating demands on their time. In 1996, the primary accreditation organization for engineering programs (ABET) adopted new criteria that required, among other things, engineering programs to teach students to function on multidisciplinary teams and to communicate effectively. In response, most engineering programs utilize project teams as a strategy for teaching these skills. The purpose of this qualitative study of tenured and tenure track engineering faculty at a Research I institution in the southwestern United States was to explore the variety of ways in which the engineering faculty responded to the demands placed upon them as a result of the increased emphasis on project teams in undergraduate engineering education. Social role theory and organizational climate theory guided the study. Some faculty viewed project teams as an opportunity for students to learn important professional skills and to benefit from collaborative learning but many questioned the importance and feasibility of teaching teamwork skills and had concerns about taking time away from other essential fundamental material such as mathematics, basic sciences and engineering sciences. Although the administration of the College of Engineering articulated strong support for the use of project teams in undergraduate education, the prevailing climate did little to promote significant efforts related to effective utilization of project teams. Too often, faculty were unwilling to commit sufficient time or effort to make project teamwork a truly valuable learning opportunity because those efforts were not perceived to be valuable and were rarely rewarded. Few formal professional development opportunities were available and few incentives were in place to encourage other informal efforts to develop the necessary skills. Those who committed significant effort to project teams were challenged by concerns about team composition, student accountability and assigning individual grades for group teamwork.

  10. The Ruptured Pipeline: Analysis of the Mining Engineering Faculty Pipeline

    NASA Astrophysics Data System (ADS)

    Poulton, M.

    2011-12-01

    The booming commodities markets of the past seven years have created an enormous demand for economic geologists, mining engineers, and extractive metallurgists. The mining sector has largely been recession proof due to demand drivers coming from developing rather than developed nations. The strong demand for new hires as well as mid-career hires has exposed the weakness of the U.S. university supply pipeline for these career fields. A survey of mining and metallurgical engineering faculty and graduate students was conducted in 2010 at the request of the Society for Mining, Metallurgy, and Exploration. The goals of the surveys were to determine the demographics of the U.S. faculty in mining and metallurgical engineering, the expected faculty turn over by 2010 and the potential supply of graduate students as the future professorate. All Mining Engineering and Metallurgical Engineering degrees in the U.S. are accredited by the Accreditation Board for Engineering and Technology (ABET) and the specific courses required are set by the sponsoring professional society, Society for Mining, Metallurgy, and Exploration. There are 13 universities in the U.S. that offer a degree in Mining Engineering accredited as Mining Engineering and 1 university that grants a Mining Engineering degree accredited under general engineering program requirements. Faculty numbers are approximately 87 tenure track positions with a total undergraduate enrollment of slightly over 1,000 in the 2008-2009 academic year. There are approximately 262 graduate students in mining engineering in the U.S. including 87 Ph.D. students. Mining Engineering department heads have identified 14 positions open in 2010 and 18 positions expected to be open in the next 5 years and an additional 21 positions open by 2020. The current survey predicts a 56% turn over in mining faculty ranks over the next 10 years but a retirement of 100% of senior faculty over 10 years. 63% of graduate students say they are interested in a university career at some point in their lives but only 6% of the PhD respondents had applied for the open positions. 69% of Ph.D. students in the survey had graduation dates that would have made them eligible to apply for the open positions. 51% of the responding graduate students are US citizens. Full time graduate student enrollment would have to increase by 75% in order to provide enough graduate students to meet tenure and promotion expectations for mining engineering faculty in the U.S. New research funding on the order of $17M per year would have to be supplied to sustain the mining engineering faculty at a level expected of most R1 engineering colleges. Salaries for new faculty hires are comparable to those offered to BSc graduates by industry. The difficulties in achieving tenure due to lack of government research funding have made academic careers unattractive. If a solution is not found soon to refill the faculty pipeline, the U.S. is in danger of losing nearly all of its capacity to educate students in mining engineering.

  11. Implementation of an Asynchronous Workshop for STEM Educators Designed to Enhance Professor-Student Rapport

    ERIC Educational Resources Information Center

    Christe, Barbara

    2015-01-01

    Expanding faculty buy-in to retention efforts may be improved through training and opportunities for assessment. Materials created for science, technology, engineering and mathematics (STEM) faculty based on the scholarly literature may dispel the view held by some that student attrition is beneficial to STEM disciplines and may expand an…

  12. "You Need to Have a Street Beat": A Qualitative Study of Faculty Research Needs and Challenges

    ERIC Educational Resources Information Center

    Monroe-Gulick, Amalia; Valentine, Greta; Brooks-Kieffer, Jamene

    2017-01-01

    In the spring of 2015, 14 faculty members in social science or in science, technology, engineering, and mathematics (STEM) spoke with a working group from the University of Kansas (KU) Libraries regarding their research needs and challenges. Their responses highlighted a dynamic research environment in which individual researchers desire to…

  13. We're Not All White Men: Using a Cohort/Cluster Approach to Diversify STEM Faculty Hiring

    ERIC Educational Resources Information Center

    Sgoutas-Emch, Sandra; Baird, Lisa; Myers, Perla; Camacho, Michelle; Lord, Susan

    2016-01-01

    The lack of diversity among higher-education faculty in science, technology, engineering, and mathematics (STEM) disciplines represents a grave structural inequality with serious consequences for students. Fixing it means rethinking the pathway to the professoriate for women and people of color, and avoiding the problems with hiring in STEM fields…

  14. STEM Faculty Experiences with Students with Disabilities at a Land Grant Institution

    ERIC Educational Resources Information Center

    Love, Tyler S.; Kreiser, Nicole; Camargo, Elsa; Grubbs, Michael E.; Kim, Eujin Julia; Burge, Penny L.; Culver, Steven M.

    2015-01-01

    Preparing faculty to meet the needs of the increasing number of students with disabilities is a critical need in higher education, particularly in the STEM (science, technology, engineering, and mathematics) fields. Quality preparation is an emerging problem as the number of higher education students with disabilities is on the rise. In this…

  15. PREFACE: 2nd International Conference on Innovative Materials, Structures and Technologies

    NASA Astrophysics Data System (ADS)

    Ručevskis, Sandris

    2015-11-01

    The 2nd International Conference on Innovative Materials, Structures and Technologies (IMST 2015) took place in Riga, Latvia from 30th September - 2nd October, 2015. The first event of the conference series, dedicated to the 150th anniversary of the Faculty of Civil Engineering of Riga Technical University, was held in 2013. Following the established tradition, the aim of the conference was to promote and discuss the latest results of industrial and academic research carried out in the following engineering fields: analysis and design of advanced structures and buildings; innovative, ecological and energy efficient building materials; maintenance, inspection and monitoring methods; construction technologies; structural management; sustainable and safe transport infrastructure; and geomatics and geotechnics. The conference provided an excellent opportunity for leading researchers, representatives of the industrial community, engineers, managers and students to share the latest achievements, discuss recent advances and highlight the current challenges. IMST 2015 attracted over 120 scientists from 24 countries. After rigorous reviewing, over 80 technical papers were accepted for publication in the conference proceedings. On behalf of the organizing committee I would like to thank all the speakers, authors, session chairs and reviewers for their efficient and timely effort. The 2nd International Conference on Innovative Materials, Structures and Technologies was organized by the Faculty of Civil Engineering of Riga Technical University with the support of the Latvia State Research Programme under the grant agreement "INNOVATIVE MATERIALS AND SMART TECHNOLOGIES FOR ENVIRONMENTAL SAFETY, IMATEH". I would like to express sincere gratitude to Juris Smirnovs, Dean of the Faculty of Civil Engineering, and Andris Chate, manager of the Latvia State Research Programme. Finally, I would like to thank all those who helped to make this event happen. Special thanks go to Diana Bajare, Laura Sele, Liga Radina and Jana Galilejeva for their major contribution to organizing the conference and to the literary editor Tatjana Smirnova and technical editor Daira Erdmane for their hard work on the conference proceedings.

  16. A Decision Analysis Tool for the Source Selection Process

    DTIC Science & Technology

    2006-03-01

    THE SOURCE SELECTION PROCESS THESIS Presented to the Faculty Department of Systems and Engineering Management Graduate School of...Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of...the Requirements for the Degree of Master of Science in Engineering Management John R. Trumm, BS Captain, USAF March 2006

  17. An Interdisciplinary Collaboration between Computer Engineering and Mathematics/Bilingual Education to Develop a Curriculum for Underrepresented Middle School Students

    ERIC Educational Resources Information Center

    Celedón-Pattichis, Sylvia; LópezLeiva, Carlos Alfonso; Pattichis, Marios S.; Llamocca, Daniel

    2013-01-01

    There is a strong need in the United States to increase the number of students from underrepresented groups who pursue careers in Science, Technology, Engineering, and Mathematics. Drawing from sociocultural theory, we present approaches to establishing collaborations between computer engineering and mathematics/bilingual education faculty to…

  18. Current Status of Engineering Education in America

    NASA Astrophysics Data System (ADS)

    Barr, Ronald E.

    Many faculty believe that engineering education in America is at a crossroads and much change is needed. International competition in engineering and the global economy have major potential impact on the engineering workforce of the future. We must find ways to educate U.S. engineers to be competitive and creative contributors in the worldwide arena. Recent national reports are sounding the alarm that the U.S. is losing it leadership in technology and innovation, with consequences for economic prosperity and national security. The report Rising Above the Gathering Storm discusses this dilemma in detail and offers four recommendations to U.S. policymakers. The report Educating the Engineer of 2020 discusses new ways to prepare American engineers for the 21st Century. Furthermore, changes in ABET accreditation, along with new paradigms of teaching and new technology in the classroom, are changing the scholarship of engineering education. We must find ways to promote change in engineering faculty for this new opportunity in engineering educational scholarship. Future engineering students are now in K-12, which is becoming an increasingly diverse population that in the past has not been fully represented in engineering education. Current trends show disaffection for pursuing studies in science and engineering in the youth of our U.S. society. We must find new ways to portray engineering as an exciting and rewarding career, and certainly as an educational platform for professional careers beyond the baccalaureate degree.

  19. Quality Assurance in Engineering Education: Comparison of Accreditation Schemes and ISO 9001.

    ERIC Educational Resources Information Center

    Karapetrovic, Stanislav; Rajamani, Divakar; Willborn, Walter

    1998-01-01

    Outlines quality assurance schemes for distance-education technologies that are based on the ISO 9000 family of international quality-assurance standards. Argues that engineering faculties can establish such systems on the basis of and integrated with accreditation schemes. Contains 34 references. (DDR)

  20. United States Air Force Summer Faculty Research Program (1987). Program Technical Report. Volume 1.

    DTIC Science & Technology

    1987-12-01

    Mechanical Engineering Specialty: Engineering Science Rose-Hulman Institute Assigned: APL 5500 Wabash Avenue - Terre Haute, IN 47803 (812) 877-1511 Dr...Professor/Di rector 1973 Dept. of Humanities Specialty: Literature/Language Rose-Hulman Inst. of Technology Assigned: HRL/LR 5500 Wabash Avenue - Terre...1976 Assistant Professor Specialty: Computer Science Dept. of Computer Science Assigned: AL Rose-Hulman Inst. of Technology 5500 Wabash Ave. Terre Haute

  1. Teaching Engineering Ethics to PhD Students: A Berkeley-Delft Initiative : Commentary on "Ethics Across the Curriculum: Prospects for Broader (and Deeper) Teaching and Learning in Research and Engineering Ethics".

    PubMed

    Taebi, Behnam; Kastenberg, William E

    2016-07-13

    A joint effort by the University of California at Berkeley and Delft University of Technology to develop a graduate engineering ethics course for PhD students encountered two types of challenges: academic and institutional. Academically, long-term collaborative research efforts between engineering and philosophy faculty members might be needed before successful engineering ethics courses can be initiated; the teaching of ethics to engineering graduate students and collaborative research need to go hand-in-hand. Institutionally, both bottom-up approaches at the level of the faculty and as a joint research and teaching effort, and top-down approaches that include recognition by a University's administration and the top level of education management, are needed for successful and sustainable efforts to teach engineering ethics.

  2. National hiring experiments reveal 2:1 faculty preference for women on STEM tenure track.

    PubMed

    Williams, Wendy M; Ceci, Stephen J

    2015-04-28

    National randomized experiments and validation studies were conducted on 873 tenure-track faculty (439 male, 434 female) from biology, engineering, economics, and psychology at 371 universities/colleges from 50 US states and the District of Columbia. In the main experiment, 363 faculty members evaluated narrative summaries describing hypothetical female and male applicants for tenure-track assistant professorships who shared the same lifestyle (e.g., single without children, married with children). Applicants' profiles were systematically varied to disguise identically rated scholarship; profiles were counterbalanced by gender across faculty to enable between-faculty comparisons of hiring preferences for identically qualified women versus men. Results revealed a 2:1 preference for women by faculty of both genders across both math-intensive and non-math-intensive fields, with the single exception of male economists, who showed no gender preference. Results were replicated using weighted analyses to control for national sample characteristics. In follow-up experiments, 144 faculty evaluated competing applicants with differing lifestyles (e.g., divorced mother vs. married father), and 204 faculty compared same-gender candidates with children, but differing in whether they took 1-y-parental leaves in graduate school. Women preferred divorced mothers to married fathers; men preferred mothers who took leaves to mothers who did not. In two validation studies, 35 engineering faculty provided rankings using full curricula vitae instead of narratives, and 127 faculty rated one applicant rather than choosing from a mixed-gender group; the same preference for women was shown by faculty of both genders. These results suggest it is a propitious time for women launching careers in academic science. Messages to the contrary may discourage women from applying for STEM (science, technology, engineering, mathematics) tenure-track assistant professorships.

  3. National hiring experiments reveal 2:1 faculty preference for women on STEM tenure track

    PubMed Central

    Williams, Wendy M.; Ceci, Stephen J.

    2015-01-01

    National randomized experiments and validation studies were conducted on 873 tenure-track faculty (439 male, 434 female) from biology, engineering, economics, and psychology at 371 universities/colleges from 50 US states and the District of Columbia. In the main experiment, 363 faculty members evaluated narrative summaries describing hypothetical female and male applicants for tenure-track assistant professorships who shared the same lifestyle (e.g., single without children, married with children). Applicants' profiles were systematically varied to disguise identically rated scholarship; profiles were counterbalanced by gender across faculty to enable between-faculty comparisons of hiring preferences for identically qualified women versus men. Results revealed a 2:1 preference for women by faculty of both genders across both math-intensive and non–math-intensive fields, with the single exception of male economists, who showed no gender preference. Results were replicated using weighted analyses to control for national sample characteristics. In follow-up experiments, 144 faculty evaluated competing applicants with differing lifestyles (e.g., divorced mother vs. married father), and 204 faculty compared same-gender candidates with children, but differing in whether they took 1-y-parental leaves in graduate school. Women preferred divorced mothers to married fathers; men preferred mothers who took leaves to mothers who did not. In two validation studies, 35 engineering faculty provided rankings using full curricula vitae instead of narratives, and 127 faculty rated one applicant rather than choosing from a mixed-gender group; the same preference for women was shown by faculty of both genders. These results suggest it is a propitious time for women launching careers in academic science. Messages to the contrary may discourage women from applying for STEM (science, technology, engineering, mathematics) tenure-track assistant professorships. PMID:25870272

  4. Faculty as Undergraduate Research Mentors for Students of Color: Taking into Account the Costs

    ERIC Educational Resources Information Center

    Schwartz, Joni

    2012-01-01

    This article is based on the findings of a 2-year study that examined the nature of effective faculty/student undergraduate research (UR) science, technology, engineering, and mathematics (STEM) relationships. The study site was a large urban public college where three fourths of all incoming freshmen receive need-based aid; and although not a…

  5. International Education in the 21st Century: The Importance of Faculty in Developing Study Abroad Research Opportunities

    ERIC Educational Resources Information Center

    Giedt, Todd; Gokcek, Gigi; Ghosh, Jayati

    2015-01-01

    This paper argues for a reimagining of education abroad that fuses short-term programming with some kind of experiential research component led by home campus disciplinary faculty, especially those in the sciences, technology, engineering, and math (STEM) fields, in order to better integrate the study abroad program into the core undergraduate…

  6. Women in Science and Technology: A Global Development Leadership Pilot Scheme

    ERIC Educational Resources Information Center

    Turnbull, Sarah; Howe-Walsh, Liza; Shute, Janis

    2014-01-01

    In 2012 The University of Portsmouth piloted their first Global Development Leadership program for women in Science and Technology faculties. This was seen to be particularly important because of the wider under-representation of women in Science, Technology, Engineering and Maths (STEM) and the need to encourage more women into senior positions…

  7. Parabolic Mirror: Focusing on Science, Technology, Engineering, and Math

    ERIC Educational Resources Information Center

    Smith, Karianne; Hughes, William

    2013-01-01

    In the fall of 2011, Park Forest Middle School (PFMS) students approached the STEM faculty with numerous questions regarding the popular television show Myth Busters, which detailed Greek mathematician, physicist, engineer, and inventor, Archimedes. Two episodes featured attempts to test historical accounts that Archimedes developed a death ray…

  8. Welcoming speech from Dean Faculty of Mechanical Engineering, UMP

    NASA Astrophysics Data System (ADS)

    Taha, Zahari

    2012-09-01

    In the Name of Allah, the Most Beneficent, the Most Merciful. It is with great pleasure that I welcome the participants of the International Conference of Mechanical Engineering Research 2011. The Prophet Muhammad (peace be upon him) said 'Acquire knowledge and impart it to the people.' (Al Tirmidhi). The quest for knowledge has been from the beginning of time but knowledge only becomes valuable when it is disseminated and applied to benefit humankind. It is hoped that ICMER 2011 will be a platform to gather and disseminate the latest knowledge in mechanical engineering. Academicians, Scientist, Researchers and practitioners of mechanical engineering will be able to share and discuss new findings and applications of mechanical engineering. It is envisaged that the intellectual discourse will result in future collaborations between universities, research institutions and industry both locally and internationally. In particular it is expected that focus will be given to issues on environmental and energy sustainability. Researchers in the mechanical engineering faculty at UMP have a keen interest in technology to harness energy from the ocean. Lowering vehicle emissions has been a primary goal of researchers in the mechanical engineering faculty and the automotive engineering centre as well including developing vehicles using alternative fuels such as biodiesel and renewable sources such as solar driven electric vehicles. Finally I would like to congratulate the organizing committee for their tremendous efforts in organizing the conference. As I wrote this in the Holy Land of Makkah, I pray to Allah swt that the conference will be a success. Prof. Dr. Zahari Taha CEng, MIED, FASc Dean, Faculty of Mechanical Engineering Universiti Malaysia Pahang

  9. A United Framework for Solving Multiagent Task Assignment Problems

    DTIC Science & Technology

    2007-12-01

    Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in...Member Date Date Accepted: 170-e<.. 01 DateM.V.THOMAS Dean, Graduate School of E,ngineering and Management Air Force Institute of Technology AFIT...actions in two different problem groups: using shame [37] for autonomous robots navigating a minefield, and a waiter - refiller service environment [94

  10. Development and Deployment of the Purdue TAP Green Enterprise Development Program

    ERIC Educational Resources Information Center

    Rogers, Ethan A.

    2013-01-01

    Purdue University--Mechanical, Engineering, and Technology (MET) faculty and Purdue Technical Assistance Program (TAP) staff partnered with the Society of Manufacturing Engineers (SME) to create a new workforce training program and certificate exam in the field of green manufacturing. This article describes how the body of knowledge for the…

  11. An Educational and Entrepreneurial Ecosystem to Actualize Technology-Based Social Ventures

    ERIC Educational Resources Information Center

    Mehta, Khanjan; Zappe, Sarah; Brannon, Mary Lynn; Zhao, Yu

    2016-01-01

    The Humanitarian Engineering and Social Entrepreneurship (HESE) Program engages students and faculty across Penn State in the rigorous research, design, field-testing, and launch of technology-based social enterprises that address global development challenges. HESE ventures are embedded in a series of five courses that integrate learning,…

  12. Strengthening the Link between Theory and Practice in Teaching Design Engineering: An Empirical Study on a New Approach

    ERIC Educational Resources Information Center

    Tempelman, E.; Pilot, A.

    2011-01-01

    In 2007, the Faculty of Industrial Design Engineering of the Delft University of Technology introduced a new bachelor program. Based on theories of learning and instruction three design principles were used to develop an approach that aims to make it easier for students to bridge the gap between theoretical design engineering courses and practical…

  13. MIT gets good marks for fighting gender discrimination

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2011-05-01

    The Massachusetts Institute of Technology (MIT) has made "significant progress" in increasing the number of female faculty members, with their numbers in science and engineering almost doubling over the last decade.

  14. Integration of a NASA faculty fellowship project within an undergraduate engineering capstone design class

    NASA Astrophysics Data System (ADS)

    Carmen, C.

    2012-11-01

    The United States (US) National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate (ESMD) provides university faculty fellowships that prepare the faculty to implement engineering design class projects that possess the potential to contribute to NASA ESMD objectives. The goal of the ESMD is to develop new capabilities, support technologies and research that will enable sustained and affordable human and robotic space exploration. In order to create a workforce that will have the desire and skills necessary to achieve these goals, the NASA ESMD faculty fellowship program enables university faculty to work on specific projects at a NASA field center and then implement the project within their capstone engineering design class. This allows the senior - or final year - undergraduate engineering design students, the opportunity to develop critical design experience using methods and design tools specified within NASA's Systems Engineering (SE) Handbook. The faculty fellowship projects focus upon four specific areas critical to the future of space exploration: spacecraft, propulsion, lunar and planetary surface systems and ground operations. As the result of a 2010 fellowship, whereby faculty research was conducted at Marshall Space Flight Center (MSFC) in Huntsville, Alabama (AL), senior design students in the Mechanical and Aerospace Engineering (MAE) department at the University of Alabama in Huntsville (UAH) had the opportunity to complete senior design projects that pertained to current work conducted to support ESMD objectives. Specifically, the UAH MAE students utilized X-TOOLSS (eXploration Toolset for the Optimization Of Launch and Space Systems), an Evolutionary Computing (EC) design optimization software, as well as design, analyze, fabricate and test a lunar regolith burrowing device - referred to as the Lunar Wormbot (LW) - that is aimed at exploring and retrieving samples of lunar regolith. These two projects were implemented during the 2010-2011 academic year at UAH and have proven to significantly motivate and enhance the students understanding of the design, development and optimization of space systems. The current paper provides an overview of the NASA ESMD faculty fellowship program, the 2010 fellowship projects, a detailed description of the means of integrating the X-TOOLSS and LW projects within the UAH MAE senior design class, the MAE student design project results, as well as the learning outcome and impact of the ESMD project had upon the engineering students.

  15. [Master course in biomedical engineering].

    PubMed

    Jobbágy, Akos; Benyó, Zoltán; Monos, Emil

    2009-11-22

    The Bologna Declaration aims at harmonizing the European higher education structure. In accordance with the Declaration, biomedical engineering will be offered as a master (MSc) course also in Hungary, from year 2009. Since 1995 biomedical engineering course has been held in cooperation of three universities: Semmelweis University, Budapest Veterinary University, and Budapest University of Technology and Economics. One of the latter's faculties, Faculty of Electrical Engineering and Informatics, has been responsible for the course. Students could start their biomedical engineering studies - usually in parallel with their first degree course - after they collected at least 180 ECTS credits. Consequently, the biomedical engineering course could have been considered as a master course even before the Bologna Declaration. Students had to collect 130 ECTS credits during the six-semester course. This is equivalent to four-semester full-time studies, because during the first three semesters the curriculum required to gain only one third of the usual ECTS credits. The paper gives a survey on the new biomedical engineering master course, briefly summing up also the subjects in the curriculum.

  16. Transforming Tech Ed: The Advanced Technological Education Community Leads in Developing and Implementing Teaching Strategies

    ERIC Educational Resources Information Center

    Patton, Madeline

    2015-01-01

    After years of working in the background to build the capacity of two-year college science, technology, engineering and math (STEM) faculty and the skills of technicians, the Advanced Technological Education (ATE) program is gaining recognition as a source of STEM workforce expertise. The ATE program's effective mentoring of STEM educators and its…

  17. Technology mediator: a new role for the reference librarian?

    PubMed Central

    Howse, David K; Bracke, Paul J; Keim, Samuel M

    2006-01-01

    The Arizona Health Sciences Library has collaborated with clinical faculty to develop a federated search engine that is useful for meeting real-time clinical information needs. This article proposes a technology mediation role for the reference librarian that was inspired by the project, and describes the collaborative model used for developing technology-mediated services for targeted users. PMID:17040566

  18. International Conference of Applied Science and Technology for Infrastructure Engineering

    NASA Astrophysics Data System (ADS)

    Elvina Santoso, Shelvy; Hardianto, Ekky

    2017-11-01

    Preface: International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017. The International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017 has been scheduled and successfully taken place at Swiss-Bell Inn Hotel, Surabaya, Indonesia, on August 5th 2017 organized by Department of Civil Infrastructure Engineering, Faculty of Vocation, Institut Teknologi Sepuluh Nopember (ITS). This annual event aims to create synergies between government, private sectors; employers; practitioners; and academics. This conference has different theme each year and “MATERIAL FOR INFRASTUCTURE ENGINEERING” will be taken for this year’s main theme. In addition, we also provide a platform for various other sub-theme topic including but not limited to Geopolymer Concrete and Materials Technology, Structural Dynamics, Engineering, and Sustainability, Seismic Design and Control of Structural Vibrations, Innovative and Green Buildings, Project Management, Transportation and Highway Engineering, Geotechnical Engineering, Water Engineering and Resources Management, Surveying and Geospatial Engineering, Coastal Engineering, Geophysics, Energy, Electronic and Mechatronic, Industrial Process, and Data Mining. List of Organizers, Journal Editors, Steering Committee, International Scientific Committee, Chairman, Keynote Speakers are available in this pdf.

  19. Development of a Dedicated Speech Work Station.

    DTIC Science & Technology

    1984-12-01

    AD-Ai55 465 DEVELOPMENT OF R DEDICATED SPEECH WORK STTION(U) AIR / FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING W H LIEBER DEC 84...Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University in Partial Fulfillment of the Requirement for...the Degree of Master of Science in Electrical Engineering by William H. Lieber, B.S.E.E. Capt USAF Graduate Electrical Engineering December 1984

  20. The NSF-Supported ADVANCE Initiative at the University of Michigan Aimed at Successful Recruitment and Retention of Women Faculty in Science and Engineering

    NASA Astrophysics Data System (ADS)

    Mukasa, S. B.; Committee, S.

    2004-12-01

    The University of Michigan obtained funding from the NSF ADVANCE Program for 2001-2006 to devise and implement strategies to improve representation and climate for its tenure-track women faculty in the natural sciences departments and the College of Engineering. In addition to increased representation and an improved campus environment for women faculty in science and engineering, the initiative aims to positively affect - through exposure to role models - the expectations and attitudes of the many women and men who are graduate and undergraduate students in these fields who make a sizeable pool from which future faculty are going to be drawn. This initiative was launched with a campus-wide survey to pinpoint problem areas, followed by the appointment of a committee of senior faculty now known as "Science and Technology Recruiting to Improve Diversity and Excellence" or STRIDE to provide information and advice about practices that will maximize the likelihood that well-qualified female and minority candidates for faculty positions will be identified, and, if selected for offers, recruited, retained, and promoted at the University of Michigan. The principal activities of STRIDE have so far included (i) helping in the development of an easy-to-navigate website with information about the ADVANCE project (URL: http://www.umich.edu/~advproj/index.html); (ii) development of a data-based PowerPoint presentation about non-conscious bias and the low numbers of women faculty in science and engineering; (iii) producing a handbook that offers guidelines for improving recruitment of women and minorities; and (iv) giving presentations in a variety of formats and providing advice to department chairs and other recruitment leaders on search committee composition and search practices. More recently, STRIDE has expanded its scope to include facilitation of departmental climate studies and informal discussions with women faculty about the importance of networking and receiving career mentoring.

  1. Photogrammetry and remote sensing education subjects

    NASA Astrophysics Data System (ADS)

    Lazaridou, Maria A.; Karagianni, Aikaterini Ch.

    2017-09-01

    The rapid technologic advances in the scientific areas of photogrammetry and remote sensing require continuous readjustments at the educational programs and their implementation. The teaching teamwork should deal with the challenge to offer the volume of the knowledge without preventing the understanding of principles and methods and also to introduce "new" knowledge (advances, trends) followed by evaluation and presentation of relevant applications. This is of particular importance for a Civil Engineering Faculty as this in Aristotle University of Thessaloniki, as the framework of Photogrammetry and Remote Sensing is closely connected with applications in the four educational Divisions of the Faculty. This paper refers to the above and includes subjects of organizing the courses in photogrammetry and remote sensing in the Civil Engineering Faculty of Aristotle University of Thessaloniki. A scheme of the general curriculum as well the teaching aims and methods are also presented.

  2. National Educators' Workshop: Update 2002 - Standard Experiments in Engineering, Materials Science, and Technology

    NASA Technical Reports Server (NTRS)

    Prior, Edwin J. (Compiler); Jacobs, James A. (Compiler); Chung, W. Richard (Compiler)

    2003-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 2002 held in San Jose, California, October 13-16,2002. This publication provides experiments and demonstrations that can serve as a valuable guide to faculty who are interested in useful activities for their students. The material was the result of years of research aimed at better methods of teaching technical subjects. The experiments developed by faculty, scientists, and engineers throughout the United States and abroad add to the collection from past workshops. They include a blend of experiments on new materials and traditional materials.

  3. Curves and Surfaces

    DTIC Science & Technology

    1990-01-01

    Morten Dohlen Center for Industrial Rcsearch(SI), Box 124 Blindern, 0314 Oslo 3, Norway. Abstract. The combination of refinement and decomposition...of Technology Faculty of Industrial Design Engineering Section Mechanical Engineering Design Jaffalaan 9 NL-2628 BX Delft The Netherlands louwe...OF A GIVEN SET OF POINTS Leonardo Traversoni Dominguez Division de Ciencias Basicas e Ingenieria Universidad Autonoma Metropolitana (Iztapalapa) ap

  4. Faculty Consulting in Natural Sciences and Engineering: Between Formal and Informal Knowledge Transfer

    ERIC Educational Resources Information Center

    Amara, Nabil; Landry, Rejean; Halilem, Norrin

    2013-01-01

    Academic consulting is a form of knowledge and technology transfer largely under-documented and under-studied that raises ethical and resources allocation issues. Based on a survey of 2,590 Canadian researchers in engineering and natural sciences, this paper explores three forms of academic consulting: (1) paid consulting; (2) unpaid consulting…

  5. Assessing the Pedagogical Impact of the VaNTH Engineering Research Center on Faculty and Postdoctoral Professionals

    ERIC Educational Resources Information Center

    Cox, Monica; Cawthorne, James; McNeill, Nathan; Cekic, Osman; Frye, Matthew; Stacer, Melissa

    2011-01-01

    From 1999 to 2007, the Vanderbilt-Northwestern-Texas-Harvard/MIT (VaNTH) Engineering Research Center focused on improving bioengineering education through the applications of learning science, learning technology, and assessment and evaluation within the domain of bioengineering. This paper discusses results from a survey to explore the impact of…

  6. Infusing Technology Driven Design Thinking in Industrial Design Education: A Case Study

    ERIC Educational Resources Information Center

    Mubin, Omar; Novoa, Mauricio; Al Mahmud, Abdullah

    2017-01-01

    Purpose: This paper narrates a case study on design thinking-based education work in an industrial design honours program. Student projects were developed in a multi-disciplinary setting across a Computing and Engineering faculty that allowed promoting technologically and user-driven innovation strategies. Design/methodology/approach: A renewed…

  7. Institute for Scientific and Educational Technology (ISET)-Education, Research and Training Programs in Engineering and Sciences

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N. (Principal Investigator); Massenberg, Samuel E. (Technical Monitor)

    2002-01-01

    The 'Institute for Scientific and Educational Technology' has been established to provide a mechanism through which universities and other research organizations may cooperate with one another and with different government agencies and industrial organizations to further and promote research, education, and training programs in science, engineering, and related fields. This effort has been undertaken consistent with the national vision to 'promote excellence in America s educational system through enhancing and expanding scientific and technological competence.' The specific programs are directed in promoting and achieving excellence for individuals at all levels (elementary and secondary schools, undergraduate and graduate education, and postdoctoral and faculty research). The program is consistent with the existing activities of the Institute for Computational and Applied Mechanics (ICAM) and the American Society for Engineering Education (ASEE) at NASA Langley Research Center (LaRC). The efforts will be directed to embark on other research, education, and training activities in various fields of engineering, scientific, and educational technologies. The specific objectives of the present program may be outlined briefly as follows: 1) Cooperate in the various research, education, and technology programs of the Office of Education at LaRC. 2) Develop procedures for interactions between precollege, college, and graduate students, and between faculty and students at all levels. 3) Direct efforts to increase the participation by women and minorities in educational programs at all levels. 4) Enhance existing activities of ICAM and ASEE in education, research, and training of graduate students and faculty. 5) Invite distinguished scholars as appropriate and consistent with ISET goals to spend their summers and/or sabbaticals at NASA Langley andor ODU and interact with different researchers and graduate students. Perform research and administrative activities as needed to carry out the above mentioned activities. 6) The implementation of various activities of the ISET programs is carried out through cooperative efforts between Old Dominion University (ODU) and the Office of Education at LaRC. At present, major efforts are directed on the following ISET Programs: ICAM Programs, Academic Programs, Educational Research, Outreach Programs, Educational Technology and Cooperative Programs. These programs are described in the following sections.

  8. Experience in the Education of Engineers from Vietnam in the Faculty of Mining and Geoengineering AGH

    NASA Astrophysics Data System (ADS)

    Cała, Marek; Borowski, Marek

    2018-03-01

    The AGH University of Science and Technology collaborates closely with other universities, economic units, governmental and local administrative bodies. International cooperation plays a very important role in the academic research. The AGH University of Science and Technology has signed many collaboration agreements. They aim at multidimensional cooperation in the fields of education and academic research. AGH UST has always focused on collaboration with business and industry. In recent years, the global economy is undergoing massive transformations, what creates new challenges to companies and educational institutions that cater to the needs of industry. The expansion of business enterprises is largely dependent on their employees' expertise, skills and levels of competence. Certified engineers are provided by universities. Therefore, the qualifications of the graduates are determined by the curriculum and teaching methods, as well as the available educational and research facilities. Of equal importance is the qualified academic staff. Human activities in the field of engineering require finding solutions to problems of various nature and magnitude. An engineer's work consists in the design, construction, modification and maintenance of useful devices, processes and systems, using scientific and technical knowledge. In order to design complex engineering solutions, an engineer uses his imagination, experience, analytical skills, logical reasoning and makes conscious use of his knowledge. At the Faculty of Mining and Geoengineering of the AGH University of Science and Technology in Cracow, 15 engineers from Vietnam are studying Mining and Geology at the second-cycle studies (specialization: mine ventilation). The solutions proposed in the field of the engineers' education guarantee that foreign students gain both engineering knowledge and problem-solving skills. Therefore, the study programme was complemented by a series of practical aspects.

  9. Strengthening Environmental Engineering Education in Afghanistan through Cooperating Military Academies

    NASA Astrophysics Data System (ADS)

    Christ, J. A.; Mahbob, M.; Seely, G. E.; Ressler, S. J.

    2007-12-01

    Many developing countries suffer from substandard employment of environmental engineering and science principles, which leads to poor management of natural and cultural resources, increased public health concerns, and limitations on economic investment and growth. Thus, prior to the implementation of well-intentioned programs designed to promote development, methods for sustaining basic needs, which are the focus of most environmental engineering disciplines, must be designed into the social fabric of the developing culture. Education is a promising method for fostering this development across cultures. Recently, the US Air Force Academy (USAFA) partnered with the US Military Academy (USMA) to implement a Civil Engineering Program at the National Military Academy of Afghanistan (NMAA), Kabul, Afghanistan. This work will outline the process followed during course development, deployment, and implementation, paying particular attention to challenges and benefits at each stage in the process. This cooperation may serve as a model for future implementation of science, technology, engineering and mathematics education programs in developing countries. Consistent with US Civil Engineering programs, the NMAA Civil Engineering program introduces students to a broad range of introductory-level civil engineering subjects--environmental, hydraulic, geotechnical, structural, construction, and transportation engineering. Basic environmental engineering and science principles are addressed through the implementation of an introductory environmental engineering course. Course development followed a three-stage process: (1) course development by US faculty at their home institution, (2) imbedding of US Faculty at the NMAA, and (3) implementation of the course within the NMAA Civil Engineering curriculum using adjunct Afghan faculty hired from Kabul University. An existing environmental engineering course taught at USAFA was used as a model for course development. Although this existing course provided the necessary framework for the Afghan course, there were a number of challenges with tailoring the course material to the education level, experience, and needs of the Afghan students and faculty. These challenges were overcome, in part, during the imbedding process of US instructors within the NMAA faculty. On-site transfer of course material and knowledge proved a necessary step in the implementation of the course. The imbedding process enabled US instructors to discuss the course with current NMAA faculty and identify an implementation path that met the needs of the program while appreciating the uniqueness of the Afghan experience. Implementation of the course is on-going with reach-back capability for Afghan faculty to continue the mentoring relationship with their US colleagues. Challenges that arise during course implementation (e.g., wet lab deployments, field trip relevance) will be overcome and used as learning tools for future course offerings. Ultimately, this course will provide future leaders of Afghanistan with the educational tools to make informed environmental management decisions and will serve as a model for similar courses implemented throughout Afghanistan.

  10. In Brief: Suresh slated to head U.S. National Science Foundation

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-06-01

    U.S. president Barack Obama announced on 3 June his intent to nominate Subra Suresh as the next director of the U.S. National Science Foundation (NSF). Arden Bement, who served as NSF director since 2004, resigned earlier this year to lead Purdue University's Global Policy Research Institute, in West Lafayette, Indiana. Suresh is dean of the School of Engineering and the Vannevar Bush Professor of Engineering at Massachusetts Institute of Technology (MIT), Cambridge. Suresh joined MIT in 1993 as the R. P. Simmons Professor of Materials Science and Engineering. Since then, he has held joint faculty appointments in the departments of Mechanical Engineering and Biological Engineering, as well as the Division of Health Sciences and Technology. He previously was head of the university's Department of Materials Science and Engineering. Suresh has a B.S. from the Indian Institute of Technology, Madras, India; an M.S. from Iowa State University of Science and Technology, Ames; and a Sc.D. from MIT.

  11. A Collection of Articles Reprinted from Science & Technology Review on University Relations Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radousky, H; Rennie, G; Henke, A

    2006-08-23

    This month's issue has the following articles: (1) The Power of Partnership--Livermore researchers forge strategic collaborations with colleagues from other University of California campuses to further science and better protect the nation; (2) Collaborative Research Prepares Our Next-Generation Scientists and Engineers--Commentary by Laura R. Gilliom; (3) Next-Generation Scientists and Engineers Tap Lab's Resources--University of California Ph.D. candidates work with Livermore scientists and engineers to conduct fundamental research as part of their theses; (4) The Best and the Brightest Come to Livermore--The Lawrence Fellowship Program attracts the most sought-after postdoctoral researchers to the Laboratory; and (5) Faculty on Sabbatical Find amore » Good Home at Livermore--Faculty members from around the world come to the Laboratory as sabbatical scholars.« less

  12. Survival Analysis of US Air Force Officer Retention Rate

    DTIC Science & Technology

    2017-03-23

    Air Force Institute of Technology AFIT Scholar Theses and Dissertations 3-23-2017 Survival Analysis of US Air Force Officer Retention Rate Courtney N...AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE...to the Faculty Department of Operational Sciences Graduate School of Engineering and Management Air Force Institute of Technology Air University

  13. Quality assurance and accreditation of engineering education in Jordan

    NASA Astrophysics Data System (ADS)

    Aqlan, Faisal; Al-Araidah, Omar; Al-Hawari, Tarek

    2010-06-01

    This paper provides a study of the quality assurance and accreditation in the Jordanian higher education sector and focuses mainly on engineering education. It presents engineering education, accreditation and quality assurance in Jordan and considers the Jordan University of Science and Technology (JUST) for a case study. The study highlights the efforts undertaken by the faculty of engineering at JUST concerning quality assurance and accreditation. Three engineering departments were accorded substantial equivalency status by the Accreditation Board of Engineering and Technology in 2009. Various measures of quality improvement, including curricula development, laboratories improvement, computer facilities, e-learning, and other supporting services are also discussed. Further assessment of the current situation is made through two surveys, targeting engineering instructors and students. Finally, the paper draws conclusions and proposes recommendations to enhance the quality of engineering education at JUST and other Jordanian educational institutions.

  14. AUTHENTIC INVOLVEMENT IN INTERDISCIPLINARY DESIGN, PROCEEDINGS OF CONFERENCE ON ENGINEERING DESIGN EDUCATION (3D, CARNEGIE INSTITUTE OF TECHNOLOGY, JULY 12-13, 1965).

    ERIC Educational Resources Information Center

    BULKELEY, PETER Z.

    REPORTED ARE THE PROCEEDINGS OF THE THIRD CONFERENCE ON ENGINEERING DESIGN EDUCATION. ITS CONCERNS WERE THE CRITICISM AND DISSEMINATION OF RESULTS OF DESIGN LABORATORY WORKSHOPS HELD EARLIER AT EACH OF THE PARTICIPATING INSTITUTIONS. WORKSHOPS WERE CONCERNED WITH FACULTY DEVELOPMENT TO DETERMINE WHETHER TEACHERS, MANY OF WHOM WERE EXPERIENCED IN…

  15. Services and Resources to Engineers: A Case Study of Outreach and Marketing, Assessment, and Future Directions in a Research Library

    ERIC Educational Resources Information Center

    Torrence, Matt

    2015-01-01

    The literature, activities, and resource needs of engineering students and faculty provide insight into a demographic that is often among the early-adopters of new technologies, tools, and methods of sharing information. Despite the often non-bibliographic nature of their research efforts, there are numerous elements of the traditional service…

  16. Ohio Space Grant Funds for Scholarship/Fellowship Students

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Ohio Aerospace Institute (OAT), a consortium of university, industry, and government, was formed to promote collaborative aerospace-related research, graduate education, and technology transfer among the nine Ohio universities with doctoral level engineering programs, NASA Lewis Research Center, Air Force Wright Laboratory, and industry. OAT provides enhanced opportunities for affiliates to utilize federal government research laboratories and facilities at Lewis Research Center (LeRC) and Wright Laboratory. As a component of the graduate education and research programs, students and faculty from the member universities, LeRC engineers and scientists, and visiting investigators from industry, government and non-member universities conduct collaborative research projects using the unique facilities at LeRC, and will participate in collaborative education programs. Faculty from the member universities who hold collateral appointments at OAT, and government and industry experts serving as adjunct faculty, can participate in the supervision of student research.

  17. The Advance Mentoring-For Lunch Series for Women Faculty in STEM at the University of Washington

    NASA Astrophysics Data System (ADS)

    Yen, Joyce W.; Quinn, Kate; Carrigan, Coleen; Litzler, Elizabeth; Riskin, Eve A.

    Given the increasingly smaller number of women in science, technology, engineering, and mathematics (STEM) fields as one progresses through the academic pipeline, it is often very difficult for women in STEM faculty positions to find a community of women and identify women mentors, especially at the upper rungs of the academic ladder. Group mentoring opportunities are one strategy to connect women STEM faculty and generate greater interest and success in academic leadership. In 2003 the University of Washington (UW) ADVANCE program introduced the Mentoring-for-Leadership lunch series to encourage women faculty to consider leadership; expose women faculty to various career paths; and build a community of women faculty in STEM. This paper describes the UW program, the literature that informs the program, and the participants' experiences. This paper also offers recommendations for replicating this program at other campuses.

  18. The 2003 NASA Faculty Fellowship Program Research Reports

    NASA Technical Reports Server (NTRS)

    Nash-Stevenson, S. K.; Karr, G.; Freeman, L. M.; Bland, J. (Editor)

    2004-01-01

    For the 39th consecutive year, the NASA Faculty Fellowship Program (NFFP) was conducted at Marshall Space Flight Center. The program was sponsored by NASA Headquarters, Washington, DC, and operated under contract by The University of Alabama in Huntsville. In addition, promotion and applications are managed by the American Society for Engineering Education (ASEE) and assessment is completed by Universities Space Research Association (USRA). The nominal starting and finishing dates for the 10-week program were May 27 through August 1, 2003. The primary objectives of the NASA Faculty Fellowship Program are to: (1) Increase the quality and quantity of research collaborations between NASA and the academic community that contribute to NASA s research objectives; (2) provide research opportunities for college and university faculty that serve to enrich their knowledge base; (3) involve students in cutting-edge science and engineering challenges related to NASA s strategic enterprises, while providing exposure to the methods and practices of real-world research; (4) enhance faculty pedagogy and facilitate interdisciplinary networking; (5) encourage collaborative research and technology transfer with other Government agencies and the private sector; and (6) establish an effective education and outreach activity to foster greater awareness of this program.

  19. Using Markov Decision Processes with Heterogeneous Queueing Systems to Examine Military MEDEVAC Dispatching Policies

    DTIC Science & Technology

    2017-03-23

    Air Force Institute of Technology AFIT Scholar Theses and Dissertations 3-23-2017 Using Markov Decision Processes with Heterogeneous Queueing Systems... TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in...POLICIES THESIS Presented to the Faculty Department of Operational Sciences Graduate School of Engineering and Management Air Force Institute of Technology

  20. Continuing Education in Engineering Technology Education

    ERIC Educational Resources Information Center

    Hays, Robert

    1977-01-01

    Examines continuing education with respect to its importance, relationship to degree programs, financing, teaching opportunities, and compensation possibilities. The surveyed institutions recognize continuing education as an important and significant faculty activity and also suggest the need to further explore the financial and compensatory…

  1. 75 FR 456 - Agency Information Collection Activities: Proposed Collection, Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ..., technology, engineering, and mathematics (STEM) participation and retention among American Indians, Alaska Natives, and Native Hawaiians through the support of quality STEM teaching through faculty development, STEM degree and curriculum enhancement, and undergraduate research and training opportunities. The...

  2. New ethical challenges in science and technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The published research features some of the nation's leading scientists and engineers, as well as science policy experts, and discusses a wide range of issues and topics. These include the economic and social pressure impacting biomedical research, the impossibility of predicting all the behaviors of increasingly complex, engineered systems, a look at the new federal guidelines for misconduct and new wrinkles on faculty conflicts of interest.

  3. Airborne Network Optimization with Dynamic Network Update

    DTIC Science & Technology

    2015-03-26

    Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University...Member Dr. Barry E. Mullins Member AFIT-ENG-MS-15-M-030 Abstract Modern networks employ congestion and routing management algorithms that can perform...airborne networks. Intelligent agents can make use of Kalman filter predictions to make informed decisions to manage communication in airborne networks. The

  4. Multiple Integrated Navigation Sensors for Improved Occupancy Grid FastSLAM

    DTIC Science & Technology

    2011-03-01

    to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air...autonomous vehicle exploration with applications to search and rescue. To current knowledge , this research presents the first SLAM solution to...solution is a key component of an autonomous vehicle, especially one whose mission involves gaining knowledge of unknown areas. It provides the ability

  5. Recruitment and Retention of Full-Time Engineering Faculty, Fall 1980. Higher Education Panel Report Number 52.

    ERIC Educational Resources Information Center

    Atelsek, Frank J.; Gomberg, Irene L.

    The extent of faculty vacancies in colleges of engineering, the effects of such vacancies upon research and instructional programs, and the nature of the competition between academia and industry in hiring engineering faculty were surveyed. The focus is on permanent full-time faculty positions in the following major engineering fields:…

  6. Integrative Curriculum Development in Nuclear Education and Research Vertical Enhancement Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egarievwe, Stephen U.; Jow, Julius O.; Edwards, Matthew E.

    Using a vertical education enhancement model, a Nuclear Education and Research Vertical Enhancement (NERVE) program was developed. The NERVE program is aimed at developing nuclear engineering education and research to 1) enhance skilled workforce development in disciplines relevant to nuclear power, national security and medical physics, and 2) increase the number of students and faculty from underrepresented groups (women and minorities) in fields related to the nuclear industry. The program uses multi-track training activities that vertically cut across the several education domains: undergraduate degree programs, graduate schools, and post-doctoral training. In this paper, we present the results of an integrativemore » curriculum development in the NERVE program. The curriculum development began with nuclear content infusion into existing science, engineering and technology courses. The second step involved the development of nuclear engineering courses: 1) Introduction to Nuclear Engineering, 2) Nuclear Engineering I, and 2) Nuclear Engineering II. The third step is the establishment of nuclear engineering concentrations in two engineering degree programs: 1) electrical engineering, and 2) mechanical engineering. A major outcome of the NERVE program is a collaborative infrastructure that uses laboratory work, internships at nuclear facilities, on-campus research, and mentoring in collaboration with industry and government partners to provide hands-on training for students. The major activities of the research and education collaborations include: - One-week spring training workshop at Brookhaven National Laboratory: The one-week training and workshop is used to enhance research collaborations and train faculty and students on user facilities/equipment at Brookhaven National Laboratory, and for summer research internships. Participants included students, faculty members at Alabama A and M University and research collaborators at BNL. The activities include 1) tour and introduction to user facilities/equipment at BNL that are used for research in room-temperature semiconductor nuclear detectors, 2) presentations on advances on this project and on wide band-gap semiconductor nuclear detectors in general, and 3) graduate students' research presentations. - Invited speakers and lectures: This brings collaborating research scientist from BNL to give talks and lectures on topics directly related to the project. Attendance includes faculty members, researchers and students throughout the university. - Faculty-students team summer research at BNL: This DOE and National Science Foundation (NSF) program help train students and faculty members in research. Faculty members go on to establish research collaborations with scientists at BNL, develop and submit research proposals to funding agencies, transform research experience at BNL to establish and enhance reach capabilities at home institution, and integrate their research into teaching through class projects and hands-on training for students. The students go on to participate in research work at BNL and at home institution, co-author research papers for conferences and technical journals, and transform their experiences into developing senior and capstone projects. - Grant proposal development: Faculty members in the NERVE program collaborate with BNL scientists to develop proposals, which often help to get external funding needed to expand and sustain the continuity of research activities and supports for student's wages and scholarships (stipends, tuition and fees). - Faculty development and mentoring: The above collaboration activities help faculty professional development. The experiences, grants, joint publications in technical journals, and supervision of student's research, including thesis and dissertation research projects, contribute greatly to faculty development. Senior scientists at BNL and senior faculty members on campus jointly mentor junior faculty members to enhance their professional growth. - Graduate thesis and dissertation research: Brookhaven National Laboratory provides unique opportunities and outstanding research resources for the NERVE program graduate research. Scientists from BNL serve in master's degree thesis and PhD dissertation committees, where they play active roles in the supervision of the research. (authors)« less

  7. Historically Black Colleges and Universities Nuclear Energy Training Program: Summary of program activities, fiscal year 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-04-27

    The Historically Black Colleges and Universities Nuclear Energy Training (HBCU NET) Program, funded by DOE, Office of Nuclear Energy and administered by ORAU, began in February 1984. The program provides support for training, study, research participation, and academic enrichment of students and faculty at designated HBCUs in nuclear science, nuclear engineering, and other nuclear-related technologes and disciplines. The program is composed of undergraduate scholarships, graduate fellowships, student and faculty research participation, and an annual student training institute.

  8. Do Undergraduate Engineering Faculty Include Occupational and Public Health and Safety in the Engineering Curriculum?

    ERIC Educational Resources Information Center

    Farwell, Dianna; And Others

    1995-01-01

    The purpose of this study was to determine whether and, if so, why engineering faculty include occupational and public health and safety in their undergraduate engineering courses. Data were collected from 157 undergraduate engineering faculty from 65 colleges of engineering in the United States. (LZ)

  9. Group Work

    ERIC Educational Resources Information Center

    Wilson, Kristy J.; Brickman, Peggy; Brame, Cynthia J.

    2018-01-01

    Science, technology, engineering, and mathematics faculty are increasingly incorporating both formal and informal group work in their courses. Implementing group work can be improved by an understanding of the extensive body of educational research studies on this topic. This essay describes an online, evidence-based teaching guide published by…

  10. WebGURU: The Web-Based Guide to Research for Undergraduates

    ERIC Educational Resources Information Center

    Mabrouk, Patricia; McIntyre, Ryan; Virrankoski, Milena; Jeliffe, Kirsten

    2007-01-01

    Undergraduate research (UR) is widely promoted by faculty, administrators, institutions of higher learning, government laboratories, private industry, professional associations, and funding agencies as an effective method of training college students pursuing careers in science, technology, engineering, and mathematics (STEM) disciplines at…

  11. Engineering Faculty Attitudes to General Chemistry Courses in Engineering Curricula

    ERIC Educational Resources Information Center

    Garip, Mehmet; Erdil, Erzat; Bilsel, Ayhan

    2006-01-01

    A survey on the attitudes of engineering faculty to chemistry, physics, and mathematics was conducted with the aim of clarifying the attitudes of engineering faculty to chemistry courses in relation to engineering education or curricula and assessing their expectations. The results confirm that on the whole chemistry is perceived as having a…

  12. Faculty's Perceptions of Teaching Ethics and Leadership in Engineering Education

    ERIC Educational Resources Information Center

    AlSagheer, Abdullah; Al-Sagheer, Areej

    2011-01-01

    This paper addressed the faculty's perception of engineering ethics and leadership training. The study looks into the present state of and methodologies for teaching engineering ethics and leadership and aims to determine the faculty's perception of an identified gap in this aspect of engineering education. Engineering education has strong ethics…

  13. Presentation to Ohio State University Dept. of Electrical Engineering ElectroScience Laboratory

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene

    2002-01-01

    Presentation made during visit to The Ohio State University, ElectroScience Laboratory, on November 14, 2002. An overview of NASA and selected technology products from the Digital Communications Technology Branch (5650) for fiscal year 2003 are highlighted. The purpose of the meeting was to exchange technical information on current aeronautics and space communications research and technology being conducted at NASA Glenn Research Center and to promote faculty/student collaborations of mutual interest.

  14. Development of a Screening Tool to Facilitate Technology Transfer of an Innovative Technology to Treat Perchlorate-Contaminated Water

    DTIC Science & Technology

    2008-03-01

    foods such as fruits, vegetables, and beverages (U.S. FDA, 2004). If the U.S. EPA ultimately establishes a drinking water standard for perchlorate...TREAT PERCHLORATE-CONTAMINATED WATER THESIS Daniel A. Craig, Captain, USAF AFIT/GEM/ENV/08-M06 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY...OF AN INNOVATIVE TECHNOLOGY TO TREAT PERCHLORATE- CONTAMINATED WATER THESIS Presented to the Faculty Department of Systems and Engineering

  15. Aerosol in selected laboratories at Faculty of Mechanical Engineering, Opole University of Technology

    NASA Astrophysics Data System (ADS)

    Olszowski, Tomasz

    2017-10-01

    The paper contains the results of a study into mass concentration of the dispersed aerosol fraction with the aerodynamic diameter of up to 2.5 and 10 micrometers. The study was conducted during classes with students participating in them in two laboratories located at Faculty of Mechanical Engineering, Opole University of Technology as well as outdoor outside the building. It was demonstrated that the values of the mass concentration of PM2.5 and PM10 measured in the laboratories differ considerably from the levels measured in the ambient air in the outdoor areas surrounding the faculty building. It was concluded that the diversity of PM2.5/PM10 ratio was greater in the laboratories. Direct correlation was not established between the concentrations of the particular PM fractions in the two investigated environments. It was demonstrated that there is a statistically significant relation between the concentration of PM2.5 and PM10 and the number of people present in the laboratory. The conducted cluster analysis led to the detection of the existence of dominant structures determining air quality parameters. For the analyzed case, endogenic factors are responsible for the aerosanitary condition. The study demonstrated that the evaluation of air quality needs to be performed individually for the specific rooms.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 6: Aerospace knowledge diffusion in the academic community: A report of phase 3 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    Descriptive and analytical data regarding the flow of aerospace-based scientific and technical information (STI) in the academic community are presented. An overview is provided of the Federal Aerospace Knowledge Diffusion Research Project, illustrating a five-year program on aerospace knowledge diffusion. Preliminary results are presented of the project's research concerning the information-seeking habits, practices, and attitudes of U.S. aerospace engineering and science students and faculty. The type and amount of education and training in the use of information sources are examined. The use and importance ascribed to various information products by U.S. aerospace faculty and students including computer and other information technology is assessed. An evaluation of NASA technical reports is presented and it is concluded that NASA technical reports are rated high in terms of quality and comprehensiveness, citing Engineering Index and IAA as the most frequently used materials by faculty and students.

  17. Electromagnetic compatibility of PLC adapters for in-home/domestic networks

    NASA Astrophysics Data System (ADS)

    Potisk, Lukas; Hallon, Jozef; Orgon, Milos; Fujdiak, Radek

    2018-01-01

    The use of programable logic controllers (PLC) technology in electrical networks 230 V causes electromagnetic radiation that interferes with other electrical equipment connected to the network [1-4]. Therefore, this article describes the issues of electromagnetic compatibility (EMC) of new PLC adapters used in IP broadband services in a multi-user environment. The measurements of disturbing electromagnetic field originated in PLC adapters were made in a certified laboratory EMC (laboratory of electromagnetic compatibility) in the Institute of Electrical Engineering at Faculty of Electrical Engineering and Information Technology of the Slovak University of Technology in Bratislava. The measured spectra of the radiated electromagnetic field will be compared with the results obtained when testing older PLC modems [5].

  18. Embedding Multiple Literacies into STEM Curricula

    ERIC Educational Resources Information Center

    Soules, Aline; Nielsen, Sarah; LeDuc, Danika; Inouye, Caron; Singley, Jason; Wildy, Erica; Seitz, Jeff

    2014-01-01

    In fall 2012, an interdisciplinary team of science, English, and library faculty embedded reading, writing, and information literacy strategies in Science, Technology, Engineering, and Mathematics (STEM) curricula as a first step in improving student learning and retention in science courses and aligning them with the Next Generation Science and…

  19. Evaluating Discipline-Based Education Research for Promotion and Tenure

    ERIC Educational Resources Information Center

    Dolan, Erin L.; Elliott, Samantha L.; Henderson, Charles; Curran-Everett, Douglas; St. John, Kristen; Ortiz, Phillip A.

    2018-01-01

    Discipline-based education research (DBER) is an emergent, interdisciplinary field of scholarship aimed at understanding and improving discipline-specific teaching and learning. The number of DBER faculty members in science, technology, engineering, and mathematics (STEM) departments has grown rapidly in recent years. Because the interdisciplinary…

  20. Engaging Faculty for Innovative STEM Bridge Programs

    ERIC Educational Resources Information Center

    Goldfien, Andrea C.; Badway, Norena Norton

    2014-01-01

    Bridge programs, in which underprepared students gain the academic and technical skills necessary for college level courses and entry-level employment, are a promising initiative for expanding access to, and success in, community college education. For career pathways related to science, technology, engineering, or mathematics (STEM), bridge…

  1. English Education for Engineers in the World of Globalization : A Report of an Undergraduate and Graduate English Program with an Emphasis on Writing

    NASA Astrophysics Data System (ADS)

    Shimazu, Nobuko

    In an increasingly globalized world, demand for engineers well versed in English remains strong. As a professor of English in the Faculty of Computer Science and Systems Engineering at the Kyushu Institute of Technology, I have sought with the aid of two associate professors to improve the English program for our engineering students together to help meet that very demand. In order to assist other English teachers in similar situations to improve their own English programs, I would like to report on the ideas and methods presently used in our undergraduate English program, specifically the first-year compulsory and common course with its emphasis on paragraph writing which students from each of the five departments within the Faculty of Computer Science and Systems Engineering are required to take. In addition, I would also like to report my ideas and teaching methods for a graduate research paper writing course. The objective of this course is to teach graduate students how to write presentations for conferences and papers for journals at the international level.

  2. Instructional Strategies in Teaching Engineering at a Distance: Faculty Perspective

    ERIC Educational Resources Information Center

    Ariadurai, S. Anbahan; Manohanthan, Rajalingam

    2008-01-01

    This paper presents research on a convenience sample of the Open University of Sri Lanka's engineering faculty. Examined in this research are faculty's opinions on the instructional strategies they use to teach engineering courses at a distance. First, this paper details the pedagogical strategies used by the faculty, which is then followed by an…

  3. Distributional Monte Carlo Methods for the Boltzmann Equation

    DTIC Science & Technology

    2013-03-01

    Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command...Interim Dean, Graduate School of Engineering and Management 8 Mar 2013 Date AFIT-ENC-DS-13-M-06 Abstract Stochastic particle methods (SPMs) for the...applied to the well-studied Bobylev-Krook-Wu solution as a numerical test case. Accuracy and variance of the solutions are examined as functions of various

  4. COACh Career Development Workshops for Science and Engineering Faculty: Views of the Career Impact on Women Chemists and Chemical Engineers

    ERIC Educational Resources Information Center

    Greene, Jessica; Stockard, Jean; Lewis, Priscilla; Richmond, Geraldine

    2010-01-01

    For the field of chemistry to play a leading role in the science and technology sector of the U.S. economy it must recruit and retain the best and brightest talent from all segments of our society. Currently in the United States there is a significant disparity in the recruitment and retention of women relative to their male counterparts,…

  5. A Higher-Order Trapezoidal Vector Vortex Panel for Subsonic Flow.

    DTIC Science & Technology

    1980-12-01

    Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University In Partial Fulfillment of the...Requirements for the Degree of Master of Science by Ronald E. Luther, B.S. Capt USAF Graduate Aeronautical Engineering December 1980 Approved for public... methd also permits analysis of cranked leading and/or trailiig edges. The root edge, tip edge and all chordwise boundaries are parallel to the x-axis

  6. Salary-Trend Studies of Faculty of the Years 1988-89 and 1991-92 in the Following Academic Disciplines/Major Fields: Accounting; Agribusiness and Agriproduction; Anthropology; Area and Ethnic Studies; Business Administration and Management; Business and Management; Business Economics; Chemistry; Communication Technologies; Communications; Computer and Information Sciences; Dramatic Arts; Drawing; Education; and Engineering.

    ERIC Educational Resources Information Center

    Howe, Richard D.; And Others

    This volume provides comparative data for faculty salaries in public and private colleges, based on an annual survey of over 600 colleges and universities. Data cover the following disciplines: Accounting, Agribusiness and Agriproduction, Anthropology, Area and Ethnic Studies, Business Administration and Management, Business and Management,…

  7. The 1993 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N. (Compiler); Young, Deborah B. (Compiler)

    1993-01-01

    Since 1964, the National Aeronautics and Space Administration has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate and exchange ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objectives of the NASA center.

  8. 1994 NASA-HU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Spencer, John H. (Compiler); Young, Deborah B. (Compiler)

    1994-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; (4) To contribute to the research objectives of the NASA center.

  9. The Faculty Self-Reported Assessment Survey (FRAS): Differentiating Faculty Knowledge and Experience in Assessment

    PubMed Central

    Hanauer, David I.; Bauerle, Cynthia

    2015-01-01

    Science, technology, engineering, and mathematics education reform efforts have called for widespread adoption of evidence-based teaching in which faculty members attend to student outcomes through assessment practice. Awareness about the importance of assessment has illuminated the need to understand what faculty members know and how they engage with assessment knowledge and practice. The Faculty Self-Reported Assessment Survey (FRAS) is a new instrument for evaluating science faculty assessment knowledge and experience. Instrument validation was composed of two distinct studies: an empirical evaluation of the psychometric properties of the FRAS and a comparative known-groups validation to explore the ability of the FRAS to differentiate levels of faculty assessment experience. The FRAS was found to be highly reliable (α = 0.96). The dimensionality of the instrument enabled distinction of assessment knowledge into categories of program design, instrumentation, and validation. In the known-groups validation, the FRAS distinguished between faculty groups with differing levels of assessment experience. Faculty members with formal assessment experience self-reported higher levels of familiarity with assessment terms, higher frequencies of assessment activity, increased confidence in conducting assessment, and more positive attitudes toward assessment than faculty members who were novices in assessment. These results suggest that the FRAS can reliably and validly differentiate levels of expertise in faculty knowledge of assessment. PMID:25976653

  10. STEM Faculty as Learners in Pedagogical Reform and the Role of Research Articles as Professional Development Opportunities

    PubMed Central

    Mulnix, Amy B.

    2016-01-01

    Discipline-based education research (DBER) publications are opportunities for professional development around science, technology, engineering, and mathematics (STEM) education reform. Learning theory tells us these publications could be more impactful if authors, reviewers, and editors pay greater attention to linking principles and practice. This approach, which considers faculty as learners and STEM education reform as content, has the potential to better support faculty members because it promotes a deeper understanding of the reasons why a pedagogical change is effective. This depth of understanding is necessary for faculty members to successfully transfer new knowledge to their own contexts. A challenge ahead for the emergent learning sciences is to better integrate findings from across sister disciplines; DBER reports can take a step in that direction while improving their usefulness for instructors. PMID:27810872

  11. THE FLAG: A Web Resource of Innovative Assessment Tools for Faculty in College Science, Mathematics, Engineering, and Technology

    NASA Astrophysics Data System (ADS)

    Zeilik, M.; Mathieu, R. D.; National InstituteScience Education; College Level-One Team

    2000-12-01

    Even the most dedicated college faculty often discover that their students fail to learn what was taught in their courses and that much of what students do learn is quickly forgotten after the final exam. To help college faculty improve student learning in college Science, Mathematics, Engineering and Technology (SMET), the College Level - One Team of the National Institute for Science Education has created the "FLAG" a Field-tested Learning Assessment Guide for SMET faculty. Developed with funding from the National Science Foundation, the FLAG presents in guidebook format a diverse and robust collection of field-tested classroom assessment techniques (CATs), with supporting information on how to apply them in the classroom. Faculty can download the tools and techniques from the website, which also provides a goals clarifier, an assessment primer, a searchable database, and links to additional resources. The CATs and tools have been reviewed by an expert editorial board and the NISE team. These assessment strategies can help faculty improve the learning environments in their SMET courses especially the crucial introductory courses that most strongly shape students' college learning experiences. In addition, the FLAG includes the web-based Student Assessment of Learning Gains. The SALG offers a convenient way to evaluate the impact of your courses on students. It is based on findings that students' estimates of what they gained are more reliable and informative than their observations of what they liked about the course or teacher. It offers accurate feedback on how well the different aspects of teaching helped the students to learn. Students complete the SALG online after a generic template has been modified to fit the learning objectives and activities of your course. The results are presented to the teacher as summary statistics automatically. The FLAG can be found at the NISE "Innovations in SMET Education" website at www.wcer.wisc.edu/nise/cl1

  12. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2013-09-30

    underwater acoustic communication technologies for autonomous distributed underwater networks, through innovative signal processing, coding, and navigation...in real enviroments , an offshore testbed has been developed to conduct field experimetns. The testbed consists of four nodes and has been deployed...Leadership by the Connecticut Technology Council. Dr. Zhaohui Wang joined the faculty of the Department of Electrical and Computer Engineering at

  13. Breaking the Cycle: Future Faculty Begin Teaching with Learner-Centered Strategies after Professional Development

    ERIC Educational Resources Information Center

    Ebert-May, Diane; Derting, Terry L.; Henkel, Timothy P.; Maher, Jessica Middlemis; Momsen, Jennifer L.; Arnold, Bryan; Passmore, Heather A.

    2015-01-01

    The availability of reliable evidence for teaching practices after professional development is limited across science, technology, engineering, and mathematics disciplines, making the identification of professional development "best practices" and effective models for change difficult. We aimed to determine the extent to which…

  14. MET Senior Projects at an Urban University.

    ERIC Educational Resources Information Center

    Neff, Gregory; And Others

    A report describes the Purdue University Calumet Mechanical Engineering Technology (MET) program, especially the approaches used to enhance industrial involvement and take advantage of the urban setting to find real-life senior project problems. The outreach program, used by faculty to find student senior project material, is described along with…

  15. Undergraduate Research at Two-Year Community Colleges

    ERIC Educational Resources Information Center

    Schuster, Matthew

    2018-01-01

    There is a growing movement in academia that focuses on increased efforts at undergraduate research. Historically, this movement has been driven by faculty in the science, technology, engineering, and mathematics (STEM) fields and has only recently become a focus for social sciences in general and political science in particular. For students to…

  16. ADVANCing the Agenda for Gender Equity

    ERIC Educational Resources Information Center

    Laursen, Sandra L.; Austin, Ann E.; Soto, Melissa; Martinez, Dalinda

    2015-01-01

    In recent years, women's representation in the science, technology, engineering, and mathematics (STEM) fields has grown at the undergraduate level, with STEM degrees earned by US women reaching parity in some fields and making notable progress in others. Yet the faculty with whom these undergraduates interact in classes and labs are much less…

  17. Recycling Technology: Can It Be Taught?

    ERIC Educational Resources Information Center

    Clum, James A.; Loper, Carl R., Jr.

    This paper describes the content of a seminar-type engineering course dealing with materials reutilization (recycling). The course, consisting of lecture and discussion by various faculty and outside experts as well as student presentations of research papers on recycling topics, is intended to investigate current areas in which recycling of…

  18. Using Implicit Bias Training to Improve Attitudes toward Women in STEM

    ERIC Educational Resources Information Center

    Jackson, Sarah M.; Hillard, Amy L.; Schneider, Tamera R.

    2014-01-01

    Implicit biases can foster negative attitudes and lead to damaging stereotypical behaviors. Stereotypes can negatively affect the education, hiring, promotion, and retention of women in science, technology, engineering, and mathematics (STEM). This study evaluated the impact of diversity training on university faculty (N=234) by assessing changes…

  19. Industry and the Academy: An Uncertain Alliance

    ERIC Educational Resources Information Center

    Drake, R. M., Jr.

    1974-01-01

    Discusses the divergence in interest and philosophy between the academy and industry, beginning with World War II. Suggests that engineering faculties and industry take measures to restore their rapport which is necessary for the technological society to ensure a success in man's quest for future well being and progress. (CC)

  20. Web-Based Evaluation System for a Problem-Based Laboratory

    ERIC Educational Resources Information Center

    Azli, Naziha Ahmadi; Othman, Mohd Shahizan

    2008-01-01

    The Faculty of Electrical Engineering, University Technology Malaysia is currently moving towards a Problem-Based Laboratory implementation rather than the conventional instructional-based laboratory for final year students. The laboratory has commenced session with about 500 students' registration in the 2007/08/1. The Problem-Based Laboratory…

  1. A Reflection on a Collaborative Process of Courseware Development.

    ERIC Educational Resources Information Center

    Joyes, Gordon; Scott, Rachael

    2000-01-01

    Discusses the collaborative development of technology-based teaching materials for use within civil and structural engineering departments in higher education. Describes a project funded by the European Union called SteelCAL that is based on a partnership between the European steel industry and universities to involve faculty in curriculum…

  2. 75 FR 21113 - Bureau of Educational and Cultural Affairs (ECA) Request for Grant Proposals: Community College...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... business management and tourism and hospitality management. Faculty participants will be required to have... involved in the social and cultural life of their local U.S. communities: For example, making presentations...; Allied Health Fields, including Nursing; Applied Engineering; Information Technology; and Media. In...

  3. Tempered Radicals: Faculty Leadership in Interdisciplinary Curricular Change Authors

    ERIC Educational Resources Information Center

    Goldfien, Andrea C.; Badway, Norena Norton

    2015-01-01

    Scientists, researchers, and educators have promoted the improvement of science, technology, engineering and mathematics (STEM) education by incorporating an interdisciplinary approach to the study of STEM; but current research offers little guidance about how this change can occur. This study expands on a new body of research examining faculty…

  4. Environmental Engineering in the Slovak Republic

    NASA Astrophysics Data System (ADS)

    Stevulova, N.; Balintova, M.; Zelenakova, M.; Estokova, A.; Vilcekova, S.

    2017-10-01

    The fundamental role of environmental engineering is to protect human population and environment from impacts of human activities and to ensure environmental quality. It relates to achieving the environmental sustainability goals through advanced technologies for pollutants removing from air, water and soil in order to minimize risk in ecosystem and ensuring favourable conditions for life of humans and organisms. Nowadays, a critical analysis of the environment quality and innovative approaches to problem solving in order to achieve sustainability in environmental engineering, are necessary. This article presents an overview of the quality of the environment and progress in environmental engineering in Slovakia and gives information regarding the environmental engineering education at Faculty of Civil Engineering at Technical University in Kosice.

  5. Negative Impact of Employment on Engineering Student Time Management, Time to Degree, and Retention: Faculty, Administrator, and Staff Perspectives

    ERIC Educational Resources Information Center

    Tyson, Will

    2012-01-01

    Interviews with faculty, administrators, staff, and students at four engineering programs reveal the role of undergraduate student employment on retention and timely degree completion among engineering students. Dueling narratives reveal how student approaches to earning an engineering degree differ greatly from faculty, administrator, and staff…

  6. Engineering a Place for Women: A Study of How Departmental Climate Influences the Career Satisfaction of Female Mechanical Engineering Faculty Members

    ERIC Educational Resources Information Center

    Young, Monica J.

    2012-01-01

    The purpose of this mixed-methods study was to better understand how female mechanical engineering faculty members' career experiences in academia affect their satisfaction. Specifically, the research considered differences in satisfaction reported by female and male mechanical engineering faculty members in terms of: (a) departmental…

  7. Current status of nuclear engineering education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palladino, N.J.

    1975-09-01

    The 65 colleges and universities offering undergraduate degrees in nuclear engineering and the 15 schools offering strong nuclear engineering options are, in general, doing a good job to meet the current spectrum of job opportunities. But, nuclear engineering programs are not producing enough graduates to meet growing demands. They currently receive little aid and support from their customers --industry and government--in the form of scholarships, grants, faculty research support, student thesis and project support, or student summer jobs. There is not enough interaction between industry and universities. Most nuclear engineering programs are geared too closely to the technology of themore » present family of reactors and too little to the future breeder reactors and controlled thermonuclear reactors. In addition, nuclear engineering programs attract too few women and members of minority ethnic groups. Further study of the reasons for this fact is needed so that effective corrective action can be taken. Faculty in nuclear engineering programs should assume greater initiative to provide attractive and objective nuclear energy electives for technical and nontechnical students in other disciplines to improve their technical understanding of the safety and environmental issues involved. More aggressive and persistent efforts must be made by nuclear engineering schools to obtain industry support and involvement in their programs. (auth)« less

  8. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1992

    NASA Technical Reports Server (NTRS)

    Spencer, John H. (Compiler)

    1992-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives of the program are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA center.

  9. ENGage: The use of space and pixel art for increasing primary school children's interest in science, technology, engineering and mathematics

    NASA Astrophysics Data System (ADS)

    Roberts, Simon J.

    2014-01-01

    The Faculty of Engineering at The University of Nottingham, UK, has developed interdisciplinary, hands-on workshops for primary schools that introduce space technology, its relevance to everyday life and the importance of science, technology, engineering and maths. The workshop activities for 7-11 year olds highlight the roles that space and satellite technology play in observing and monitoring the Earth's biosphere as well as being vital to communications in the modern digital world. The programme also provides links to 'how science works', the environment and citizenship and uses pixel art through the medium of digital photography to demonstrate the importance of maths in a novel and unconventional manner. The interactive programme of activities provides learners with an opportunity to meet 'real' scientists and engineers, with one of the key messages from the day being that anyone can become involved in science and engineering whatever their ability or subject of interest. The methodology introduces the role of scientists and engineers using space technology themes, but it could easily be adapted for use with any inspirational topic. Analysis of learners' perceptions of science, technology, engineering and maths before and after participating in ENGage showed very positive and significant changes in their attitudes to these subjects and an increase in the number of children thinking they would be interested and capable in pursuing a career in science and engineering. This paper provides an overview of the activities, the methodology, the evaluation process and results.

  10. Preliminary Design and Implementation of a Method for Validating Evolving ADA Compilers.

    DTIC Science & Technology

    1983-03-01

    Goodenough, John B. "The Ada Compiler Validation Capability," Computer. 14 (6): 57-64 (June 1981). 7. Pressman, Roger S. Software Engineering : A Practi...COMPILERS THESIS Presented to the faculty of the School of Engineering of the Air Force Institute of Technology Air University in Partial Fulfillment...support and encouragement they have given me. ii Contents Page 1. INTRODUCTION 1 1.1 Background -- DoDls Software Problem 1 1.1.1 The proliferation of

  11. 16-element photodiode array for the angular microdeflection detector and for stabilization of a laser radiation direction

    NASA Astrophysics Data System (ADS)

    Wegrzecki, Maciej; Piotrowski, Tadeusz; Bar, Jan; Dobrowolski, Rafał; Klimov, Andrii; Klos, Helena; Marchewka, Michał; Nieprzecki, Marek; Panas, Andrzej; Prokaryn, Piotr; Seredyński, Bartłomiej; Sierakowski, Andrzej; Słysz, Wojciech; Szmigiel, Dariusz; Zaborowski, Michal

    2016-12-01

    In this paper, the design and technology of two types of 16-element photodiode arrays is described. The arrays were developed by the ITE and are to be used in detection of microdeflection of laser radiation at the Institute of Metrology and Biomedical Engineering in the Faculty of Mechatronics of Warsaw University of Technology. The electrical and photoelectrical parameters of the arrays are presented.

  12. Designing and Evaluating a Climate Change Course for Upper-Division Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Samson, P. J.

    2002-12-01

    AOSS 300, GLOBAL ENVIRONMENTAL IMPACT OF TECHNOLOGICAL CHANGE, was created to provide a mechanism for scientific exploration of the unexpected global environmental side effects of technological innovation with emphasis on issues of the atmosphere and oceans. The course is specifically designed to contribute to the desired Accreditation Board for Engineering and Technology (ABET) outcomes that engineering and science graduates possess "the broad education necessary to understand the impact of solutions in a global and societal context." To facilitate this new course a new suite of coupled Flash/PHP/MySQL tools have been created that allow personalization of the students' learning space and interaction with faculty. Using these tools students are challenged to actively participate in the construction of knowledge through development of on-line portfolios that influence course content. This paper reports on lessons learned in the first semester that will guide further course development.

  13. Now hiring! Empirically testing a three-step intervention to increase faculty gender diversity in STEM

    USGS Publications Warehouse

    Smith, Jessi L.; Handley, Ian M.; Zale, Alexander V.; Rushing, Sara; Potvin, Martha A.

    2015-01-01

    Workforce homogeneity limits creativity, discovery, and job satisfaction; nonetheless, the vast majority of university faculty in science, technology, engineering, and mathematics (STEM) fields are men. We conducted a randomized and controlled three-step faculty search intervention based in self-determination theory aimed at increasing the number of women faculty in STEM at one US university where increasing diversity had historically proved elusive. Results show that the numbers of women candidates considered for and offered tenure-track positions were significantly higher in the intervention groups compared with those in controls. Searches in the intervention were 6.3 times more likely to make an offer to a woman candidate, and women who were made an offer were 5.8 times more likely to accept the offer from an intervention search. Although the focus was on increasing women faculty within STEM, the intervention can be adapted to other scientific and academic communities to advance diversity along any dimension.

  14. Now Hiring! Empirically Testing a Three-Step Intervention to Increase Faculty Gender Diversity in STEM

    PubMed Central

    Smith, Jessi L.; Handley, Ian M.; Zale, Alexander V.; Rushing, Sara; Potvin, Martha A.

    2015-01-01

    Workforce homogeneity limits creativity, discovery, and job satisfaction; nonetheless, the vast majority of university faculty in science, technology, engineering, and mathematics (STEM) fields are men. We conducted a randomized and controlled three-step faculty search intervention based in self-determination theory aimed at increasing the number of women faculty in STEM at one US university where increasing diversity had historically proved elusive. Results show that the numbers of women candidates considered for and offered tenure-track positions were significantly higher in the intervention groups compared with those in controls. Searches in the intervention were 6.3 times more likely to make an offer to a woman candidate, and women who were made an offer were 5.8 times more likely to accept the offer from an intervention search. Although the focus was on increasing women faculty within STEM, the intervention can be adapted to other scientific and academic communities to advance diversity along any dimension. PMID:26955075

  15. Iowa community college Science, Engineering and Mathematics (SEM) faculty: Demographics and job satisfaction

    NASA Astrophysics Data System (ADS)

    Rogotzke, Kathy

    Community college faculty members play an increasingly important role in the educational system in the United States. However, over the past decade, concerns have arisen, especially in several high demand fields of science, technology, engineering and mathematics (STEM), that a shortage of qualified faculty in these fields exists. Furthermore, the average age of community college faculty is increasing, which creates added concern of an increased shortage of qualified faculty due to a potentially large number of faculty retiring. To help further understand the current population of community college faculty, as well as their training needs and their satisfaction with their jobs, data needs to be collected from them and examined. Currently, several national surveys are given to faculty at institutions of higher education, most notably the Higher Education Research Institute Faculty Survey, the National Study of Postsecondary Faculty, and the Community College Faculty Survey of Student Engagement. Of these surveys the Community College Faculty Survey of Student Engagement is the only survey focused solely on community college faculty. This creates a problem because community college faculty members differ from faculty at 4-year institutions in several significant ways. First, qualifications for hiring community college faculty are different at 4-year colleges or universities. Whereas universities and colleges typically require their faculty to have a Ph.D., community colleges require their arts and science faculty to have a only master's degree and their career faculty to have experience and the appropriate training and certification in their field with only a bachelor's degree. The work duties and expectations for community college faculty are also different at 4-year colleges or universities. Community college faculty typically teach 14 to 19 credit hours a semester and do little, if any research, whereas faculty at 4-year colleges typically teach 9 to 12 credit hours a semester and are expected to conduct research and publish their findings. In addition, community colleges often have what is referred to as an "open door" policy of admission meaning that students are not required to have a particular score on a college placement test, such as the ACT or SAT, nor are they required to have a specified high school grade point average or rank. Most 4-year colleges and universities require a minimum score on a college placement test in addition to a minimum high school grade point average or rank. Because of these differing entrance requirements, or lack thereof, community colleges often have a higher percentage of students needing remedial or developmental coursework. This dissertation reports on data collected from a survey administered to full-time faculty at all 15 community colleges in Iowa. The survey was administered using Qualtrics software with assistance from the Office of Community College Research and Policy at Iowa State University. The results of the study were used to further examine who community college science, engineering and mathematics (SEM) faculty are in terms of their demographics and background, along with investigating factors from the survey that contribute to their overall job satisfaction. Multiple regression analysis on these variables along with gender and age examined different models for predicting overall job satisfaction.

  16. Engineers as Information Processors: A Survey of US Aerospace Engineering Faculty and Students.

    ERIC Educational Resources Information Center

    Holland, Maurita Peterson; And Others

    1991-01-01

    Reports on survey results from 275 faculty and 640 students, predominantly in the aerospace engineering field, concerning their behaviors about the appropriation and dissemination of information. Indicates that, as information processors, aerospace faculty and students are "information naive." Raises questions about the efficacy of…

  17. Community Chairs as a Catalyst for Campus Collaborations in STEM

    ERIC Educational Resources Information Center

    Grandgenett, Neal; Edick, Nancy; Boocker, Dave; Ali, Hesham; Hodge, Angie; Dorn, Brian; Cutucache, Christine

    2015-01-01

    Strong collaborative partnerships are critical to the ongoing success of any urban or metropolitan university in its efforts to build the science, technology, engineering, and mathematics (STEM) career pathways so critical to our nation. At the University of Nebraska at Omaha, we have established a faculty leadership structure of "community…

  18. 78 FR 65715 - Request for Comments on the Program Solicitation for the Advanced Technological Education Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... academic institutions and industry to promote improvement in the education of science and engineering...; professional development of college faculty and secondary school teachers; career pathways to two-year colleges from secondary schools and from two-year colleges to four-year institutions; career pathways that lead...

  19. Bridging STEM Professions for McNair Scholars through Faculty Mentoring and Academic Preparation

    ERIC Educational Resources Information Center

    Fifolt, Matthew; Engler, Jeffrey; Abbott, Gypsy

    2014-01-01

    In 2007 and 2010, the National Research Council reported that the United States was not producing enough graduates in the STEM (Science, Technology, Engineering, and Mathematics) fields to meet the demands of an increasingly competitive global economy. Despite recent challenges to these findings, one thing remains clear: Underrepresented…

  20. Performance-Based Assessment of Graduate Student Research Skills: Timing, Trajectory, and Potential Thresholds

    ERIC Educational Resources Information Center

    Timmerman, Briana Crotwell; Feldon, David; Maher, Michelle; Strickland, Denise; Gilmore, Joanna

    2013-01-01

    The development of research skills and scientific reasoning underpins the mission of graduate education in science, technology, engineering and mathematics (STEM) fields, yet our understanding of this process is mainly drawn from self-report and faculty survey data. In this study, we empirically investigate the pattern of research skill…

  1. Bringing Environmental Sustainability to Undergraduate Engineering Education: Experiences in an Inter-Disciplinary Course

    ERIC Educational Resources Information Center

    Aurandt, Jennifer; Borchers, Andrew Scott; Lynch-Caris, Terri; El-Sayed, Jacqueline; Hoff, Craig

    2012-01-01

    This paper chronicles the development of an interdisciplinary course in environmentally conscious design at Kettering University, a technologically focused Midwestern university. Funded by the National Science Foundation, a team of six faculty members at Kettering University adapted work done by Ford Motor Company to educate undergraduate STEM…

  2. The Role of Faculty in Fostering STEM Transfer Student Success

    ERIC Educational Resources Information Center

    Wetzel, Laura Reiser; Debure, Kelly R.

    2018-01-01

    In 2012, Eckerd College received a grant from the National Science Foundation to create a scholarship program for transfer students majoring in one of the science, technology, engineering, and mathematics (STEM) majors offered at our institution. This article outlines the motivations for creating the scholarship program, the process used in the…

  3. A Mixed-Methods Investigation of Clicker Implementation Styles in STEM

    ERIC Educational Resources Information Center

    Solomon, Erin D.; Repice, Michelle D.; Mutambuki, Jacinta M.; Leonard, Denise A.; Cohen, Cheryl A.; Luo, Jia; Frey, Regina F.

    2018-01-01

    Active learning with clickers is a common approach in high-enrollment, lecture-based courses in science, technology, engineering, and mathematics. In this study, we describe the procedures that faculty at one institution used when implementing clicker-based active learning, and how they situated these activities in their class sessions. Using a…

  4. The Relationship between Self-Efficacy and Advanced STEM Coursework in Female Secondary Students

    ERIC Educational Resources Information Center

    Bernasconi, Bethany

    2017-01-01

    Despite years of attention, gender inequity persists in science, technology, engineering, and mathematics (STEM). Female STEM faculty, positive social interactions, and enrollment in advanced STEM secondary coursework are supportive factors in promoting female students' persistence in STEM fields. To address the gap in understanding these factors,…

  5. In India, Economic Success Leaves Universities Desperate for Professors

    ERIC Educational Resources Information Center

    Neelakantan, Shailaja

    2007-01-01

    India's universities are suffering from an acute faculty shortage, with some institutions unable to fill as many as 35 percent of their positions. From the country's elite Indian Institutes of Technology to regional engineering colleges, the dearth of professors has led to overcrowded classrooms, student discontent, and deep concerns about how…

  6. Colorblind and Multicultural Ideologies Are Associated with Faculty Adoption of Inclusive Teaching Practices

    ERIC Educational Resources Information Center

    Aragón, Oriana R.; Dovidio, John F.; Graham, Mark J.

    2017-01-01

    Professional workshops aimed at increasing student diversity typically urge college-level science, technology, engineering, and math (STEM) educators to implement inclusive teaching practices. A model of the process by which educators adopt such practices, and the relationship between adoption and 2 ideologies of diversity is tested here. One…

  7. Towards the Successful Integration of Design Thinking in Industrial Design Education

    ERIC Educational Resources Information Center

    Mubin, Omar; Novoa, Mauricio; Al Mahmud, Abdullah

    2016-01-01

    This paper narrates a case study on design thinking based education work in an industrial design honours program. Student projects were developed in a multi-disciplinary setting across a Computing and Engineering faculty that allowed promoting technologically and user driven innovation strategies. A renewed culture and environment for Industrial…

  8. Integration of Foreign-Born Faculty in Academia: Foreignness as an Asset

    ERIC Educational Resources Information Center

    Gahungu, Athanase

    2011-01-01

    Each year, the U.S. invites thousands of foreign-born and foreign-educated professionals as immigrants and on temporary visas, including academicians. In some academic programs such as science, technology, engineering and mathematics, these foreign-born professionals represent an imposing mass, while in others, they are relatively invisible. This…

  9. Salary, Space, and Satisfaction: An Examination of Gender Differences in the Sciences

    ERIC Educational Resources Information Center

    Darrah, Marjorie; Hougland, James; Prince, Barbara

    2014-01-01

    How can universities be more successful in recruiting and promoting the professional success of women in their science-related departments? This study examines selected pieces of the puzzle by examining actual salary and space allocations to 282 faculty members in the science, technology, engineering and mathematics (STEM) and the social and…

  10. Advancing STEM Undergraduate Learning: Preparing the Nation's Future Faculty

    ERIC Educational Resources Information Center

    Pfund, Christine; Mathieu, Robert; Austin, Ann; Connolly, Mark; Manske, Brian; Moore, Katie

    2012-01-01

    Graduate students and post-doctoral scholars at research universities will shape the future of undergraduate education in the natural and social sciences, technology, engineering, and mathematics (the STEM disciplines) in the United States. In 2009 alone, more than 41,000 doctorates were awarded in STEM fields, and if employment trends hold,…

  11. STEM Faculty as Learners in Pedagogical Reform and the Role of Research Articles as Professional Development Opportunities

    ERIC Educational Resources Information Center

    Mulnix, Amy B.

    2016-01-01

    Discipline-based education research (DBER) publications are opportunities for professional development around science, technology, engineering, and mathematics (STEM) education reform. Learning theory tells us these publications could be more impactful if authors, reviewers, and editors pay greater attention to linking principles and practice.…

  12. Aligning Practice to Policies: Changing the Culture to Recognize and Reward Teaching at Research Universities

    ERIC Educational Resources Information Center

    Dennin, Michael; Schultz, Zachary D.; Feig, Andrew; Finkelstein, Noah; Greenhoot, Andrea Follmer; Hildreth, Michael; Leibovich, Adam K.; Martin, James D.; Moldwin, Mark B.; O'Dowd, Diane K.; Posey, Lynmarie A.; Smith, Tobin L.; Miller, Emily R.

    2017-01-01

    Recent calls for improvement in undergraduate education within STEM (science, technology, engineering, and mathematics) disciplines are hampered by the methods used to evaluate teaching effectiveness. Faculty members at research universities are commonly assessed and promoted mainly on the basis of research success. To improve the quality of…

  13. Unintended Consequences: Potential Downsides of the Air Force’s Conversion to Biofuels

    DTIC Science & Technology

    2011-01-01

    Mark N. Goltz , PhD, USAF, Retired Dr. Charles A. Bleckmann Dr. Douglas M. Mackay Maj Khai Vuong, USAF Capt Jerrod P. McComb, USAF* *Lieutenant...Colonel Goltz and Dr. Bleckmann are faculty members in the environmental engineering and science program at the Air Force Institute of Technology (AFIT

  14. An interdisciplinary collaboration between computer engineering and mathematics/bilingual education to develop a curriculum for underrepresented middle school students

    NASA Astrophysics Data System (ADS)

    Celedón-Pattichis, Sylvia; LópezLeiva, Carlos Alfonso; Pattichis, Marios S.; Llamocca, Daniel

    2013-12-01

    There is a strong need in the United States to increase the number of students from underrepresented groups who pursue careers in Science, Technology, Engineering, and Mathematics. Drawing from sociocultural theory, we present approaches to establishing collaborations between computer engineering and mathematics/bilingual education faculty to address this need. We describe our work through the Advancing Out-of-School Learning in Mathematics and Engineering project by illustrating how an integrated curriculum that is based on mathematics with applications in image and video processing can be designed and how it can be implemented with middle school students from underrepresented groups.

  15. Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Holloway

    2005-09-30

    Beginning the fall semester of 1999, The University of Maryland, Departments of Mechanical and Electrical Engineering and the Institute for Systems Research served as a U.S. Department of Energy (USDOE) Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies. A key goal was to produce a graduate level education program that educated and prepared students to address the technical challenges of designing and developing hybrid electric vehicles, as they progressed into the workforce. A second goal was to produce research that fostered the advancement of hybrid electric vehicles, their controls, and other related automotive technologies. Participationmore » ended at the University of Maryland after the 2004 fall semester. Four graduate courses were developed and taught during the course of this time, two of which evolved into annually-taught undergraduate courses, namely Vehicle Dynamics and Control Systems Laboratory. Five faculty members from Mechanical Engineering, Electrical Engineering, and the Institute for Systems Research participated. Four Ph.D. degrees (two directly supported and two indirectly supported) and seven Master's degrees in Mechanical Engineering resulted from the research conducted. Research topics included thermoelectric waste heat recovery, fuel cell modeling, pre- and post-transmission hybrid powertrain control and integration, hybrid transmission design, H{sub 2}-doped combustion, and vehicle dynamics. Many of the participating students accepted positions in the automotive industry or government laboratories involved in automotive technology work after graduation. This report discusses the participating faculty, the courses developed and taught, research conducted, the students directly and indirectly supported, and the publication list. Based on this collection of information, the University of Maryland firmly believes that the key goal of the program was met and that the majority of the participating students are now contributing to the advancement of automotive technology in this country.« less

  16. A web-based online collaboration platform for formulating engineering design projects

    NASA Astrophysics Data System (ADS)

    Varikuti, Sainath

    Effective communication and collaboration among students, faculty and industrial sponsors play a vital role while formulating and solving engineering design projects. With the advent in the web technology, online platforms and systems have been proposed to facilitate interactions and collaboration among different stakeholders in the context of senior design projects. However, there are noticeable gaps in the literature with respect to understanding the effects of online collaboration platforms for formulating engineering design projects. Most of the existing literature is focused on exploring the utility of online platforms on activities after the problem is defined and teams are formed. Also, there is a lack of mechanisms and tools to guide the project formation phase in senior design projects, which makes it challenging for students and faculty to collaboratively develop and refine project ideas and to establish appropriate teams. In this thesis a web-based online collaboration platform is designed and implemented to share, discuss and obtain feedback on project ideas and to facilitate collaboration among students and faculty prior to the start of the semester. The goal of this thesis is to understand the impact of an online collaboration platform for formulating engineering design projects, and how a web-based online collaboration platform affects the amount of interactions among stakeholders during the early phases of design process. A survey measuring the amount of interactions among students and faculty is administered. Initial findings show a marked improvement in the students' ability to share project ideas and form teams with other students and faculty. Students found the online platform simple to use. The suggestions for improving the tool generally included features that were not necessarily design specific, indicating that the underlying concept of this collaborative platform provides a strong basis and can be extended for future online platforms. Although the platform was designed to promote collaboration, adoption of the collaborative platform by students and faculty has been slow. While the platform appears to be very useful for collaboration, more time is required for it to be widely used by all the stakeholders and to fully convert from email communication to the use of the online collaboration platform.

  17. Gender Differences at Critical Transitions in the Careers of Science, Engineering, and Mathematics Faculty

    ERIC Educational Resources Information Center

    National Academies Press, 2010

    2010-01-01

    "Gender Differences at Critical Transitions in the Careers of Science, Engineering, and Mathematics Faculty" presents new and surprising findings about career differences between female and male full-time, tenure-track, and tenured faculty in science, engineering, and mathematics at the nation's top research universities. Much of this…

  18. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1991

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N. (Compiler)

    1991-01-01

    In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spent 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society of Engineering Education supervises the programs. The objects were the following: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA center.

  19. Using Pedagogical Dialogue as a Vehicle to Encourage Faculty Technology Use

    ERIC Educational Resources Information Center

    Friel, Terri; Britten, Jody; Compton, Beverly; Peak, Amy; Schoch, Kurt; VanTyle, W. Kent

    2009-01-01

    The pace of technology adoption by university faculty is often slow. Slow faculty technology adoption may result from fear of failure, disinterest, or aversion to change. However, in 2007 we experienced a different faculty response while training faculty for technology-enhanced teaching at Butler University. During a technology upgrade of…

  20. NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Hosler, E. Ramon (Editor); Valdes, Carol (Editor); Brown, Tom (Editor)

    1993-01-01

    This document is a collection of technical reports on research conducted by the participants in the 1993 NASA/ASEE Summer Faculty Fellowship Program at KSC. The basic common objectives of the Program are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objectives of the NASA centers. 1993 topics include wide band fiber optic communications, a prototype expert/information system for examining environmental risks of KSC activities, alternatives to premise wiring using ATM and microcellular technologies, rack insertion end effector (RIEE) automation, FTIR quantification of industrial hydraulic fluids in perchloroethylene, switch configuration for migration to optical fiber network, and more.

  1. Soft Skills in Pedagogical Practices with Different Curriculum for Engineering Education

    NASA Astrophysics Data System (ADS)

    Mohamad, M. M.; Yee, M. H.; Tee, T. K.; Mukhtar, M. Ibrahim; Ahmad, A.

    2017-08-01

    The rapid growth of the economy in Malaysia is a benchmark for the country’s progress. The demand for skilled worker has started to increase from year to year resulted in the implementation of reforms and necessary skills will be applied to each of the graduates who will step into the nature of work. Therefore, a study was conducted to identify the level of soft skills among students in higher education institutions. The study was conducted at the Universiti Tun Hussein Onn Malaysia (UTHM) and involved 302 samples of final year students from Faculty of Civil Engineering, Faculty of Mechanical Engineering and the Faculty of Electrical Engineering. There are several types of soft skills have been viewed on the students such as creative thinking skills, teamwork skills, communication skills, decision-making skills, interpersonal skills and leadership skills. The analysis results show that all of the soft skills are on the high level. Furthermore, the results of ANOVA showed a significant difference in soft skills mastery among Civil Engineering students and Mechanical Engineering students. As a conclusion, the overall level of soft skills mastery among Faculty of Civil Engineering, Faculty of Mechanical Engineering and the Faculty of Electrical Engineering students is on the high level. The soft skills elements are very important in order to produce skills workers that suitable with the industry.

  2. Ten Engineers Reading: Disjunctions between Preference and Practice in Civil Engineering Faculty Responses

    ERIC Educational Resources Information Center

    Taylor, Summer Smith; Patton, Martha D.

    2006-01-01

    Previous research has indicated that engineering faculty do not follow best practices when commenting on students' technical writing. However, it is unclear whether the faculty prefer to comment in these ineffective ways, or whether they prefer more effective practices but simply do not enact them. This study adapts a well known study of response…

  3. E-learning in engineering education: a theoretical and empirical study of the Algerian higher education institution

    NASA Astrophysics Data System (ADS)

    Benchicou, Soraya; Aichouni, Mohamed; Nehari, Driss

    2010-06-01

    Technology-mediated education or e-learning is growing globally both in scale and delivery capacity due to the large diffusion of the ubiquitous information and communication technologies (ICT) in general and the web technologies in particular. This statement has not yet been fully supported by research, especially in developing countries such as Algeria. The purpose of this paper was to identify directions for addressing the needs of academics in higher education institutions in Algeria in order to adopt the e-learning approach as a strategy to improve quality of education. The paper will report results of an empirical study that measures the readiness of the Algerian higher education institutions towards the implementation of ICT in the educational process and the attitudes of faculty members towards the application of the e-learning approach in engineering education. Three main objectives were targeted, namely: (a) to provide an initial evaluation of faculty members' attitudes and perceptions towards web-based education; (b) reporting on their perceived requirements for implementing e-learning in university courses; (c) providing an initial input for a collaborative process of developing an institutional strategy for e-learning. Statistical analysis of the survey results indicates that the Algerian higher education institution, which adopted the Licence - Master and Doctorate educational system, is facing a big challenge to take advantage of emerging technological innovations and the advent of e-learning to further develop its teaching programmes and to enhance the quality of education in engineering fields. The successful implementation of this modern approach is shown to depend largely on a set of critical success factors that would include: 1. The extent to which the institution will adopt a formal and official e-learning strategy. 2. The extent to which faculty members will adhere and adopt this strategy and develop ownership of the various measures in the context of their teaching and research responsibilities. 3. The extent to which the university will offer adequate support in terms of training, software platform administration, online resource development and impact monitoring and assessment.

  4. Retention and promotion of women and underrepresented minority faculty in science and engineering at four large land grant institutions.

    PubMed

    Gumpertz, Marcia; Durodoye, Raifu; Griffith, Emily; Wilson, Alyson

    2017-01-01

    In the most recent cohort, 2002-2015, the experiences of men and women differed substantially among STEM disciplines. Female assistant professors were more likely than men to leave the institution and to leave without tenure in engineering, but not in the agricultural, biological and biomedical sciences and natural resources or physical and mathematical sciences. In contrast, the median times to promotion from associate to full professor were similar for women and men in engineering and the physical and mathematical sciences, but one to two years longer for women than men in the agricultural, biological and biomedical sciences and natural resources. URM faculty hiring is increasing, but is well below the proportions earning doctoral degrees in STEM disciplines. The results are variable and because of the small numbers of URM faculty, the precision and power for comparing URM faculty to other faculty were low. In three of the four institutions, lower fractions of URM faculty than other faculty hired in the 2002-2006 time frame left without tenure. Also, in the biological and biomedical and physical and mathematical sciences no URM faculty left without tenure. On the other hand, at two of the institutions, significantly more URM faculty left before their tenth anniversary than other faculty and in engineering significantly more URM faculty than other faculty left before their tenth anniversary. We did not find significant differences in promotion patterns between URM and other faculty.

  5. The Information-Seeking Habits of Engineering Faculty

    ERIC Educational Resources Information Center

    Engel, Debra; Robbins, Sarah; Kulp, Christina

    2011-01-01

    Many studies of information-seeking habits of engineers focus on understanding the similarities and differences between scientists and engineers. This study explores the information-seeking behavior of academic engineering faculty from twenty public research universities. This investigation includes an examination of how frequently engineer- ing…

  6. Post-vision and change: do we know how to change?

    PubMed

    D'Avanzo, Charlene

    2013-01-01

    The scale and importance of Vision and Change in Undergraduate Biology Education: A Call to Action challenges us to ask fundamental questions about widespread transformation of college biology instruction. I propose that we have clarified the "vision" but lack research-based models and evidence needed to guide the "change." To support this claim, I focus on several key topics, including evidence about effective use of active-teaching pedagogy by typical faculty and whether certain programs improve students' understanding of the Vision and Change core concepts. Program evaluation is especially problematic. While current education research and theory should inform evaluation, several prominent biology faculty-development programs continue to rely on self-reporting by faculty and students. Science, technology, engineering, and mathematics (STEM) faculty-development overviews can guide program design. Such studies highlight viewing faculty members as collaborators, embedding rewards faculty value, and characteristics of effective faculty-development learning communities. A recent National Research Council report on discipline-based STEM education research emphasizes the need for long-term faculty development and deep conceptual change in teaching and learning as the basis for genuine transformation of college instruction. Despite the progress evident in Vision and Change, forward momentum will likely be limited, because we lack evidence-based, reliable models for actually realizing the desired "change."

  7. Building a Laboratory-Scale Biogas Plant and Verifying its Functionality

    NASA Astrophysics Data System (ADS)

    Boleman, Tomáš; Fiala, Jozef; Blinová, Lenka; Gerulová, Kristína

    2011-01-01

    The paper deals with the process of building a laboratory-scale biogas plant and verifying its functionality. The laboratory-scale prototype was constructed in the Department of Safety and Environmental Engineering at the Faculty of Materials Science and Technology in Trnava, of the Slovak University of Technology. The Department has already built a solar laboratory to promote and utilise solar energy, and designed SETUR hydro engine. The laboratory is the next step in the Department's activities in the field of renewable energy sources and biomass. The Department is also involved in the European Union project, where the goal is to upgrade all existed renewable energy sources used in the Department.

  8. Development of Science and Mathematics Education System Including Teaching Experience of Students in Local Area

    NASA Astrophysics Data System (ADS)

    Kage, Hiroyuki

    New reformation project on engineering education, which is supported from 2005 to 2008FY by Support Program for Contemporary Educational Needs of Ministry of Education, Culture, Sports, Science and Technology, started in Kyushu Institute of Technology. In this project, teaching experience of students is introduced into the curriculum of Faculty of Engineering. In the curriculum students try to prepare teaching materials and to teach local school pupils with them by themselves. Teaching experience is remarkably effective for them to strengthen their self-dependence and learning motivation. Science Education Center, Science Laboratory and Super Teachers College were also organized to promote the area cooperation on the education of science and mathematics.

  9. Graduating STEM Competent and Confident Teachers: The Creation of a STEM Certificate for Elementary Education Majors

    ERIC Educational Resources Information Center

    Murphy, Tony P.; Mancini-Samuelson, Gina J.

    2012-01-01

    A collaborative of STEM (science, technology, engineering, and mathematics) and education faculty developed a STEM certificate aimed at elementary education majors. A four-phase process model was used to create and evaluate courses. The certificate is comprised of three interdisciplinary, team-taught, lab-based courses: Environmental Biology,…

  10. The Best of Both Worlds: Building on the COPUS and RTOP Observation Protocols to Easily and Reliably Measure Various Levels of Reformed Instructional Practice

    ERIC Educational Resources Information Center

    Lund, Travis J.; Pilarz, Matthew; Velasco, Jonathan B.; Chakraverty, Devasmita; Rosploch, Kaitlyn; Undersander, Molly; Stains, Marilyne

    2015-01-01

    Researchers, university administrators, and faculty members are increasingly interested in measuring and describing instructional practices provided in science, technology, engineering, and mathematics (STEM) courses at the college level. Specifically, there is keen interest in comparing instructional practices between courses, monitoring changes…

  11. The Effects of Doctoral Teaching Development on Early-Career STEM Scholars' College Teaching Self-Efficacy

    ERIC Educational Resources Information Center

    Connolly, Mark R.; Lee, You-Geon; Savoy, Julia N.

    2018-01-01

    To help prepare future faculty in science, technology, engineering, and mathematics (STEM) to teach undergraduates, more research universities are offering teaching development (TD) programs to doctoral students who aspire to academic careers. Using social cognitive career theory, we examine the effects of TD programs on early-career STEM…

  12. Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants Teaching Self-Efficacy

    ERIC Educational Resources Information Center

    DeChenne, Sue Ellen; Enochs, Larry G.; Needham, Mark

    2012-01-01

    The graduate experience is a critical time for development of academic faculty, but often there is little preparation for teaching during the graduate career. Teaching self-efficacy, an instructor's belief in his or her ability to teach students in a specific context, can help to predict teaching behavior and student achievement, and can be used…

  13. Research and/or Learning and Teaching: A Study of Australian Professors' Priorities, Beliefs and Behaviours

    ERIC Educational Resources Information Center

    Cretchley, P. C.; Edwards, S. L.; O'Shea, P.; Sheard, J.; Hurst, J.; Brookes, W.

    2014-01-01

    This paper presents findings from an empirical study of key aspects of the teaching and research priorities, beliefs and behaviours of 72 professorial and associate professorial academics in Science, Information Technology and Engineering across four faculties in three Australian universities. The academics ranked 16 research activities and 16…

  14. Closing the Loop: Involving Faculty in the Assessment of Scientific and Quantitative Reasoning Skills of Biology Majors

    ERIC Educational Resources Information Center

    Hurney, Carol A.; Brown, Justin; Griscom, Heather Peckham; Kancler, Erika; Wigtil, Clifton J.; Sundre, Donna

    2011-01-01

    The development of scientific and quantitative reasoning skills in undergraduates majoring in science, technology, engineering, and mathematics (STEM) is an objective of many courses and curricula. The Biology Department at James Madison University (JMU) assesses these essential skills in graduating biology majors by using a multiple-choice exam…

  15. Activities of Science and Engineering Faculty in Universities and 4-Year Colleges: 1978/79. Final Report.

    ERIC Educational Resources Information Center

    Lacy, Larry W.; And Others

    National estimates of activities of science and engineering faculty in universities and four-year colleges for 1978-1979 are examined, based on a National Science Foundation survey of faculty members in 20 science and engineering (S/E) fields. Individual respondents provided information for only one 7-day period; however, the survey sample was…

  16. Engineering Colleges Report 10% of Faculty Positions Vacant in Fall 1980. Science Resources Studies Highlights.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    The results of a National Science Foundation survey of 181 engineering colleges are summarized in this report which focuses on the extent of and reasons for faculty vacancies and effects of staffing problems. Major findings indicate that: (1) most deans of engineering colleges believe that difficulties in filling faculty slots have impaired the…

  17. 1998 NASA-HU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Marable, William P. (Compiler); Murray, Deborah B. (Compiler)

    1998-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. The program objectives include: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; (4) To contribute to the research objectives of the NASA center. College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lecture and seminar leaders will be distinguished scientists and engineers from NASA, education, and industry.

  18. 2001 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N. (Compiler); Murray, Deborah B. (Compiler); Hathaway, Roger A. (Technical Monitor)

    2002-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises these programs. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; (4 To contribute to the research objectives of the NASA center. Program Description: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellow's research topics. The lecture and seminar leaders wil be distinguished scientists and engineers from NASA, education and industry.

  19. 1996 NASA-Hampton University American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Spencer, John H. (Compiler); Young, Deborah B. (Compiler)

    1996-01-01

    NASA has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. The objectives were: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants institutions; (4) To contribute to the research objectives of the NASA Center. Program Description: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lectures and seminar leaders will be distinguished scientists and engineers from NASA, education, or industry.

  20. 1999 NASA - ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N. (Compiler); Murray, Deborah B. (Compiler)

    2000-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program or summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; (4) To contribute to the research objectives of the NASA center. Program Description: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lecture and seminar leaders will be distinguished scientists and engineers from NASA, education, and industry.

  1. Developing technology for surgery in the UK: a multidisciplinary meeting of engineers and surgeons.

    PubMed

    Taylor, G W

    2007-03-01

    There is an increasing necessity for surgeons and engineers to work together in order to target future technological developments at clinical need and cost-effectiveness. This is a report of two linked meetings with these objectives, held at the Institute of Mechanical Engineers, London, UK. The two meetings were organized by the same faculty members and held on consecutive days. Delegates included surgeons, academic mechanical engineers, researchers and industrial representatives. The programme was made up of varied presentations by surgeons and engineers as well as open discussion of the topics covered. Delegates were updated on the current state of surgical robotics in the UK in four surgical specialties; urology, neurosurgery, orthopaedics and ENT. This included clinical and experimental evidence, together with discussion of future advances. Minimally invasive surgery, real-time imaging and the development of more compact and cost effective surgical robots were identified as key areas for future research. Copyright 2006 John Wiley & Sons, Ltd.

  2. Engineering students' and faculty perceptions of teaching methods and the level of faculty involvement that promotes academic success

    NASA Astrophysics Data System (ADS)

    Karpilo, Lacy N.

    Student academic success is a top priority of higher education institutions in the United States and the trend of students leaving school prior to finishing their degree is a serious concern. Accountability has become a large part of university and college ratings and perceived success. Retention is one component of the accountability metrics used by accreditation agencies. In addition, there are an increasing number of states allocating funds based in part on retention (Seidman, 2005). Institutions have created initiatives, programs, and even entire departments to address issues related to student academic success to promote retention. Universities and colleges have responded by focusing on methods to retain and better serve students. Retention and student academic success is a primary concern for high education institutions; however, engineering education has unique retention issues. The National Science Board (2004) reports a significant decline in the number of individuals in the United States who are training to become engineers, despite the fact that the number of jobs that utilize an engineering background continues to increase. Engineering education has responded to academic success issues by changing curriculum and pedagogical methods (Sheppard, 2001). This descriptive study investigates the perception of engineering students and faculty regarding teaching methods and faculty involvement to create a picture of what is occurring in engineering education. The population was the engineering students and faculty of Colorado State University's College of Engineering. Data from this research suggests that engaging teaching methods are not being used as often as research indicates they should and that there is a lack of student-faculty interaction outside of the classroom. This research adds to the breadth of knowledge and understanding of the current environment of engineering education. Furthermore, the data allows engineering educators and other higher education professionals to gain insight into the teaching methods currently being utilized in engineering and reinforces the importance of student-faculty interaction and thus facilitating the creation of programs or initiatives to improve student academic success.

  3. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1987

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N. (Compiler)

    1987-01-01

    Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 or 11 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; (4) to contribute to the research objectives of the NASA center. Program Description: College or university faculty members were appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow devoted approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program consisted of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topic.

  4. Enabling Exploration: NASA's Technology Needs

    NASA Technical Reports Server (NTRS)

    Carroll, Carol W.

    2012-01-01

    Deputy Director of Science, Carol W. Carroll has been invited by University of Oregon's Materials Science Institute to give a presentation. Carol's Speech explains NASA's Technologies that are needed where NASA was, what NASA's current capabilities are. Carol will highlight many of NASA's high profile projects and she will explain what NASA needs for its future by focusing on the next steps in space exploration. Carol's audience will be University of Oregon's future scientists and engineer's and their professor's along with various other faculty members.

  5. Ways of thinking about and teaching ethical problem solving: microethics and macroethics in engineering.

    PubMed

    Herkert, Joseph R

    2005-07-01

    Engineering ethics entails three frames of reference: individual, professional, and social. "Microethics" considers individuals and internal relations of the engineering profession; "macroethics" applies to the collective social responsibility of the profession and to societal decisions about technology. Most research and teaching in engineering ethics, including online resources, has had a "micro" focus. Mechanisms for incorporating macroethical perspectives include: integrating engineering ethics and science, technology and society (STS); closer integration of engineering ethics and computer ethics; and consideration of the influence of professional engineering societies and corporate social responsibility programs on ethical engineering practice. Integrating macroethical issues and concerns in engineering ethics involves broadening the context of ethical problem solving. This in turn implies: developing courses emphasizing both micro and macro perspectives, providing faculty development that includes training in both STS and practical ethics; and revision of curriculum materials, including online resources. Multidisciplinary collaboration is recommended 1) to create online case studies emphasizing ethical decision making in individual, professional, and societal contexts; 2) to leverage existing online computer ethics resources with relevance to engineering education and practice; and 3) to create transparent linkages between public policy positions advocated by professional societies and codes of ethics.

  6. The United States Air Force Academy: A Bibliography, 2006-2010

    DTIC Science & Technology

    2011-01-01

    Hamilton. “Conceptualizing Engagement: Contributions of Faculty to Student Engagement in Engineering.” Journal of Engineering Education 97.3 (July 2008...and Eric R. Hamilton. “Conceptualizing Engagement: Contributions of Faculty to Student Engagement in Engineering.” Journal of Engineering Education

  7. A Mixed-Methods Investigation of Clicker Implementation Styles in STEM.

    PubMed

    Solomon, Erin D; Repice, Michelle D; Mutambuki, Jacinta M; Leonard, Denise A; Cohen, Cheryl A; Luo, Jia; Frey, Regina F

    2018-06-01

    Active learning with clickers is a common approach in high-enrollment, lecture-based courses in science, technology, engineering, and mathematics. In this study, we describe the procedures that faculty at one institution used when implementing clicker-based active learning, and how they situated these activities in their class sessions. Using a mixed-methods approach, we categorized faculty into four implementation styles based on quantitative observation data and conducted qualitative interviews to further understand why faculty used these styles. We found that faculty tended to use similar procedures when implementing a clicker activity, but differed on how they situated the clicker-based active learning into their courses. These variations were attributed to different faculty goals for using clicker-based active learning, with some using it to engage students at specific time points throughout their class sessions and others who selected it as the best way to teach a concept from several possible teaching techniques. Future research should continue to investigate and describe how active-learning strategies from literature may differ from what is being implemented.

  8. The Challenge of the Humanities and Social Science Education Through the Basic Seminar (Science of Snow Sports)

    NASA Astrophysics Data System (ADS)

    Taniai, Tetsuyuki; Sugimoto, Taku; Sato, Ken-Ichi; Ikota, Masaru

    The Education Center of Chiba Institute of Technology is taking a new approach to the introduction of liberal arts subjects commonly included in the curriculum of all departments through a newly established basic seminar, the Science of Snow Sports. Each faculty member has been working on setting up classes that cross the conventional boundaries of fields and disciplines and which are targeted at students of all faculties and departments. This paper describes the potential for teaching liberal arts and social science subjects to engineering students through the medium of sports science, based on actual experience gained via this new approach.

  9. Faculty and Student Teams and National Laboratories: Expanding the Reach of Research Opportunities and Workforce Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackburn,N.; White, K.; Stegman, M.

    The Faculty and Student Teams (FaST) Program, a cooperative effort between the US Department of Energy (DOE) Office of Science and the National Science Foundation (NSF), brings together collaborative research teams composed of a researcher at Brookhaven National Laboratory, and a faculty member with two or three undergraduate students from a college or university. Begun by the Department of Energy in 2000 with the primary goal of building research capacity at a faculty member's home institution, the FaST Program focuses its recruiting efforts on faculty from colleges and universities with limited research facilities and those institutions that serve populations under-representedmore » in the fields of science, engineering and technology, particularly women and minorities. Once assembled, a FaST team spends a summer engaged in hands-on research working alongside a laboratory scientist. This intensely collaborative environment fosters sustainable relationships between the faulty members and BNL that allow faculty members and their BNL colleagues to submit joint proposals to federal agencies, publish papers in peer-reviewed journals, reform local curriculum, and develop new or expand existing research labs at their home institutions.« less

  10. Professional Skills in the Engineering Curriculum

    ERIC Educational Resources Information Center

    Mohan, Ashwin; Merle, Dominike; Jackson, Christa; Lannin, John; Nair, Satish S.

    2010-01-01

    Faculty from the Department of Electrical and Computer Engineering and the College of Education at the University of Missouri (MU), Columbia, developed a novel course for engineering graduate students emphasizing pedagogy and professional skills. The two-semester course sequence, titled "Preparing Engineering Faculty and Professionals,"…

  11. Faculty perspectives on the inclusion of work-related learning in engineering curricula

    NASA Astrophysics Data System (ADS)

    Magnell, Marie; Geschwind, Lars; Kolmos, Anette

    2017-11-01

    The purpose of this paper is to identify faculty perspectives on the integration of work-related issues in engineering education. A mixed methods approach was used to explore faculty attitudes towards work-related learning, to describe activities related to working life that have been introduced into the curriculum and to identify factors that faculty see as important if the amount of work-related learning is to increase. The results show that faculty members are positive about integrating work-related issues into the curriculum. Programmes with more extensive connections to industry offer more integrated activities, such as projects with external actors, and use professional contacts established through research in their teaching. In order to increase work-related learning in engineering curricula, faculty request clear goals and pedagogical tools. Other options to increase work-related learning include offering faculty the opportunity to work outside academia.

  12. KSC-02pd0661

    NASA Image and Video Library

    2002-05-14

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Story Musgrave speaks to students and faculty from across the nation gathered at the KSC Visitor Complex for this year's NASA MarsPort Engineering Design Student Competition 2002 conference. The participants are presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts. Featured at the opening ceremony were Dr. Sam Durrance, FSGC director and former astronaut, and Dr. Gary Stutte, plant scientist, Dynamac Corporation.

  13. KSC-02pd0662

    NASA Image and Video Library

    2002-05-14

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Story Musgrave speaks to students and faculty from across the nation gathered at the KSC Visitor Complex for this year's NASA MarsPort Engineering Design Student Competition 2002 conference. The participants are presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts. Featured at the opening ceremony were Dr. Sam Durrance, FSGC director and former astronaut, and Dr. Gary Stutte, plant scientist, Dynamac Corporation.

  14. Improving the quality of learning discipline “Technical thermodynamics and heat exchange” at ONMU

    NASA Astrophysics Data System (ADS)

    Vasserman, A. A.; Malchevsky, V. P.

    2017-11-01

    Discipline «Technical thermodynamics and heat exchange» creates a theoretical basis for students of ship-engineering faculty of Odessa National Maritime University to learn special subjects such as: Internal Combustion Engines, Steam and Gas Turbines, Steam Boilers, Refrigerating Plants. This course forms future specialist and provides the deep understanding of essence of thermodynamic processes which run in machines and apparatus of ship. Also different kinds of heat exchange in solid, liquid and gaseous bodies which take place almost in all technological processes are considered. The quality of training ship engineers depends on the knowledge of mentioned discipline.

  15. NASA-UVA Light Aerospace Alloy and Structures Technology Program: LA(2)ST

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1993-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA(2)ST) Program continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. We report on progress achieved between July 1 and December 31, 1992. The objective of the LA(2)ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies.

  16. Multi-University Southeast INIE Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayman Hawari; Nolan Hertel; Mohamed Al-Sheikhly

    2 Project Summary: The Multi-University Southeast INIE Consortium (MUSIC) was established in response to the US Department of Energy’s (DOE) Innovations in Nuclear Infrastructure and Education (INIE) program. MUSIC was established as a consortium composed of academic members and national laboratory partners. The members of MUSIC are the nuclear engineering programs and research reactors of Georgia Institute of Technology (GIT), North Carolina State University (NCSU), University of Maryland (UMD), University of South Carolina (USC), and University of Tennessee (UTK). The University of Florida (UF), and South Carolina State University (SCSU) were added to the MUSIC membership in the second year.more » In addition, to ensure proper coordination between the academic community and the nation’s premier research and development centers in the fields of nuclear science and engineering, MUSIC created strategic partnerships with Oak Ridge National Laboratory (ORNL) including the Spallation Neutron Source (SNS) project and the Joint Institute for Neutron Scattering (JINS), and the National Institute of Standards and Technology (NIST). A partnership was also created with the Armed Forces Radiobiology Research Institute (AFRRI) with the aim of utilizing their reactor in research if funding becomes available. Consequently, there are three university research reactors (URRs) within MUSIC, which are located at NCSU (1-MW PULSTAR), UMD (0.25-MW TRIGA) and UF (0.10-MW Argonaut), and the AFRRI reactor (1-MW TRIGA MARK F). The overall objectives of MUSIC are: a) Demonstrate that University Research Reactors (URR) can be used as modern and innovative instruments of research in the basic and applied sciences, which include applications in fundamental physics, materials science and engineering, nondestructive examination, elemental analysis, and contributions to research in the health and medical sciences, b) Establish a strong technical collaboration between the nuclear engineering faculty and the MUSIC URRs. This will be achieved by involving the faculty in the development of state-of-the-art research facilities at the URRs and subsequently, in the utilization of these facilities, c) Facilitate the use of the URRs by the science and engineering faculty within the individual institutions and by the general community of science and engineering, d) Develop a far-reaching educational component that is capable of addressing the needs of the nuclear science and engineering community. Specifically, the aim of this component will be to perform public outreach activities, contribute to the active recruitment of the next generation of nuclear professionals, strengthen the education of nuclear engineering students, and promote nuclear engineering education for minority students.« less

  17. Factors associated with staff development processes and the creation of innovative science courses in higher education

    NASA Astrophysics Data System (ADS)

    Hodges, Jeanelle Bland

    1999-11-01

    The purpose of the study was to determine factors associated with staff development processes and the creation of innovative science courses by higher education faculty who have participated in a model staff development project. The staff development program was designed for college faculty interested in creating interdisciplinary, constructivist-based science, mathematics, or engineering courses designed for non-majors. The program includes workshops on incorporating constructivist pedagogy, alternative assessment, and technology into interdisciplinary courses. Staff development interventions used in the program include grant opportunities, distribution of resource materials, and peer mentoring. University teams attending the workshops are comprised of faculty from the sciences, mathematics, or engineering, as well as education, and administration. A purposeful and convenient sample of three university teams were subjects for this qualitative study. Each team had attended a NASA Opportunities for Visionary Academics (NOVA) workshop, received funding for course development, and offered innovative courses. Five questions were addressed in this study: (a) What methods were used by faculty teams in planning the courses? (b) What changes occurred in existing science courses? (c) What factors affected the team collaboration process? (d) What personal characteristics of faculty members were important in successful course development? and (e) What barriers existed for faculty in the course development process? Data was collected at each site through individual faculty interviews (N = 11), student focus group interviews (N = 15), and classroom observations. Secondary data included original funding proposals. The NOVA staff development model incorporated effective K--12 interventions with higher education interventions. Analysis of data revealed that there were four factors of staff development processes that were most beneficial. First, the team collaborative processes were crucial in successful course development. Second, the use of instructional grants to fund course development gave credibility to the faculty involved in course development. Third, the faculty members taking the lead in creating teams actively sought out faculty members in the sciences who had previous experience teaching at the K--12 level or in informal education. In addition, college environments were found to have an impact on the success of the innovative course development projects.

  18. EDITORIAL: Precision Measurement Technology at the 56th International Scientific Colloquium in Ilmenau Precision Measurement Technology at the 56th International Scientific Colloquium in Ilmenau

    NASA Astrophysics Data System (ADS)

    Manske, E.; Froehlich, T.

    2012-07-01

    The 56th International Scientific Colloquium was held from 12th to 16th September 2011 at the Ilmenau University of Technology in Germany. This event was organized by the Faculty of Mechanical Engineering under the title: 'Innovation in Mechanical Engineering—Shaping the Future' and was intended to reflect the entire scope of modern mechanical engineering. In three main topics many research areas, all involving innovative mechanical engineering, were addressed, especially in the fields of Precision Engineering and Precision Measurement Technology, Mechatronics and Ambient-Assisted Living and Systems Technology. The participants were scientists from 21 countries, and 166 presentations were given. This special issue of Measurement Science and Technology presents selected contributions on 'Precision Engineering and Precision Measurement Technology'. Over three days the conference participants discussed novel scientific results in two sessions. The main topics of these sessions were: Measurement and Sensor Technology Process measurement Laser measurement Force measurement Weighing technology Temperature measurement Measurement dynamics and Nanopositioning and Nanomeasuring Technology Nanopositioning and nanomeasuring machines Nanometrology Probes and tools Mechanical design Signal processing Control and visualization in NPM devices Significant research results from the Collaborative Research Centre SFB 622 'Nanopositioning and Nanomeasuring Machines' funded by the German Research Foundation (DFG) were presented as part of this topic. As the Chairmen, our special thanks are due to the International Programme Committee, the Organization Committee and the conference speakers as well as colleagues from the Institute of Process Measurement and Sensor Technology who helped make the conference a success. We would like to thank all the authors for their contributions, the referees for their time spent reviewing the contributions and their valuable comments, and the whole Editorial Board of Measurement Science and Technology for their support.

  19. Post–Vision and Change: Do We Know How to Change?

    PubMed Central

    D’Avanzo, Charlene

    2013-01-01

    The scale and importance of Vision and Change in Undergraduate Biology Education: A Call to Action challenges us to ask fundamental questions about widespread transformation of college biology instruction. I propose that we have clarified the “vision” but lack research-based models and evidence needed to guide the “change.” To support this claim, I focus on several key topics, including evidence about effective use of active-teaching pedagogy by typical faculty and whether certain programs improve students’ understanding of the Vision and Change core concepts. Program evaluation is especially problematic. While current education research and theory should inform evaluation, several prominent biology faculty–development programs continue to rely on self-reporting by faculty and students. Science, technology, engineering, and mathematics (STEM) faculty-development overviews can guide program design. Such studies highlight viewing faculty members as collaborators, embedding rewards faculty value, and characteristics of effective faculty-development learning communities. A recent National Research Council report on discipline-based STEM education research emphasizes the need for long-term faculty development and deep conceptual change in teaching and learning as the basis for genuine transformation of college instruction. Despite the progress evident in Vision and Change, forward momentum will likely be limited, because we lack evidence-based, reliable models for actually realizing the desired “change.” PMID:24006386

  20. Utilizing E-Learning Systems in the Libyan Universities: Case Study; Tripoli University, Faculty of Engineering

    ERIC Educational Resources Information Center

    Almansuri, Aisha Ammar; Elmansuri, Rowad Adel

    2015-01-01

    E-learning in teaching and learning considered as the easy way to use information and communication technology by using of the internet. With the support of E-learning higher education can be delivered anywhere and at any time. Although E-Learning is very importance in Libyan higher education, It's implementation is facing many challenges in the…

  1. Can UTeach? Assessing the Relative Effectiveness of STEM Teachers. Working Paper 173

    ERIC Educational Resources Information Center

    Backes, Ben; Goldhaber, Dan; Cade, Whitney; Sullivan, Kate; Dodson, Melissa

    2016-01-01

    UTeach is a well-known, university-based program designed to increase the number of high-quality science, technology, engineering, and mathematics (STEM) teachers in the workforce. The UTeach program was originally developed by faculty at the University of Texas at Austin but has rapidly spread and is now available at 44 universities in 21 states;…

  2. Linking Project-Based Interdisciplinary Learning and Recommended Professional Competencies with Business Management, Digital Media, Distance Learning, Engineering Technology, and English

    ERIC Educational Resources Information Center

    Bender, Melinda; Fulwider, Miles; Stemkoski, Michael J.

    2008-01-01

    This paper encourages the investigation of real world problems by students and faculty and links recommended student competencies with project based learning. In addition to the traditional course objectives, project-based learning (PBL) uses real world problems for classroom instruction and fieldwork to connect students, instructors, and industry…

  3. The Effects of Doctoral Teaching Development on Early-Career STEM Scholars' College-Teaching Self-Efficacy. WCER Working Paper No. 2015-1

    ERIC Educational Resources Information Center

    Connolly, Mark R.; Lee, You-Geon

    2015-01-01

    As a result of increased national emphasis on preparing future faculty in science, technology, engineering, and mathematics (STEM) to teach undergraduates, more research universities offer teaching development (TD) programs to doctoral students who aspire to academic careers. Using social cognitive career theory, we examine the effects of these…

  4. Evaluation of the National Science Foundation's Integrative Graduate Education and Research Traineeship Program (IGERT): Follow-Up Study of IGERT Graduates. Final Report

    ERIC Educational Resources Information Center

    Carney, Jennifer; Martinez, Alina; Dreier, John; Neishi, Kristen; Parsad, Amanda

    2011-01-01

    The National Science Foundation's Integrative Graduate Education and Research Traineeship (IGERT) program supports students in science, technology, engineering, and mathematics (STEM) fields who participate in university-developed interdisciplinary graduate training experiences. Faculty members at each IGERT site develop a series of education…

  5. Women in the Academy: Female Leadership in STEM Education and the Evolution of a Mentoring Web

    ERIC Educational Resources Information Center

    Gorman, Susan T.; Durmowicz, Meredith C.; Roskes, Ellen M.; Slattery, Susan P.

    2010-01-01

    Women continue to be underrepresented in science, technology, engineering, and mathematics (STEM) fields and in STEM leadership positions. According to the most recent data available from the National Science Foundation, in academia only 31% of full-time STEM faculty and 27% of STEM deans and department heads are women. By comparison at Stevenson…

  6. Cyber Flag: A Realistic Cyberspace Training Construct

    DTIC Science & Technology

    2008-03-27

    sincere appreciation to my research committee, Dr Mark Kanko, Dr Bob Bills , and Dr Rick Raines, as well as my faculty advisor, Major Paul Williams ...Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial... Williams , Ph.D. (Chairman) date ___________//SIGNED//________________ 22 Jan 08 Mark A. Kanko, Ph.D. (Member) date

  7. Radiography Faculty Engaged in Online Education: Perceptions of Effectiveness, Satisfaction, and Technological Self-efficacy.

    PubMed

    Cherry, Shirley J; Flora, Bethany H

    2017-01-01

    To assess radiography faculty perceptions of the effectiveness of online courses. An original survey instrument was created by selecting items from 3 instruments used in prior research and adding unique questions designed to elicit demographic data from faculty. The sample included a national dataset of radiography faculty members employed in Joint Review Committee on Education in Radiologic Technology-accredited programs in the United States. Findings showed that faculty perceptions of online course effectiveness are not affected significantly by faculty position, type of institution, faculty age, or years of teaching experience. Positive perceptions of the effectiveness of online courses moderately increased with years of teaching online courses, number of online courses taught in the past 5 years, and perceived competence with the use of technology. Faculty satisfaction with interaction in online courses moderately increased as the years of teaching online courses increased. However, the number of years of teaching online courses was not related to faculty satisfaction with teaching online courses or faculty satisfaction with institutional support. Online technology acceptance had a moderately positive relationship with perceived ease of use and a strong positive relationship with perceived usefulness of online technology. In addition, the use of technology-enhanced learning methods had a strong positive relationship with technological self-efficacy. Radiography faculty perceptions of the effectiveness of online courses improved with experience in teaching online courses and competence with use of technology. Perceived ease of use and perceived usefulness of online technology were related directly to online technology acceptance. Furthermore, faculty members with technological self-efficacy were more likely to use technology-enhanced learning methods in the online environment.

  8. Moving Toward an Anti-Deficit Perspective: African American Science, Technology, Engineering, Mathematics (STEM) Students at Hispanic-Serving Institutions (HSI)

    NASA Astrophysics Data System (ADS)

    Mahoney, Melissa M.

    The increased demand for qualified STEM workers, necessitates addressing the bachelor's science, technology, engineering and mathematics (STEM) degree achievement among African Americans and other underrepresented populations. Using inquiry derived from Harper's (2010) Anti-Deficit Achievement Framework, this study sought to explore the factors that contribute to the successful degree completion of African American STEM students within a large comprehensive university system. Coding of the twelve semi-structured interviews revealed six major themes: a) K-12/precollege educational experiences, b) motivation to complete a STEM degree, c) systems of social support, d) extracurricular activities and out-of-class experiences, e) addressing stereotyping and discrimination, and f) faculty behaviors and dispositions. All themes were intertwined at each phase of participants' academic careers, thereby, highlighting the complexity of this population's experience and what is needed to address their low STEM degree attainment. Findings indicated that this student population benefits from positive, sustained faculty-student interactions, holistic STEM success programming, and genuine networks of social support. Furthermore, Harper's framework can be modified to explore the motivation of African American STEM students as well as the African American student's relationship with disability support services.

  9. Where are the women? Campus climate and the degree aspirations of women in science, technology, engineering and mathematics programs

    NASA Astrophysics Data System (ADS)

    Schulz, Phyllis

    Women remain underrepresented in science, technology, engineering, and mathematics (STEM) at all levels of higher education, which has become a concern in the competitive global marketplace. Using both quantitative and qualitative analysis, this dissertation sought to learn more about how the campus climate and self-concept influence the degree aspirations of female undergraduate students majoring in STEM programs. Using the Beginning Post-Secondary dataset, regression analyses showed that a student's initial degree aspirations, SAT scores, and interactions with faculty were all positively related to their degree aspirations three years later. Interviews with seven current STEM undergraduates confirmed the importance of interaction with faculty and suggested undergraduate research and classroom experiences also play a role in the degree aspirations of STEM students. Three of the seven students interviewed began their undergraduate educations as non-STEM majors, suggesting that the traditional STEM pipeline may no longer be the norm. These findings suggest that both future research and current practitioners should focus on undergraduate STEM classroom and research experiences. Additionally, the characteristics of students who switch into STEM majors should be explored so that we may continue to expand the number of students pursuing STEM degrees.

  10. Hampton University/American Society for Engineering Education/NASA Summer Faculty Fellowship Program 1986

    NASA Technical Reports Server (NTRS)

    Spencer, J. H. (Compiler)

    1986-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 or 11 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society of Engineering Education supervises the programs. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; (4) to contribute to the research objectives of the NASA center. Program Description: College or university will be faculty members appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA-Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of general interest or that are directly relevant to the Fellows' research project. The lecturers and seminar leaders will be distinguished scientists and engineers from NASA, education or industry.

  11. 1997 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N. (Compiler); Young, Deborah B. (Compiler)

    1998-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives of the program are as follows: (1) To further the professional knowledge of qualified engineering and science faculty members, (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; and (4) To contribute to the research objectives of the NASA center. Program description is as follows: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lectures and seminar leaders will be distinguished scientists and engineers from NASA, education, and industry.

  12. 2000 NASA-HU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Marable, William P. (Compiler); Murray, Deborah B. (Compiler); Hathaway, Roger A. (Technical Monitor)

    2000-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend ten weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. The objectives are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA center. College or university faculty members will be appointed as Research Fellows to spend ten weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lecture and seminar leaders will be distinguished scientists and engineers from NASA, education, and industry. A list of the abstracts of the presentations is provided.

  13. The 1995 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N. (Compiler); Young, Deborah B. (Compiler)

    1995-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. The objectives of this program are: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; and (4) To contribute to the research objectives of the NASA center. College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lectures and seminar leaders will be distinguished scientists and engineers from NASA, education, or industry.

  14. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1985

    NASA Technical Reports Server (NTRS)

    Goglia, G. (Compiler)

    1985-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. The objectives of this program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to simulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants institutions; and (4) to contribute to the research objectives of the NASA center. College or university faculty members will be appointed as research fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The fellows will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of general interest or that are directly relevant to the fellows' research project. The lecturers and seminar leaders will be distinguished scientists and engineers from NASA, the educational community, or industry.

  15. Opportunities within NASA's Exploration Systems Mission Directorate for Engineering Students and Faculty

    NASA Technical Reports Server (NTRS)

    Garner, Lesley

    2008-01-01

    In 2006, NASA's Exploration Systems Mission Directorate (ESMD) launched two new Educational Projects: (1) The ESMID Space Grant Student Project ; and (2) The ESM1D Space Grant Faculty Project. The Student Project consists of three student opportunities: exploration-related internships at NASA Centers or with space-related industry, senior design projects, and system engineering paper competitions. The ESMID Space Grant Faculty Project consists of two faculty opportunities: (1) a summer faculty fellowship; and (2) funding to develop a senior design course.

  16. A New Approach to A Science Magnet School - Classroom and Museum Integration

    NASA Astrophysics Data System (ADS)

    Franklin, Samuel

    2009-03-01

    The Pittsburgh Science & Technology Academy is a place where any student with an interest in science, technology, engineering or math can develop skills for a career in life sciences, environmental sciences, computing, or engineering. The Academy isn't just a new school. It's a new way to think about school. The curriculum is tailored to students who have a passion for science, technology, engineering or math. The environment is one of extraordinary support for students, parents, and faculty. And the Academy exists to provide opportunities, every day, for students to Dream. Discover. Design. That is, Academy students set goals and generate ideas, research and discover answers, and design real solutions for the kinds of real-world problems that they'll face after graduation. The Academy prepares students for their future, whether they go on to higher education or immediate employment. This talk will explain the unique features of the Pittsburgh Science & Technology Academy, lessons learned from its two-year design process, and the role that the Carnegie Museums have played and will continue to play as the school grows.

  17. Collaboration across disciplines for sustainability: green chemistry as an emerging multistakeholder community.

    PubMed

    Iles, Alastair; Mulvihill, Martin J

    2012-06-05

    Sustainable solutions to our nation's material and energy needs must consider environmental, health, and social impacts while developing new technologies. Building a framework to support interdisciplinary interactions and incorporate sustainability goals into the research and development process will benefit green chemistry and other sciences. This paper explores the contributions that diverse disciplines can provide to the design of greener technologies. These interactions have the potential to create technologies that simultaneously minimize environmental and health impacts by drawing on the combined expertise of students and faculty in chemical sciences, engineering, environmental health, social sciences, public policy, and business.

  18. 2009 ESMD Space Grant Faculty Project Final Report

    NASA Technical Reports Server (NTRS)

    Murphy, Gloria; Ghanashyam, Joshi; Guo, Jiang; Conrad, James; Bandyopadhyay, Alak; Cross, William

    2009-01-01

    The Constellation Program is the medium by which we will maintain a presence in low Earth orbit, return to the moon for further exploration and develop procedures for Mars exploration. The foundation for its presence and success is built by the many individuals that have given of their time, talent and even lives to help propel the mission and objectives of NASA. The Exploration Systems Mission Directorate (ESMD) Faculty Fellows Program is a direct contributor to the success of directorate and Constellation Program objectives. It is through programs such as the ESMD Space Grant program that students are inspired and challenged to achieve the technological heights that will propel us to meet the goals and objectives of ESMD and the Constellation Program. It is through ESMD Space Grant programs that future NASA scientists, engineers, and mathematicians begin to dream of taking America to newer heights of space exploration. The ESMD Space Grant program is to be commended for taking the initiative to develop and implement programs that help solidify the mission of NASA. With the concerted efforts of the Kennedy Space Center educational staff, the 2009 ESMD Space Grant Summer Faculty Fellows Program allowed faculty to become more involved with NASA personnel relating to exploration topics for the senior design projects. The 2009 Project was specifically directed towards NASA's Strategic Educational Outcome 1. In-situ placement of Faculty Fellows at the NASA field Centers was essential; this allowed personal interactions with NASA scientists and engineers. In particular, this was critical to better understanding the NASA problems and begin developing a senior design effort to solve the problems. The Faculty Fellows are pleased that the ESMD Space Grant program is taking interest in developing the Senior Design courses at the university level. These courses are needed to help develop the NASA engineers and scientists of the very near future. It has been a pleasure to be part of the evaluation process to help ensure that these courses are developed in such a way that the students' educational objectives are maximized. Ultimately, with NASA-related content used as projects in the course, students will be exposed to space exploration concepts and issues while still in college. This will help to produce NASA engineers and scientists that are knowledgeable of space exploration. By the concerted efforts of these five senior design projects, NASA's ESMD Space Grant Project is making great strides at helping to develop talented engineers and scientists that will continue our exploration into space.

  19. Student Achievement and Retention: Can Professional Development Programs Help Faculty GRASP It?

    ERIC Educational Resources Information Center

    McShannon, Judy; Hynes, Patricia

    2005-01-01

    Many faculty developers have difficulty involving engineering and science faculty in instructional development. Engineering professors are particularly quick to discount the relevance of teaching workshops, and many argue teaching methods presented in workshops lead to lower standards and inflated grades. This paper presents a successful…

  20. Speaking Out on Gender: Reflections on Women's Advancement in the STEM Disciplines

    NASA Astrophysics Data System (ADS)

    Wachs, Faye Linda; Nemiro, Jill

    Faculty at Cal Poly Pomona initiated a campus-wide study to assess the experiences of women in the STEM (Science, Technology, Engineering, and Math) disciplines and to explore what factors were perceived as critical to advancement by successful women on campus. Focus groups with female faculty and administrators at various stages in their career were conducted to address questions of retention, tenure, promotion, and overall job satisfaction. Workload, work-family conflict, and climate emerge as key factors in faculty satisfaction and attributions of success. Ironically, the type of mentoring relationships and professional development cited as key by senior women were rendered improbable for junior female faculty by increasing workloads and work-family conflict. Gender schemas (Valian, 2004) continue to play a role in the increase in workloads and the type of work women are more likely to be asked to do. Women in departments that recognized and accommodated faculty needs, and included faculty in the decision making process, reported much higher levels of satisfaction and productivity than those in inflexible departments. Understanding these issues is critical to overcoming the effects of discrimination such as the continuing shortage of female faculty, especially at the top ranks. Addressing how gender schemas shape the type of work women do within departments and the relative valuation of that work in the RTP (retention, tenure, promotion) process is critical to creating an institutional climate in which female faculty can succeed.

  1. Technology Professional Development and Instructional Technology Integration among Part-Time Faculty at Illinois Community Colleges

    ERIC Educational Resources Information Center

    Roohani, Behnam

    2014-01-01

    This study focused on exploring Illinois community college faculty development coordinators' perceptions about how they are implementing faculty technology professional development programs and providing technical support for part-time faculty in the Illinois community college systems. Also examined were part-time faculty perceptions of the degree…

  2. Beyond Bias and Barriers: Fulfilling the Potential of Women in Academic Science and Engineering

    NASA Astrophysics Data System (ADS)

    Agogino, Alice

    2007-04-01

    Review of the report by the National Academies, with a focus on action strategies in the physical sciences. Women face barriers to hiring and promotion in research universities in many fields of science and engineering; a situation that deprives the United States of an important source of talent as the country faces increasingly stiff global competition in higher education, science and technology, and the marketplace. Eliminating gender bias in universities requires immediate, overarching reform and decisive action by university administrators, professional societies, government agencies, and Congress. Forty years ago, women made up only 3 percent of America's scientific and technical workers, but by 2003 they accounted for nearly one-fifth. In addition, women have earned more than half of the bachelor's degrees awarded in science and engineering since 2000. However, their representation on university and college faculties fails to reflect these gains. Among science and engineering Ph.D.s, four times more men than women hold full-time faculty positions. And minority women with doctorates are less likely than white women or men of any racial or ethnic group to be in tenure positions. The report urges higher education organizations and professional societies to form collaborative, self-monitoring body that would recommend standards for faculty recruitment, retention, and promotion; collect data; and track compliance across institutions. A ``report card'' template is provided in the report. To read the report online, add a comment, or purchase hard copy, go to: http://www.engineeringpathway.com/ep/learningresource/summary/index.jhtml?id=94A4929D-F1B2-432E-8167-63335569CB4E.

  3. Mechatronics education at Virginia Tech

    NASA Astrophysics Data System (ADS)

    Bay, John S.; Saunders, William R.; Reinholtz, Charles F.; Pickett, Peter; Johnston, Lee

    1998-12-01

    The advent of more complex mechatronic systems in industry has introduced new opportunities for entry-level and practicing engineers. Today, a select group of engineers are reaching out to be more knowledgeable in a wide variety of technical areas, both mechanical and electrical. A new curriculum in mechatronics developed at Virginia Tech is starting to bring students from both the mechanical and electrical engineering departments together, providing them wit an integrated perspective on electromechanical technologies and design. The course is cross-listed and team-taught by faculty from both departments. Students from different majors are grouped together throughout the course, each group containing at least one mechanical and one electrical engineering student. This gives group members the ability to learn from one another while working on labs and projects.

  4. Assessing faculty professional development in STEM higher education: Sustainability of outcomes.

    PubMed

    Derting, Terry L; Ebert-May, Diane; Henkel, Timothy P; Maher, Jessica Middlemis; Arnold, Bryan; Passmore, Heather A

    2016-03-01

    We tested the effectiveness of Faculty Institutes for Reforming Science Teaching IV (FIRST), a professional development program for postdoctoral scholars, by conducting a study of program alumni. Faculty professional development programs are critical components of efforts to improve teaching and learning in the STEM (Science, Technology, Engineering, and Mathematics) disciplines, but reliable evidence of the sustained impacts of these programs is lacking. We used a paired design in which we matched a FIRST alumnus employed in a tenure-track position with a non-FIRST faculty member at the same institution. The members of a pair taught courses that were of similar size and level. To determine whether teaching practices of FIRST participants were more learner-centered than those of non-FIRST faculty, we compared faculty perceptions of their teaching strategies, perceptions of environmental factors that influence teaching, and actual teaching practice. Non-FIRST and FIRST faculty reported similar perceptions of their teaching strategies and teaching environment. FIRST faculty reported using active learning and interactive engagement in lecture sessions more frequently compared with non-FIRST faculty. Ratings from external reviewers also documented that FIRST faculty taught class sessions that were learner-centered, contrasting with the teacher-centered class sessions of most non-FIRST faculty. Despite marked differences in teaching practice, FIRST and non-FIRST participants used assessments that targeted lower-level cognitive skills. Our study demonstrated the effectiveness of the FIRST program and the empirical utility of comparison groups, where groups are well matched and controlled for contextual variables (for example, departments), for evaluating the effectiveness of professional development for subsequent teaching practices.

  5. Assessing faculty professional development in STEM higher education: Sustainability of outcomes

    PubMed Central

    Derting, Terry L.; Ebert-May, Diane; Henkel, Timothy P.; Maher, Jessica Middlemis; Arnold, Bryan; Passmore, Heather A.

    2016-01-01

    We tested the effectiveness of Faculty Institutes for Reforming Science Teaching IV (FIRST), a professional development program for postdoctoral scholars, by conducting a study of program alumni. Faculty professional development programs are critical components of efforts to improve teaching and learning in the STEM (Science, Technology, Engineering, and Mathematics) disciplines, but reliable evidence of the sustained impacts of these programs is lacking. We used a paired design in which we matched a FIRST alumnus employed in a tenure-track position with a non-FIRST faculty member at the same institution. The members of a pair taught courses that were of similar size and level. To determine whether teaching practices of FIRST participants were more learner-centered than those of non-FIRST faculty, we compared faculty perceptions of their teaching strategies, perceptions of environmental factors that influence teaching, and actual teaching practice. Non-FIRST and FIRST faculty reported similar perceptions of their teaching strategies and teaching environment. FIRST faculty reported using active learning and interactive engagement in lecture sessions more frequently compared with non-FIRST faculty. Ratings from external reviewers also documented that FIRST faculty taught class sessions that were learner-centered, contrasting with the teacher-centered class sessions of most non-FIRST faculty. Despite marked differences in teaching practice, FIRST and non-FIRST participants used assessments that targeted lower-level cognitive skills. Our study demonstrated the effectiveness of the FIRST program and the empirical utility of comparison groups, where groups are well matched and controlled for contextual variables (for example, departments), for evaluating the effectiveness of professional development for subsequent teaching practices. PMID:27034985

  6. Faculty Development.

    ERIC Educational Resources Information Center

    Gillan, Bob, Ed.; McFerrin, Karen, Ed.

    This document contains the following papers on faculty development and technology: "Involving Faculty in Faculty Development" (Kristine Blair and Dan Madigan); "Technology Use in Higher Education: A Faculty Development Model" (Jessica Kahn); "A Faculty of Education as a Community of Learners: Growing to Meet the Demands of…

  7. Progress in reforming chemical engineering education.

    PubMed

    Wankat, Phillip C

    2013-01-01

    Three successful historical reforms of chemical engineering education were the triumph of chemical engineering over industrial chemistry, the engineering science revolution, and Engineering Criteria 2000. Current attempts to change teaching methods have relied heavily on dissemination of the results of engineering-education research that show superior student learning with active learning methods. Although slow dissemination of education research results is probably a contributing cause to the slowness of reform, two other causes are likely much more significant. First, teaching is the primary interest of only approximately one-half of engineering faculty. Second, the vast majority of engineering faculty have no training in teaching, but trained professors are on average better teachers. Significant progress in reform will occur if organizations with leverage-National Science Foundation, through CAREER grants, and the Engineering Accreditation Commission of ABET-use that leverage to require faculty to be trained in pedagogy.

  8. Data Management Practices and Perspectives of Atmospheric Scientists and Engineering Faculty

    ERIC Educational Resources Information Center

    Wiley, Christie; Mischo, William H.

    2016-01-01

    This article analyzes 21 in-depth interviews of engineering and atmospheric science faculty at the University of Illinois Urbana-Champaign (UIUC) to determine faculty data management practices and needs within the context of their research activities. A detailed literature review of previous large-scale and institutional surveys and interviews…

  9. Browsing of E-Journals by Engineering Faculty

    ERIC Educational Resources Information Center

    Bennett, Denise Beaubien; Buhler, Amy G.

    2010-01-01

    In response to a hypothesis that researchers who no longer use print journals may miss out on the serendipitous benefits of "poor indexing" provided by print tables of contents, librarians at the University of Florida surveyed their engineering faculty to determine faculty use of tables of contents in either print or online format. Results…

  10. Professional Development as a Catalyst for Change in the Community College Science Classroom: How Active Learning Pedagogy Impacts Teaching Practices as Well as Faculty and Student Perceptions of Learning

    ERIC Educational Resources Information Center

    Harmon, Melissa Cameron

    2017-01-01

    Active learning, an engaging, student-centered, evidence-based pedagogy, has been shown to improve student satisfaction, engagement, and achievement in college classrooms. There have been numerous calls to reform teaching practices, especially in science, technology, engineering, and math (STEM); however, the utilization of active learning is…

  11. PORTAAL: A Classroom Observation Tool Assessing Evidence-Based Teaching Practices for Active Learning in Large Science, Technology, Engineering, and Mathematics Classes

    ERIC Educational Resources Information Center

    Eddy, Sarah L.; Converse, Mercedes; Wenderoth, Mary Pat

    2015-01-01

    There is extensive evidence that active learning works better than a completely passive lecture. Despite this evidence, adoption of these evidence-based teaching practices remains low. In this paper, we offer one tool to help faculty members implement active learning. This tool identifies 21 readily implemented elements that have been shown to…

  12. Development of the Novel e-Learning System, "SPES NOVA" (Scalable Personality-Adapted Education System with Networking of Views and Activities)

    ERIC Educational Resources Information Center

    Takeuchi, Ken; Murakami, Manabu; Kato, Atsushi; Akiyama, Ryuichi; Honda, Hirotaka; Nozawa, Hajime; Sato, Ki-ichiro

    2009-01-01

    The Faculty of Industrial Science and Technology at Tokyo University of Science developed a two-campus system to produce well-trained engineers possessing both technical and humanistic traits. In their first year of study, students reside in dormitories in the natural setting of the Oshamambe campus located in Hokkaido, Japan. The education…

  13. Modeling Small Unmanned Aerial System Mishaps Using Logistic Regression and Artificial Neural Networks

    DTIC Science & Technology

    2012-03-22

    Faculty Department of Operational Sciences Graduate School of Engineering and Management Air Force Institute of Technology Air University...Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Operations...this project was well defined. I would also like to thank my reader, Dr. Joseph Pignatiello, for his technical insights and helpful comments. Thanks

  14. An Approximate Dynamic Programming Mode for Optimal MEDEVAC Dispatching

    DTIC Science & Technology

    2015-03-26

    over the myopic policy. This indicates the ADP policy is efficiently managing resources by 28 not immediately sending the nearest available MEDEVAC...DISPATCHING THESIS Presented to the Faculty Department of Operational Sciences Graduate School of Engineering and Management Air Force Institute of Technology...medical evacuation (MEDEVAC) dispatch policies. To solve the MDP, we apply an ap- proximate dynamic programming (ADP) technique. The problem of deciding

  15. A Structured Approach to Honours Undergraduate Research Course, Evaluation Rubrics and Assessment

    NASA Astrophysics Data System (ADS)

    Khoukhi, Amar

    2013-10-01

    This paper presents a new approach to the Honours Undergraduate Research Course design and implementation. The course design process, assessment and evaluation rubrics are provided. Lessons learned and the experience of the faced challenges and opportunities for two cohort offerings of the course during the winter terms of 2011 and 2012 are highlighted. Assessments show that major benefits include increasing interaction with the faculty and increasing intellectual maturity, skills, knowledge and confidence for the students and for the faculty, the furthering of research projects by the participation of undergraduate students. The course can serve as a model that can be easily adapted for use across the disciplines of science, technology, engineering and mathematics.

  16. Teaching Heliophysics Science to Undergraduates in an Engineering Context

    NASA Astrophysics Data System (ADS)

    Baker, J. B.; Sweeney, D. G.; Ruohoniemi, J.

    2013-12-01

    In recent years, space research at Virginia Tech has experienced rapid growth since the initiation of the Center for Space Science and Engineering Research (Space@VT) during the summer of 2007. The Space@VT center resides in the College of Engineering and currently comprises approximately 30-40 faculty and students. Space@VT research encompasses a wide spectrum of science and engineering activities including: magnetosphere-ionosphere data analysis; ground- and space-based instrument development; spacecraft design and environmental interactions; and numerical space plasma simulations. In this presentation, we describe how Space@VT research is being integrated into the Virginia Tech undergraduate engineering curriculum via classroom instruction and hands-on group project work. In particular, we describe our experiences teaching a new sophomore course titled 'Exploration of the Space Environment' which covers a broad range of scientific, engineering, and societal aspects associated with the exploration and technological exploitation of space. Topics covered include: science of the space environment; space weather hazards and societal impacts; elementary orbital mechanics and rocket propulsion; spacecraft engineering subsystems; and applications of space-based technologies. We also describe a high-altitude weather balloon project which has been offered as a 'hands-on' option for fulfilling the course project requirements of the course.

  17. Mentoring Faculty: Results from National Science Foundation's ADVANCE Program

    NASA Astrophysics Data System (ADS)

    Holmes, M. A.

    2015-12-01

    Faculty mentoring programs are common components of National Science Foundation ADVANCE awards. The ADVANCE program aims to increase the number of women on the faculty in science, technology, engineering and mathematics (STEM) departments through grants to individuals and to entire institutions. These grants target a change in institutional culture so that faculty from non-majority groups will succeed and thrive. Mentoring programs are generally designed to fit the particular institution(s) or target population (e.g., meteorologists at the beginning of their careers). A successful mentoring program makes the implicit knowledge necessary for faculty success explicit: policies and practices are made transparent; routes for finding answers are clarified or generated with faculty input; faculty overcome a sense of isolation and develop a community. Mentoring programs may be formal, with assigned mentors and mentees, or informal, with opportunities for beginning, middle and advanced career STEM faculty to mingle, generally over food and sometimes with a formal speaker. The programs are formally evaluated; in general, attention to mentoring generates better outcomes for all faculty. Research indicates that most successful scientists have a network of mentors rather than relying on one person to help navigate department, institution, and profession. The University of Nebraska-Lincoln's (UNL) award, ADVANCE-Nebraska, offered opportunities for faculty to informally network over luncheons with women speakers, advanced in their careers. We also offered after-hours networking receptions. In response to faculty feedback, we shifted to a series of panel discussions entitled "Conversations". Most panels were conducted by successful UNL faculty; about one-third had an outside expert on a given topic. Topics were chosen based on faculty feedback and targeted specifically to beginning faculty (How to Start Up a Lab; How to Balance Teaching and Writing), mid-career faculty (Putting Together Your Promotion Packet; Balancing Service and Innovation); and/or fully promoted faculty (Professional Society Service; Successful Award Nomination Packets). One unexpected outcome from the panel discussions was the development of collaborations among faculty across departments and colleges.

  18. Limitations on diversity in basic science departments.

    PubMed

    Leboy, Phoebe S; Madden, Janice F

    2012-08-01

    It has been over 30 years since the beginning of efforts to improve diversity in academia. We can identify four major stages: (1) early and continuing efforts to diversify the pipeline by increasing numbers of women and minorities getting advanced degrees, particularly in science, technology, engineering, and math (STEM); (2) requiring academic institutions to develop their own "affirmative action plans" for hiring and promotion; (3) introducing mentoring programs and coping strategies to help women and minorities deal with faculty practices from an earlier era; (4) asking academic institutions to rethink their practices and policies with an eye toward enabling more faculty diversity, a process known as institutional transformation. The thesis of this article is that research-intensive basic science departments of highly ranked U.S. medical schools are stuck at stage 3, resulting in a less diverse tenured and tenure-track faculty than seen in well-funded science departments of major universities. A review of Web-based records of research-intensive departments in universities with both medical school and nonmedical school departments indicates that the proportion of women and Black faculty in science departments of medical schools is lower than the proportion in similarly research-intensive university science departments. Expectations for faculty productivity in research-intensive medical school departments versus university-based departments may lead to these differences in faculty diversity.

  19. Faculty Perspectives on the Inclusion of Work-Related Learning in Engineering Curricula

    ERIC Educational Resources Information Center

    Magnell, Marie; Geschwind, Lars; Kolmos, Anette

    2017-01-01

    The purpose of this paper is to identify faculty perspectives on the integration of work-related issues in engineering education. A mixed methods approach was used to explore faculty attitudes towards work-related learning, to describe activities related to working life that have been introduced into the curriculum and to identify factors that…

  20. Toward Inclusive STEM Classrooms: What Personal Role Do Faculty Play?

    PubMed Central

    Killpack, Tess L.; Melón, Laverne C.

    2016-01-01

    Private and public policies are increasingly aimed at supporting efforts to broaden participation of a diverse body of students in higher education. Unfortunately, this increase in student diversity does not always occur alongside changes in institutional culture. Unexamined biases in institutional culture can prevent diverse students from thriving and persisting in science, technology, engineering, and mathematics (STEM) fields. Given the daily personal interactions that faculty have with students, we suggest that individual educators have the opportunity, and responsibility, to improve the retention and persistence of diverse students. However, in our experience, faculty professional development programs often limit discussions of diversity to “comfortable” topics (such as learning styles) and miss opportunities to explore deeper issues related to faculty privilege, implicit bias, and cues for stereotype threat that we all bring to the classroom. In this essay, we present a set of social science concepts that we can extend to our STEM courses to inform our efforts at inclusive excellence. We have recommended strategies for meaningful reflection and professional development with respect to diversity and inclusion, and aim to empower faculty to be change agents in their classrooms as a means to broadening participation in STEM fields. PMID:27496362

  1. A Campus-Wide Study of STEM Courses: New Perspectives on Teaching Practices and Perceptions

    PubMed Central

    Vinson, Erin L.; Smith, Jeremy A.; Lewin, Justin D.; Stetzer, MacKenzie R.

    2014-01-01

    At the University of Maine, middle and high school science, technology, engineering, and mathematics (STEM) teachers observed 51 STEM courses across 13 different departments and collected information on the active-engagement nature of instruction. The results of these observations show that faculty members teaching STEM courses cannot simply be classified into two groups, traditional lecturers or instructors who teach in a highly interactive manner, but instead exhibit a continuum of instructional behaviors between these two classifications. In addition, the observation data reveal that student behavior differs greatly in classes with varied levels of lecture. Although faculty members who teach large-enrollment courses are more likely to lecture, we also identified instructors of several large courses using interactive teaching methods. Observed faculty members were also asked to complete a survey about how often they use specific teaching practices, and we find that faculty members are generally self-aware of their own practices. Taken together, these findings provide comprehensive information about the range of STEM teaching practices at a campus-wide level and how such information can be used to design targeted professional development for faculty. PMID:25452485

  2. 2002 NASA-HU Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    DePriest, Douglas J. (Compiler); Murray, Deborah B. (Compiler); Berg, Jennifer J. (Compiler)

    2004-01-01

    Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering and science faculty members spend 10 weeks working with professional peers on research. NASA HQs and the American Society for Engineering Education supervise the program. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate an exchange of ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of the participants' institutions; (4) To contribute to the research objectives of the NASA Center. Program Description: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program consisting of lectures and seminars relevant to the Fellows' research.

  3. Marshall Space Flight Center Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Six, N. F.; Damiani, R. (Compiler)

    2017-01-01

    The 2017 Marshall Faculty Fellowship Program involved 21 faculty in the laboratories and departments at Marshall Space Flight Center. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2017 Marshall Faculty Fellowship program, along with the Program Announcement (Appendix A) and the Program Description (Appendix B). The research affected the following six areas: (1) Materials (2) Propulsion (3) Instrumentation (4) Spacecraft systems (5) Vehicle systems (6) Space science The materials investigations included composite structures, printing electronic circuits, degradation of materials by energetic particles, friction stir welding, Martian and Lunar regolith for in-situ construction, and polymers for additive manufacturing. Propulsion studies were completed on electric sails and low-power arcjets for use with green propellants. Instrumentation research involved heat pipes, neutrino detectors, and remote sensing. Spacecraft systems research was conducted on wireless technologies, layered pressure vessels, and two-phase flow. Vehicle systems studies were performed on life support-biofilm buildup and landing systems. In the space science area, the excitation of electromagnetic ion-cyclotron waves observed by the Magnetospheric Multiscale Mission provided insight regarding the propagation of these waves. Our goal is to continue the Marshall Faculty Fellowship Program funded by Center internal project offices. Faculty Fellows in this 2017 program represented the following minority-serving institutions: Alabama A&M University and Oglala Lakota College.

  4. An Historical Analysis of the Development of RED HORSE (Rapid Engineer Deployable, Heavy Operation Repair Squadron, Engineering)

    DTIC Science & Technology

    1987-09-01

    BBiC FILE Copy- 00 ~OF AN HISTORICAL ANALYSIS OF THE DEVELOPMENT OF RED HORSE THESIS Jon A. Wheeler Captain, USAF AFIT/GEM/LSR/87S-26 T C Wrgh-atero...Air~ Forc BaEe, Ohi7 j~~pploved I ni8ie D~dmwdl AFIT/GEM/LSR/87S-26 AN HISTORICAL ANALYSIS OF THE DEVELOPMENT OF RED HORSE THESIS Jon A. Wheeler...DEVELOPMENT OF RED HORSE THESIS Presented to the Faculty of the School of Systems and Logistics of the Air Force Institute of Technology Air University

  5. PHOTON2: A web-based professional development model for photonics technology education

    NASA Astrophysics Data System (ADS)

    Massa, Nicholas M.; Washburn, Barbara A.; Kehrhahn, Marijke; Donnelly, Judith F.; Hanes, Fenna D.

    2004-10-01

    In this paper, we present a web-based teacher professional development model for photonics technology education funded by the National Science Foundation Advanced Technology Education (ATE) program. In response to the rapidly growing demand for skilled photonics technicians, the PHOTON2 project will increase the number of high school teachers and community college faculty across the US proficient in teaching photonics technology at their own institutions. The project will also focus on building the capacity of educators to engage in lifelong learning through web-based professional development. Unlike the traditional professional development model whereby educators receive training through intensive short-term workshops, the PHOTON2 project team has developed a pedagogical framework designed specifically for adult learners in which technical content, curriculum development, and learner self-regulatory development are integrated into an active, collaborative, and sustained online learning environment. In Spring 2004, two cohorts of science and technology educators, career/guidance counselors, and industry mentors from eleven states including California, Pennsylvania, Texas, Arizona, Hawaii, and the six New England states commenced participation in the three-year project. Qualitative and quantitative research, focused on individual and environmental factors related to web-based learning, will examine the viability of web-based teacher/faculty professional development in engineering technology education.

  6. Women Engineering Faculty: Expanding the Pipeline

    ERIC Educational Resources Information Center

    Greni, Nadene Deiterman

    2006-01-01

    The purpose for this case study was to explore the features of undergraduate engineering departmental and college support that influenced the persistence of women students. Women engineering faculty members were among the participants at three Land Grant universities in the Midwest. The data revealed the theme, Expanding the Pipeline, and…

  7. How Engineering Standards Are Interpreted and Translated for Middle School

    ERIC Educational Resources Information Center

    Judson, Eugene; Ernzen, John; Krause, Stephen; Middleton, James A.; Culbertson, Robert J.

    2016-01-01

    In this exploratory study we examined the alignment of Next Generation Science Standards (NGSS) middle school engineering design standards with lesson ideas from middle school teachers, science education faculty, and engineering faculty (4-6 members per group). Respondents were prompted to provide plain language interpretations of two middle…

  8. Experience with The Use of Warm Mix Asphalt Additives in Bitumen Binders

    NASA Astrophysics Data System (ADS)

    Cápayová, Silvia; Unčík, Stanislav; Cihlářová, Denisa

    2018-03-01

    In most European countries, Hot Mix Asphalt (HMA) technology is still being used as the standard for the production and processing of bituminous mixtures. However, from the perspective of environmental acceptability, global warming and greenhouse gas production, Slovakia is making an effort to put into practice modern technology, which is characterized by lower energy consumption and reducing negative impacts on the environment. Warm mix asphalt technologies (WMA), which have been verified at the Department of Transportation Engineering laboratory, Faculty of Civil Engineering, Slovak University of Technology (FCE, SUT) can provide the required mixture properties and can be used not only for the construction of new roads, but also for their renovation and reconstruction. The paper was created in cooperation with the Technical University of Ostrava, Czech Republic, which also deals with the addition of additives to asphalt mixtures and binders. It describes a comparison of the impact of some organic and chemical additives on the properties of commonly used bitumen binders in accordance with valid standards and technical regulations.

  9. Keeping learning central: a model for implementing emerging technologies

    PubMed Central

    Willcockson, Irmgard U.; Phelps, Cynthia L.

    2010-01-01

    Felt problem Technology integration continues to be a challenge for health science faculty. While students expect emerging technologies to be used in the classroom, faculty members desire a strategic process to incorporate technology for the students' benefit. Our solution We have developed a model that provides faculty a strategy for integrating emerging technologies into the classroom. The model is grounded in student learning and may be applied to any technology. We present the model alongside examples from faculty who have used it to incorporate technology into their health sciences classrooms. PMID:20165698

  10. Keeping learning central: a model for implementing emerging technologies.

    PubMed

    Willcockson, Irmgard U; Phelps, Cynthia L

    2010-01-15

    FELT PROBLEM: Technology integration continues to be a challenge for health science faculty. While students expect emerging technologies to be used in the classroom, faculty members desire a strategic process to incorporate technology for the students' benefit. OUR SOLUTION: We have developed a model that provides faculty a strategy for integrating emerging technologies into the classroom. The model is grounded in student learning and may be applied to any technology. We present the model alongside examples from faculty who have used it to incorporate technology into their health sciences classrooms.

  11. Perceptions and use of iPad technology by pharmacy practice faculty members.

    PubMed

    DiVall, Margarita V; Zgarrick, David P

    2014-04-17

    To explore the potential of tablet technology to address the specific workload challenges of pharmacy practice faculty members and to evaluate tablet usage after a department-wide iPad initiative. After conducting a needs assessment to determine pharmacy faculty attitudes towards tablet technology and to identify potential usage scenarios, all faculty members in a department of pharmacy practice received an iPad. After iPad distribution, training sessions and virtual tutorials were provided. An anonymous survey was administered to evaluate the pilot. The needs assessment survey revealed positive attitudes towards iPad technology, identified use scenarios, and led to a department-wide iPad pilot program. Most faculty members used iPads for connectivity with students (86%), paper/project annotation (68%), assessment (57%), and demonstration of tools used in practice (36%). For teaching, 61% of faculty members used iPads in seminars/laboratories, 57% used iPads in the experiential setting, and 43% used iPads in the classroom. Use of iPads for patient-care activities varied and depended on site support for mobile technology. The 23 faculty members with external practice sites used iPads to a greater extent and had more positive attitudes towards this technology compared with campus-based faculty members. Integration of tablet technology into the pharmacy education setting resulted in faculty-reported increased productivity and decreased paper waste. It also allowed faculty members to experiment with new teaching strategies in the classroom and experiential setting. Administrators at institutions exploring the use of tablet technology should allocate resources based on faculty needs and usage patterns.

  12. Engaging High School and Engineering Students: A Multifaceted Outreach Program Based on a Mechatronics Platform

    ERIC Educational Resources Information Center

    Habash, Riadh W. Y.; Suurtamm, Christine

    2010-01-01

    If we aim to enhance the interest of students in engineering and therefore produce the best engineers, it is essential to strengthen the pipeline to high school education. This paper discusses several outreach activities undertaken by the Faculty of Engineering and Faculty of Education, University of Ottawa (UO), Ottawa, ON, Canada, to help the…

  13. Education for Sustainable Development: Assessment of the Current Situation at the Faculty of Engineering of Notre Dame University--Louaize

    ERIC Educational Resources Information Center

    Salem, Talal; Harb, Jacques

    2012-01-01

    There is a growing need to incorporate educational sustainable development (ESD) principles into engineering education. This paper identifies engineering competencies within the Faculty of Engineering at Notre Dame University--Louaize and the means to shift towards sustainability. ESD tools are used to carry the analysis, keeping in mind the…

  14. The Gender and Race-Ethnicity of Faculty in Top Science and Engineering Research Departments

    NASA Astrophysics Data System (ADS)

    Beutel, Ann M.; Nelson, Donna J.

    This study examines the gender and racial-ethnic composition of faculty in top research departments for science and engineering "S-E - disciplines. There are critical masses of at least 15% women in top research departments in biological sciences, psychology, and social sciences but not in physical sciences and engineering. Blacks and Hispanics together make up only 4.1% of the faculty in our study. Black and Hispanic females are the most poorly represented groups; together, they make up only 1% of the faculty in top S-E research departments. For most S-E disciplines, less than 15% of full professors in top research departments are women or non-Whites.

  15. Faculty Development. [SITE 2001 Section].

    ERIC Educational Resources Information Center

    Gillan, Bob, Ed.; McFerrin, Karen, Ed.

    This document contains the papers on faculty development from the SITE (Society for Information Technology & Teacher Education) 2001 conference. Topics covered include: a system of faculty development; a faculty development program for medical educators; developing a faculty of education technology integration plan; supporting the development…

  16. The Faculty Self-Reported Assessment Survey (FRAS): differentiating faculty knowledge and experience in assessment.

    PubMed

    Hanauer, David I; Bauerle, Cynthia

    2015-01-01

    Science, technology, engineering, and mathematics education reform efforts have called for widespread adoption of evidence-based teaching in which faculty members attend to student outcomes through assessment practice. Awareness about the importance of assessment has illuminated the need to understand what faculty members know and how they engage with assessment knowledge and practice. The Faculty Self-Reported Assessment Survey (FRAS) is a new instrument for evaluating science faculty assessment knowledge and experience. Instrument validation was composed of two distinct studies: an empirical evaluation of the psychometric properties of the FRAS and a comparative known-groups validation to explore the ability of the FRAS to differentiate levels of faculty assessment experience. The FRAS was found to be highly reliable (α = 0.96). The dimensionality of the instrument enabled distinction of assessment knowledge into categories of program design, instrumentation, and validation. In the known-groups validation, the FRAS distinguished between faculty groups with differing levels of assessment experience. Faculty members with formal assessment experience self-reported higher levels of familiarity with assessment terms, higher frequencies of assessment activity, increased confidence in conducting assessment, and more positive attitudes toward assessment than faculty members who were novices in assessment. These results suggest that the FRAS can reliably and validly differentiate levels of expertise in faculty knowledge of assessment. © 2015 D. I. Hanauer and C. Bauerle. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Retention and promotion of women and underrepresented minority faculty in science and engineering at four large land grant institutions

    PubMed Central

    Durodoye, Raifu; Griffith, Emily; Wilson, Alyson

    2017-01-01

    The current climate on college campuses has brought new urgency to the need to increase faculty diversity. In STEM fields particularly, the dearth of underrepresented minority (URM) and female faculty is severe. The retention and success of African American, Hispanic/Latino, American Indian and female faculty have direct implications for the quality and diversity of the future scientific workforce. Understanding the ways retention patterns differ by discipline and institution is crucial for developing a diverse faculty. This study investigates tenure attainment, retention, and time to promotion to full professor for women and URM faculty. We analyze personnel records for assistant and associate professors hired or appointed from 1992 to 2015 at four large land grant institutions. Representation of women and URM faculty in STEM disciplines increased substantially from 1992 to 2015, but mostly for women and Hispanic faculty and more slowly for black and American Indian faculty. Results by gender In the most recent cohort, 2002–2015, the experiences of men and women differed substantially among STEM disciplines. Female assistant professors were more likely than men to leave the institution and to leave without tenure in engineering, but not in the agricultural, biological and biomedical sciences and natural resources or physical and mathematical sciences. In contrast, the median times to promotion from associate to full professor were similar for women and men in engineering and the physical and mathematical sciences, but one to two years longer for women than men in the agricultural, biological and biomedical sciences and natural resources. Results for underrepresented minority faculty URM faculty hiring is increasing, but is well below the proportions earning doctoral degrees in STEM disciplines. The results are variable and because of the small numbers of URM faculty, the precision and power for comparing URM faculty to other faculty were low. In three of the four institutions, lower fractions of URM faculty than other faculty hired in the 2002–2006 time frame left without tenure. Also, in the biological and biomedical and physical and mathematical sciences no URM faculty left without tenure. On the other hand, at two of the institutions, significantly more URM faculty left before their tenth anniversary than other faculty and in engineering significantly more URM faculty than other faculty left before their tenth anniversary. We did not find significant differences in promotion patterns between URM and other faculty. PMID:29091958

  18. USAF/SCEEE Summer Faculty Research Program (1979). Volume 2

    DTIC Science & Technology

    1979-12-01

    Summer Faculty Research Program participants. The program designed to stimulate ’Ilk scientific and engineering interaction between university faculty...Prog., Dept. of Industrial Engineering Facility design and location theory University of Oklahoma and routing and distribution systems 202 W. Boyd...Theory & Assistant Professor of Management Adninistration, 1975 University of Akron S.ec aIty: Organization Design Akron, OH 44325 Assigned: AFBRMC

  19. The Possible Role of Resource Requirements and Academic Career-Choice Risk on Gender Differences in Publication Rate and Impact

    PubMed Central

    Sales-Pardo, Marta; Radicchi, Filippo; Otis, Shayna; Woodruff, Teresa K.; Nunes Amaral, Luís A.

    2012-01-01

    Many studies demonstrate that there is still a significant gender bias, especially at higher career levels, in many areas including science, technology, engineering, and mathematics (STEM). We investigated field-dependent, gender-specific effects of the selective pressures individuals experience as they pursue a career in academia within seven STEM disciplines. We built a unique database that comprises 437,787 publications authored by 4,292 faculty members at top United States research universities. Our analyses reveal that gender differences in publication rate and impact are discipline-specific. Our results also support two hypotheses. First, the widely-reported lower publication rates of female faculty are correlated with the amount of research resources typically needed in the discipline considered, and thus may be explained by the lower level of institutional support historically received by females. Second, in disciplines where pursuing an academic position incurs greater career risk, female faculty tend to have a greater fraction of higher impact publications than males. Our findings have significant, field-specific, policy implications for achieving diversity at the faculty level within the STEM disciplines. PMID:23251502

  20. Final Assembly, Testing and Processing of the Rigidizable Inflatable Get-Away-Special Experiment (RIGEX) for Spaceflight Qualification

    DTIC Science & Technology

    2007-09-01

    THESIS Jeremy J. Owens, Captain, USAF AFIT/GA/ENY/07-S02 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright...Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this thesis are...SPACEFLIGHT QUALIFICATION THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and

  1. Development of a Resource Manager Framework for Adaptive Beamformer Selection

    DTIC Science & Technology

    2013-12-27

    DEVELOPMENT OF A RESOURCE MANAGER FRAMEWORK FOR ADAPTIVE BEAMFORMER SELECTION DISSERTATION Jeremy P. Stringer, Major, USAF AFIT-ENG-DS-13-D-01...Force, the United States Department of Defense or the United States Government. AFIT-ENG-DS-13-D-01 DEVELOPMENT OF A RESOURCE MANAGER FRAMEWORK FOR...ADAPTIVE BEAMFORMER SELECTION DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology Air

  2. Graduate Automotive Technology Education (GATE) Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey Hodgson; David Irick

    2005-09-30

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its sixth year of operation. During this period the Center has involved thirteen GATE Fellows and ten GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center's focus area: hybrid drive trains and control systems. Eighteen GATE students have graduated, and three have completed their course work requirements. Nine faculty members from three departments in the College of Engineering have been involved in the GATE Center. In addition to the impact that the Center has had on the students andmore » faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as internships, equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $4,000,000. Problem areas are discussed in the hope that future activities may benefit from the operation of the current program.« less

  3. Instructional Technology and Faculty Development.

    ERIC Educational Resources Information Center

    Holden, Carole A.

    This paper explores the challenges instructional technology presents to faculty and administration. For example: students will not accept lectures that fail to draw upon Internet resources; integrating technology sparks the faculty debate that the use of technology will "dehumanize teaching and learning"; community college professors…

  4. One Model of Professional Development for Higher Education Faculty

    ERIC Educational Resources Information Center

    Amburgey, Valeria

    2007-01-01

    Northern Kentucky University's College of Education's faculty realizes that the infusion of technology into the teacher education program is important. Support for the infusion of technology was evident when the faculty adopted the ISTE Recommended Foundations for Teachers and a five-year technology plan in 1998. Interviews with the faculty during…

  5. Female Faculty in Male-Dominated Fields: Law, Medicine, and Engineering

    ERIC Educational Resources Information Center

    Ward, LaWanda

    2008-01-01

    Studies have documented the increased number of women faculty in the academy; however in areas that are historically male dominated--law, medicine, and engineering--the numbers remain dismal. This article describes the real situation of female professors in the academic disciplines of law, medicine, and engineering. This article also provides…

  6. Enhanced and Tunable Optical Quantum Efficiencies from Plasmon Bandwidth Engineering in Bimetallic CoAg Nanoparticles (Open Access Publisher’s Version)

    DTIC Science & Technology

    2016-08-01

    Engineering Engineering -- Faculty Publications and Other Works 8-2016 Enhanced and tunable optical quantum efficiencies from plasmon bandwidth engineering ...this and additional works at: http://trace.tennessee.edu/utk_matepubs Part of the Materials Science and Engineering Commons This Article is brought to...you for free and open access by the Engineering -- Faculty Publications and Other Works at Trace: Tennessee Research and Creative Exchange. It has been

  7. Technology Adoption in Higher Education: Overcoming Anxiety through Faculty Bootcamp

    ERIC Educational Resources Information Center

    Johnson, Terri; Wisniewski, Mary Ann; Kuhlemeyer, Greg; Isaacs, Gerald; Krzykowski, Jamie

    2012-01-01

    The reluctance to design and teach online courses in higher education is often attributed to technology anxiety in faculty. This article documents a faculty development model that has successfully helped faculty overcome this obstacle. "Bootcamps," faculty development programs held at Carroll University in Waukesha, WI, were specifically and…

  8. What Do Faculty Want?

    ERIC Educational Resources Information Center

    Chizmar, John F.; Williams, David B.

    2001-01-01

    Uses classroom experience and data from a faculty survey to explore what faculty want from instructional technology. Presents several assertions, such as "faculty want instructional technology driven by pedagogical goals" and "faculty desire Web-based tools designed for a specific pedagogical task as opposed to a Swiss-Army-knife Web tool designed…

  9. Office of Educational Programs 2009 Summer Internship Symposium and Poster Session

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White,K.; Morris, M.; Osiecki, C.

    2009-08-06

    Brookhaven National Laboratory offers college and pre-college faculty and students many opportunities to participate in Laboratory educational programs. The programs administered by the Office of Educational Programs are primarily funded by the U.S. Department of Energy, Brookhaven Science Associates, and other federal and non-federal agencies. Faculty and student research participation is welcomed in physical and life sciences, computer science and engineering, as well as in a variety of applied research areas relating to alternative energy, conservation, environmental technology, and national security. Visit our website at http://www.bnl.gov/education for application deadlines and more details. Following is a description of the programs managedmore » by the Office of Educational Programs.« less

  10. Postgraduate part-time education in optical design for technical personnel in the Russian optical industry

    NASA Astrophysics Data System (ADS)

    Khoroshev, Michael V.

    1997-12-01

    Traditionally two intercompletely training forms are used in Russian optical industry: a training at University and at the high technology optical plant laboratories. The curriculum adaptation for specific part-time conditions is made by associating of similar courses, intensivizing of the methodic preparation, using of the highest qualification faculty's lectors. Special attention is given to a master's skill development by the intensification of the practice part of each course of studies. Since 1961 about 2,300 diploma engineers in optical design graduated MIIGAiK Part-time Faculty. Among them are chiefs of the large scientific groups, the authors of the newest electro-optical devices, the lecturers and professors at the professional educating system.

  11. Perceptions of pharmacy students, faculty members, and administrators on the use of technology in the classroom.

    PubMed

    DiVall, Margarita V; Hayney, Mary S; Marsh, Wallace; Neville, Michael W; O'Barr, Stephen; Sheets, Erin D; Calhoun, Larry D

    2013-05-13

    To gather and evaluate the perceptions of students, faculty members, and administrators regarding the frequency and appropriateness of classroom technology use. Third-year pharmacy students and faculty members at 6 colleges and schools of pharmacy were surveyed to assess their perceptions about the type, frequency, and appropriateness of using technology in the classroom. Upper-level administrators and information technology professionals were also interviewed to ascertain overall technology goals and identify criteria used to adopt new classroom technologies. Four hundred sixty-six students, 124 faculty members, and 12 administrators participated in the survey. The most frequently used and valued types of classroom technology were course management systems, audience response systems, and lecture capture. Faculty members and students agreed that faculty members appropriately used course management systems and audience response systems. Compared with their counterparts, tech-savvy, and male students reported significantly greater preference for increased use of classroom technology. Eighty-six percent of faculty members reported having changed their teaching methodologies to meet student needs, and 91% of the students agreed that the use of technology met their needs. Pharmacy colleges and schools use a variety of technologies in their teaching methods, which have evolved to meet the needs of the current generation of students. Students are satisfied with the appropriateness of technology, but many exhibit preferences for even greater use of technology in the classroom.

  12. Perceptions of Pharmacy Students, Faculty Members, and Administrators on the Use of Technology in the Classroom

    PubMed Central

    DiVall, Margarita V.; Hayney, Mary S; Marsh, Wallace; Neville, Michael W.; O’Barr, Stephen; Sheets, Erin D.; Calhoun, Larry D.

    2013-01-01

    Objectives. To gather and evaluate the perceptions of students, faculty members, and administrators regarding the frequency and appropriateness of classroom technology use. Methods. Third-year pharmacy students and faculty members at 6 colleges and schools of pharmacy were surveyed to assess their perceptions about the type, frequency, and appropriateness of using technology in the classroom. Upper-level administrators and information technology professionals were also interviewed to ascertain overall technology goals and identify criteria used to adopt new classroom technologies. Results. Four hundred sixty-six students, 124 faculty members, and 12 administrators participated in the survey. The most frequently used and valued types of classroom technology were course management systems, audience response systems, and lecture capture. Faculty members and students agreed that faculty members appropriately used course management systems and audience response systems. Compared with their counterparts, tech-savvy, and male students reported significantly greater preference for increased use of classroom technology. Eighty-six percent of faculty members reported having changed their teaching methodologies to meet student needs, and 91% of the students agreed that the use of technology met their needs. Conclusions. Pharmacy colleges and schools use a variety of technologies in their teaching methods, which have evolved to meet the needs of the current generation of students. Students are satisfied with the appropriateness of technology, but many exhibit preferences for even greater use of technology in the classroom. PMID:23716743

  13. Summer faculty fellowship program, 1984

    NASA Technical Reports Server (NTRS)

    Spencer, J. H. (Compiler)

    1984-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 or 11 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society of Engineering Education supervises the programs. Objectives: (1) to further the professional knowledge of a qualified between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants institutions; and (4) to contribute to the research objectives of the NASA center. Program Description: College or university faculty members will be appointed as research fellows to spend 10 weeks in cooperative research and study at the NASA-Langley Research Center. The fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of general interest or that are directly relevant to the fellow's research project. The lecturers and seminar leaders will be distinguished scientists and engineers from NASA, education, or industry.

  14. The International Congress of Mechanical Engineering and Agricultural Sciences - CIIMCA 2013

    NASA Astrophysics Data System (ADS)

    Remolina-Millán, Aduljay; Hernández-Arroyo, Emil

    2014-06-01

    The organizing committee of The International Congress of Mechanical Engineering and Agricultural Sciences - CIIMCA 2013 - are pleased to present CIIMCA-2013: the first international conference focused on subjects of materials science, mechanical engineering and renewable energy organized by Mechanical Engineering Faculty of the ''Universidad Pontificia Bolivariana'' in Bucaramanga, Colombia. This conference aims to be a place to produce discussions on whole topics of the congress, between the scientists of Colombia and the world. We strongly believe that knowledge is fundamental to the development of our countries. For that reason this multidisciplinary conference is looking forward to integrate engineering, agricultural science and nanoscience and nanotechnology to produce a synergy of this area of knowledge and to achieve scientific and technological developments. Agriculture is a very important topic for our conference; in Colombia, agricultural science needs more attention from the scientific community and the government. In the Faculty of Mechanical Engineering we are beginning to work on these issues to produce knowledge and improve the conditions in our country. The CIIMCA conference is a great opportunity to create interpersonal relationships and networks between scientists around the world. The interaction between scientists is very important in the process of the construction of knowledge. The general chairman encourages and invites you to make friends, relationships and participate strongly in the symposia and all program activities. PhD Aduljay Remolina-Millán Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress - CIIMCA Msc Emil Hernández-Arroyo Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress - CIIMCA Conference photograph Conference photograph 'Universidad Pontificia Bolivariana seccional Bucaramanga' host of the first International Mechanical Engineering and Agricultural Sciences Congress - CIIMCA 2013 - Floridablanaca, Colombia. Conference photograph Closure of CIIMCA 2013. Details of the editorial committee and acknowledgements are available in the PDF.

  15. English Language Support for Engineering Students and Professors

    NASA Astrophysics Data System (ADS)

    Teshigawara, Mihoko

    The University of Tokushima Graduate School of Advanced Technology and Science has launched the International Affiliated Double-Degree Program. In this program students pursue double degrees in engineering at the graduate level organized between the Graduate School and one of its 11 overseas partner institutions. Since the Graduate School is committed to offering content lectures in English, the faculty members involved need a good command of English. Future outgoing students also have to improve their English (and the local language spoken at the partner institution) to conduct academic activities at the partner institution successfully. This paper describes the author‧s continuing efforts toward the provision and improvement of English language support for engineering students and instructors, touching on similar activities elsewhere.

  16. KSC-02pd0659

    NASA Image and Video Library

    2002-05-14

    KENNEDY SPACE CENTER, FLA. -- Gregg Buckingham, with KSC's Center for Space Education, addresses participants in this year's NASA MarsPort Engineering Design Student Competition 2002 conference at the KSC Visitor Complex, organized by the Florida Space Grant Consortium. Students and faculty from the nation's universities converged at Kennedy for the MarsPort Competition, presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts. Also featured at the opening ceremony were Dr. Sam Durrance, FSGC director and former astronaut, and Dr. Gary Stutte, plant scientist, Dynamac Corporation.

  17. Examining the effect of goal clarity on faculty performance

    NASA Astrophysics Data System (ADS)

    Waychal, Pradeep

    2018-07-01

    Performance of faculty members is the prime factor in the success of any academic organisation and certainly engineering academic organisation. The performance depends on various factors. This study tests our hypothesis, in the context of an Indian engineering college, that goal clarity is one such factor that significantly impacts faculty performance. Our experiment emphasised the importance of goal clarity by screening a relevant movie and by seeking professional goals from the faculty members. After a year, we evaluated the faculty performance using peer evaluation method and triangulated the data with course evaluation by students where faculty member's goal was to be a better teacher, to ensure the trustworthiness of peer evaluation. We found that the performance of faculty, who had goal clarity, was significantly better than the performance of those who did not have goal clarity.

  18. A Working Plan for Treating the Engineering Faculty Shortage Problem.

    ERIC Educational Resources Information Center

    Shoup, Terry E., Ed.

    In view of the consequences of the engineering faculty shortage problem on engineering capabilities in the future in the United States, a working plan which will serve as a national agenda for prompt action has been developed. This plan involves the three key groups (federal government, academic community, industry) who have the vision,…

  19. Training Needs for Faculty Members: Towards Achieving Quality of University Education in the Light of Technological Innovations

    ERIC Educational Resources Information Center

    Abouelenein, Yousri Attia Mohamed

    2016-01-01

    The aim of this study was to identify training needs of university faculty members, in order to achieve the desired quality in the light of technological innovations. A list of training needs of faculty members was developed in terms of technological innovations in general, developing skills of faculty members in the use of technological…

  20. Exploring the use of tablet PCs in veterinary medical education: opportunity or obstacle?

    PubMed

    Wang, Hong; Rush, Bonnie R; Wilkerson, Melinda; van der Merwe, Deon

    2014-01-01

    A tablet PC is a laptop computer with a touch screen and a digital pen or stylus that can be used for handwritten notes and drawings. The use of tablet PCs has been investigated in many disciplines such as engineering, mathematics, science, and education. The purpose of this article is to explore student and faculty attitudes toward and experiences with tablet PCs 6 years after the implementation of a tablet PC program in the College of Veterinary Medicine (CVM) at Kansas State University (K-State). This study reports that the use of tablet PCs has enhanced students' learning experiences through learner-interface interaction, learner-content interaction, learner-instructor interaction, and learner-learner interaction. This study also identifies digital distraction as the major negative experience with tablet PCs during class time. The tablet PC program provides CVM faculty the potential to pursue technology integration strategies that support expected learning outcomes and provides students the potential to develop self-monitoring and self-discipline skills that support learning with digital technologies.

  1. Model Identification and Control System Design for the Lambda Unmanned Research Vehicle

    DTIC Science & Technology

    1991-09-01

    AD-A241 859 D T IC_ _ _ _ _ __ OCT 21921MODEL IDENTIFICATION AND CONTROL SYSTEM DESIGN FOR THE LAMBDA UNMANNED RESEARCH VEHICLE: THESIS Gerald A...23 191K MODEL IDENTIFICATION AND CONTROL SYSTEM DESIGN FOR THE LAMBDA UNMANNED RESEARCH VEHICLE THESIS Gerald A. Swift, First Lieutenant, USAF AFIT...UNMANNED RESEARCH VEHICLE THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University in Partial

  2. A Model for Determining Modular Heat Recovery Incinerator Feasibility on Air Force Installations.

    DTIC Science & Technology

    1992-09-01

    INCINERATOR FEASIBILITY ON AIR FORCE INSTALLATIONS THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology...commer- cial, (and) institutional discards...not (including] industrial process or manufacturing discards, segre- gated medical waste, or construction...have "... particular 11 value as an additive to an existing steam system, such as a central heating plant for an institution " (46:E-26). Exam- ples

  3. East Europe Report, Political, Sociological and Military Affairs, No. 2176

    DTIC Science & Technology

    1983-08-03

    preceded by a ques- tion mark and enclosed in parentheses were not clear in the original but have been supplied as appropriate in context . Other...in Elbasan, in the technological school in Tirana and, in general, in the faculties of engineering, in the pedagogical institutes and so forth...few studies and few forces engaged in this work. Time has come for the pedagogical offices in the districts, the Institute of Pedagogical Studies

  4. Experimental and Theoretical Basis for a Closed-Form Spectral BRDF Model

    DTIC Science & Technology

    2015-09-17

    EXPERIMENTAL AND THEORETICAL BASIS FOR A CLOSED-FORM SPECTRAL BRDF MODEL DISSERTATION Samuel D. Butler, Major, USAF AFIT-ENP-DS-15-S-021 DEPARTMENT...SPECTRAL BRDF MODEL DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology Air University Air...FOR A CLOSED-FORM SPECTRAL BRDF MODEL DISSERTATION Samuel D. Butler, BS, MS Major, USAF Committee Membership: Michael A. Marciniak, PhD Chairman Kevin

  5. Cascading Effects of Fuel Network Interdiction

    DTIC Science & Technology

    2015-03-26

    Agriculture, hunting, forestry and fishing C10T14 M ning and quarry ng C15T16 Food products, beverages and tobacco C17T19 Textiles, textile products...9369063 C15T16 Food products, beverages and tobacco 33278 70853 222.4224148 112593.0889 4705.413385 49.58915033 491.768614 81.36711771 1554.487224...THESIS Presented to the Faculty Department of Operational Sciences Graduate School of Engineering and Management Air Force Institute of Technology

  6. Future Issues Facing Administrators in Pharmaceutical Education.

    ERIC Educational Resources Information Center

    Fink, Joseph L., III

    1986-01-01

    Issues facing pharmaceutical education include the need to keep up with advancing technology, the need to keep faculty from overemphasizing technology to the detriment of other responsibilities, motivating and rewarding faculty, dealing with loss of faculty productivity, and part-time faculty. (MSE)

  7. The Role of Aerospace Technology in Agriculture. The 1977 Summer Faculty Fellowship Program in Engineering Systems Design

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Possibilities were examined for improving agricultural productivity through the application of aerospace technology. An overview of agriculture and of the problems of feeding a growing world population are presented. The present state of agriculture, of plant and animal culture, and agri-business are reviewed. Also analyzed are the various systems for remote sensing, particularly applications to agriculture. The report recommends additional research and technology in the areas of aerial application of chemicals, of remote sensing systems, of weather and climate investigations, and of air vehicle design. Also considered in detail are the social, legal, economic, and political results of intensification of technical applications to agriculture.

  8. Strategies for recruiting additional African Americans into the NASA JSC summer faculty fellows program

    NASA Technical Reports Server (NTRS)

    Hyman, Ladelle M.

    1993-01-01

    African Americans have participated sporadically in the NASA JSC Summer Faculty Fellows Program--none in 1992 and four in 1993. There is a pool of African Americans who are both qualified to provide services and willing to participate in initiatives which support technologies required for future JSC programs. They can provide human support and handle mission operations, spacecraft systems, planet surface systems, and management tools. Most of these faculty teach at historically black colleges and universities (HBCU's). This research will document the current recruitment system, critique it, and develop a strategy which will facilitate the diversification of the NASA JSC Summer Faculty Fellows Program. While NASA currently mails notices to HBCU's, such notices have generated few applications from, and fewer selections of, targeted faculty. To increase the participation of African Americans in the NASA JSC Summer Faculty Fellows Program, this participant will prepare a strategy which includes a document which identifies HBCU-targeted faculty and enumerates more formally extensive and intensive communication procedures. A fifteen-minute panel discussion, which will include a video, will be delivered during the annual meeting of the American Society for Engineering Education (ASEE) to be held in Edmonton, Alberta, Canada, June 26-29, 1994. An announcement letter will be mailed to targeted faculty; follow-up telephone calls and personal visits will be made and a checklist flowchart will be completed by key NASA personnel or designee. Although initially limited to NASA JSC's recruitment of African Americans, this strategy may be broadened to include other NASA sites and other targeted minority groups.

  9. The Design of a Primary Flight Trainer using Concurrent Engineering Concepts

    NASA Technical Reports Server (NTRS)

    Ladesic, James G.; Eastlake, Charles N.; Kietzmann, Nicholas H.

    1993-01-01

    Concurrent Engineering (CE) concepts seek to coordinate the expertise of various disciplines from initial design configuration selection through product disposal so that cost efficient design solutions may be achieve. Integrating this methodology into an undergraduate design course sequence may provide a needed enhancement to engineering education. The Advanced Design Program (ADP) project at Embry-Riddle Aeronautical University (EMU) is focused on developing recommendations for the general aviation Primary Flight Trainer (PFT) of the twenty first century using methods of CE. This project, over the next two years, will continue synthesizing the collective knowledge of teams composed of engineering students along with students from other degree programs, their faculty, and key industry representatives. During the past year (Phase I). conventional trainer configurations that comply with current regulations and existing technologies have been evaluated. Phase I efforts have resulted in two baseline concepts, a high-wing, conventional design named Triton and a low-wing, mid-engine configuration called Viper. In the second and third years (Phases II and III). applications of advanced propulsion, advanced materials, and unconventional airplane configurations along with military and commercial technologies which are anticipated to be within the economic range of general aviation by the year 2000, will be considered.

  10. Teaching professional development of science and engineering professors at a research-extensive university: Motivations, meaningfulness, obstacles, and effects

    NASA Astrophysics Data System (ADS)

    Bouwma-Gearhart, Jana

    There is a national movement to improve undergraduate science, technology, engineering, and mathematics (STEM) education. Given the percentage of academics teaching and training at research institutions, there is a parallel movement to improve the quality of teaching-focused professional development for practicing and future STEM educators at these institutions. While research into the effectiveness of teaching professional development at the postsecondary level has increased over the last 40 years, little attention has been paid to understanding faculty perceptions regarding what constitutes effective teaching professional development. Less is known about how to best meet the needs of STEM faculty at research universities and why, given that they are seldom required to engage in teaching professional development, they bother to participate at all. The higher education research community must develop theory grounded in the knowledge and practical experiences of the faculty engaged in teaching professional development. I have studied what motivates twelve research university science and engineering faculty to engage in teaching professional development in light of local supports and barriers and the resulting value of their participation. I have interpreted the experiences of my research participants to indicate that they were motivated to engage in teaching professional development to fulfill a need to bring their teaching competencies in better concordance with their professional strengths as researchers. Once engaged, my research participants increased their teaching competence and achieved more autonomy with respect to their professional practice. As they continued to engage, they internalized the values and practices associated with effective teaching professional development and adopted the commitment to continually problematize their teaching practice as more of their own. My research participants attempted to transfer their revised stance regarding teaching and teaching professional development to their student mentees and colleagues. They found certain teaching professional development types and topics to be more meaningful and of interest than others. My research findings may inform those committed to the improvement of postsecondary STEM education at research universities, including teaching professional development advocates and implementers and participating faculty members themselves.

  11. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology

    PubMed Central

    Kowalski, Jennifer R.; Hoops, Geoffrey C.; Johnson, R. Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members’ research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules. Each CURE laboratory involved multiple experimental phases and culminated in novel, open-ended, and reiterative student-driven research projects. Course assessments showed CURE participation increased students’ experimental design skills, attitudes and confidence about research, perceived understanding of the scientific process, and interest in science, technology, engineering, and mathematics disciplines. More than 75% of CURE students also engaged in independent scientific research projects, and faculty CURE contributors saw substantial increases in research productivity, including increased undergraduate student involvement and academic outputs. Our collaborative CUREs demonstrate the advantages of multicourse CUREs for achieving increased faculty research productivity and traditional CURE-associated student learning and attitude gains. Our collaborative CURE design represents a novel CURE model for ongoing laboratory reform that benefits both faculty and students. PMID:27810870

  12. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The 1987 Johnson Space Center (JCS) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of ASEE. The basic objectives of the program are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 1987.

  13. Supplemental Instruction (SI) at the Faculty of Engineering (LTH), Lund University, Sweden. An Evaluation of the SI-Program at Five LTH Engineering Programs Autumn 2008

    ERIC Educational Resources Information Center

    Malm, Joakim; Bryngfors, Leif E.; Mörner, Lise-Lotte

    2010-01-01

    The study presents an evaluation of the SI program in five engineering programs within the Faculty of Engineering (LTH) based on data from questionnaires to SI participants and SI-Leaders, credits taken by the students during the first year, and average grade data from high school for the first year students. The results show that participation in…

  14. Meeting the computer technology needs of community faculty: building new models for faculty development.

    PubMed

    Baldwin, Constance D; Niebuhr, Virginia N; Sullivan, Brian

    2004-01-01

    We aimed to identify the evolving computer technology needs and interests of community faculty in order to design an effective faculty development program focused on computer skills: the Teaching and Learning Through Educational Technology (TeLeTET) program. Repeated surveys were conducted between 1994 and 2002 to assess computer resources and needs in a pool of over 800 primary care physician-educators in community practice in East Texas. Based on the results, we developed and evaluated several models to teach community preceptors about computer technologies that are useful for education. Before 1998, only half of our community faculty identified a strong interest in developing their technology skills. As the revolution in telecommunications advanced, however, preceptors' needs and interests changed, and the use of this technology to support community-based teaching became feasible. In 1998 and 1999, resource surveys showed that many of our community teaching sites had computers and Internet access. By 2001, the desire for teletechnology skills development was strong in a nucleus of community faculty, although lack of infrastructure, time, and skills were identified barriers. The TeLeTET project developed several innovative models for technology workshops and conferences, supplemented by online resources, that were well attended and positively evaluated by 181 community faculty over a 3-year period. We have identified the evolving needs of community faculty through iterative needs assessments, developed a flexible faculty development curriculum, and used open-ended, formative evaluation techniques to keep the TeLeTET program responsive to a rapidly changing environment for community-based education in computer technology.

  15. Differences in Collaboration Patterns across Discipline, Career Stage, and Gender

    PubMed Central

    Duch, Jordi; Ribeiro, Haroldo V.; Woodruff, Teresa K.

    2016-01-01

    Collaboration plays an increasingly important role in promoting research productivity and impact. What remains unclear is whether female and male researchers in science, technology, engineering, and mathematical (STEM) disciplines differ in their collaboration propensity. Here, we report on an empirical analysis of the complete publication records of 3,980 faculty members in six STEM disciplines at select U.S. research universities. We find that female faculty have significantly fewer distinct co-authors over their careers than males, but that this difference can be fully accounted for by females’ lower publication rate and shorter career lengths. Next, we find that female scientists have a lower probability of repeating previous co-authors than males, an intriguing result because prior research shows that teams involving new collaborations produce work with higher impact. Finally, we find evidence for gender segregation in some sub-disciplines in molecular biology, in particular in genomics where we find female faculty to be clearly under-represented. PMID:27814355

  16. Analyzing Citation and Research Collaboration Characteristics of Faculty in Aerospace, Civil and Environmental, Electrical and Computer, and Mechanical Engineering

    ERIC Educational Resources Information Center

    Zhang, Li

    2018-01-01

    This article investigates citation and research collaboration habits of faculty in four engineering departments. The analysis focuses on similarities and differences among the engineering disciplines. Main differences exist in the use of conference papers and technical reports. The age of cited materials varies by discipline and by format.…

  17. Usability Testing and Redesign of Library Web Pages at Lund University, Faculty of Engineering: A Case Study Applying a Two-Phase, Systematic Quality Approach

    ERIC Educational Resources Information Center

    Persson, Ann-Christin; Langh, Maria; Nilsson, Jessica

    2010-01-01

    Introduction: The Lund University Faculty of Engineering's LibQual+[R] survey 2007 showed that students and faculty had difficulties finding the information they needed at the libraries' Websites. To be able to improve the Websites, we needed to find out how the users navigated the Websites, as well as what content they needed. Method: Twenty-four…

  18. Faculty Experiences, Perceptions, and the Factors That Influence the Use of E-Learning Technologies in the Classroom

    ERIC Educational Resources Information Center

    Burgos, Rosalina

    2014-01-01

    The rapid growth of e-learning technologies in higher education challenges university faculty to make their teaching relevant in these new contexts. As e-learning technologies are widely available, faculty members integrated them to their teaching repertoire. Several researchers discussed the impact of e-learning technologies on teaching and…

  19. Technological Modeling: Faculty Use of Technologies in Preservice Teacher Education from 2004 to 2012

    ERIC Educational Resources Information Center

    Hughes, Joan E.; Liu, Sa; Lim, Mihyun

    2016-01-01

    This 7-year, cross-sectional study of a 1:1 laptop teacher preparatory program in the United States examined the nature and change in faculty technological modeling. Using survey methods, preservice teachers (n = 932) reported their faculty's use of technological activities in coursework. Through descriptive statistics, chi-square tests, and…

  20. Factors Affecting Faculty Use of Learning Technologies: Implications for Models of Technology Adoption

    ERIC Educational Resources Information Center

    Buchanan, Tom; Sainter, Phillip; Saunders, Gunter

    2013-01-01

    This study examines factors associated with the use of learning technologies by higher education faculty. In an online survey in a UK university, 114 faculty respondents completed a measure of Internet self-efficacy, and reported on their use of learning technologies along with barriers to their adoption. Principal components analysis suggested…

  1. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Starke, Edgar A., Jr.; Gangloff, Richard P.; Herakovich, Carl T.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1995-01-01

    The NASA-UVa Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. Here, we report on progress achieved between July 1 and December 31, 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.

  2. In Brief: Revitalizing Earth science education

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-12-01

    A 5-year, $3.9-million U.S. National Science Foundation Math Science Partnership grant to Michigan Technological University (MTU), in Houghton, aims to improve instruction in middle-school Earth and space science courses. The program will enable geoscience and education researchers to work with middle-school science teachers to test strategies designed to reform science, technology, engineering, and math (STEM) education. Project lead researcher Bill Rose said the project could be a template for improvement in STEM throughout the United States. Rose, one of seven MTU faculty members involved with the Michigan Institute for Teaching Excellence Program (MITEP), said the project is ``trying to do something constructive to attract more talented young people to advanced science, math, and technology.'' The project includes data collection and analysis overseen by an evaluation team from the Colorado School of Mines. Also participating in the project are scientists from Grand Valley State University, Allendale, Mich.; the Grand Rapids (Mich.) Area Pre-College Engineering Program; the American Geological Institute; and the U.S. National Park Service.

  3. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developedmore » in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.« less

  4. Recruiting Female Faculty Members in Science and Engineering: Preliminary Evaluation of One Intervention Model

    NASA Astrophysics Data System (ADS)

    Stewart, Abigail J.; La Vaque-Manty, Danielle; Malley, Janet E.

    The representation of female faculty members in science and engineering fields lags behind that of their counterparts in the social sciences and humanities and also fails to keep pace with the production of female science and engineering doctorates. Research has shown that equity cannot be achieved by waiting for women to fill the applicant pool; instead, institutions must intervene by changing hiring practices and retention policies. This article describes and evaluates early results of one intervention at the University of Michigan: the creation of a faculty committee designed to improve the recruitment and hiring of female faculty members through peer education. One hiring cycle after the committee's creation, the authors found (a) reports of changed practices in some search committees and departments, (b) an increase in the number and proportion of new hires who were women, and (c) a substantial increase in the knowledge and motivation of the members of the recruitment committee with respect to improving the climate for female faculty members.

  5. Computer Self-Efficacy of University Faculty in Lebanon

    ERIC Educational Resources Information Center

    Saleh, Hanadi Kassem

    2008-01-01

    Faculty use of technology is a critical issue in higher education; administrators and students are expecting faculty instruction to incorporate technology in classroom and distance education. Competition is demanding technologically proficient graduates for schools and colleges. Research indicates that computer self-efficacy (CSE) may be one…

  6. The Wyss institute: A new model for medical technology innovation and translation across the academic-industrial interface.

    PubMed

    Tolikas, Mary; Antoniou, Ayis; Ingber, Donald E

    2017-09-01

    The Wyss Institute for Biologically Inspired Engineering at Harvard University was formed based on the recognition that breakthrough discoveries cannot change the world if they never leave the laboratory. The Institute's mission is to discover the biological principles that Nature uses to build living things, and to harness these insights to create biologically inspired engineering innovations to advance human health and create a more sustainable world. Since its launch in 2009, the Institute has developed a new model for innovation, collaboration, and technology translation within academia, breaking "silos" to enable collaborations that cross institutional and disciplinary barriers. Institute faculty and staff engage in high-risk research that leads to transformative breakthroughs. The biological principles uncovered are harnessed to develop new engineering solutions for medicine and healthcare, as well as nonmedical areas, such as energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and the formation of new start-ups that are driven by a unique internal business development team including entrepreneurs-in-residence with domain-specific expertise. Here, we describe this novel organizational model that the Institute has developed to change the paradigm of how fundamental discovery, medical technology innovation, and commercial translation are carried out at the academic-industrial interface.

  7. Fundamental Study of Antimonide Nanostructures by Molecular Beam Epitaxy

    DTIC Science & Technology

    2016-02-04

    Faculty of Engineering, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand Tel. (+66) 2218-6524, Fax. (+66) 2218-6523 E-mail...Engineering Department Faculty of Engineering Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand Tel. 662-218-6524, Fax. 662-218-6523...September 2014 to July 2015 being conducted at Chulalongkorn University in Thailand . Following the research work on InAs quantum dots (QDs) and quantum

  8. Active Reconfigurable Metamaterial Unit Cell Based on Non-Foster Elements

    DTIC Science & Technology

    2013-10-01

    Krois Ivan Bonic Aleksandar Kiricenko Damir Muha University of Zagreb Faculty of Electrical Engineering and Computing Unksa 3 Zagreb ...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Zagreb Faculty of Electrical Engineering and Computing Unksa 3 Zagreb , HR-10000 CROATIA 8...Electrical Engineering and Computing University of Zagreb Unska 3 Zagreb , HR-10000, Croatia 14 October 2013 Distribution A: Approved for

  9. Examining the Impact of Academic Development in the Engineering Faculties in Chile: Changes in Teaching Philosophy and Teachers' Competencies

    ERIC Educational Resources Information Center

    Acosta Peña, Roxana; Tomás-Folch, Marina; Feixas, Mònica

    2017-01-01

    The Faculties of Engineering Sciences at Universidad Católica del Norte in Chile regard teacher training as a necessary tool for its academics' professional development and as a fundamental way to improve their teaching quality. The Teaching Unit for Innovation in Engineering (UIDIN) has developed a new curriculum and training programme which…

  10. Summary Reports of Instructional Development Advisory Committee Sponsored Faculty Projects for Fiscal Year 1989

    DTIC Science & Technology

    1990-03-01

    Reasoning," JA. Adams, The Engineering Design August 1989; and (4) attended a one day seminar at Graphics Journal , Volume 53, Number 3, Autumn the...of a heat transfer session at the International Conference on Cold Lag Ttra Objectie The rapid change of computer technology requires experience can...articles that had applied computer analysis that have waters, etc.). Oral reports and an oral summary at appeared in scholarly journals . This was

  11. The Measurement of Human Time Estimating Ability Using a Modified Jerison Device.

    DTIC Science & Technology

    1984-12-01

    SCHOOL OF ENGI. D C KINNEY UNLSIIDDEC 84 AFIT/GSO/ENG/84D-2 F/G 5/9 N mhhhhhhhhhmhhl I fllfll|fflfflfflfflf Emmhhmhhhhhhhu IIIIIIIIIIIIII...MODIFIED JERISON DEVICE THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University In Partial...these individuals and others in the laboratory was a key factor in the sucessful completion of this research. I am also grateful to the many subjects

  12. A Survey of Productivity in the Construction Industry: Measurement and Causes.

    DTIC Science & Technology

    1987-12-01

    contractors, and owners every reason to bear down on safety. Especially the owners since they eventually pay for it. Past research by the Business ...productivity, inflate labor cost, and "" without much hope for a pay-off of an early completion date. The Business Roundtable has done extensive research ... Research Problem Presented to The Faculty of the School of Civil Engineering Georgia Institute of Technology by Peter Morris Arn In Partial Fulfillment

  13. Testing CREATE at Community Colleges: An Examination of Faculty Perspectives and Diverse Student Gains

    PubMed Central

    Kenyon, Kristy L.; Onorato, Morgan E.; Gottesman, Alan J.; Hoque, Jamila; Hoskins, Sally G.

    2016-01-01

    CREATE (Consider, Read, Elucidate the hypotheses, Analyze and interpret the data, and Think of the next Experiment) is an innovative pedagogy for teaching science through the intensive analysis of scientific literature. Initiated at the City College of New York, a minority-serving institution, and regionally expanded in the New York/New Jersey/Pennsylvania area, this methodology has had multiple positive impacts on faculty and students in science, technology, engineering, and mathematics courses. To determine whether the CREATE strategy is effective at the community college (2-yr) level, we prepared 2-yr faculty to use CREATE methodologies and investigated CREATE implementation at community colleges in seven regions of the United States. We used outside evaluation combined with pre/postcourse assessments of students to test related hypotheses: 1) workshop-trained 2-yr faculty teach effectively with the CREATE strategy in their first attempt, and 2) 2-yr students in CREATE courses make cognitive and affective gains during their CREATE quarter or semester. Community college students demonstrated positive shifts in experimental design and critical-thinking ability concurrent with gains in attitudes/self-rated learning and maturation of epistemological beliefs about science. PMID:26931399

  14. STEM Faculty as Learners in Pedagogical Reform and the Role of Research Articles as Professional Development Opportunities.

    PubMed

    Mulnix, Amy B

    2016-01-01

    Discipline-based education research (DBER) publications are opportunities for professional development around science, technology, engineering, and mathematics (STEM) education reform. Learning theory tells us these publications could be more impactful if authors, reviewers, and editors pay greater attention to linking principles and practice. This approach, which considers faculty as learners and STEM education reform as content, has the potential to better support faculty members because it promotes a deeper understanding of the reasons why a pedagogical change is effective. This depth of understanding is necessary for faculty members to successfully transfer new knowledge to their own contexts. A challenge ahead for the emergent learning sciences is to better integrate findings from across sister disciplines; DBER reports can take a step in that direction while improving their usefulness for instructors. © 2016 A. B. Mulnix. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Gender in Science and Engineering Faculties: Demographic Inertia Revisited.

    PubMed

    Thomas, Nicole R; Poole, Daniel J; Herbers, Joan M

    2015-01-01

    The under-representation of women on faculties of science and engineering is ascribed in part to demographic inertia, which is the lag between retirement of current faculty and future hires. The assumption of demographic inertia implies that, given enough time, gender parity will be achieved. We examine that assumption via a semi-Markov model to predict the future faculty, with simulations that predict the convergence demographic state. Our model shows that existing practices that produce gender gaps in recruitment, retention, and career progression preclude eventual gender parity. Further, we examine sensitivity of the convergence state to current gender gaps to show that all sources of disparity across the entire faculty career must be erased to produce parity: we cannot blame demographic inertia.

  16. That None Shall Perish

    NASA Astrophysics Data System (ADS)

    Mack, Kelly

    2010-03-01

    Despite efforts to increase the number of women faculty in the STEM disciplines, the representation of women, particularly in higher academic ranks remains disproportionately low. As a means of addressing this issue, the National Science Foundation (NSF) ADVANCE Program has as its mission to increase the participation and advancement of women in academic science and engineering careers. As such, the Program utilizes advances in social science research, as well as both demonstrated and novel strategies rooted in organizational change theory as a means of targeting gender diversity issues in the science, technology, engineering, and mathematics (STEM) disciplines. This presentation will provide an overview of the current status of women faculty, as well as the ADVANCE Program and the mechanisms by which it has supported institutions of higher education. Additionally, vital best practices and the concomitant incorporation of them into the institutional infrastructure will be discussed. These include, but are not limited to: strategic training on implicit bias, programmatic focus on departmental leadership, use of professional development grants, institutionalization of mentoring, incorporation of transparency in policies and procedures, demonstration of sensitivities toward work-life balance issues and women of color.

  17. Challenges and issues facing the future of nursing education: implications for ethnic minority faculty and students.

    PubMed

    Davis, Sheila P; Davis, Danyetta D

    2010-01-01

    Current trends in higher education in the United States demand that nursing take stock of how it is prepared or being prepared to face challenges and issues impacting on its future. The intense effort made to attract students to pursue advanced training in science and engineering in the United States pales in comparison to the numbers of science and engineering majors produced yearly in international schools. As a result, more and more jobs are being outsourced to international markets. Could international outsourcing become a method of nursing education? Authors submit that to remain competitive, the nursing profession must attract a younger cohort of technologically savvy students and faculty reflective of the growing diverse population in the United States. Additionally, nursing programs in research universities face even more daunting challenges as it relates to mandates for funded research programs of educational units. This article offers suggestions and recommendations for nursing programs in higher education institutions on ways to attract and retain ethnic minorities and of how to harness the power of research to address burgeoning societal health challenges.

  18. Faculty Leadership and Instructional Technologies: Who Decides?

    ERIC Educational Resources Information Center

    Barber, Bob

    2011-01-01

    Discussion of leadership functions and practices in the realm of instructional technology in community colleges cannot be limited to the administrative side. Faculty members and faculties as collective bodies have influenced or attempted to influence the use of instructional technology and can claim professionally to have the right to participate…

  19. Investigating Faculty Technology Mentoring as a University-Wide Professional Development Model

    ERIC Educational Resources Information Center

    Baran, Evrim

    2016-01-01

    A growing and increasingly important area of research in higher education is the investigation of how different forms of support and training programs facilitate faculty adoption of technology into pedagogical practices. This study explored the implementation of a faculty technology mentoring (FTM) program as a university-wide professional…

  20. Faculty and Technology: Implications for Faculty Training and Technology Leadership

    ERIC Educational Resources Information Center

    Keengwe, Jared; Kidd, Terry; Kyei-Blankson, Lydia

    2009-01-01

    The purpose of this study was to explore the factors affecting ICT adoption process and the implications for faculty training and technology leadership. Respondents represented a wide range of academic and professional positions. They identified themselves as Assistant, Associate, and Professor as well as Instructional Designer, Director of…

  1. Faculty Integration of Technology into Instruction and Students' Perceptions of Computer Technology to Improve Student Learning

    ERIC Educational Resources Information Center

    Keengwe, Jared

    2007-01-01

    There has been a remarkable improvement in access and rate of adoption of technology in higher education. Even so, reports indicate that faculty members are not integrating technology into instruction in ways that make a difference in student learning (Cuban, 2001; McCannon & Crews, 2000). To help faculty make informed decisions on student…

  2. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1989

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N. (Compiler)

    1989-01-01

    Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. The objectives are: to further the professional knowledge of qualified engineering and science faculty; to stimulate and exchange ideas between participants and NASA; to enrich and refresh the research and teachning activities of participants' institutions; and to contribute to the research objectives of the NASA center. College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lecture and seminars on topics of interest or that are directly relevant to the Fellows' research topic.

  3. Facilitating Classroom Innovation in the Geosciences Through the NSF Transforming Undergraduate Education in Science, Technology, Engineering, and Mathematics (TUES) Program

    NASA Astrophysics Data System (ADS)

    Singer, J.; Ryan, J. G.

    2012-12-01

    The Transforming Undergraduate Education in Science, Technology, Engineering, and Mathematics (TUES) program seeks to improve the quality of science, technology, engineering, and mathematics (STEM) education for all undergraduate students. Activities supported by the TUES program include the creation, adaptation, and dissemination of learning materials and teaching strategies, development of faculty expertise, implementation of educational innovations, and research on STEM teaching and learning. The TUES program especially encourages projects that have the potential to transform undergraduate STEM education and active dissemination and building a community of users are critical components of TUES projects. To raise awareness about the TUES program and increase both the quality and quantity of proposals submitted by geoscientists to the program, information sessions and proposal writing retreats are being conducted. Digital resources developed especially for the geosciences community are available at www.buffalostate.edu/RTUGeoEd to share information about the TUES program and the many ways this NSF program supports innovation in geoscience education. This presentation also addresses identified impediments to submitting a TUES proposal and strategies for overcoming reasons discouraging geoscientists from preparing a proposal and/or resubmitting a declined proposal.

  4. KSC-02pd0658

    NASA Image and Video Library

    2002-05-14

    KENNEDY SPACE CENTER, FLA. -- JoAnn H. Morgan, director of External Relations and Business Development at KSC, welcomes participants in this year's NASA MarsPort Engineering Design Student Competition 2002 conference at the KSC Visitor Complex, organized by the Florida Space Grant Consortium. Students and faculty from the nation's universities converged at Kennedy for the MarsPort Competition, presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts. Also featured at the opening ceremony were Dr. Sam Durrance, FSGC director and former astronaut, and Dr. Gary Stutte, plant scientist, Dynamac Corporation.

  5. A Summer Research Program of NASA/Faculty Fellowships at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Albee, Arden

    2004-01-01

    The NASA Faculty Fellowship Program (NFFP) is designed to give college and university faculty members a rewarding personal as well as enriching professional experience. Fellowships are awarded to engineering and science faculty for work on collaborative research projects of mutual interest to the fellow and his or her JPL host colleague. The Jet Propulsion Laboratory (JPL) and the California Institute of Technology (Caltech) have participated in the NASA Faculty Fellowship Program for more than 25 years. Administrative offices are maintained both at the Caltech Campus and at JPL; however, most of the activity takes place at JPL. The Campus handles all fiscal matters. The duration of the program is ten continuous weeks. Fellows are required to conduct their research on-site. To be eligible to participate in the program, fellows must be a U.S. citizen and hold a teaching or research appointment at a U.S. university or college. The American Society of Engineering Education (ASEE) contracts with NASA and manages program recruitment. Over the past several years, we have made attempts to increase the diversity of the participants in the NFFP Program. A great deal of attention has been given to candidates from minority-serving institutions. There were approximately 100 applicants for the 34 positions in 2002. JPL was the first-choice location for more than half of them. Faculty from 16 minority-serving institutions participated as well as four women. The summer began with an orientation meeting that included introduction of key program personnel, and introduction of the fellows to each other. During this welcome, the fellows were briefed on their obligations to the program and to their JPL colleagues. They were also given a short historical perspective on JPL and its relationship to Caltech and NASA. All fellows received a package, which included information on administrative procedures, roster of fellows, seminar program, housing questionnaire, directions to JPL, maps of the local area, and a copy of the JPL Universe (a JPL newsletter). A calendar of events for the 2002 NFFP Program was designed to expose the fellows to the full range of JPL activities, seminars, tours, and trips to NASA Dryden, Goldstone, and Palomar Observatory. Weekly brown-bag lunches were also scheduled. The lunches provided a time for airing problems that may have arisen during the previous week, soliciting suggestions for program enhancement, announcements, and general socializing. Professor and Mrs. Albee also hosted the annual Summer Faculty Welcome Party at their home. During their ten-week tenure at JPL, the visiting faculty carried out projects in a wide variety of JPL's science, engineering, and technology disciplines, including communication, planetary science, materials research, reliability and quality assurance, astronomy, guidance and control, and micro-sensors. At the end of the NFFP Program, all fellows were required to complete a one-page summary of their summer s work. This was in addition to any documentation required by their host organization. Distribution of the final paycheck was dependent upon submission of this one-page summary and completion of NASA's NFFP evaluation in the EdCATS system. Fellows were also asked to complete a questionnaire for JPL, which enables the program administrators to make any appropriate changes to make the program more beneficial and effective for all involved. The 2002 NFFP Program at JPUCaltech was considered unanimously highly successful by both fellows and JPL colleagues. It provided a significant experience to most faculty members and fresh ideas to JPL researchers. Each year, suggestions for improvement include expansion of the program, longer terms, larger stipends, funds to support graduate students, and funds to continue collaborative research. The NASA Faculty Fellowship Program continues to occupy a significant place in JPL programs and serves to strengthen the ties between NASA, JPL, Caltech, and t academic community. This program is an important part of NASA's commitment to education. No inventions or patents were created during this program.

  6. Redefining Scientist-Educator Partnerships: Science in Service at Stanford

    NASA Astrophysics Data System (ADS)

    Beck, K.

    2005-05-01

    The Stanford Solar Observatories Group and Haas Center for Public Service have created an innovative model for scientist-educator partnerships in which science students are trained and mentored by public service education professionals to create outreach events for local communities. The program, Science in Service, is part of the EPO plan for the Solar Group's participation in NASA's Solar Dynamics Observatory mission. Based on the principles of service learning, the Science in Service Program mentors college science students in best practices for communicating science and engages these students in public service projects that center on teaching solar science. The program goals are to - Enhance and expand the learning experiences that pre-college students, from underserved and underrepresented groups in particular, have in science and technology. - Promote leadership in community service in the area of science and engineering among the next generation of scientists and engineers, today's undergraduate students. - Encourage science and engineering faculty to think creatively about their outreach requirements and to create a community of faculty committed to quality outreach programs. This talk will describe the unique advantages and challenges of a research-public service partnership, explain the structure of Stanford's Science in Service Program, and present the experiences of the undergraduates and the outreach communities that have been involved in the program.

  7. Factors that facilitate or inhibit interest of domestic students in the engineering PhD: A mixed methods study

    NASA Astrophysics Data System (ADS)

    Howell Smith, Michelle C.

    Given the increasing complexity of technology in our society, the United States has a growing demand for a more highly educated technical workforce. Unfortunately, the proportion of United States citizens earning a PhD in engineering has been declining and there is concern about meeting the economic, national security and quality of life needs of our country. This mixed methods sequential exploratory instrument design study identified factors that facilitate or inhibit interest in engineering PhD programs among domestic engineering undergraduate students in the United States. This study developed a testable theory for how domestic students become interested in engineering PhD programs and a measure of that process, the Exploring Engineering Interest Inventory (EEII). The study was conducted in four phases. The first phase of the study was a qualitative grounded theory exploration of interest in the engineering PhD. Qualitative data were collected from domestic engineering students, engineering faculty and industry professional who had earned a PhD in engineering. The second phase, instrument development, developed the Exploring Engineering Interest Inventory (EEII), a measurement instrument designed with good psychometric properties to test a series of preliminary hypotheses related to the theory generated in the qualitative phase. In the third phase of the study, the EEII was used to collect data from a larger sample of junior and senior engineering majors. The fourth phase integrated the findings from the qualitative and quantitative phases. Four factors were identified as being significant influences of interest in the engineering PhD: Personal characteristics, educational environment, misperceptions of the economic and personal costs, and misperceptions of engineering work. Recommendations include increasing faculty encouragement of students to pursue an engineering PhD and programming to correct the misperceptions of the costs of the engineering PhD and the nature of the work that PhD engineers do. The tested model provides engineering educators with information to help them prioritize their efforts to increase interest in the engineering PhD among domestic students.

  8. Andragogical Modeling and the Success of the "EMPACTS" project-based learning model in the STEM disciplines: A decade of growth and learner success in the 2Y College Learning Environment.

    NASA Astrophysics Data System (ADS)

    Phillips, C. D.; Thomason, R.; Galloway, M.; Sorey, N.; Stidham, L.; Torgerson, M.

    2014-12-01

    EMPACTS (Educationally Managed Projects Advancing Curriculum, Technology/Teamwork and Service) is a project-based, adult learning modelthat is designed to enhance learning of course content through real-world application and problem solving self directed and collaborative learning use of technology service to the community EMPACTS students are self-directed in their learning, often working in teams to develop, implement, report and present final project results. EMPACTS faculty use community based projects to increase deeper learning of course content through "real-world" service experiences. Learners develop personal and interpersonal work and communication skills as they plan, execute and complete project goals together. Technology is used as a tool to solve problems and to publish the products of their learning experiences. Courses across a broad STEM curriculum integrate the EMPACTS project experience into the overall learning outcomes as part of the learning college mission of preparing 2Y graduates for future academic and/or workforce success. Since the program began in 2005, there have been over 200 completed projects/year. Student driven successes have led to the establishment of an EMPACTS Technology Corp, which is funded through scholarship and allows EMPACTS learners the opportunity to serve and learn from one another as "peer instructors." Engineering and 3D graphic design teams have written technology proposals and received funding for 3D printing replication projects, which have benefited the college as a whole through grant opportunities tied to these small scale successes. EMPACTS students engage in a variety of outreachprojects with area schools as they share the successes and joys of self directed, inquiry, project based learning. The EMPACTS Program has successfully trained faculty and students in the implementation of the model and conduct semester to semester and once a year workshops for college and K-12 faculty, who are interested in enhancing the learning experience and retention of course content through meaningful, engaging, character building projects. Learner Project successes are celebrated and archived within the framework of the EMPACTS Student Project website. http://faculty.nwacc.edu/EAST_original/Spring2014/Spring2014index.htm

  9. Concerns and professional development needs of science faculty at Taibah University in adopting blended learning

    NASA Astrophysics Data System (ADS)

    Al-Sarrani, Nauaf

    The purpose of this study was to obtain Science faculty concerns and professional development needs to adopt blended learning in their teaching at Taibah University. To answer these two research questions the survey instrument was designed to collect quantitative and qualitative data from close-ended and open-ended questions. The participants' general characteristics were first presented, then the quantitative measures were presented as the results of the null hypotheses. The data analysis for research question one revealed a statistically significant difference in the participants' concerns in adopting BL by their gender sig = .0015. The significances were found in stages one (sig = .000) and stage five (sig = .006) for female faculty. Therefore, null hypothesis 1.1 was rejected (There are no statistically significant differences between science faculty's gender and their concerns in adopting BL). The data analysis indicated also that there were no relationships between science faculty's age, academic rank, nationality, country of graduation and years of teaching experience and their concerns in adopting BL in their teaching, so the null hypotheses 1.2-7 were accepted (There are no statistically significant differences between Science faculty's age and their concerns in adopting BL, there are no statistically significant differences between Science faculty's academic rank and their concerns in adopting BL, there are no statistically significant differences between Science faculty's nationality and their concerns in adopting BL, there are no statistically significant differences between Science faculty's content area and their concerns in adopting BL, there are no statistically significant differences between Science faculty's country of graduation and their concerns in adopting BL and there are no statistically significant differences between Science faculty's years of teaching experience and their concerns in adopting BL). The data analyses for research question two revealed that there was a statistically significant difference between science faculty's use of technology in teaching by department and their attitudes towards technology integration in the Science curriculum. Lambda MANOVA test result was sig =.019 at the alpha = .05 level. Follow up ANOVA result indicated that Chemistry department was significant in the use of computer-based technology (sig =.049) and instructional technology use (sig =.041). Therefore, null hypothesis 2.1 was rejected (There are no statistically significant differences between science faculty's attitudes towards technology integration in the Science curriculum and faculty's use of technology in teaching by department). The data also revealed that there was no statistically significant difference (p<.05) between science faculty's use of technology in teaching by department and their instructional technology use on pedagogy. Therefore, null hypothesis 2.2 was accepted (There are no statistically significant differences between science faculty's perceptions of the effects of faculty IT use on pedagogy and faculty's use of technology in teaching by department). The data also revealed that there was a statistically significant difference between science faculty's use of technology in teaching by department and their professional development needs in adopting BL. Lambda MANOVA test result was .007 at the alpha = .05 level. The follow up ANOVA results showed that the value of significance of Science faculty's professional development needs for adopting BL was smaller than .05 in the Chemistry department with sig =.001 in instructional technology use. Therefore, null hypothesis 2.3 was rejected (There are no statistically significant differences between Science faculty's perceptions of technology professional development needs and faculty's use of technology in teaching by department). Qualitative measures included analyzing data based on answers to three open-ended questions, numbers thirty-six, seventy-four, and seventy-five. These three questions were on blended learning concerns comments (question 36, which had 10 units), professional development activities, support, or incentive requested (question 74, which had 28 units), and the most important professional development activities, support, or incentive (question 75, which had 37 units). These questions yielded 75 units, 23 categories and 8 themes that triangulated with the quantitative data. These 8 themes were then combined to obtain overall themes for all qualitative questions in the study. The two most important themes were "Professional development" with three categories; Professional development through workshops (10 units), Workshops (10 units), Professional development (5 units) and the second overall theme was "Technical support" with two categories: Internet connectivity (4 units), and Technical support (4 units). Finally, based on quantitative and qualitative data, the summary, conclusions, and recommendations for Taibah University regarding faculty adoption of BL in teaching were presented. The recommendations for future studies focused on Science faculty Level of Use and technology use in Saudi universities.

  10. A comparison of educational factors promoting or discouraging the intent to remain in engineering by gender

    NASA Astrophysics Data System (ADS)

    Amelink, Catherine T.; Meszaros, Peggy S.

    2011-03-01

    This study seeks to examine key extrinsic and intrinsic factors that encourage or discourage persistence in attaining an engineering degree and pursuing an engineering-related career among both male and female undergraduates. Quantitative and qualitative findings from nine participating undergraduate degree programmes reveal that career expectations formulated through educational experiences as undergraduates play a key role in motivating students. Among females, faculty interaction in the classroom, such as feedback received and the degree to which the faculty treat them with respect, is an important encouraging factor. For both males and females, discouraging elements of the undergraduate experience include the amount of time for coursework, competition in engineering classes and grades. The findings have several practical implications that faculty and administrators can employ in shaping the undergraduate experience to encourage short- and long-term interest in engineering among both male and female students.

  11. Intelligent Systems For Aerospace Engineering: An Overview

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, K.

    2003-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.

  12. Intelligent Systems for Aerospace Engineering: An Overview

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje

    2002-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.

  13. Faculty Attitudes toward Students with Disabilities at an Israeli Leading Technology Institute

    ERIC Educational Resources Information Center

    Greenberger, Lori

    2016-01-01

    This study examined faculty support of the inclusion of students with disabilities. The study was conducted in a leading institute of technology in Israel. Participants were 225 faculty members from different departments who were recruited using a campus-wide email announcement. Results revealed that a large majority of faculty members had…

  14. Engineering Students and Faculty Perceptions of Academic Dishonesty

    ERIC Educational Resources Information Center

    Tabsh, Sami W.; Abdelfatah, Akmal S.; El Kadi, Hany A.

    2017-01-01

    Purpose: This paper aims to survey students and faculty from the College of Engineering at an American university in the United Arab Emirates about their perception on different issues related to academic dishonesty. Opinions were sought on plagiarism, inappropriate collaboration, cheating on exams, copyright violations and complicity in academic…

  15. The Faculty Perspective on Holistic and Systems Thinking in American and Australian Mechanical Engineering Programmes

    ERIC Educational Resources Information Center

    Kellam, N. N.; Maher, M. A.; Peters, W. H.

    2008-01-01

    This research effort examined current mechanical engineering educational programmes in America and Australia to determine the degree of holistic, systems thinking of each programme. Faculty from ten American universities and ten Australian universities participated in online surveys and interviews. Resulting data analysis and interpretation…

  16. Faculty Integration of Technology in Teacher Preparation: Outcomes of a Development Model

    ERIC Educational Resources Information Center

    Judge, Sharon; O'Bannon, Blanche

    2008-01-01

    This article reports on a faculty development model that uses a variety of approaches and strategies to help faculty restructure their curricula and effectively model technology integration for their students. A multifaceted model, funded in part by the "Preparing Tomorrow's Teachers to Use Technology" (PT3) initiative, was implemented…

  17. Motivating Factors of Florida Community and State College Information Technology Faculty

    ERIC Educational Resources Information Center

    Payne, Wendy Louise

    2013-01-01

    In this study the core job characteristics that contribute to the internal motivational factors and job satisfaction of information technology faculty members working at a community or state college in Florida were investigated. Fifty-four information technology faculty members working at a community or state college in Florida completed the Job…

  18. Factors that May Influence or Hinder Use of Instructional Technology among Accounting Faculty

    ERIC Educational Resources Information Center

    Ahadiat, Nasrollah

    2005-01-01

    Purpose: To determine what factors influence faculty's decisions to use technology in their classes, what factors prevent them from use, and whether there are differences among faculty by gender, ethnicity, rank, sub-areas, etc. in using instructional technology. Design/methodology/approach: A survey instrument was used to measure attitudes…

  19. Love and Hate in University Technology Transfer: Examining Faculty and Staff Conflicts and Ethical Issues

    ERIC Educational Resources Information Center

    Hamilton, Clovia; Schumann, David

    2016-01-01

    With respect to university technology transfer, the purpose of this paper is to examine the literature focused on the relationship between university research faculty and technology transfer office staff. We attempt to provide greater understanding of how research faculty's personal values and research universities' organization values may differ…

  20. A Collaborative Approach to Helping Teacher Education Faculty Model Technology Integration in Their Courses: An Informal Case.

    ERIC Educational Resources Information Center

    Zachariades, Iacovos; Roberts, Sherron Killingsworth

    1995-01-01

    Describes an innovative and collaborative approach to helping teacher educators better prepare preservice teachers to utilize technology for effective instruction. A mentoring program that paired graduate students in instructional technology with interested faculty members is discussed, and attitudes of the mentors and the faculty members are…

  1. Supporting Instructors in Overcoming Self-Efficacy and Background Barriers to Adoption

    ERIC Educational Resources Information Center

    Reid, Pat

    2017-01-01

    Most academic technology areas of higher education institutes do not feel faculty technology adoption is adequate (Hartman (EDUCAUSE Rev 43(6), 2008)). Among the barriers to instructional technology adoption are faculty self-efficacy and background. Self-efficacy encompasses the faculty member's belief or confidence in his ability to succeed.…

  2. ESMD Space Grant Faculty Report

    NASA Technical Reports Server (NTRS)

    Guo, Jiang; Whitmore, Stephen; Radcliff, Roger; Misra, Prabhakar; Prasad, Nadipuram; Conrad, James; Lackey, Ellen; Selby, Gregory; Wersinger, Jean-Marie; Lambright, Jonathan

    2008-01-01

    The strength of the Exploration Systems Mission Directorate ESMD Faculty Project lies in its ability to meet National Aeronautics Space Administration NASA's Strategic Educational Outcome 1 by developing a sustainable and long-term integration of student involvement at academic institutions with all NASA Centers. This outcome is achieved by a three-fold approach: 1) by collecting Senior Design projects pertaining to Constellation work performed at each of the ten NASA Centers, 2) by engaging students at Minority Serving Institutions in the art of systems engineering and systems design of technologies required for space exploration, and 3) by identifying potential internships at each Center relative to exploration that provide students who are supported by their institutional Space Grant to engage in on-going mission-level and explorative systems designs. The objectives of the ESMD Faculty Project are to: 1. Aid the Centers (both Education Offices and associated technical organizations) in providing relevant opportunities for the ESMD Space Grant Program to support student and faculty in Senior Design projects 2. Enable better matches between the ESMD work required and what the Space Grant Consortia can do to effectively contribute to NASA programs 3. Provide the Space Grant Consortia an opportunity to strengthen relations with the NASA Centers 4. Develop better collective understanding of the U.S. Space Exploration Policy by the Center, Space Grant, faculty, Education Office, and students 5. Enable Space Grant institution faculty to better prepare their students to meet current and future NASA needs 6. Enable the Center Education Offices to strengthen their ties to their technical organizations and Space Grant Consortia 7. Aid KSC in gaining a greater and more detailed understanding of each of the Center activities Senior Design projects are intended to stimulate undergraduate students on current NASA activities related to lunar, Mars, and other planetary missions and to bring out innovative and novel ideas that can be used to complement those currently under development at respective NASA Centers. Additionally, such academic involvement would better the prospects for graduating seniors to pursue graduate studies and to seek careers in the space industry with a strong sense for systems engineering and understanding of design concepts. Internships, on the other hand, are intended to provide hands-on experience to students by engaging them in diverse state-of-the-art technology development, prototype bread-boarding, computer modeling and simulations, hardware and software testing, and other activities that provide students a strong perspective of NASA's vision and mission in enhancing the knowledge of Earth and space planetary sciences. Ten faculty members, each from a Space Grant Consortium-affiliated university, worked at ten NASA Centers for five weeks between June 2 and July 3, 2008. The project objectives listed above were achieved. In addition to collecting data on Senior Design ideas and identifying possible internships that would benefit NASA/ESMD, the faculty fellows promoted and collected data when required for other ESMD-funded programs and helped the Center's Education Office, as,needed. 4

  3. Why research-informed teaching in engineering education? A review of the evidence

    NASA Astrophysics Data System (ADS)

    Bubou, Gordon Monday; Offor, Ibebietei Temple; Bappa, Abubakar Saddiq

    2017-05-01

    Challenges of today's engineering education (EE) are emergent, necessitating calls for its reformation to empower future engineers function optimally as innovative leaders, in both local and international contexts. These challenges: keeping pace with technological dynamism; high attrition; and most importantly, quality teaching/learning require multifaceted approaches. But how can EE respond to the growing demand for relevant teaching? What can we do for engineering faculties to leverage on quality teaching? How do we embed quality teaching in EE? Scholarship of teaching and learning is advocated as one viable approach. It uses evidence-based teaching (EBT) strategies, and research-informed evidence to guide educational decisions regarding teaching and learning. We review the theories underpinning EBT, the scientific evidence on which it is based, and innovative instructional strategies that enhance active learning. Some of these issues have been discussed already, largely through developing countries lens. Nevertheless, linkages to equivalent global perspectives are presented here.

  4. Underrepresented Racial/Ethnic Minority Graduate Students in Science, Technology, Engineering, and Math (STEM) Disciplines: A Cross Institutional Analysis of their Experiences

    NASA Astrophysics Data System (ADS)

    Figueroa, Tanya

    Considering the importance of a diverse science, technology, engineering, and math (STEM) research workforce for our country's future, it is troubling that many underrepresented racial minority (URM) students start graduate STEM programs, but do not finish. However, some institutional contexts better position students for degree completion than others. The purpose of this study was to uncover the academic and social experiences, power dynamics, and programmatic/institutional structures URM students face within their graduate STEM programs that hinder or support degree progression. Using a critical socialization framework applied in a cross-comparative qualitative study, I focused on how issues of race, ethnicity, and underrepresentation within the educational contexts shape students' experiences. Data was collected from focus group interviews involving 53 URM graduate students pursuing STEM disciplines across three institution types -- a Predominately White Institution, a Hispanic-Serving Institution, and a Historically Black University. Results demonstrate that when students' relationships with faculty advisors were characterized by benign neglect, students felt lost, wasted time and energy making avoidable mistakes, had less positive views of their experiences, and had more difficulty progressing through classes or research, which could cause them to delay time to degree completion or to leave with a master's degree. Conversely, faculty empowered students when they helped them navigate difficult processes/milestones with regular check-ins, but also allowed students room to make decisions and solve problems independently. Further, faculty set the tone for the overall interactional culture and helping behavior in the classroom and lab contexts; where faculty modeled collaboration and concern for students, peers were likely to do the same. International peers sometimes excluded domestic students both socially and academically, which had a negative affect on intergroup dynamics and limited the opportunities for learning among URM students. Interestingly, students describe peer dynamics that occasionally suggest racial undertones in interactions; however, many students were unaware of implications on their training experiences or were simply uncomfortable naming racism. Prevailing racial stereotypes even impacted students trained in welcoming and culturally respectful programs. The study expands studies on URM graduate students, socialization theory, and formal and informal structures in programs that can assure success in graduate school.

  5. Present Situation and Ripple Effect of “Science Summer Festival in Tokushima” Held to Aim to Avoid Moving Away from the Engineering

    NASA Astrophysics Data System (ADS)

    Sugiyama, Shigeru; Inaoka, Takeshi; Sugino, Shoichi; Ohnishi, Tokuo

    It is generally known that many young Japanese are moving away from the Engineering. In the Faculty of Engineering, the University of Tokushima, “Science Summer Festival in Tokushima” was started in 1997 in order to increase young persons, who are interested in the Engineering, and marks its 12th anniversary in 2008. In the festival, the main theme is “Let‧s experience science together” and various creative entertainments, which are operated through collaboration between industry, educational institutions and the administration in Tokushima Prefecture, are opened. Since first-grade students, who are expected to join the festival as a first-grade in an elementary school in 1997, were entered in the Faculty of Engineering in 2008, the effect of the festival on their motive for the entrance to the Faculty of the Engineering has been examined. In the present paper, the present situation of “Science Summer Festival in Tokushima” and the results of the examinations are described.

  6. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 2

    NASA Technical Reports Server (NTRS)

    Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)

    1987-01-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The ten week program was operated under the auspices of the American Society for Engineering Education (ASEE). The basic objectives of the program are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. The final reports on the research projects are presented. This volume, 2, contains sections 15 through 30.

  7. Faculty and Technology: Implications for Faculty Training and Technology Leadership

    NASA Astrophysics Data System (ADS)

    Keengwe, Jared; Kidd, Terry; Kyei-Blankson, Lydia

    2009-02-01

    The purpose of this study was to explore the factors affecting ICT adoption process and the implications for faculty training and technology leadership. Respondents represented a wide range of academic and professional positions. They identified themselves as Assistant, Associate, and Professor as well as Instructional Designer, Director of Technology, Information Manager, eLearning Manager, Assistant Department Chair, Associate Vice President of Academic Affairs and Consultant. The respondents identified Organizational Support, Leadership, Training and Development, and Resources as the predominate themes affecting Information and Communication Technology (ICT) adoption process in higher education. Evidence from this study offers insights on how higher education administrators and technology leaders could help their faculty and staff to implement appropriate ICT tools and practices to improve student learning.

  8. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1994, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard; Sickorez, Donn G.

    1995-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to: (1) further the professional knowledge of qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1994.

  9. National Aeronautics and Space Administration (NASA) /American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program. Volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1997-01-01

    The 1996 JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to (1) further the professional knowledge qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1996.

  10. Academic Primer Series: Key Papers About Teaching with Technology.

    PubMed

    Boysen-Osborn, Megan; Cooney, Robert; Gottlieb, Michael; Chan, Teresa M; Brown, Aaron; King, Andrew; Tobias, Adam; Thoma, Brent

    2017-06-01

    Modern learners have immediate, unlimited access to a wide variety of online resources . To appeal to this current generation of learners, educators must embrace the use of technology. However, educators must balance newer, novel technologies with traditional methods to achieve the best learning outcomes. Therefore, we aimed to review several papers useful for faculty members wishing to incorporate technology into instructional design. We identified a broad list of papers relevant to teaching and learning with technology within the online discussions of the Academic Life in Emergency Medicine (ALiEM) Faculty Incubator. This list was augmented with suggestions by a guest expert (BT) and an open call on Twitter (tagged with the #meded and #FOAMed hashtags) yielding 24 papers. We then conducted a modified three-round Delphi process within the authorship group, including junior and senior faculty members, to identify the most impactful papers. We pared the list of 24 papers to five that were most highly rated. Two were research papers and three were commentaries or editorials. The authorship group reviewed and summarized these papers with specific consideration to their value to junior educators and faculty developers. This is a key reading list for junior faculty members and faculty developers interested in teaching with technology. The commentary contextualizes the importance of these papers for medical educators, to optimize use of technology in their teaching or incorporate into faculty development.

  11. Academic Primer Series: Key Papers About Teaching with Technology

    PubMed Central

    Boysen-Osborn, Megan; Cooney, Robert; Gottlieb, Michael; Chan, Teresa M.; Brown, Aaron; King, Andrew; Tobias, Adam; Thoma, Brent

    2017-01-01

    Introduction Modern learners have immediate, unlimited access to a wide variety of online resources. To appeal to this current generation of learners, educators must embrace the use of technology. However, educators must balance newer, novel technologies with traditional methods to achieve the best learning outcomes. Therefore, we aimed to review several papers useful for faculty members wishing to incorporate technology into instructional design. Methods We identified a broad list of papers relevant to teaching and learning with technology within the online discussions of the Academic Life in Emergency Medicine (ALiEM) Faculty Incubator. This list was augmented with suggestions by a guest expert (BT) and an open call on Twitter (tagged with the #meded and #FOAMed hashtags) yielding 24 papers. We then conducted a modified three-round Delphi process within the authorship group, including junior and senior faculty members, to identify the most impactful papers. Results We pared the list of 24 papers to five that were most highly rated. Two were research papers and three were commentaries or editorials. The authorship group reviewed and summarized these papers with specific consideration to their value to junior educators and faculty developers. Conclusion This is a key reading list for junior faculty members and faculty developers interested in teaching with technology. The commentary contextualizes the importance of these papers for medical educators, to optimize use of technology in their teaching or incorporate into faculty development. PMID:28611895

  12. Do Professors Dream of Electronic Students? Faculty Anxiety and the New Information Technologies.

    ERIC Educational Resources Information Center

    Novek, Eleanor M.

    This survey of faculty attitudes toward technology calls for more critical dialogue on the uses, effects and hidden costs of information technology in the classroom and the national political economy. A survey was administered to 250 faculty members (135 were returned) at a northeastern university. The comments of respondents fell into two main…

  13. Technology, Learning, and the Classroom: Longitudinal Evaluation of a Faculty Development Model

    ERIC Educational Resources Information Center

    Kaminski, Karen; Bolliger, Doris

    2012-01-01

    Technology, Learning, and the Classroom, a workshop designed to jump-start faculty's use of instructional technology in face-to-face classrooms, was offered as a week-long intensive workshop and once-a-week session over a semester. Faculty were interviewed five years after participation to determine the longitudinal effects, differences in opinion…

  14. Physics Learning Achievement Study: Projectile, Using Mathematica Program of Faculty of Science and Technology Phetchabun Rajabhat University Students

    ERIC Educational Resources Information Center

    Hutem, Artit; Kerdmee, Supoj

    2013-01-01

    The propose of this study is to study Physics Learning Achievement, projectile motion, using the Mathematica program of Faculty of Science and Technology Phetchabun Rajabhat University students, comparing with Faculty of Science and Technology Phetchabun Rajabhat University students who study the projectile motion experiment set. The samples are…

  15. A Case Study of a Program for University STEM Faculty to Redesign Courses Using Technology

    ERIC Educational Resources Information Center

    Bernal, Elaine V.

    2016-01-01

    The purpose of this case study was to evaluate a multi-campus university program designed to support STEM faculty in redesigning bottleneck courses, with integration of technology as one strategy. Despite the positive student learning outcomes in course redesign programs with an aim to support faculty in technology integration, there remains a…

  16. An Investigation of Faculty Abstention or Adoption of Technology

    ERIC Educational Resources Information Center

    Gersch, Carolyn

    2017-01-01

    Although faculty members are the front line adopters of technology in education, some appear to be unhurried to accept and use technology as part of their curriculum to meet institutional and student demands. The problem was that there was not a complete understanding of how faculty members made decisions on whether or not to implement new…

  17. Professor Eugen Cerkovnikov (1904-1985): the founder of the Chemical and Biochemical Institute of the Rijeka University School of Medicine.

    PubMed

    Milin, Cedomila

    2008-01-01

    Professor Eugen Cerkovnikov, PhD (Kamenska, Russia, 1904- Rijeka, Croatia 1985) graduated in chemical technology from the Faculty of Engineering in Zagreb in 1929. His first job was at the School of Medicine in Paris in 1930, and then he moved to Zagreb to the Department of Organic Chemistry of the Faculty of Engineering run by our Nobel Prize winner Vladimir Prelog (1935-1938). There he took his PhD degree with a dissertation on piperidine gamma derivatives. From 1938 to 1947 he was a research associate at an institute established by the pharmaceutical company Kastel (later Pliva). This is when he became a lecturer at the Faculty of Pharmacy in Zagreb and the first director of the Institute of Organic Chemistry, established in 1946/47. In 1948 he became reader, and in 1956 (full) professor. In 1957 he moved to the newly established School of Medicine in Rijeka, and set up the Institute of Chemistry and Biochemistry. He ran the Institute until retirement in 1975. He was the second dean of the Rijeka University School of Medicine and a pioneer of quantum chemistry and medical cybernetics in undergraduate and (post)graduate courses. His scientific work consists of over 200 papers published at home and abroad, 60 professional papers, 20 book reviews, three works of translation, and 27 volumes of lecture notes. In 1958, professor Cerkovnikov established the Croatian Chemical Society and the Rijeka and Istria branches of the nation's Association of Chemists and Chemical Engineers, chairing them until 1974. In addition, he was one of the founding fathers, and the first chair of the Health Culture Studies Association in Rijeka (that preceded today's Croatian Scientific Society for the History of Health Culture), established in 1965.

  18. Optimization of Tangential Mass Injection for Minimizing Flow Separation in a Scramjet Inlet

    DTIC Science & Technology

    1991-12-01

    34 Aerospace EnQineering, Vol. 11. No. 8, August 1991, p.23. 26. Heppenheimer , Thomas A . Lecture notes from Hypersonic Technologies seminar. University...AFIT/GAE/ENY,/9 lD-2 ( /~ AD-A243 868 "DTIC OPTIMIZATION OF TANGENTIAL MASS INJECTION FOR MINIMIZING FLOW SEPARATION IN A SC.R-.MJET INLET THESIS...OF TANGENTIAL MASS INJECTION FOR MINIMIZING FLOW SEPARATION IN A SCRAMJET INLEr THESIS Presented to the Faculty of the School of E.ngineering of the

  19. Backend Control Processor for a Multi-Processor Relational Database Computer System.

    DTIC Science & Technology

    1984-12-01

    SCHOOL OF ENGI. UNCRSIFID MPONTIFF DEC 84 AFXT/GCS/ENG/84D-22 F/O 9/2 L ommhhhhmhhml mhhhommhhhhhm i-2 8 -- U0. 11111= Q. 2 111.8IIII- 1111111..6...THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University In Partial Fulfillment of the...development of a Backend Multi-Processor Relational Database Computer System. This thesis addresses a single component of this system, the Backend Control

  20. Design and Implementation of the Combined Federal Campaign Collection System.

    DTIC Science & Technology

    1987-12-01

    Combined Federal Campaign Collection System THESIS 1 Frank L. Ucman Captain, USAF [ AFIT/GCS/ENG/87D.27 ’ii DEPARTMENT OF THE AIR FORCE LI AIR UNIVERSITY... AIR FORCE INSTITUTE OF TECHNOLOGY ii Wright-Patterson Air Force Base, Ohio DISTMIUTION STATMV1ENT A r 4 Approved for public r~~;8 6 ~ 3...of the Combined Federal Campaign Collection System THESIS I Presented to the Faculty of the School of Engineering of the Air Force Institute of

  1. Monte Carlo Determination of Gamma Ray Exposure from a Homogeneous Ground Plane

    DTIC Science & Technology

    1990-03-01

    A HOMOGENEOUS GROUND PLANE SOURCE THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University...come from a standard ANISN format library called FEWG1-85. This state-of-the- art cross section library which contains 37 neutron energy groups and 21...purpose. The FEWGl library, a state-of-the- art cross section library developed for the Defense Nuclear Agency con- sisting of 21 gamma-ray enerQj

  2. Investigation of Pseudo Bi-Polar Nickel Cadmium Batteries as Filter Elements for Pulsed Power Loads.

    DTIC Science & Technology

    1984-12-01

    FOR PULSED POWER LOADS THESIS Michael B. Cimino Gregory M. Gearing Major, USAF Captain, USAF AFIT/GE/ENG/84D-1B DTIC SECETE D~rR~fl"N STATEMENT A...LOADS THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University In Partial Fulfillment of...with the intent to make batteries capable of out performing capacitors as power supply filters. Purpose This thesis investigated the use of nickel

  3. Optimal Server Scheduling to Maintain Constant Customer Waiting Times

    DTIC Science & Technology

    1988-12-01

    I I• I I I I I LCn CN OPTIMAL SERVER SCHEDUUNG TO MAINTAIN CONSTANT CUSTOMER WAITING TIMES THESIS Thomas J. Frey Captain UISAF AFIT/GOR/ENS/88D-7...hw bees appsewlf in ple rtan. cd = , ’ S 087 AFIT/GORMENS/8D-7 OPTIMAL SERVER SCHEDUUNG TO MAINTAIN~ CONSTANT CUSTOMER WAITING TIMES THESIS Thomas j...CONSTANT CUSTOMER WAITING TIMES THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University In

  4. Evaluation of the Military Utility of Employing an Angle of Arrival Payload Hosted on a CubeSat as an Augmentation to Existing Geolocation Systems

    DTIC Science & Technology

    2015-03-26

    SYSTEMS THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute...Geolocation (SAMSON) project , led by the Distributed Space Systems Lab and the Asher Space Research Institute at the Technion-Israel Institute of...Technology, is an operationally focused CubeSat mission that is scheduled to launch in 2016. The goals of the SAMSON project are to demon- strate long-term

  5. Historical Review of Astro-Geodetic Observations in Serbia

    NASA Astrophysics Data System (ADS)

    Ogrizovic, V.; Delcev, S.; Vasilic, V.; Gucevic, J.

    2008-10-01

    Astro-geodetic determinations of vertical deflections in Serbia began during the first years of 20th century. The first field works were led by S. Bo\\vsković. After the 2nd World War, Military Geographic Institute, Department of Geodesy from the Faculty of Civil Engineering, and Federal Geodetic Directorate continued the determinations, needed for reductions of terrestrial geodetic measurements and the astro-geodetic geoid determination. Last years improvements of the astro-geodetic methods are carried out in the area of implementing modern measurement equipment and technologies.

  6. The Design and Implementation of a Relational to Network Query Translator for a Distributed Database Management System.

    DTIC Science & Technology

    1985-12-01

    RELATIONAL TO NETWORK QUERY TRANSLATOR FOR A DISTRIBUTED DATABASE MANAGEMENT SYSTEM TH ESI S .L Kevin H. Mahoney -- Captain, USAF AFIT/GCS/ENG/85D-7...NETWORK QUERY TRANSLATOR FOR A DISTRIBUTED DATABASE MANAGEMENT SYSTEM - THESIS Presented to the Faculty of the School of Engineering of the Air Force...Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Systems - Kevin H. Mahoney

  7. A Discrete X-Ray Transform for Chromotomographic HyperspectraI Imaging

    DTIC Science & Technology

    2013-03-21

    the Faculty Department of Mathematics and Statistics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air...are dealing with an operator with a gigantic null space; in the literature, this space is known as the cone of missing information. This means that we...reconstruct f from g we would still be faced with solving a linear system L∗Lf = L∗g where the null space of L∗L is gigantic . This means that in order to

  8. Sequential Testing of Hypotheses Concerning the Reliability of a System Modeled by a Two-Parameter Weibull Distribution.

    DTIC Science & Technology

    1981-12-01

    CONCERNING THE RELIABILITY OF A SYSTEM MODELED BY A TWO-PARAMETER WEIBULL DISTRIBUTION THESIS AFIT/GOR/MA/81D-8 Philippe A. Lussier 2nd Lt USAF... MODELED BY A TWO-PARAMETER WEIBULL DISTRIBUTION THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology...repetitions are used for these test procedures. vi Sequential Testing of Hypotheses Concerning the Reliability of a System Modeled by a Two-Parameter

  9. Survival Analysis of Faculty Retention and Promotion in the Social Sciences by Gender.

    PubMed

    Box-Steffensmeier, Janet M; Cunha, Raphael C; Varbanov, Roumen A; Hoh, Yee Shwen; Knisley, Margaret L; Holmes, Mary Alice

    2015-01-01

    Recruitment and retention of talent is central to the research performance of universities. Existing research shows that, while men are more likely than women to be promoted at the different stages of the academic career, no such difference is found when it comes to faculty retention rates. Current research on faculty retention, however, focuses on careers in science, technology, engineering, and mathematics (STEM). We extend this line of inquiry to the social sciences. We follow 2,218 tenure-track assistant professors hired since 1990 in seven social science disciplines at nineteen U.S. universities from time of hire to time of departure. We also track their time to promotion to associate and full professor. Using survival analysis, we examine gender differences in time to departure and time to promotion. Our methods account for censoring and unobserved heterogeneity, as well as effect heterogeneity across disciplines and cohorts. We find no statistically significant differences between genders in faculty retention. However, we do find that men are more likely to be granted tenure than women. When it comes to promotion to full professor, the results are less conclusive, as the effect of gender is sensitive to model specification. The results corroborate previous findings about gender patterns in faculty retention and promotion. They suggest that advances have been made when it comes to gender equality in retention and promotion, but important differences still persist.

  10. The CREATE Strategy for Intensive Analysis of Primary Literature Can Be Used Effectively by Newly Trained Faculty to Produce Multiple Gains in Diverse Students

    PubMed Central

    Stevens, Leslie M.

    2014-01-01

    The CREATE (Consider Read, Elucidate the hypotheses, Analyze and interpret the data, and Think of the next Experiment) strategy aims to demystify scientific research and scientists while building critical thinking, reading/analytical skills, and improved science attitudes through intensive analysis of primary literature. CREATE was developed and piloted at the City College of New York (CCNY), a 4-yr, minority-serving institution, with both upper-level biology majors and first-year students interested in science, technology, engineering, and mathematics. To test the extent to which CREATE strategies are broadly applicable to students at private, public, research-intensive, and/or primarily undergraduate colleges/universities, we trained a cohort of faculty from the New York/New Jersey/Pennsylvania area in CREATE pedagogies, then followed a subset, the CREATE implementers (CIs), as they taught all or part of an existing course on their home campuses using CREATE approaches. Evaluation of the workshops, the CIs, and their students was carried out both by the principal investigators and by an outside evaluator working independently. Our data indicate that: intensive workshops change aspects of faculty attitudes about teaching/learning; workshop-trained faculty can effectively design and teach CREATE courses; and students taught by such faculty on multiple campuses make significant cognitive and affective gains that parallel the changes documented previously at CCNY. PMID:26086655

  11. Quantitative Literacy: Geosciences and Beyond

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; McCallum, W. G.

    2002-12-01

    Quantitative literacy seems like such a natural for the geosciences, right? The field has gone from its origin as a largely descriptive discipline to one where it is hard to imagine failing to bring a full range of mathematical tools to the solution of geological problems. Although there are many definitions of quantitative literacy, we have proposed one that is analogous to the UNESCO definition of conventional literacy: "A quantitatively literate person is one who, with understanding, can both read and represent quantitative information arising in his or her everyday life." Central to this definition is the concept that a curriculum for quantitative literacy must go beyond the basic ability to "read and write" mathematics and develop conceptual understanding. It is also critical that a curriculum for quantitative literacy be engaged with a context, be it everyday life, humanities, geoscience or other sciences, business, engineering, or technology. Thus, our definition works both within and outside the sciences. What role do geoscience faculty have in helping students become quantitatively literate? Is it our role, or that of the mathematicians? How does quantitative literacy vary between different scientific and engineering fields? Or between science and nonscience fields? We will argue that successful quantitative literacy curricula must be an across-the-curriculum responsibility. We will share examples of how quantitative literacy can be developed within a geoscience curriculum, beginning with introductory classes for nonmajors (using the Mauna Loa CO2 data set) through graduate courses in inverse theory (using singular value decomposition). We will highlight six approaches to across-the curriculum efforts from national models: collaboration between mathematics and other faculty; gateway testing; intensive instructional support; workshops for nonmathematics faculty; quantitative reasoning requirement; and individual initiative by nonmathematics faculty.

  12. Studying Faculty Members' and Students' Perspective in an Affiliated Undergraduate Engineering Institution

    ERIC Educational Resources Information Center

    Kumari, Neeraj

    2015-01-01

    The study aims to examine the relationship between parameters affecting the quality of Education in affiliated Under Graduate Engineering institution from the faculty members' and students' perspective. It is a descriptive research. The data has been collected with the help of "Questionnaire Based Survey". The sample size for the study…

  13. Success of Student Internship in Engineering Industry: A Faculty Perspective

    ERIC Educational Resources Information Center

    Prabhu, B. Vittaldasa; Kudva S., Aditya

    2016-01-01

    Student internship plays a major role in transforming the engineering interns to ready-to-use professionals. Learning at the workplace has become a challenge for the interns due to several issues. A knowledge gap analysis has been depicted considering all stakeholders of the internship, including the intern, faculty, institution and the industrial…

  14. Bourdieu and Academic Capitalism: Faculty "Habitus" in Materials Science and Engineering

    ERIC Educational Resources Information Center

    Mendoza, Pilar; Kuntz, Aaron M.; Berger, Joseph B.

    2012-01-01

    We present Bourdieu's notions of field, capital, "habitus," and strategy and how these concepts apply today in light of academic capitalism using an empirical study of faculty work in one specific field in engineering that exemplifies current tendencies brought by academic capitalism. We conclude with a discussion of practical implications.…

  15. Assessment and Evaluation for Programme Learning Outcomes in Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia

    NASA Astrophysics Data System (ADS)

    Pauline, Ong; Taib, Hariati; AzwirAzlan, Mohd; Fitriah Nasir, Nurul; Azham Azmi, Mohd; Salleh, Saliha Md; Zain, Badrul Aisham Md; Mahzan, Shahruddin; Hafeez Zainulabidin, Muhd; Ahmad, Sufizar; Rahman, Nasrull Abd; Ngali, Zamani; Rahman, Hamimah Abd

    2017-01-01

    Universiti Tun Hussein Onn Malaysia (UTHM) is the 15th of the 20 public universities established in Malaysia. UTHM consists of eight faculties. One of them is the Faculty of Mechanical and Manufacturing Engineering (FKMP). The programme offered - Bachelor of Mechanical Engineering with Honours (BDD), undergoes continuous auditing and accreditation by the Engineering Accreditation Council (EAC). To fulfill the requirement for accreditation, EAC requires the faculty to assess and evaluate the programme learning outcomes’ (PLOs) attainment of the graduates, such that all graduates are targeted to achieve the performance indicator (PI) upon graduation. This paper discusses the methods developed by the FKMP for PLOs’ measurement and evaluation. Two approaches are utilized in this regards, (i) the direct assessment based on students’ performance in courses, and (ii) the indirect assessment based the industrial and graduates’ perception. The PLOs’ attainment for graduates of cohort 2010-2012 are analysed in this study. Consolidation data shows that the PI for majority of the PLOs are achieved, indicating that the programme offered complies with the standard expected by different stakeholders.

  16. First experience with a new biomedical engineering program in Slovenia established following the TEMPUS IV CRH-BME joint project guidelines.

    PubMed

    Jarm, Tomaz; Miklavcic, Damijan

    2014-01-01

    A new study program of biomedical engineering was recently established at Faculty of Electrical Engineering, University of Ljubljana, Slovenia. It is based on the long-lasting tradition of education in the field of BME at the host institution and is built on the BME areas in which the research groups of the Faculty of Electrical Engineering have been traditionally successful. The program was prepared in accordance with the recommendations of the TEMPUS IV CRH-BME Project consortium.

  17. The College Science Learning Cycle: An Instructional Model for Reformed Teaching

    PubMed Central

    Withers, Michelle

    2016-01-01

    Finding the time for developing or locating new class materials is one of the biggest barriers for instructors reforming their teaching approaches. Even instructors who have taken part in training workshops may feel overwhelmed by the task of transforming passive lecture content to engaging learning activities. Learning cycles have been instrumental in helping K–12 science teachers design effective instruction for decades. This paper introduces the College Science Learning Cycle adapted from the popular Biological Sciences Curriculum Study 5E to help science, technology, engineering, and mathematics faculty develop course materials to support active, student-centered teaching approaches in their classrooms. The learning cycle is embedded in backward design, a learning outcomes–oriented instructional design approach, and is accompanied by resources and examples to help faculty transform their teaching in a time-efficient manner. PMID:27909030

  18. The MINE project: Minority Involvement in NASA Engineering

    NASA Technical Reports Server (NTRS)

    Allen, H., Jr.

    1977-01-01

    The Mine Project developed by Lewis Research Center (LRC) along with Tennessee State University and Tuskegee Institute, is described. The project calls for LRC to assemble on-going NASA university affairs programs aimed at benefiting the school, its faculty, and its student body. The schools receive grants to pursue research and technology projects that are relevant to NASA's missions. Upon request from the universities, LRC furnishes instructors and lecturers. The schools have use of surplus government equipment and access to NASA research facilities for certain projects. Both the faculty and students of the universities are eligible for summer employment at LRC through special programs. The MINE Project is designed to establish a continuing active relationship of 3 to 5 years between NASA and the universities, and will afford LRC with an opportunity to increase its recruitment of minority and women employees.

  19. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1993, volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1993-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participant's institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. A compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993 is presented.

  20. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1993, volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1993-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are as follows: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993.

  1. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1985. [Space Stations and Their Environments

    NASA Technical Reports Server (NTRS)

    Chilton, R. G. (Editor); Williams, C. E. (Editor)

    1986-01-01

    The 1985 NASA/ASEE Summer Faculty Fellowship Research Program was conducted by Texas A&M University and the Johnson Space Center. The ten week program was operated under the auspices of the American Society for Engineering Education (ASEE). The faculty fellows spent the time at JSC engaged in research projects commensurate with their interests and background and worked in collaboration with NASA/JSC colleagues. This document is a compilation of the final reports of their research during the summer of 1985.

  2. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1996. Volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1997-01-01

    The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to (1) further the professional knowledge qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague.

  3. Faculty Development. [SITE 2002 Section].

    ERIC Educational Resources Information Center

    Gillan, Bob, Ed.; McFerrin, Karen, Ed.

    This document contains the papers on faculty development from the SITE (Society for Information Technology & Teacher Education) 2002 conference. Topics covered include: integration for ESL (English as a Second Language) success; changing roles of college faculty; inducing reflection on educational practice; a joint instructional technology and…

  4. Research and Technology, 1998

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report selectively summarizes the NASA Lewis Research Center's research and technology accomplishments for the fiscal year 1998. It comprises 134 short articles submitted by the staff scientists and engineers. The report is organized into five major sections: Aeronautics, Research and Technology, Space, Engineering and Technical Services, and Commercial Technology. A table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to he a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Lewis-published technical reports, journal articles, and presentations prepared by Lewis staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Lewis contact person has been identified, and where possible, reference documents are listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. At the time of publication, NASA Lewis was undergoing a name change to the NASA John H. Glenn Research Center at Lewis Field.

  5. Communication and Cultural Change in University Technology Transfer

    ERIC Educational Resources Information Center

    Wright, David

    2013-01-01

    Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…

  6. The 10th Joint Meeting on Medicinal Chemistry (JMMC 2017) Held in Dubrovnik, Croatia.

    PubMed

    Perković, Ivana; Stepanić, Višnja; Marković, Vesna Gabelica

    2018-01-08

    The Croatian Chemical Society was established in 1926 and has developed over the decades into a society that actively supports all chemical activities in Croatia. The Society has eight divisions, the youngest of which, the Division of Medicinal and Pharmaceutical Chemistry, was established in 2012 and immediately became a member of the European Federation of Medicinal Chemistry (EFMC). The mission of the Medicinal and Pharmaceutical Chemistry Division is the promotion and development of scientific, professional, and educational activities within the medicinal chemistry community in Croatia, as well as to build partnerships and collaborations with other primarily EU-based medicinal chemistry societies. In Croatia, medicinal chemistry research is ongoing at several institutes, including the University of Zagreb (Faculty of Science, Faculty of Pharmacy and Biochemistry, and Faculty of Chemical Engineering and Technology), national institutes of science (Ruđer Bošković Institute), and private-sector drug discovery companies (CRO Fidelta Ltd.). In order to effectively exchange knowledge, ideas, and scientific results, Croatian medicinal chemists meet twice annually. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Environmental education and socioresponsive engineering. Report of an educational initiative in Hyderabad, India.

    PubMed

    Ansari, Ali Uddin; Jafari, Ashfaque; Mirzana, Ishrat Meera; Imtiaz, Zulfia; Lukacs, Heather

    2003-07-01

    A recent initiative at Muffakham Jah College of Engineering and Technology, Hyderabad, India, has resulted in setting up a program called Centre for Environment Studies and Socioresponsive Engineering which seeks to involve undergraduate students in studying and solving environmental problems in and around the city of Hyderabad, India. Two pilot projects have been undertaken--one focusing on design and construction of an eco-friendly house, The Natural House, and another directed at improving environmental and general living conditions in a slum area. The paper describes our attempts and experience of motivating our students to take interest in such projects. In an interesting development we invited a member of a student-faculty team at Massachusetts Institute of Technology (M.I.T.) that is doing a project in Nepal on safe drinking water. We report in our paper how the presentation by the guest from M.I.T. served as a catalyst for generating interest among civil and mechanical engineering students in our own projects. The paper includes contributions from one of our students and the M.I.T. staff member, reporting on their experiences related to the slum development project. We also discuss the Natural House project and its international and educational significance as a means of inculcating sensitivity and interest in nature among engineering students. We propose a pledge for engineers similar to the Hippocratic Oath for medical professionals.

  8. NASA/ASEE Faculty Fellowship Program: 2003 Research Reports

    NASA Technical Reports Server (NTRS)

    Kotnour, Tim (Editor); LopezdeCastillo, Eduardo (Editor)

    2003-01-01

    This document is a collection of technical reports on research conducted by the participants in the 2003 NASA/ASEE Faculty Fellowship Program at the John F. Kennedy Space Center (KSC). This was the nineteenth year that a NASA/ASEE program has been conducted at KSC. The 2003 program was administered by the University of Central Florida (UCF) in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) and the Education Division, NASA Headquarters, Washington, D.C. The KSC program was one of nine such Aeronautics and Space Research Programs funded by NASA Headquarters in 2003. The basic common objectives of the NASA/ASEE Faculty Fellowship Program are: A) To further the professional knowledge of qualified engineering and science faculty members; B) To stimulate an exchange of ideas between teaching participants and employees of NASA; C) To enrich and refresh the research and teaching activities of participants institutions; D) To contribute to the research objectives of the NASA center. The KSC Faculty Fellows spent ten weeks (May 19 through July 25, 2003) working with NASA scientists and engineers on research of mutual interest to the university faculty member and the NASA colleague. The editors of this document were responsible for selecting appropriately qualified faculty to address some of the many research areas of current interest to NASA/KSC. A separate document reports on the administrative aspects of the 2003 program. The NASA/ASEE program is intended to be a two-year program to allow in-depth research by the university faculty member. In many cases a faculty member has developed a close working relationship with a particular NASA group that had provided funding beyond the two-year limit.

  9. A Retrospective Study of the Impact Faculty Dispositions Have on Undergraduate Engineering Students

    ERIC Educational Resources Information Center

    Hong, Barbara S. S.; Shull, Peter J.

    2010-01-01

    Despite the progress made in studying the dynamics of attracting and retaining STEM students, limited research have focused on understanding the values and impact faculty could have on the learning outcomes of students. This exploratory study presents the voices of six successful engineering students through a case study interview approach. Common…

  10. The Public Good and Academic Capitalism: Science and Engineering Doctoral Students and Faculty on the Boundary of Knowledge Regimes

    ERIC Educational Resources Information Center

    Szelényi, Katalin; Bresonis, Kate

    2014-01-01

    This article examines the research-related experiences of 48 doctoral students and 22 faculty in science and engineering fields at three research universities, with specific emphasis on the intersection of the public good and academic capitalism. Identifying an expansive, intersecting organizational space between the public good and academic…

  11. Development of a Pedagogical Model to Help Engineering Faculty Design Interdisciplinary Curricula

    ERIC Educational Resources Information Center

    Navarro, Maria; Foutz, Timothy; Thompson, Sidney; Singer, Kerri Patrick

    2016-01-01

    The purpose of this study was to develop a model to help engineering faculty overcome the challenges they face when asked to design and implement interdisciplinary curricula. Researchers at a U.S. University worked with an Interdisciplinary Consultant Team and prepared a steering document with Guiding Principles and Essential Elements for the…

  12. The Effects of Faculty Status, Faculty Gender, Field of Study, and Class Size on the Use of Blogs, Wikis, and Discussion Boards

    ERIC Educational Resources Information Center

    Yang, Dazhi; Spear, Caile E.

    2017-01-01

    This study examined faculty's use of time intensive Web 2.0 technologies (blogs, discussion forums, and wikis) in teaching during a university's quest for higher research productivity and higher ranking in the Carnegie Classification. Results show there was a difference in using Web 2.0 technologies in teaching between faculty with different…

  13. A Case Study for Evaluating the Diffusion of Computing Technology in Teaching Undergraduates by a Faculty in a Journalism and Mass Communication Program.

    ERIC Educational Resources Information Center

    Terry, Janet L.; Geske, Joel

    A case study investigated how journalism and mass communication faculty members diffused and used computing technology in teaching. Subjects, 21 tenured and tenure-track faculty members in a mid-sized journalism and mass communication department, completed an indepth questionnaire designed to measure the general attitude of the faculty towards…

  14. What dental educators need to understand about emerging technologies to incorporate them effectively into the educational process.

    PubMed

    Stein, Corey D; Eisenberg, Elise S; O'Donnell, Jean A; Spallek, Heiko

    2014-04-01

    Many dental schools are currently struggling with the adoption of emerging technologies and the incorporation of these technologies into the educational process. Dental students exhibit an increasing degree of digital comfort when using social networking, mobile devices, search engines, or e-textbooks. Although the majority of students might consider themselves to be very skilled at using information technology, many faculty members would claim the opposite when evaluating their own knowledge and skills in the use of technology. As the use of technology, both formally and informally, continues to increase, dental educators are faced with many questions, such as: Does students' digital comfort disguise a lack of information literacy? What is the appropriate path of implementing technology into teaching and learning, and how can institutions support such an implementation? This article surveys a series of myths that exist about the use of technology in education and raises questions about their validity and how dental educators can avoid being misled by them.

  15. The Wyss institute: A new model for medical technology innovation and translation across the academic‐industrial interface

    PubMed Central

    Tolikas, Mary; Antoniou, Ayis

    2017-01-01

    Abstract The Wyss Institute for Biologically Inspired Engineering at Harvard University was formed based on the recognition that breakthrough discoveries cannot change the world if they never leave the laboratory. The Institute's mission is to discover the biological principles that Nature uses to build living things, and to harness these insights to create biologically inspired engineering innovations to advance human health and create a more sustainable world. Since its launch in 2009, the Institute has developed a new model for innovation, collaboration, and technology translation within academia, breaking “silos” to enable collaborations that cross institutional and disciplinary barriers. Institute faculty and staff engage in high‐risk research that leads to transformative breakthroughs. The biological principles uncovered are harnessed to develop new engineering solutions for medicine and healthcare, as well as nonmedical areas, such as energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and the formation of new start‐ups that are driven by a unique internal business development team including entrepreneurs‐in‐residence with domain‐specific expertise. Here, we describe this novel organizational model that the Institute has developed to change the paradigm of how fundamental discovery, medical technology innovation, and commercial translation are carried out at the academic‐industrial interface. PMID:29313034

  16. Preparing Mathematics Teachers for Technology-Rich Environments

    ERIC Educational Resources Information Center

    Sturdivant, Rodney X.; Dunham, Penelope; Jardine, Richard

    2009-01-01

    This article describes key elements for faculty development programs to prepare mathematics teachers for technology-rich environments. We offer practical examples from our experiences in teaching mathematics with technology and in teaching others to incorporate technology-based pedagogies. We address challenges faced by faculty using technology,…

  17. Evaluating Online Tutorials for University Faculty, Staff, and Students: The Contribution of Just-in-Time Online Resources to Learning and Performance

    ERIC Educational Resources Information Center

    Brill, Jennifer; Park, Yeonjeong

    2011-01-01

    The effective integration of current technologies in teaching and research is a high priority for today's universities. To support the technology skills of university faculty, staff, and students, the subject university's office for faculty training and support, provides free, 24/7 access to a collection of online technology tutorials leased from…

  18. Educational technology for millennial dental hygiene students: a survey of U.S. dental hygiene programs.

    PubMed

    Beebe, Catherine R R; Gurenlian, JoAnn R; Rogo, Ellen J

    2014-06-01

    A growing body of literature suggests that today's learners have changed and education must change as well since Millennial generation students expect technology to be used in their coursework. This study sought to determine what educational technology is being used in U.S. dental hygiene programs, what student and faculty perceptions are of the effectiveness of technology, and what barriers exist to implementing educational technology. A stratified random sample of 120 entry-level dental hygiene programs nationwide were invited to participate in a survey. Fourteen programs participated, yielding a pool of 415 potential individual participants; out of those, eighty-four student and thirty-eight faculty respondents were included in the analysis, a total of 122. Results were analyzed using descriptive statistics and a Mann-Whitney U test (p<0.05). Faculty and student respondents agreed on the effectiveness of educational technology in all areas except clickers and wikis. The faculty members tended to rate the effectiveness of educational technology higher than did the students. The greatest perceived barrier to implementing technology was technical difficulties. This study suggests that support services should be available to faculty and students to ensure successful implementation of technology. Dental hygiene educators have adopted many types of educational technology, but more data are needed to determine best practices.

  19. Race and Gender Differences in Undergraduate Research Mentoring Structures and Research Outcomes

    PubMed Central

    Aikens, Melissa L.; Robertson, Melissa M.; Sadselia, Sona; Watkins, Keiana; Evans, Mara; Runyon, Christopher R.; Eby, Lillian T.; Dolan, Erin L.

    2017-01-01

    Participating in undergraduate research with mentorship from faculty may be particularly important for ensuring the persistence of women and minority students in science. Yet many life science undergraduates at research universities are mentored by graduate or postdoctoral researchers (i.e., postgraduates). We surveyed a national sample of undergraduate life science researchers about the mentoring structure of their research experiences and the outcomes they realized from participating in research. We observed two common mentoring structures: an open triad with undergraduate–postgraduate and postgraduate–faculty ties but no undergraduate–faculty tie, and a closed triad with ties among all three members. We found that men and underrepresented minority (URM) students are significantly more likely to report a direct tie to their faculty mentors (closed triad) than women, white, and Asian students. We also determined that mentoring structure was associated with differences in student outcomes. Women’s mentoring structures were associated with their lower scientific identity, lower intentions to pursue a science, technology, engineering, and mathematics (STEM) PhD, and lower scholarly productivity. URM students’ mentoring structures were associated with higher scientific identity, greater intentions to pursue a STEM PhD, and higher scholarly productivity. Asian students reported lower scientific identity and intentions to pursue a STEM PhD, which were unrelated to their mentoring structures. PMID:28550078

  20. Integrating medical informatics into the medical undergraduate curriculum.

    PubMed

    Khonsari, L S; Fabri, P J

    1997-01-01

    The advent of healthcare reform and the rapid application of new technologies have resulted in a paradigm shift in medical practice. Integrating medical Informatics into the full spectrum of medical education is a viral step toward implementing this new instructional model, a step required for the understanding and practice of modern medicine. We have developed an informatics curriculum, a new educational paradigm, and an intranet-based teaching module which are designed to enhance adult-learning principles, life-long self education, and evidence-based critical thinking. Thirty two, fourth year medical students have participated in a one month, full time, independent study focused on but not limited to four topics: mastering the windows-based environment, understanding hospital based information management systems, developing competence in using the internet/intranet and world wide web/HTML, and experiencing distance communication and TeleVideo networks. Each student has completed a clinically relevant independent study project utilizing technology mastered during the course. This initial curriculum offering was developed in conjunction with faculty from the College of Medicine, College of Engineering, College of Education, College of Business, College of Public Health. Florida Center of Instructional Technology, James A. Haley Veterans Hospital, Moffitt Cancer Center, Tampa General Hospital, GTE, Westshore Walk-in Clinic (paperless office), and the Florida Engineering Education Delivery System. Our second step toward the distributive integration process was the introduction of Medical Informatics to first, second and third year medical students. To date, these efforts have focused on undergraduate medical education. Our next step is to offer workshops in Informatics to college of medicine faculty, to residents in post graduate training programs (GME), and ultimately as a method of distance learning in continuing medical education (CME).

  1. Rethinking Teaching in STEM Education in a Community College: Role of Instructional Consultation and Digital Technologies

    NASA Astrophysics Data System (ADS)

    Kurland, Shelley Chih-Hsian

    Community college faculty members educate almost half of all U.S. undergraduates, who are often more diverse and more academically underprepared when compared to undergraduate students who attend four-year institutions. In addition, faculty members in community colleges are facing increased accountability for meeting student learning outcomes, expectations to adjust their teaching practices to include active learning practices, and expectations to incorporate more technologies into the classroom. Faculty developers are one of the support structures that faculty members can look to in order to meet those challenges. A survey of literature in faculty development suggests that instructional consultation can play an important role in shaping and transforming teaching practices. Hence, this action research study examined my work using instructional consulting with four full-time STEM faculty colleagues in order to examine and shape their teaching practices with and without the use of digital technologies. The two foci of the research, examining shifts in faculty participants' teaching practices, and my instructional consulting practices, were informed by Thomas and Brown's (2011) social view of learning and the concept of teaching and learning in a "co-learning" environment. Two dominant factors emerged regarding faculty participants' shift in teaching practices. These factors concerned: 1) the perception of control and 2) individual faculty participant's comfort level, expectations, and readiness. In addition to these two dominant factors, the instructional consultation process also supported a range of shifts in either mindset and/or teaching practices. My analysis showed that the use of digital technologies was not an essential factor in shifting faculty participant mindset and/or teaching practices, instead digital technologies were used to enhance the teaching process and students' learning experiences.

  2. Successful ADVANCE Initiatives for Junior Women Faculty in STEM

    NASA Astrophysics Data System (ADS)

    Riskin, Eve

    2015-01-01

    The NSF ADVANCE program was designed to transform university policies, procedures, and practices so that women faculty could advance in STEM faculty careers, obtain tenure, and ultimately become academic leaders. The results have been impressive. The most recent data from the American Society of Engineering Education (Fall 2013) show that the average percentage of women faculty in U.S. Colleges of Engineering is now 14.5%; it was just 9% when ADVANCE started in 2001.This talk will describe programs to support and promote junior women faculty that have been successful in recruiting and retaining women in STEM. These programs include mentoring, professional development, and work/life balance initiatives. Suggestions will be made for ways to disseminate low-cost successful ADVANCE programs to other institutions so that they can successfully support their own women faculty in STEM. One effort is the University of Washington's LEAD-it-Yourself! online toolkit that will enable other universities to run their own leadership workshops for department chairs and deans.

  3. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995. Volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Sickorez, Donn G. (Editor)

    1996-01-01

    The objectives of the JSC NASA/ASEE Summer Faculty Fellowship Program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. In addition to the faculty participants, the 1995 program included five students. This document is a compilation of the first fifteen of twenty-seven final reports on the research projects completed by the faculty fellows and visiting students during the summer of 1995. The reports of two of the students are integral with that of the respective fellow. Three students wrote separate reports included in Volume 2.

  4. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1994-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.

  5. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Astrophysics Data System (ADS)

    Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1994-03-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.

  6. Virginia Space Grant Consortium Management of National General Aviation Design Competition

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report summarizes the management of the National General Aviation Design Competition on behalf of NASA, the FAA and the Air Force by the Virginia Space Grant Consortium (VSGC) for the time period October 1, 2000 through September 30, 2001. This was the VSGC's seventh and final year of managing the Competition, which the Consortium originally designed, developed and implemented for NASA and the FAA. The competition is now being managed in-house by NASA. Awards to winning university teams were presented at a ceremony held at AirVenture 2001, the Experimental Aircraft Association's Annual Convention and Fly-In at Oshkosh, Wis. by NASA and FAA officials. The competition called for individuals or teams of undergraduate and graduate students from U.S. engineering schools to participate in a major national effort to rebuild the U.S. general aviation sector. Participants were challenged to meet the engineering goals of the Advanced General Aviation Transport Experiment (AGATE) project. For the purpose of the contest, general aviation aircraft are typically defined as single or twin engine (turbine or piston), single-pilot, fixed-wing aircraft for 2 - 6 passengers. The competition seeks to raise student awareness of the importance of general aviation by having students address design challenges for a small aircraft transportation system. NASA, AFRL and the FAA hope to stimulate breakthroughs in technology and their application in the general aviation marketplace. National goals for revitalizing the industry offer excellent, open-ended design challenges with real world applications for the Innovative Design Category. Both individual and team submissions were encouraged. University faculty advisors and students consistently cite the value of this kind of educational experience for their engineering students. Eight proposals were submitted for the 2001 Competition for the Innovative Design Category. Eleven faculty members and 124 students participated. Since inception, more than 785 students and 60 faculty members have participated in the Competition. A review panel comprised of general aviation experts from the FAA, EAA, NASA and industry representatives reviewed the design packages and selected the winners. The VSGC coordinated marketing of the competition to a mailing list which included selected deans and department chairs from ABET-accredited institutions, Space Grant affiliates, faculty who had previously participated in or expressed interest in the Competition, and others.

  7. Higher education technological knowledge and patterns of technology adoptions in undergraduate STEM courses

    NASA Astrophysics Data System (ADS)

    Ali, Zarka Asghar

    Identifying, examining, and understanding faculty members' technological knowledge development and the process of technology adoption in higher education is a multifaceted process. Past studies have used Rogers (1995, 2003) diffusion of innovation theoretical framework to delineate the technology adoption process. These studies, however, have frequently reported the influencing factors based on the statistical analysis such as regression analysis-based approach, and have not focused on the emerging process of technology adoptions or the developing process of technological knowledge and pedagogical knowledge. A mixed method study was designed to see how faculty members acquire different technologies and develop technological knowledge that might help them adopt technologies in their classrooms and online using different pedagogies. A sample of STEM teaching faculty members with different ranks, tenure, teaching experience, and varied degree of experience in the use of educational technologies participated in the study. A survey was designed to identify internal and external factors affecting technology adoption and its effective use in different teaching activities. To elaborate survey results, the study also included class observations as well as pre- and post-observation interviews. Online classrooms used by the faculty via Blackboard learning management system, online flipped classrooms, or other websites such as Piazza were also examined for data triangulation. The findings of the study indicate that faculty members are influenced by their own professional motivations and student learning to improve their teaching methods and to enhance student interactions and learning through the use of different educational technologies. The adoption process was identified as spreading over a period of time and it looked at how faculty members' developed their technological knowledge and pedagogical knowledge. With the recognition of the social, organizational, and professional motivational factors both expert faculty members, university administrators, and technologist could be made aware of the critical components necessary to construct and support a bottom-up or user-centric successful innovation adoption decision process. The bottom-up approach would use expert professors as change agents and educational designers that would encourage exchanges and meaningful dialogues about educational technology adoptions and effective uses of technology with pedagogy within each discipline and department.

  8. Technology Management Education for Students with Educational Background of Engineering

    NASA Astrophysics Data System (ADS)

    Aoyama, Atsushi; Abe, Atsushi

    Japanese industry has been encouraged to transform from a mode of ‘recovery’ to one of 'front-runner' in effective innovation and creation of new businesses and markets based in accomplishments of basic research. Graduate School of Technology Management at Ritsumeikan University strives to not only offer knowledge and skills, but also business experiences to its students so that they may acquire the abilities to discover and solve practical problems logically, analytically and systematically. To achieve these aims, it has inaugurated the Ritsumeikan University Practicum Program by enhancing existing internship programs. Under the guidance of its faculties, this program will allow its students a chance to set and solve actual problems in real world business environments.

  9. Investigating Veterinary Medicine Faculty Perceptions of Lecture Capture: Issues, Concerns, and Promises.

    PubMed

    Kwiatkowski, Alison C; Demirbilek, Muhammet

    Lecture capture technology is becoming more pervasive in today's classrooms. Students are demanding their lectures be recorded, but many instructors remain resistant. The goal of this study was to investigate faculty perceptions of lecture capture and to understand their concerns with the technology. Through a review of the existing literature, three common reasons for not recording were identified: impact on class attendance, incompatible pedagogy, and technical concerns. To test the hypotheses, an electronic survey was created and distributed to the faculty of a veterinary college in the southeastern US. The survey included both quantitative and qualitative questions. An invitation was emailed to all 134 faculty members, garnering 50 responses. Results were consistent with the hypotheses. Impact on class attendance, teaching styles, and technical considerations have dissuaded many instructors from adopting lecture capture technology. However, a fourth theme that emerged was faculty lack of awareness/familiarity. According to the qualitative responses, many faculty either did not know lecture recording was available in their teaching spaces or were not trained in how to use the technology. Recommendations for future research include distributing the survey campus-wide and providing more opportunities for faculty training. It would also be worthwhile to repeat the survey after providing more information and training materials to faculty, or after switching from an opt-in to an opt-out approach, to see whether perceptions have changed among the college's faculty.

  10. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1992-01-01

    The NASA-UVa Light Aerospace Alloy and Structure Technology (LAST) Program continues to maintain a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1992. The objectives of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of the next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with Langley researchers. Technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report cover topics including: (1) Mechanical and Environmental Degradation Mechanisms in Advance Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  11. Evaluating Instructor Technology Integration in Community and Technical Colleges: A Performance Evaluation Matrix

    ERIC Educational Resources Information Center

    Del Favero, Marietta; Hinson, Janice M.

    2007-01-01

    The press for implementing technology based instructional delivery systems in community and technical colleges is well documented. Yet faculty face numerous challenges in integrating technology into instruction (AL-Bataineh & Brooks, 2003; Groves & Zemel, 2000; Khoury, 1997). Stimulating faculty ownership in technology, diffusion of technology use…

  12. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 1

    NASA Technical Reports Server (NTRS)

    Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)

    1987-01-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston. The basic objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching objectives of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. Volume 1 contains sections 1 through 14.

  13. Retention of Underrepresented Minority Faculty: Strategic Initiatives for Institutional Value Proposition Based on Perspectives from a Range of Academic Institutions

    PubMed Central

    Whittaker, Joseph A.; Montgomery, Beronda L.; Martinez Acosta, Veronica G.

    2015-01-01

    The student and faculty make-up of academic institutions does not represent national demographics. Racial and ethnic minorities are disproportionately underrepresented nationally, and particularly at predominantly white institutions (PWIs). Although significant efforts and funding have been committed to increasing points of access or recruitment of under-represented minority (URM) students and faculty at PWIs, these individuals have not been recruited and retained at rates that reflect their national proportions. Underrepresentation of URMs is particularly prevalent in Science, Technology, Engineering, and Mathematics (STEM) disciplines. This reality represents a national crisis given a predicted shortage of workers in STEM disciplines based on current rates of training of all individuals, majority and URM, and the intersection of this limitation with persistent challenges in the recruitment, training, retention and advancement of URMs who will soon represent the largest pool of future trainees. An additional compounding factor is the increasingly disproportionate underrepresentation of minorities at higher professorial and administrative ranks, thus limiting the pool of potential mentors who are correlated with successful shepherding of URM students through STEM training and development. We address issues related to improving recruitment and retention of URM faculty that are applicable across a range of academic institutions. We describe challenges with recruitment and retention of URM faculty and their advancement through promotion in the faculty ranks and into leadership positions. We offer specific recommendations, including identifying environmental barriers to diversity and implementing strategies for their amelioration, promoting effective and innovative mentoring, and addressing leadership issues related to constructive change for promoting diversity. PMID:26240521

  14. Retention of Underrepresented Minority Faculty: Strategic Initiatives for Institutional Value Proposition Based on Perspectives from a Range of Academic Institutions.

    PubMed

    Whittaker, Joseph A; Montgomery, Beronda L; Martinez Acosta, Veronica G

    2015-01-01

    The student and faculty make-up of academic institutions does not represent national demographics. Racial and ethnic minorities are disproportionately underrepresented nationally, and particularly at predominantly white institutions (PWIs). Although significant efforts and funding have been committed to increasing points of access or recruitment of under-represented minority (URM) students and faculty at PWIs, these individuals have not been recruited and retained at rates that reflect their national proportions. Underrepresentation of URMs is particularly prevalent in Science, Technology, Engineering, and Mathematics (STEM) disciplines. This reality represents a national crisis given a predicted shortage of workers in STEM disciplines based on current rates of training of all individuals, majority and URM, and the intersection of this limitation with persistent challenges in the recruitment, training, retention and advancement of URMs who will soon represent the largest pool of future trainees. An additional compounding factor is the increasingly disproportionate underrepresentation of minorities at higher professorial and administrative ranks, thus limiting the pool of potential mentors who are correlated with successful shepherding of URM students through STEM training and development. We address issues related to improving recruitment and retention of URM faculty that are applicable across a range of academic institutions. We describe challenges with recruitment and retention of URM faculty and their advancement through promotion in the faculty ranks and into leadership positions. We offer specific recommendations, including identifying environmental barriers to diversity and implementing strategies for their amelioration, promoting effective and innovative mentoring, and addressing leadership issues related to constructive change for promoting diversity.

  15. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1990

    NASA Technical Reports Server (NTRS)

    Spencer, John H. (Compiler)

    1990-01-01

    Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. The objectives are to further the professional knowledge of qualified engineering and science members; to stimulate and exchange ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objectives of the NASA center. The study program consists of lectures and seminars on topics of interest or that are directly relevant to the research topics.

  16. Project-Based Learning Courses: The Relationship Between Faculty-Intended Course Implementation and Students' Perceptions

    NASA Astrophysics Data System (ADS)

    Simonovich, Jennifer A.; Towers, Emily; Zastavker, Yevgeniya V.

    2012-02-01

    Project-based learning (PjBL) has been shown to improve students' performance and satisfaction with their coursework, particularly in science and engineering courses. Specific aspects of PjBL that contribute to this improvement are student autonomy, course scaffolding, and instructor support. This study investigates two PjBL courses required for engineering majors at a small technical school, Introductory Mechanics Laboratory and Introductory Engineering Design. The three data sources used in this work are classroom observations (one laboratory and four design sessions) and semi-structured in-depth interviews with twelve students and six faculty. Grounded theory approach is used in a two-step fashion by (1) analyzing each data set individually and (2) performing full triangulation of all three data sets. In this talk, we demonstrate the relationship between faculty intentions and student perceptions regarding the three PjBL aspects -- student autonomy, course scaffolding, and instructor support -- within the context of these two courses. We further discuss implications for the course design and professional development of faculty.

  17. Bridging CAGD knowledge into CAD/CG applications: Mathematical theories as stepping stones of innovations

    NASA Astrophysics Data System (ADS)

    Gobithaasan, R. U.; Miura, Kenjiro T.; Hassan, Mohamad Nor

    2014-07-01

    Computer Aided Geometric Design (CAGD) which surpasses the underlying theories of Computer Aided Design (CAD) and Computer Graphics (CG) has been taught in a number of Malaysian universities under the umbrella of Mathematical Sciences' faculty/department. On the other hand, CAD/CG is taught either under the Engineering or Computer Science Faculty. Even though CAGD researchers/educators/students (denoted as contributors) have been enriching this field of study by means of article/journal publication, many fail to convert the idea into constructive innovation due to the gap that occurs between CAGD contributors and practitioners (engineers/product/designers/architects/artists). This paper addresses this issue by advocating a number of technologies that can be used to transform CAGD contributors into innovators where immediate impact in terms of practical application can be experienced by the CAD/CG practitioners. The underlying principle of solving this issue is twofold. First would be to expose the CAGD contributors on ways to turn mathematical ideas into plug-ins and second is to impart relevant CAGD theories to CAD/CG to practitioners. Both cases are discussed in detail and the final section shows examples to illustrate the importance of turning mathematical knowledge into innovations.

  18. National Aeronautics and Space Administration (NASA)/American Society of Engineering Education (ASEE) Summer Faculty Fellowship Program - 2000

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    2003-01-01

    The 2000 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and 1964 nationally, are to (1) further the professional knowledge of qualified engineering and science faculty, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with her/his interests and background, and worked in collabroation with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 2000.

  19. Technology Use in the Classroom: Preferences of Management Faculty Members

    ERIC Educational Resources Information Center

    Peluchette, Joy V.; Rust, Kathleen A.

    2005-01-01

    In this study, the authors investigated faculty members' preferences regarding the use of technologies as instructional tools in management courses. They mailed surveys to 500 management faculty members nationwide; 124 were returned with usable data. Respondents indicated that course subject and classroom environmental factors did not affect their…

  20. The Relationship of Faculty Demographics and Attitudes toward Technology Integration

    ERIC Educational Resources Information Center

    McKinley, Brian Michael

    2014-01-01

    Stakeholders in a midsized rural high school district were concerned that faculty failure to integrate educational technologies into instruction was adversely affecting student performance as measured by recent state mandated test scores. The purpose of this study was to determine if relationships existed between faculty age, gender, tenure, and…

  1. Course Management System's Compatibility with Teaching Style Influences Willingness to Complete Training

    ERIC Educational Resources Information Center

    Pereira, Audrey Smith; Wahi, Monika Maya

    2017-01-01

    Although course management systems (CMSs) provide technology platforms that help faculty members adopt better techniques for teaching and learning, and training contributes to faculty information technology (IT) use, many higher education faculty members do not complete CMS training programs, resulting in underuse of CMSs. Therefore, the overall…

  2. Scholars and Faculty Members' Lived Experiences in Online Social Networks

    ERIC Educational Resources Information Center

    Veletsianos, George; Kimmons, Royce

    2013-01-01

    Research into faculty members' use of technology and social networking sites has largely focused upon pedagogical practice, at the expense of understanding user experiences with these technologies. Through phenomenological interviews with three faculty members, we investigate their lived experiences with social networking sites. Results point to a…

  3. Motivation and Incentives for Distance Faculty

    ERIC Educational Resources Information Center

    Parker, Angie

    2003-01-01

    Colleges continue to offer growing numbers of courses and programs of study through distance education technologies. Yet despite this growth, relatively little is known about what inspires faculty to teach with a technology-mediated approach. The current study was designed as an exploration into the incentives that faculty perceive as motivating.…

  4. Metamaterial-Based Cylinders Used for Invisible Cloak Realization

    DTIC Science & Technology

    2011-08-01

    Branimir Ivsic Tin Komljenovic University of Zagreb Faculty of Electrical Engineering and Computing Unska 3 Zagreb , Croatia HR-10000...NUMBER 5e. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Zagreb Faculty of Electrical Engineering and Computing...Unska 3 Zagreb , Croatia HR-10000 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS

  5. Biological, Social, and Organizational Components of Success for Women in Academic Science and Engineering: Workshop Report

    ERIC Educational Resources Information Center

    National Academies Press, 2006

    2006-01-01

    During the last 40 years, the number of women studying science and engineering (S&E) has increased dramatically. Nevertheless, women do not hold academic faculty positions in numbers that commensurate with their increasing share of the S&E talent pool. The discrepancy exists at both the junior and senior faculty levels. In December 2005,…

  6. A Survey of Physical Sciences, Engineering and Mathematics Faculty Regarding Author Fees in Open Access Journals

    ERIC Educational Resources Information Center

    Cusker, Jeremy; Rauh, Anne E.

    2014-01-01

    Discussions of the potential of open access publishing frequently must contend with the skepticism of research authors regarding the need to pay author fees (also known as publication fees). With that in mind, the authors undertook a survey of faculty, postdocs, and graduate students in physical science, mathematics, and engineering fields at two…

  7. The Labor Market for PhDs in Science and Engineering: Career Outcomes.

    ERIC Educational Resources Information Center

    Solmon, Lewis C.; Hurwicz, Margo-Lea

    The outcomes of the employment situation for science and engineering PhDs were assessed through a survey of college and university departments and faculty members who had accepted new academic jobs or who had left academic jobs for other positions within the last three years. Faculty members who had accepted their first job after receiving the…

  8. Educational Technology and ''Roads Scholars''

    ERIC Educational Resources Information Center

    Tillyer, Anthea

    2005-01-01

    This article discusses part-time faculty members and the importance of educational technology for these part-time faculty members. Institutions invest large amounts of money in technologies meant to improve students' educational experience and the efficiency with which institutions serve students. The most common technology in which colleges…

  9. Using lecture capture: a qualitative study of nursing faculty's experience.

    PubMed

    Freed, Patricia E; Bertram, Julie E; McLaughlin, Dorcas E

    2014-04-01

    As lecture capture technology becomes widely available in schools of nursing, faculty will need to master new technological skills and make decisions about recording their classroom lectures or other activities. This study sought to understand faculty's experience of using a new lecture capture system. This qualitative study used Kruger's systematic approach to explore undergraduate nursing faculty's first-time experience using a lecture capture system purchased by the university. Four focus groups were conducted with a total of fourteen undergraduate faculty using lecture capture for the first-time. The interviews were recorded and transcribed and then analyzed by the researchers. Four themes were identified from the faculty interviews. Two of the themes expressed faculty's concerns about the teaching role, and two themes expressed the faculty's concerns about student learning. Participants experienced stress when learning to use the new lecture capture technology and struggled to resolve it with their own beliefs and teaching values. The impact of lecture capture on student learning, impact on class attendance, and the promotion of a culture of lecturing were revealed as important issues to consider when lecture capture becomes available. © 2013.

  10. On the Fifth Day: The Pay Equals the Work.

    ERIC Educational Resources Information Center

    Sissom, Leighton E.

    1986-01-01

    Addresses the guidelines most institutions of higher learning use in determining to what extent their faculty can be involved in outside consulting. Reports on a study detailing the amount of time engineering faculty spent doing consulting. Outlines a set of pros and cons concerning faculty consulting. (TW)

  11. Collaborating for a cause--Creating partnerships between IT and academia.

    PubMed

    Cato, Jim; Abbott, Patricia

    2006-01-01

    An international nursing shortage is driving the redesign of nursing education curriculum. Providing nursing students with an opportunity for hands on use of advanced healthcare technology is critical to the development of highly competent nurses who are prepared not only to fully interact in the healthcare domain, but to also participate in its re-engineering via IT. The academic institution with an integrated IT solution in clinical simulation labs can become a place where students can learn the skills, understand the potential, participate in the selection and evaluation of software systems and eventually help to craft IT solutions that benefit both the patient and the practice of nursing and medicine. As the healthcare environment continues to change - pushing curricular redesign, the expectation that educators will increase the integration of IT into coursework and clinical experiences is increasing. The challenge however, is not only to educate the students, but to also educate faculty who often possess limited amounts of IT knowledge. Faculties, like students, have limited time and learning outcomes are enhanced when hands-on and practical educational opportunities are available. This presentation therefore will not only focus on the student; instead, the gestalt of integrated teaching/learning from faculty and student perspectives will be addressed. The challenges, including identifying partnership opportunities, identifying financial resources to support such partnerships, gaining institutional support, determining criteria to evaluate student performance, and strategies for engendering faculty support will be discussed, along with solutions on how they can be overcome. The presentation will also highlight the benefits of the partnership for both the institution and the industry vendor. The institution can benefit from the access to the vendor's software, hardware, and expertise. By using advanced clinical solutions in the classroom and hospital setting, students and faculty can benefit from access to evidence based content and knowledge management. Opportunities for faculty and student research also become possible. In turn, the vendor has access to the institution's intellectual capital, participation in research studies co-authorship in academic publications, and enhancements of product design. The outcome is a nursing informatics educational partnership empowering nurses to utilize and drive the enhancements of advanced technology to improve the delivery of patient care.

  12. Engineering education and a lifetime of learning

    NASA Technical Reports Server (NTRS)

    Eisley, J. (Editor)

    1974-01-01

    The result of an eleven-week study by the National Aeronautics and Space Administration (NASA) and the American Society of Engineering Education is presented. The study was the ninth of a series of programs. The purposes of the programs were: (1) to introduce engineering school faculty members to system design and to a particular approach to teaching system design, (2) to introduce engineering faculty to NASA and to a specific NASA center, and (3) to produce a study of use to NASA and to the participants. The story was concerned with engineering education in the U.S., and concentrated upon undergraduate education and teaching, although this bias was not meant to imply that research and graduate study are less important to engineering education.

  13. Survival Analysis of Faculty Retention and Promotion in the Social Sciences by Gender

    PubMed Central

    Varbanov, Roumen A.; Hoh, Yee Shwen; Knisley, Margaret L.; Holmes, Mary Alice

    2015-01-01

    Background Recruitment and retention of talent is central to the research performance of universities. Existing research shows that, while men are more likely than women to be promoted at the different stages of the academic career, no such difference is found when it comes to faculty retention rates. Current research on faculty retention, however, focuses on careers in science, technology, engineering, and mathematics (STEM). We extend this line of inquiry to the social sciences. Methods We follow 2,218 tenure-track assistant professors hired since 1990 in seven social science disciplines at nineteen U.S. universities from time of hire to time of departure. We also track their time to promotion to associate and full professor. Using survival analysis, we examine gender differences in time to departure and time to promotion. Our methods account for censoring and unobserved heterogeneity, as well as effect heterogeneity across disciplines and cohorts. Results We find no statistically significant differences between genders in faculty retention. However, we do find that men are more likely to be granted tenure than women. When it comes to promotion to full professor, the results are less conclusive, as the effect of gender is sensitive to model specification. Conclusions The results corroborate previous findings about gender patterns in faculty retention and promotion. They suggest that advances have been made when it comes to gender equality in retention and promotion, but important differences still persist. PMID:26580565

  14. A campus-wide study of STEM courses: new perspectives on teaching practices and perceptions.

    PubMed

    Smith, Michelle K; Vinson, Erin L; Smith, Jeremy A; Lewin, Justin D; Stetzer, MacKenzie R

    2014-01-01

    At the University of Maine, middle and high school science, technology, engineering, and mathematics (STEM) teachers observed 51 STEM courses across 13 different departments and collected information on the active-engagement nature of instruction. The results of these observations show that faculty members teaching STEM courses cannot simply be classified into two groups, traditional lecturers or instructors who teach in a highly interactive manner, but instead exhibit a continuum of instructional behaviors between these two classifications. In addition, the observation data reveal that student behavior differs greatly in classes with varied levels of lecture. Although faculty members who teach large-enrollment courses are more likely to lecture, we also identified instructors of several large courses using interactive teaching methods. Observed faculty members were also asked to complete a survey about how often they use specific teaching practices, and we find that faculty members are generally self-aware of their own practices. Taken together, these findings provide comprehensive information about the range of STEM teaching practices at a campus-wide level and how such information can be used to design targeted professional development for faculty. © 2014 M. K. Smith et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. The Classroom Observation Protocol for Undergraduate STEM (COPUS): a new instrument to characterize university STEM classroom practices.

    PubMed

    Smith, Michelle K; Jones, Francis H M; Gilbert, Sarah L; Wieman, Carl E

    2013-01-01

    Instructors and the teaching practices they employ play a critical role in improving student learning in college science, technology, engineering, and mathematics (STEM) courses. Consequently, there is increasing interest in collecting information on the range and frequency of teaching practices at department-wide and institution-wide scales. To help facilitate this process, we present a new classroom observation protocol known as the Classroom Observation Protocol for Undergraduate STEM or COPUS. This protocol allows STEM faculty, after a short 1.5-hour training period, to reliably characterize how faculty and students are spending their time in the classroom. We present the protocol, discuss how it differs from existing classroom observation protocols, and describe the process by which it was developed and validated. We also discuss how the observation data can be used to guide individual and institutional change.

  16. Book Notes: College Chemistry Faculties 1996, 10th ed.

    NASA Astrophysics Data System (ADS)

    Kauffman, George B.

    1998-02-01

    This comprehensive directory of the most current information on two-, three-, and four-year college and university teachers of chemistry, biochemistry, biotechnology, chemical engineering, chemical technology, medicinal chemistry, and other chemistry-related fields in the United States, its territories, and Canada will be of great use and interest not only to chemistry faculty members but to graduate and undergraduate students, librarians, and departmental secretaries as well. For each of the more than 2,150 academic departments devoted to these disciplines the entire staffs (except for emeriti, emeritae, adjunct, or visiting professors; persons on temporary appointment; postdoctoral fellows; research associates; or graduate students) are listed, along with major teaching fields, highest degree earned, and academic rank. Other departments, such as biology or physical science, in which these disciplines are taught are also included, but only persons who teach chemistry or related subjects are listed for these departments.

  17. Perceptions of Plagiarism by STEM Graduate Students: A Case Study.

    PubMed

    Leonard, Michelle; Schwieder, David; Buhler, Amy; Bennett, Denise Beaubien; Royster, Melody

    2015-12-01

    Issues of academic integrity, specifically knowledge of, perceptions and attitudes toward plagiarism, are well documented in post-secondary settings using case studies for specific courses, recording discourse with focus groups, analyzing cross-cultural education philosophies, and reviewing the current literature. In this paper, the authors examine the perceptions of graduate students in science, technology, engineering, and mathematics (STEM) disciplines at the University of Florida regarding misconduct and integrity issues. Results revealed students' perceptions of the definition and seriousness of potential academic misconduct, knowledge of institutional procedures, and views on faculty actions, all with a focus on divergences between U.S. and internationally-educated students. The open-ended questions provide anecdotal evidence to highlight personal experiences, positive and negative, aimed at the faculty, international students and undergraduates. Combined, these findings outline an important part of the campus academic integrity culture at a major American university. Recommendations for local actions also are discussed.

  18. The Classroom Observation Protocol for Undergraduate STEM (COPUS): A New Instrument to Characterize University STEM Classroom Practices

    PubMed Central

    Smith, Michelle K.; Jones, Francis H. M.; Gilbert, Sarah L.; Wieman, Carl E.

    2013-01-01

    Instructors and the teaching practices they employ play a critical role in improving student learning in college science, technology, engineering, and mathematics (STEM) courses. Consequently, there is increasing interest in collecting information on the range and frequency of teaching practices at department-wide and institution-wide scales. To help facilitate this process, we present a new classroom observation protocol known as the Classroom Observation Protocol for Undergraduate STEM or COPUS. This protocol allows STEM faculty, after a short 1.5-hour training period, to reliably characterize how faculty and students are spending their time in the classroom. We present the protocol, discuss how it differs from existing classroom observation protocols, and describe the process by which it was developed and validated. We also discuss how the observation data can be used to guide individual and institutional change. PMID:24297289

  19. Development of Graduate Course Education by Industry Collaboration in Center for Engineering Education Development, CEED

    NASA Astrophysics Data System (ADS)

    Noguchi, Toru; Yoshikawa, Kozo; Nakamura, Masato; Kaneko, Katsuhiko

    New education programs for engineering graduate courses, and the achievements are described. Following the previous reports on overseas and domestic internship2) , 3) , this article states other common programs ; seminars on state of technologies in industries, practical English and internationalization programs, and a program to accept overseas internship students. E-learning system to assist off-campus students is also described. All these programs are developed and conducted by specialist professors invited from industries and national institutions, in collaboration with faculty professors. Students learn how the engineering science apply to the practical problems, acquire wider view and deeper understanding on industries, and gain abilities to act in global society including communication skill, those are not taught in classrooms and laboratories. Educational effects of these industry collaborated programs is significant to activate the graduate course education, although the comprehensive evaluation is the future subject.

  20. Ocean Instruments Web Site for Undergraduate, Secondary and Informal Education

    NASA Astrophysics Data System (ADS)

    Farrington, J. W.; Nevala, A.; Dolby, L. A.

    2004-12-01

    An Ocean Instruments web site has been developed that makes available information about ocean sampling and measurement instruments and platforms. The site features text, pictures, diagrams and background information written or edited by experts in ocean science and engineering and contains links to glossaries and multimedia technologies including video streaming, audio packages, and searchable databases. The site was developed after advisory meetings with selected professors teaching undergraduate classes who responded to the question, what could Woods Hole Oceanographic Institution supply to enhance undergraduate education in ocean sciences, life sciences, and geosciences? Prototypes were developed and tested with students, potential users, and potential contributors. The site is hosted by WHOI. The initial five instruments featured were provided by four WHOI scientists and engineers and by one Sea Education Association faculty member. The site is now open to contributions from scientists and engineers worldwide. The site will not advertise or promote the use of individual ocean instruments.

  1. You Can Teach an Old Dog New Tricks: The Faculty's Role in Technology Implementation.

    ERIC Educational Resources Information Center

    White, Jill T.; Myers, Susan D.

    2001-01-01

    Reports student and faculty perceptions of two courses that included online instruction via WebCT. Discusses how initial student concerns changed to perceptions of how the technology was beneficial and increased community and collaboration among learners. Notes the importance of adequate planning time for faculty. (SR)

  2. Faculty as Filmmakers: On the Cutting Edge of Classroom Technologies

    ERIC Educational Resources Information Center

    Rozensher, Susan G.

    2007-01-01

    Digital video equipment and studios newly available for faculty use can be incorporated into the technological repertoire of college faculty, enabling professors to customize and enhance the learning experience of their students. Today's students are particularly attuned to analyzing visual images and data, so the use of customized films in the…

  3. Higher Education Faculty Utilization of Online Technological Tools: A Multilevel Analysis

    ERIC Educational Resources Information Center

    Jackson, Brianne L.

    2017-01-01

    As online learning and the use of online technological tools in higher education continues to grow exponentially, higher education faculty are expected to incorporate these tools into their instruction. However, many faculty members are reluctant to embrace such tools, for a variety of professional and personal reasons. This study employs survey…

  4. Current Continuing Education Needs of Two-Year College Mathematics Faculty Must Be Met!

    ERIC Educational Resources Information Center

    Sharp, Karen Tabey

    Arguing that rapid developments in technology and changing enrollment patterns make updating the skills of two-year college mathematics faculty an imperative, this paper discusses the ways in which the continuing education needs of faculty members can be met. First, technological developments, especially in the computer sciences, are reviewed, and…

  5. Perceptions of Preservice Teachers regarding the Integration of Information and Communication Technologies in Turkish Education Faculties

    ERIC Educational Resources Information Center

    Akbulut, Yavuz; Odabasi, H. Ferhan; Kuzu, Abdullah

    2011-01-01

    This study explored the views of pre-service teachers regarding the indicators of information and communication technologies (ICT) at Turkish education faculties. A cross-sectional survey design was implemented with graduating students enrolled in Turkish education faculties. A combination of stratified random sampling and systematic sampling was…

  6. Barriers to Using the Blackboard System in Teaching and Learning: Faculty Perceptions

    ERIC Educational Resources Information Center

    Al Meajel, Talal Mohammad; Sharadgah, Talha Abdullah

    2018-01-01

    In this digital age, the success of faculty members in adopting technology definitely affects the success of their students and ultimately the educational institution. However, there are many who have not incorporated technology tools such as Blackboard into their courses. Therefore, this paper investigated faculty perceptions of barriers to using…

  7. Study of Faculty and Information Technology, 2014

    ERIC Educational Resources Information Center

    Dahlstrom, Eden; Brooks, D. Christopher

    2014-01-01

    In this inaugural year of the faculty technology study, EDUCAUSE Center for Analysis and Research (ECAR) partnered with 151 college/university sites yielding responses from 17,451 faculty respondents across 13 countries. The findings are exploratory in nature, as they cover new ground to help us tell a more comprehensive story about technology…

  8. Modelling and optimization of rotary parking system

    NASA Astrophysics Data System (ADS)

    Skrzyniowski, A.

    2016-09-01

    The increasing number of vehicles in cities is a cause of traffic congestion which interrupts the smooth traffic flow. The established EU policy underlines the importance of restoring spaces for pedestrian traffic and public communication. The overall vehicle parking process in some parts of a city takes so much time that it has a negative impact on the environment. This article presents different kinds of solution with special focus on the rotary parking system (PO). This article is based on a project realized at the Faculty of Mechanical Engineering of Cracow University of Technology.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    ASFAW BEYENE

    Since its establishment in 1990, San Diego State University’s Industrial Assessment Center (IAC) has served close to 400 small and medium-sized manufacturing plants in Southern California. SDSU/IAC’s efforts to transfer state-of-the-art technologies to industry have increased revenues, cultivated creativity, improved efficiencies, and benefited the environment. A substantial benefit from the program has been the ongoing training of engineering faculty and students. During this funding cycle, SDSU/IAC has trained 31 students, 7 of the graduate. A total of 92 assessments and 108 assessment days were completed, resulting in 638 assessment recommendations.

  10. Multifunctional design of footwear for hot environment condition

    NASA Astrophysics Data System (ADS)

    Dragcevic, Z.; Vujasinovic, E.; Hursa Sajatovic, A.

    2017-10-01

    For some time design of a new product is not connected only with aesthetic, artistic appearance but moreover with functionality and engineering (from rightful selection of materials, construction, and technological concept to prototyping). One good example of this is design of multifunctional footwear as well as hiking footwear, footwear for soldiers, police officers, first responders etc. All mentioned kinds of footwear have lot of specific requirements to fulfil starting from maintaining and enhancing mobility to maximizing protection and eliminating or minimizing the risk for the wearer. Therefore, designing appropriate footwear represents a great challenge not only for designers but for engineers as well. Having that entire in mind few years ago, Faculty of Textile Technology University of Zagreb started the research with the aim to develop 21st century multifunctional footwear for e.g. military, police, first respondents or any special human forces for different weather environment. The paper presents how it was done in the case of boots for hot environment conditions

  11. Full-Scale Turbofan Engine Noise-Source Separation Using a Four-Signal Method

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Arechiga, Rene O.

    2016-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and expected advances in mitigation of other noise sources. During on-ground, static-engine acoustic tests, combustor noise is generally sub-dominant to other engine noise sources because of the absence of in-flight effects. Consequently, noise-source separation techniques are needed to extract combustor-noise information from the total noise signature in order to further progress. A novel four-signal source-separation method is applied to data from a static, full-scale engine test and compared to previous methods. The new method is, in a sense, a combination of two- and three-signal techniques and represents an attempt to alleviate some of the weaknesses of each of those approaches. This work is supported by the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject and the NASA Glenn Faculty Fellowship Program.

  12. "Future Proofing" Faculty: The Struggle To Create Technical Lifelong Learners.

    ERIC Educational Resources Information Center

    Nay, Fred W.; Malm, Loren D.; Malone, Bobby G.; Oliver, Brad E.; Saunders, Nancy G.; Thompson, Jay C., Jr.

    College faculty can avoid investing valuable time and resources in inappropriate technologies by staying in step with technological progress. A "future proof" approach to technology recognizes and welcomes small failures, considering them part of the ongoing process of absorbing technology into the learning process. Future proofing attempts to…

  13. Enhancing Poetry Writing through Technology: The Yin and the Yang.

    ERIC Educational Resources Information Center

    Roberts, Sherron Killingsworth; Schmidt, Denise

    2002-01-01

    Describes the outcome of an innovative mentoring program that paired technology faculty and methods faculty in order to form partnerships to facilitate the modeling of technology for preservice teachers. Discusses the creation of useful applications for enhancing poetry writing through technology for elementary school students. (SG)

  14. Interactive Digital Technologies' Use in Southwest Nigerian Universities

    ERIC Educational Resources Information Center

    Agbatogun, Alaba Olaoluwakotansibe

    2013-01-01

    The interactive digital technologies in education is an effective means used to widen educational opportunities. However, many faculty members do not use or adopt digital technologies as instructional tools. The purpose of this study was to predict faculty members' use of digital technologies in Nigerian Universities. 492 university lecturers from…

  15. Higher Education Beyond Faculties: Interdisciplinary Education in Care and Technology.

    PubMed

    Sponselee, Anne-Mie A G; Van Hoof, Joost

    2017-01-01

    A Centre of Healthcare and Technology of a Dutch University of Applied Sciences, is presented - and illustrated by project examples - to show how the transitions in the sectors of health care and technology can result in interdisciplinary education in care and technology by means of higher education beyond faculties.

  16. Technology Adoption of Medical Faculty in Teaching: Differentiating Factors in Adopter Categories

    ERIC Educational Resources Information Center

    Zayim, Nese; Yildirim, Soner; Saka, Osman

    2006-01-01

    Despite large investments by higher education institutions in technology for faculty and student use, instructional technology is not being integrated into instruction in higher education institutions including medical education institutions. While the diffusion of instructional technologies has reached a saturation point among early adopters of…

  17. Princeton Science and Engineering Education Initiative: Revising Undergraduate Environmental Science Courses

    NASA Astrophysics Data System (ADS)

    Riihimaki, C. A.; Sealfon, C. D.; Paine, E. N.; O'Donnell, F. C.; Caylor, K. K.; Wilcove, D. S.

    2012-12-01

    The Science and Engineering Education Initiative at Princeton University aims to inspire and prepare all undergraduates, irrespective of their majors, to become scientifically and technologically literate citizens and decision-makers. Launched by the faculty on the Council on Science and Technology in September 2011, the initiative involves revising and creating science and engineering courses that emphasize the role of science in society. The course "Fundamentals of Environmental Studies" will serve as a model course for the initiative starting with revisions to the course in Fall 2012. Given the general interest undergraduates have for sustainability topics and the obvious connections between sustainability and society, this course should generate ample interest from students across the campus. We have begun the Initiative by defining student-centered learning goals and surveying students' attitudes towards science and engineering. Course by course, we are also gradually applying research-based teaching methods to better align course activities with learning goals, assessing learning gains, and creating a repository of successful methods and courses. Among the changes to "Fundamentals of Environmental Studies" will be a greater emphasis on science communication, such as incorporating an assignment in which students track the evolution of communicating a research project, from journal article to newspaper coverage to editorials.

  18. Broadband Epsilon-Near-Zero (ENZ) and Mu-Near-Zero (MNZ) Active Metamaterial

    DTIC Science & Technology

    2011-08-01

    Krois Ivan Bonic Aleksandar Kiricenko Eduardo Ugarte Munoz University of Zagreb Faculty of Electrical Engineering and Computing Department...of Wireless Communications Unska 3 Zagreb , Croatia HR 10 000 EOARD GRANT 10-3030 August 2011 Final Report for 24 August 2010 to 24...ADDRESS(ES) University of Zagreb Faculty of Electrical Engineering and Computing Department of Wireless Communications Unska 3 Zagreb , Croatia

  19. A Comparative Analysis of Female Representation in the Faculties of Engineering and Law in a Nigerian University

    ERIC Educational Resources Information Center

    Olubor, Roseline O.

    2006-01-01

    Women education has been a global issue for decades now. It is therefore appropriate to occasionally find out the situation. This study, which is a comparative analysis of the representation of females in the Faculties of Engineering and Law in University of Benin, was therefore meant to address the issue. Relevant literatures were reviewed.…

  20. The Meaning of Money in the Socialization of Science and Engineering Doctoral Students: Nurturing the Next Generation of Academic Capitalists?

    ERIC Educational Resources Information Center

    Szelenyi, Katalin

    2013-01-01

    Based on ethnographic interviews with 48 doctoral students and 22 faculty members in science and engineering, this study examines the ways in which doctoral students and faculty make market, symbolic, and social meaning of the presence or absence of money in doctoral student socialization and of funding from governmental and industrial sources.…

Top