NASA Technical Reports Server (NTRS)
Busch, Arthur M.; Campbell, John A.
1959-01-01
A crash-fire protection system to suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbopropeller engine is described. This system includes means for rapidly extinguishing the combustor flame and means for cooling and inerting with water the hot engine parts likely to ignite engine-ingested fuel. Combustion-chamber flames were extinguished in 0.07 second at the engine fuel manifold. Hot engine parts were inerted and cooled by 52 pounds of water discharged at ten engine stations. Performance trials of the crash-fire prevention system were conducted by bringing the engine up to takeoff temperature, stopping the normal fuel flow to the engine, starting the water discharge, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.
NASA Astrophysics Data System (ADS)
Ivchenko, V. M.; Prikhodko, N. A.; Grigorev, V. A.
1985-12-01
Problems associated with the development of optimal hydrojet engines and hydrojet systems with minimal irreversible losses are reviewed in the light of recent theoretical and experimental studies. In particular, attention is given to the theory of hydrojet propulsion, the hydrodynamics of supercavitating hydrojet engines, hydrojet engines with distributed water intake, and water-gas ramjets. The discussion also covers water-steam jet engines, experimental equipment and methods for testing hydrojet systems, and the principal applications of hydrojet engines.
Engine Company Evaluation of Feasibility of Aircraft Retrofit Water-Injected Turbomachines
NASA Technical Reports Server (NTRS)
Becker, Arthur
2006-01-01
This study supports the NASA Glenn Research Center and the U.S. Air Force Research Laboratory in their efforts to evaluate the effect of water injection on aircraft engine performance and emissions. In this study, water is only injected during the takeoff and initial climb phase of a flight. There is no water injection during engine start or ground operations, nor during climb, cruise, descent, or landing. This study determined the maintenance benefit of water injection during takeoff and initial climb and evaluated the feasibility of retrofitting a current production engine, the PW4062 (Pratt & Whitney, East Hartford, CT), with a water injection system. Predicted NO(x) emissions based on a 1:1 water-tofuel ratio are likely to be reduced between 30 to 60 percent in Environmental Protection Agency parameter (EPAP). The maintenance cost benefit for an idealized combustor water injection system installed on a PW4062 engine in a Boeing 747-400ER aircraft (The Boeing Company, Chicago, IL) is computed to be $22 per engine flight hour (EFH). Adding water injection as a retrofit kit would cost up to $375,000 per engine because of the required modifications to the fuel system and addition of the water supply system. There would also be significant nonrecurring costs associated with the development and certification of the system that may drive the system price beyond affordability.
Systems of frequency distributions for water and environmental engineering
NASA Astrophysics Data System (ADS)
Singh, Vijay P.
2018-09-01
A wide spectrum of frequency distributions are used in hydrologic, hydraulic, environmental and water resources engineering. These distributions may have different origins, are based on different hypotheses, and belong to different generating systems. Review of literature suggests that different systems of frequency distributions employed in science and engineering in general and environmental and water engineering in particular have been derived using different approaches which include (1) differential equations, (2) distribution elasticity, (3) genetic theory, (4) generating functions, (5) transformations, (6) Bessel function, (7) expansions, and (8) entropy maximization. This paper revisits these systems of distributions and discusses the hypotheses that are used for deriving these systems. It also proposes, based on empirical evidence, another general system of distributions and derives a number of distributions from this general system that are used in environmental and water engineering.
7 CFR 1942.20 - Community Facility Guides.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... (7) Guide 7—Preliminary Engineering Report Water Facility. (8) Guide 8—Preliminary Engineering Report Sewerage Systems. (9) Guide 9—Preliminary Engineering Report Solid Waste Disposal Systems. (10) Guide 10—Preliminary Engineering Report Storm Waste-Water Disposal. (11) Guide 11—Daily Inspection Report. (12) Guide...
Direct and system effects of water ingestion into jet engine compresors
NASA Technical Reports Server (NTRS)
Murthy, S. N. B.; Ehresman, C. M.; Haykin, T.
1986-01-01
Water ingestion into aircraft-installed jet engines can arise both during take-off and flight through rain storms, resulting in engine operation with nearly saturated air-water droplet mixture flow. Each of the components of the engine and the system as a whole are affected by water ingestion, aero-thermally and mechanically. The greatest effects arise probably in turbo-machinery. Experimental and model-based results (of relevance to 'immediate' aerothermal changes) in compressors have been obtained to show the effects of film formation on material surfaces, centrifugal redistribution of water droplets, and interphase heat and mass transfer. Changes in the compressor performance affect the operation of the other components including the control and hence the system. The effects on the engine as a whole are obtained through engine simulation with specified water ingestion. The interest is in thrust, specific fuel consumption, surge margin and rotational speeds. Finally two significant aspects of performance changes, scalability and controllability, are discussed in terms of characteristic scales and functional relations.
A Combined Water-Bromotrifluoromethane Crash-Fire Protection System for a T-56 Turbopropeller Engine
NASA Technical Reports Server (NTRS)
Campbell, John A.; Busch, Arthur M.
1959-01-01
A crash-fire protection system is described which will suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbo-propeller engine. This system includes means for rapidly extinguishing the combustor flame, means for cooling and inerting with water the hot engine parts likely to ignite engine ingested fuel, and means for blanketing with bromotrifluoromethane massive metal parts that may reheat after the engine stops rotating. Combustion-chamber flames were rapidly extinguished at the engine fuel nozzles by a fuel shutoff and drain valve. Hot engine parts were inerted and cooled by 42 pounds of water discharged at seven engine stations. Massive metal parts that could reheat were inerted with 10 pounds of bromotrifluoromethane discharged at two engine stations. Performance trials of the crash-fire protection system were conducted by bringing the engine up to takeoff temperature, actuating the crash-fire protection system, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.
Dynamic Performance of High Bypass Ratio Turbine Engines With Water Ingestion
NASA Technical Reports Server (NTRS)
Murthy, S. N. B.
1996-01-01
The research on dynamic performance of high bypass turbofan engines includes studies on inlets, turbomachinery and the total engine system operating with air-water mixture; the water may be in vapor, droplet, or film form, and their combinations. Prediction codes (WISGS, WINCOF, WINCOF-1, WINCLR, and Transient Engine Performance Code) for performance changes, as well as changes in blade-casing clearance, have been established and demonstrated in application to actual, generic engines. In view of the continuous changes in water distribution in turbomachinery, the performance of both components and the total engine system must be determined in a time-dependent mode; hence, the determination of clearance changes also requires a time-dependent approach. In general, the performance and clearances changes cannot be scaled either with respect to operating or ingestion conditions. Removal of water prior to phase change is the most effective means of avoiding ingestion effects. Sufficient background has been established to perform definitive, full scale tests on a set of components and a complete engine to establish engine control and operability with various air-water vapor-water mixtures.
Comparison of two total energy systems for a diesel power generation plant. [deep space network
NASA Technical Reports Server (NTRS)
Chai, V. W.
1979-01-01
The capabilities and limitations, as well as the associated costs for two total energy systems for a diesel power generation plant are compared. Both systems utilize waste heat from engine cooling water and waste heat from exhaust gases. Pressurized water heat recovery system is simple in nature and requires no engine modifications, but operates at lower temperature ranges. On the other hand, a two-phase ebullient system operates the engine at constant temperature, provides higher temperature water or steam to the load, but is more expensive.
Natural and Engineered water systems interact throughout watersheds (e.g., at water intakes, wastewater outfalls and water pipe breaks of all kinds), and while there is clearly a link between watershed activities and the quality of water entering the engineered environment, surfa...
Thermal Propulsion Capture System Heat Exchanger Design
NASA Technical Reports Server (NTRS)
Richard, Evan M.
2016-01-01
One of the biggest challenges of manned spaceflight beyond low earth orbit and the moon is harmful radiation that astronauts would be exposed to on their long journey to Mars and further destinations. Using nuclear energy has the potential to be a more effective means of propulsion compared to traditional chemical engines (higher specific impulse). An upper stage nuclear engine would allow astronauts to reach their destination faster and more fuel efficiently. Testing these engines poses engineering challenges due to the need to totally capture the engine exhaust. The Thermal Propulsion Capture System is a concept for cost effectively and safely testing Nuclear Thermal Engines. Nominally, hydrogen exhausted from the engine is not radioactive, but is treated as such in case of fuel element failure. The Thermal Propulsion Capture System involves injecting liquid oxygen to convert the hydrogen exhaust into steam. The steam is then cooled and condensed into liquid water to allow for storage. The Thermal Propulsion Capture System concept for ground testing of a nuclear powered engine involves capturing the engine exhaust to be cooled and condensed before being stored. The hydrogen exhaust is injected with liquid oxygen and burned to form steam. That steam must be cooled to saturation temperatures before being condensed into liquid water. A crossflow heat exchanger using water as a working fluid will be designed to accomplish this goal. Design a cross flow heat exchanger for the Thermal Propulsion Capture System testing which: Eliminates the need for water injection cooling, Cools steam from 5800 F to saturation temperature, and Is efficient and minimizes water requirement.
Modeling complexity in engineered infrastructure system: Water distribution network as an example
NASA Astrophysics Data System (ADS)
Zeng, Fang; Li, Xiang; Li, Ke
2017-02-01
The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.
Ashbolt, Nicholas J.
2015-01-01
Major waterborne (enteric) pathogens are relatively well understood and treatment controls are effective when well managed. However, water-based, saprozoic pathogens that grow within engineered water systems (primarily within biofilms/sediments) cannot be controlled by water treatment alone prior to entry into water distribution and other engineered water systems. Growth within biofilms or as in the case of Legionella pneumophila, primarily within free-living protozoa feeding on biofilms, results from competitive advantage. Meaning, to understand how to manage water-based pathogen diseases (a sub-set of saprozoses) we need to understand the microbial ecology of biofilms; with key factors including biofilm bacterial diversity that influence amoebae hosts and members antagonistic to water-based pathogens, along with impacts from biofilm substratum, water temperature, flow conditions and disinfectant residual—all control variables. Major saprozoic pathogens covering viruses, bacteria, fungi and free-living protozoa are listed, yet today most of the recognized health burden from drinking waters is driven by legionellae, non-tuberculous mycobacteria (NTM) and, to a lesser extent, Pseudomonas aeruginosa. In developing best management practices for engineered water systems based on hazard analysis critical control point (HACCP) or water safety plan (WSP) approaches, multi-factor control strategies, based on quantitative microbial risk assessments need to be developed, to reduce disease from largely opportunistic, water-based pathogens. PMID:26102291
2013-06-01
accumulate and shelter sessile and mobile marine species. Fouling in sea chests and sea water pipework is also an operational issue for marine engineers ...pipework is also an operational issue for marine engineers , as it restricts water flow to essential vessel systems and may enhance biocorrosion [18, 19...subtidal marine communities worldwide and are considered as key species and important habitat engineers in benthic communities [30]. They possess high
2015-03-26
Stennis Space Center employees install a 96-inch valve during a recent upgrade of the high-pressure industrial water system that serves the site’s large rocket engine test stands. The upgraded system has a capacity to flow 335,000 gallons of water a minute, which is a critical element for testing. At Stennis, engines are anchored in place on large test stands and fired just as they are during an actual space flight. The fire and exhaust from the test is redirected out of the stand by a large flame trench. A water deluge system directs thousands of gallons of water needed to cool the exhaust. Water also must be available for fire suppression in the event of a mishap. The new system supports RS-25 engine testing on the A-1 Test Stand, as well as testing of the core stage of NASA’s new Space Launch System on the B-2 Test Stand at Stennis.
Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators
Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; DeLay, Michael; Driks, Adam; Sahin, Ozgur
2015-01-01
Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment. PMID:26079632
Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators
NASA Astrophysics Data System (ADS)
Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; Delay, Michael; Driks, Adam; Sahin, Ozgur
2015-06-01
Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air-water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.
Thermal engine driven heat pump for recovery of volatile organic compounds
Drake, Richard L.
1991-01-01
The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.
NASA Technical Reports Server (NTRS)
Laumann, E. A.; Reynolds, R. K. (Inventor)
1978-01-01
A hydrogen-oxygen fueled internal combustion engine is described, which utilizes an inert gas, such as argon, as a working fluid to increase the efficiency of the engine, eliminate pollution, and facilitate operation of a closed cycle energy system. In a system where sunlight or other intermittent energy source is available to separate hydrogen and oxygen from water, the oxygen and inert gas are taken into a diesel engine into which hydrogen is injected and ignited. The exhaust is cooled so that it contains only water and the inert gas. The inert gas in the exhaust is returned to the engine for use with fresh oxygen, while the water in the exhaust is returned to the intermittent energy source for reconversion to hydrogen and oxygen.
NASA Astrophysics Data System (ADS)
Gao, Xuan
2017-04-01
Terraces are built in mountainous regions to provide larger area for cultivation,in which the hydrological and geomorphological processes are impacted by local farmers' water management strategies and are modified by manmade irrigation-drainage engineering systems.The Honghe Hani Rice Terraces is a 1300a history of traditional agricultural landscape that was inscribed in the 2013 World Heritage List.The local farmers had developed systematic water management strategies and built perfect irrigation-drainage engineering systems to adapt the local rainfall pattern and rice farming activities.Through field investigation,interviews,combined with Geographic Information Systems,Remote Sensing images and Global Positioning Systems technology,the water management strategies as well as the irrigation-drainage systems and their impacts on eco-hydrological process were studied,the results indicate:Firstly,the local people created and maintained an unique woodcarving allocating management system of irrigating water over hundreds years,which aids distributing water and natural nutrition to each terrace field evenly,and regularly according to cultivation schedule.Secondly,the management of local people play an essential role in effective irrigation-drainage engineering system.A ditch leader takes charge of managing the ditch of their village,keeping ample amount of irrigation water,repairing broken parts of ditches,dealing with unfair water using issues,and so on.Meanwhile,some traditional leaders of minority also take part in.Thus, this traditional way of irrigation-drainage engineering has bringed Hani people around 1300 years of rice harvest for its eco-hydrological effects.Lastly we discuss the future of Honghe Hani Rice Terraces,the traditional cultivation pattern has been influenced by the rapid development of modern civilization,in which some related changes such as the new equipment of county roads and plastic channels and the water overusing by tourism are not totally rely on eco-hydrological engineering rules,which broke the ecosystem stability of agricultural terraces.The current situation of Honghe Hani Rice Terraces heritage cannot completely meets the purpose of sustainability development and appropriate conservation of Honghe Hani Rice Terraces heritage.This study of traditional cultivation pattern can help us to propose rational solutions for future development of terraces heritages. Key words:Honghe Hani Rice Terraces,water management,eco-hydrological effects,heritage conservation
Water Misting and Injection of Commercial Aircraft Engines to Reduce Airport NOx
NASA Technical Reports Server (NTRS)
Daggett, David L.; Hendricks, Robert C. (Technical Monitor)
2004-01-01
This report provides the first high level look at system design, airplane performance, maintenance, and cost implications of using water misting and water injection technology in aircraft engines for takeoff and climb-out NOx emissions reduction. With an engine compressor inlet water misting rate of 2.2 percent water-to-air ratio, a 47 percent NOx reduction was calculated. Combustor water injection could achieve greater reductions of about 85 percent, but with some performance penalties. For the water misting system on days above 59 F, a fuel efficiency benefit of about 3.5 percent would be experienced. Reductions of up to 436 F in turbine inlet temperature were also estimated, which could lead to increased hot section life. A 0.61 db noise reduction will occur. A nominal airplane weight penalty of less than 360 lb (no water) was estimated for a 305 passenger airplane. The airplane system cost is initially estimated at $40.92 per takeoff giving an attractive NOx emissions reduction cost/benefit ratio of about $1,663/ton.
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
NASA Astrophysics Data System (ADS)
1981-09-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
Scientific Allocation of Water Resources.
ERIC Educational Resources Information Center
Buras, Nathan
Oriented for higher education students, researchers, practicing engineers and planners, this book surveys the state of the art of water resources engineering. A broad spectrum of issues is embraced in the treatment of water resources: quantity aspects as well as quality aspects within a systems approach. Using a rational mode for water resources…
2016-12-01
Kamojjala, 2014, “Real-Time M0deling of Water Distribution Systems: A Case Study ,” Journal AWWA, Vol. 106, No. 9 (September 2014.) Feinauer, Lynn R...Quality and Corrosion in Water-Distribution Systems Final Report on Project F07-AR05 Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra to...Final Report on Project F07-AR05 Vicki L. Van Blaricum Construction Engineering Research Laboratory U.S. Army Engineer Research and Development Center
Advanced high pressure engine study for mixed-mode vehicle applications
NASA Technical Reports Server (NTRS)
Luscher, W. P.; Mellish, J. A.
1977-01-01
High pressure liquid rocket engine design, performance, weight, envelope, and operational characteristics were evaluated for a variety of candidate engines for use in mixed-mode, single-stage-to-orbit applications. Propellant property and performance data were obtained for candidate Mode 1 fuels which included: RP-1, RJ-5, hydrazine, monomethyl-hydrazine, and methane. The common oxidizer was liquid oxygen. Oxygen, the candidate Mode 1 fuels, and hydrogen were evaluated as thrust chamber coolants. Oxygen, methane, and hydrogen were found to be the most viable cooling candidates. Water, lithium, and sodium-potassium were also evaluated as auxiliary coolant systems. Water proved to be the best of these, but the system was heavier than those systems which cooled with the engine propellants. Engine weight and envelope parametric data were established for candidate Mode 1, Mode 2, and dual-fuel engines. Delivered engine performance data were also calculated for all candidate Mode 1 and dual-fuel engines.
Integrated water resources management using engineering measures
NASA Astrophysics Data System (ADS)
Huang, Y.
2015-04-01
The management process of Integrated Water Resources Management (IWRM) consists of aspects of policies/strategies, measures (engineering measures and non-engineering measures) and organizational management structures, etc., among which engineering measures such as reservoirs, dikes, canals, etc., play the backbone that enables IWRM through redistribution and reallocation of water in time and space. Engineering measures are usually adopted for different objectives of water utilization and water disaster prevention, such as flood control and drought relief. The paper discusses the planning and implementation of engineering measures in IWRM of the Changjiang River, China. Planning and implementation practices of engineering measures for flood control and water utilization, etc., are presented. Operation practices of the Three Gorges Reservoir, particularly the development and application of regulation rules for flood management, power generation, water supply, ecosystem needs and sediment issues (e.g. erosion and siltation), are also presented. The experience obtained in the implementation of engineering measures in Changjiang River show that engineering measures are vital for IWRM. However, efforts should be made to deal with changes of the river system affected by the operation of engineering measures, in addition to escalatory development of new demands associated with socio-economic development.
40 CFR 86.1335-90 - Cool-down procedure.
Code of Federal Regulations, 2010 CFR
2010-07-01
...'s internal or external surfaces except for water and air as prescribed in paragraphs (c) and (d) of this section. (c) For water-cooled engines, two types of cooling are permitted: (1) Water may be circulated through the engine's water coolant system. (i) The coolant may be flowed in either direction and...
NASA Technical Reports Server (NTRS)
1972-01-01
Design and systems considerations are presented on an engine concept selection for further preliminary design and program evaluation. These data have been prepared from a feasibility study of a pressure-fed engine for the water recoverable space shuttle booster.
Hydrologic and Water Quality System (HAWQS)
The Hydrologic and Water Quality System (HAWQS) is a web-based interactive water quantity and quality modeling system that employs as its core modeling engine the Soil and Water Assessment Tool (SWAT), an internationally-recognized public domain model. HAWQS provides users with i...
NASA Technical Reports Server (NTRS)
West, Jeff
2015-01-01
The Space Launch System (SLS) Vehicle consists of a Core Stage with four RS-25 engines and two Solid Rocket Boosters (SRBs). This vehicle is launched from the Launchpad using a Mobile Launcher (ML) which supports the SLS vehicle until its liftoff from the ML under its own power. The combination of the four RS-25 engines and two SRBs generate a significant Ignition Over-Pressure (IOP) and Acoustic Sound environment. One of the mitigations of these environments is the Ignition Over-Pressure/Sound Suppression (IOP/SS) subsystem installed on the ML. This system consists of six water nozzles located parallel to and 24 inches downstream of each SRB nozzle exit plane as well as 16 water nozzles located parallel to and 53 inches downstream of the RS-25 nozzle exit plane. During launch of the SLS vehicle, water is ejected through each water nozzle to reduce the intensity of the transient pressure environment imposed upon the SLS vehicle. While required for the mitigation of the transient pressure environment on the SLS vehicle, the IOP/SS subsystem interacts (possibly adversely) with other systems located on the Launch Pad. One of the other systems that the IOP/SS water is anticipated to interact with is the Hydrogen Burn-Off Igniter System (HBOI). The HBOI system's purpose is to ignite the unburned hydrogen/air mixture that develops in and around the nozzle of the RS-25 engines during engine start. Due to the close proximity of the water system to the HBOI system, the presence of the IOP/SS may degrade the effectiveness of the HBOI system. Another system that the IOP/SS water may interact with adversely is the RS-25 engine nozzles and the SRB nozzles. The adverse interaction anticipated is the wetting, to a significant degree, of the RS-25 nozzles resulting in substantial weight of ice forming and water present to a significant degree upstream of the SRB nozzle exit plane inside the nozzle itself, posing significant additional blockage of the effluent that exits the nozzle upon motor start leading to detrimental effects. The purpose of the CFD simulations were to i) characterize the location of the IOP/SS water after it is ejected from the IOP/SS nozzles, ii) characterize the interaction of the IOP/SS system with the HBOI system and iii) characterize the interaction of the IOP/SS water with the RS-25 nozzles and the SRB nozzles.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.67 Fuel system. (a) With... range with the fuel initially saturated with water at 80 °F (27 °C) and having 0.025 fluid ounces per gallon (0.20 milliliters per liter) of free water added and cooled to the most critical condition for...
Meet EPA Environmental Engineer Terra Haxton, Ph.D.
EPA Environmental Engineer Terra Haxton, Ph.D., uses computer simulation models to protect drinking water. She investigates approaches to help water utilities be better prepared to respond to contamination incidents in their distribution systems.
Ahmad, Mohamad Azrin; Yahya, Wira Jazair; Ithnin, Ahmad Muhsin; Hasannuddin, A K; Bakar, Muhammad Aiman Abu; Fatah, Abdul Yasser Abd; Sidik, Nor Azwadi Che; Noge, Hirofumi
2018-06-14
Non-surfactant water-in-diesel emulsion fuel (NWD) is an alternative fuel that has the potential to reduce major exhaust emissions while simultaneously improving the combustion performance of a diesel engine. NWD comprises of diesel fuel and water (about 5% in volume) without any additional surfactants. This emulsion fuel is produced through an in-line mixing system that is installed very close to the diesel engine. This study focuses mainly on the performance and emission of diesel engine fuelled with NWD made from different water sources. The engine used in this study is a direct injection diesel engine with loads varying from 1 to 4 kW. The result shows that NWD made from tap water helps the engine to reduce nitrogen oxide (NO x ) by 32%. Rainwater reduced it by 29% and seawater by 19%. In addition, all NWDs show significant improvements in engine performance as compared to diesel fuel, especially in the specific fuel consumption that indicates an average reduction of 6%. It is observed that all NWDs show compelling positive effects on engine performance, which is caused by the optimum water droplet size inside NWD.
Increasing Awareness of Sustainable Water Management for Future Civil Engineers
NASA Astrophysics Data System (ADS)
Ilic, Suzana; Karleusa, Barbara; Deluka-Tibljas, Aleksandra
2010-05-01
There are more than 1.2 billion people around the world that do not have access to drinking water. While there are plans under the United Nations Millennium Development Goals to halve this number by 2015, there are a number of regions that will be exposed to water scarcity in the coming future. Providing sufficient water for future development is a great challenge for planners and designers of water supply systems. In order to design sustainable water supplies for the future, it is important to learn how people consume water and how water consumption can be reduced. The education of future civil engineers should take into account not only technical aspects of the water supply but also the accompanying social and economical issues, and appreciated the strengths and weaknesses of traditional solutions. The Faculty of Civil Engineering, at the University of Rijeka, has begun incorporating a series of activities that engage undergraduate students and the local community to develop a mutual understanding of the future needs for sustainable management. We present one of the activities, collaboration with the Lancaster Environment Centre at Lancaster University in the UK through the field course Water and environmental management in Mediterranean context. The course, which is designed for the Lancaster University geography students, features a combination of field trips and visits to provide an understanding of the socio-economic and environmental context of water management in two counties (Istra and Primorsko-Goranska). Students from Lancaster visit the Croatian water authority and a regional water company, where they learn about current management practices and problems in managing water supplies and demand through the year. They make their own observations of current management practices in the field and learn about water consumption from the end users. One day field visit to a village in the area that is still not connected to the main water supply system is organised together with civil engineering students from the University of Rijeka. The aims of this field visit are: to learn about traditional water supply from an underground storage of rain water called cisterna; and to find out from inhabitants about their current water usage habits and expectations, and how these might change when they get water from the main water supply system. This joint activity has been beneficial for both groups of students. The engineering students become aware of the importance of the social aspects in designing the water supply system, while the geography students learn about the engineering challenges entailed. Both groups learn that water consumption increases with the provision of water through pipeline systems and that this needs to be taken into account in the design of water supply and management of water resources. Importantly, they learn the benefits of traditional sustainable water supply methods, which could be implemented as primary or additional sources of water supply in other areas.In summary, both groups of students develop their professional knowledge and skills as well as generic and transferable skills, which are very important for those who will continue to a career in the design and management of water systems.
2017-09-18
Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental Impact Statement En vi ro nm en ta l L ab or at or y...Engineering Center-River Analysis System (HEC-RAS) Water Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental...Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000 Under Project 396939, “Missouri River Recovery Management Plan and Environmental
NASA Technical Reports Server (NTRS)
Fraser, A. S.; Wells, A. F.; Tenoso, H. J.; Linnecke, C. B.
1976-01-01
Organon Diagnostics has developed, under NASA sponsorship, a monitoring system to test the capability of a water recovery system to reject the passage of viruses into the recovered water. In this system, a non-pathogenic marker virus, bacteriophage F2, is fed into the process stream before the recovery unit and the reclaimed water is assayed for its presence. An engineering preliminary design has been performed as a parallel effort to the laboratory development of the marker virus test system. Engineering schematics and drawings present a preliminary instrument design of a fully functional laboratory prototype capable of zero-G operation.
ERIC Educational Resources Information Center
Theiler, Julio; Isla, Miguel; Arrillaga, Hugo; Ceirano, Eduardo; Lozeco, Cristobal
This paper explains the educational changes in the Water Resources Engineering program offered by the Universidad Nacional del Litoral in Santa Fe, Argentina, for the last 20 years at the undergraduate level. The need for modernizing the engineering teaching program occurred due to changes in the social system in which the concepts of development…
46 CFR 162.060-16 - Changes to an approved ballast water management system (BWMS).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 6 2013-10-01 2013-10-01 false Changes to an approved ballast water management system...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems § 162.060-16 Changes to an approved ballast water management system (BWMS). (a) The...
46 CFR 162.060-16 - Changes to an approved ballast water management system (BWMS).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 6 2014-10-01 2014-10-01 false Changes to an approved ballast water management system...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems § 162.060-16 Changes to an approved ballast water management system (BWMS). (a) The...
Systems and Components Fuel Delivery System, Water Delivery System, ...
Systems and Components - Fuel Delivery System, Water Delivery System, Derrick Crane System, and Crane System Details - Marshall Space Flight Center, F-1 Engine Static Test Stand, On Route 565 between Huntsville and Decatur, Huntsville, Madison County, AL
Engineers conduct key water test for A-3 stand
NASA Technical Reports Server (NTRS)
2009-01-01
Water cascades from the A-2 Test Stand at Stennis Space Center as engineers challenge the limits of the high-pressure water system as part of the preparation process for the A-3 Test Stand under construction. Jeff Henderson, test director for Stennis' A Complex, led a series of tests Nov. 16-20, flowing water simultaneously on the A-1 and A-2 stands, followed by the A-1 and B-1 stands, to determine if the high-pressure industrial water facility pumps and the existing pipe system can support the needs of the A-3 stand. The stand is being built to test rocket engines that will carry astronauts beyond low-Earth orbit and will need about 300,000 gallons of water per minute when operating, but the Stennis system never had been tested to that level. The recent tests were successful in showing the water facility pumps can operate at that capacity - reaching 318,000 gallons per minute in one instance. However, officials continue to analyze data to determine if the system can provide the necessary pressure at that capacity and if the delivery system piping is adequate. 'We just think if there's a problem, it's better to identify and address it now rather than when A-3 is finished and it has to be dealt with,' Henderson said.
NASA Technical Reports Server (NTRS)
Somsel, James P.
1998-01-01
The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).
Gopal, Srila; Sarkar, Rajiv; Banda, Kalyan; Govindarajan, Jeyanthi; Harijan, B B; Jeyakumar, M B; Mitta, Philip; Sadanala, M E; Selwyn, Tryphena; Suresh, C R; Thomas, V A; Devadason, Pethuru; Kumar, Ranjit; Selvapandian, David; Kang, Gagandeep; Balraj, Vinohar
2009-03-01
Availability of clean water and adequate sanitation facilities are of prime importance for limiting diarrhoeal diseases. We examined the water and sanitation facilities of a village in southern India using geographic information system (GIS) tools. Places of residence, water storage and distribution, sewage and places where people in the village defaecated were mapped and drinking water sources were tested for microbial contamination in Nelvoy village, Vellore district, Tamil Nadu. Water in the village was found to be microbiologically unfit for consumption. Analysis using direct observations supplemented by GIS maps revealed poor planning, poor engineering design and lack of policing of the water distribution system causing possible contamination of drinking water from sewage at multiple sites. Until appropriate engineering designs for water supply and sewage disposal to suit individual village needs are made available, point-of-use water disinfection methods could serve as an interim solution.
An R Package for Open, Reproducible Analysis of Urban Water Systems, With Application to Chicago
Urban water systems consist of natural and engineered flows of water interacting in complex ways. System complexity can be understood via mass conservative models that account for the interrelationships among all major flows and storages. We have developed a generic urban water s...
Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators
Chen, Xi; Goodnight, Davis; Gao, Zhenghan; ...
2015-06-16
Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth’s climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. In this work, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on watermore » while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.« less
Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xi; Goodnight, Davis; Gao, Zhenghan
Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth’s climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. In this work, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on watermore » while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.« less
GEOCHEMISTRY OF SULFUR IN IRON CORROSION SCALES FOUND IN DRINKING WATER DISTRIBUTION SYSTEMS
Iron-sulfur geochemistry is important in many natural and engineered environments, including drinking water systems. In the anaerobic environment beneath scales of corroding iron drinking water distribution system pipes, sulfate reducing bacteria (SRB) produce sulfide from natu...
Exhaust heated hydrogen and oxygen producing catalytic converter for combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiber, E.T.
1977-07-26
A steam generator is provided in operative association with a source of water and the exhaust system of a combustion engine including an air induction system provided with primary fuel inlet structure and supplemental fuel inlet structure. The steam generator derives its heat for converting water into steam from the exhaust system of the combustion engine and the steam generator includes a steam outlet communicated with and opening into one end of an elongated tubular housing disposed in good heat transfer relation with the exhaust system of the combustion engine and having a gas outlet at its other end communicatedmore » with the supplemental fuel inlet of the induction system. The tubular housing has iron filings disposed therein and is in such heat transfer relation with the exhaust system of the combustion engine so as to elevate the temperature of steam passing therethrough and to heat the iron filings to the extent that passage of the heated steam over the heated filings will result in hydrogen and oxygen gas being produced in the tubular housing for subsequent passage to the supplemental fuel inlet of the combustion engine induction system.« less
Water Reclamation Technology Development at Johnson Space Center
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Pickering, Karen
2014-01-01
Who We Are: A staff of approximately 14 BS, MS, and PhD-Level Engineers and Scientists with experience in Aerospace, Civil, Environmental, and Mechanical Engineering, Chemistry, Physical Science and Water Pollution Microbiology. Our Primary Objective: To develop the next generation water recovery system technologies that will support NASA's long duration missions beyond low-earth orbit.
NASA Astrophysics Data System (ADS)
McIntyre, N.; Keir, G.
2014-12-01
Water supply systems typically encompass components of both natural systems (e.g. catchment runoff, aquifer interception) and engineered systems (e.g. process equipment, water storages and transfers). Many physical processes of varying spatial and temporal scales are contained within these hybrid systems models. The need to aggregate and simplify system components has been recognised for reasons of parsimony and comprehensibility; and the use of probabilistic methods for modelling water-related risks also prompts the need to seek computationally efficient up-scaled conceptualisations. How to manage the up-scaling errors in such hybrid systems models has not been well-explored, compared to research in the hydrological process domain. Particular challenges include the non-linearity introduced by decision thresholds and non-linear relations between water use, water quality, and discharge strategies. Using a case study of a mining region, we explore the nature of up-scaling errors in water use, water quality and discharge, and we illustrate an approach to identification of a scale-adjusted model including an error model. Ways forward for efficient modelling of such complex, hybrid systems are discussed, including interactions with human, energy and carbon systems models.
Bringing simulation to engineers in the field: a Web 2.0 approach.
Haines, Robert; Khan, Kashif; Brooke, John
2009-07-13
Field engineers working on water distribution systems have to implement day-to-day operational decisions. Since pipe networks are highly interconnected, the effects of such decisions are correlated with hydraulic and water quality conditions elsewhere in the network. This makes the provision of predictive decision support tools (DSTs) for field engineers critical to optimizing the engineering work on the network. We describe how we created DSTs to run on lightweight mobile devices by using the Web 2.0 technique known as Software as a Service. We designed our system following the architectural style of representational state transfer. The system not only displays static geographical information system data for pipe networks, but also dynamic information and prediction of network state, by invoking and displaying the results of simulations running on more powerful remote resources.
NASA Astrophysics Data System (ADS)
Wang, Wanshun; Chen, Zhuo; Li, Xiuwen
2018-03-01
The safety monitoring is very important in the operation and management of water resources and hydropower projects. It is the important means to understand the dam running status, to ensure the dam safety, to safeguard people’s life and property security, and to make full use of engineering benefits. This paper introduces the arrangement of engineering safety monitoring system based on the example of a water resource control project. The monitoring results of each monitoring project are analyzed intensively to show the operating status of the monitoring system and to provide useful reference for similar projects.
5. Photographic copy of engineering drawing showing plans, elevation and ...
5. Photographic copy of engineering drawing showing plans, elevation and section of Deluge Water System, including reservior (4316), Pump House (4317), and water tower. Job No. Muroc A(5-ll), Military Construction, San Bernardino-Mojave Area, San Bernardino, California: Muroc Bombing Range, Muroc Lake, California.; Additional Facilities for Materiel Center Flight Test Base, Water Supply System, Plans and Sections, Sheet 5 of 10, May 1943. Records on file at AFFTC/CE-CECC-B (Design/Construction Flight/RPMC), Edwards AFB, California. - Edwards Air Force Base, North Base, Deluge Water Pumping Station, Near Second & D Streets, Boron, Kern County, CA
Determination of viable legionellae in engineered water systems: Do we find what we are looking for?
Kirschner, Alexander K.T.
2016-01-01
In developed countries, legionellae are one of the most important water-based bacterial pathogens caused by management failure of engineered water systems. For routine surveillance of legionellae in engineered water systems and outbreak investigations, cultivation-based standard techniques are currently applied. However, in many cases culture-negative results are obtained despite the presence of viable legionellae, and clinical cases of legionellosis cannot be traced back to their respective contaminated water source. Among the various explanations for these discrepancies, the presence of viable but non-culturable (VBNC) Legionella cells has received increased attention in recent discussions and scientific literature. Alternative culture-independent methods to detect and quantify legionellae have been proposed in order to complement or even substitute the culture method in the future. Such methods should detect VBNC Legionella cells and provide a more comprehensive picture of the presence of legionellae in engineered water systems. However, it is still unclear whether and to what extent these VBNC legionellae are hazardous to human health. Current risk assessment models to predict the risk of legionellosis from Legionella concentrations in the investigated water systems contain many uncertainties and are mainly based on culture-based enumeration. If VBNC legionellae should be considered in future standard analysis, quantitative risk assessment models including VBNC legionellae must be proven to result in better estimates of human health risk than models based on cultivation alone. This review critically evaluates current methods to determine legionellae in the VBNC state, their potential to complement the standard culture-based method in the near future, and summarizes current knowledge on the threat that VBNC legionellae may pose to human health. PMID:26928563
Determination of viable legionellae in engineered water systems: Do we find what we are looking for?
Kirschner, Alexander K T
2016-04-15
In developed countries, legionellae are one of the most important water-based bacterial pathogens caused by management failure of engineered water systems. For routine surveillance of legionellae in engineered water systems and outbreak investigations, cultivation-based standard techniques are currently applied. However, in many cases culture-negative results are obtained despite the presence of viable legionellae, and clinical cases of legionellosis cannot be traced back to their respective contaminated water source. Among the various explanations for these discrepancies, the presence of viable but non-culturable (VBNC) Legionella cells has received increased attention in recent discussions and scientific literature. Alternative culture-independent methods to detect and quantify legionellae have been proposed in order to complement or even substitute the culture method in the future. Such methods should detect VBNC Legionella cells and provide a more comprehensive picture of the presence of legionellae in engineered water systems. However, it is still unclear whether and to what extent these VBNC legionellae are hazardous to human health. Current risk assessment models to predict the risk of legionellosis from Legionella concentrations in the investigated water systems contain many uncertainties and are mainly based on culture-based enumeration. If VBNC legionellae should be considered in future standard analysis, quantitative risk assessment models including VBNC legionellae must be proven to result in better estimates of human health risk than models based on cultivation alone. This review critically evaluates current methods to determine legionellae in the VBNC state, their potential to complement the standard culture-based method in the near future, and summarizes current knowledge on the threat that VBNC legionellae may pose to human health. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.
CREATION OF A MULTIDISCIPLINARY PROJECT PLATFORM FOR WATER SYSTEMS IN DEVELOPING COUNTRIES
The Lehigh University chapter of Engineers Without Borders-USA will design and construct a sustainable, multi-phase system for the treatment and distribution of drinking water in Pueblo Nuevo, Honduras. The new system will include a slow sand filter, hypochlorinator, water sto...
To advance the science and engineering of decontaminating pipe systems and safely disposing of high-volumes of contaminated water, Agency homeland security researchers are developing a Water Security Test Bed (WSTB).
17. TRACTOR ENGINE POWERING SHAFT SYSTEM IN FOREGROUND, BELT CONNECTS ...
17. TRACTOR ENGINE POWERING SHAFT SYSTEM IN FOREGROUND, BELT CONNECTS WITH MAIN SHAFT LOOKING EAST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA
Primary Exhaust Cooler at the Propulsion Systems Laboratory
1952-09-21
One of the two primary coolers at the Propulsion Systems Laboratory at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. Engines could be run in simulated altitude conditions inside the facility’s two 14-foot-diameter and 24-foot-long test chambers. The Propulsion Systems Laboratory was the nation’s only facility that could run large full-size engine systems in controlled altitude conditions. At the time of this photograph, construction of the facility had recently been completed. Although not a wind tunnel, the Propulsion Systems Laboratory generated high-speed airflow through the interior of the engine. The air flow was pushed through the system by large compressors, adjusted by heating or refrigerating equipment, and de-moisturized by air dryers. The exhaust system served two roles: reducing the density of the air in the test chambers to simulate high altitudes and removing hot gases exhausted by the engines being tested. It was necessary to reduce the temperature of the extremely hot engine exhaust before the air reached the exhauster equipment. As the air flow exited through exhaust section of the test chamber, it entered into the giant primary cooler seen in this photograph. Narrow fins or vanes inside the cooler were filled with water. As the air flow passed between the vanes, its heat was transferred to the cooling water. The cooling water was cycled out of the system, carrying with it much of the exhaust heat.
Distinction of Concept and Discussion on Construction Idea of Smart Water Grid Project
NASA Astrophysics Data System (ADS)
Ye, Y.; Yizi, S., Sr.; Lili, L., Sr.; Sang, X.; Zhai, J.
2016-12-01
Smart water grid project includes construction of water physical grid consisting of various flow regulating infrastructures, construction of water information grid in line with the trend of intelligent technology and construction of water management grid featured by system & mechanism construction and systemization of regulation decision-making. It is the integrated platform and comprehensive carrier for water conservancy practices. Currently, there still is dispute over engineering construction idea of smart water grid which, however, represents the future development trend of water management and is increasingly emphasized. The paper, based on distinction of concept of water grid and water grid engineering, explains the concept of water grid intelligentization, actively probes into construction idea of Smart water grid project in our country and presents scientific problems to be solved as well as core technologies to be mastered for smart water grid construction.
The current problem in the United States is that the water infrastructure is aging and spending has not been adequate to repair, replace, or rehabilitate drinking water distribution systems and wastewater collection systems. The American Society of Civil Engineers Report Card in...
Try This: Construct a Water Catchment
ERIC Educational Resources Information Center
Teaching Science, 2017
2017-01-01
EngQuest, an initiative of Engineers Australia, provides an exciting, non-competitive way for students to participate in free, fun and educational engineering activities involving mathematics, science and technology. This article describes a project designed to teach middle school students how to construct a water catchment system. Water…
14 CFR 33.68 - Induction system icing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.68 Induction system icing...) and has a liquid water content not less than 0.3 grams per cubic meter in the form of drops having a...
14 CFR 33.68 - Induction system icing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.68 Induction system icing...) and has a liquid water content not less than 0.3 grams per cubic meter in the form of drops having a...
14 CFR 33.68 - Induction system icing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.68 Induction system icing...) and has a liquid water content not less than 0.3 grams per cubic meter in the form of drops having a...
Achleitner, Stefan; De Toffol, Sara; Engelhard, Carolina; Rauch, Wolfgang
2005-04-01
The European Water framework directive (WFD) is probably the most important environmental management directive that has been enacted over the last decade in the European Union. The directive aims at achieving an overall good ecological status in all European water bodies. In this article, we discuss the implementation steps of the WFD and their implications for environmental engineering practice while focusing on rivers as the main receiving waters. Arising challenges for engineers and scientists are seen in the quantitative assessment of water quality, where standardized systems are needed to estimate the biological status. This is equally of concern in engineering planning, where the prediction of ecological impacts is required. Studies dealing with both classification and prediction of the ecological water quality are reviewed. Further, the combined emission-water quality approach is discussed. Common understanding of this combined approach is to apply the most stringent of either water quality or emission standard to a certain case. In contrast, for example, the Austrian water act enables the application of only the water quality based approach--at least on a temporary basis.
2017-12-01
Information Systems Center of Expertise (RS/GIS CX) (CEERD-RZR), U.S. Army Engineer Research and Development Center, Cold Regions Research and...GIS Geographic Information Systems GPS Global Positioning System HH Handheld IWR U.S. Army Engineer Institute for Water Resources n/a Not...Applicable NAE U.S. Army New England Regulatory District RS/GIS Remote Sensing/Geographic Information Systems SD Secure Digital SDHC Secure Digital High
Engineered Barrier System: Physical and Chemical Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Dixon
2004-04-26
The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming bymore » deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.« less
ERTS program of the US Army Corps of Engineers. [water resources
NASA Technical Reports Server (NTRS)
Jarman, J. W.
1974-01-01
The Army Corps of Engineers research and development efforts associated with the ERTS Program are confined to applications of investigation, design, construction, operation, and maintenance of water resource projects. Problems investigated covered: (1) resource inventory; (2) environmental impact; (3) pollution monitoring; (4) water circulation; (5) sediment transport; (6) data collection systems; (7) engineering; and (8) model verification. These problem areas were investigated in relation to bays, reservoirs, lakes, rivers, coasts, and regions. ERTS-1 imagery has been extremely valuable in developing techniques and is now being used in everyday applications.
Denver airport pumping systems achieve optimal [Delta] T's
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannion, G.F.; Krist, G.D.
1994-07-01
This article describes how the pumping and generating systems at the new Denver Airport operate efficiently with the user loops in the buildings producing design temperature rise at all load levels. Fifteen miles east of Denver's Stapleton International Airport lies the newly completed Denver International Airport (DIA)--the world's largest and most high-tech airport. Besides being one of the largest construction projects in the works, it has many of the latest technical innovations available. Of particular interest to the HVAC industry is the design of the heating and cooling water systems. These systems provide environmental cooling and heating water to themore » three concourses, the airport office building, and the main terminal. The mechanical engineers for the project were all from the Denver area. The central plant design was the work of Behrent Engineering Co.; the three concourses were designed by Swanson-Rink Associates; and the main terminal and administrative office building were designed by Abeyta Engineering Consultants. The overall system concept was developed during the initial design phase by engineers from these firms, members of the DIA staff, and application engineers from several manufacturers.« less
Auto Drain Valve Water Separator inside the Unit of Komatsu HD 465-7R
NASA Astrophysics Data System (ADS)
Manurung, V. A. T.; Joko W, Y. T.; Poetra, R. I.
2018-02-01
Water separator is a component that separate water from fuel, so the circulating fuel in the fuel system is not contaminated by water. If there is water inside the water separator, it will be carried by into the fuel system and then impacting to the engine performance. It’s such as lowering engine power because the fuel filter is clogged due to the fuel mix with water. Then the real danger is in case of the fuel mixes with the water. It will damage the fuel system components such as blockage of injectors due to corrosion and wear of fuel supply pump. As informed from daily maintenance record data, we have found that the low power engine trouble was caused by the fuel filter that was clogged high enough. Using the fishbone analysis, we got the main problem is there was water in the fuel separator at maximum level and did not discharge. In this condition, it is need optional device to automatically discharge the water from the water separator while maximum level reached, so the operator does not need to drain the water manually. The operator will be warned by buzzing active alarm and flashing caution lamp inside the cabin. By this method, the potential risk of mix up water with fuel would be avoided and the loss of others component failure would be mostly avoided. By using this tool, we can save net quality income around IDR (Indonesia Rupiah) 11,673,519,800.
2012-06-16
Engineers to help identify and develop energy and water conservation projects in the facilities for which they are responsible. DISCLAIMER: The...and water throughout their facility. To identify energy and water conservation measures (ECMs), an energy manager would generally start by performing...an Energy and Water Conservation Assessment, essentially a facility-level evaluation of the en- ergy and water consuming equipment and systems that
Gumbo, B
2000-01-01
The Harare metropolis in Zimbabwe, extending upstream from Manyame Dam in the Upper Manyame River Basin, consists of the City of Harare and its satellite towns: Chitungwiza, Norton, Epworth and Ruwa. The existing urban drainage system is typically a single-use-mixing system: water is used and discharged to "waste", excreta are flushed to sewers and eventually, after "treatment", the effluent is discharged to a drinking water supply source. Polluted urban storm water is evacuated as fast as possible. This system not only ignores the substantial value in "waste" materials, but it also exports problems to downstream communities and to vulnerable fresh-water sources. The question is how can the harare metropolis urban drainage system, which is complex and has evolved over time, be rearranged to achieve sustainability (i.e. water conservation, pollution prevention at source, protection of the vulnerable drinking water sources and recovery of valuable materials)? This paper reviews current concepts regarding the future development of the urban drainage system in line with the new vision of "Sustainable Cities of the Future". The Harare Metropolis in Zimbabwe is taken as a case, and philosophical options for re-engineering the drainage system are discussed.
Catchment Systems Engineering: A New Paradigm in Water Management
NASA Astrophysics Data System (ADS)
Quinn, P. F.; Wilkinson, M. E.; Burke, S.; O'Donnell, G. M.; Jonczyk, J.; Barber, N.; Nicholson, A.
2012-04-01
Recent catchment initiatives have highlighted the need for new holistic approaches to sustainable water management. Catchment Systems Engineering seeks to describe catchment the function (or role) as the principal driver for evaluating how it should be managed in the future. Catchment Systems Engineering does not seek to re-establish a natural system but rather works with natural processes in order to engineer landscapes to accrue multiple benefits. The approach involves quantifying and assessing catchment change, impacts and most importantly, suggests an urgent and proactive agenda for future planning. In particular, an interventionist approach to managing hydrological flow pathways across scale is proposed. It is already accepted that future management will require a range of scientific expertise and full engagement with stakeholders. This inclusive concept under a Catchment Systems Engineering agenda forces any consortia to commit to actively changing and perturbing the catchment system and thus learn, in situ, how to manage the environment for collective benefits. The shared cost, the design, the implementation, the evaluation and any subsequent modifications should involve all relevant parties in the consortia. This joint ownership of a 'hands on' interventionist agenda to catchment change is at the core of Catchment Systems Engineering. In this paper we show a range of catchment engineering projects from the UK that have addressed multi-disciplinary approaches to flooding, pollution and ecosystem management, whilst maintaining economic food production. Examples using soft engineered features such as wetlands, ponds, woody debris dams and infiltration zones will be shown. Local scale demonstration activities, led by local champions, have proven to be an effective means of encouraging wider uptake. Evidence that impacts can be achieved at local catchment scale will be introduced. Catchment Systems Engineering is a concept that relies on all relevant parties within a catchment to take responsibility for the water quantity and quality that arises from the catchment. Further, any holistic solution requires a bottom up, problem solving agenda which is facilitated by policy makers and is underpinned by scientific knowledge. http:\\research.ncl.ac.ukproactive
Code of Federal Regulations, 2014 CFR
2014-10-01
... ENGINEERING EQUIPMENT Ballast Water Management Systems § 162.060-14 Information requirements for the ballast... 46 Shipping 6 2014-10-01 2014-10-01 false Information requirements for the ballast water management system (BWMS) application. 162.060-14 Section 162.060-14 Shipping COAST GUARD, DEPARTMENT OF...
Code of Federal Regulations, 2013 CFR
2013-10-01
... ENGINEERING EQUIPMENT Ballast Water Management Systems § 162.060-14 Information requirements for the ballast... 46 Shipping 6 2013-10-01 2013-10-01 false Information requirements for the ballast water management system (BWMS) application. 162.060-14 Section 162.060-14 Shipping COAST GUARD, DEPARTMENT OF...
Quality requirements for reclaimed/recycled water
NASA Technical Reports Server (NTRS)
Janik, Daniel S.; Sauer, Richard L.; Pierson, Duane L.; Thorstenson, Yvonne R.
1987-01-01
Water used during current and previous space missions has been either carried or made aloft. Future human space endeavors will require some form of water reclamation and recycling. There is little experience in the U.S. space program with this technology. Water reclamation and recycling constitute engineering challenges of the broadest nature that will require an intensive research and development effort if this technology is to mature in time for practical use on the proposed U.S. Space Station. In order for this to happen, reclaimed/recycled water specifications will need to be devised to guide engineering development. Present NASA Potable Water Specifications are not applicable to reclaimed or recycled water. Adequate specifications for ensuring the quality of the reclaimed or recycled potable water system is reviewed, limitations of present water specifications are examined, world experience with potable water reclamation/recycling systems and systems analogs is reviewed, and an approach to developing pertinent biomedical water specifications for spacecraft is presented. Space Station water specifications should be designed to ensure the health of all likely spacecraft inhabitants including man, animals, and plants.
Water supply pipe dimensioning using hydraulic power dissipation
NASA Astrophysics Data System (ADS)
Sreemathy, J. R.; Rashmi, G.; Suribabu, C. R.
2017-07-01
Proper sizing of the pipe component of water distribution networks play an important role in the overall design of the any water supply system. Several approaches have been applied for the design of networks from an economical point of view. Traditional optimization techniques and population based stochastic algorithms are widely used to optimize the networks. But the use of these approaches is mostly found to be limited to the research level due to difficulties in understanding by the practicing engineers, design engineers and consulting firms. More over due to non-availability of commercial software related to the optimal design of water distribution system,it forces the practicing engineers to adopt either trial and error or experience-based design. This paper presents a simple approach based on power dissipation in each pipeline as a parameter to design the network economically, but not to the level of global minimum cost.
Uetera, Yushi; Kishii, Kozue; Yasuhara, Hiroshi; Kumada, Naohito; Moriya, Kyoji; Saito, Ryoichi; Okazaki, Mitsuhiro; Misawa, Yoshiki; Kawamura, Kunio
2013-01-01
This report deals with the construction and management of the reverse osmosis (RO) water system for final rinsing of surgical instruments in the washer-disinfector. Numerous operational challenges were encountered in our RO water system and these were analyzed utilizing the Ishikawa Fishbone diagram. The aim was to find potential problems and promote preventive system management for RO water. It was found that the measures that existed were inappropriate for preventing contamination in the heat-labile RO water system. The storage tank was found to be significantly contaminated and had to be replaced with a new one equipped with a sampling port and water drainage system. Additional filters and an UV treatment lamp were installed. The whole system disinfection started 1.5 years later using a peracetic acid-based compound after confirming the material compatibility. Operator errors were found when a new water engineer took over the duty from his predecessor. It was also found that there were some deficiencies in the standard operating procedures (SOPs), and that on-the-job training was not enough. The water engineer failed to disinfect the sampling port and water drainage system. The RO membrane had been used for 4 years, even though the SOP standard specified changing it as every 3 years. Various bacteria, such as Rothia mucilaginosa, were cultured from the RO water sampled from the equipment. Because Rothia mucilaginosa is a resident in the oral cavity and upper respiratory tract, it is believed that the bacteria were introduced into the system by the maintenance personnel or working environment. Therefore, the presence of R. mucilaginosa implied the failure of sanitary maintenance procedures. This study suggests that water systems should be designed based on the plans for profound system maintenance. It also suggests that SOP and on-the job training are essential to avoid any operator errors. These results must be carefully considered when either constructing new RO systems or performing maintenance and periodical examination of the equipment. Reverse osmosis (RO) water is used for final rinsing in our washer-disinfector. The authors used the Ishikawa Fishbone diagram to clarify the critical points for optimizing RO water quality. There existed no measures to prevent contamination in the heat-labile RO water system. The storage tank was significantly contaminated and had to be replaced with a new one equipped with a sampling port and water drainage system. Additional filters and an UV treatment lamp were installed. The whole system disinfection started 1.5 years later using a peracetic acid-based compound after confirming the material compatibility. Operator errors occurred when a new water engineer took over the duty from his predecessor. There were neither standard operating procedures (SOPs) nor on-the-job training. The new water engineer had failed to disinfect the sampling port and water drainage system. Rothia mucilaginosa was cultured from the RO water. It is a resident in the oral cavity and upper respiratory tract. This implied the possible failure of sanitary procedures in the system maintenance. The Ishikawa Fishbone diagram was useful for this study. It suggests that water systems should be designed with plans for system maintenance taken into account. It also suggests that SOP and on-the job training are essential in order to avoid operator errors.
NASA Astrophysics Data System (ADS)
Kumarasubramanian, R.; Xavier, Goldwin; Nishanthi, W. Mary; Rajasekar, R.
2017-05-01
Considering the fuel crises today many work and research were conducted to reduce the fuel consumption of the internal combustion engine. The fuel consumption of an internal combustion engine can be relatively reduced by use of the electromagnetic clutch water pump and pneumatic compressor. Normally in an engine, the water pump is driven by the crankshaft, with an aid of belt, for the circulation of the water for the cooling process. The circulation of coolant is resisted by the thermostat valve, while the temperature inside the coolant jacket of the engine is below 375K the thermostat is closed only above 375K it tends to open. But water pump run continuously even when thermostat is closed. In pneumatic braking system, pneumatic or air compressor purpose is to compress the air and stored into the storage tank for the brake operation. When the air pressure of the storage tanks gets increases above its storage capacity pressure is regulated by governor, by passing them to atmosphere. Such unnecessary work of this water pump and air compressor can be minimized by use of the electromagnetic clutch water pump and air compressor. The European Driving Cycle is used to evaluate the performance of this water pump and air compressor when used in an engine. The result shows that the fuel economy of the engine while using electromagnetic water pump and pneumatic compressor were improved by 8.0% compared with conventional types which already exist. The application of these electromagnetic water pump and pneumatic compressor are expected to contribute for the improvement of engine performance because of their effect in reduction of the rate of fuel consumption.
Engineering for All: Classroom Implementation
ERIC Educational Resources Information Center
Hacker, Michael; Cavanaugh, Sandra; DeHaan, Chris; Longware, Alta Jo; McGuire, Matt; Plummer, Matthew
2018-01-01
This is the second of two articles about the National Science Foundation-funded Engineering for All (EfA) program which focuses on engineering as a potential social good, revisits major Technology and Engineering (T&E) themes (design, modeling, systems, resources, and human values) in two authentic social contexts (Food and Water), and uses…
ASSESSING AND PREVENTING THE SPREAD OF CONTAMINANTS IN A DRINKING WATER DISTRIBUTION SYSTEM
Remote monitoring data, field studies, and the modeling software ? EPANET, can be used by drinking water utilities and consulting engineers to predict flow dynamics and information on the spatial distribution and concentration of contaminants in a drinking water system. A field ...
Students' Developing Understanding of Water in Environmental Systems
ERIC Educational Resources Information Center
Covitt, Beth A.; Gunckel, Kristin L.; Anderson, Charles W.
2009-01-01
The authors developed a framework of empirically grounded curricular goals for water-science literacy and documented the challenges that students face in achieving these goals. Water-related environmental science literacy requires an understanding of connected natural and human-engineered systems at multiple scales ranging from atomic-molecular…
46 CFR 162.060-22 - Marking requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... effects of normal wear and tear and exposure to water, salt spray, direct sunlight, heat, cold, and any...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems § 162.060-22 Marking requirements. (a) Each ballast water management system (BWMS) manufactured under Coast Guard approval must have...
46 CFR 162.060-22 - Marking requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... effects of normal wear and tear and exposure to water, salt spray, direct sunlight, heat, cold, and any...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems § 162.060-22 Marking requirements. (a) Each ballast water management system (BWMS) manufactured under Coast Guard approval must have...
46 CFR 162.060-22 - Marking requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... effects of normal wear and tear and exposure to water, salt spray, direct sunlight, heat, cold, and any...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems § 162.060-22 Marking requirements. (a) Each ballast water management system (BWMS) manufactured under Coast Guard approval must have...
Contreras, Daniel A.; Keefer, David K.
2009-01-01
Channeling of water through a variety of architectural features represents a significant engineering investment at the first millennium B.C. ceremonial center of Chavín de Huántar in the Peruvian Central Andes. The site contains extensive evidence of the manipulation of water, apparently for diverse purposes. The present configuration of the two local rivers, however, keeps available water approximately 9m below the highest level of water-bearing infrastructure in the site. Geomorphic and archaeological investigation of the fluvial history of the Wacheqsa River has revealed evidence that the Chavín-era configuration of the Wacheqsa River was different. A substantially higher water level, likely the result of a local impoundment of river water caused by a landslide dam, made the provision of water for the hydrologic system within the site a more readily practical possibility. We review what is known of that system and argue that the fluvial history of the Wacheqsa River is critical to understanding this aspect of hydrologic engineering and ritual practice at Chavín. This study demonstrates the relative rapidity and archaeological relevance of landscape change in a dynamic environment.
Multiphase Modeling of Water Injection on Flame Deflector
NASA Technical Reports Server (NTRS)
Vu, Bruce T.; Bachchan, Nili; Peroomian, Oshin; Akdag, Vedat
2013-01-01
This paper describes the use of an Eulerian Dispersed Phase (EDP) model to simulate the water injected from the flame deflector and its interaction with supersonic rocket exhaust from a proposed Space Launch System (SLS) vehicle. The Eulerian formulation, as part of the multi-phase framework, is described. The simulations show that water cooling is only effective over the region under the liquid engines. Likewise, the water injection provides only minor effects over the surface area under the solid engines.
1989-05-01
Typical ranges are from 50 to 70 OF. If a chiller is dedicated to serving water-cooled electronic equipment, the chilled water temperature setpoint can...can be satisfied with 50 OF chilled water. The COP of the dedicated chiller is improved by raising the chilled water setpoint , and the total life-cycle...USACERL TECHNICAL REPORT E-89/10 May 1989 Studies in Optimizing HVAC Hardware for C31 Facilities US Army Corps of Engineers Construction Engineering
A Decision-Support System for Sustainable Water Distribution System Planning.
Freund, Alina; Aydin, Nazli Yonca; Zeckzer, Dirk; Hagen, Hans
2017-01-01
An interactive decision-support system (DSS) can help experts prepare water resource management plans for decision makers and stakeholders. The design of the proposed prototype incorporates visualization techniques such as circle views, grid layout, small multiple maps, and node simplification to improve the data readability of water distribution systems. A case study with three urban water management and sanitary engineering experts revealed that the proposed DSS is satisfactory, efficient, and effective.
46 CFR 162.060-20 - Design and construction requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems... service; (4) Meets recognized national or international standards for all related marine engineering and electrical engineering applications; and (5) Operates when the vessel is upright, inclined under static...
46 CFR 162.060-20 - Design and construction requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems... service; (4) Meets recognized national or international standards for all related marine engineering and electrical engineering applications; and (5) Operates when the vessel is upright, inclined under static...
46 CFR 162.060-20 - Design and construction requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems... service; (4) Meets recognized national or international standards for all related marine engineering and electrical engineering applications; and (5) Operates when the vessel is upright, inclined under static...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 6 2012-10-01 2012-10-01 false Information requirements for the ballast water management system (BWMS) application. 162.060-14 Section 162.060-14 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems §...
46 CFR 162.060-16 - Changes to an approved ballast water management system (BWMS).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 6 2012-10-01 2012-10-01 false Changes to an approved ballast water management system (BWMS). 162.060-16 Section 162.060-16 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems § 162.060-16 Changes to...
46 CFR 162.060-30 - Testing requirements for ballast water management system (BWMS) components.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 6 2012-10-01 2012-10-01 false Testing requirements for ballast water management system (BWMS) components. 162.060-30 Section 162.060-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems § 162.060...
NASA Technical Reports Server (NTRS)
Oliver, Michael
2014-01-01
This presentation will be made at the 92nd AIAA Turbine Engine Testing Working Group (TETWoG), a semi-annual technical meeting of turbine engine testing professionals. The objective is to describe an effort by NASA to measure the water vapor content on the core airflow in a full scale turbine engine ice crystal icing test and to open a discussion with colleagues how to accurately conduct the measurement based on any previous collective experience with the procedure, instruments and nature of engine icing testing within the group. The presentation lays out the schematics of the location in the flow path from which the sample will be drawn, the plumbing to get it from the engine flow path to the sensor and several different water vapor measurement technologies that will be used: Tunable diode laser and infrared spectroscopy.
NASA Astrophysics Data System (ADS)
Vanheyden, L.; Evertz, E.
1980-12-01
Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.
Policy Sciences in Water Resources Research
NASA Astrophysics Data System (ADS)
Cummings, Ronald G.
1984-07-01
As the newly appointed Policy Sciences Editor for this journal, I would like to take this opportunity to introduce myself to WRR's readership as well as to offer a few comments concerning my views of policy sciences in water resources research. I am an economist working in the area of natural resources and environmental management. As such, I've spent a good part of my research career working with noneconomists. During 1969-1972, I worked in Mexico with hydrologists and engineers from Mexico's Water Resources Ministry in efforts to assess management/investment programs for reservoir systems and systems for interbasin water transfers. Between 1972 and 1975, while serving as Chairman of the Department of Resource Economics at the University of Rhode Island, my research involved collaborative efforts with biologists and soil scientists in studies concerning the conjunctive management of reservoirs for agricultural and lagoon systems and the control of salinity levels in soils and aquifers. Since 1975, at which time I joined the faculty at the University of New Mexico, I have worked with engineers at the Los Alamos National Laboratory in developing operation/management models for hot, dry rock geothermal systems and, more recently, with legal scholars and hydrologists in analyses of water rights issues. Thus I am comfortable with and appreciative of research conducted by my colleagues in systems engineering, operations research, and hydrology, as well as those in economics, law, and other social sciences.
Water Injection on Commercial Aircraft to Reduce Airport Nitrogen Oxides
NASA Technical Reports Server (NTRS)
Daggett, David L.; Hendricks, Robert C.; Fucke, Lars; Eames, David J. H.
2010-01-01
The potential nitrogen oxide (NO(x) reductions, cost savings, and performance enhancements identified in these initial studies of waterinjection technology strongly suggest that it be further pursued. The potential for engine maintenance cost savings from this system should make it very attractive to airline operators and assure its implementation. Further system tradeoff studies and engine tests are needed to answer the optimal system design question. Namely, would a low-risk combustor injection system with 70- to 90-percent NO(x) reduction be preferable, or would a low-pressure compressor (LPC) misting system with only 50-percent NO(x) reduction but larger turbine inlet temperature reductions be preferable? The low-pressure compressor injection design and operability issues identified in the report need to be addressed because they might prevent implementation of the LPC type of water-misting system. If water-injection technology challenges are overcome, any of the systems studied would offer dramatic engine NO(x) reductions at the airport. Coupling this technology with future emissions-reduction technologies, such as fuel-cell auxiliary power units will allow the aviation sector to address the serious challenges of environmental stewardship, and NO(x) emissions will no longer be an issue at airports.
Qin, Hua-Peng; Su, Qiong; Khu, Soon-Thiam
2013-01-15
Integrated water environmental management in a rapidly urbanizing area often requires combining social, economic and engineering measures in order to be effective. However, in reality, these measures are often considered independently by different planners, and decisions are made in a hierarchical manner; this has led to problems in environmental pollution control and also an inability to devise innovative solutions due to technological lock-in. In this paper, we use a novel coupled system dynamics and water environmental model (SyDWEM) to simulate the dynamic interactions between the socio-economic system, water infrastructure and receiving water in a rapidly urbanizing catchment in Shenzhen, China. The model is then applied to assess the effects of proposed socio-economic or engineering measures on environmental and development indicators in the catchment for 2011-2020. The results indicate that 1) measures to adjust industry structures have a positive effect on both water quantity and quality in the catchment; 2) measures to increase the labor productivity, the water use efficiency, the water transfer quota or the reclaimed wastewater reuse can alleviate the water shortage, but cannot improve water quality in the river; 3) measures to increase the wastewater treatment rate or the pollutant removal rate can improve water quality in the river, but have no effect on water shortage. Based on the effectiveness of the individual measures, a combination of socio-economic and engineering measures is proposed, which can achieve water environmental sustainability in the study area. Thus, we demonstrate that SyDWEM has the capacity to evaluate the effects of both socio-economic and engineering measures; it also provides a tool for integrated decision making by socio-economic and water infrastructure planners. Copyright © 2012 Elsevier Ltd. All rights reserved.
The WATERS Network Conceptual Design
NASA Astrophysics Data System (ADS)
Tarboton, D. G.; Schnoor, J. L.; Haas, C. N.; Minsker, B.; Bales, R. C.; Hooper, R. P.
2007-12-01
The Water and Environmental Research Systems (WATERS) Network is a collaboration between the water- related Earth science and environmental engineering communities around a series of grand-challenge and strategic research questions. The vision of WATERS Network is to transform our ability to predict the quality, quantity and use of our nation's waters. The real transformative power of the WATERS Network lies in its ability to put sustained, spatially extensive, high-frequency information in the hands of researchers, information that will resolve how natural and engineered systems respond to perturbations. This knowledge then improves process understanding, and provides better predictive capabilities. In order to do this, the WATERS Network will create a national network of observatories equipped with multimedia sensors located across a range of different climatic and geographic regions and linked together by a common cyberinfrastructure. The network will incorporate existing and new environmental and socioeconomic data at various spatial and temporal scales. Data will include physical, chemical, and biological information to characterize surface water, ground water, land, socioeconomic and behavioral information to better frame human influences. Real-time data resources will be assimilated into an information system (cyberinfrastructure) that supports analytical tools and models, networking tools, and education and outreach services. The WATERS Network is an Environmental Observatory initiative of the U.S. National Science Foundation, developed in response to community planning over the past 10 years. It is being developed for the foundation's Engineering and Geosciences Directorates to jointly propose for funding consideration through the foundation's Major Research Equipment and Facilities Construction (MREFC) account. This presentation will summarize the current status of planning for the WATERS Network.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-cycle recirculating cooling water system and any engineering calculations, including documentation... subsequent industrial processes, you must provide documentation that the amount of cooling water that is not... provide the annual mean flow and any supporting documentation and engineering calculations to show that...
Multiple fuel supply system for an internal combustion engine
Crothers, William T.
1977-01-01
A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.
Yu, Xiaojun; Botchwey, Edward A.; Levine, Elliot M.; Pollack, Solomon R.; Laurencin, Cato T.
2004-01-01
An important issue in tissue engineering concerns the possibility of limited tissue ingrowth in tissue-engineered constructs because of insufficient nutrient transport. We report a dynamic flow culture system using high-aspect-ratio vessel rotating bioreactors and 3D scaffolds for culturing rat calvarial osteoblast cells. 3D scaffolds were designed by mixing lighter-than-water (density, <1g/ml) and heavier-than-water (density, >1g/ml) microspheres of 85:15 poly(lactide-co-glycolide). We quantified the rate of 3D flow through the scaffolds by using a particle-tracking system, and the results suggest that motion trajectories and, therefore, the flow velocity around and through scaffolds in rotating bioreactors can be manipulated by varying the ratio of heavier-than-water to lighter-than-water microspheres. When rat primary calvarial cells were cultured on the scaffolds in bioreactors for 7 days, the 3D dynamic flow environment affected bone cell distribution and enhanced cell phenotypic expression and mineralized matrix synthesis within tissue-engineered constructs compared with static conditions. These studies provide a foundation for exploring the effects of dynamic flow on osteoblast function and provide important insight into the design and optimization of 3D scaffolds suitable in bioreactors for in vitro tissue engineering of bone. PMID:15277663
WATER PROCESS SYSTEM FLOW DIAGRAM FOR MTR, TRA603. SUMMARY OF ...
WATER PROCESS SYSTEM FLOW DIAGRAM FOR MTR, TRA-603. SUMMARY OF COOLANT FLOW FROM WORKING RESERVOIR TO INTERIOR OF REACTOR'S THERMAL SHIELD. NAMES TANK SECTIONS. PIPE AND DRAIN-LINE SIZES. SHOWS DIRECTION OF AIR FLOW THROUGH PEBBLE AND GRAPHITE BLOCK ZONE. NEUTRON CURTAIN AND THERMAL COLUMN DOOR. BLAW-KNOX 3150-92-7, 3/1950. INL INDEX NO. 531-0603-51-098-100036, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-03
...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing a revision to Regulatory Guide (RG) 1.52, ``Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-accident Engineered-Safety-Feature Atmosphere Cleanup Systems in Light-Water-Cooled Nuclear Power Plants.'' This guide applies to the design, inspection, and testing of air filtration and iodine adsorption units of engineered-safety-feature (ESF) atmosphere cleanup systems in light-water-cooled nuclear power plants.
8. RW Meyer Sugar Mill: 18761889. Simple, singlecylinder, horizontal, reciprocating ...
8. RW Meyer Sugar Mill: 1876-1889. Simple, single-cylinder, horizontal, reciprocating steam engine, model No. 1, 5' x 10', 6 hp, 175 rpm. Manufactured by Ames Iron Works, Oswego, New York, 1879. View: Steam engine powered the mill's centrifugals. It received steam from the locomotive type, fire-tube portable boiler in the background. The engine's water pump which pumped water from the feed-water clarifying cistern, in between the boiler and engine, through a pre-heat system and on to the boiler, is seen in front of the fluted cylinder. The fly-ball governor, missing its balls, the steam port, and manual throttle valve are above and behind the cylinder. The flywheel, drive shaft, and pulley are on the left side of the engine bed. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
NASA Astrophysics Data System (ADS)
Reutov, B. F.; Lazarev, M. V.; Ermakova, S. V.; Zisman, S. L.; Kaplanovich, L. S.; Svetushkov, V. V.
2016-07-01
In the 20th century, the thermal power engineering in this country was oriented toward oncethrough cooling systems. More than 50% of the CHPP and NPP capacities with once-through cooling systems put into operation before the 1990s were large-scale water consumers but with minimum irretrievable water consumption. In 1995, the Water Code of the Russian Federation was adopted in which restrictions on application of once-through cooling systems for newly designed combined heat and power plants (CHPPs) were introduced for the first time. A ban on application of once-through systems was imposed by the current Water Code of the Russian Federation (Federal law no. 74-FZ, Art. 60 Cl. 4) not only for new CHPPs but also for those to be modified. Clause 4 of Article 60 of the Water Code of the Russian Federation contravenes law no. 7-FZ "On Protection of the Environment" that has priority significance, since the water environment is only part of the natural environment and those articles of the Water Code of the Russian Federation that are related directly to electric power engineering, viz., Articles 46 and 62. In recent decades, the search for means to increase revenue charges and the economic pressure on the thermal power industry caused introduction by law of charges for use of water by cooling systems irrespective of the latter's impact on the water quality of the source, the environment, the economic efficiency of the power production, and the living conditions of the people. The long-range annual increase in the water use charges forces the power generating companies to switch transfer once-through service water supply installations to recirculating water supply systems and once-through-recirculating systems with multiple reuse of warm water, which drastically reduces the technical, economic, and ecological characteristic of the power plant operation and also results in increasing power rates for the population. This work comprehensively substantiates the demands of power engineering specialists that the ban on development and construction of once-through service water supply systems should be lifted and the proposals for new parameters, e.g., temperature and back pressure, for designing low-potential equipment of steam-gas and steam-power plants.
EFFECT OF BACTERIAL SULFATE REDUCTION ON IRON-CORROSION SCALES
Iron-sulfur geochemistry is important in many natural and engineered environments including drinking water systems. In the anaerobic environment beneath scales of corroding iron drinking water distribution system pipes, sulfate reducing bacteria (SRB) produce sulfide from natura...
46 CFR 162.060-3 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems § 162.060-3 Definitions. As... suspended matter taken onboard a vessel to control or maintain trim, draught, stability, or stresses of the vessel, regardless of how it is carried. Ballast water management system (BWMS) means any system which...
46 CFR 162.060-3 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems § 162.060-3 Definitions. As... suspended matter taken onboard a vessel to control or maintain trim, draught, stability, or stresses of the vessel, regardless of how it is carried. Ballast water management system (BWMS) means any system which...
46 CFR 162.060-3 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems § 162.060-3 Definitions. As... suspended matter taken onboard a vessel to control or maintain trim, draught, stability, or stresses of the vessel, regardless of how it is carried. Ballast water management system (BWMS) means any system which...
these systems can improve water quality, engineers and scientists construct systems that replicate the functions of natural wetlands. Constructed wetlands are treatment systems that use natural processes
Advanced Environmental Barrier Coatings Development for Si-Based Ceramics
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Choi, R. Sung; Robinson, Raymond C.; Lee, Kang N.; Bhatt, Ramakrishna T.; Miller, Robert A.
2005-01-01
Advanced environmental barrier coating concepts based on multi-component HfO2 (ZrO2) and modified mullite systems are developed for monolithic Si3N4 and SiC/SiC ceramic matrix composite (CMC) applications. Comprehensive testing approaches were established using the water vapor cyclic furnace, high pressure burner rig and laser heat flux steam rig to evaluate the coating water vapor stability, cyclic durability, radiation and erosion resistance under simulated engine environments. Test results demonstrated the feasibility and durability of the environmental barrier coating systems for 2700 to 3000 F monolithic Si3N4 and SiC/SiC CMC component applications. The high-temperature-capable environmental barrier coating systems are being further developed and optimized in collaboration with engine companies for advanced turbine engine applications.
NASA Astrophysics Data System (ADS)
Duester, Lars; Burkhardt, Michael; Gutleb, Arno; Kaegi, Ralf; Macken, Ailbhe; Meermann, Björn; von der Kammer, Frank
2014-06-01
The European COoperation in Science and Technology (COST) Action ES1205 on the transfer of Engineered Nano materials from wastewater Treatment and stormwatEr to Rivers (ENTER) aims to create and to maintain a trans European network among scientists. This perspective article delivers a brief overview on the status quo at the beginning of the project by addressing the following aspects on engineered nano materials (ENMs) in the urban systems: i) ENMs that need to be considered on a European level; ii) uncertainties on production-volume estimations; iii) fate of selected ENMs during waste water transport and treatment; iv) analytical strategies for ENM analysis; v) ecotoxicity of ENMs, and vi) future needs. These six step stones deliver the derivation of the position of the ES1205 network at the beginning of the projects runtime, by defining six fundamental aspects that should be considered in future discussions on risk evaluation of ENMs in urban water systems.
Duester, Lars; Burkhardt, Michael; Gutleb, Arno C.; Kaegi, Ralf; Macken, Ailbhe; Meermann, Björn; von der Kammer, Frank
2014-01-01
The European COoperation in Science and Technology (COST) Action ES1205 on the transfer of Engineered Nano materials from wastewater Treatment and stormwatEr to Rivers (ENTER) aims to create and to maintain a trans European network among scientists. This perspective article delivers a brief overview on the status quo at the beginning of the project by addressing the following aspects on engineered nano materials (ENMs) in the urban systems: (1) ENMs that need to be considered on a European level; (2) uncertainties on production-volume estimations; (3) fate of selected ENMs during waste water transport and treatment; (4) analytical strategies for ENM analysis; (5) ecotoxicity of ENMs, and (6) future needs. These six step stones deliver the derivation of the position of the ES1205 network at the beginning of the projects runtime, by defining six fundamental aspects that should be considered in future discussions on risk evaluation of ENMs in urban water systems. PMID:25003102
NASA Technical Reports Server (NTRS)
Fraser, A. S.; Wells, A. F.; Tenoso, H. J.
1975-01-01
A monitoring system developed to test the capability of a water recovery system to reject the passage of viruses into the recovered water is described. A nonpathogenic marker virus, bacteriophage F2, is fed into the process stream before the recovery unit and the reclaimed water is assayed for its presence. Detection of the marker virus consists of two major components, concentration and isolation of the marker virus, and detection of the marker virus. The concentration system involves adsorption of virus to cellulose acetate filters in the presence of trivalent cations and low pH with subsequent desorption of the virus using volumes of high pH buffer. The detection of the virus is performed by a passive immune agglutination test utilizing specially prepared polystyrene particles. An engineering preliminary design was performed as a parallel effort to the laboratory development of the marker virus test system. Engineering schematics and drawings of a fully functional laboratory prototype capable of zero-G operation are presented. The instrument consists of reagent pump/metering system, reagent storage containers, a filter concentrator, an incubation/detector system, and an electronic readout and control system.
14 CFR 29.1203 - Fire detector systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... detector systems. (a) For each turbine engine powered rotorcraft and Category A reciprocating engine... fire zones and in the combustor, turbine, and tailpipe sections of turbine installations (whether or... affected by any oil, water, other fluids, or fumes that might be present. (d) There must be means to allow...
14 CFR 29.1203 - Fire detector systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... detector systems. (a) For each turbine engine powered rotorcraft and Category A reciprocating engine... fire zones and in the combustor, turbine, and tailpipe sections of turbine installations (whether or... affected by any oil, water, other fluids, or fumes that might be present. (d) There must be means to allow...
14 CFR 29.1203 - Fire detector systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... detector systems. (a) For each turbine engine powered rotorcraft and Category A reciprocating engine... fire zones and in the combustor, turbine, and tailpipe sections of turbine installations (whether or... affected by any oil, water, other fluids, or fumes that might be present. (d) There must be means to allow...
14 CFR 29.1203 - Fire detector systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... detector systems. (a) For each turbine engine powered rotorcraft and Category A reciprocating engine... fire zones and in the combustor, turbine, and tailpipe sections of turbine installations (whether or... affected by any oil, water, other fluids, or fumes that might be present. (d) There must be means to allow...
14 CFR 29.1203 - Fire detector systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... detector systems. (a) For each turbine engine powered rotorcraft and Category A reciprocating engine... fire zones and in the combustor, turbine, and tailpipe sections of turbine installations (whether or... affected by any oil, water, other fluids, or fumes that might be present. (d) There must be means to allow...
RADON REMOVAL BY POINT-OF-ENTRY GRANULAR ACTIVATED CARBON SYSTEMS: DESIGN PERFORMANCE AND COST
The report summarizes previous research conducted by Lowry Engineering, Inc. (LEI), the Maine Department of Human Services, Division of Health Engineering, and the University of Maine, Department of Civil Engineering, on the removal of Rn from drinking water supplies using granul...
Limitations of fluorescence spectroscopy to characterize organic matter in engineered systems
NASA Astrophysics Data System (ADS)
Korak, J.
2017-12-01
Fluorescence spectroscopy has been widely used to characterize dissolved organic matter (DOM) in engineered systems, such as drinking water, municipal wastewater and industrial water treatment. While fluorescence data collected in water treatment applications has led to the development of strong empirical relationships between fluorescence responses and process performance, the use of fluorescence to infer changes in the underlying organic matter chemistry is often oversimplified and applied out of context. Fluorescence only measures a small fraction of DOM as fluorescence quantum yields are less than 5% for many DOM sources. Relying on fluorescence as a surrogate for DOM presence, character or reactivity may not be appropriate for systems where small molecular weight, hydrophilic constituents unlikely to fluoresce are important. In addition, some methods rely on interpreting fluorescence signals at different excitation wavelengths as a surrogate for operationally-defined humic- and fulvic-acids in lieu of traditional XAD fractionation techniques, but these approaches cannot be supported by other lines of evidence considering natural abundance and fluorescence quantum yields of these fractions. These approaches also conflict with parallel factor analysis (PARAFAC), a statistical approach that routinely identifies fluorescence components with dual excitation behavior. Lastly, methods developed for natural systems are often applied out of context to engineered systems. Fluorescence signals characteristic of phenols or indoles are often interpreted as indicators for biological activity in natural systems due to fluorescent amino acids and peptides, but this interpretation is may not be appropriate in engineering applications where non-biological sources of phenolic functional groups may be present. This presentation explores common fluorescence interpretation approaches, discusses the limitations and provides recommendations related to engineered systems.
Overview of Causes and Control of Nitrification in Chloraminated Drinking Water Distribution Systems
This chapter provides an integrated overview of nitrification causes and control in chloraminated drinking water distribution systems, leading to an in-depth discussion of nitrification microbiology, monitoring, prevention, response, and engineering improvements in subsequent man...
Submarine Construction (Unterseebootsbau)
1972-08-01
PIPE FOR THE SNORKEL EXHAUST MAST 11 AIR EXIT (GENERALLY TO MAIN AIR INDUCTION LINE) 12 EXHAUST GAS INLET FROM EXHAUST GAS LINE SIDE VIEW (MAST...Electric Engine 76 Diesel Engines 79 Air Intake and Gas Exhaust Systems for the Diesel Engines 79 Diesel Fuel and Pressurized Water System 82...Lines of a Submarine ■. 31 Figure 6 - Lines of a Submersible 31 Figure 7 - Twin- Screw Stern Configurations 34 Figure 8 - Single- Screw Stern
Summary Report of the NSF/EPA WATERS Network Workshop
The National Science Foundation (NSF) and The U.S. Environmental Protection Agency (EPA) organized a workshop to support The WATer and Environmental Research Systems (WATERS) Network project. The WATERS Network is a new joint initiative of the environmental engineering and hydrol...
SMALL SCALE ECOSYSTEM ENGINEERING: DEVELOPMENT OF HOUSEHOLD LEVEL GREYWATER TREATMENT SYSTEMS
The project will increase quality of life through the protection of ecosystem services and drinking water supplies through pollution reduction. Additionally, through water reuse our project has the potential to decrease overall water consumption. Decreasing overall water co...
Development of Modeling Approaches for Nuclear Thermal Propulsion Test Facilities
NASA Technical Reports Server (NTRS)
Jones, Daniel R.; Allgood, Daniel C.; Nguyen, Ke
2014-01-01
High efficiency of rocket propul-sion systems is essential for humanity to venture be-yond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rock-ets with relatively high thrust and twice the efficiency of the Space Shuttle Main Engine. NASA is in the pro-cess of developing a new NTP engine, and is evaluat-ing ground test facility concepts that allow for the thor-ough testing of NTP devices. NTP engine exhaust, hot gaseous hydrogen, is nominally expected to be free of radioactive byproducts from the nuclear reactor; how-ever, it has the potential to be contaminated due to off-nominal engine reactor performance. Several options are being investigated to mitigate this hazard potential with one option in particular that completely contains the engine exhaust during engine test operations. The exhaust products are subsequently disposed of between engine tests. For this concept (see Figure 1), oxygen is injected into the high-temperature hydrogen exhaust that reacts to produce steam, excess oxygen and any trace amounts of radioactive noble gases released by off-nominal NTP engine reactor performance. Water is injected to condense the potentially contaminated steam into water. This water and the gaseous oxygen (GO2) are subsequently passed to a containment area where the water and GO2 are separated into separate containment tanks.
A Study of Ballast Water Treatment Using Engine Waste Heat
NASA Astrophysics Data System (ADS)
Balaji, Rajoo; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri bin; Ismail, Nasrudin bin; Ahmad, Badruzzaman bin; Ismail, Mohd Arif bin
2018-05-01
Heat treatment of ballast water using engine waste heat can be an advantageous option complementing any proven technology. A treatment system was envisaged based on the ballast system of an existing, operational crude carrier. It was found that the available waste heat could raise the temperatures by 25 °C and voyage time requirements were found to be considerable between 7 and 12 days to heat the high volumes of ballast water. Further, a heat recovery of 14-33% of input energies from exhaust gases was recorded while using a test rig arrangement representing a shipboard arrangement. With laboratory level tests at temperature ranges of around 55-75 °C, almost complete species mortalities for representative phytoplankton, zooplankton and bacteria were observed while the time for exposure varied from 15 to 60 s. Based on the heat availability analyses for harvesting heat from the engine exhaust gases(vessel and test rig), heat exchanger designs were developed and optimized using Lagrangian method applying Bell-Delaware approaches. Heat exchanger designs were developed to suit test rig engines also. Based on these designs, heat exchanger and other equipment were procured and erected. The species' mortalities were tested in this mini-scale arrangement resembling the shipboard arrangement. The mortalities realized were > 95% with heat from jacket fresh water and exhaust gases alone. The viability of the system was thus validated.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-14
... Water Resources Department. e. Name of Project: Sackett Filtration Plant Hydroelectric Project. f.... 791a-825r h. Applicant Contact: Mr. Charles Darling, Water Systems Engineer, Westfield Water Resources... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14483-000] Westfield Water...
Definition of propulsion system for V/STOL research and technology aircraft
NASA Technical Reports Server (NTRS)
1977-01-01
Wind tunnel test support, aircraft contractor support, a propulsion system computer card deck, preliminary design studies, and propulsion system development plan are reported. The Propulsion system consists of two lift/cruise turbofan engines, one turboshaft engine and one lift fan connected together with shafting into a combiner gearbox. Distortion parameter levels from 40 x 80 test data were within the established XT701-AD-700 limits. The three engine-three fan system card deck calculates either vertical or conventional flight performance, installed or uninstalled. Design study results for XT701 engine modifications, bevel gear cross shaft location, fixed and tilt fan frames and propulsion system controls are described. Optional water-alcohol injection increased total net thrust 10.3% on a 90 F day. Engines have sufficient turbine life for 500 hours of the RTA duty cycle.
Automotive Stirling Engine Mod 1 Design Review, volume 2
NASA Technical Reports Server (NTRS)
1982-01-01
The auxiliaries and the control system for the ASE MOD I: (1) provide the required fuel and air flows for a well controlled combustion process, generating heat to the Stirling cycle; (2) provide a driver acceptable method for controlling the power output of the engine; (3) provide adequate lubrication and cooling water circulation; (4) generate the electric energy required for engine and vehicle operation; (5) provide a driver acceptable method for starting, stopping and monitoring the engine; and (6) provide a guard system, that protects the engine at component or system malfunction. The control principles and the way the different components and sub-systems interact are described as well as the different auxiliaries, the air fuel system, the power control systems and the electronics. The arrangement and location of auxiliaries and other major components are also examined.
Effect of water on hydrogen permeability
NASA Technical Reports Server (NTRS)
Hulligan, David; Tomazic, William A.
1987-01-01
Doping of hydrogen with CO and CO2 was developed to reduce hydrogen permeation in Stirling engines by forming a low permeability oxide coating on the inner surface of the heater head tubes. Although doping worked well, under certain circumstances the protective oxide could be chemically reduced by the hydrogen in the engine. Some oxygen is required in the hydrogen to prevent reduction. Eventually, all the oxygen in the hydrogen gas - whatever its source - shows up as water. This is the result of hydrogen reducing the CO, CO2, or the protective inner surface oxides. This water can condense in the engine system under the right conditions. If the concentration of water vapor is reduced to a low enough level, the hydrogen can chemically reduce the oxide coating, resulting in an increase in permeability. This work was done to define the minimum water content required to avoid this reduction in the oxide coating. The results of this testing show that a minimum of approximately 750 ppm water is required to prevent an increase in permeability of CG-27, a high temperature metal alloy selected for Stirling engine heater tubes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, W.P.
This patent describes a solar energy system. It comprises: a water pond which is heated by solar energy; a cover above the pond which transmits solar energy; an air space between the pond and the cover through which warm air and vaporized water move; a chimney which induces the rapid flow of warm humid air into its lower end and delivers such air at its upper end; a fresh water heat sink which receives condensed vapor from the chimney-induced flow; a heat energy driven engine, the power output of which is a function of the temperature difference between higher andmore » lower temperature levels; a first heat exchanger in the engine connected to the top of the chimney, and arranged to convert the vapor condensation energy into the higher temperature level of th engine; a second heat exchanger in the engine arranged to provide the lower temperature of the engine by connection to the heat sink; and power transfer means driven by the temperature differential energy of the engine.« less
Method for controlling exhaust gas heat recovery systems in vehicles
Spohn, Brian L.; Claypole, George M.; Starr, Richard D
2013-06-11
A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.
Multi-agent modelling framework for water, energy and other resource networks
NASA Astrophysics Data System (ADS)
Knox, S.; Selby, P. D.; Meier, P.; Harou, J. J.; Yoon, J.; Lachaut, T.; Klassert, C. J. A.; Avisse, N.; Mohamed, K.; Tomlinson, J.; Khadem, M.; Tilmant, A.; Gorelick, S.
2015-12-01
Bespoke modelling tools are often needed when planning future engineered interventions in the context of various climate, socio-economic and geopolitical futures. Such tools can help improve system operating policies or assess infrastructure upgrades and their risks. A frequently used approach is to simulate and/or optimise the impact of interventions in engineered systems. Modelling complex infrastructure systems can involve incorporating multiple aspects into a single model, for example physical, economic and political. This presents the challenge of combining research from diverse areas into a single system effectively. We present the Pynsim 'Python Network Simulator' framework, a library for building simulation models capable of representing, the physical, institutional and economic aspects of an engineered resources system. Pynsim is an open source, object oriented code aiming to promote integration of different modelling processes through a single code library. We present two case studies that demonstrate important features of Pynsim's design. The first is a large interdisciplinary project of a national water system in the Middle East with modellers from fields including water resources, economics, hydrology and geography each considering different facets of a multi agent system. It includes: modelling water supply and demand for households and farms; a water tanker market with transfer of water between farms and households, and policy decisions made by government institutions at district, national and international level. This study demonstrates that a well-structured library of code can provide a hub for development and act as a catalyst for integrating models. The second focuses on optimising the location of new run-of-river hydropower plants. Using a multi-objective evolutionary algorithm, this study analyses different network configurations to identify the optimal placement of new power plants within a river network. This demonstrates that Pynsim can be used to evaluate a multitude of topologies for identifying the optimal location of infrastructure investments. Pynsim is available on GitHub or via standard python installer packages such as pip. It comes with several examples and online documentation, making it attractive for those less experienced in software engineering.
NASA Technical Reports Server (NTRS)
Willis, Charles E. (Editor)
1987-01-01
The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.
Fuel-cell engine stream conditioning system
DuBose, Ronald Arthur
2002-01-01
A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.
ERIC Educational Resources Information Center
Schlenker, Richard M.; And Others
Information is presented about the problems involved in using sea water in the steam propulsion systems of large, modern ships. Discussions supply background chemical information concerning the problems of corrosion, scale buildup, and sludge production. Suggestions are given for ways to maintain a good water treatment program to effectively deal…
Conducting Sanitary Surveys of Water Supply Systems. Student Workbook.
ERIC Educational Resources Information Center
1976
This workbook is utilized in connection with a 40-hour course on sanitary surveys of water supply systems for biologists, chemists, and engineers with experience as a water supply evaluator. Practical training is provided in each of the 21 self-contained modules. Each module outlines the purpose, objectives and content for that section. The course…
14 CFR 25.1093 - Induction system icing protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... percent of maximum continuous power. (b) Turbine engines. (1) Each turbine engine must operate throughout... turbine engine must idle for 30 minutes on the ground, with the air bleed available for engine icing... between 15° and 30 °F (between −9° and −1 °C) and has a liquid water content not less than 0.3 grams per...
14 CFR 25.1093 - Induction system icing protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... percent of maximum continuous power. (b) Turbine engines. (1) Each turbine engine must operate throughout... turbine engine must idle for 30 minutes on the ground, with the air bleed available for engine icing... between 15° and 30 °F (between −9° and −1 °C) and has a liquid water content not less than 0.3 grams per...
14 CFR 25.1093 - Induction system icing protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... percent of maximum continuous power. (b) Turbine engines. (1) Each turbine engine must operate throughout... turbine engine must idle for 30 minutes on the ground, with the air bleed available for engine icing... between 15° and 30 °F (between −9° and −1 °C) and has a liquid water content not less than 0.3 grams per...
14 CFR 25.1093 - Induction system icing protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... percent of maximum continuous power. (b) Turbine engines. (1) Each turbine engine must operate throughout... turbine engine must idle for 30 minutes on the ground, with the air bleed available for engine icing... between 15° and 30 °F (between −9° and −1 °C) and has a liquid water content not less than 0.3 grams per...
Reconstructing the duty of water: a study of emergent norms in socio-hydrology
NASA Astrophysics Data System (ADS)
Wescoat, J. L., Jr.
2013-06-01
This paper assesses changing norms of water use known as the duty of water. It is a case study in historical socio-hydrology, a line of research useful for anticipating changing social values with respect to water. The duty of water is currently defined as the amount of water reasonably required to irrigate a substantial crop with careful management and without waste on a given tract of land. The historical section of the paper traces this concept back to late-18th century analysis of steam engine efficiencies for mine dewatering in Britain. A half-century later, British irrigation engineers fundamentally altered the concept of duty to plan large-scale canal irrigation systems in northern India at an average duty of 218 acres per cubic foot per second (cfs). They justified this extensive irrigation standard (i.e., low water application rate over large areas) with a suite of social values that linked famine prevention with revenue generation and territorial control. Several decades later irrigation engineers in the western US adapted the duty of water concept to a different socio-hydrologic system and norms, using it to establish minimum standards for water rights appropriation (e.g., only 40 to 80 acres per cfs). The final section shows that while the duty of water concept has now been eclipsed by other measures and standards of water efficiency, it may have continuing relevance for anticipating if not predicting emerging social values with respect to water.
Kloppmann, W; Negev, Ido; Guttman, Joseph; Goren, Orly; Gavrieli, Ittai; Guerrot, Catherine; Flehoc, Christine; Pettenati, Marie; Burg, Avihu
2018-04-01
"Man-made" or unconventional freshwater, like desalinated seawater or reclaimed effluents, is increasingly introduced into regional water cycles in arid or semi-arid countries. We show that the breakthrough of reverse osmosis-derived freshwater in the largely engineered water cycle of the greater Tel Aviv region (Dan Region) has profoundly changed previous isotope fingerprints. This new component can be traced throughout the system, from the drinking water supply, through sewage, treated effluents, and artificially recharged groundwater at the largest Soil-Aquifer Treatment system in the Middle East (Shafdan) collecting all the Dan region sewage. The arrival of the new water type (desalinated seawater) in 2007 and its predominance since 2010 constitutes an unplanned, large-scale, long-term tracer test and the monitoring of the breakthrough of desalination-specific fingerprints in the aquifer system of Shafdan allowed to get new insights on the water and solute flow and behavior in engineered groundwater systems. Our approach provides an investigation tool for the urban water cycle, allowing estimating the contribution of diverse freshwater sources, and an environmental tracing method for better constraining the long-term behavior and confinement of aquifer systems with managed recharge. Copyright © 2017. Published by Elsevier B.V.
THE EFFECT OF WATER CHEMISTRY ON THE PROPERTIES OF IRON PARTICLES AND IRON SUSPENSIONS
The structure and properties of iron colloids in aquatic systems is important in understanding their behavior in environmental and engineering systems. For example the adsorption of contaminants onto iron colloids and subsequent transport through ground water aquifers and surface...
Reconstructing the duty of water: a study of emergent norms in socio-hydrology
NASA Astrophysics Data System (ADS)
Wescoat, J. L., Jr.
2013-12-01
This paper assesses the changing norms of water use known as the duty of water. It is a case study in historical socio-hydrology, or more precisely the history of socio-hydrologic ideas, a line of research that is useful for interpreting and anticipating changing social values with respect to water. The duty of water is currently defined as the amount of water reasonably required to irrigate a substantial crop with careful management and without waste on a given tract of land. The historical section of the paper traces this concept back to late 18th century analysis of steam engine efficiencies for mine dewatering in Britain. A half-century later, British irrigation engineers fundamentally altered the concept of duty to plan large-scale canal irrigation systems in northern India at an average duty of 218 acres per cubic foot per second (cfs). They justified this extensive irrigation standard (i.e., low water application rate over large areas) with a suite of social values that linked famine prevention with revenue generation and territorial control. The duty of water concept in this context articulated a form of political power, as did related irrigation engineering concepts such as "command" and "regime". Several decades later irrigation engineers in the western US adapted the duty of water concept to a different socio-hydrologic system and norms, using it to establish minimum standards for private water rights appropriation (e.g., only 40 to 80 acres per cfs). While both concepts of duty addressed socio-economic values associated with irrigation, the western US linked duty with justifications for, and limits of, water ownership. The final sections show that while the duty of water concept has been eclipsed in practice by other measures, standards, and values of water use efficiency, it has continuing relevance for examining ethical duties and for anticipating, if not predicting, emerging social values with respect to water.
Sims Prototype System 2 test results: Engineering analysis
NASA Technical Reports Server (NTRS)
1978-01-01
The testing, problems encountered, and the results and conclusions obtained from tests performed on the IBM Prototype System, 2, solar hot water system, at the Marshall Space Flight Center Solar Test Facility was described. System 2 is a liquid, non draining solar energy system for supplying domestic hot water to single residences. The system consists of collectors, storage tank, heat exchanger, pumps and associated plumbing and controls.
Gas engine heat pump cycle analysis. Volume 1: Model description and generic analysis
NASA Astrophysics Data System (ADS)
Fischer, R. D.
1986-10-01
The task has prepared performance and cost information to assist in evaluating the selection of high voltage alternating current components, values for component design variables, and system configurations and operating strategy. A steady-state computer model for performance simulation of engine-driven and electrically driven heat pumps was prepared and effectively used for parametric and seasonal performance analyses. Parametric analysis showed the effect of variables associated with design of recuperators, brine coils, domestic hot water heat exchanger, compressor size, engine efficiency, insulation on exhaust and brine piping. Seasonal performance data were prepared for residential and commercial units in six cities with system configurations closely related to existing or contemplated hardware of the five GRI engine contractors. Similar data were prepared for an advanced variable-speed electric unit for comparison purposes. The effect of domestic hot water production on operating costs was determined. Four fan-operating strategies and two brine loop configurations were explored.
Critical Literacy, Disciplinary Literacy: Reading the Engineering-Designed World
ERIC Educational Resources Information Center
Wilson-Lopez, Amy; Strong, Kristin; Sias, Christina
2017-01-01
Globally, many people spend most of their time interacting with the products of engineering design as they wear clothes, drink clean water, use transportation systems, and more. Given the omnipresence of engineering design, whose material results are felt daily in people's lives, it seems especially important that students learn to recognize and…
INTERACTIVE WORKSHOP ON ARSENIC REMOVAL FROM DRINKING WATER
In 2005, EPA's Office of Water and Office of Research and Development collaborated to present eleven arsenic training events. The workshops provided in-depth treatment technology training to help those affected; state drinking water staff, design engineers, system owners and cert...
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb
2014-01-01
SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.
How gas cools (or, apples can fall up)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
This primer on gas cooling systems explains the basics of heat exchange within a refrigeration system, the principle of reverse-cycle refrigeration, and how a gas-engine-driven heat pump can provide cooling, additional winter heating capacity, and hot water year-round. Gas cooling equipment available or under development include natural gas chillers, engine-driven chillers, and absorption chillers. In cogeneration systems, heat recovered from an engine's exhaust and coolant may be used in an absorption chiller to provide air-conditioning. Gas desiccant cooling systems may be used in buildings and businesses that are sensitive to high humidity levels.
A computer aided engineering tool for ECLS systems
NASA Technical Reports Server (NTRS)
Bangham, Michal E.; Reuter, James L.
1987-01-01
The Computer-Aided Systems Engineering and Analysis tool used by NASA for environmental control and life support system design studies is capable of simulating atmospheric revitalization systems, water recovery and management systems, and single-phase active thermal control systems. The designer/analysis interface used is graphics-based, and allows the designer to build a model by constructing a schematic of the system under consideration. Data management functions are performed, and the program is translated into a format that is compatible with the solution routines.
The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class
ERIC Educational Resources Information Center
Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R.
2008-01-01
Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. Marine aquaria and their life support systems feature many chemical processes. A life support system consists of the entire recirculation system, as well as the habitat tank and all ancillary…
Engineering Infrastructures: Problems of Safety and Security in the Russian Federation
NASA Astrophysics Data System (ADS)
Makhutov, Nikolay A.; Reznikov, Dmitry O.; Petrov, Vitaly P.
Modern society cannot exist without stable and reliable engineering infrastructures (EI), whose operation is vital for any national economy. These infrastructures include energy, transportation, water and gas supply systems, telecommunication and cyber systems, etc. Their performance is commensurate with storing and processing huge amounts of information, energy and hazardous substances. Ageing infrastructures are deteriorating — with operating conditions declining from normal to emergency and catastrophic. The complexity of engineering infrastructures and their interdependence with other technical systems makes them vulnerable to emergency situations triggered by natural and manmade catastrophes or terrorist attacks.
A Subject Matter Expert View of Curriculum Development.
NASA Astrophysics Data System (ADS)
Milazzo, M. P.; Anderson, R. B.; Edgar, L. A.; Gaither, T. A.; Vaughan, R. G.
2017-12-01
In 2015, NASA selected for funding the PLANETS project: Planetary Learning that Advances the Nexus of Engineering, Technology, and Science. The PLANETS partnership develops planetary science and engineering curricula for out of classroom time (OST) education settings. This partnership is between planetary science Subject Matter Experts (SMEs) at the US Geological Survey (USGS), curriculum developers at the Boston Museum of Science (MOS) Engineering is Everywhere (EiE), science and engineering teacher professional development experts at Northern Arizona University (NAU) Center for Science Teaching and Learning (CSTL), and OST teacher networks across the world. For the 2016 and 2017 Fiscal Years, our focus was on creating science material for two OST modules designed for middle school students. We have begun development of a third module for elementary school students. The first model teaches about the science and engineering of the availability of water in the Solar System, finding accessible water, evaluating it for quality, treating it for impurities, initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. This module is described in more detail in the abstract by L. Edgar et al., Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration (233008) The second module involves the science and engineering of remote sensing in planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In these activities and discussions, we include observation and measurement techniques and tools as well as collection and use of specific data of interest to scientists. This module is described in more detail in the abstract by R. Anderson et al., Remote Sensing Mars Landing Sites: An Out-of-School Time Planetary Science Education Activity for Middle School Students (232683) The third module, described by R.G. Vaughan, Hazards in the Solar System: Out-of-School Time Student Activities Focused on Engineering Protective Space Gloves (262143), focuses on hazards in the Solar System and the engineering approach to designing space gloves to protect against those hazards.
Transient performance of fan engine with water ingestion
NASA Technical Reports Server (NTRS)
Murthy, S. N. B.; Mullican, A.
1993-01-01
In a continuing investigation on developing and applying codes for prediction of performance of a turbine jet engine and its components with water ingestion during flight operation, including power settings, and flight altitudes and speed changes, an attempt was made to establish the effects of water ingestion through simulation of a generic high bypass ratio engine with a generic control. In view of the large effects arising in the air compression system and the prediffuser-combustor unit during water ingestion, attention was focused on those effects and the resulting changes in engine performance. Under all conditions of operation, whether ingestion is steady or not, it became evident that water ingestion causes a fan-compressor unit to operate in a time-dependent fashion with periodic features, particularly with respect to the state of water in the span and the film in the casing clearance space, at the exit of the machine. On the other hand, the aerodynamic performance of the unit may be considered as quasi-steady once the distribution of water has attained an equilibrium state with respect to its distribution and motion. For purposes of engine simulation, the performance maps for the generic fan-compressor unit were generated based on the attainment of a quasi-steady state (meaning steady except for long-period variations in performance) during ingestion and operation over a wide enough range of rotational speeds.
NASA Astrophysics Data System (ADS)
Lan, G.; Jiang, J.; Li, D. D.; Yi, W. S.; Zhao, Z.; Nie, L. N.
2013-12-01
The calculation of water-hammer pressure phenomenon of single-phase liquid is already more mature for a pipeline of uniform characteristics, but less research has addressed the calculation of slurry water hammer pressure in complex pipelines with slurry flows carrying solid particles. In this paper, based on the developments of slurry pipelines at home and abroad, the fundamental principle and method of numerical simulation of transient processes are presented, and several boundary conditions are given. Through the numerical simulation and analysis of transient processes of a practical engineering of long-distance slurry transportation pipeline system, effective protection measures and operating suggestions are presented. A model for calculating the water impact of solid and fluid phases is established based on a practical engineering of long-distance slurry pipeline transportation system. After performing a numerical simulation of the transient process, analyzing and comparing the results, effective protection measures and operating advice are recommended, which has guiding significance to the design and operating management of practical engineering of longdistance slurry pipeline transportation system.
NASA Technical Reports Server (NTRS)
Chamberland, Dennis; Wheeler, Raymond M.; Corey, Kenneth A.
1993-01-01
Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Center's Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.
Smith, B R
2009-01-01
Most major cities worldwide face urban water management challenges relating to drinking supply, stormwater and wastewater treatment, and ecological preservation. In light of climate change and finite natural resources, addressing these challenges in sustainable ways will require innovative solutions arising from interdisciplinary collaboration. This article summarizes five major urban water management strategies that bridge the fields of engineering, ecology, landscape architecture, and urban planning. A conceptual implementation of these strategies is demonstrated through a design for a small constructed wetland treatment system in San Francisco, California. The proposed decentralized system described in this article consists of a detention basin, vegetated and open free water surface wetlands, and ultraviolet disinfection. In wet weather, the system would detain and treat combined sewer discharges (CSD), and in dry weather it would treat residential greywater for toilet flushing and irrigation in a nearby neighborhood. It is designed to adapt over time to changing climatic conditions and treatment demands. Importantly, this proposal demonstrates how constructed wetland engineers can incorporate multiple benefits into their systems, offering a vision of how wastewater infrastructure can be an attractive community, educational, recreational, and habitat amenity through the integration of engineering, ecology, and landscape design.
NASA Astrophysics Data System (ADS)
Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.
2017-12-01
"Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of "Water in the Solar System" and lessons learned.
Simulating Exposure Concentrations of Engineered Nanomaterials in Surface Water Systems: WASP8
The unique properties of engineered nanomaterials led to their increased production and potential release into the environment. Currently available environmental fate models developed for traditional contaminants are limited in their ability to simulate nanomaterials’ envir...
Contingency Power Study for Short Haul Civil Tiltrotor
NASA Technical Reports Server (NTRS)
Eisenberg, Joseph D. (Technical Monitor); Wait, John
2003-01-01
AlliedSignal Engines (AE) defined a number of concepts that significantly increased the horsepower of a turboshaft engine to accommodate the loss of an engine and enable the safe landing of a twin-engined, 40-passenger, short haul civil tiltrotor. From these concepts, "Water/Methanol Injection," a "Better Power Turbine Than Required," and a "Secondary Combustor For Interturbine Reheat" were chosen, based on system safety and economics, for more detailed examination. Engine performance, mission, and cost analysis of these systems indicated contingency power levels of 26 to 70 percent greater than normal rated takeoff could be attained for short durations, thus enabling direct operating cost savings between 2 and 6 percent.
Garan performs TCS Water Loop Degassing in Columbus
2011-04-08
ISS027-E-011325 (8 April 2011) --- NASA astronaut Ron Garan, Expedition 27 flight engineer, works on degassing the water loop of the running Water Pump Assembly 2 / Thermal Control System (WPA2/TCS) in the Columbus laboratory of the International Space Station.
Garan performs TCS Water Loop Degassing in Columbus
2011-04-08
ISS027-E-011324 (8 April 2011) --- NASA astronaut Ron Garan, Expedition 27 flight engineer, works on degassing the water loop of the running Water Pump Assembly 2 / Thermal Control System (WPA2/TCS) in the Columbus laboratory of the International Space Station.
Implications of Transitioning from De Facto to Engineered Water Reuse for Power Plant Cooling.
Barker, Zachary A; Stillwell, Ashlynn S
2016-05-17
Thermoelectric power plants demand large quantities of cooling water, and can use alternative sources like treated wastewater (reclaimed water); however, such alternatives generate many uncertainties. De facto water reuse, or the incidental presence of wastewater effluent in a water source, is common at power plants, representing baseline conditions. In many cases, power plants would retrofit open-loop systems to cooling towers to use reclaimed water. To evaluate the feasibility of reclaimed water use, we compared hydrologic and economic conditions at power plants under three scenarios: quantified de facto reuse, de facto reuse with cooling tower retrofits, and modeled engineered reuse conditions. We created a genetic algorithm to estimate costs and model optimal conditions. To assess power plant performance, we evaluated reliability metrics for thermal variances and generation capacity loss as a function of water temperature. Applying our analysis to the greater Chicago area, we observed high de facto reuse for some power plants and substantial costs for retrofitting to use reclaimed water. Conversely, the gains in reliability and performance through engineered reuse with cooling towers outweighed the energy investment in reclaimed water pumping. Our analysis yields quantitative results of reclaimed water feasibility and can inform sustainable management of water and energy.
Thermostability of biological systems: fundamentals, challenges, and quantification.
He, Xiaoming
2011-01-01
This review examines the fundamentals and challenges in engineering/understanding the thermostability of biological systems over a wide temperature range (from the cryogenic to hyperthermic regimen). Applications of the bio-thermostability engineering to either destroy unwanted or stabilize useful biologicals for the treatment of diseases in modern medicine are first introduced. Studies on the biological responses to cryogenic and hyperthermic temperatures for the various applications are reviewed to understand the mechanism of thermal (both cryo and hyperthermic) injury and its quantification at the molecular, cellular and tissue/organ levels. Methods for quantifying the thermophysical processes of the various applications are then summarized accounting for the effect of blood perfusion, metabolism, water transport across cell plasma membrane, and phase transition (both equilibrium and non-equilibrium such as ice formation and glass transition) of water. The review concludes with a summary of the status quo and future perspectives in engineering the thermostability of biological systems.
Thermostability of Biological Systems: Fundamentals, Challenges, and Quantification
He, Xiaoming
2011-01-01
This review examines the fundamentals and challenges in engineering/understanding the thermostability of biological systems over a wide temperature range (from the cryogenic to hyperthermic regimen). Applications of the bio-thermostability engineering to either destroy unwanted or stabilize useful biologicals for the treatment of diseases in modern medicine are first introduced. Studies on the biological responses to cryogenic and hyperthermic temperatures for the various applications are reviewed to understand the mechanism of thermal (both cryo and hyperthermic) injury and its quantification at the molecular, cellular and tissue/organ levels. Methods for quantifying the thermophysical processes of the various applications are then summarized accounting for the effect of blood perfusion, metabolism, water transport across cell plasma membrane, and phase transition (both equilibrium and non-equilibrium such as ice formation and glass transition) of water. The review concludes with a summary of the status quo and future perspectives in engineering the thermostability of biological systems. PMID:21769301
Code of Federal Regulations, 2013 CFR
2013-10-01
... substances, preparations, and relevant chemicals. 162.060-32 Section 162.060-32 Shipping COAST GUARD... APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems § 162.060-32 Testing and evaluation requirements for active substances, preparations, and relevant chemicals. (a) A ballast water management system...
Code of Federal Regulations, 2012 CFR
2012-10-01
... substances, preparations, and relevant chemicals. 162.060-32 Section 162.060-32 Shipping COAST GUARD... APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems § 162.060-32 Testing and evaluation requirements for active substances, preparations, and relevant chemicals. (a) A ballast water management system...
Code of Federal Regulations, 2014 CFR
2014-10-01
... substances, preparations, and relevant chemicals. 162.060-32 Section 162.060-32 Shipping COAST GUARD... APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems § 162.060-32 Testing and evaluation requirements for active substances, preparations, and relevant chemicals. (a) A ballast water management system...
2007-02-01
permit, there are no guidelines for storm water quality , therefore Homestead ARB established a program with the State of Florida to test and monitor... storm water quality . Heating and Cooling Systems. Because of the humid Florida climate, engineers are considering an installation-wide Utility... storm water quality , negligible effects on the storm water system would be expected as a result of the Proposed Action. Heating and Cooling
NASA Technical Reports Server (NTRS)
1983-01-01
An x-ray fluorescence spectrometer developed for the Viking Landers by Martin Marietta was modified for geological exploration, water quality monitoring, and aircraft engine maintenance. The aerospace system was highly miniaturized and used very little power. It irradiates the sample causing it to emit x-rays at various energies, then measures the energy levels for sample composition analysis. It was used in oceanographic applications and modified to identify element concentrations in ore samples, on site. The instrument can also analyze the chemical content of water, and detect the sudden development of excessive engine wear.
NASA Technical Reports Server (NTRS)
Zoladz, Thomas F.
2000-01-01
Observations regarding rotating cavitation and cavitation surge experienced during the development of the Fastrac engine turbopump are discussed. Detailed observations acquired from the analysis of both water flow and liquid oxygen test data are offered in this paper. Scaling and general comparison of rotating cavitation between water flow and liquid oxygen testing are discussed. Complex data features linking the localized rotating cavitation mechanism of the inducer to system surge components are described in detail. Finally a description of a lumped-parameter hydraulic system model developed to better understand observed data is given.
Overview of Rotating Cavitation and Cavitation Surge in the Fastrac Engine LOX Turbopump
NASA Technical Reports Server (NTRS)
Zoladz, Thomas; Turner, Jim (Technical Monitor)
2001-01-01
Observations regarding rotating cavitation and cavitation surge experienced during the development of the Fastrac 60 Klbf engine turbopump are discussed. Detailed observations from the analysis of both water flow and liquid oxygen test data are offered. Scaling and general comparison of rotating cavitation between water flow and liquid oxygen testing are discussed. Complex data features linking the localized rotating cavitation mechanism of the inducer to system surge components are described in detail. Finally a description of a simple lumped-parameter hydraulic system model developed to better understand observed data is given.
Effect of water on hydrogen permeability. [Stirling engines
NASA Technical Reports Server (NTRS)
Hulligan, D. D.; Tomazic, W. A.
1984-01-01
Doping of hydrogen with CO or CO2 was developed to reduce hydrogen permeation in Stirling engines by forming low permeability oxide coatings in the heater tubes. An end product of this process is water - which can condense in the cold parts of the engine system. If the water vapor is reduced to a low enough level, the hydrogen can reduce the oxide coating resulting in increased permeability. The equilibrium level of water (oxygen bearing gas) required to avoid reduction of the oxide coating was investigated. Results at 720 C and 13.8 MPa have shown that: (1) pure hydrogen will reduce the coating; (2) 500 ppm CO (500 ppm water equivalent) does not prevent the reduction; and (3) 500 ppm CO2 (1000 ppm water) appears to be close to the equilibrium level. Further tests are planned to define the equilibrium level more precisely and to extend the data to 820 C and 3.4, 6.9, and 13.8 MPa.
Design of stand-alone brackish water desalination wind energy system for Jordan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habali, S.M.; Saleh, I.A.
1994-06-01
More than 100 underground water wells drilled in Jordan are known to have brackish water with total desolved solids (TDS) over 1500 ppm but not greater than 4000 ppm. The world standard for potable water limits the TDS count to 500 ppm in addition to being free from live microorganisms or dangerous mineral and organic substances. A reverse osmosis desalination scheme powered by a stand-alone wind energy converter (WEC) is proposed to produce fresh water water from wells located in potentially high-wind sites. The purpose of this study if to present the main design parameters and economic estimates of amore » wind-assisted RO system using a diesel engine as the baseline energy source and an electric wind turbine for the wind energy source. It is found that brackish water pumping and desalinating using WECs costs 0.67 to 1.16 JD/m[sup 3] (JD = Jordanian Dinar, 1US$ = 0.68 JD), which is less than using conventional diesel engines especially in remote areas. In addition, the wind-reverse osmosis system becomes more economically feasible for higher annual production rates or in good wind regimes.« less
14 CFR 23.1093 - Induction system icing protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 75 percent of its maximum continuous power. (b) Turbine engines. (1) Each turbine engine and its air... established for the airplane for such operation. (2) Each turbine engine must idle for 30 minutes on the...) and has a liquid water content not less than 0.3 grams per cubic meter in the form of drops having a...
14 CFR 23.1093 - Induction system icing protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 75 percent of its maximum continuous power. (b) Turbine engines. (1) Each turbine engine and its air... established for the airplane for such operation. (2) Each turbine engine must idle for 30 minutes on the...) and has a liquid water content not less than 0.3 grams per cubic meter in the form of drops having a...
14 CFR 23.1093 - Induction system icing protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 75 percent of its maximum continuous power. (b) Turbine engines. (1) Each turbine engine and its air... established for the airplane for such operation. (2) Each turbine engine must idle for 30 minutes on the...) and has a liquid water content not less than 0.3 grams per cubic meter in the form of drops having a...
14 CFR 23.1093 - Induction system icing protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 75 percent of its maximum continuous power. (b) Turbine engines. (1) Each turbine engine and its air... established for the airplane for such operation. (2) Each turbine engine must idle for 30 minutes on the...) and has a liquid water content not less than 0.3 grams per cubic meter in the form of drops having a...
14 CFR 23.1093 - Induction system icing protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 75 percent of its maximum continuous power. (b) Turbine engines. (1) Each turbine engine and its air... established for the airplane for such operation. (2) Each turbine engine must idle for 30 minutes on the...) and has a liquid water content not less than 0.3 grams per cubic meter in the form of drops having a...
NASA Technical Reports Server (NTRS)
1972-01-01
An overview is presented of the results of the analyses conducted in support of the selected engine system for the pressure-fed booster stage. During initial phases of the project, a gimbaled, regeneratively cooled, fixed thrust engine having a coaxial pintle injector was selected as optimum for this configuration.
PILOT-SCALE EVALUATION OF ENGINEERED BARIER SYSTEMS FOR THE YUCCA MOUNTAIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.W. Webb; J.T. George; R.E. Finley
This paper describes two quarter-scale experiments (1.4 m diameter) and associated numerical analyses on granular backfill engineered barrier systems in support of the Yucca Mountain Project for the potential repository. The two configurations include a sloped capillary barrier and a plain backfill. The tests involve application of dyed water as a constant line infiltration source along the top of the test set-up, monitoring water movement through the test, and measuring water exiting the experiments. A complete water balance estimate is made for each test, and observed water movement is compared with (1) detailed numerical analyses conducted using the TOUGH2 codemore » for unsaturated flow in porous media and (2) posttest observations. The results of the testing and analyses show that for the injection rates and configuration applied, the capillary barrier design diverts a significant amount of all injected water and the TOUGH2 pretest predictions show qualitative and quantitative agreement with the experimental data.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... designed primarily for operation on land and secondarily for operation in water. Auxiliary emission control..., system, or element of design which controls or reduces the emission of substances from an engine. Engine... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF...
Code of Federal Regulations, 2014 CFR
2014-07-01
... designed primarily for operation on land and secondarily for operation in water. Auxiliary emission control..., system, or element of design which controls or reduces the emission of substances from an engine. Engine... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF...
Code of Federal Regulations, 2012 CFR
2012-07-01
... designed primarily for operation on land and secondarily for operation in water. Auxiliary emission control..., system, or element of design which controls or reduces the emission of substances from an engine. Engine... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF...
Code of Federal Regulations, 2011 CFR
2011-07-01
... designed primarily for operation on land and secondarily for operation in water. Auxiliary emission control..., system, or element of design which controls or reduces the emission of substances from an engine. Engine... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF...
1991-09-01
SEVERITY INDEX (PDSI) ................. 116 iv FOREWORD Recent droughts in the United States have caused water management agencies to examine the operation ...detail, and a discussion of reservoir operating procedures, may be found in the Corps’ Engineering Manual on Management of Water Control Systems (U. S...fishery management . The seasonal fluctuation that occurs at many flood control reservoirs, and the daily fluctuations that occur with hydropower operation
K.L. Hatcher; J.A. Jones
2013-01-01
Large river basins transfer the water signal from the atmosphere to the ocean. Climate change is widely expected to alter streamflow and potentially disrupt water management systems. We tested the ecological resilienceâcapacity of headwater ecosystems to sustain streamflow under climate changeâand the engineering resilienceâcapacity of dam and reservoir management to...
Engineering aspects of rate-related processes in food manufacturing.
Adachi, Shuji
2015-01-01
Many rate-related phenomena occur in food manufacturing processes. This review addresses four of them, all of which are topics that the author has studied in order to design food manufacturing processes that are favorable from the standpoint of food engineering. They include chromatographic separation through continuous separation with a simulated moving adsorber, lipid oxidation kinetics in emulsions and microencapsulated systems, kinetic analysis and extraction in subcritical water, and water migration in pasta.
Adjustment of the water treatment process to changes in the water quality has been an area of focus for engineers and managers of water treatment plants. This desired and preferred capability depends on timely and quantitative knowledge of water quality monitoring in terms of tot...
Exploration Life Support Critical Questions for Future Human Space Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeff
2009-01-01
Exploration Life Support (ELS) is a project under NASA s Exploration Technology Development Program. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for a lunar outpost, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and discusses how progress in the development of ELS technologies can help answer them. The ELS Project includes Atmosphere Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing, which includes the sub-elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize the overall mission architecture by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements.
Contaminant Permeation in the Ionomer-Membrane Water Processor (IWP) System
NASA Technical Reports Server (NTRS)
Kelsey, Laura K.; Finger, Barry W.; Pasadilla, Patrick; Perry, Jay
2016-01-01
The Ionomer-membrane Water Processor (IWP) is a patented membrane-distillation based urine brine water recovery system. The unique properties of the IWP membrane pair limit contaminant permeation from the brine to the recovered water and purge gas. A paper study was conducted to predict volatile trace contaminant permeation in the IWP system. Testing of a large-scale IWP Engineering Development Unit (EDU) with urine brine pretreated with the International Space Station (ISS) pretreatment formulation was then conducted to collect air and water samples for quality analysis. Distillate water quality and purge air GC-MS results are presented and compared to predictions, along with implications for the IWP brine processing system.
Evaluation of pressurized water cleaning systems for hardware refurbishment
NASA Technical Reports Server (NTRS)
Dillard, Terry W.; Deweese, Charles D.; Hoppe, David T.; Vickers, John H.; Swenson, Gary J.; Hutchens, Dale E.
1995-01-01
Historically, refurbishment processes for RSRM motor cases and components have employed environmentally harmful materials. Specifically, vapor degreasing processes consume and emit large amounts of ozone depleting compounds. This program evaluates the use of pressurized water cleaning systems as a replacement for the vapor degreasing process. Tests have been conducted to determine if high pressure water washing, without any form of additive cleaner, is a viable candidate for replacing vapor degreasing processes. This paper discusses the findings thus far of Engineering Test Plan - 1168 (ETP-1168), 'Evaluation of Pressurized Water Cleaning Systems for Hardware Refurbishment.'
Biologically inspired highly efficient buoyancy engine
NASA Astrophysics Data System (ADS)
Akle, Barbar; Habchi, Wassim; Abdelnour, Rita; Blottman, John, III; Leo, Donald
2012-04-01
Undersea distributed networked sensor systems require a miniaturization of platforms and a means of both spatial and temporal persistence. One aspect of this system is the necessity to modulate sensor depth for optimal positioning and station-keeping. Current approaches involve pneumatic bladders or electrolysis; both require mechanical subsystems and consume significant power. These are not suitable for the miniaturization of sensor platforms. Presented in this study is a novel biologically inspired method that relies on ionic motion and osmotic pressures to displace a volume of water from the ocean into and out of the proposed buoyancy engine. At a constant device volume, the displaced water will alter buoyancy leading to either sinking or floating. The engine is composed of an enclosure sided on the ocean's end by a Nafion ionomer and by a flexible membrane separating the water from a gas enclosure. Two electrodes are placed one inside the enclosure and the other attached to the engine on the outside. The semi-permeable membrane Nafion allows water motion in and out of the enclosure while blocking anions from being transferred. The two electrodes generate local concentration changes of ions upon the application of an electrical field; these changes lead to osmotic pressures and hence the transfer of water through the semi-permeable membrane. Some aquatic organisms such as pelagic crustacean perform this buoyancy control using an exchange of ions through their tissue to modulate its density relative to the ambient sea water. In this paper, the authors provide an experimental proof of concept of this buoyancy engine. The efficiency of changing the engine's buoyancy is calculated and optimized as a function of electrode surface area. For example electrodes made of a 3mm diameter Ag/AgCl proved to transfer approximately 4mm3 of water consuming 4 Joules of electrical energy. The speed of displacement is optimized as a function of the surface area of the Nafion membrane and its thickness. The 4mm3 displaced volume obtained with the Ag/AgCl electrodes required approximately 380 seconds. The thickness of the Nafion membrane is 180μm and it has an area of 133mm3.
Design description of the Tangaye Village photovoltaic power system
NASA Astrophysics Data System (ADS)
Martz, J. E.; Ratajczak, A. F.
1982-06-01
The engineering design of a stand alone photovoltaic (PV) powered grain mill and water pump for the village of Tangaye, Upper Volta is described. The socioeconomic effects of reducing the time required by women in rural areas for drawing water and grinding grain were studied. The suitability of photovoltaic technology for use in rural areas by people of limited technical training was demonstrated. The PV system consists of a 1.8-kW (peak) solar cell array, 540 ampere hours of battery storage, instrumentation, automatic controls, and a data collection and storage system. The PV system is situated near an improved village well and supplies d.c. power to a grain mill and a water pump. The array is located in a fenced area and the mill, battery, instruments, controls, and data system are in a mill building. A water storage tank is located near the well. The system employs automatic controls which provide battery charge regulation and system over and under voltage protection. This report includes descriptions of the engineering design of the system and of the load that it serves; a discussion of PV array and battery sizing methodology; descriptions of the mechanical and electrical designs including the array, battery, controls, and instrumentation; and a discussion of the safety features. The system became operational on March 1, 1979.
Design description of the Tangaye Village photovoltaic power system
NASA Technical Reports Server (NTRS)
Martz, J. E.; Ratajczak, A. F.
1982-01-01
The engineering design of a stand alone photovoltaic (PV) powered grain mill and water pump for the village of Tangaye, Upper Volta is described. The socioeconomic effects of reducing the time required by women in rural areas for drawing water and grinding grain were studied. The suitability of photovoltaic technology for use in rural areas by people of limited technical training was demonstrated. The PV system consists of a 1.8-kW (peak) solar cell array, 540 ampere hours of battery storage, instrumentation, automatic controls, and a data collection and storage system. The PV system is situated near an improved village well and supplies d.c. power to a grain mill and a water pump. The array is located in a fenced area and the mill, battery, instruments, controls, and data system are in a mill building. A water storage tank is located near the well. The system employs automatic controls which provide battery charge regulation and system over and under voltage protection. This report includes descriptions of the engineering design of the system and of the load that it serves; a discussion of PV array and battery sizing methodology; descriptions of the mechanical and electrical designs including the array, battery, controls, and instrumentation; and a discussion of the safety features. The system became operational on March 1, 1979.
NASA Astrophysics Data System (ADS)
Vasiliades, Lampros; Sidiropoulos, Pantelis; Tzabiras, John; Kokkinos, Konstantinos; Spiliotopoulos, Marios; Papaioannou, George; Fafoutis, Chrysostomos; Michailidou, Kalliopi; Tziatzios, George; Loukas, Athanasios; Mylopoulos, Nikitas
2015-04-01
Natural and engineered water systems interact throughout watersheds and while there is clearly a link between watershed activities and the quantity and quality of water entering the engineered environment, these systems are considered distinct operational systems. As a result, the strategic approach to data management and modeling within the two systems is very different, leading to significant difficulties in integrating the two systems in order to make comprehensive watershed decisions. In this paper, we describe the "HYDROMENTOR" research project, a highly-structured data storage and exchange system that integrates multiple tools and models describing both natural and modified environments, to provide an integrated tool for management of water resources. Our underlying objective in presenting our conceptual design for this water information system is to develop an integrated and automated system that will achieve monitoring and management of the water quantity and quality at watershed level for both surface water (rivers and lakes) and ground water resources (aquifers). The uniqueness of the system is the integrated treatment of the water resources management issue in terms of water quantity and quality in current climate conditions and in future conditions of climatic change. On an operational level, the system provides automated warnings when the availability, use and pollution levels exceed allowable limits pre-set by the management authorities. Decision making with respect to the apportionment of water use by surface and ground water resources are aided through this system, while the relationship between the polluting activity of a source to total incoming pollution by sources are determined; this way, the best management practices for dealing with a crisis are proposed. The computational system allows the development and application of actions, interventions and policies (alternative management scenarios) so that the impacts of climate change in quantity, quality and use of water resources could be evaluated and managed. Acknowledgements: This study has been supported by the research project "Hydromentor" funded by the Greek General Secretariat of Research and Technology in the framework of the E.U. co-funded National Action "Cooperation".
NASA Astrophysics Data System (ADS)
Pang, Suh Chyn; Masjuki, Haji Hassan; Kalam, Md. Abul; Hazrat, Md. Ali
2014-01-01
Automotive designers should design a robust engine cooling system which works well in both normal and severe driving conditions. When vehicles are keyed-off suddenly after some distance of hill-climbing driving, the coolant temperature tends to increase drastically. This is because heat soak in the engine could not be transferred away in a timely manner, as both the water pump and cooling fan stop working after the vehicle is keyed-off. In this research, we aimed to visualize the coolant temperature trend over time before and after the vehicles were keyed-off. In order to prevent coolant temperature from exceeding its boiling point and jeopardizing engine life, a numerical model was further tested with prolonged fan and/or water pump operation after keying-off. One dimensional thermal-fluid simulation was exploited to model the vehicle's cooling system. The behaviour of engine heat, air flow, and coolant flow over time were varied to observe the corresponding transient coolant temperatures. The robustness of this model was proven by validation with industry field test data. The numerical results provided sensible insights into the proposed solution. In short, prolonging fan operation for 500 s and prolonging both fan and water pump operation for 300 s could reduce coolant peak temperature efficiently. The physical implementation plan and benefits yielded from implementation of the electrical fan and electrical water pump are discussed.
Drinking Water - National Drinking Water Clearinghouse
relevant to drinking water issues. We provide free and low-cost publications, products, databases , referrals, and more. Free Technical Assistance Calls The NDWC can answer common questions involving issues system troubleshooting. Call our Engineers and technical assistance specialists toll-free at (304) 293
Engineering Institute Information Science & Technology Institute Center for Space and Earth Science Management System Environmental Outreach Feature Stories Individual Permit for Storm Water Public Reading Management (First-line and Mid-level) (Engineering Management, Research Management, Technical Management
ADM. Water System Pump House (TAN610). Elevations, plan, and sections. ...
ADM. Water System Pump House (TAN-610). Elevations, plan, and sections. Ralph M. Parsons 902-2-ANP-610-A 74. Date: February 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 035-0610-00-693-106739 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
ERIC Educational Resources Information Center
Lant, Christopher; Pérez-Lapeña, Blanca; Xiong, Weidong; Kraft, Steven; Kowalchuk, Rhonda; Blair, Michael
2016-01-01
Guided by the Next Generation Science Standards and elements of problem-based learning, four human-environment systems simulations are described in brief--carbon, energy, water, and watershed--and a fifth simulation on nitrogen is described in more depth. These science, technology, engineering, and math (STEM) education simulations illustrate…
NASA Astrophysics Data System (ADS)
Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn
2015-08-01
In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.
NASA Astrophysics Data System (ADS)
Jasiulewicz-Kaczmarek, Małgorzata; Wyczółkowski, Ryszard; Gładysiak, Violetta
2017-12-01
Water distribution systems are one of the basic elements of contemporary technical infrastructure of urban and rural areas. It is a complex engineering system composed of transmission networks and auxiliary equipment (e.g. controllers, checkouts etc.), scattered territorially over a large area. From the water distribution system operation point of view, its basic features are: functional variability, resulting from the need to adjust the system to temporary fluctuations in demand for water and territorial dispersion. The main research questions are: What external factors should be taken into account when developing an effective water distribution policy? Does the size and nature of the water distribution system significantly affect the exploitation policy implemented? These questions have shaped the objectives of research and the method of research implementation.
Recent California Water Transfers: Emerging Options in Water Management
1992-12-01
geographically separated, requiring the use of conveyance and storage systems controlled by other parties. The controversies and complexities of effecting ...systematic examination of the engineering and operational aspects of water transfers. Instead, the mechanics of economically effecting actual water...drought and is now part of almost all California urban water plans and operations. The current drought also has had significant effects on how water
Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.
Xu, Yan; Cai, Yanpeng; Sun, Tao; Yin, Xin'An; Tan, Qian
2017-06-30
An integrated indicator system was developed for determining synthetic environmental responses under multiple types of coastal reclamation engineering in the Yellow River estuary, China. Four types of coastal engineering works were analyzed, namely port construction, petroleum exploitation, fishery and aquaculture, and seawall defense. In addition, two areas with limited human disturbances were considered for comparison. From the weights of the response value for each indicator, port construction was determined to be the primary impact contributor among the four engineering works studies. Specifically, hydrodynamic conditions, ecological status, economic costs, and engineering intensity were on average 72.78%, 65.03%, 75.03%, and 66.35% higher than those of other engineering types. Furthermore, fishery and aquaculture impact on water quality was 42.51% higher than that of other engineering types, whereas seawall defense impact on landscape variation was 51.75% higher than that of other engineering types. The proposed indicator system may provide effective coastal management in future. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conway, R.
This article describes a petrol (gasoline) engine development project to combine the duel technologies of an Otto cycle engine with a modified cooling system and a high-tech processor-controlled bottoming cycle to harness not only the waste heat from the exhaust gases but also a significant proportion of the heat lost by a conventional petrol engine to the water coolant, resulting in a very substantial increase in energy conversion efficiency.
Simulation and experiment for oxygen-enriched combustion engine using liquid oxygen to solidify CO2
NASA Astrophysics Data System (ADS)
Liu, Yongfeng; Jia, Xiaoshe; Pei, Pucheng; Lu, Yong; Yi, Li; Shi, Yan
2016-01-01
For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.
Legionella pneumophila, the medically important species within the genus Legionella, is a concern in engineered water systems. Its ability to amplify within free-living amoebae is well documented, but its interactions/ecology within the microbial community of drinking water biofi...
This manual highlights the project constraints and concerns, and includes detailed design calculations and system schematics. The plant is based on engineering design principles and practices, previous pilot plant design experiences, and professional experiences and may serve as ...
Nondestructive examinations (NDE) can be easily performed as part of a typical water main rehabilitation project. Once a bypass water system has been installed and the water main has been cleaned, pulling a scanning tool through the main is very straightforward. An engineer can t...
Flight Engineer Budarin is changing a part in the water recycling system in the SM
2003-03-21
ISS006-E-45275 (21 March 2003) --- Cosmonaut Nikolai M. Budarin, Expedition Six flight engineer, holds a piece of hardware near a worktable in the Zvezda Service Module on the International Space Station (ISS). Budarin represents Rosaviakosmos.
NASA Technical Reports Server (NTRS)
Smith, Bryan K.; Bouchard, Richard; Teng, Chung-Chu; Dyson, Rodger; Jenson, Robert; OReilly, William; Rogers, Erick; Wang, David; Volovoi, Vitali
2009-01-01
Mr. Christopher Johnson, NASA's Systems Manager for the Orion Project Crew Module (CM) Landing and Recovery at the Johnson Space Center (JSC), and Mr. James Corliss, Project Engineer for the Orion CM Landing System Advanced Development Project at the Langley Research Center (LaRC) requested an independent assessment of the wave model that was developed to analyze the CM water landing conditions. A NASA Engineering and Safety Center (NESC) initial evaluation was approved November 20, 2008. Mr. Bryan Smith, NESC Chief Engineer at the NASA Glenn Research Center (GRC), was selected to lead this assessment. The Assessment Plan was presented and approved by the NESC Review Board (NRB) on December 18, 2008. The Assessment Report was presented to the NRB on March 12, 2009. This document is the final Assessment Report.
Water Injection Feasibility for Boeing 747 Aircraft
NASA Technical Reports Server (NTRS)
Daggett, David L.
2005-01-01
Can water injection be offered at a reasonable cost to large airplane operators to reduce takeoff NO( sub x) emissions? This study suggests it may be possible. This report is a contract deliverable to NASA Glenn Research Center from the prime contractor, The Boeing Commercial Airplane Company of Seattle, WA. This study was supported by a separate contract to the Pratt & Whitney Engine Company of Hartford, CT (contract number NNC04QB58P). Aviation continues to grow and with it, environmental pressures are increasing for airports that service commercial airplanes. The feasibility and performance of an emissions-reducing technology, water injection, was studied for a large commercial airplane (e.g., Boeing 747 with PW4062 engine). The primary use of the water-injection system would be to lower NOx emissions while an important secondary benefit might be to improve engine turbine life. A tradeoff exists between engine fuel efficiency and NOx emissions. As engines improve fuel efficiency, by increasing the overall pressure ratio of the engine s compressor, the resulting increased gas temperature usually results in higher NOx emissions. Low-NO(sub x) combustors have been developed for new airplanes to control the increases in NO(sub x) emissions associated with higher efficiency, higher pressure ratio engines. However, achieving a significant reduction of NO(sub x) emissions at airports has been challenging. Using water injection during takeoff has the potential to cut engine NO(sub x) emissions some 80 percent. This may eliminate operating limitations for airplanes flying into airports with emission constraints. This study suggests an important finding of being able to offer large commercial airplane owners an emission-reduction technology that may also save on operating costs.
ENGINEERING BULLETIN: LANDFILL COVERS
Landfill covers are used at Superfund sites to minimize surface water infiltration and control gas migration. In many cases covers are used in conjunction with other waste treatment technologies, such as slurry walls, ground water pump-and-treat systems, and gas collection. This ...
Reference manual for data base on Nevada water-rights permits
Cartier, K.D.; Bauer, E.M.; Farnham, J.L.
1995-01-01
The U.S. Geological Survey and Nevada Division of Water Resources have cooperatively developed and implemented a data-base system for managing water-rights permit information for the State of Nevada. The Water-Rights Permit data base is part of an integrated system of computer data bases using the Ingres Relational Data-Base Manage-ment System, which allows efficient storage and access to water information from the State Engineer's office. The data base contains a main table, three ancillary tables, and five lookup tables, as well as a menu-driven system for entering, updating, and reporting on the data. This reference guide outlines the general functions of the system and provides a brief description of data tables and data-entry screens.
Natural Organ Material (NOM) in aquatic systems controls the effectiveness of engineered treatment processes and the fate of metals and pollutants in natural systems. At present less than 20% of NOM components can be identified. Pyrolysis-Gas Chromatography-Mass Spectrometry (P...
Effect of Swirl on an Unstable Single-Element Gas-Gas Rocket Engine
2014-06-01
at 300 K, and the combustor is filled with a mixture of water and carbon dioxide at 1500 K. The warmer temperature in the combustor enables the auto...a variety of configurations including gas turbines and rocket engines.4–13 The single-element engine chosen for this study is the continuously...combustion systems including gas turbines , rocket engines, and industrial furnaces. Swirl can have dramatic effects on the flowfield; these include jet growth
Slide presentation at Conference: ASCE 7th Civil Engineering Conference in the Asian Region. USEPA in partnership with the Cadmus Group, Carollo Engineers, and other State & Industry collaborators, are evaluating new approaches for validating UV reactors to meet groundwater & sur...
40 CFR 194.44 - Engineered barriers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... prevent or substantially delay the movement of water or waste toward the accessible environment; (ii) The... reduced total system costs; (viii) The impact, if any, on other waste disposal programs from the... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Engineered barriers. 194.44 Section...
40 CFR 194.44 - Engineered barriers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... prevent or substantially delay the movement of water or waste toward the accessible environment; (ii) The... reduced total system costs; (viii) The impact, if any, on other waste disposal programs from the... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Engineered barriers. 194.44 Section...
NASA Technical Reports Server (NTRS)
Bencic, Timothy J.; Fagan, Amy; Van Zante, Judith F.; Kirkegaard, Jonathan P.; Rohler, David P.; Maniyedath, Arjun; Izen, Steven H.
2013-01-01
A light extinction tomography technique has been developed to monitor ice water clouds upstream of a direct connected engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center (GRC). The system consists of 60 laser diodes with sheet generating optics and 120 detectors mounted around a 36-inch diameter ring. The sources are pulsed sequentially while the detectors acquire line-of-sight extinction data for each laser pulse. Using computed tomography algorithms, the extinction data are analyzed to produce a plot of the relative water content in the measurement plane. To target the low-spatial-frequency nature of ice water clouds, unique tomography algorithms were developed using filtered back-projection methods and direct inversion methods that use Gaussian basis functions. With the availability of a priori knowledge of the mean droplet size and the total water content at some point in the measurement plane, the tomography system can provide near real-time in-situ quantitative full-field total water content data at a measurement plane approximately 5 feet upstream of the engine inlet. Results from ice crystal clouds in the PSL are presented. In addition to the optical tomography technique, laser sheet imaging has also been applied in the PSL to provide planar ice cloud uniformity and relative water content data during facility calibration before the tomography system was available and also as validation data for the tomography system. A comparison between the laser sheet system and light extinction tomography resulting data are also presented. Very good agreement of imaged intensity and water content is demonstrated for both techniques. Also, comparative studies between the two techniques show excellent agreement in calculation of bulk total water content averaged over the center of the pipe.
NASA Technical Reports Server (NTRS)
1979-01-01
In the photo above, the cylindrical container being lowered into the water is a water quality probe developed by NASA's Langley Research Center for the Environmental Protection Agency (EPA) in an applications engineering project. It is part of a system- which also includes recording equipment in the helicopter-for on-the-spot analysis of water samples. It gives EPA immediate and more accurate information than the earlier method, in which samples are transported to a lab for analysis. Designed primarily for rapid assessment of hazardous spills in coastal and inland waters, the system provides a wide range of biological and chemical information relative to water pollution.
Engineering and Design: Indoor Radon Prevention and Mitigation
1993-09-15
slabs on grade, capillary water barrier below floor slabs on grade, dampproofing or waterproofing and protection board on below grade walls, sealants in...will be lapped 12 inches and sealed with adhesives or pressure sensitive tape and sealed at foundation walls with mastic. Capillary water barrier will...Systems, Letter Codes B, C, and D. Sub- slab suction systems consist of 4 inch diameter perforated PVC pipe laid in the capillary water barrier below floor
Engine protection system for recoverable rocket booster
NASA Technical Reports Server (NTRS)
Shelby, Jr., Jerry A. (Inventor)
1994-01-01
A rocket engine protection system for a recoverable rocket booster which is arranged to land in a salt water body in substantially a nose down attitude. The system includes an inflatable bag which is stowed on a portion of a flat annular rim of the aft skirt of the booster. The bag is hinged at opposing sides and is provided with springs that urge the bag open. The bag is latched in a stowed position during launch and prior to landing for recovery is unlatched to permit the bag to be urged open and into sealing engagement with the rim. A source of pressurized gas further inflates the bag and urges it into sealing engagement with the rim of the skirt where it is locked into position. The gas provides a positive pressure upon the interior of the bag to preclude entry of salt water into the skirt and into contact with the engine. A flotation arrangement may assist in precluding the skirt of the booster from becoming submerged.
2017-05-01
ERDC/CHL TR-16-4 May 2016 Identifying Fossil Shell Resources via Geophysical Surveys: Chesapeake Bay Region, Virginia, by H.M. Wadman and J.E...Welp AD1013242 ERDC/CHL TR-16-11 Jul 2016 Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations, by...KRIA Ionizing Water Treatment System for Waters Contaminated with Diesel, PCBs, and Nutrients (Nitrogen Forms ), by V.F. Medina, A. Morrow, C.C
Designing and visualizing the water-energy-food nexus system
NASA Astrophysics Data System (ADS)
Endo, A.; Kumazawa, T.; Yamada, M.; Kato, T.
2017-12-01
The objective of this study is to design and visualize a water-energy-food nexus system to identify the interrelationships between water-energy-food (WEF) resources and to understand the subsequent complexity of WEF nexus systems holistically, taking an interdisciplinary approach. Object-oriented concepts and ontology engineering methods were applied according to the hypothesis that the chains of changes in linkages between water, energy, and food resources holistically affect the water-energy-food nexus system, including natural and social systems, both temporally and spatially. The water-energy-food nexus system that is developed is significant because it allows us to: 1) visualize linkages between water, energy, and food resources in social and natural systems; 2) identify tradeoffs between these resources; 3) find a way of using resources efficiently or enhancing the synergy between the utilization of different resources; and 4) aid scenario planning using economic tools. The paper also discusses future challenges for applying the developed water-energy-food nexus system in other areas.
NASA Technical Reports Server (NTRS)
Vanfossen, G. J.
1983-01-01
A system which would allow a substantially increased output from a turboshaft engine for brief periods in emergency situations with little or no loss of turbine stress rupture life is proposed and studied analytically. The increased engine output is obtained by overtemperaturing the turbine; however, the temperature of the compressor bleed air used for hot section cooling is lowered by injecting and evaporating water. This decrease in cooling air temperature can offset the effect of increased gas temperature and increased shaft speed and thus keep turbine blade stress rupture life constant. The analysis utilized the NASA-Navy-Engine-Program or NNEP computer code to model the turboshaft engine in both design and off-design modes. This report is concerned with the effect of the proposed method of power augmentation on the engine cycle and turbine components. A simple cycle turboshaft engine with a 16:1 pressure ratio and a 1533 K (2760 R) turbine inlet temperature operating at sea level static conditions was studied to determine the possible power increase and the effect on turbine stress rupture life that could be expected using the proposed emergency cooling scheme. The analysis showed a 54 percent increse in output power can be achieved with no loss in gas generator turbine stress rupture life. A 231 K (415 F) rise in turbine inlet temperature is required for this level of augmentation. The required water flow rate was found to be .0109 kg water per kg of engine air flow.
Multi-Phase Modeling of Rainbird Water Injection
NASA Technical Reports Server (NTRS)
Vu, Bruce T.; Moss, Nicholas; Sampson, Zoe
2014-01-01
This paper describes the use of a Volume of Fluid (VOF) multiphase model to simulate the water injected from a rainbird nozzle used in the sound suppression system during launch. The simulations help determine the projectile motion for different water flow rates employed at the pad, as it is critical to know if water will splash on the first-stage rocket engine during liftoff.
33 CFR 385.35 - Achievement of the benefits of the Plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Ensuring Protection of the Natural System and Water Availability Consistent With the Goals and Purpose of the Plan § 385.35 Achievement of the benefits of the Plan. (a) Pre-CERP baseline water availability and quality. (1) Not later than June 14, 2004 the Corps of Engineers and the South Florida Water...
33 CFR 385.35 - Achievement of the benefits of the Plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Ensuring Protection of the Natural System and Water Availability Consistent With the Goals and Purpose of the Plan § 385.35 Achievement of the benefits of the Plan. (a) Pre-CERP baseline water availability and quality. (1) Not later than June 14, 2004 the Corps of Engineers and the South Florida Water...
33 CFR 385.35 - Achievement of the benefits of the Plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Ensuring Protection of the Natural System and Water Availability Consistent With the Goals and Purpose of the Plan § 385.35 Achievement of the benefits of the Plan. (a) Pre-CERP baseline water availability and quality. (1) Not later than June 14, 2004 the Corps of Engineers and the South Florida Water...
46 CFR 111.01-5 - Protection from bilge water.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Protection from bilge water. 111.01-5 Section 111.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-5 Protection from bilge water. Each of the following in or around...
46 CFR 111.01-5 - Protection from bilge water.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Protection from bilge water. 111.01-5 Section 111.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-5 Protection from bilge water. Each of the following in or around...
High-speed schlieren imaging of rocket exhaust plumes
NASA Astrophysics Data System (ADS)
Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael
2016-11-01
Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.
2006-01-09
Water vapor surges from the flame deflector of the A-2 Test Stand at NASA's Stennis Space Center on Jan. 9 during the first space shuttle main engine test of the year. The test was an engine acceptance test of flight engine 2058. It's the first space shuttle main engine to be completely assembled at Kennedy Space Center. Objectives also included first-time (green run) tests of a high-pressure oxidizer turbo pump and an Advanced Health System Monitor engine controller. The test ran for the planned duration of 520 seconds.
MEASUREMENT AND QUANTIFICATION OF SULFATES IN MINING INFLUENCED WATER
Most hard rock (mineral) mine drainages contain metals and sulfates higher than current water quality standards permit for discharge. In treating these wastes with passive systems, scientists and engineers have concentrated on using sulfate-reducing bioreactors (SRBRs) and their ...
46 CFR 162.060-1 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems § 162.060-1 Purpose and scope. This subpart contains procedures and requirements for approval of complete ballast water management...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., and crop spraying. (2) Drainage systems and facilities in farm areas to sustain agricultural production or protect farmers and rural residents from water damage. (3) Agricultural water management... agreement: (1) To pay construction costs including cost of engineering and related services for increasing...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., and crop spraying. (2) Drainage systems and facilities in farm areas to sustain agricultural production or protect farmers and rural residents from water damage. (3) Agricultural water management... agreement: (1) To pay construction costs including cost of engineering and related services for increasing...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., and crop spraying. (2) Drainage systems and facilities in farm areas to sustain agricultural production or protect farmers and rural residents from water damage. (3) Agricultural water management... agreement: (1) To pay construction costs including cost of engineering and related services for increasing...
Kuipers performs Water Sample Analysis
2012-05-15
ISS031-E-084619 (15 May 2012) --- After collecting samples from the Water Recovery System (WRS), European Space Agency astronaut Andre Kuipers, Expedition 31 flight engineer, processes the samples for chemical and microbial analysis in the Unity node of the International Space Station.
Kyiv Small Rivers in Metropolis Water Objects System
NASA Astrophysics Data System (ADS)
Krelshteyn, P.; Dubnytska, M.
2017-12-01
The article answers the question, what really are the small underground rivers with artificial watercourses: water bodies or city engineering infrastructure objects? The place of such rivers in metropolis water objects system is identified. The ecological state and the degree of urbanization of small rivers, as well as the dynamics of change in these indicators are analysed on the Kiev city example with the help of water objects cadastre. It was found that the registration of small rivers in Kyiv city is not conducted, and the summary information on such water objects is absent and is not taken into account when making managerial decisions at the urban level. To solve this problem, we propose to create some water bodies accounting system (water cadastre).
46 CFR 56.50-80 - Lubricating-oil systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...
46 CFR 56.50-80 - Lubricating-oil systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...
46 CFR 56.50-80 - Lubricating-oil systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...
46 CFR 56.50-80 - Lubricating-oil systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...
46 CFR 56.50-80 - Lubricating-oil systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...
40 CFR 194.44 - Engineered barriers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... prevent or substantially delay the movement of water or waste toward the accessible environment; (ii) The... reduced total system costs; (viii) The impact, if any, on other waste disposal programs from the... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Engineered barriers. 194.44 Section 194...
Evaluation of engineering foods for Controlled Ecological Life Support Systems (CELSS)
NASA Technical Reports Server (NTRS)
Karel, M.
1982-01-01
The feasibility of developing acceptable and reliable engineered foods for use in controlled ecological support systems (CELSS) was evaluated. Food resupply and regeneration are calculated, flow charts of food processes in a multipurpose food pilot plant are presented, and equipment for a multipurpose food pilot plant and potential simplification of processes are discussed. Food-waste treatment and water usage in food processing and preparation are also considered.
SIMS prototype system 3 test results: Engineering analysis
NASA Technical Reports Server (NTRS)
1978-01-01
The results obtained during testing of a closed hydronic drain down solar system designed for space and hot water heating is presented. Data analysis is included which documents the system performance and verifies the suitability of SIMS Prototype System 3 for field installation.
Acceptance Testing of the Vapor Phase Catalytic Ammonia Removal Engineering Development Unit
NASA Technical Reports Server (NTRS)
Flynn, Michael; Fisher, John; Kliss, Mark; Tleimat, Maher; Quinn, Gregory; Fort, James; Nalette, Tim; Baker, Gale
2005-01-01
This paper describes the results of acceptance testing of the Vapor Phase Catalytic Ammonia Removal (VPCAR) technology. The VPCAR technology is currently being developed by NASA as a Mars transit vehicle water recycling system. NASA has recently completed a grant to develop a next generation VPCAR system. This grant was peer reviewed and funded through the Advanced Life Support (ALS) National Research Announcement (NRA). The grant funded a contract with Water Reuse Technology Inc. to construct an engineering development unit. This contract concluded with the shipment of the final deliverable to NASA on 8/31/03. The objective of the acceptance testing was to characterize the performance of this new system. This paper presents the results of mass power, and volume measurements for the delivered system. In addition, product water purity analysis for a Mars transit mission and a planetary base wastewater ersatz are provided. Acoustic noise levels, interface specifications and system reliability results are also discussed. An assessment of the readiness of the technology for human testing and recommendations for future improvements are provided.
Achete, Fernanda; Van der Wegen, Mick; Roelvink, Jan Adriaan; Jaffe, Bruce E.
2017-01-01
Suspended sediment concentration is an important estuarine health indicator. Estuarine ecosystems rely on the maintenance of habitat conditions, which are changing due to direct human impact and climate change. This study aims to evaluate the impact of climate change relative to engineering measures on estuarine fine sediment dynamics and sediment budgets. We use the highly engineered San Francisco Bay-Delta system as a case study. We apply a process-based modeling approach (Delft3D-FM) to assess the changes in hydrodynamics and sediment dynamics resulting from climate change and engineering scenarios. The scenarios consider a direct human impact (shift in water pumping location), climate change (sea level rise and suspended sediment concentration decrease), and abrupt disasters (island flooding, possibly as the results of an earthquake). Levee failure has the largest impact on the hydrodynamics of the system. Reduction in sediment input from the watershed has the greatest impact on turbidity levels, which are key to primary production and define habitat conditions for endemic species. Sea level rise leads to more sediment suspension and a net sediment export if little room for accommodation is left in the system due to continuous engineering works. Mitigation measures like levee reinforcement are effective for addressing direct human impacts, but less effective for a persistent, widespread, and increasing threat like sea level rise. Progressive adaptive mitigation measures to the changes in sediment and flow dynamics resulting from sea level rise may be a more effective strategy. Our approach shows that a validated process-based model is a useful tool to address long-term (decades to centuries) changes in sediment dynamics in highly engineered estuarine systems. In addition, our modeling approach provides a useful basis for long-term, process-based studies addressing ecosystem dynamics and health.
Clarens, Andres F.; Peters, Catherine A.
2016-01-01
Abstract Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on “The science and innovation of emerging subsurface energy technologies,” provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others. PMID:28031695
Clarens, Andres F; Peters, Catherine A
2016-10-01
Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on "The science and innovation of emerging subsurface energy technologies," provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others.
When water meets behavioral economics (or: it is not all about money!)
NASA Astrophysics Data System (ADS)
Escriva-Bou, A.
2014-12-01
Water engineers do not like people; we are better with numbers, equations and models where people behavior is only a variable, usually constant, or in the best case a probabilistic approximation. On the other side, most economic studies relate to people's behavior, and when economists develop engineering-based models, engineers usually think that econometric approaches are too simple to represent complex systems that engineers like to work with. Besides this simple-minded cliche, there is a lot of field to explore in the intersections of both disciplines. Even though the development of infrastructure cost-benefit analyses after Dupuit's work, or the more recent growth of hydroeconomic modeling, we are still missing a lot of potential synergic benefits from integrating behavioral economics and water infrastructure design and management. To present a simple example: urban water infrastructure design is based on water peaks, so reservoirs, pump stations and pipe dimensions have to be built to serve these peaks; water-related energy assessment studies have shown that there is a lot of energy used for every drop of water used in our houses, farms, and industries, and energy peaks are even larger that water peaks, creating expensive troubles for energy supply; and all this energy consumption means greenhouse gas emissions. Therefore we agree that reducing water peaks might create a lot of benefits, but could water customers change their behavior? Which incentives do they need? It is only about money, or it may be managed with better information? Beyond this example there are many other promising economic topics that could help in our daily water problems, such as: game theoretic approaches to understand decisions; science-based agent models that help us to understand the performance of a system as the sum of agents' actions and interactions; or the analysis of institutional-driven management to avoid the tragedy of the commons that depletes groundwater resources globally. And no need to remind that all resource scarcity problems will increase with population growth, so it would be better to begin work sooner on these problems.
Characterization of Reaerosolization in an Effort to Improve Sampling of Airborne Viruses
2008-04-01
financial support which helped me get through graduate school: Camp Dresser McKee for the CDM Fellowship; the UF Environmental Engineering Department...reservoir H um id ifi er /S at ur at or C ondenser THot TCold RH Figure A-1. BAU prototype schematic. A) Overview of system. B) Cross -sectional view of...degree in environmental engineering in August 2008 and entered the environmental engineering consulting industry with Camp Dresser McKee as an Engineer II in the Water/Wastewater Services Group.
Development and Implementation of a Design Metric for Systems Containing Long-Term Fluid Loops
NASA Technical Reports Server (NTRS)
Steele, John W.
2016-01-01
John Steele, a chemist and technical fellow from United Technologies Corporation, provided a water quality module to assist engineers and scientists with a metric tool to evaluate risks associated with the design of space systems with fluid loops. This design metric is a methodical, quantitative, lessons-learned based means to evaluate the robustness of a long-term fluid loop system design. The tool was developed by a cross-section of engineering disciplines who had decades of experience and problem resolution.
Iron colloids play a major role in the water chemistry of natural watersheds and of engineered drinking water distribution systems. Phosphate is frequently added to distribution systems to control corrosion problems, so iron-phosphate colloids may form through reaction of iron in...
Water resources planning for rivers draining into Mobile Bay
NASA Technical Reports Server (NTRS)
April, G. C.
1976-01-01
The application of remote sensing, automatic data processing, modeling and other aerospace related technologies to hydrological engineering and water resource management are discussed for the entire river drainage system which feeds the Mobile Bay estuary. The adaptation and implementation of existing mathematical modeling methods are investigated for the purpose of describing the behavior of Mobile Bay. Of particular importance are the interactions that system variables such as river flow rate, wind direction and speed, and tidal state have on the water movement and quality within the bay system.
Wright R–2600–8 Engine in the Engine Propeller Research Building
1943-03-21
A Wright Aeronautical R–2600 Cyclone piston engine installed in the Engine Propeller Research Building, or Prop House, at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The R–2600 was among the most powerful engines that emerged during World War II. The engine, which was developed for commercial applications in 1939, was used to power the North American B–25 bomber and several other midsize military aircraft. The higher altitudes required by the military caused problems with the engine's cooling and fuel systems. The military requested that the Aircraft Engine Research Laboratory analyze the performance of the R–2600, improve its cooling system, and reduce engine knock. The NACA researchers subjected the engine to numerous tests in its Prop House. The R–2600 was the subject of the laboratory's first technical report, which was written by members of the Fuels and Lubricants Division. The Prop House contained soundproof test cells in which piston engines and propellers were mounted and operated at high powers. Electrically driven fans drew air through ducts to create a stream of cooling air over the engines. Researchers tested the performance of fuels, turbochargers, water-injection and cooling systems here during World War II. The facility was also investigated a captured German V–I buzz bomb during the war.
NASA Astrophysics Data System (ADS)
Kroeger, C. A.; Larson, H. J.
1992-03-01
Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.
NASA Technical Reports Server (NTRS)
Kroeger, C. A.; Larson, H. J.
1992-01-01
Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.
MANUAL: GROUND-WATER AND LEACHATE TREATMENT SYSTEMS
This manual was developed for remedial design engineers and regulatory personnel who oversee the ex situ ground water or leachate treatment efforts of the regulated community. The manual can be used as a treatment technology screening tool in conjunction with other references. Mo...
Sustainable Urban Infrastructure Development and the Role of Water Technologies in the U.S.
Increased climate variability and rapid urbanization are fundamentally changing the urban watershed hydrology and consequently sustainability of water systems. However, our urban planning and engineering practices are based on decades-old hydrological theory and guidance based o...
An in-premise model for Legionella exposure during showering events
An exposure model was constructed to predict the critical Legionella densities in an engineered water system that might result in infection from inhalation of aerosols containing the pathogen while showering. The model predicted the Legionella densities in the shower air, water ...
On the inlet vortex system. [preventing jet engine damage caused by debris pick-up
NASA Technical Reports Server (NTRS)
Bissinger, N. C.; Braun, G. W.
1974-01-01
The flow field of a jet engine with an inlet vortex, which can pick up heavy debris from the ground and damage the engine, was simulated in a small water tunnel by means of the hydrogen bubble technique. It was found that the known engine inlet vortex is accompained by a vortex system, consisting of two inlet vortices (the ground based and the trailing one), secondary vortices, and ground vortices. Simulation of the ground effect by an inlet image proved that the inlet vortex feeds on free stream vorticity and can exist without the presence of a ground boundary layer. The structural form of the inlet vortex system was explained by a simple potential flow model, which showed the number, location, and the importance of the stagnation points. A retractable horizontal screen or an up-tilt of the engine is suggested as countermeasure against debris ingestion.
Design data brochure: SIMS prototype system 2
NASA Technical Reports Server (NTRS)
1977-01-01
Information is provided on the design and performance of the IBM SIMS Prototype System 2, solar domestic hot water system, for single family residences. The document provides sufficient data to permit procurement, installation, operation, and maintenance by qualified architectural engineers or contractors.
The Idaho National Engineering and Environmental Laboratory Source Water Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sehlke, G.
2003-03-17
The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 square miles and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL's drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey's Hydrological Unitmore » scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency's Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a this vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL's Source Water Assessment. Of the INEEL's 12 public water systems, three systems rated as low susceptibility (EBR-1, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will protect the INEEL's public water systems yet not too conservative to inhibit the INEEL from carrying out its missions.« less
Design data brochure: SIMS prototype system 3
NASA Technical Reports Server (NTRS)
1978-01-01
A closed hydronic solar system is reported for space and hot water heating. Design, performance, and hardware specifications are presented sufficient for architectural engineers and contractors to procure, install, operate, and maintain a similar solar application.
Engineer Measures Ice Formation on an Instrument Antenna Model
1945-05-21
A National Advisory Committee for Aeronautics (NACA) researcher measures the ice thickness on a landing antenna model in the Icing Research Tunnel at the Aircraft Engine Research Laboratory. NACA design engineers added the Icing Research Tunnel to the original layout of the new Aircraft Engine Research Laboratory to take advantage of the massive refrigeration system being built for the Altitude Wind Tunnel. The Icing Research Tunnel was built to study the formation of ice on aircraft surfaces and methods of preventing or eradicating that ice. Ice buildup adds extra weight, effects aerodynamics, and sometimes blocks air flow through engines. The Icing Research Tunnel is a closed-loop atmospheric wind tunnel with a 6- by 9-foot test section. Carrier Corporation refrigeration equipment reduced the internal air temperature to -45 degrees F and a spray bar system injected water droplets into the air stream. The 24-foot diameter drive fan, seen in this photograph, created air flows velocities up to 400 miles per hour. The Icing Research Tunnel began testing in June of 1944. Early testing, seen in this photograph, studied ice accumulation on propellers and antenna of a military aircraft. The Icing Research Tunnel’s designers, however, struggled to develop a realistic spray system since they did not have access to data on the size of naturally occurring water droplets. The system would have to generate small droplets, distribute them uniformly throughout the airstream, and resist freezing and blockage. For five years a variety of different designs were painstakingly developed and tested before the system was perfected.
Many regions in the United States have excessive levels of ammonia in their drinking water sources (e.g., ground and surface waters) as a result of naturally occurring processes, agricultural and urban runoff, concentrated animal feeding operations, municipal wastewater treatment...
ERIC Educational Resources Information Center
Sherrard, J. H., Ed.
Papers are presented identifying fundamental research needs in water and wastewater treatment by industrial users of technology, industrial users of research, a municipal water department, a consulting engineer, Congress, and the EPA. Areas of research needs addressed include: (1) microbial, viral, and organic contaminants; (2) biological…
Solar Hot Water for Motor Inn--Texas City, Texas
NASA Technical Reports Server (NTRS)
1982-01-01
Final report describes solar domestic-hot-water heater installation at LaQuinta Motor Inn, Texas City, Texas which furnished 63% of total hot-water load of new 98-unit inn. Report presents a description of system, drawings and photographs of collectors, operations and maintenance instructions, manufacturers' specifications for pumps, and an engineer's report on performance.
Utility gas turbine combustor viewing system: Volume 2, Engine operating envelope test: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morey, W.W.
1988-12-01
This report summarizes the development and field testing of a combustor viewing probe (CVP) as a flame diagnostic monitor for utility gas turbine engines. The prototype system is capable of providing a visual record of combustor flame images, recording flame spectral data, analyzing image and spectral data, and diagnosing certain engine malfunctions. The system should provide useful diagnostic information to utility plant operators, and reduced maintenance costs. The field tests demonstrated the ability of the CVP to monitor combustor flame condition and to relate changes in the engine operation with variations in the flame signature. Engine light off, run upmore » to full speed, the addition of load, and the effect of water injection for NO/sub x/ control could easily be identified on the video monitor. The viewing probe was also valuable in identifying hard startups and shutdowns, as well as transient effects that can seriously harm the engine.« less
Design and operation of a medium speed 12-cylinder coal-fueled diesel engine. Phase 2: Improvements
NASA Astrophysics Data System (ADS)
Confer, G. L.; Hsu, B. D.; McDowell, R. E.; Gal, E.; Vankleunen, W.; Kaldor, S.; Mengel, M.
Under the sponsorship of the US Department of Energy, General Electric has been pioneering the development of a coal fired diesel engine to power a locomotive. The feasibility of using a coal water slurry (CWS) mixture as a fuel in a medium speed diesel engine has been demonstrated with the first successful locomotive systems test in 1991 on the GE Transportation Systems test track in Erie, PA. Phase 2 of the development process incorporates the results of the programs research in durable engine parts, improved combustion efficiency, and emissions reduction. A GE 7FDL12 engine has been built using diamond insert injector nozzles, tungsten carbide coated piston rings, and tungsten carbide coated liners to overcome power assembly wear. Electronic controlled fuel injection for both diesel pilot and main CWS injector were incorporated to control injection timing. An envelop filter and copper oxide sorbent system were used to cleanup engine emissions. The system is capable of removing over 99% of the particulates, 90% of the SO2, and 85% of NO(x).
NASA Astrophysics Data System (ADS)
Li, lingxue
2017-08-01
The paper designs a new wind-water cooling and heating water conditioner system, connects cooling tower with heat recovery device, which uses cooling water to completely remove the heat that does not need heat recollection, in order to ensure that the system can work efficiently with higher performance coefficient. After the test actual engineering operation, the system’s maximum cooling coefficient of performance can reach 3.5. Its maximum comprehensive coefficient of performance can reach 6.5. After the analysis of its economic and environmental, we conclude that the new system can save 89822 kw per year. It reflects energy-saving and environmental benefits of the cold and hot water air conditioning system.
System International d'Unites: Metric Measurement in Water Resources Engineering.
ERIC Educational Resources Information Center
Klingeman, Peter C.
This pamphlet gives definitions and symbols for the basic and derived metric units, prefixes, and conversion factors for units frequently used in water resources. Included are conversion factors for units of area, work, heat, power, pressure, viscosity, flow rate, and others. (BB)
Third, K; Fun, O M; Bowen, J; Micenko, A; Grey, V; Prohasky, T
2009-01-01
The community of Tenganan in eastern Bali, Indonesia, has requested technical assistance from Engineers Without Borders Australia (EWB) to improve the quantity and quality of water delivered through their water supply system. This is a unique development project in which the Tenganan people have identified their own needs and developed their own conceptual solution to the problem. For the first time, EWB is undertaking the design phase for the water system by an off-shore design team and project assistance team (PAT) based in Australia. This allows EWB to draw on resources and experience of EWB members and their employing companies in Australia. It also enables young engineers to develop skills and experience in development work without having to leave the country. However, the innovative approach also presented significant challenges to the project members, particularly in establishing appropriate design criteria and the co-ordination of simultaneous activities across Australia. This paper describes the approach taken by EWB and makes a preliminary assessment of the benefits and limitations inherent in this approach. The overall aim of the project is to produce a successful "bottom-up" development action that will deliver a sustainable solution to the Tenganan community.
40 CFR 94.7 - General standards and requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to the emission standards of this part are equipped with a connection in the engine exhaust system that is located downstream of the engine and before any point at which the exhaust contacts water (or... be internally threaded with standard pipe threads of a size not larger than one-half inch, and shall...
Ground Vehicle Power and Mobility Overview - Germany Visit
2011-11-10
the current and future force Survivability Robotics – Intelligent Systems Vehicle Electronics & Architecture Fuel, Water, Bridging ...Test Cell • Engine Generator Test Lab • Full Vehicle Environmental Test Cell • Hybrid Electric Reconfigurable Moveable Integration Testbed (HERMIT...Converter Conducted competitive runoff evaluations on Bridging Boat engine candidates Completed independent durability assessment of OEM
33 CFR 183.566 - Fuel pumps: Placement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel pumps: Placement. 183.566...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.566 Fuel pumps: Placement. Each fuel pump must be on the engine it serves or within 12 inches of the engine, unless it is a...
Plant engineers solar energy handbook. [Includes glossaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-01-21
This handbook is to provide plant engineers with factual information on solar energy technology and on the various methods for assessing the future potential of this alternative energy source. The following areas are covered: solar components and systems (collectors, storage, service hot-water systems, space heating with liquid and air systems, space cooling, heat pumps and controls); computer programs for system optimization local solar and weather data; a description of buildings and plants in the San Francisco Bay Area applying solar technology; current Federal and California solar legislation; standards, codes, and performance testing information; a listing of manufacturers, distributors, and professionalmore » services that are available in Northern California; and information access. Finally, solar design checklists are provided for those engineers who wish to design their own systems. (MHR)« less
Urban Principle of Water Sensitive Design in Kampung Kamboja at Pontianak City
NASA Astrophysics Data System (ADS)
Hasriyanti, N.; Ryanti, E.
2017-07-01
This study will define the design principles of settlement area banks of the Kapuas Pontianak to approach the concept of water sensitive urban design (WSUD) in densely populated residential areas. Using a case study of a region densely located on the banks of the river with engineering literature to formulate the aspects taken into consideration and the components are arranged in the design, analysis descriptive paradigm rationalistic to identify the characteristics of residential areas riverbank with consideration of elements WSUD and formulate design principles residential area that is sensitive to water. This research is important to do because of problems related to the water management system in the settlement bank of the river in the city of Pontianak do not maximize. So that the primacy of this study contains several objectives to be achieved is to identify the characteristics of the settlement area riverbanks under consideration aspects areas design that is sensitive to water and principle areas design that will formulate the structure of the existing problems related to the needs of the community infrastructure facilities infrastructure neighborhoods and formulate and create guidelines for appropriate technology for integrated water management systems in the residential area of the riverbank and engineering design for the settlements are sensitive to water (WSUD). The final aim of the study is expected to achieve water management systems in residential areas by utilizing the abundant rainwater availability by using LID (Low Impact Development) through the concept of urban design that sensitive water
American power conference: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-01
The first volume of this conference contains papers on the following topics: (1) Controls, monitoring, and expert systems (Harnessing microprocessor revolution for a more competitive power industry; Plant control--Upgrades; Neural network applications); (2) Diversification and globalization (Electric utility diversification/globalization--Panel; Private power in developing countries); (3) Environment and clean air (Clean Air compliance costs; Site selection for power stations and related facilities; Electric utility trace substance emissions; Solid waste disposal and commercial use; Precipitators/fabric filters; and Effect of flow modifications on fisheries and water quality); (4) Generation--Fuel options equipment (Alternate fuels; Advances in fuel cells for electric power applications; Secondary containmentmore » and seismic requirements for petrochemical facilities; Clean coal technology demonstration; Advanced energy systems; Hydropower); (5) Nuclear operations options (Radioactive waste management and disposal; Off normal conditions; Advanced light water reactors--15 years after TMI; Structural dynamic analyses for nuclear power plants); (6) Retrofit, betterment, repowering maintenance (Project management; Improving competitiveness through process re-engineering; Central stations; Water and wastewater treatment); (7) System planning, operation demand maintenance (Transmission system access; Stability; Systems planning); (8) Transmission and distribution (Transformers; Relaying for system protection; Managing EMF effects); and (9) Education (Power engineering). 155 papers have been processed separately for inclusion on the data base.« less
Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests
NASA Astrophysics Data System (ADS)
Izzuddin, Nur; Sunarsih, Priyanto, Agoes
2015-05-01
As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel's speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel's speed to obtain better characteristics and hence optimize the fuel saving rate.
Integrated exhaust gas analysis system for aircraft turbine engine component testing
NASA Technical Reports Server (NTRS)
Summers, R. L.; Anderson, R. C.
1985-01-01
An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks.
Methodological approaches for studying the microbial ecology of drinking water distribution systems.
Douterelo, Isabel; Boxall, Joby B; Deines, Peter; Sekar, Raju; Fish, Katherine E; Biggs, Catherine A
2014-11-15
The study of the microbial ecology of drinking water distribution systems (DWDS) has traditionally been based on culturing organisms from bulk water samples. The development and application of molecular methods has supplied new tools for examining the microbial diversity and activity of environmental samples, yielding new insights into the microbial community and its diversity within these engineered ecosystems. In this review, the currently available methods and emerging approaches for characterising microbial communities, including both planktonic and biofilm ways of life, are critically evaluated. The study of biofilms is considered particularly important as it plays a critical role in the processes and interactions occurring at the pipe wall and bulk water interface. The advantages, limitations and usefulness of methods that can be used to detect and assess microbial abundance, community composition and function are discussed in a DWDS context. This review will assist hydraulic engineers and microbial ecologists in choosing the most appropriate tools to assess drinking water microbiology and related aspects. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Space Life-Support Engineering Program
NASA Technical Reports Server (NTRS)
Seagrave, Richard C. (Principal Investigator)
1995-01-01
This report covers the seventeen months of work performed under an extended one year NASA University Grant awarded to Iowa State University to perform research on topics relating to the development of closed-loop long-term life support systems with the initial principal focus on space water management. In the first phase of the program, investigators from chemistry and chemical engineering with demonstrated expertise in systems analysis, thermodynamics, analytical chemistry and instrumentation, performed research and development in two major related areas; the development of low-cost, accurate, and durable sensors for trace chemical and biological species, and the development of unsteady-state simulation packages for use in the development and optimization of control systems for life support systems. In the second year of the program, emphasis was redirected towards concentrating on the development of dynamic simulation techniques and software and on performing a thermodynamic systems analysis, centered on availability or energy analysis, in an effort to begin optimizing the systems needed for water purification. The third year of the program, the subject of this report, was devoted to the analysis of the water balance for the interaction between humans and the life support system during space flight and exercise, to analysis of the cardiopulmonary systems of humans during space flight, and to analysis of entropy production during operation of the air recovery system during space flight.
Use of Water-Fuel Mixture in Diesel Engines at Fishing Vessels
NASA Astrophysics Data System (ADS)
Klyus, Oleg; Bezyukov, O.
2017-06-01
The paper presents the laboratory test results determining physical parameters of fuel mixture made up of petroleum diesel oil, rapeseed oil methyl esters (up to 20%) and water (up to 2.5%). The obtained parameters prove that adding bio-components (rapeseed oil methyl esters) and water to fuel does not result in deterioration of their physical and chemical properties and are comparable to base fuel parameters, namely petroleum diesel oil. The mixture was a subject of bench testing with the use of a self-ignition engine by means of pre-catalytic fuel treatment. The treatment process consisted in fuel - catalytically active material direct contact on the atomizer body. At the comparable operational parameters for the engine, the obtained exhaust gases opacity was lower up to 60% due to the preliminary fuel mixture treatment in relation to the factory-made fuel injection system using petroleum diesel oil.
NASA Astrophysics Data System (ADS)
Schrum, C.; Daewel, U.
2017-12-01
From 1950 onwards, the Baltic Sea ecosystem suffered increasingly from eutrophication. The most obvious reason for the eutrophication is the huge amount of nutrients (nitrogen and phosphorus) reaching the Baltic Sea from human activities. However, although nutrient loads have been decreasing since 1980, the hypoxic areas have not decreased accordingly. Thus, geo-engineering projects were discussed and evaluated to artificially ventilate the Baltic Sea deep water and suppress nutrient release from the sediments. Here, we aim at understanding the consequences of proposed geo-engineering projects in the Baltic Sea using long-term scenario modelling. For that purpose, we utilize a 3d coupled ecosystem model ECOSMO E2E, a novel NPZD-Fish model approach that resolves hydrodynamics, biogeochemical cycling and lower and higher trophic level dynamics. We performed scenario modelling that consider proposed geo-engineering projects such as artificial ventilation of Baltic Sea deep waters and phosphorus binding in sediments with polyaluminium chlorides. The model indicates that deep-water ventilation indeed suppresses phosphorus release in the first 1-4 years of treatment. Thereafter macrobenthos repopulates the formerly anoxic bottom regions and nutrients are increasingly recycled in the food web. Consequently, overall system productivity and fish biomass increases and toxic algae blooms decrease. However, deep-water ventilation has no long-lasting effect on the ecosystem: soon after completion of the ventilation process, the system turns back into its original state. Artificial phosphorus binding in sediments in contrast decreases overall ecosystem productivity through permanent removal of phosphorus. As expected it decreases bacterial production and toxic algae blooms, but it also decreases fish production substantially. Contrastingly to deep water ventilation, artificial phosphorus binding show a long-lasting effect over decades after termination of the treatment.
NASA Astrophysics Data System (ADS)
Purss, M. B. J.; Mueller, N. R.; Killough, B.; Oliver, S. A.
2016-12-01
In 2014 Geoscience Australia launched Water Observations from Space (WOfS) providing a continental-scale water product that shows how often surface water has been observed across Australia by the Landsat satellites since 1987. WOfS is a 23-step band-based decision tree that classifies pixels as water or non-water with 97% overall accuracy. The enabling infrastructure for WOfS is the Australian Geoscience Data Cube (AGDC), a high performance computing system organising Australian earth observation data into a systematic, consistently corrected analysis engine. The Committee on Earth Observation Satellites (CEOS) has adopted the AGDC methodology to create a series of international Data Cubes to provide the same capability to areas that would otherwise not be able to undertake time series analysis of the environment at these scales. The CEOS Systems Engineering Office (SEO) recently completed testing of WOfS using Data Cubes based on the AGDC version 2 over Kenya and Colombia. The results show how Data Cubes can provide water management information at large scales, and provide information in remote locations where other sources of water information are unavailable. The results also show an improvement in water detection capability over the Landsat CFmask. This water management product provides critical insight into the behavior of surface water over time and in particular, the extent of flooding.
NASA Astrophysics Data System (ADS)
Ben Mohammadi, L.; Kullmann, F.; Holzki, M.; Sigloch, S.; Klotzbuecher, T.; Spiesen, J.; Tommingas, T.; Weismann, P.; Kimber, G.
2010-04-01
The chemical and physical condition of oils in marine engines must be monitored to ensure optimum performance of the engine and to avoid damage by degraded oil not adequately lubricating the engine. Routine monitoring requires expensive laboratory testing and highly skilled analysts. This work describes the adaptation and implementation of a mid infrared (MIR) sensor module for continued oil condition monitoring in two-stroke and four-stroke diesel engines. The developed sensor module will help to reduce costs in oil analysis by eliminating the need to collect and send samples to a laboratory for analysis. The online MIR-Sensor module measures the contamination of oil with water, soot, as well as the degradation indicated by the TBN (Total Base Number) value. For the analysis of water, TBN, and soot in marine engine oils, four spectral regions of interest have been identified. The optical absorption in these bands correlating with the contaminations is measured simultaneously by using a four-field thermopile detector, combined with appropriate bandpass filters. Recording of the MIR-absorption was performed in a transmission mode using a flow-through cell with appropriate path length. Since in this case no spectrometer is required, the sensor including the light source, the flowthrough- cell, and the detector can be realised at low cost and in a very compact manner. The optical configuration of the sensor with minimal component number and signal intensity optimisation at the four-field detector was implemented by using non-sequential ray tracing simulation. The used calibration model was robust enough to predict accurately the value for soot, water, and TBN concentration for two-stroke and four-stroke engine oils. The sensor device is designed for direct installation on the host engine or machine and, therefore, becoming an integral part of the lubrication system. It can also be used as a portable stand-alone system for machine fluid analysis in the field.
Catchment Engineering: A New Paradigm in Water Management
NASA Astrophysics Data System (ADS)
Quinn, P. F.; Burke, S.; O'Donnell, G. M.; Wilkinson, M.; Jonczyk, J.; Barber, N.; Nicholson, A.; Proactive Team
2011-12-01
Recent catchment initiatives have highlighted the need for new holistic approaches to sustainable water management. Here, a catchment engineering approach seeks to describe catchment 'function' (or role) as the principal driver for evaluating how it should be managed in the future. Catchment engineering does not seek to re-establish a natural system but seeks to work with natural processes in order to engineer landscapes so that multiple benefits accrue. This approach involves quantifying and assessing catchment change and impacts but most importantly suggests an urgent and proactive agenda for future planning. In particular, an interventionist approach to managing hydrological flow pathways across scale is proposed. It is already accepted that future management will require a range of scientific expertise and full engagement with stakeholders, namely the general public and policy makers. This inclusive concept under a catchment engineering agenda forces any consortia to commit to actively changing and perturbing the catchment system and thus learn, in situ, how to manage the environment for collective benefits. The shared cost, the design, the implementation, the evaluation and any subsequent modifications should involve all relevant parties in the consortia. This joint ownership of a 'hands on' interventionist agenda to catchment change is at the core of catchment engineering. In this paper we show a range of catchment engineering projects from the UK that have addressed multi-disciplinary approaches to flooding, pollution and ecosystem management whilst maintaining economic food production. Local scale demonstration activities, led by local champions, have proven to be an effective means of encouraging wider uptake. Catchment engineering is a concept that relies on all relevant parties within a catchment to take responsibility for the water quantity and quality that arises from the catchment. Further, any holistic solution requires a bottom up, problem solving agenda which is facilitated by policy makers and is underpinned by scientific knowledge.
Army Corps of Engineers: Water Resource Authorizations, Appropriations, and Activities
2014-07-01
Assistance Authorities ........................................................................... 11 Appendixes Appendix. Evolution of the Its...projects (e.g., municipal water and wastewater treatment systems) and other nontraditional activities. The Appendix provides more on the evolution of...feasibility by the Secretary of the Army.13 10 General Robert B. Flowers , Army Corps
Rainwater Harvesting for Military Installations -The Time is Now
2010-06-01
Alternate Water Sources US Army Corps of Engineers® Engineer Research and Development Center - Water Reuse - Desalination - Produced Water...RAINWATER HARVESTING - Ground Water Recharge - Graywater Reuse - Sewer Mining Other Water Use/Alternate Water Sources Options What can be done to increase...WATER NO TOME El AGUA .. US Army Corps of Engineers® Engineer Research and Development Center Mitchell Physics RWH 386,800 GPY AC 1,058,300 GPY
Selected water-resources activities of the U.S. Geological Survey in New England in 2017
Weiskel, Peter K.
2017-06-22
The New England Water Science Center of the U.S. Geological Survey (USGS) is headquartered in Pembroke, New Hampshire, with offices in East Hartford, Connecticut; Augusta, Maine; Northborough, Massachusetts; and Montpelier, Vermont. The areas of expertise covered by the water science center’s staff of 130 include aquatic biology, chemistry, geographic information systems, geology, hydrologic sciences and engineering, and water use.
14 CFR 23.1103 - Induction system ducts.
Code of Federal Regulations, 2013 CFR
2013-01-01
... withstanding the effects of temperature extremes, fuel, oil, water, and solvents to which it is expected to be exposed in service and maintenance without hazardous deterioration or delamination. (d) For reciprocating engine installations, each induction system duct must be— (1) Strong enough to prevent induction system...
14 CFR 23.1103 - Induction system ducts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... withstanding the effects of temperature extremes, fuel, oil, water, and solvents to which it is expected to be exposed in service and maintenance without hazardous deterioration or delamination. (d) For reciprocating engine installations, each induction system duct must be— (1) Strong enough to prevent induction system...
14 CFR 23.1103 - Induction system ducts.
Code of Federal Regulations, 2012 CFR
2012-01-01
... withstanding the effects of temperature extremes, fuel, oil, water, and solvents to which it is expected to be exposed in service and maintenance without hazardous deterioration or delamination. (d) For reciprocating engine installations, each induction system duct must be— (1) Strong enough to prevent induction system...
14 CFR 23.1103 - Induction system ducts.
Code of Federal Regulations, 2014 CFR
2014-01-01
... withstanding the effects of temperature extremes, fuel, oil, water, and solvents to which it is expected to be exposed in service and maintenance without hazardous deterioration or delamination. (d) For reciprocating engine installations, each induction system duct must be— (1) Strong enough to prevent induction system...
14 CFR 23.1103 - Induction system ducts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... withstanding the effects of temperature extremes, fuel, oil, water, and solvents to which it is expected to be exposed in service and maintenance without hazardous deterioration or delamination. (d) For reciprocating engine installations, each induction system duct must be— (1) Strong enough to prevent induction system...
Water-in-diesel emulsions and related systems.
Lif, Anna; Holmberg, Krister
2006-11-16
Water-in-diesel emulsions are fuels for regular diesel engines. The advantages of an emulsion fuel are reductions in the emissions of nitrogen oxides and particulate matters, which are both health hazardous, and reduction in fuel consumption due to better burning efficiency. An important aspect is that diesel emulsions can be used without engine modifications. This review presents the influence of water on the emissions and on the combustion efficiency. Whereas there is a decrease in emissions of nitrogen oxides and particulate matters, there is an increase in the emissions of hydrocarbons and carbon monoxide with increasing water content of the emulsion. The combustion efficiency is improved when water is emulsified with diesel. This is a consequence of the microexplosions, which facilitate atomization of the fuel. The review also covers related fuels, such as diesel-in-water-in-diesel emulsions, i.e., double emulsions, water-in-diesel microemulsions, and water-in-vegetable oil emulsions, i.e., biodiesel emulsions. A brief overview of other types of alternative fuels is also included.
Review on Water Distribution of Cooling Tower in Power Station
NASA Astrophysics Data System (ADS)
Huichao, Zhang; Lei, Fang; Hao, Guang; Ying, Niu
2018-04-01
As the energy sources situation is becoming more and more severe, the importance of energy conservation and emissions reduction gets clearer. Since the optimization of water distribution system of cooling tower in power station can save a great amount of energy, the research of water distribution system gets more attention nowadays. This paper summarizes the development process of counter-flow type natural draft wet cooling tower and the water distribution system, and introduces the related domestic and international research situation. Combining the current situation, we come to the conclusion about the advantages and disadvantages of the several major water distribution modes, and analyze the problems of the existing water distribution ways in engineering application, furthermore, we put forward the direction of water distribution mode development on the basis knowledge of water distribution of cooling tower. Due to the water system can hardly be optimized again when it’s built, choosing an appropriate water distribution mode according to actual condition seems to be more significant.
NASA Technical Reports Server (NTRS)
1972-01-01
The activities leading to a tentative concept selection for a pressure-fed engine and propulsion support are outlined. Multiple engine concepts were evaluted through parallel engine major component and system analyses. Booster vehicle coordination, tradeoffs, and technology/development aspects are included. The concept selected for further evaluation has a regeneratively cooled combustion chamber and nozzle in conjuction with an impinging element injector. The propellants chosen are LOX/RP-1, and combustion stabilizing baffles are used to assure dynamic combustion stability.
NASA Astrophysics Data System (ADS)
Eschenbach, E. A.; Conklin, M. H.
2007-12-01
The need to train students in hydrologic science and environmental engineering is well established. Likewise, the public requires a raised awareness of the seriousness of water quality and availability problems. The WATERS Network (WATer and Environmental Research Systems Network ) has the potential to significantly change the way students, researchers, citizens, policy makers and industry members learn about environmental problems and solutions regarding water quality, quantity and distribution. This potential can be met if the efforts of water scientists, computer scientists, and educators are integrated appropriately. Successful pilot projects have found that cyberinfrastructure for education and outreach needs to be developed in parallel with research related cyberinfrastructure. We propose further integration of research, education and outreach activities. Through the use of technology that connects students, faculty, researchers, policy makers and others, WATERS Network can provide learning opportunities and teaching efficiencies that can revolutionize environmental science and engineering education. However, there are a plethora of existing environmental science and engineering educational programs. In this environment, WATERS can make a greater impact through careful selection of activities that build upon its unique strengths, that have high potential for engaging the members, and that meet identified needs: (i) modernizing curricula and pedagogy (ii) integrating science and education, (iii) sustainable professional development, and (iv) training the next generation of interdisciplinary water and social scientists and environmental engineers. National and observatory-based education facilities would establish the physical infrastructure necessary to coordinate education and outreach activities. Each observatory would partner with local educators and citizens to develop activities congruent with the scientific mission of the observatory. An unprecedented opportunity exists for educational research of both formal and informal environmental science and engineering education in order to understand how the Network can be efficiently used to create effective technology-based learning environments for all participants.
Safe corrosion inhibitor for treating cooling water on heat power engineering plants
NASA Astrophysics Data System (ADS)
Nikolaeva, L. A.; Khasanova, D. I.; Mukhutdinova, E. R.; Safin, D. Kh.; Sharifullin, I. G.
2017-08-01
Heat power engineering (HPE) consumes significant volumes of water. There are, therefore, problems associated with corrosion, biological fouling, salt deposits, and sludge formation on functional surfaces of heat power equipment. One of the effective ways to solve these problems is the use of inhibitory protection. The development of new Russian import-substituting environmentally friendly inhibitors is very relevant. This work describes experimental results on the OPC-800 inhibitor (TU 2415-092-00206 457-2013), which was produced at Karpov Chemical Plant and designed to remove mineral deposits, scale, and biological fouling from the surfaces of water-rotation node systems on HPE objects. This reagent is successfully used as an effective corrosion inhibitor in the water recycling systems of Tatarstan petrochemical enterprises. To save fresh make-up water, the circulating system is operated in a no-blow mode, which is characterized by high evaporation and salt content coefficients. It was experimentally found that corrosion rate upon treatment of recycled water with the OPC-800 inhibitor is 0.08-0.10 mm/year. HPE mainly uses inhibitors based on oxyethylidene diphosphonic (OEDPA) and nitrilotrimethylphosphonic (NTMPA) acids. The comparative characteristic of inhibition efficiency for OPC-800 and OEDF-Zn-U2 is given. The results obtained indicate that OPC-800 can be used as an inhibitor for treatment of cooling water in HPE plants. In this case, it is necessary to take into account the features of water rotation of a thermal power plant.
Engineering Challenges for Closed Ecological System facilities
NASA Astrophysics Data System (ADS)
Dempster, William; Nelson, Mark; Allen, John P.
2012-07-01
Engineering challenges for closed ecological systems include methods of achieving closure for structures of different materials, and developing methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is developing means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differentials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogue to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils.
Expedition 19 crew tests water from Recycling system
2009-05-20
ISS019-E-018483 (20 May 2009) --- After NASA's Mission Control gave the Expedition 19 astronaut crew aboard the International Space Station a "go" to drink water that the station's new recycling system has purified, the three celebrated with a ?toast? that also involved Mission Control, Houston, and the Payload Operations Center at Marshall Space Flight Center in Huntsville, Ala., which led development of the Water Recovery System. Pictured are Expedition 19 Commander Gennady Padalka (center) and Flight Engineers Mike Barratt (right) and Koichi Wakata, holding drink bags with special commemorative labels in the Destiny laboratory.
Expedition 19 crew tests water from Recycling system
2009-05-20
ISS019-E-018486 (20 May 2009) --- After NASA's Mission Control gave the Expedition 19 astronaut crew aboard the International Space Station a "go" to drink water that the station's new recycling system has purified, the three celebrated with a ?toast? that also involved Mission Control, Houston, and the Payload Operations Center at Marshall Space Flight Center in Huntsville, Ala., which led development of the Water Recovery System. Pictured are Expedition 19 Commander Gennady Padalka (center) and Flight Engineers Mike Barratt (right) and Koichi Wakata, holding drink bags with special commemorative labels in the Destiny laboratory.
Simulate different environments TDLAS On the analysis of the test signal strength
NASA Astrophysics Data System (ADS)
Li, Xin; Zhou, Tao; Jia, Xiaodong
2014-12-01
TDLAS system is the use of the wavelength tuning characteristics of the laser diode, for detecting the absorption spectrum of the gas absorption line. Detecting the gas space, temperature, pressure and flow rate and concentration. The use of laboratory techniques TDLAS gas detection, experimental simulation engine combustion water vapor and smoke. using an optical lens system receives the signal acquisition and signal interference test analysis. Analog water vapor and smoke in two different environments in the sample pool interference. In both experiments environmental interference gas absorption in the optical signal acquisition, signal amplitude variation analysis, and records related to the signal data. In order to study site conditions in the engine combustion process for signal acquisition provides an ideal experimental data .
Complete modeling for systems of a marine diesel engine
NASA Astrophysics Data System (ADS)
Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha
2015-03-01
This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).
Dataset for Testing Contamination Source Identification Methods for Water Distribution Networks
This dataset includes the results of a simulation study using the source inversion techniques available in the Water Security Toolkit. The data was created to test the different techniques for accuracy, specificity, false positive rate, and false negative rate. The tests examined different parameters including measurement error, modeling error, injection characteristics, time horizon, network size, and sensor placement. The water distribution system network models that were used in the study are also included in the dataset. This dataset is associated with the following publication:Seth, A., K. Klise, J. Siirola, T. Haxton , and C. Laird. Testing Contamination Source Identification Methods for Water Distribution Networks. Journal of Environmental Division, Proceedings of American Society of Civil Engineers. American Society of Civil Engineers (ASCE), Reston, VA, USA, ., (2016).
Columbus Thermal Control System (TCS) Degassing Operations
2013-07-29
ISS036-E-026213 (29 July 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, performs maintenance on the Water Pump Assembly 2 / Thermal Control System (WPA2/TCS) in the Columbus laboratory of the International Space Station.
Detecting Potential Water Quality Issues by Mapping Trophic Status Using Google Earth Engine
NASA Astrophysics Data System (ADS)
Nguy-Robertson, A. L.; Harvey, K.; Huening, V.; Robinson, H.
2017-12-01
The identification, timing, and spatial distribution of recurrent algal blooms and aquatic vegetation can help water managers and policy makers make better water resource decisions. In many parts of the world there is little monitoring or reporting of water quality due to the required costs and effort to collect and process water samples. We propose to use Google Earth Engine to quickly identify the recurrence of trophic states in global inland water systems. Utilizing Landsat and Sentinel multispectral imagery, inland water quality parameters (i.e. chlorophyll a concentration) can be estimated and waters can be classified by trophic state; oligotrophic, mesotrophic, eutrophic, and hypereutrophic. The recurrence of eutrophic and hypereutrophic observations can highlight potentially problematic locations where algal blooms or aquatic vegetation occur routinely. Eutrophic and hypereutrophic waters commonly include many harmful algal blooms and waters prone to fish die-offs from hypoxia. While these maps may be limited by the accuracy of the algorithms utilized to estimate chlorophyll a; relative comparisons at a local scale can help water managers to focus limited resources.
The performance of a mobile air conditioning system with a water cooled condenser
NASA Astrophysics Data System (ADS)
Di Battista, Davide; Cipollone, Roberto
2015-11-01
Vehicle technological evolution lived, in recent years, a strong acceleration due to the increased awareness of environmental issues related to pollutants and climate altering emissions. This resulted in a series of international regulations on automotive sector which put technical challenges that must consider the engine and the vehicle as a global system, in order to improve the overall efficiency of the system. The air conditioning system of the cabin, for instance, is the one of the most important auxiliaries in a vehicle and requires significant powers. Its performances can be significantly improved if it is integrated within the engine cooling circuit, eventually modified with more temperature levels. In this paper, the Authors present a mathematical model of the A/C system, starting from its single components: compressors, condenser, flush valve and evaporator and a comparison between different refrigerant fluid. In particular, it is introduced the opportunity to have an A/C condenser cooled by a water circuit instead of the external air linked to the vehicle speed, as in the actual traditional configuration. The A/C condenser, in fact, could be housed on a low temperature water circuit, reducing the condensing temperature of the refrigeration cycle with a considerable efficiency increase.
14 CFR Appendix K to Part 25 - Extended Operations (ETOPS)
Code of Federal Regulations, 2011 CFR
2011-01-01
... Appendix C of this part with a liquid water content factor of 1.0. (iii) Ice accumulated during approach... engine control or the desired thrust or power level was not achieved, including engine flameouts. Planned... involved. A relevant problem is a problem with an ETOPS group 1 significant system that has or could result...
ERIC Educational Resources Information Center
Schlenker, Richard M.
This document provides a study guide for a three-credit-hour fundamentals of chemistry course for marine engineer majors. The course is composed of 17 minicourses including: chemical reactions, atomic theory, solutions, corrosion, organic chemistry, water pollution, metric system, and remedial mathematics skills. Course grading, objectives,…
Carlo, Rebecca V; Sheehy, John; Feng, H Amy; Sieber, William K
2010-04-01
Respirable crystalline silica dust exposure in residential roofers is a recognized hazard resulting from cutting concrete roofing tiles. Roofers cutting tiles using masonry saws can be exposed to high concentrations of respirable dust. Silica exposures remain a serious threat for nearly two million U.S. construction workers. Although it is well established that respiratory diseases associated with exposure to silica dust are preventable, they continue to occur and cause disability or death. The effectiveness of both a commercially available local exhaust ventilation (LEV) system and a water suppression system in reducing silica dust was evaluated separately. The LEV system exhausted 0.24, 0.13, or 0.12 m(3)/sec of dust laden air, while the water suppression system supplied 0.13, 0.06, 0.03, or 0.02 L/sec of water to the saw blade. Using a randomized block design, implemented under laboratory conditions, the aforementioned conditions were evaluated independently on two types of concrete roofing tiles (s-shape and flat) using the same saw and blade. Each engineering control (LEV or water suppression) was replicated eight times, or four times for each type of tile. Analysis of variance was performed by comparing the mean airborne respirable dust concentrations generated during each run and engineering control treatment. The use of water controls and ventilation controls compared with the "no control" treatment resulted in a statistically significant (p < 0.05) reduction of mean respirable dust concentrations generated per tile cut. The percent reduction for respirable dust concentrations was 99% for the water control and 91% for the LEV. Results suggest that water is an effective method for reducing crystalline silica exposures. However, water damage potential, surface discolorations, cleanup, slip hazards, and other requirements may make the use of water problematic in many situations. Concerns with implementing an LEV system to control silica dust exposures include sufficient capture velocity, additional weight of the saw with the LEV system, electricity connections, and cost of air handling unit.
Water-Resources Manpower: Supply and Demand Patterns to 1980.
ERIC Educational Resources Information Center
Lewis, James E.
Relating the supply of scientific manpower to the educational potential of the general population and the productive capacity of the educational system, this study disaggregates independent projections of scientific manpower supply and demand to yield projections for water resources manpower. This supply of engineers, natural scientists, and…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-11
... line applications such as oil, gas, or water pipeline, or utility distribution systems. Seamless pressure pipes are intended for the conveyance of water, steam, petrochemicals, chemicals, oil products... Fahrenheit, at various American Society of Mechanical Engineers (``ASME'') code stress levels. Alloy pipes...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimada, Y.; Obata, Y.; Takeoka, T.
1987-04-21
A cooling system is described for radiator and condenser of vehicles with an air conditioner having a first blower and a second blower for cooling the radiator and the condenser so as to cool the engine cooling water and so as to condense the coolant, and a cooling cycle operation switch which comprises: (a) engine cooling water temperature switch (SW1) connected between a power supply and the first blower and turned on and off in accordance with high and low temperature conditions of the engine cooling water; (b) relay switching means for controlling the first and second blowers in accordancemore » with the on-off conditions of the cooling cycle operation switch; and (c) a control circuit having an on-off switch and a solenoid and connected between the relay switching means and either the first blower or the second blower, the solenoid of the control circuit being connected to switches (SW3, SW4 and SW5) for electrical equipment such as headlights, wipers; whereby, when any one of the switches for the electrical equipment of the vehicle is turned off, the first and second blowers are operated at normal speed through the relay switching means and the control circuit, upon the operation of the cooling cycle operation switch, while when any one of the switches for the electrical equipment is turned on, the first blower is on-off controlled through the engine cooling water temperature switch (SW1) and the second blower remains operated through the relay switching means.« less
NASA Technical Reports Server (NTRS)
Knox, James C.; Campbell, Melissa; Murdoch, Karen; Miller, Lee A.; Jeng, Frank
2005-01-01
Currently on the International Space Station s (ISS) U.S. Segment, carbon dioxide (CO2) scrubbed from the cabin by a 4-Bed Molecular Sieve (4BMS) Carbon Dioxide Removal Assembly (CDRA) is vented overboard as a waste product. Likewise, the product hydrogen (H2) that will be generated by the Oxygen Generation Assembly (OGA) planned for installation will also be vented. A flight experiment has been proposed that will take the waste CO2 removed from the cabin, and via the catalytic Sabatier process, reduce it with waste H2 to generate water and methane. The water produced may provide cost and logistics savings for ISS by reducing the amount of water periodically re-supplied to orbit. To make this concept viable, a mechanical piston compressor and accumulator were developed for collecting and storing the CO2 from the CDRA. The compressor, accumulator and Sabatier system would be packaged together as one unit and referred to as the Carbon Dioxide Reduction Assembly (CRA). Testing was required to evaluate the performance of a 4BMS CDRA, compressor, accumulator, and Sabatier performance along with their operating rules when integrated together. This had been numerically modeled and simulated; however, testing was necessary to verify the results from the engineering analyses. Testing also allowed a better understanding of the practical inefficiencies and control issues involved in a fully integrated system versus the theoretical ideals in the model. This paper presents and discusses the results of an integrated engineering development unit test.
SSC_NASA Tests Upgraded Water System for the B-2 Test Stand - Highlights with Music
2017-12-04
On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.
NASA Tests Upgraded Water System for Stennis Space Center's B-2 Test Stand
2017-12-04
On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.
Exploration Life Support Critical Questions for Future Human Space Missions
NASA Technical Reports Server (NTRS)
Kwert, Michael K.; Barta, Daniel J.; McQuillan, Jeff
2010-01-01
Exploration Life Support (ELS) is a current project under NASA's Exploration Systems Mission Directorate. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for long duration missions, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and how progress in the development of ELS technologies can help answer them. The ELS Project includes the following Elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems, Habitation Engineering, Systems Integration, Modeling and Analysis, and Validation and Testing, which includes the Sub-Elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize overall mission architectures by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements. Systems analysis will be validated through the data gathered from integrated testing, which will demonstrate the interfaces of a closed loop life support system. By applying a systematic process for defining, sorting and answering critical life support questions, the ELS project is preparing for a variety of future human space missions
NASA Astrophysics Data System (ADS)
Sharif, Hafiz Zafar; Leman, A. M.; Muthuraman, S.; Salleh, Mohd Najib Mohd; Zakaria, Supaat
2017-09-01
Combined heating, cooling, and power is also known as Tri-generation. Tri-generation system can provide power, hot water, space heating and air -conditioning from single source of energy. The objective of this study is to propose a method to evaluate the characteristic and performance of a single stage lithium bromide-water (LiBr-H2O) absorption machine operated with waste thermal energy of internal combustion engine which is integral part of trigeneration system. Correlations for computer sensitivity analysis are developed in data fit software for (P-T-X), (H-T-X), saturated liquid (water), saturated vapor, saturation pressure and crystallization temperature curve of LiBr-H2O Solution. Number of equations were developed with data fit software and exported into excel work sheet for the evaluation of number of parameter concerned with the performance of vapor absorption machine such as co-efficient of performance, concentration of solution, mass flow rate, size of heat exchangers of the unit in relation to the generator, condenser, absorber and evaporator temperatures. Size of vapor absorption machine within its crystallization limits for cooling and heating by waste energy recovered from exhaust gas, and jacket water of internal combustion engine also presented in this study to save the time and cost for the facilities managers who are interested to utilize the waste thermal energy of their buildings or premises for heating and air conditioning applications.
Advancing Cyberinfrastructure to support high resolution water resources modeling
NASA Astrophysics Data System (ADS)
Tarboton, D. G.; Ogden, F. L.; Jones, N.; Horsburgh, J. S.
2012-12-01
Addressing the problem of how the availability and quality of water resources at large scales are sensitive to climate variability, watershed alterations and management activities requires computational resources that combine data from multiple sources and support integrated modeling. Related cyberinfrastructure challenges include: 1) how can we best structure data and computer models to address this scientific problem through the use of high-performance and data-intensive computing, and 2) how can we do this in a way that discipline scientists without extensive computational and algorithmic knowledge and experience can take advantage of advances in cyberinfrastructure? This presentation will describe a new system called CI-WATER that is being developed to address these challenges and advance high resolution water resources modeling in the Western U.S. We are building on existing tools that enable collaboration to develop model and data interfaces that link integrated system models running within an HPC environment to multiple data sources. Our goal is to enhance the use of computational simulation and data-intensive modeling to better understand water resources. Addressing water resource problems in the Western U.S. requires simulation of natural and engineered systems, as well as representation of legal (water rights) and institutional constraints alongside the representation of physical processes. We are establishing data services to represent the engineered infrastructure and legal and institutional systems in a way that they can be used with high resolution multi-physics watershed modeling at high spatial resolution. These services will enable incorporation of location-specific information on water management infrastructure and systems into the assessment of regional water availability in the face of growing demands, uncertain future meteorological forcings, and existing prior-appropriations water rights. This presentation will discuss the informatics challenges involved with data management and easy-to-use access to high performance computing being tackled in this project.
Icing-Protection Requirements for Reciprocating-Engine Induction System
NASA Technical Reports Server (NTRS)
Coles, Willard D; Rollin, Vern G; Mulholland, Donald R
1950-01-01
Despite the development of relatively ice-free fuel-metering systems, the widespread use of alternate and heated-air intakes, and the use of alcohol for emergency de-icing, icing of aircraft-engine induction systems is a serious problem. Investigations have been made to study and to combat all phases of this icing problem. From these investigations, criterions for safe operation and for design of new induction systems have been established. The results were obtained from laboratory investigations of carburetor-supercharger combinations, wind-tunnel investigations of air scoops, multicylinder-engine studies, and flight investigations. Characteristics of three forms of ice, impact, throttling, and fuel evaporation were studied. The effects of several factors on the icing characteristics were also studied and included: (1) atmospheric conditions, (2) engine and air-scoop configurations, including light-airplane system, (3) type fuel used, and (4) operating variables, such as power condition, use of a manifold pressure regulator, mixture setting, carburetor heat, and water-alcohol injection. In addition, ice-detection methods were investigated and methods of preventing and removing induction-system ice were studied. Recommendations are given for design and operation with regard to induction-system design.
Online decision support system for surface irrigation management
NASA Astrophysics Data System (ADS)
Wang, Wenchao; Cui, Yuanlai
2017-04-01
Irrigation has played an important role in agricultural production. Irrigation decision support system is developed for irrigation water management, which can raise irrigation efficiency with few added engineering services. An online irrigation decision support system (OIDSS), in consist of in-field sensors and central computer system, is designed for surface irrigation management in large irrigation district. Many functions have acquired in OIDSS, such as data acquisition and detection, real-time irrigation forecast, water allocation decision and irrigation information management. The OIDSS contains four parts: Data acquisition terminals, Web server, Client browser and Communication system. Data acquisition terminals are designed to measure paddy water level, soil water content in dry land, ponds water level, underground water level, and canals water level. A web server is responsible for collecting meteorological data, weather forecast data, the real-time field data, and manager's feedback data. Water allocation decisions are made in the web server. Client browser is responsible for friendly displaying, interacting with managers, and collecting managers' irrigation intention. Communication system includes internet and the GPRS network used by monitoring stations. The OIDSS's model is based on water balance approach for both lowland paddy and upland crops. Considering basic database of different crops water demands in the whole growth stages and irrigation system engineering information, the OIDSS can make efficient decision of water allocation with the help of real-time field water detection and weather forecast. This system uses technical methods to reduce requirements of user's specialized knowledge and can also take user's managerial experience into account. As the system is developed by the Browser/Server model, it is possible to make full use of the internet resources, to facilitate users at any place where internet exists. The OIDSS has been applied in Zhanghe Irrigation District (Center China) to manage the required irrigation deliveries. Two years' application indicates that the proposed OIDSS can achieve promising performance for surface irrigation. Historical data of rice growing period in 2014 has been applied to test the OIDSS: it gives out 3 irrigation decisions, which is consistent with actual irrigation times and the forecast irrigation dates are well fit with the actual situations; the corresponding amount of total irrigation decreases by 15.13% compared to those without using the OIDSS.
Adapting Water Infrastructure to Non-stationary Climate ...
Water supply and sanitation are carried out by three major types of water infrastructure: drinking water treatment and distribution, wastewater collection and treatment, and storm water collection and management. Their sustainability is measured by resilience against and adaptability to an evolving factor; here it refers to the change of climate and its hydrologic impacts. The term resilience is defined as the ability to repair and recover its physical state and service function under the impacts of external forces (Milman and Short, 2008; McDaniels et al., 2008). In this context, capacity reserve (CR) is one very important physical attribute of system’s resilience; further details will be described later in this section and in the subsequent Chapter 1.7. While service function of a water infrastructure varies geographically among municipalities, its general engineering and management follow a triple bottom line of objectives: system reliability, environmental sustainability, and engineering economics. Communicate to science community and practitioners on the climate change adaptation to increase water infrastructure resilience by adaptation design
Hydrology for a Changing World
NASA Astrophysics Data System (ADS)
Hirsch, R. M.
2017-12-01
To support critical decisions related to water quantity, quality, and hazard mitigation, surface water hydrologists and water resources engineers have historically invoked the assumption that hydrologic systems are stationary; variables such as discharge or solute fluxes were assumed to have a mean, a variance, and other statistical properties that did not change over time. Today, the drivers of non-stationarity such as urbanization, groundwater depletion, engineered land-drainage systems, application of nutrients at the land surface, new farming technologies, and changes in greenhouse gas forcing of the global atmosphere have perturbed hydrologic systems enough so that this assumption must be challenged. Understanding of the non-stationarity in hydrologic systems is important for at least two major reasons: (1) Society needs insights on the hydrologic conditions of the future as a basis for planning, operating, and regulating water resources in the future. Water resources engineers cannot depend solely on records of the past to design and operate in the future. However, simply substituting model projections for historic records, without evaluation of the ability of those models to produce realistic projections, is not acceptable. (2) Non-stationarity provides a framework to identify emerging water resource issues and evaluate our society's success in achieving its environmental goals. The study of hydrologic change is our greatest challenge. We must learn how best to blend our knowledge of the past with our projections of the future. In this non-stationary world, observing systems and networks become even more critically important and our models must be tested using historical records to ensure that they produce useful projections of our future. In the words of Ralph Keeling, "The only way to figure out what is happening to our planet is to measure it, and this means tracking the changes decade after decade, and poring over the records." Walter Langbein knew the importance of all parts of this process: both data collection and data analysis. We need to step up our efforts to understand the past, in order to help society better understand and manage our changing world.
NASA Astrophysics Data System (ADS)
Foster, B.; Characklis, G. W.; Thurman, W. N.
2015-12-01
In mid 2012, a severe drought swept across the Midwest, the heartland of corn production in the U.S. When the drought persisted into late Fall, corn markets were affected in two distinct ways: (1) reduced rainfall led to projected and actual corn yields that were lower than expected and (2) navigation restrictions, a result of low water levels on the Mississippi River, disrupted barge transportation, the most common and inexpensive mode for moving corn to many markets. Both (1) and (2) led to significant financial losses, but due to the complexity of the economic system and the coincidence of two different market impacts, the size of the role that low water levels played wass unclear. This is important, as losses related to low water levels are used to justify substantial investments in dredging activities on the Mississippi River. An "engineering" model of the system, suggests that low water levels should drive large increases in barge and corn prices, while some econometric models suggest that water levels explain very little of the changes in barge rates and corn prices. Employing a model that integrates both the engineering and economic elements of the system indicates that corn prices and barge rates during the drought display spatial and temporal behavior that is difficult to explain using either the engineering or econometric models alone. This integrated model accounts for geographic and temporal variations in drought impacts and identifies unique market responses to four different sets of conditions over the drought's length. Results illustrate that corn and barge price responses during the drought were a product of comingled, but distinct, reactions to both supply changes and navigation disruptions. Results also provide a more structured description of how the economic system that governs corn allocation interacts with the Mississippi River system during drought. As both public and private parties discuss potential managerial or infrastructural methods for keeping shipping channels open during drought, the results of this work should help them to decide how different interventions might benefit or hurt barge operators and/or corn sellers.
NASA Astrophysics Data System (ADS)
Ramaswami, A.
2016-12-01
Urban infrastructure - broadly defined to include the systems that provide water, energy, food, shelter, transportation-communication, sanitation and green/public spaces in cities - have tremendous impact on the environment and on human well-being (Ramaswami et al., 2016; Ramaswami et al., 2012). Aggregated globally, these sectors contribute 90% of global greenhouse gas (GHG) emissions and 96% of global water withdrawals. Urban infrastructure contributions to such impacts are beginning to dominate. Cities are therefore becoming the action arena for infrastructure transformations that can achieve high levels of service delivery while reducing environmental impacts and enhancing human well-being. Achieving sustainable urban infrastructure transitions requires: information about the engineered infrastructure, and its interaction with the natural (ecological-environmental) and the social sub-systems In this paper, we apply a multi-sector, multi-scalar Social-Ecological-Infrastructural Systems framework that describes the interactions among biophysical engineered infrastructures, the natural environment and the social system in a systems-approach to inform urban infrastructure transformations. We apply the SEIS framework to inform water and energy sector transformations in cities to achieve environmental and human health benefits realized at multiple scales - local, regional and global. Local scales address pollution, health, wellbeing and inequity within the city; regional scales address regional pollution, scarcity, as well as supply risks in the water-energy sectors; global impacts include greenhouse gas emissions and climate impacts. Different actors shape infrastructure transitions including households, businesses, and policy actors. We describe the development of novel cross-sectoral strategies at the water-energy nexus in cities, focusing on water, waste and energy sectors, in a case study of Delhi, India. Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Sharma, K.R.; Kumar, E. (2016). Meta-Principles for developing smart, sustainable, and healthy cities, Science, 352(6288), 940-3. Ramaswami, A., et al. A Social-Ecological Infrastructural Systems Framework for Inter-Disciplinary Study of Sustainable City-Systems. J. Ind Ecol, 16(6): 801-813, 2012.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morey, W.W.
1988-12-01
This report summarizes the development and field testing of a combustor viewing probe (CVP) as a flame diagnostic monitor for utility gas turbine engines. The prototype system is capable of providing a visual record of combustor flame images, recording flame spectral data, analyzing image and spectral data, and diagnosing certain engine malfunctions. The system should provide useful diagnostic information to utility plant operators, and reduce maintenance costs. The field tests demonstrated the ability of the CVP to monitor combustor flame condition and to relate changes in the engine operation with variations in the flame signature. Engine light off, run upmore » to full speed, the addition of load, and the effect of water injection for NO/sub x/ control could easily be identified on the video monitor. The viewing probe was also valuable in identifying hard startups and shutdowns, as well as transient effects that can seriously harm the engine. 11 refs.« less
Shinagawa, Tatsuya
2017-01-01
Abstract Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. Electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible, and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances under which the water splitting reaction is conducted, the required solution conditions, such as the identity and molarity of ions, may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate the development of efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), affect electrode stability, and/or indirectly impact the performance by influencing the concentration overpotential (mass transport). This review aims to guide fine‐tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions. PMID:27984671
ETR HEAT EXCHANGER BUILDING, TRA644. WORKERS CHECK INTERIOR OF ONE ...
ETR HEAT EXCHANGER BUILDING, TRA-644. WORKERS CHECK INTERIOR OF ONE OF THE TWELVE HEAT EXCHANGER UNITS. COOLANT FROM ETR WILL ENTER EXCHANGERS AT TEMPERATURE OF 137.5 DEGREES F. AND LEAVE THE SYSTEM AT 110 DEGREES F. SECONDARY WATER WILL ENTER AT 78 DEGREES F. AND LEAVE SYSTEM AT 110 DEGREES F. INL NEGATIVE NO. 56-3712. R.G. Larsen, Photographer, 11/13/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, P.L.
As the Oct. 31 deadline for an initial design review approaches, the four participants in the Energy Research and Development Administration's (ERDA) industrial process hot water program are putting the final touches to plans for solar systems that will supplement conventional energy sources in the textile, food processing, concrete block and cleaning industries. Participating in the project are AAI Corp., Baltimore, which designed a solar hot water system for the concrete block curing operation of York Building Products Co., Harrisburg, Pa.; Acurex Corp., Mountain View, Calif., which designed a solar hot water system for a can washing line at themore » Campbell Soup Co. plant in Sacramento, Calif.; General Electric Co., Philadelphia, which designed a solar hot water system for Riegel Textile Corp., La France, S.C.; and Jacobs Engineering Co., Pasadena, Calif., which designed a solar hot water and steam system for commercial laundry use at American Linen Supply in El Centro., Calif. (MCW)« less
District heating with geothermally heated culinary water supply systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, D.R.; Schmitt, R.C.
1979-09-01
An initial feasibility study of using existing culinary water supply systems to provide hot water for space heating and air conditioning to a typical residential community is reported. The Phase I study has centered on methods of using low-to-moderate temperature water for heating purposes including institutional barriers, identification and description of a suitable residential commnity water system, evaluation of thermal losses in both the main distribution system and the street mains within the residential district, estimation of size and cost of the pumping station main heat exchanger, sizing of individual residential heat exchangers, determination of pumping and power requirements duemore » to increased flow through the residential area mains, and pumping and power requirements from the street mains through a typical residence. All results of the engineering study of Phase I are encouraging.« less
ARC Researchers at 2016 SAE Congress
PFL580; Room 413 B Engine Block, Cylinder Heads, Oil & Water Pumps, Intake & Exhaust Systems This Systems (CRS) and other related areas. These papers could include several of the following: technology Life Estimation of Linear Vibratory Systems Vasiliki TSIANIKA; Monica T. Majcher; Zissimos Mourelatos
NASA Astrophysics Data System (ADS)
Datsenko, V. V.; Zeigarnik, Yu. A.; Kosoi, A. S.
2014-04-01
Practical experience gained from using water and steam admission into the combustion chambers of aircraft- and marine-derivative gas turbines for bringing their operation in compliance with the requirements of environmental standards is described. The design and schematic modifications of combustion chambers and fuel system through which this goal is achieved are considered. The results obtained from industrial and rig tests of combustion chambers fitted with water or steam admission systems are presented.
NASA Astrophysics Data System (ADS)
Perdikaki, Martha; Kallioras, Andreas; Christoforidis, Christophoros; Iossifidis, Dimitris; Zafeiropoulos, Anastasios; Dimitriadis, Klisthenis; Makropoulos, Christos; Raat, Klaasjan; van den Berg, Gerard
2016-04-01
Coastal wetlands in semi-arid regions, as in Circum-Mediterranean, are considered important ecosystems that provide valuable services to human population and the environment, such as: flood protection, erosion control, wildlife habitat, water quality, recreation and carbon sequestration. Un-managed surface and groundwater exploitation in these areas usually leads to deterioration of such sensitive ecosystems by means of water resources degradation and/or increased salinity. Groundwater usually plays a vital role for the sustainability of these hydrological systems, as the underlying aquifers operate as regulators for both quantity and quality of their waters. Multi-layer and multi-objective Managed Aquifer Recharge (MAR) systems can be proved effective groundwater engineered solutions for the restoration of deteriorated coastal wetlands in semi- and arid regions. The plain of Marathon is a typical Mediterranean environment that hosts a naturally occurring -and today degraded- coastal wetland with the characteristics of a distinct ecosystem linked to a typical coastal hydrogeological system of a semi-arid region; and therefore can serve as a model for similar systems world-wide. The geo-hydrological setting of the area involves a multi-layer aquifer system consisting of (i) an upper un-consolidated formation of depositional unit dominated mostly by fluvial sediments and (ii) the surrounding and underlying karstified marbles; both being linked to the investigated wetland and also subjected to seawater encroachment. A smart engineered MAR system via an optimised Pump & Treat system integrated with an Aquifer Storage and Recovery (ASR) scheme in this area would include the abstraction of brackish groundwater from the deeper karst aquifer at a location close to the shoreline and direct treatment with Reverse Osmosis (RO). for desalination. Two-fold re-use scheme of the purified effluent can then be engineered for (i) the restoration of the coastal wetland; and (ii) managed aquifer recharge of the upper un-consolidated formation to sustain irrigation at the upstream area for agriculture. This facility will demonstrate how MAR can be used to sustain groundwater dependent ecosystems (and/or prevent their further degradation), while at the same time safeguarding water supply. Acknowledgements: This research is part of SUBSOL-bringing coastal SUBsurface water SOLutions to the market. SUBSOL has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 642228
Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izzuddin, Nur; Sunarsih,; Priyanto, Agoes
As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the targetmore » vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.« less
1980-10-01
from the sun. The longer bell mouth will also require that the water brake be located further from the engine, which mod- ifies the forward mount...unless there are over- riding considerations which are not readily quantifiable such as aircraft availabilit \\ and flight safety considerations...T M 1’ M Std (C) Moid. ’S-td C) M jSt- (C) 1I6’ 7 8 Prep and Install T700 4 4 5 4 5 4 5 4 Facility Check-Out and Water -Wash 1 1 /2 2 1 1-1 1!- 1
NASA Astrophysics Data System (ADS)
Barraqué, B.; Formiga Johnsson, R. M.; Nogueira de Paiva Britto, A. L.
2008-08-01
The extension and complexity of large cities creates "urban water" and a related issue: public water services, including public water supply, sewage collection and treatment, and storm water control, had previously become a policy sector separate from water resource allocation issues thanks to water transport and treatment technologies. Large metropolitan areas today cannot take nature for granted anymore, and they need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water services in European and Brazilian metropolitan areas, placing the technological developments in their geographic, socio-economic and political contexts. Our frame is to follow the successive contributions of civil engineering, sanitary engineering, and environmental engineering: the "quantity of water" and civil engineering paradigm allowed to mobilise water in and out of the city, and up the hills or the floors; in the "water quality" and chemical/sanitary engineering paradigm, water treatment gave more freedom to cities to take water from rivers closer to them, but also to reduce sewer discharge impacts; lastly, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.
Exhaust temperature analysis of four stroke diesel engine by using MWCNT/Water nanofluids as coolant
NASA Astrophysics Data System (ADS)
Muruganandam, M.; Mukesh Kumar, P. C.
2017-10-01
There has been a continuous improvement in designing of cooling system and in quality of internal combustion engine coolants. The liquid engine coolant used in early days faced many difficulties such as low boiling, freezing points and inherently poor thermal conductivity. Moreover, the conventional coolants have reached their limitations of heat dissipating capacity. New heat transfer fluids have been developed and named as nanofluids to try to replace traditional coolants. Moreover, many works are going on the application of nanofluids to avail the benefits of them. In this experimental investigation, 0.1, 0.3 and 0.5% volume concentrations of multi walled carbon nanotube (MWCNT)/water nanofluids have been prepared by two step method with surfactant and is used as a coolant in four stroke single cylinder diesel engine to assess the exhaust temperature of the engine. The nanofluid prepared is characterized with scanning electron microscope (SEM) to confirm uniform dispersion and stability of nanotube with zeta potential analyzer. Experimental tests are performed by various mass flow rate such as 270 300 330 LPH (litre per hour) of coolant nanofluids and by changing the load in the range of 0 to 2000 W and by keeping the engine speed constant. It is found that the exhaust temperature decreases by 10-20% when compared to water as coolant at the same condition.
ERIC Educational Resources Information Center
Pretelín-Ricárdez, Angel; Sacristán, Ana Isabel
2015-01-01
We present some results of an ongoing research project where university engineering students were asked to construct videogames involving the use of physical systems models. The objective is to help them identify and understand the elements and concepts involved in the modelling process. That is, we use game design as a constructionist approach…
NASA Astrophysics Data System (ADS)
Pozzi, W.; Fekete, B.; Piasecki, M.; McGuinness, D.; Fox, P.; Lawford, R.; Vorosmarty, C.; Houser, P.; Imam, B.
2008-12-01
The inadequacies of water cycle observations for monitoring long-term changes in the global water system, as well as their feedback into the climate system, poses a major constraint on sustainable development of water resources and improvement of water management practices. Hence, The Group on Earth Observations (GEO) has established Task WA-08-01, "Integration of in situ and satellite data for water cycle monitoring," an integrative initiative combining different types of satellite and in situ observations related to key variables of the water cycle with model outputs for improved accuracy and global coverage. This presentation proposes development of the Rapid, Integrated Monitoring System for the Water Cycle (Global-RIMS)--already employed by the GEO Global Terrestrial Network for Hydrology (GTN-H)--as either one of the main components or linked with the Asian system to constitute the modeling system of GEOSS for water cycle monitoring. We further propose expanded, augmented capability to run multiple grids to embrace some of the heterogeneous methods and formats of the Earth Science, Hydrology, and Hydraulic Engineering communities. Different methodologies are employed by the Earth Science (land surface modeling), the Hydrological (GIS), and the Hydraulic Engineering Communities; with each community employing models that require different input data. Data will be routed as input variables to the models through web services, allowing satellite and in situ data to be integrated together within the modeling framework. Semantic data integration will provide the automation to enable this system to operate in near-real-time. Multiple data collections for ground water, precipitation, soil moisture satellite data, such as SMAP, and lake data will require multiple low level ontologies, and an upper level ontology will permit user-friendly water management knowledge to be synthesized. These ontologies will have to have overlapping terms mapped and linked together. so that they can cover an even wider net of data sources. The goal is to develop the means to link together the upper level and lower level ontologies and to have these registered within the GEOSS Registry. Actual operational ontologies that would link to models or link to data collections containing input variables required by models would have to be nested underneath this top level ontology, analogous to the mapping that has been carried out among ontologies within GEON.
Hirsch, Robert M.
2012-01-01
This chapter explores four water resources issues: 1) hydrologic variability, hazards, water supply and ecosystem preservation; 2) urban landscape design; 3) non-point source water quality, and 4) climate change, resiliency, and nonstationarity. It also considers what science, technology, and engineering practice may be needed in the coming decades to sustain water supplies and ecosystems in the face of increasing stresses from a growing demand for water. Dealing with these four water resource issues in the highly uncertain future would will demand predictive models that are rooted in real-world data. In a non-stationary world, continuity of observations is crucial. All watersheds are influenced by human actions through changes in land use, water use, and climate. The focus of water planning and management between today and 2050 will depend more than ever on collection and analysis of long-term data to learn about the evolving state of the system, understanding ecosystem processes in the water and on the landscape, and finding innovative ways to manage water as a shared resource. This includes sharing water with our neighbors on the landscape, sharing with the other species that depend on water, and sharing with future generations.
Central Control Room in the Engine Research Building
1968-11-21
Operators in the Engine Research Building’s Central Control Room at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The massive 4.25-acre Engine Research Building contains dozens of test cells, test stands, and altitude chambers. A powerful a collection of compressors and exhausters located in the central portion of the basement provides process air and exhaust for these test areas. This system is connected to similar process air systems in the laboratory’s other large test facilities. The Central Control Room coordinates this activity and communicates with the local utilities. The panels on the wall contain schematics with indicator lights and instrumentation for the atmospheric exhaust, altitude exhaust, refrigerated air, and process air systems. The process air equipment included twelve exhausters, four compressors, refrigeration system, cooling water, and an exhaust system. The operators in the control room kept in contact with engineers running the process air system and those conducting the tests in the test cells. The operators also coordinated with the local power companies to make sure enough electricity was available to operate the powerful compressors and exhausters.
CDR De Winne takes Water Samples for analysis in the US Lab
2009-10-20
ISS021-E-010368 (20 Oct. 2009) --- European Space Agency astronaut Frank De Winne (foreground), Expedition 21 commander, fills a bag with water in the Destiny laboratory of the International Space Station. NASA astronaut Jeffrey Williams, flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) at left.
Computer-Aided Engineering Tools | Water Power | NREL
energy converters that will provide a full range of simulation capabilities for single devices and arrays simulation of water power technologies on high-performance computers enables the study of complex systems and experimentation. Such simulation is critical to accelerate progress in energy programs within the U.S. Department
It's Too Hot! It's Too Cold!--Understanding How Heat Works
ERIC Educational Resources Information Center
Roman, Harry T.
2012-01-01
Engineers often measure temperature for a wide variety of applications and assessments. This article describes how STEM educators can use thermometers or temperature sensors to help students understand how heat disperses through fluids, both air and water. It also provides hands-on learning about air and water heating systems. (Contains 4 figures.)
[Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine].
Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan
2003-07-01
The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde.
NASA Technical Reports Server (NTRS)
VanZante, Judith F.; Rosine, Bryan M.
2014-01-01
The inaugural calibration of the ice crystal and supercooled liquid water clouds generated in NASA Glenn's engine altitude test facility, the Propulsion Systems Lab (PSL) is reported herein. This calibration was in support of the inaugural engine ice crystal validation test. During the Fall of 2012 calibration effort, cloud uniformity was documented via an icing grid, laser sheet and cloud tomography. Water content was measured via multi-wire and robust probes, and particle sizes were measured with a Cloud Droplet Probe and Cloud Imaging Probe. The environmental conditions ranged from 5,000 to 35,000 ft, Mach 0.15 to 0.55, temperature from +50 to -35 F and relative humidities from less than 1 percent to 75 percent in the plenum.
Army Corps of Engineers: Water Resource Authorizations, Appropriations, and Activities
2017-02-27
of Engineers: Water Resource Authorizations, Appropriations, and Activities Congressional Research Service Summary The U.S. Army Corps of......Engineers: Water Resource Authorizations, Appropriations, and Activities Congressional Research Service 1 Army Corps of Engineers The U.S. Army Corps of
Semantic Web Infrastructure Supporting NextFrAMES Modeling Platform
NASA Astrophysics Data System (ADS)
Lakhankar, T.; Fekete, B. M.; Vörösmarty, C. J.
2008-12-01
Emerging modeling frameworks offer new ways to modelers to develop model applications by offering a wide range of software components to handle common modeling tasks such as managing space and time, distributing computational tasks in parallel processing environment, performing input/output and providing diagnostic facilities. NextFrAMES, the next generation updates to the Framework for Aquatic Modeling of the Earth System originally developed at University of New Hampshire and currently hosted at The City College of New York takes a step further by hiding most of these services from modeler behind a platform agnostic modeling platform that allows scientists to focus on the implementation of scientific concepts in the form of a new modeling markup language and through a minimalist application programming interface that provide means to implement model processes. At the core of the NextFrAMES modeling platform there is a run-time engine that interprets the modeling markup language loads the module plugins establishes the model I/O and executes the model defined by the modeling XML and the accompanying plugins. The current implementation of the run-time engine is designed for single processor or symmetric multi processing (SMP) systems but future implementation of the run-time engine optimized for different hardware architectures are anticipated. The modeling XML and the accompanying plugins define the model structure and the computational processes in a highly abstract manner, which is not only suitable for the run-time engine, but has the potential to integrate into semantic web infrastructure, where intelligent parsers can extract information about the model configurations such as input/output requirements applicable space and time scales and underlying modeling processes. The NextFrAMES run-time engine itself is also designed to tap into web enabled data services directly, therefore it can be incorporated into complex workflow to implement End-to-End application from observation to the delivery of highly aggregated information. Our presentation will discuss the web services ranging from OpenDAP and WaterOneFlow data services to metadata provided through catalog services that could serve NextFrAMES modeling applications. We will also discuss the support infrastructure needed to streamline the integration of NextFrAMES into an End-to-End application to deliver highly processed information to end users. The End-to-End application will be demonstrated through examples from the State-of-the Global Water System effort that builds on data services provided through WMO's Global Terrestrial Network for Hydrology to deliver water resources related information to policy makers for better water management. Key components of this E2E system are promoted as Community of Practice examples for the Global Observing System of Systems therefore the State-of-the Global Water System can be viewed as test case for the interoperability of the incorporated web service components.
Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. Themore » IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.« less
Space Station Environmental Health System water quality monitoring
NASA Technical Reports Server (NTRS)
Vincze, Johanna E.; Sauer, Richard L.
1990-01-01
One of the unique aspects of the Space Station is that it will be a totally encapsulated environment and the air and water supplies will be reclaimed for reuse. The Environmental Health System, a subsystem of CHeCS (Crew Health Care System), must monitor the air and water on board the Space Station Freedom to verify that the quality is adequate for crew safety. Specifically, the Water Quality Subsystem will analyze the potable and hygiene water supplies regularly for organic, inorganic, particulate, and microbial contamination. The equipment selected to perform these analyses will be commercially available instruments which will be converted for use on board the Space Station Freedom. Therefore, the commercial hardware will be analyzed to identify the gravity dependent functions and modified to eliminate them. The selection, analysis, and conversion of the off-the-shelf equipment for monitoring the Space Station reclaimed water creates a challenging project for the Water Quality engineers and scientists.
NASA Conducts First RS-25 Rocket Engine Test of 2015
2015-01-09
From the Press Release: The new year is off to a hot start for NASA's Space Launch System (SLS). The engine that will drive America's next great rocket to deep space blazed through its first successful test Jan. 9 at the agency's Stennis Space Center near Bay St. Louis, Mississippi. The RS-25, formerly the space shuttle main engine, fired up for 500 seconds on the A-1 test stand at Stennis, providing NASA engineers critical data on the engine controller unit and inlet pressure conditions. This is the first hot fire of an RS-25 engine since the end of space shuttle main engine testing in 2009. Four RS-25 engines will power SLS on future missions, including to an asteroid and Mars. "We’ve made modifications to the RS-25 to meet SLS specifications and will analyze and test a variety of conditions during the hot fire series,” said Steve Wofford, manager of the SLS Liquid Engines Office at NASA's Marshall Space Flight Center in Huntsville, Alabama, where the SLS Program is managed. "The engines for SLS will encounter colder liquid oxygen temperatures than shuttle; greater inlet pressure due to the taller core stage liquid oxygen tank and higher vehicle acceleration; and more nozzle heating due to the four-engine configuration and their position in-plane with the SLS booster exhaust nozzles.” The engine controller unit, the "brain" of the engine, allows communication between the vehicle and the engine, relaying commands to the engine and transmitting data back to the vehicle. The controller also provides closed-loop management of the engine by regulating the thrust and fuel mixture ratio while monitoring the engine's health and status. The new controller will use updated hardware and software configured to operate with the new SLS avionics architecture. "This first hot-fire test of the RS-25 engine represents a significant effort on behalf of Stennis Space Center’s A-1 test team," said Ronald Rigney, RS-25 project manager at Stennis. "Our technicians and engineers have been working diligently to design, modify and activate an extremely complex and capable facility in support of RS-25 engine testing." Testing will resume in April after upgrades are completed on the high pressure industrial water system, which provides cool water for the test facility during a hot fire test. Eight tests, totaling 3,500 seconds, are planned for the current development engine. Another development engine later will undergo 10 tests, totaling 4,500 seconds. The second test series includes the first test of new flight controllers, known as green running. The first flight test of the SLS will feature a configuration for a 70-metric-ton (77-ton) lift capacity and carry an uncrewed Orion spacecraft beyond low-Earth orbit to test the performance of the integrated system. As the SLS is upgraded, it will provide an unprecedented lift capability of 130 metric tons (143 tons) to enable missions even farther into our solar system.
15 CFR 922.112 - Prohibited or otherwise regulated activities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... generator cooling water, clean bilge water, or anchor wash; or (D) Vessel engine or generator exhaust. (ii... except clean vessel engine cooling water, clean vessel generator cooling water, vessel engine or generator exhaust, clean bilge water, or anchor wash. (iii) Discharging or depositing, from beyond the...
2008-03-01
foods such as fruits, vegetables, and beverages (U.S. FDA, 2004). If the U.S. EPA ultimately establishes a drinking water standard for perchlorate...TREAT PERCHLORATE-CONTAMINATED WATER THESIS Daniel A. Craig, Captain, USAF AFIT/GEM/ENV/08-M06 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY...OF AN INNOVATIVE TECHNOLOGY TO TREAT PERCHLORATE- CONTAMINATED WATER THESIS Presented to the Faculty Department of Systems and Engineering
Engine Research Building’s Central Control Room
1948-07-21
Operators in the Engine Research Building’s Central Control Room at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The massive 4.25-acre Engine Research Building contains dozens of test cells, test stands, and altitude chambers. A powerful collection of compressors and exhausters located in the central portion of the basement provided process air and exhaust for these test areas. This system is connected to similar process air systems in the laboratory’s other large test facilities. The Central Control Room coordinates this activity and communicates with the local utilities. This photograph was taken just after a major upgrade to the control room in 1948. The panels on the wall contain rudimentary floor plans of the different Engine Research Building sections with indicator lights and instrumentation for each test cell. The process air equipment included 12 exhausters, four compressors, a refrigeration system, cooling water, and an exhaust system. The operators in the control room kept in contact with engineers running the process air system and those conducting the tests in the test cells. The operators also coordinated with the local power companies to make sure enough electricity was available to operate the powerful compressors and exhausters.
NASA Astrophysics Data System (ADS)
Su, Huaizhi; Li, Hao; Kang, Yeyuan; Wen, Zhiping
2018-02-01
Seepage is one of key factors which affect the levee engineering safety. The seepage danger without timely detection and rapid response may likely lead to severe accidents such as seepage failure, slope instability, and even levee break. More than 90 percent of levee break events are caused by the seepage. It is very important for seepage behavior identification to determine accurately saturation line in levee engineering. Furthermore, the location of saturation line has a major impact on slope stability in levee engineering. Considering the structure characteristics and service condition of levee engineering, the distributed optical fiber sensing technology is introduced to implement the real-time observation of saturation line in levee engineering. The distributed optical fiber temperature sensor system (DTS)-based monitoring principle of saturation line in levee engineering is investigated. An experimental platform, which consists of DTS, heating system, water-supply system, auxiliary analysis system and levee model, is designed and constructed. The monitoring experiment of saturation line in levee model is implemented on this platform. According to the experimental results, the numerical relationship between moisture content and thermal conductivity in porous medium is identified. A line heat source-based distributed optical fiber method obtaining the thermal conductivity in porous medium is developed. A DTS-based approach is proposed to monitor the saturation line in levee engineering. The embedment pattern of optical fiber for monitoring saturation line is presented.
Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system.
Sowale, Ayodeji; Kolios, Athanasios J; Fidalgo, Beatriz; Somorin, Tosin; Parker, Alison; Williams, Leon; Collins, Matt; McAdam, Ewan; Tyrrel, Sean
2018-06-01
The demand for better hygiene has increased the need for developing more effective sanitation systems and facilities for the safe disposal of human urine and faeces. Non-Sewered Sanitary systems are considered to be one of the promising alternative solutions to the existing flush toilet system. An example of these systems is the Nano Membrane Toilet (NMT) system being developed at Cranfield University, which targets the safe disposal of human waste while generating power and recovering water. The NMT will generate energy from the conversion of human waste with the use of a micro-combustor; the heat produced will power a Stirling engine connected to a linear alternator to generate electricity. This study presents a numerical investigation of the thermodynamic analysis and operational characteristics of a quasi steady state model of the gamma type Stirling engine integrated into a combustor in the back end of the NMT system. The effects of the working gas, at different temperatures, on the Stirling engine performance are also presented. The results show that with the heater temperature of 390 °C from the heat supply via conduction at 820 W from the flue gas, the Stirling engine generates a daily power output of 27 Wh/h at a frequency of 23.85 Hz.
Water Use in the US Electric Power Sector: Energy Systems ...
This presentation reviews the water demands of long-range electricity scenarios. It addresses questions such as: What are the aggregate water requirements of the U.S. electric power sector? How could water requirements evolve under different long-range regional generation mixes? It also looks at research addressing the electricity generation water demand from a life cycle perspective, such as water use for the fuel cycle (natural gas, coal, uranium, etc.) and water use for the materials/equipment/manufacturing of new power plants. The presentation is part of panel session on the Water-Energy Nexus at the World Energy Engineering Congress
Environmental Control and Life Support Systems Test Facility at MSFC
NASA Technical Reports Server (NTRS)
2001-01-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the development Water Processor located in two racks in the ECLSS test area at the Marshall Space Flight Center. Actual waste water, simulating Space Station waste, is generated and processed through the hardware to evaluate the performance of technologies in the flight Water Processor design.
REPHLEX II: An information management system for the ARS Water Data Base
NASA Astrophysics Data System (ADS)
Thurman, Jane L.
1993-08-01
The REPHLEX II computer system is an on-line information management system which allows scientists, engineers, and other researchers to retrieve data from the ARS Water Data Base using asynchronous communications. The system features two phone lines handling baud rates from 300 to 2400, customized menus to facilitate browsing, help screens, direct access to information and data files, electronic mail processing, file transfers using the XMODEM protocol, and log-in procedures which capture information on new users, process passwords, and log activity for a permanent audit trail. The primary data base on the REPHLEX II system is the ARS Water Data Base which consists of rainfall and runoff data from experimental agricultural watersheds located in the United States.
Lockheed P–38J Lightning at the Aircraft Engine Research Laboratory
1945-03-21
The National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory acquired two Lockheed P–38J Lightning in October 1944 to augment their burgeoning icing research program. The P–38 was a high-altitude interceptor with a unique twin fuselage configuration. Lockheed designed the aircraft in 1938 and 1939. Its two Allison V–1710 engines carried the aircraft to altitudes up to 40,000 feet. The P–38 was used extensively during World War II in a variety of roles. In August 1943, Lockheed began producing an improved version, the P–38J that included better cockpit heating, engine cooling, and dive flaps. The military loaned the NACA two P–38Js to determine the amount of ice formation on the induction system of the turbosupercharger-equipped engines. In 1944 and 1945 one of the aircraft was subjected to ground tests using an engine blower on the hangar apron. The V–1710 was run over a full range of speeds as different levels of water were injected into the blower and sprayed onto the engine. The other P–38J was flown at 10,000 feet altitude with water sprayed into the engine to simulate rain. The tests confirmed that closing the intercooler flap added protection against the ice by blocking water ingestion and increasing engine heat. NACA pilot Joseph Walker joined the Cleveland laboratory in early 1945 as a physicist. Walker had flown P–38s during World, and later claimed that seeing the NACA’s two P–38Js inspired him to return to his earlier calling as a pilot, this time with the NACA. Walker was particularly active in the icing flight program during his five years of flying in Cleveland.
Sustainable water services and interaction with water resources in Europe and in Brazil
NASA Astrophysics Data System (ADS)
Barraqué, B.; Formiga Johnsson, R. M.; Britto, A. L.
2007-09-01
The increasing interaction between large cities and nature makes "urban water" an issue: water resources and water services - including public water supply, sewage collection and treatment, and in large cities, storm water control -, which had become separate issues thanks to the process of water transport and treatment technologies, are now increasingly interfering with each other. We cannot take nature for granted anymore, and we need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water industry technologies in European and Brazilian metropolitan areas, in their socio-economic and political context, tracing it through three "ages" of water technology and services which developed under civil engineering, sanitary engineering, and environmental engineering perspectives: the "quantity of water" and civil engineering paradigm was developed on the assumption that water should be drawn from natural environments far from the cities; in the "water quality" and chemical/sanitation engineering paradigm, water treatment was invented and allowed cities to take water from rivers closer to them and treat it, but also to reduce sewer discharge impacts; finally, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.
NASA Astrophysics Data System (ADS)
Srinivasan, Veena; Gorelick, Steven M.; Goulder, Lawrence
2010-07-01
In this paper, we discuss a challenging water resources problem in a developing world city, Chennai, India. The goal is to reconstruct past system behavior and diagnose the causes of a major water crisis. In order to do this, we develop a hydrologic-engineering-economic model to address the complexity of urban water supply arising from consumers' dependence on multiple interconnected sources of water. We integrate different components of the urban water system: water flowing into the reservoir system; diversion and distribution by the public water utility; groundwater flow in the aquifer beneath the city; supply, demand, and prices in the informal tanker-truck-based water market; and consumer behavior. Both the economic and physical impacts of consumers' dependence on multiple sources of water are quantified. The model is calibrated over the period 2002-2006 using a range of hydrologic and socio-economic data. The model's results highlight the inadequacy of the reservoir system and the buffering role played by the urban aquifer and consumers' coping investments during multiyear droughts.
Surrogate Analysis and Index Developer (SAID) tool
Domanski, Marian M.; Straub, Timothy D.; Landers, Mark N.
2015-10-01
The regression models created in SAID can be used in utilities that have been developed to work with the USGS National Water Information System (NWIS) and for the USGS National Real-Time Water Quality (NRTWQ) Web site. The real-time dissemination of predicted SSC and prediction intervals for each time step has substantial potential to improve understanding of sediment-related water quality and associated engineering and ecological management decisions.
Flow Control and Design Assessment for Drainage System at McMurdo Station, Antarctica
2014-11-24
Council BMP Best Management Practice CASQUA California Storm Water Quality Task Force CRREL Cold Regions Research and Engineering Laboratory DS...ponds The California Storm Water Quality Task Force (CASQUA 1993) defines a sediment basin as “a pond created by excavation or constructing an em...British Standards Institution. California Storm Water Quality Task Force (CASQUA). 1993. ESC41: Check Dams. In Stormwater Best Management Practices
Near real-time qualitative monitoring of lake water chlorophyll globally using GoogleEarth Engine
NASA Astrophysics Data System (ADS)
Zlinszky, András; Supan, Peter; Koma, Zsófia
2017-04-01
Monitoring ocean chlorophyll and suspended sediment has been made possible using optical satellite imaging, and has contributed immensely to our understanding of the Earth and its climate. However, lake water quality monitoring has limitations due to the optical complexity of shallow, sediment- and organic matter-laden waters. Meanwhile, timely and detailed information on basic lake water quality parameters would be essential for sustainable management of inland waters. Satellite-based remote sensing can deliver area-covering, high resolution maps of basic lake water quality parameters, but scientific application of these datasets for lake monitoring has been hindered by limitations to calibration and accuracy evaluation, and therefore access to such data has been the privilege of scientific users. Nevertheless, since for many inland waters satellite imaging is the only source of monitoring data, we believe it is urgent to make map products of chlorophyll and suspended sediment concentrations available to a wide range of users. Even if absolute accuracy can not be validated, patterns, processes and qualitative information delivered by such datasets in near-real time can act as an early warning system, raise awareness to water quality processes and serve education, in addition to complementing local monitoring activities. By making these datasets openly available on the internet through an easy to use framework, dialogue between stakeholders, management and governance authorities can be facilitated. We use GoogleEarthEngine to access and process archive and current satellite data. GoogleEarth Engine is a development and visualization framework that provides access to satellite datasets and processing capacity for analysis at the Petabyte scale. Based on earlier investigations, we chose the fluorescence line height index to represent water chlorophyll concentration. This index relies on the chlorophyll fluorescence peak at 680 nm, and has been tested for open ocean but also inland lake situations for MODIS and MERIS satellite sensor data. In addition to being relatively robust and less sensitive to atmospheric influence, this algorithm is also very simple, being based on the height of the 680 nm peak above the linear interpolation of the two neighbouring bands. However, not all satellite datasets suitable for FLH are catalogued for GoogleEarth Engine. In the current testing phase, Landsat 7, Landsat 8 (30 m resolution), and Sentinel 2 (20 m) are being tested. Landsat 7 has suitable band configuration, but has a strip error due to a sensor problem. Landsat 8 and Sentinel 2 lack a single spectral optimal for FLH. Sentinel 3 would be an optimal data source and has shown good performace during small-scale initial tests, but is not distributed globally for GoogleEarth Engine. In addition to FLH data from these satellites, our system delivers cloud and ice masking, qualitative suspended sediment data (based on the band closest to 600 nm) and true colour images, all within an easy-to-use Google Maps background. This allows on-demand understanding and interpretation of water quality patterns and processes in near real time. While the system is still under development, we believe it could significantly contribute to lake water quality management and monitoring worldwide.
New techniques for environmental monitoring and risk assessment in water surface systems
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Alexakis, Athanasios-Theodosios; Maniatis, Georgios; Hoey, Trevor; Escudero, Javier; Vagras, Patricia
2016-04-01
Our society is continuously impacted by significant weather events many times resulting in catastrophes that interrupt our normal way of life. In the context of climate change and increasing urbanisation these "extreme" hydrologic events are intensified both in magnitude and frequency, inducing costs of the order of billions of pounds. The vast majority of such costs and impacts (even more to developed societies) are due to water related catastrophes such as the geomorphic action of flowing water (including scouring of critical infrastructure, bed and bank destabilisation) and flooding. New tools and radically novel concepts are in need, to enable our society becoming more resilient. In this presentation, new research at the interface of sensors and water engineering is presented, focusing on addressing the above challenges in a holistic and comprehensive manner. In particular, the design, development, testing and calibration, as well as preliminary field implementation of a new tool for risk assessment and environmental monitoring in water surface systems, is explored in this work. It is demonstrated that novel advances in conceptual approaches in water engineering and specifically in the field of hydrodynamic transport of solids (such as the impulse and energy criteria) can be successfully combined with rapid advances in sensors to help monitor and increase the resilience of our society against catastrophic hydrologic events.
Sparn Photo of Bethany Sparn Bethany Sparn Researcher IV-Systems Engineering Bethany.Sparn@nrel.gov , residential HVAC equipment, heat pump water heaters, automated home energy management devices, and whole-house Energy Systems Integration Facility which provides a test bed for evaluating home energy management
NASA Technical Reports Server (NTRS)
May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei
2014-01-01
The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation community. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. Here a detection algorithm is developed which has the capability to detect the impact of ice accretion in the Low Pressure Compressor of an aircraft engine during steady flight as well as during changes in altitude. Unfortunately, the algorithm as implemented was not able to distinguish throttle changes from ice accretion and thus more work remains to be done.
Particle trajectory computation on a 3-dimensional engine inlet. Final Report Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Kim, J. J.
1986-01-01
A 3-dimensional particle trajectory computer code was developed to compute the distribution of water droplet impingement efficiency on a 3-dimensional engine inlet. The computed results provide the essential droplet impingement data required for the engine inlet anti-icing system design and analysis. The droplet trajectories are obtained by solving the trajectory equation using the fourth order Runge-Kutta and Adams predictor-corrector schemes. A compressible 3-D full potential flow code is employed to obtain a cylindrical grid definition of the flowfield on and about the engine inlet. The inlet surface is defined mathematically through a system of bi-cubic parametric patches in order to compute the droplet impingement points accurately. Analysis results of the 3-D trajectory code obtained for an axisymmetric droplet impingement problem are in good agreement with NACA experimental data. Experimental data are not yet available for the engine inlet impingement problem analyzed. Applicability of the method to solid particle impingement problems, such as engine sand ingestion, is also demonstrated.
21. RW Meyer Sugar Mill: 18761889. Simple, singlecylinder, horizontal, reciprocating ...
21. RW Meyer Sugar Mill: 1876-1889. Simple, single-cylinder, horizontal, reciprocating steam engine, model no. 1, 5' x 10', 6 hp, 175 rpm. Manufactured by Ames Iron Works, Oswego, New York, 1879. View: Steam engine powered the mill's centrifugals. Steam-feed pipe at top left of engine. Steam exhaust pipe leaves base of engine on right end and projects upwards. The boiler feed and supply pipe running water through the engine's pre-heat system are seen running to the lower left end of the engine. Pulley in the foreground was not used. The centrifugals were powered by a belt running from the flywheel in the background. Ball-type governor and pulley are on left end of the engine. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-23
... of Application for Approval of Discontinuance or Modification of a Railroad Signal System Pursuant to... of the signal system, as detailed below. Applicant: CSX Transportation, Mr. Joseph Ivanyo, Chief Engineer, Communications and Signals, 500 Water Street, SC J-350, Jacksonville, FL 32202. The CSX...
Barratt collects sample from WRS
2009-05-19
ISS019-E-017918 (19 May 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, collects a sample from the Water Recovery System (WRS) in the Destiny laboratory of the International Space Station.
14 CFR 23.1203 - Fire detector system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... in— (1) An engine compartment of— (i) Multiengine turbine powered airplanes; (ii) Multiengine... may be subjected in operation. (c) No fire detector may be affected by any oil, water, other fluids...
14 CFR 23.1203 - Fire detector system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... in— (1) An engine compartment of— (i) Multiengine turbine powered airplanes; (ii) Multiengine... may be subjected in operation. (c) No fire detector may be affected by any oil, water, other fluids...
14 CFR 23.1203 - Fire detector system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... in— (1) An engine compartment of— (i) Multiengine turbine powered airplanes; (ii) Multiengine... may be subjected in operation. (c) No fire detector may be affected by any oil, water, other fluids...
14 CFR 23.1203 - Fire detector system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... in— (1) An engine compartment of— (i) Multiengine turbine powered airplanes; (ii) Multiengine... may be subjected in operation. (c) No fire detector may be affected by any oil, water, other fluids...
14 CFR 23.1203 - Fire detector system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... in— (1) An engine compartment of— (i) Multiengine turbine powered airplanes; (ii) Multiengine... may be subjected in operation. (c) No fire detector may be affected by any oil, water, other fluids...
NASA Technical Reports Server (NTRS)
Lin, C. H.; Meyer, M. S.
1983-01-01
The systems engineering aspects of developing a conceptual design of the Space Station Environmental Control and Life Support System (ECLSS) are discussed. Topics covered include defining system requirements and groundrules for approach, formulating possible cycle closure options, and establishing a system-level mass balance on the essential materials processed in oxygen and water cycles. Consideration is also given to the performance of a system trade-off study to determine the best degree of cycle closure for the ECLSS, and the construction of a conceptual design of the ECLSS with subsystem performance specifications and candidate concepts. For the optimum balance between development costs, technological risks, and resupply penalties, a partially closed cycle ECLSS option is suggested.
Conflicting Epistemologies and Inference in Coupled Human and Natural Systems
NASA Astrophysics Data System (ADS)
Garcia, M. E.
2017-12-01
Last year, I presented a model that projects per capita water consumption based on changes in price, population, building codes, and water stress salience. This model applied methods from hydrological science and engineering to relationships both within and beyond their traditional scope. Epistemologically, the development of mathematical models of natural or engineered systems is objectivist while research examining relationships between observations, perceptions and action is commonly constructivist or subjectivist. Drawing on multiple epistemologies is common in, and perhaps central to, the growing fields of coupled human and natural systems, and socio-hydrology. Critically, these philosophical perspectives vary in their view of the nature of the system as mechanistic, adaptive or constructed, and the split between aleatory and epistemic uncertainty. Interdisciplinary research is commonly cited as a way to address the critical and domain crossing challenge of sustainability as synthesis across perspectives can offer a more comprehensive view of system dynamics. However, combining methods and concepts from multiple ontologies and epistemologies can introduce contradictions into the logic of inference. These contractions challenge the evaluation of research products and the implications for practical application of research findings are not fully understood. Reflections on the evaluation, application, and generalization of the water consumption model described above are used to ground these broader questions and offer thoughts on the way forward.
Accident analysis and control options in support of the sludge water system safety analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
HEY, B.E.
A hazards analysis was initiated for the SWS in July 2001 (SNF-8626, K Basin Sludge and Water System Preliminary Hazard Analysis) and updated in December 2001 (SNF-10020 Rev. 0, Hazard Evaluation for KE Sludge and Water System - Project A16) based on conceptual design information for the Sludge Retrieval System (SRS) and 60% design information for the cask and container. SNF-10020 was again revised in September 2002 to incorporate new hazards identified from final design information and from a What-if/Checklist evaluation of operational steps. The process hazards, controls, and qualitative consequence and frequency estimates taken from these efforts have beenmore » incorporated into Revision 5 of HNF-3960, K Basins Hazards Analysis. The hazards identification process documented in the above referenced reports utilized standard industrial safety techniques (AIChE 1992, Guidelines for Hazard Evaluation Procedures) to systematically guide several interdisciplinary teams through the system using a pre-established set of process parameters (e.g., flow, temperature, pressure) and guide words (e.g., high, low, more, less). The teams generally included representation from the U.S. Department of Energy (DOE), K Basins Nuclear Safety, T Plant Nuclear Safety, K Basin Industrial Safety, fire protection, project engineering, operations, and facility engineering.« less
Underwater robot society doing internal inspection and leak monitoring of water systems
NASA Astrophysics Data System (ADS)
Halme, Aarne; Vainio, Mika; Appelqvist, Pekka; Jakubik, Peter; Schonberg, Torsten; Visala, Arto
1997-09-01
In the field of civil engineering an effective internal monitoring of pipes and water storage is very problematic. Normally the sensors used for the task are either fixed or manually movable. Thus they will only provide locally and temporally restricted information. As a solution an underwater robotic sensor/actuator society is presented. The system is capable of operating inside a fluid environment as a kind of distributed sensory system. The value of the system emerges from the interactions between the members. Through a communication system the society fuses information from individual members and provides a more reliable estimate of the conditions inside water systems. Tests results in a transparent demo process consisting of tanks and pipes with a volume of 700 liters are presented.
Nuuanu YMCA solar water-heating project (Engineering Materials)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-08-13
The Nuuanu YMCA is a combination athletic facility and men's dormitory. The building is of masonry construction, and includes a four-story dormitory on which the solar water heating system was mounted. The water storage tank was placed at a higher elevation than the collectors so that the majority of the system would operate in thermosyphon. A small system with a pump is included on another roof of the building and is circulated into the same storage tank. A pump was later added to the thermosyphon system. The system has 182 collector panels, each consisting of a polycarbonate box, low ironmore » tempered glazing, copper waterways and painted aluminum absorber. The water is stored in a 4000-gallon storage tank on the roof. The system provides domestic hot water and serves as a preheat system for the existing building water heaters. The system was installed and met performance criteria. An acceptance test plan is described and data are given. The thermosyphon system was found not to be efficient compared to the pumped system. System operation, maintenance and controls are described, and YMCA energy consumption data are given. Blueprints are included. These Drawings accompany report No. DOE/CS/31640-T1. (LEW)« less
Remote sensing training for Corps of Engineering personnel: The university training module concept
NASA Technical Reports Server (NTRS)
1982-01-01
A concept to permit Corps of Engineers personnel to obtain and maintain an appropriate level of individual proficiency in the application of remote sensing to water resource management is described. Recommendations are made for specific training courses and include structure and staffing requirements, syllabi and methods of operation, supporting materials, and procedures for integrating information systems management into the University Training Modules.
Chapelle, F.H.
1999-01-01
Bioremediation, the use of microbial degradation processes to detoxify environmental contamination, was first applied to petroleum hydrocarbon-contaminated ground water systems in the early 1970s. Since that time, these technologies have evolved in some ways that were clearly anticipated early investigators, and in other ways that were not foreseen. The expectation that adding oxidants and nutrients to contaminated aquifers would enhance biodegradation, for example, has been born out subsequent experience. Many of the technologies now in common use such as air sparging, hydrogen peroxide addition, nitrate addition, and bioslurping, are conceptually similar to the first bioremediation systems put into operation. More unexpected, however, were the considerable technical problems associated with delivering oxidants and nutrients to heterogeneous ground water systems. Experience has shown that the success of engineered bioremediation systems depends largely on how effectively directions and rates of ground water flow can be controlled, and thus how efficiently oxidants and nutrients can be delivered to contaminated aquifer sediments. The early expectation that injecting laboratory-selected or genetically engineered cultures of hydrocarbon-degrading bacteria into aquifers would be a useful bioremediation technology has not been born out subsequent experience. Rather, it appears that petroleum hydrocarbon-degrading bacteria are ubiquitous in ground water systems and that bacterial addition is usually unnecessary. Perhaps the technology that was least anticipated early investigators was the development of intrinsic bioremediation. Experience has shown that natural attenuation mechanisms - biodegradation, dilution, and sorption - limit the migration of contaminants to some degree in all ground water systems. Intrinsic bioremediation is the deliberate use of natural attenuation processes to treat contaminated ground water to specified concentration levels at predetermined points in the aquifer. In current practice, intrinsic bioremediation of petroleum hydrocarbons requires a systematic assessment to show that ambient natural attenuation mechanisms are efficient enough to meet regulatory requirements and a monitoring program to verify that performance requirements are met in the future.
Everard, Mark; Sharma, Om Prakash; Vishwakarma, Vinod Kumar; Khandal, Dharmendra; Sahu, Yogesh K; Bhatnagar, Rahul; Singh, Jitendra K; Kumar, Ritesh; Nawab, Asghar; Kumar, Amit; Kumar, Vivek; Kashyap, Anil; Pandey, Deep Narayan; Pinder, Adrian C
2018-01-15
Much of the developing world and areas of the developed world suffer water vulnerability. Engineering solutions enable technically efficient extraction and diversion of water towards areas of demand but, without rebalancing resource regeneration, can generate multiple adverse ecological and human consequences. The Banas River, Rajasthan (India), has been extensively developed for water diversion, particularly from the Bisalpur Dam from which water is appropriated by powerful urban constituencies dispossessing local people. Coincidentally, abandonment of traditional management, including groundwater recharge practices, is leading to increasingly receding and contaminated groundwater. This creates linked vulnerabilities for rural communities, irrigation schemes, urban users, dependent ecosystems and the multiple ecosystem services that they provide, compounded by climate change and population growth. This paper addresses vulnerabilities created by fragmented policy measures between rural development, urban and irrigation water supply and downstream consequences for people and wildlife. Perpetuating narrowly technocentric approaches to resource exploitation is likely only to compound emerging problems. Alternatively, restoration or innovation of groundwater recharge practices, particularly in the upper catchment, can represent a proven, ecosystem-based approach to resource regeneration with linked beneficial socio-ecological benefits. Hybridising an ecosystem-based approach with engineered methods can simultaneously increase the security of rural livelihoods, piped urban and irrigation supplies, and the vitality of river ecosystems and their services to beneficiaries. A renewed policy focus on local-scale water recharge practices balancing water extraction technologies is consistent with emerging Rajasthani policies, particularly Jal Swavlamban Abhiyan ('water self-reliance mission'). Policy reform emphasising recharge can contribute to water security and yield socio-economic outcomes through a systemic understanding of how the water system functions, and by connecting goals and budgets across multiple, currently fragmented policy areas. The underpinning principles of this necessary paradigm shift are proven and have wider geographic relevance, though context-specific research is required to underpin robust policy and practical implementation. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of residual oil saturation on hydrodynamic properties of porous media
NASA Astrophysics Data System (ADS)
Zhang, Junjie; Zheng, Xilai; Chen, Lei; Sun, Yunwei
2014-07-01
To understand the effect of residual oil on hydraulic properties and solute dispersive behavior of porous media, miscible displacement column experiments were conducted using two petroleum products (diesel and engine oil) and a sandy soil. The effective water permeability, effective water-filled porosity, and dispersivity were investigated in two-fluid systems of water and oil as a function of residual oil saturation (ROS). At the end of each experiment, the distribution of ending ROS along the sand column was determined by the method of petroleum ether extraction-ultraviolet spectrophotometry. Darcy’s Law was used to determine permeability, while breakthrough curves (BTCs) of a tracer, Cl-, were used to calibrate effective porosity and dispersivity. The experimental results indicate that the maximum saturated zone residual saturation of diesel and engine oil in this study are 16.0% and 45.7%, respectively. Cl- is found to have no sorption on the solid matrix. Generated BTCs are sigmoid in shape with no evidence of tailing. The effective porosity of sand is inversely proportional to ROS. For the same level of ROS, the magnitude of reduction in effective porosity by diesel is close to that by engine oil. The relative permeability of sand to water saturation decreases with increasing amount of trapped oil, and the slope of the relative permeability-saturation curve for water is larger at higher water saturations, indicating that oil first occupies larger pores, which have the most contribution to the conductivity of the water. In addition, the reduction rate of relative permeability by diesel is greater than that by engine oil. The dispersivity increases with increasing ROS, suggesting that the blockage of pore spaces by immobile oil globules may enhance local velocity variations and increase the tortuosity of aqueous-phase flow paths.
On science versus engineering in hydrological modelling
NASA Astrophysics Data System (ADS)
Melsen, Lieke
2017-04-01
It is always stressed that hydrological modelling is very important, to prevent floods, to mitigate droughts, to ensure food production or nature conservation. All very true, but I believe that focussing so much on the application of our knowledge (which I call `the engineering approach'), does not stimulate thorough system understanding (which I call `the scientific approach'). In many studies, science and engineering approaches are mixed, which results in large uncertainty e.g. due to a lack of system understanding. To what extent engineering and science approached are mixed depends on the Philosophy of Science of the researcher; verificationism seems to be closer related to engineering, than falsificationism or Bayesianism. In order to grow our scientific knowledge, which means increasing our understanding of the system, we need to be more critical towards the models that we use, but also recognize all the processes that influence the hydrological cycle. In an era called 'The Anthropocene' the influence of humans on the water system can no longer be neglected, and if we choose a scientific approach we have to account for human-induced processes. Summarizing, I believe that we have to account for human impact on the hydrological system, but we have to resist the temptation to directly quantify the hydrological impact on the human system.
Entropy, pumped-storage and energy system finance
NASA Astrophysics Data System (ADS)
Karakatsanis, Georgios
2015-04-01
Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)
Chaabane, Safa; Riahi, Khalifa; Hamrouni, Hédi; Thayer, Béchir Ben
2017-04-01
The present study examines the suitability assessment of an upflow-downflow siliceous sand/marble waste filtration system for treatment and reuse of grey water collected from bathrooms of the student residential complex at the Higher Institute of Engineering Medjez El Bab (Tunisia). Once the optimization of grey water pre-treatment system has been determined, the filtration system was operated at different hydraulic loading rate and media filter proportions in order to assess the suitability of treated grey water for irrigational purpose according to salinity hazard, sodium hazard, magnesium hazard, permeability index, water infiltration rate, and widely used graphical methods. Suitability of the treated grey water for industrial purpose was evaluated in terms of foaming, corrosion, and scaling. Under optimal operational conditions, results reveals that treated grey water samples with an upflow-downflow siliceous sand/marble waste filtration system may be considered as a good and an excellent water quality suitable for irrigation purpose. However, treated grey water was found not appropriate for industrial purpose due to high concentrations of calcium and sodium that can generate foaming and scaling harm to boilers. These results suggest that treated grey water with an upflow-downflow siliceous sand/marble waste filtration system would support production when used as irrigation water.
46 CFR 182.420 - Engine cooling.
Code of Federal Regulations, 2010 CFR
2010-10-01
... provided in paragraphs (b), (c), (d), and (e) of this section, all engines must be water cooled and meet the requirements of this paragraph. (1) The engine head, block, and exhaust manifold must be water-jacketed and cooled by water from a pump that operates whenever the engine is operating. (2) A suitable...
Design and engineering of water-soluble light-harvesting protein maquettes
Kodali, Goutham; Mancini, Joshua A.; Solomon, Lee A.; ...
2017-01-01
Design of nanometer scale artificial light harvesting and charge separating proteins enables reengineering to overcome the limitations of natural selection for efficient systems that better meet human energetic needs.
Design and engineering of water-soluble light-harvesting protein maquettes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodali, Goutham; Mancini, Joshua A.; Solomon, Lee A.
Design of nanometer scale artificial light harvesting and charge separating proteins enables reengineering to overcome the limitations of natural selection for efficient systems that better meet human energetic needs.
The development of a solar-powered residential heating and cooling system
NASA Technical Reports Server (NTRS)
1974-01-01
Efforts to demonstrate the engineering feasibility of utilizing solar power for residential heating and cooling are described. These efforts were concentrated on the analysis, design, and test of a full-scale demonstration system which is currently under construction at the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama. The basic solar heating and cooling system under development utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating and water heating, and an absorption cycle air conditioner for space cooling.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... diameter seamless pipe is used primarily for line applications such as oil, gas, or water pipeline, or utility distribution systems. Seamless pressure pipes are intended for the conveyance of water, steam... Engineers (``ASME'') code stress levels. Alloy pipes made to ASTM A-335 standard must be used if...
Stennis Space Center Conducts Water Flow Test On The B-2 Test Stand
2018-05-04
Stennis Space Center completed a water flow test of the refurbished B-2 Test Stand on May 4, 2018. This included both the deflector and the aspirator, individually and together. This test stand is being prepared for the testing of the Space Launch System's booster core, which will utilize four RS-25 rocket engines.
40 CFR 1039.801 - What definitions apply to this part?
Code of Federal Regulations, 2014 CFR
2014-07-01
... operation in water. Auxiliary emission-control device means any element of design that senses temperature... suppression operations. Emission-control system means any device, system, or element of design that controls... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Definitions...
The MEOW lunar project for education and science based on concurrent engineering approach
NASA Astrophysics Data System (ADS)
Roibás-Millán, E.; Sorribes-Palmer, F.; Chimeno-Manguán, M.
2018-07-01
The use of concurrent engineering in the design of space missions allows to take into account in an interrelated methodology the high level of coupling and iteration of mission subsystems in the preliminary conceptual phase. This work presents the result of applying concurrent engineering in a short time lapse to design the main elements of the preliminary design for a lunar exploration mission, developed within ESA Academy Concurrent Engineering Challenge 2017. During this program, students of the Master in Space Systems at Technical University of Madrid designed a low cost satellite to find water on the Moon south pole as prospect of a future human lunar base. The resulting mission, The Moon Explorer And Observer of Water/Ice (MEOW) compromises a 262 kg spacecraft to be launched into a Geostationary Transfer Orbit as a secondary payload in the 2023/2025 time frame. A three months Weak Stability Boundary transfer via the Sun-Earth L1 Lagrange point allows for a high launch timeframe flexibility. The different aspects of the mission (orbit analysis, spacecraft design and payload) and possibilities of concurrent engineering are described.
Thrust augmentation options for the Beta 2 two-stage-to-orbit vehicle
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
1993-01-01
NASA LeRC is continuing to study propulsion concepts for a horizontal takeoff and landing, fully reusable, two-stage-to-orbit vehicle. This will be capable of launching and returning a 10,000 pound payload to a 100 nautical mile polar orbit using low-risk technology. The vehicle, Beta 2, is a derivative of the USAF/Boeing Beta vehicle which was designed to deliver a 50,000 pound payload to a similar orbit. Beta 2 stages at Mach 6.5 and about 100,000 ft altitude. The propulsion system for the booster is an over/under turbine bypass engine/ramjet configuration. In this paper, several options for thrust augmentation were studied in order to improve the performance of this engine where there was a critical need. Options studies were turbine engine overspeed in the transonic region, water injection at a various turbine engine locations also during the transonic region, and water injection at the turbine engine face during high speed operation. The methodology, constraints, propulsion performance, and mission study results are presented.
Modeling U.S. water resources under climate change
NASA Astrophysics Data System (ADS)
Blanc, Elodie; Strzepek, Kenneth; Schlosser, Adam; Jacoby, Henry; Gueneau, Arthur; Fant, Charles; Rausch, Sebastian; Reilly, John
2014-04-01
Water is at the center of a complex and dynamic system involving climatic, biological, hydrological, physical, and human interactions. We demonstrate a new modeling system that integrates climatic and hydrological determinants of water supply with economic and biological drivers of sectoral and regional water requirement while taking into account constraints of engineered water storage and transport systems. This modeling system is an extension of the Massachusetts Institute of Technology (MIT) Integrated Global System Model framework and is unique in its consistent treatment of factors affecting water resources and water requirements. Irrigation demand, for example, is driven by the same climatic conditions that drive evapotranspiration in natural systems and runoff, and future scenarios of water demand for power plant cooling are consistent with energy scenarios driving climate change. To illustrate the modeling system we select "wet" and "dry" patterns of precipitation for the United States from general circulation models used in the Climate Model Intercomparison Project (CMIP3). Results suggest that population and economic growth alone would increase water stress in the United States through mid-century. Climate change generally increases water stress with the largest increases in the Southwest. By identifying areas of potential stress in the absence of specific adaptation responses, the modeling system can help direct attention to water planning that might then limit use or add storage in potentially stressed regions, while illustrating how avoiding climate change through mitigation could change likely outcomes.
NASA Technical Reports Server (NTRS)
1975-01-01
A shuttle EVLSS Thermal Control System (TCS) is defined. Thirteen heat rejection subsystems, thirteen water management subsystems, nine humidity control subsystems, three pressure control schemes and five temperature control schemes are evaluated. Sixteen integrated TCS systems are studied, and an optimum system is selected based on quantitative weighting of weight, volume, cost, complexity and other factors. The selected sybsystem contains a sublimator for heat rejection, a bubble expansion tank for water management, and a slurper and rotary separator for humidity control. Design of the selected subsystem prototype hardware is presented.
Thermally driven electrokinetic energy conversion with liquid water microjets
Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; ...
2015-11-01
One goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.
Thermally driven electrokinetic energy conversion with liquid water microjets
NASA Astrophysics Data System (ADS)
Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; Saykally, Richard J.
2015-11-01
A goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.
Treatment wetlands in decentralised approaches for linking sanitation to energy and food security.
Langergraber, Guenter; Masi, Fabio
2018-02-01
Treatment wetlands (TWs) are engineered systems that mimic the processes in natural wetlands with the purpose of treating contaminated water. Being a simple and robust technology, TWs are applied worldwide to treat various types of water. Besides treated water for reuse, TWs can be used in resources-oriented sanitation systems for recovering nutrients and carbon, as well as for growing biomass for energy production. Additionally, TWs provide a large number of ecosystem services. Integrating green infrastructure into urban developments can thus facilitate circular economy approaches and has positive impacts on environment, economy and health.
NASA Astrophysics Data System (ADS)
Montgomery, J. L.; Minsker, B. S.; Schnoor, J.; Haas, C.; Bonner, J.; Driscoll, C.; Eschenbach, E.; Finholt, T.; Glass, J.; Harmon, T.; Johnson, J.; Krupnik, A.; Reible, D.; Sanderson, A.; Small, M.; van Briesen, J.
2006-05-01
With increasing population and urban development, societies grow more and more concerned over balancing the need to maintain adequate water supplies with that of ensuring the quality of surface and groundwater resources. For example, multiple stressors such as overfishing, runoff of nutrients from agricultural fields and confined animal feeding lots, and pathogens in urban stormwater can often overwhelm a single water body. Mitigating just one of these problems often depends on understanding how it relates to others and how stressors can vary in temporal and spatial scales. Researchers are now in a position to answer questions about multiscale, spatiotemporally distributed hydrologic and environmental phenomena through the use of remote and embedded networked sensing technologies. It is now possible for data streaming from sensor networks to be integrated by a rich cyberinfrastructure encompassing the innovative computing, visualization, and information archiving strategies needed to cope with the anticipated onslaught of data, and to turn that data around in the form of real-time water quantity and quality forecasting. Recognizing this potential, NSF awarded $2 million to a coalition of 12 institutions in July 2005 to establish the CLEANER Project Office (Collaborative Large-Scale Engineering Analysis Network for Environmental Research; http://cleaner.ncsa.uiuc.edu). Over the next two years the project office, in coordination with CUAHSI (Consortium of Universities for the Advancement of Hydrologic Science, Inc.; http://www.cuahsi.org), will work together to develop a plan for a WATer and Environmental Research Systems Network (WATERS Network), which is envisioned to be a collaborative scientific exploration and engineering analysis network, using high performance tools and infrastructure, to transform our scientific understanding of how water quantity, quality, and related earth system processes are affected by natural and human-induced changes to the environment. This presentation will give an overview of the draft CLEANER program plans for the WATERS Network and next steps.
Biofouling and biocorrosion in industrial water systems.
Coetser, S E; Cloete, T E
2005-01-01
Corrosion associated with microorganisms has been recognized for over 50 years and yet the study of microbiologically influenced corrosion (MIC) is relatively new. MIC can occur in diverse environments and is not limited to aqueous corrosion under submerged conditions, but also takes place in humid atmospheres. Biofouling of industrial water systems is the phenomenon whereby surfaces in contact with water are colonized by microorganisms, which are ubiquitous in our environment. However, the economic implications of biofouling in industrial water systems are much greater than many people realize. In a survey conducted by the National Association of Corrosion Engineers of the United States ten years ago, it was found that many corrosion engineer did not accept the role of bacteria in corrosion, and many of then that did, could not recognize and mitigate the problem. Biofouling can be described in terms of its effects on processes and products such as material degradation (bio-corossion), product contamination, mechanical blockages, and impedance of heat transfer. Microorganisms distinguish themselves from other industrial water contaminants by their ability to utilize available nutrient sources, reproduce, and generate intra- and extracellular organic and inorganic substances in water. A sound understanding of the molecular and physiological activities of the microorganisms involved is necessary before strategies for the long term control of biofouling can be format. Traditional water treatment strategies however, have largely failed to address those factors that promote biofouling activities and lead to biocorrosion. Some of the major developments in recent years have been a redefinition of biofilm architecture and the realization that MIC of metals can be best understood as biomineralization.
NASA Astrophysics Data System (ADS)
Domenech, John
Due to increasing atmospheric CO2 concentration and its effect on global climates, the United States Environmental Protection Agency (EPA) proposes a Clean Power Plan (CPP) mandating CO2 reductions which will likely force the early retirement of inefficient, aging power plants. Consequentially, removing these plants equates to a shortfall of approximately 66 GW of electricity. These factors add to the looming resource problems of choosing whether to build large replacement power plants or consider alternative energy sources as a means to help close the gap between electricity supply and demand in a given region. One energy source, shallow water tidal currents, represents opportunities to convert kinetic energy to mechanical forms and provide electricity to homes and businesses. Nearly 2,000 National Oceanic Atmospheric Administration (NOAA) tidal current data points from Maine to Texas are considered. This paper, based on systems engineering thinking, provides key attributes (e.g. turbine efficiency, array size, transmission losses) for consideration as decision makers seek to identify where to site Marine Hydrokinetic (MHK) systems and the number of homes powered by the practical harvest of electricity from tidal currents at those locations with given attributes. A systems engineering process model is proposed for consideration as is a regression based equation to estimate MHK machine parameters needed for power a given number of homes.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-01
... matter from a cruise ship except clean vessel engine cooling water, clean vessel generator cooling water, vessel engine or generator exhaust, clean bilge water, or anchor wash. * * * * * 0 3. Appendix A to... matter from a cruise ship except clean vessel engine cooling water, clean vessel generator cooling water...
NASA Technical Reports Server (NTRS)
Chamberland, Dennis
1992-01-01
The paper describes a higher-plant-based engineering paradigm for advanced life support in a Controlled Ecological Life Support System (CELSS) on the surface of the moon or Mars, called the CELSS Breadboard Project, designed at John F. Kennedy Space Center. Such a higher-plant-based system would use the plants for a direct food source, gas exchange, water reclamation, and plant residuals in a complex biological resource recovery scheme. The CELSS Breadboard Project utilizes a 'breadboard' approach of developing independent systems that are evaluated autonomously and are later interconnected. Such a scheme will enable evaluation of life support system methodologies tested for their efficiency in a life support system for habitats on the moon or Mars.
NASA Astrophysics Data System (ADS)
Dempster, William; Allen, John P.
Closed systems are desirable for a number of purposes: space life support systems where precious life-supporting resources need to be kept inside; biospheric systems; where global ecological pro-cesses can be studied in great detail and testbeds where research topics requiring isolation from the outside (e.g. genetically modified organisms; radioisotopes) can be studied in isolation from the outside environment and where their ecological interactions and fluxes can be studied. But to achieve and maintain closure raises both engineering and ecological challenges. Engineering challenges include methods of achieving closure for structures of different materials, and devel-oping methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is devel-oping means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differen-tials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro-and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogue to natural biomes and ecosys-tems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils.
International Space Station (ISS)
2001-02-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the development Water Processor located in two racks in the ECLSS test area at the Marshall Space Flight Center. Actual waste water, simulating Space Station waste, is generated and processed through the hardware to evaluate the performance of technologies in the flight Water Processor design.
Environmental Control and Life Support Systems Testing Facility at MSFC
NASA Technical Reports Server (NTRS)
2001-01-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the Urine Processor Assembly (UPA) which utilizes the Vapor Compression Distillation (VCD) technology. The VCD is used for integrated testing of the entire Water Recovery System (WRS) and development testing of the Urine Processor Assembly. The UPA accepts and processes pretreated crewmember urine to allow it to be processed along with other wastewaters in the Water Processor Assembly (WPA). The WPA removes free gas, organic, and nonorganic constituents before the water goes through a series of multifiltration beds for further purification. Product water quality is monitored primarily through conductivity measurements. Unacceptable water is sent back through the WPA for reprocessing. Clean water is sent to a storage tank.
Source Water Quality Monitoring Networks
Harmful Algal Blooms (HABs) are increasingly impacting aquatic systems, reducing provided ecological services and requiring expensive engineered solutions. HABs, particularly those dominated by cyanobacteria (cyanoHABs) are a public health, ecologic, and economic concern. Charac...
14 CFR 25.1203 - Fire detector system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... fire zone, and in the combustion, turbine, and tailpipe sections of turbine engine installations, in... short circuit. (c) No fire or overheat detector may be affected by any oil, water, other fluids or fumes...
14 CFR 25.1203 - Fire detector system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... fire zone, and in the combustion, turbine, and tailpipe sections of turbine engine installations, in... short circuit. (c) No fire or overheat detector may be affected by any oil, water, other fluids or fumes...
14 CFR 25.1203 - Fire detector system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... fire zone, and in the combustion, turbine, and tailpipe sections of turbine engine installations, in... short circuit. (c) No fire or overheat detector may be affected by any oil, water, other fluids or fumes...
14 CFR 25.1203 - Fire detector system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... fire zone, and in the combustion, turbine, and tailpipe sections of turbine engine installations, in... short circuit. (c) No fire or overheat detector may be affected by any oil, water, other fluids or fumes...
45. 800 H.P. WATER WHEEL UNIT (LEFT HAND) DIRECT CONNECTED ...
45. 800 H.P. WATER WHEEL UNIT (LEFT HAND) DIRECT CONNECTED TO A 500 K.W. G.E. CO. GENERATOR, SPEED 176 R.P.M., HEAD OF WATER 305 FT EFF., FOR SANTA ANA RIVER NO. 2 PLANT. ABNER DOBLE CO., ENGINEERS, SAN FRANCISCO, AUG. 29, 1904. TRACED FROM DOBLE BLUE PRINT, SEPT. 9, 1911. SCE drawing no. 5698. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA
Corrosion science, corrosion engineering, and advanced technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latanision, R.M.
1995-04-01
Professor R.M. Latanision was the 1994 recipient of the Willis Rodney Whitney Award sponsored by NACE International. The present work is taken from his award lecture at CORROSION/94 held in March 1994 in Baltimore, MD. Latanision discussed the interplay between corrosion science and corrosion engineering in advancing technology. His lecture focused on supercritical water oxidation and other technologies that have been under study in the H.H. Uhlig Corrosion Laboratory and in which the chemical properties of new materials and traditional materials have proven integral to the development of contemporary or advanced engineering systems.
2014-05-27
Bobak Ferdowsi, a system's engineer at NASA's Jet Propulsion Laboratory, speaks with a member of "invenTeam" at the White House Science Fair. Olivia Van Amsterdam, 16, Katelyn Sweeney, 17, and their team of student engineers from Natick, MA, invented a 120 lb remotely operated vehicle (ROV) that can help search-and-rescue dive teams search for bodies in dangerous, icy waters. The fourth White House Science Fair was held at the White House and included 100 students from more than 30 different states who competed in science, technology, engineering, and math (STEM) competitions. (Photo Credit: NASA/Aubrey Gemignani)
Scenario analysis for techno-economic model development of U.S. offshore wind support structures
Damiani, Rick; Ning, Andrew; Maples, Ben; ...
2016-09-22
Challenging bathymetry and soil conditions of future US offshore wind power plants might promote the use of multimember, fixed-bottom structures (or 'jackets') in place of monopiles. Support structures affect costs associated with the balance of system and operation and maintenance. Understanding the link between these costs and the main environmental design drivers is crucial in the quest for a lower levelized cost of energy, and it is the main rationale for this work. Actual cost and engineering data are still scarce; hence, we evaluated a simplified engineering approach to tie key site and turbine parameters (e.g. water depth, wave height,more » tower-head mass, hub height and generator rating) to the overall support weight. A jacket-and-tower sizing tool, part of the National Renewable Energy Laboratory's system engineering software suite, was utilized to achieve mass-optimized support structures for 81 different configurations. This tool set provides preliminary sizing of all jacket components. Results showed reasonable agreement with the available industry data, and that the jacket mass is mainly driven by water depth, but hub height and tower-head mass become more influential at greater turbine ratings. A larger sensitivity of the structural mass to wave height and target eigenfrequency was observed for the deepest water conditions (>40 m). Thus, techno-economic analyses using this model should be based on accurate estimates of actual metocean conditions and turbine parameters especially for deep waters. Finally, the relationships derived from this study will inform National Renewable Energy Laboratory's offshore balance of system cost model, and they will be used to evaluate the impact of changes in technology on offshore wind lower levelized cost of energy.« less
Hydrogen-fueled postal vehicle performance evaluation
NASA Technical Reports Server (NTRS)
Hall, R. A.
1979-01-01
Fuel consumption, range, and emissions data were obtained while operating a hydrogen-fueled postal delivery vehicle over a defined Postal Service Driving Cycle and the 1975 Urban Driving Cycle. The vehicle's fuel consumption was 0.366 pounds of hydrogen per mile over the postal driving cycle and 0.22 pounds of hydrogen per mile over the urban driving cycle. These data correspond to 6.2 and 10.6 mpg equivalent gasoline mileage for the two driving cycles, respectively. The vehicle's range was 24.2 miles while being operated on the postal driving cycle. Vehicle emissions were measured over the urban driving cycle. HC and CO emissions were quite low, as would be expected. The oxides of nitrogen were found to be 4.86 gm/mi, a value which is well above the current Federal and California standards. Vehicle limitations discussed include excessive engine flashbacks, inadequate acceleration capability the engine air/fuel ratio, the water injection systems, and the cab temperature. Other concerns are safety considerations, iron-titanium hydride observed in the fuel system, evidence of water in the engine rocker cover, and the vehicle maintenance required during the evaluation.
Influence of Method of Adding Water to Combustible Mixture on Diesel Engine Performance
NASA Astrophysics Data System (ADS)
Devyanin, S. N.; Bigaev, A. V.; Markov, V. A.
2018-03-01
The supply of water to the cylinders of the diesel engine is one way to reduce the maximum temperature in the combustion zone of the fuel. A reduction of the maximum combustion temperature allows reducing the formation of nitrogen oxides and improving the environmental characteristics of the engine, which remains one of the urgent tasks at the present stage of their development. The methods of supplying water to the engine together with air at the inlet and with the fuel into the cylinder are well known. This article considers the influence of the way the water is supplied to the engine cylinders on its environmental characteristics. It presents the results of experimental studies on the internal combustion engine and analysis of the method of adding water on the engine performance from exhaust gas toxicity, operating efficiency and its thermal state. There are marked different effects on the motor performance of the method of adding water.
NASA Astrophysics Data System (ADS)
Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Gupta, Rajiv
2018-02-01
New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS) approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor nodes and soft computing framework for computational modelling. Soft computing framework utilizes the applications of Python for user interface and fuzzy sciences for decision making. Introduction of multiple sensors in a water distribution network generates a huge number of data matrices, which are sometimes highly complex, difficult to understand and convoluted for effective decision making. Therefore, the proposed system framework also intends to simplify the complexity of obtained sensor data matrices and to support decision making for water engineers through a soft computing framework. The target of this proposed research is to provide a simple and efficient method to identify and detect presence of contamination in a water distribution network using applications of CPS.
Petrobras will increase its water injection in Bahia state (in Spanish)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1967-08-01
A plan for modernizing and expanding existing water- injection facilities for the Bahia fields is planned by Petrobras, the Brazilian oil monoply. The plan contemplates continued use of most of the original equipment. The plan will be expanded wih a pilot plant treatment of the Don Juan field brine, and the injection plant. The following engineering works will be started: (1) a pumping station which takes 110,000 bpd of water from the sea, (2) a water pipe line 80 k long; (3) a system for the collection of oil field brine; (4) 3 combination water treating plants; (5) 3 highmore » pressure injection pump stations; (6) a system for the distribution of the injection water; and (7) a pilot plant for treating well water. For water injection, it will be possible to use individually, seawater, well water, and brine produced with the oil.« less
NASA Astrophysics Data System (ADS)
Ferri, Michele; Baruffi, Francesco; Norbiato, Daniele; Monego, Martina; Tomei, Giovanni; Solomatine, Dimitri; Alfonso, Leonardo; Mazzoleni, Maurizio; Chacon, Juan Carlos; Wehn, Uta; Ciravegna, Fabio
2016-04-01
Citizen observatories (COs) present an interesting case of strong multi-facet feedback between the physical (water) system and humans. CO is a form of crowdsourcing ensuring a data flow from citizens observing environment (e.g. water level in a river) to a central data processing unit which is typically part of a more complex social arrangement (e.g. water authorities responsible for flood forecasting). The EU-funded project WeSenseIt (www.wesenseit.eu) aims at developing technologies and tools supporting creation of such COs [1,2,3,4]. Citizens which form a CO play the role of "social sensors" which however are very specific. The data streams from such sensors have varying temporal and spatial coverage and information value (uncertainty). The crowdsourced data can be of course simply visualized and presented to public, but it is much more interesting to consider cases when such data are assimilated into the existing forecasting systems, e.g. flood early warning systems based on hydrological and hydraulic models. COs may also affect water management and governance [4], and in fact can be seen as data engines supporting the people-hydrology nexus. In the framework of WeSenseIt project several approaches were developed allowing for optimal assimilation of intermittent data streams with varying spatial coverage into distributed hydrological models [1, 2]. The mentioned specific features of CO data required updates of the existing data assimilation algorithms (Ensemble Kalman Filter was used as the basic algorithm). The developed algorithms have been implemented in the operational flood forecasting systems of the Alto Adriatico Water Authority (AAWA), Venice. In this paper we analyse various scenarios of employing citizens data (COs) for flood forecasting. This study is partly supported by the FP7 European Project WeSenseIt Citizen Water Observatory (www.http://wesenseit.eu/). References [1] Mazzoleni, M., Alfonso, L., Chacon-Hurtado, J., Solomatine, D. (2015). Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models. Advances in Water Res., 83, 323-339 (Online on September 1, 2015). [2] Mazzoleni M., Verlaan M., Alfonso L., Monego M., Norbiato D., Ferri M., and Solomatine D.P. (2015) Can assimilation of crowdsourced streamflow observations in hydrological modelling improve flood prediction?, Hydrology and Earth System Sciences, under review. [3] Mazzoleni M., Alfonso L. and Solomatine D.P. (2015) Effect of spatial distribution and quality of sensors on the assimilation of distributed streamflow observations in hydrological modeling, Hydrological Sciences Journal, under review. [4] Wehn, U., McCarty, S., Lanfranchi, V. and Tapsell, S. (2015) Citizen observatories as facilitators of change in water governance? Experiences from three European cases, Special Issue on ICTs and Water, Journal of Environmental Engineering and Management, 2073-2086.
Life Support Goals Including High Closure and Low Mass Should Be Reconsidered Using Systems Analysis
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2017-01-01
Recycling space life support systems have been built and tested since the 1960s and have operated on the International Space Station (ISS) since the mid 2000s. The development of space life support has been guided by a general consensus focused on two important related goals, increasing system closure and reducing launch mass. High closure is achieved by recycling crew waste products such as carbon dioxide and condensed humidity. Recycling directly reduces the mass of oxygen and water for the crew that must be launched from Earth. The launch mass of life support can be further reduced by developing recycling systems with lower hardware mass and reduced power. The life support consensus has also favored using biological systems. The goal of increasing closure using biological systems suggests that food should be grown in space and that biological processors be used for air, water, and waste recycling. The goal of reducing launch mass led to use of Equivalent System Mass (ESM) in life support advocacy and technology selection. The recent consensus assumes that the recycling systems architecture developed in the 1960s and implemented on ISS will be used on all future long missions. NASA and other project organizations use the standard systems engineering process to guide hardware development. The systems process was used to develop ISS life support, but it has been less emphasized in planning future systems for the moon and Mars. Since such missions are far in the future, there has been less immediate need for systems engineering analysis to consider trade-offs, reliability, and Life Cycle Cost (LCC). Preliminary systems analysis suggests that the life support consensus concepts should be revised to reflect systems engineering requirements.
40 CFR 204.55-3 - Configuration identification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters; (ii) Type of filters. (5) The engine system: (i) Number of cylinders and configuration (L-6, V-8, V-12..., water cooled. (7) Fan: (i) Diameter; (ii) Maximum fan rpm. (8) The compressor enclosure: (i) Height...
40 CFR 204.55-3 - Configuration identification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters; (ii) Type of filters. (5) The engine system: (i) Number of cylinders and configuration (L-6, V-8, V-12..., water cooled. (7) Fan: (i) Diameter; (ii) Maximum fan rpm. (8) The compressor enclosure: (i) Height...
40 CFR 204.55-3 - Configuration identification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters; (ii) Type of filters. (5) The engine system: (i) Number of cylinders and configuration (L-6, V-8, V-12..., water cooled. (7) Fan: (i) Diameter; (ii) Maximum fan rpm. (8) The compressor enclosure: (i) Height...
40 CFR 204.55-3 - Configuration identification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters; (ii) Type of filters. (5) The engine system: (i) Number of cylinders and configuration (L-6, V-8, V-12..., water cooled. (7) Fan: (i) Diameter; (ii) Maximum fan rpm. (8) The compressor enclosure: (i) Height...
Security/Life Safety: A Need for Change.
ERIC Educational Resources Information Center
Ellsworth, Douglas
2003-01-01
In response to legislation, colleges and universities in several states must prepare to install sprinkler systems. Four basic issues an engineering study should examine include: whether the existing water service has the size, capacity, and pressure to support a sprinkler system; whether the protected facility will have to comply with more…
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Shcultz, John R.; Siperko, Lorraine M.; Porter, Marc D,; Lipert, Robert J.; Limardo, Jose G.; McCoy, J. Torin
2009-01-01
Scientists and engineers from the Wyle Integrated Science and Engineering Group are working with researchers at the University of Utah and Iowa State University to develop and certify an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE). The kit will be launched as a Station Development Test Objective (SDTO) experiment and evaluated on the International Space Station (ISS) to determine the acceptability of CSPE technology for routine inflight water quality monitoring. Iodine and silver, the biocides used in the US and Russian on-orbit water systems, will serve as test analytes for the technology evaluation. This manuscript provides an overview of the CSPE SDTO experiment and details the development and certification of the experimental water quality monitoring kit. Initial results from reagent and standard solution stability testing and environmental testing performed on the kit hardware are also reported.
Shinagawa, Tatsuya; Takanabe, Kazuhiro
2017-04-10
Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. Electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible, and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances under which the water splitting reaction is conducted, the required solution conditions, such as the identity and molarity of ions, may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate the development of efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), affect electrode stability, and/or indirectly impact the performance by influencing the concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Thermally regenerative hydrogen/oxygen fuel cell power cycles
NASA Technical Reports Server (NTRS)
Morehouse, J. H.
1986-01-01
Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-26
... Discontinuance or Modification of a Railroad Signal System Pursuant to Title 49 Code of Federal Regulations (CFR... Administration (FRA), seeking approval for the discontinuance or modification of the signal system or relief from... Transportation, Inc., Mr. Joseph S. Ivanyo, Chief Engineer, Communications and Signals, 500 Water Street, SC J...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-10
... Discontinuance or Modification of a Railroad Signal System [Docket Number FRA-2010-0163] In accordance with part... of a signal system. FRA assigned the petition Docket Number FRA-2010-0163. Applicants: Mr. Joseph S. Ivanyo, Chief Engineer, Communications and Signals, CSX Transportation, Inc., 500 Water Street--SC J-350...
15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE ...
15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE IS USED TO CONTROL AIR FLOW AND WATER FLOW TO THE UNDERWATER SPACE SUIT DURING THE TEST. THE SUIT SYSTEMS ENGINEER MONITORS AIR FLOW ON THE PANEL TO THE LEFT, AND SUIT DATA ON THE COMPUTER MONITOR JUST SLIGHTLY TO HIS LEFT. WATER FLOW IS MONITORED ON THE PANEL JUST SLIGHTLY TO HIS RIGHT AND TEST VIDEO TO HIS FAR RIGHT. THE DECK CHIEF MONITORS THE DIVER'S DIVE TIMES ON THE COMPUTER IN THE UPPER RIGHT. THE DECK CHIEF LOGS THEM IN AS THEY ENTER THE WATER, AND LOGS THEM OUT AS THEY EXIT THE WATER. THE COMPUTER CALCULATES TOTAL DIVE TIME. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
Batterman, Stuart; Eisenberg, Joseph; Hardin, Rebecca; Kruk, Margaret E.; Lemos, Maria Carmen; Michalak, Anna M.; Mukherjee, Bhramar; Renne, Elisha; Stein, Howard; Watkins, Cristy; Wilson, Mark L.
2009-01-01
Objective Even when initially successful, many interventions aimed at reducing the toll of water-related infectious disease have not been sustainable over longer periods of time. Here we review historical practices in water-related infectious disease research and propose an interdisciplinary public health oriented systems approach to research and intervention design. Data sources On the basis of the literature and the authors’ experiences, we summarize contributions from key disciplines and identify common problems and trends. Practices in developing countries, where the disease burden is the most severe, are emphasized. Data extraction We define waterborne and water-associated vectorborne diseases and identify disciplinary themes and conceptual needs by drawing from ecologic, anthropologic, engineering, political/economic, and public health fields. A case study examines one of the classes of water-related infectious disease. Data synthesis The limited success in designing sustainable interventions is attributable to factors that include the complexity and interactions among the social, ecologic, engineering, political/economic, and public health domains; incomplete data; a lack of relevant indicators; and most important, an inadequate understanding of the proximal and distal factors that cause water-related infectious disease. Fundamental change is needed for research on water-related infectious diseases, and we advocate a systems approach framework using an ongoing evidence-based health outcomes focus with an extended time horizon. The examples and case study in the review show many opportunities for interdisciplinary collaborations, data fusion techniques, and other advances. Conclusions The proposed framework will facilitate research by addressing the complexity and divergent scales of problems and by engaging scientists in the disciplines needed to tackle these difficult problems. Such research can enhance the prevention and control of water-related infectious diseases in a manner that is sustainable and focused on public health outcomes. PMID:19654908
Evolving water science in the Anthropocene
NASA Astrophysics Data System (ADS)
Savenije, H. H. G.; Hoekstra, A. Y.; van der Zaag, P.
2013-06-01
This paper reviews the changing relation between man and water since the industrial revolution, the period that has been called the Anthropocene because of the unprecedented scale at which humans have altered the planet. We show how the rapidly changing reality urges us to continuously improve our understanding of the complex interactions between man and the water system. The paper starts with demonstrating that hydrology and the science of water resources management have played key roles in human and economic development throughout history; yet these roles have often been marginalised or obscured. Knowledge on hydrology and water resources engineering and management helped to transform the landscape, and thus also the very hydrology within catchments itself. It is only fairly recent that water experts have become self-conscious of such mechanisms, exemplified by several concepts that try to internalise them (integrated water resources management, eco-hydrology, socio-hydrology). We have reached a stage where a more systemic understanding of scale interdependencies can inform the sustainable governance of water systems, using new concepts like precipitationsheds, virtual water transfers, water footprint and water value flow.
1978-07-01
horizontally mounted, single-end suction, single- stage centrifugal pumps. The rotating elements are mounted on the shaft of the driving motor, and the pump...annual open-and-inspect requirement for MIP E-17/296-21, MRC 21 A14V A. Industrial Facility Improvements -- None IMA Improvements -- None Intergrated ...Circulating Pump, Warren Pumps, Inc., NAVSHIPS 347-3146, January 1959. 4. Technical Manual - Horizontal Close-Co!;pled Pumps Sea (Salt) Water
2012-03-01
Revit object IFCExportType IFCExportAs Radiator Radiator IfcSpaceHeaterType Pump Circulator IfcPumpType Boiler Water IfcBoilerType Fan VaneAxial...modeling is assumed to be a traditional water-based system comprised of boilers and fan coil units (heating) and chillers and air handling units...the properties that a particular engineer would want to specify as part of the BIM model. For instance, the default pump families in Revit do not
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. MSFC identified a problematic cooling loop with six separate compressor heat exchangers and a history of poor efficiency. The facility engineering team at MSFC partnered with Flozone Services, Incorporated to implement a comprehensive water treatment platform to improve the overall efficiency of the system.
Navy Irregular Warfare and Counterterrorism Operations: Background and Issues for Congress
2016-05-27
ordnance disposal (counter- IED), combat construction engineering , cargo handling, combat logistics, maritime security, detainee operations, customs...Rutherford, “Navy’s Maritime Domain Awareness System ‘Up And Running’,” Defense Daily, September 4, 2008; and Dan Taylor , “New Network Allows Navy To...with twin diesel engines and water jets. It has a range of 600 nautical miles. 34 Other Organizational Initiatives Other Navy initiatives in recent
NASA Astrophysics Data System (ADS)
Bauke, Stephan; Golibrzuch, Kai; Wackerbarth, Hainer; Fendt, Peter; Zigan, Lars; Seefeldt, Stefan; Thiele, Olaf; Berg, Thomas
2018-05-01
Lowering greenhouse gas emissions is one of the most challenging demands of today's society. Especially, the automotive industry struggles with the development of more efficient internal combustion (IC) engines. As an alternative to conventional fuels, methane has the potential for a significant emission reduction. In methane fuelled engines, the process of mixture formation, which determines the properties of combustion after ignition, differs significantly from gasoline and diesel engines and needs to be understood and controlled in order to develop engines with high efficiency. This work demonstrates the development of a gas sensing system that can serve as a diagnostic tool for measuring crank-angle resolved relative air-fuel ratios in methane-fuelled near-production IC engines. By application of non-dispersive infrared absorption spectroscopy at two distinct spectral regions in the ν3 absorption band of methane around 3.3 μm, the system is able to determine fuel density and temperature simultaneously. A modified spark plug probe allows for straightforward application at engine test stations. Here, the application of the detection system in a rapid compression machine is presented, which enables validation and characterization of the system on well-defined gas mixtures under engine-like dynamic conditions. In extension to a recent proof-of-principle study, a refined data analysis procedure is introduced that allows the correction of artefacts originating from mechanical distortions of the sensor probe. In addition, the measured temperatures are compared to data obtained with a commercially available system based on the spectrally resolved detection of water absorption in the near infrared.
NASA Astrophysics Data System (ADS)
Aktan, A. Emin
2003-08-01
Although the interconnected systems nature of the infrastructures, and the complexity of interactions between their engineered, socio-technical and natural constituents have been recognized for some time, the principles of effectively operating, protecting and preserving such systems by taking full advantage of "modeling, simulations, optimization, control and decision making" tools developed by the systems engineering and operations research community have not been adequately studied or discussed by many engineers including the writer. Differential and linear equation systems, numerical and finite element modeling techniques, statistical and probabilistic representations are universal, however, different disciplines have developed their distinct approaches to conceptualizing, idealizing and modeling the systems they commonly deal with. The challenge is in adapting and integrating deterministic and stochastic, geometric and numerical, physics-based and "soft (data-or-knowledge based)", macroscopic or microscopic models developed by various disciplines for simulating infrastructure systems. There is a lot to be learned by studying how different disciplines have studied, improved and optimized the systems relating to various processes and products in their domains. Operations research has become a fifty-year old discipline addressing complex systems problems. Its mathematical tools range from linear programming to decision processes and game theory. These tools are used extensively in management and finance, as well as by industrial engineers for optimizing and quality control. Progressive civil engineering academic programs have adopted "systems engineering" as a focal area. However, most of the civil engineering systems programs remain focused on constructing and analyzing highly idealized, often generic models relating to the planning or operation of transportation, water or waste systems, maintenance management, waste management or general infrastructure hazards risk management. We further note that in the last decade there have been efforts for "agent-based" modeling of synthetic infrastructure systems by taking advantage of supercomputers at various DOE Laboratories. However, whether there is any similitude between such synthetic and actual systems needs investigating further.
Use of a storm water retention system for conservation of regionally endangered fishes
Schaeffer, Jeffrey S.; Bland, James K.; Janssen, John
2012-01-01
Maintaining aquatic biodiversity in urban or suburban areas can be problematic because urban landscapes can be nearly devoid of aquatic habitats other than engineered basins for storm water management. These areas are usually of questionable value for fish, but we examined a case study in which five regionally imperiled fish species were reintroduced into an artificial storm water detention pond and subsequently thrived. Although not a formal experiment, postintroduction survey data suggested that three of the five species maintained high population densities for 10 years after initial stocking, and two persisted in lower numbers. Success was likely due to a combination of unique design features and prior habitat preparation that resulted in clear water conditions that supported dense vegetation. Stocked fish persisted despite occasional bouts of low dissolved oxygen and increased chloride levels resulting from road salt application within the watershed. Transplanted fish served as a source population for both research and further reintroduction experiments. We suggest that, for some fish species, habitat preservation has a middle ground between natural habitats and completely artificial environments that require constant husbandry and that storm water systems could be used to create engineered sanctuaries within the human landscape that have many potential benefits for both humans and fish.
14 CFR 23.1091 - Air induction system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... indicate to the flight crew when it is not closed. (c) For turbine engine powered airplanes— (1) There must... designed to prevent water or slush on the runway, taxiway, or other airport operating surfaces from being...
14 CFR 23.1091 - Air induction system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... indicate to the flight crew when it is not closed. (c) For turbine engine powered airplanes— (1) There must... designed to prevent water or slush on the runway, taxiway, or other airport operating surfaces from being...
14 CFR 23.1091 - Air induction system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... indicate to the flight crew when it is not closed. (c) For turbine engine powered airplanes— (1) There must... designed to prevent water or slush on the runway, taxiway, or other airport operating surfaces from being...
14 CFR 23.1091 - Air induction system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... indicate to the flight crew when it is not closed. (c) For turbine engine powered airplanes— (1) There must... designed to prevent water or slush on the runway, taxiway, or other airport operating surfaces from being...
ERIC Educational Resources Information Center
Smithsonian Institution, Washington, DC. Science Information Exchange.
Described are 2,589 research projects under the general headings of: Properties of Water, Water Motion, Meteorology, Survey and Prediction, Living Systems (non-human), Public Health and Safety, Marine Geology, Engineering and Technology, Costal Zone Management and Use, Legal Studies, Education and Training, and Facilities. Each description…
Expedition Six Flight Engineer Pettit uses a chemical/microbial analysis bag to collect water sample
2002-12-18
ISS006-E-08628 (18 December 2002) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, is pictured in the Zvezda Service Module on the International Space Station (ISS) during the scheduled Week 3 potable water sampling and on-orbit chemical/microbial analysis of the SM environment control and life support system.
Expedition Six Flight Engineer Pettit uses a chemical/microbial analysis bag to collect water sample
2002-12-18
ISS006-E-08616 (18 December 2002) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, is pictured in the Zvezda Service Module on the International Space Station (ISS) during the scheduled Week 3 potable water sampling and on-orbit chemical/microbial analysis of the SM environment control and life support system.
The Parable of the Boiled System Safety Professional: Drift to Failure
NASA Technical Reports Server (NTRS)
Shivers, C. Herbert
2011-01-01
Recall from the Parable of the Boiled Frog, that tossing a frog into boiling water causes the frog to jump out and hop away while placing a frog in suitable temperature water and slowly bringing the water to a boil results in the frog boiling due to not being aware of the slowly increasing danger, theoretically, of course. System safety professionals must guard against allowing dangers to creep unnoticed into their projects and be ever alert to notice signs of impending problems. People have used various phrases related to the idea, most notably, latent conditions, James Reason in Managing the Risks of Organizational Accidents (1, pp 10-11), Drift to Failure, Sydney Dekker (2, pp 82-86) in Resilience Engineering: Chronicling the Emergence of Confused Consensus in Resilience Engineering: Concepts and Precepts, Hollnagel, Woods and Leveson, and normalization of deviance, Diane Vaughan in The Challenger Launch Decision: Risky Technology, Culture, and Deviance at NASA (3). Reason also said, If eternal vigilance is the price of liberty, then chronic unease is the price of safety (1, p 37). Our challenge as system safety professionals is to be aware of the emergence of signals that warn us of slowly eroding safety margins. This paper will discuss how system safety professionals might better perform in that regard.
NASA Astrophysics Data System (ADS)
Jang, J. Y.; Chi, G. X.
2017-02-01
In a liquid-cooled engine, coolant is pumped throughout the water jacket of the engine, drawing heat from the cylinder head, pistons, combustion chambers, cylinder walls, and valves, etc. If the engine temperature is too high or too low, various problems will occur. These include overheating of the lubricating oil and engine parts, excessive stresses between engine parts, loss of power, incomplete burning of fuel, etc. Thus, the engine should be maintained at the proper operating temperature. This study investigated the effects of different cylinder head gasket opening on the engine temperature distributions in a water-cooled motorcycle engine. The numerical predictions for the temperature distribution are in good agreement with the experimental data within 20%.
NASA Astrophysics Data System (ADS)
Bonner, J.; Brezonik, P.; Clesceri, N.; Gouldman, C.; Jamail, R.; Zilkoski, D.
2006-12-01
The Integrated Ocean Observing System (IOOS), established through the efforts of the National Office for Integrated and Sustained Ocean Observations (Oceans.US) provides quality controlled data and information on a routine and continuous basis regarding current and future states of the oceans and Great Lakes at scales from global ocean basins to coastal ecosystems. The seven societal goals of IOOS are outlined in this paper. The Engineering and Geosciences Directorates at the National Science Foundation (NSF) are collaborating in planning the WATERS (WATer Environmental Research System) Network, an outgrowth of earlier, separate initiatives of the two directorates: CLEANER (Collaborative Large-scale Engineering Analysis Network for Environmental Research) and Hydrologic Observatories. WATERS Network is being developed by engineers and scientists in the academic community who recognize the need for an observation and research network to enable better understanding of human-dominated water-environments, their stressors, and the links between them. The WATERS Network model is based on a research framework anchored in a distributed, cyber-based network supporting: 1) data collection; 2) data aggregation; 3) analytical and exploratory tools; and 4) a computational environment supporting predictive modeling and policy analysis on water resource systems. Within IOOS, the U.S. coastal margin is divided into Regional Associations (RAs), organizational units that are conceptually linked through planned data collection and analysis activities for resolving fundamental coastal margin ecosystem questions and addressing RA concerns. Under the WATERS Network scheme, a Coastal Margin Regional Environmental System (RES) for coastal areas would be defined conceptually based on geomorphologic considerations of four major water bodies; Atlantic and Pacific Oceans, Gulf of Mexico, and Laurentian Great Lakes. Within this framework, each coastal margin would operate one or more local environmental field facilities (or observatories). Mutual coordination and collaboration would exist among these coasts through RES interactions based on a cyberinfrastructure supporting all aspects of quantitative analysis. Because the U.S. Ocean Action Plan refers to the creation of a National Water Quality Monitoring Network, a close liaison between IOOS and WATERS Network could be mutually advantageous considering the shared visions, goals and objectives. A focus on activities and initiatives involving sensor and sensor networks for coastal margin observation and assessment would be a specific instance of this liaison, leveraging the infrastructural base of both organizations to maximize resource allocation. This coordinated venture with intelligent environmental systems would include new specialized coastal monitoring networks, and management of near-real-time data, including data assimilation models. An ongoing NSF planning grant aimed at environmental observatory design for coastal margins is a component of the broader WATERS Network planning for collaborative research to support adaptive and sustainable environmental management. We propose a collaborative framework between IOOS and WATERS Network wherein collaborative research will be enabled by cybernetworks to support adaptive and sustainable management of the coastal regions.
International Space Station (ISS)
2001-02-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the fifth generation Urine Processor Development Hardware. The Urine Processor Assembly (UPA) is a part of the Water Recovery System (WRS) on the ISS. It uses a chase change process called vapor compression distillation technology to remove contaminants from urine. The UPA accepts and processes pretreated crewmember urine to allow it to be processed along with other wastewaters in the Water Processor Assembly (WPA). The WPA removes free gas, organic, and nonorganic constituents before the water goes through a series of multifiltration beds for further purification. Product water quality is monitored primarily through conductivity measurements. Unacceptable water is sent back through the WPA for reprocessing. Clean water is sent to a storage tank.
) Water rights and resources engineering Database planning and development Research Interests Collection lean principles to streamline exploration and drilling and reduce error/risk Research, development and Groundwater modeling Quantitative methods in water resource engineering Water resource engineering and
NASA Technical Reports Server (NTRS)
Wallace, J. W.; Lovelady, R. W.; Ferguson, R. L.
1981-01-01
A prototype water quality monitoring system is described which offers almost continuous in situ monitoring. The two-man portable system features: (1) a microprocessor controlled central processing unit which allows preprogrammed sampling schedules and reprogramming in situ; (2) a subsurface unit for multiple depth capability and security from vandalism; (3) an acoustic data link for communications between the subsurface unit and the surface control unit; (4) eight water quality parameter sensors; (5) a nonvolatile magnetic bubble memory which prevents data loss in the event of power interruption; (6) a rechargeable power supply sufficient for 2 weeks of unattended operation; (7) a water sampler which can collect samples for laboratory analysis; (8) data output in direct engineering units on printed tape or through a computer compatible link; (9) internal electronic calibration eliminating external sensor adjustment; and (10) acoustic location and recovery systems. Data obtained in Saginaw Bay, Lake Huron are tabulated.
Clean Water for Remote Locations
NASA Technical Reports Server (NTRS)
2006-01-01
Marshall Space Flight Center engineers are working on creating the Regenerative Environmental Control and Life Support System, a complex system of devices intended to sustain the astronauts living on the ISS and, in the future, sustain those who are blasting off to the Moon or Mars. The devices make use of the available resources, by turning wastewater from respiration, sweat, and urine into drinkable water. One of the devices that Marshall has been working on is the Water Recovery System (WRS). Marshall has teamed with long-time NASA contractor, Hamilton Sundstrand Space Systems International, Inc., of Windsor Locks, Connecticut. Hamilton Sundstrand, the original designer of the life support devices for the space suits, developed the Water Processor Assembly (WPA). It, along with the Urine Processor Assembly (UPA) developed by Marshall, combines to make up the total system, which is about the size of two refrigerators, and will support up to a six-member crew. The system is currently undergoing final testing and verification. "The Water Processor Assembly can produce up to about 28 gallons of potable recycled water each day," said Bob Bagdigian, Marshall Regenerative Environmental Control and Life Support System project manager. After the new systems are installed, annual delivered water to the ISS should decrease by approximately 15,960 pounds, or about 1,600 gallons.
Many-objective optimization and visual analytics reveal key trade-offs for London's water supply
NASA Astrophysics Data System (ADS)
Matrosov, Evgenii S.; Huskova, Ivana; Kasprzyk, Joseph R.; Harou, Julien J.; Lambert, Chris; Reed, Patrick M.
2015-12-01
In this study, we link a water resource management simulator to multi-objective search to reveal the key trade-offs inherent in planning a real-world water resource system. We consider new supplies and demand management (conservation) options while seeking to elucidate the trade-offs between the best portfolios of schemes to satisfy projected water demands. Alternative system designs are evaluated using performance measures that minimize capital and operating costs and energy use while maximizing resilience, engineering and environmental metrics, subject to supply reliability constraints. Our analysis shows many-objective evolutionary optimization coupled with state-of-the art visual analytics can help planners discover more diverse water supply system designs and better understand their inherent trade-offs. The approach is used to explore future water supply options for the Thames water resource system (including London's water supply). New supply options include a new reservoir, water transfers, artificial recharge, wastewater reuse and brackish groundwater desalination. Demand management options include leakage reduction, compulsory metering and seasonal tariffs. The Thames system's Pareto approximate portfolios cluster into distinct groups of water supply options; for example implementing a pipe refurbishment program leads to higher capital costs but greater reliability. This study highlights that traditional least-cost reliability constrained design of water supply systems masks asset combinations whose benefits only become apparent when more planning objectives are considered.
NASA Technical Reports Server (NTRS)
Bazley, Jesse
2015-01-01
The International Space Station's (ISS) Regenerative Environmental Control and Life Support System (ECLSS) was launched in 2008 to continuously recycle urine and crew sweat into drinking water and oxygen using brand new technologies. This functionality was highly important to the ability of the ISS to transition to the long-term goal of 6-crew operations as well as being critical tests for long-term space habitability. Through the initial activation and long-term operations of these systems, important lessons were learned about the importance of system redundancy and operational workarounds that allow Systems Engineers to maintain functionality with limited on-orbit spares. This presentation will share some of these lessons learned including how to balance water through the different systems, store and use water for use in system failures and creating procedures to operate the systems in ways that they were not initially designed to do.
NASA Astrophysics Data System (ADS)
Chen, Shaobin; Zhang, Xubo; Wang, Wenyuan; Zhou, Chengping; Ding, Mingyue
2007-11-01
Nowadays many Geographic Information System (GIS) have been widely used in many municipal corporations. Water-supplying corporations in many cities developed GIS application system based on SiCAD/Open GIS platform several years ago for their daily management and engineering construction. With the increasing of commercial business, many corporations now need to add the functionality of three dimensional to display to their GIS System without too much financial cost. Because of the expensiveness of updating SiCAD/Open GIS system to the up-to-date version, the introduction of a third-part 3D display technology is considered. In our solution, Visualization Toolkit (VTK) is used to achieve three dimensional display of underground water-supplying network on the basis of an existing SiCAD/Open GIS system. This paper addresses on the system architecture and key implementation technologies of this solution.
Integrating Global Hydrology Into Graduate Engineering Education and Research
NASA Astrophysics Data System (ADS)
Griffis, V. W.
2007-12-01
Worldwide, polluted water affects the health of 1.2 billion people and contributes to the death of 15 million children under five every year. In addition poor environmental quality contributes to 25 per cent of all preventable ill health in the world. To address some of these problems, at the 2002 World Summit on Sustainable Development, the world community set the goal of halving, by the year 2015, the proportion of people without access to safe drinking water and basic sanitation. Solving sanitation and water resource management problems in any part of the world presents an interdisciplinary, complex challenge. However, when we attempt to solve these problems in an international context, our technical approaches must be tempered with cultural sensitivity and extraordinary management strategies. To meet this challenge, Michigan Tech has developed a unique global partnership with the U.S. Peace Corps to address our acknowledgement of the importance of placing engineering solutions in a global context. The program has graduated 30 students. Program enrollment is now over 30 and over 20 countries have hosted our students. The objective of this presentation is to demonstrate how this unique partnership can be integrated with graduate engineering education and research and also show how such a program may attract a more diverse student population into engineering. All graduate students enrolled in our Master's International Program in Civil and Environmental Engineering must complete specific coursework requirements before departing for their international experience. In CE5993 (Field Engineering in the Developing World) students learn to apply concepts of sustainable development and appropriate technology in the developing world. In FW5770 (Rural Community Development Planning and Analysis) students learn how one involves a community in the decision making process. A common theme in both courses is the role of woman in successful development projects. Technical specialization allows a student to take coursework in hydrology, water planning and management, and water quality engineering. The 2-3 semester residence on campus is then followed by three months of cultural, language, and technical training with the Peace Corps. After training students complete two years of service in the Peace Corps, typically working as a water/sanitation engineer while also completing a research project related to their Peace Corps experience. Some unique aspects of the Peace Corps experience is that it provides students with cultural awareness, language proficiency, community organizing skills, skills in consensus building and sustainable development, appreciation for technology that is economically and culturally sensitive, and a long-term field experience to develop an indepth overseas research project. Perhaps one of the greatest aspects of the Peace Corps experience is it provides students a basis to consider the social, economic, and environmental limitations of water projects in the developing world. Some examples of research projects that have been integrated into this program are: (a) culturally appropriate watershed planning and management, (b) technical capacity building of water supply systems, and (c) life cycle thinking approach applied to water and sanitation projects.
Rollinson, Andrew N.
2016-01-01
This article tells the story of engineering and technology at Castleford Water Mills from the seventeenth century to the twentieth century through the presentation of recently discovered design plans and deeds, supplemented by other historical research. One of Castleford's mills was operated by Dr Thomas Allinson's Natural Food Company and therefore retained stoneground milling when fashions for white flour prompted other mills to switch to roller systems. The millstones were powered by a high-efficiency breastshot wheel, believed to be the last of its type taken out of industrial service in Britain. Many of its features, and its subsequent longevity, can be attributed to the influential works of William Fairbairn and John Smeaton. Detailed colour designs show the construction specifications of this water-wheel and its civil housing, along with other engineering plans such as a previously unrecorded Henry Simon horizontal turbine. Links with John Smeaton and the entry in his catalogue of designs for Castleford Oil Mill are also explored, and a former flood mill is identified at the site.
Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940-2007
Meade, R.H.; Moody, J.A.
2010-01-01
Before 1900, the Missouri-Mississippi River system transported an estimated 400 million metric tons per year of sediment from the interior of the United States to coastal Louisiana. During the last two decades (1987-2006), this transport has averaged 145 million metric tons per year. The cause for this substantial decrease in sediment has been attributed to the trapping characteristics of dams constructed on the muddy part of the Missouri River during the 1950s. However, reexamination of more than 60 years of water- and sediment-discharge data indicates that the dams alone are not the sole cause. These dams trap about 100-150 million metric tons per year, which represent about half the decrease in sediment discharge near the mouth of the Mississippi. Changes in relations between water discharge and suspended-sediment concentration suggest that the Missouri-Mississippi has been transformed from a transport-limited to a supply-limited system. Thus, other engineering activities such as meander cutoffs, river-training structures, and bank revetments as well as soil erosion controls have trapped sediment, eliminated sediment sources, or protected sediment that was once available for transport episodically throughout the year. Removing major engineering structures such as dams probably would not restore sediment discharges to pre-1900 state, mainly because of the numerous smaller engineering structures and other soil-retention works throughout the Missouri-Mississippi system. ?? 2009 John Wiley & Sons, Ltd.
10. RW Meyer Sugar Mill: 18761889. Simple, singlecylinder, horizontal, reciprocating ...
10. RW Meyer Sugar Mill: 1876-1889. Simple, single-cylinder, horizontal, reciprocating steam engine, model No. 1, 5' x 10', 6 hp, 175 rpm. Manufactured by Ames Iron Works, Oswego, New York, 1879. View: Steam engine powered the mill's centrifugals. To the left of the horizontal (fluted) cylinder is the water pump which moved the boiler feed water through the engine's pre-heat system (the exhaust steam heated the boiler feedwater before it was pumped on to the boiler). The steam-feed port, manual throttle valve, and fly-ball governor and pulley and to the right of the cylinder. The drive shaft with flywheel to the left and pulley to the right are seen behind the piston rod, cross-head, wrist pen, connecting rod and the slide valve and eccentric. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murav’ev, V. P., E-mail: murval1@mail.ru; Kochetkov, A. V.; Glazova, E. G.
A mathematical model and algorithms are proposed for automatic calculation of the optimum flow rate of cooling water in nuclear and thermal power plants with cooling systems of arbitrary complexity. An unlimited number of configuration and design variants are assumed with the possibility of obtaining a result for any computational time interval, from monthly to hourly. The structural solutions corresponding to an optimum cooling water flow rate can be used for subsequent engineering-economic evaluation of the best cooling system variant. The computerized mathematical model and algorithms make it possible to determine the availability and degree of structural changes for themore » cooling system in all stages of the life cycle of a plant.« less
Enhancements to the EPANET-RTX (Real-Time Analytics) ...
Technical brief and software The U.S. Environmental Protection Agency (EPA) developed EPANET-RTX as a collection of object-oriented software libraries comprising the core data access, data transformation, and data synthesis (real-time analytics) components of a real-time hydraulic and water quality modeling system. While EPANET-RTX uses the hydraulic and water quality solvers of EPANET, the object libraries are a self-contained set of building blocks for software developers. “Real-time EPANET” promises to change the way water utilities, commercial vendors, engineers, and the water community think about modeling.
Performance Testing of the Vapor Phase Catalytic Ammonia Removal Engineering Development Unit
NASA Technical Reports Server (NTRS)
Flynn, Michael; Tleimat, Maher; Nalette, Tim; Quinn, Gregory
2005-01-01
This paper describes the results of performance testing of the Vapor Phase Catalytic Ammonia Removal (VPCAR) technology. The VPCAR technology is currently being developed by NASA as a Mars transit vehicle water recycling system. NASA has recently completed-a grant-to develop a next generation VPCAR system. This grant concluded with the shipment of the final deliverable to NASA on 8/31/03. This paper presents the results of mass, power, volume, and acoustic measurements for the delivered system. Product water purity analysis for a Mars transit mission and a simulated planetary base wastewater ersatz are also provided.
LeChevallier, Mark W; Gullick, Richard W; Karim, Mohammad R; Friedman, Melinda; Funk, James E
2003-03-01
The potential for public health risks associated with intrusion of contaminants into water supply distribution systems resulting from transient low or negative pressures is assessed. It is shown that transient pressure events occur in distribution systems; that during these negative pressure events pipeline leaks provide a potential portal for entry of groundwater into treated drinking water; and that faecal indicators and culturable human viruses are present in the soil and water exterior to the distribution system. To date, all observed negative pressure events have been related to power outages or other pump shutdowns. Although there are insufficient data to indicate whether pressure transients are a substantial source of risk to water quality in the distribution system, mitigation techniques can be implemented, principally the maintenance of an effective disinfectant residual throughout the distribution system, leak control, redesign of air relief venting, and more rigorous application of existing engineering standards. Use of high-speed pressure data loggers and surge modelling may have some merit, but more research is needed.
2013-07-30
ISS036-E-027387 (29 July 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, performs maintenance on the Water Pump Assembly 2 / Thermal Control System (WPA2/TCS) in the Columbus laboratory of the International Space Station.
2013-07-30
ISS036-E-027389 (29 July 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, performs maintenance on the Water Pump Assembly 2 / Thermal Control System (WPA2/TCS) in the Columbus laboratory of the International Space Station.
46 CFR 162.060-30 - Testing requirements for ballast water management system (BWMS) components.
Code of Federal Regulations, 2013 CFR
2013-10-01
... production configuration: (1) A resonance search vertically up and down, horizontally from side to side, and...) Components that may be installed in enclosed spaces that are environmentally controlled, including an engine...
46 CFR 162.060-30 - Testing requirements for ballast water management system (BWMS) components.
Code of Federal Regulations, 2014 CFR
2014-10-01
... production configuration: (1) A resonance search vertically up and down, horizontally from side to side, and...) Components that may be installed in enclosed spaces that are environmentally controlled, including an engine...
RFTA (Recycle Filter Tank Assembly) test fill
2009-06-02
ISS020-E-005984 (2 June 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, works with the Water Recovery System Recycle Filter Tank Assembly (RFTA) in the Destiny laboratory of the International Space Station.
33 CFR 211.17 - Authority of Division Engineers, Corps of Engineers to settle claims.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Authority of Division Engineers, Corps of Engineers to settle claims. 211.17 Section 211.17 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN...
33 CFR 211.17 - Authority of Division Engineers, Corps of Engineers to settle claims.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Authority of Division Engineers, Corps of Engineers to settle claims. 211.17 Section 211.17 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN...
33 CFR 211.17 - Authority of Division Engineers, Corps of Engineers to settle claims.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Authority of Division Engineers, Corps of Engineers to settle claims. 211.17 Section 211.17 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN...
33 CFR 211.17 - Authority of Division Engineers, Corps of Engineers to settle claims.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Authority of Division Engineers, Corps of Engineers to settle claims. 211.17 Section 211.17 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN...
Dew Point Evaporative Comfort Cooling
2012-11-01
assisting with the installation of the data acquisition system and multiyear performance testing. Fort Carson engineers worked with the project...partners to design and integrate the Coolerado units into five facilities and designed an innovative rain water catchment system for four units at the...Theater. Mountain Energy Partnership provided invaluable assistance with the design and installation of the data acquisition system , as well as data
The use of LANDSAT DCS and imagery in reservoir management and operation
NASA Technical Reports Server (NTRS)
Cooper, S.; Bock, P.; Horowitz, J.; Foran, D.
1975-01-01
Experiments by the New England Division (NED), Corps of Engineers with LANDSAT-1 data collection and imaging systems are reported. Data cover the future usefulness of data products received from satellites such as LANDSAT in the day to day operation of NED water resources systems used to control floods.
Engineering and Design: Fire Protection for Helicopter Hangars
1997-10-15
B-5 4.5 ESFR Sprinkler Systems Design Requirements...Early Suppression Fast Response ( ESFR ) sprinklers operating at a minimum discharge pressure of 345 kPa (50 psi). 3.13.2 Conventional automatic sprinkler...using ESFR sprinklers. 4.1.3 Although foam-water sprinkler systems using AFFF generally provide optimum effectiveness in combating a combustible or