Sample records for engineers esme program

  1. Implementation of the Orbital Maneuvering Systems Engine and Thrust Vector Control for the European Service Module

    NASA Technical Reports Server (NTRS)

    Millard, Jon

    2014-01-01

    The European Space Agency (ESA) has entered into a partnership with the National Aeronautics and Space Administration (NASA) to develop and provide the Service Module (SM) for the Orion Multipurpose Crew Vehicle (MPCV) Program. The European Service Module (ESM) will provide main engine thrust by utilizing the Space Shuttle Program Orbital Maneuvering System Engine (OMS-E). Thrust Vector Control (TVC) of the OMS-E will be provided by the Orbital Maneuvering System (OMS) TVC, also used during the Space Shuttle Program. NASA will be providing the OMS-E and OMS TVC to ESA as Government Furnished Equipment (GFE) to integrate into the ESM. This presentation will describe the OMS-E and OMS TVC and discuss the implementation of the hardware for the ESM.

  2. Environmental Control and Life Support System (ECLSS) System Engineering Workshop

    NASA Technical Reports Server (NTRS)

    Peterson, Laurie J.

    2009-01-01

    This slide presentation begins with a recap on a previous lecture on the ECLSS subsystems, and the various types (i.e., Non-regenerative vs Regenerative, open loop vs closed loop, and physical-chemical vs bioregenerative) It also recaps the Equivalent system mass (ESM) metric. The presentation continues with a review of the ECLSS of the various NASA manned space exploration programs from Mercury, to the current planned Altair lunar landing, and Lunar base operations. There is also a team project to establish the ESM of two conceptualized missions.

  3. Plume Impingement Analysis for the European Service Module Propulsion System

    NASA Technical Reports Server (NTRS)

    Yim, John Tamin; Sibe, Fabien; Ierardo, Nicola

    2014-01-01

    Plume impingement analyses were performed for the European Service Module (ESM) propulsion system Orbital Maneuvering System engine (OMS-E), auxiliary engines, and reaction control system (RCS) engines. The heat flux from plume impingement on the solar arrays and other surfaces are evaluated. This information is used to provide inputs for the ESM thermal analyses and help determine the optimal configuration for the RCS engines.

  4. An Overview of the Concept of Operations for Assembly, Integration, Testing and Ground Servicing Develoed for the MPCV-ESM Propulsion System

    NASA Technical Reports Server (NTRS)

    Bielozer, M.; VanLear, Benjamin S.; Kindred, N.; Monien, G.; Schulte, U.

    2014-01-01

    A concept of operations for the Assembly, Integration and Testing (AIT) and the Ground Systems Development Operations (GSDO) of the European Service Module (ESM) propulsion system has been developed. The AIT concept of operations covers all fabrication, integration and testing activities in both Europe and in the United States. The GSDO Program develops the facilities, equipment, and procedures for the loading of hypergolic propellants, the filling of high-pressure gases, and contingency de-servicing operations for the ESM. NASA and ESA along with the Lockheed Martin and Airbus Space and Defense are currently working together for the EM-1 and EM-2 missions in which the ESM will be flown as part of the Orion Multi-Purpose Crew Vehicle (MPCV). The NASA/ESA SM propulsion team is collaborating with the AIT personnel from ESA/Airbus and NASA/Lockheed Martin to ensure successful integration of the European designed Service Module propulsion system, the Lockheed Martin designed Crew Module Adapter and the heritage Space Shuttle Orbital Maneuvering System Engines (OMS-E) being provided as Government Furnished Equipment (GFE). This paper will provide an overview of the current AIT and GSDO concept of operations for the ESM propulsion system.

  5. An Overview of the Concept of Operations for Assembly, Integration, Testing and Ground Servicing Developed for the MPCV-ESM Propulsion System

    NASA Technical Reports Server (NTRS)

    Bielozer, Matthew C.

    2014-01-01

    A concept of operations for the Assembly, Integration and Testing (AIT) and the Ground Systems Development Operations (GSDO) of the European Service Module (ESM) propulsion system has been developed. The AIT concept of operations covers all fabrication, integration and testing activities in both Europe and in the United States. The GSDO Program develops the facilities, equipment, and procedures for the loading of hypergolic propellants, the filling of high-pressure gases, and contingency de-servicing operations for the ESM. NASA and ESA along with the Lockheed Martin and Airbus Space and Defense are currently working together for the EM-1 and EM-2 missions in which the ESM will be flown as part of the Orion Multi-Purpose Crew Vehicle (MPCV). The NASA/ESA SM propulsion team is collaborating with the AIT personnel from ESA/Airbus and NASA/Lockheed Martin to ensure successful integration of the European designed Service Module propulsion system, the Lockheed Martin designed Crew Module Adapter and the heritage Space Shuttle Orbital Maneuvering System Engines (OMS-E) being provided as Government Furnished Equipment (GFE). This paper will provide an overview of the current AIT and GSDO concept of operations for the ESM propulsion system.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Richard P.; Stamp, Jason E.; Eddy, John P.

    Many critical loads rely on simple backup generation to provide electricity in the event of a power outage. An Energy Surety Microgrid TM can protect against outages caused by single generator failures to improve reliability. An ESM will also provide a host of other benefits, including integration of renewable energy, fuel optimization, and maximizing the value of energy storage. The ESM concept includes a categorization for microgrid value proposi- tions, and quantifies how the investment can be justified during either grid-connected or utility outage conditions. In contrast with many approaches, the ESM approach explic- itly sets requirements based on unlikelymore » extreme conditions, including the need to protect against determined cyber adversaries. During the United States (US) Department of Defense (DOD)/Department of Energy (DOE) Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) effort, the ESM methodology was successfully used to develop the preliminary designs, which direct supported the contracting, construction, and testing for three military bases. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military installations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Melanie Johnson and Harold Sanborn of the U.S. Army Corps of Engineers Construc- tion Engineering Research Laboratory * Experts from the National Renewable Energy Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory« less

  7. CortiQ-based Real-Time Functional Mapping for Epilepsy Surgery.

    PubMed

    Kapeller, Christoph; Korostenskaja, Milena; Prueckl, Robert; Chen, Po-Ching; Lee, Ki Heyeong; Westerveld, Michael; Salinas, Christine M; Cook, Jane C; Baumgartner, James E; Guger, Christoph

    2015-06-01

    To evaluate the use of the cortiQ-based mapping system (g.tec medication engineering GmbH, Austria) for real-time functional mapping (RTFM) and to compare it to results from electrical cortical stimulation mapping (ESM) and functional magnetic resonance imaging (fMRI). Electrocorticographic activity was recorded in 3 male patients with intractable epilepsy by using cortiQ mapping system and analyzed in real time. Activation related to motor, sensory, and receptive language tasks was determined by evaluating the power of the high gamma frequency band (60-170 Hz). The sensitivity and specificity of RTFM were tested against ESM and fMRI results. "Next-neighbor" approach demonstrated [sensitivity/specificity %] (1) RTFM against ESM: 100.00/79.70 for hand motor; 100.00/73.87 for hand sensory; -/87 for language (it was not identified by the ESM); (2) RTFM against fMRI: 100.00/84.4 for hand motor; 66.70/85.35 for hand sensory; and 87.85/77.70 for language. The results of the quantitative "next-neighbor" RTFM evaluation were concordant to those from ESM and fMRI. The RTFM correlates well with localization of hand motor function provided by ESM and fMRI, which may offer added localization in the operating room and guidance for extraoperative ESM mapping. Real-time functional mapping correlates with fMRI language activation when ESM findings are negative. It has fewer limitations than ESM and greater flexibility in activation paradigms and measuring responses.

  8. Development of a Grid-Independent Geos-Chem Chemical Transport Model (v9-02) as an Atmospheric Chemistry Module for Earth System Models

    NASA Technical Reports Server (NTRS)

    Long, M. S.; Yantosca, R.; Nielsen, J. E; Keller, C. A.; Da Silva, A.; Sulprizio, M. P.; Pawson, S.; Jacob, D. J.

    2015-01-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been re-engineered to also serve as an atmospheric chemistry module for Earth system models (ESMs). This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of the GEOSChem scientific code, permitting the exact same GEOSChem code to be used as an ESM module or as a standalone CTM. In this manner, the continual stream of updates contributed by the CTM user community is automatically passed on to the ESM module, which remains state of science and referenced to the latest version of the standard GEOS-Chem CTM. A major step in this re-engineering was to make GEOS-Chem grid independent, i.e., capable of using any geophysical grid specified at run time. GEOS-Chem data sockets were also created for communication between modules and with external ESM code. The grid-independent, ESMF-compatible GEOS-Chem is now the standard version of the GEOS-Chem CTM. It has been implemented as an atmospheric chemistry module into the NASA GEOS- 5 ESM. The coupled GEOS-5-GEOS-Chem system was tested for scalability and performance with a tropospheric oxidant-aerosol simulation (120 coupled species, 66 transported tracers) using 48-240 cores and message-passing interface (MPI) distributed-memory parallelization. Numerical experiments demonstrate that the GEOS-Chem chemistry module scales efficiently for the number of cores tested, with no degradation as the number of cores increases. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemistry module means that the relative cost goes down with increasing number of cores in a massively parallel environment.

  9. Advanced Life Support System Value Metric

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Arnold, James O. (Technical Monitor)

    1999-01-01

    The NASA Advanced Life Support (ALS) Program is required to provide a performance metric to measure its progress in system development. Extensive discussions within the ALS program have reached a consensus. The Equivalent System Mass (ESM) metric has been traditionally used and provides a good summary of the weight, size, and power cost factors of space life support equipment. But ESM assumes that all the systems being traded off exactly meet a fixed performance requirement, so that the value and benefit (readiness, performance, safety, etc.) of all the different systems designs are exactly equal. This is too simplistic. Actual system design concepts are selected using many cost and benefit factors and the system specification is then set accordingly. The ALS program needs a multi-parameter metric including both the ESM and a System Value Metric (SVM). The SVM would include safety, maintainability, reliability, performance, use of cross cutting technology, and commercialization potential. Another major factor in system selection is technology readiness level (TRL), a familiar metric in ALS. The overall ALS system metric that is suggested is a benefit/cost ratio, [SVM + TRL]/ESM, with appropriate weighting and scaling. The total value is the sum of SVM and TRL. Cost is represented by ESM. The paper provides a detailed description and example application of the suggested System Value Metric.

  10. Model implementation for dynamic computation of system cost

    NASA Astrophysics Data System (ADS)

    Levri, J.; Vaccari, D.

    The Advanced Life Support (ALS) Program metric is the ratio of the equivalent system mass (ESM) of a mission based on International Space Station (ISS) technology to the ESM of that same mission based on ALS technology. ESM is a mission cost analog that converts the volume, power, cooling and crewtime requirements of a mission into mass units to compute an estimate of the life support system emplacement cost. Traditionally, ESM has been computed statically, using nominal values for system sizing. However, computation of ESM with static, nominal sizing estimates cannot capture the peak sizing requirements driven by system dynamics. In this paper, a dynamic model for a near-term Mars mission is described. The model is implemented in Matlab/Simulink' for the purpose of dynamically computing ESM. This paper provides a general overview of the crew, food, biomass, waste, water and air blocks in the Simulink' model. Dynamic simulations of the life support system track mass flow, volume and crewtime needs, as well as power and cooling requirement profiles. The mission's ESM is computed, based upon simulation responses. Ultimately, computed ESM values for various system architectures will feed into an optimization search (non-derivative) algorithm to predict parameter combinations that result in reduced objective function values.

  11. Advanced Life Support System Value Metric

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Rasky, Daniel J. (Technical Monitor)

    1999-01-01

    The NASA Advanced Life Support (ALS) Program is required to provide a performance metric to measure its progress in system development. Extensive discussions within the ALS program have led to the following approach. The Equivalent System Mass (ESM) metric has been traditionally used and provides a good summary of the weight, size, and power cost factors of space life support equipment. But ESM assumes that all the systems being traded off exactly meet a fixed performance requirement, so that the value and benefit (readiness, performance, safety, etc.) of all the different systems designs are considered to be exactly equal. This is too simplistic. Actual system design concepts are selected using many cost and benefit factors and the system specification is defined after many trade-offs. The ALS program needs a multi-parameter metric including both the ESM and a System Value Metric (SVM). The SVM would include safety, maintainability, reliability, performance, use of cross cutting technology, and commercialization potential. Another major factor in system selection is technology readiness level (TRL), a familiar metric in ALS. The overall ALS system metric that is suggested is a benefit/cost ratio, SVM/[ESM + function (TRL)], with appropriate weighting and scaling. The total value is given by SVM. Cost is represented by higher ESM and lower TRL. The paper provides a detailed description and example application of a suggested System Value Metric and an overall ALS system metric.

  12. Multiparticle dynamics in the E-phi tracking code ESME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James A. MacLachlan

    2002-06-21

    ESME has developed over a twenty year period from its origins as a program for modeling rf gymnastics to a rather general facility for that fraction of beam dynamics of synchrotrons and storage rings which can be properly treated in the two dimensional longitudinal phase space. The features of this program which serve particularly for multiparticle calculations are described, some underling principles are noted, and illustrative results are given.

  13. Multiparticle Dynamics in the E-φ Tracking Code ESME

    NASA Astrophysics Data System (ADS)

    MacLachlan, James A.

    2002-12-01

    ESME has developed over a twenty year period from its origins as a program for modeling rf gymnastics to a rather general facility for that fraction of beam dynamics of synchrotrons and storage rings which can be properly treated in the two dimensional longitudinal phase space. The features of this program which serve particularly for multiparticle calculations are described, some uderlying principles are noted, and illustrative results are given.

  14. The Earth System Documentation (ES-DOC) project

    NASA Astrophysics Data System (ADS)

    Murphy, S.; Greenslade, M. A.; Treshansky, A.; DeLuca, C.; Guilyardi, E.; Denvil, S.

    2013-12-01

    Earth System Documentation (ES-DOC) is an international project supplying high quality tools and services in support of Earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation ecosystem that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software, and applies a software development methodology that places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system. Within this context ES-DOC leverages the emerging Common Information Model (CIM) metadata standard, which has supported the following projects: ** Coupled Model Inter-comparison Project Phase 5 (CMIP5); ** Dynamical Core Model Inter-comparison Project (DCMIP-2012); ** National Climate Predictions and Projections Platforms (NCPP) Quantitative Evaluation of Downscaling Workshop (QED-2013). This presentation will introduce the project to a wider audience and will demonstrate the current production level capabilities of the eco-system: ** An ESM documentation Viewer embeddable into any website; ** An ESM Questionnaire configurable on a project by project basis; ** An ESM comparison tool reusable across projects; ** An ESM visualization tool reusable across projects; ** A search engine for speedily accessing published documentation; ** Libraries for streamlining document creation, validation and publishing pipelines.

  15. Automatic integration of data from dissimilar sensors

    NASA Astrophysics Data System (ADS)

    Citrin, W. I.; Proue, R. W.; Thomas, J. W.

    The present investigation is concerned with the automatic integration of radar and electronic support measures (ESM) sensor data, and with the development of a method for the automatical integration of identification friend or foe (IFF) and radar sensor data. On the basis of the two considered proojects, significant advances have been made in the areas of sensor data integration. It is pointed out that the log likelihood approach in sensor data correlation is appropriate for both similar and dissimilar sensor data. Attention is given to the real time integration of radar and ESM sensor data, and a radar ESM correlation simulation program.

  16. Technology Investments in the NASA Entry Systems Modeling Project

    NASA Technical Reports Server (NTRS)

    Barnhardt, Michael; Wright, Michael; Hughes, Monica

    2017-01-01

    The Entry Systems Modeling (ESM) technology development project, initiated in 2012 under NASAs Game Changing Development (GCD) Program, is engaged in maturation of fundamental research developing aerosciences, materials, and integrated systems products for entry, descent, and landing(EDL)technologies [1]. To date, the ESM project has published over 200 papers in these areas, comprising the bulk of NASAs research program for EDL modeling. This presentation will provide an overview of the projects successes and challenges, and an assessment of future investments in EDL modeling and simulation relevant to NASAs mission

  17. Electronic screen media for persons with autism spectrum disorders: results of a survey.

    PubMed

    Shane, Howard C; Albert, Patti Ducoff

    2008-09-01

    Social and anecdotal reports suggest a predilection for visual media among individuals on the autism spectrum, yet no formal investigation has explored the extent of that use. Using a distributed questionnaire design, parents and caregivers report on time allotted toward media, including observable behaviors and communicative responses. More time was spent engaged with electronic screen media (ESM) than any other leisure activity. Television and movie viewing was more popular than computer usage. Across media platforms, animated programs were more highly preferred. Prevalent verbal and physical imitation was reported to occur during and following exposure to ESM. Clinical implications to strategically incorporate ESM into learning approaches for children with autism spectrum disorders (ASD) are provided.

  18. Microgrid Design Analysis Using Technology Management Optimization and the Performance Reliability Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamp, Jason E.; Eddy, John P.; Jensen, Richard P.

    Microgrids are a focus of localized energy production that support resiliency, security, local con- trol, and increased access to renewable resources (among other potential benefits). The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capa- bility Technology Demonstration (JCTD) program between the Department of Defense (DOD), Department of Energy (DOE), and Department of Homeland Security (DHS) resulted in the pre- liminary design and deployment of three microgrids at military installations. This paper is focused on the analysis process and supporting software used to determine optimal designs for energy surety microgrids (ESMs) in the SPIDERS project. There aremore » two key pieces of software, an ex- isting software application developed by Sandia National Laboratories (SNL) called Technology Management Optimization (TMO) and a new simulation developed for SPIDERS called the per- formance reliability model (PRM). TMO is a decision support tool that performs multi-objective optimization over a mixed discrete/continuous search space for which the performance measures are unrestricted in form. The PRM is able to statistically quantify the performance and reliability of a microgrid operating in islanded mode (disconnected from any utility power source). Together, these two software applications were used as part of the ESM process to generate the preliminary designs presented by SNL-led DOE team to the DOD. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military instal- lations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Tarek Abdallah, Melanie Johnson, and Harold Sanborn of the U.S. Army Corps of Engineers Construction Engineering Research Laboratory * Colleagues from Sandia National Laboratories (SNL) for their reviews, suggestions, and participation in the work.« less

  19. Electrical Pressurization Concept for the Orion MPCV European Service Module Propulsion System

    NASA Technical Reports Server (NTRS)

    Meiss, Jan-Hendrik; Weber, Jorg; Ierardo, Nicola; Quinn, Frank D.; Paisley, Jonathan

    2015-01-01

    The paper presents the design of the pressurization system of the European Service Module (ESM) of the Orion Multi-Purpose Crew Vehicle (MPCV). Being part of the propulsion subsystem, an electrical pressurization concept is implemented to condition propellants according to the engine needs via a bang-bang regulation system. Separate pressurization for the oxidizer and the fuel tank permits mixture ratio adjustments and prevents vapor mixing of the two hypergolic propellants during nominal operation. In case of loss of pressurization capability of a single side, the system can be converted into a common pressurization system. The regulation concept is based on evaluation of a set of tank pressure sensors and according activation of regulation valves, based on a single-failure tolerant weighting of three pressure signals. While regulation is performed on ESM level, commanding of regulation parameters as well as failure detection, isolation and recovery is performed from within the Crew Module, developed by Lockheed Martin Space System Company. The overall design and development maturity presented is post Preliminary Design Review (PDR) and reflects the current status of the MPCV ESM pressurization system.

  20. Design-Load Basis for LANL Structures, Systems, and Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    I. Cuesta

    2004-09-01

    This document supports the recommendations in the Los Alamos National Laboratory (LANL) Engineering Standard Manual (ESM), Chapter 5--Structural providing the basis for the loads, analysis procedures, and codes to be used in the ESM. It also provides the justification for eliminating the loads to be considered in design, and evidence that the design basis loads are appropriate and consistent with the graded approach required by the Department of Energy (DOE) Code of Federal Regulation Nuclear Safety Management, 10, Part 830. This document focuses on (1) the primary and secondary natural phenomena hazards listed in DOE-G-420.1-2, Appendix C, (2) additional loadsmore » not related to natural phenomena hazards, and (3) the design loads on structures during construction.« less

  1. Clarifying Objectives and Results of Equivalent System Mass Analyses for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Drysdale, Alan E.

    2003-01-01

    This paper discusses some of the analytical decisions that an investigator must make during the course of a life support system trade study. Equivalent System Mass (ESM) is often applied to evaluate trade study options in the Advanced Life Support (ALS) Program. ESM can be used to identify which of several options that meet all requirements are most likely to have lowest cost. It can also be used to identify which of the many interacting parts of a life support system have the greatest impact and sensitivity to assumptions. This paper summarizes recommendations made in the newly developed ALS ESM Guidelines Document and expands on some of the issues relating to trade studies that involve ESM. In particular, the following three points are expounded: 1) The importance of objectives: Analysis objectives drive the approach to any trade study, including identification of assumptions, selection of characteristics to compare in the analysis, and the most appropriate techniques for reflecting those characteristics. 2) The importance of results inferprefafion: The accuracy desired in the results depends upon the analysis objectives, whereas the realized accuracy is determined by the data quality and degree of detail in analysis methods. 3) The importance of analysis documentation: Documentation of assumptions and data modifications is critical for effective peer evaluation of any trade study. ESM results are analysis-specific and should always be reported in context, rather than as solitary values. For this reason, results reporting should be done with adequate rigor to allow for verification by other researchers.

  2. Advanced Life Support Equivalent System Mass Guidelines Document

    NASA Technical Reports Server (NTRS)

    Levri, Julie; Fisher, John W.; Jones, Harry W.; Drysdale, Alan E.; Ewert, Michael K.; Hanford, Anthony J.; Hogan, John A.; Joshi, Jitendri, A.; Vaccari, David A.

    2003-01-01

    This document is a viewgraph presentation which provides guidelines for performing an Equivalent System Mass (ESM) evaluation for trade study purposes. The document: 1) Defines ESM; 2) Explains how to calculate ESM; 3) Discusses interpretation of ESM results. The document is designed to provide detailed instructive material for researchers who are performing ESM evaluations for the first time.

  3. An economic evaluation of solar radiation management.

    PubMed

    Aaheim, Asbjørn; Romstad, Bård; Wei, Taoyuan; Kristjánsson, Jón Egill; Muri, Helene; Niemeier, Ulrike; Schmidt, Hauke

    2015-11-01

    Economic evaluations of solar radiation management (SRM) usually assume that the temperature will be stabilized, with no economic impacts of climate change, but with possible side-effects. We know from experiments with climate models, however, that unlike emission control the spatial and temporal distributions of temperature, precipitation and wind conditions will change. Hence, SRM may have economic consequences under a stabilization of global mean temperature even if side-effects other than those related to the climatic responses are disregarded. This paper addresses the economic impacts of implementing two SRM technologies; stratospheric sulfur injection and marine cloud brightening. By the use of a computable general equilibrium model, we estimate the economic impacts of climatic responses based on the results from two earth system models, MPI-ESM and NorESM. We find that under a moderately increasing greenhouse-gas concentration path, RCP4.5, the economic benefits of implementing climate engineering are small, and may become negative. Global GDP increases in three of the four experiments and all experiments include regions where the benefits from climate engineering are negative. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Characteristics of children with elevated symptoms of mania: the Longitudinal Assessment of Manic Symptoms (LAMS) Study

    PubMed Central

    Findling, Robert L.; Youngstrom, Eric A.; Fristad, Mary A.; Birmaher, Boris; Kowatch, Robert A.; Arnold, L. Eugene; Frazier, Thomas W.; Axelson, David; Ryan, Neal; Demeter, Christine; Gill, Mary Kay; Fields, Benjamin; Depew, Judith; Kennedy, Shawn M.; Marsh, Linda; Rowles, Brieana M.; Horwitz, Sarah McCue

    2011-01-01

    Objective To examine differences in psychiatric symptomatology, diagnoses, demographics, functioning, and psychotropic medication exposure in children with elevated symptoms of mania (ESM+) compared to youth without ESM (ESM−). Method Guardians of consecutively ascertained new outpatients 6 to 12 years of age were asked to complete the Parent General Behavior Inventory-10 Item Mania Scale (PGBI-10M). Patients with scores ≥ 12 on the PGBI-10M (ESM+) and a matched sample of screen negatives (ESM−) were invited to participate. Results 707 children [621 ESM+, 86 ESM−; mean age 9.4 (2.0) years] were evaluated. The ESM+ group, compared to the ESM− group, more frequently met DSM-IV criteria for a mood disorder (p< 0.001), bipolar spectrum disorders (BPSD, p< 0.001), and disruptive behavior disorders (p<0.01). Furthermore, they showed poorer overall functioning and more severe manic, depressive, attention deficit/hyperactivity, disruptive behavioral, and anxiety symptoms. Nevertheless, rates of BPSD were relatively low in the ESM+ group (25%), with almost half of these BPSD patients (12.1% of ESM+) meeting DSM-IV criteria for bipolar disorder not otherwise specified (BP-NOS). ESM+ children with BPSD had significantly more: current prescriptions for antipsychotics, mood stabilizers and anticonvulsants; psychiatric hospitalizations, and biological parents with elevated mood; and were lower functioning compared to ESM+ children without BPSD. Conclusion Although ESM+ was associated with higher rates of BPSD than ESM−, 75% of ESM+ children did not meet criteria for BSPD. Results suggest longitudinal assessment is needed to examine which factors are associated with diagnostic evolution to BPSD in children with ESM+. PMID:21034685

  5. Opportunities within NASA's Exploration Systems Mission Directorate for Engineering Students and Faculty

    NASA Technical Reports Server (NTRS)

    Garner, Lesley

    2008-01-01

    In 2006, NASA's Exploration Systems Mission Directorate (ESMD) launched two new Educational Projects: (1) The ESMID Space Grant Student Project ; and (2) The ESM1D Space Grant Faculty Project. The Student Project consists of three student opportunities: exploration-related internships at NASA Centers or with space-related industry, senior design projects, and system engineering paper competitions. The ESMID Space Grant Faculty Project consists of two faculty opportunities: (1) a summer faculty fellowship; and (2) funding to develop a senior design course.

  6. Use of the experience sampling method in the context of clinical trials

    PubMed Central

    Verhagen, Simone J W; Hasmi, Laila; Drukker, Marjan; van Os, J; Delespaul, Philippe A E G

    2016-01-01

    Objective The experience sampling method (ESM) is a structured diary technique to appraise subjective experiences in daily life. It is applied in psychiatric patients, as well as in patients with somatic illness. Despite the potential of ESM assessment, the improved logistics and its increased administration in research, its use in clinical trials remains limited. This paper introduces ESM for clinical trials in psychiatry and beyond. Methods ESM is an ecologically valid method that yields a comprehensive view of an individual's daily life. It allows the assessment of various constructs (eg, quality of life, psychopathology) and psychological mechanisms (eg, stress-sensitivity, coping). These constructs are difficult to assess using cross-sectional questionnaires. ESM can be applied in treatment monitoring, as an ecological momentary intervention, in clinical trials, or in single case clinical trials. Technological advances (eg, smartphone applications) make its implementation easier. Results Advantages of ESM are highlighted and disadvantages are discussed. Furthermore, the ecological nature of ESM data and its consequences are explored, including the potential pitfalls of ambiguously formulated research questions and the specificities of ESM in statistical analyses. The last section focuses on ESM in relation to clinical trials and discusses its future use in optimising clinical decision-making. Conclusions ESM can be a valuable asset in clinical trial research and should be used more often to study the benefits of treatment in psychiatry and somatic health. PMID:27443678

  7. Insights into a divergent phenazine biosynthetic pathway governed by a plasmid-born esmeraldin gene cluster.

    PubMed

    Rui, Zhe; Ye, Min; Wang, Shuoguo; Fujikawa, Kaori; Akerele, Bankole; Aung, May; Floss, Heinz G; Zhang, Wenjun; Yu, Tin-Wein

    2012-09-21

    Phenazine-type metabolites arise from either phenazine-1-carboxylic acid (PCA) or phenazine-1,6-dicarboxylic acid (PDC). Although the biosynthesis of PCA has been studied extensively, PDC assembly remains unclear. Esmeraldins and saphenamycin, the PDC originated products, are antimicrobial and antitumor metabolites isolated from Streptomyces antibioticus Tü 2706. Herein, the esmeraldin biosynthetic gene cluster was identified on a dispensable giant plasmid. Twenty-four putative esm genes were characterized by bioinformatics, mutagenesis, genetic complementation, and functional protein expressions. Unlike enzymes involved in PCA biosynthesis, EsmA1 and EsmA2 together decisively promoted the PDC yield. The resulting PDC underwent a series of conversions to give 6-acetylphenazine-1-carboxylic acid, saphenic acid, and saphenamycin through a unique one-carbon extension by EsmB1-B5, a keto reduction by EsmC, and an esterification by EsmD1-D3, the atypical polyketide sythases, respectively. Two transcriptional regulators, EsmT1 and EsmT2, are required for esmeraldin production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Safety and Feasibility of a Ketamine Package to Support Emergency and Essential Surgery in Kenya when No Anesthetist is Available: An Analysis of 1216 Consecutive Operative Procedures.

    PubMed

    Burke, Thomas F; Suarez, Sebastian; Sessler, Daniel I; Senay, Ayla; Yusufali, Taha; Masaki, Charles; Guha, Moytrayee; Rogo, Debora; Jani, Pankaj; Nelson, Brett D; Rogo, Khama

    2017-12-01

    Lack of access to emergency and essential surgery is widespread in low- and middle-income countries. Scarce anesthesia services contribute to this unmet need. The aim of this study was to evaluate the safety and feasibility of the Every Second Matters for Emergency and Essential Surgery-Ketamine (ESM-Ketamine) package for emergency and essential procedures when no anesthetist was available. From November 2013 to September 2017, the ESM-Ketamine package was used for patients requiring emergency or life-improving surgeries in fifteen selected facilities across Kenya when no anesthetist was available. A mixed-methods approach was used to assess safety and feasibility of the ESM-Ketamine package, including demand, acceptability, and practicality. The primary outcome was ketamine-related adverse events. Key-informant interviews captured perceptions of providers, hospital administrators, and surgeons/proceduralists. Non-anesthetist mid-level providers used ESM-Ketamine for 1216 surgical procedures across the fifteen study facilities. The median ketamine dose was 2.1 mg/kg. Brief (<30 s) oxygen desaturations occurred in 39 patients (3%), and prolonged (>30 s) oxygen desaturations occurred in seven patients (0.6%). There were 157 (13%) reported cases of hallucinations and agitation which were treated with diazepam. All patients recovered uneventfully, and no ketamine-related deaths were reported. Twenty-seven key-informant interviews showed strong support for the program with four main themes: financial considerations, provision of services, staff impact, and scaling considerations. The ESM-Ketamine package appears safe and feasible and is capable of expanding access to emergency and essential surgeries in rural Kenya when no anesthetist is available.

  9. Scale-dependent performances of CMIP5 earth system models in simulating terrestrial vegetation carbon

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Luo, Y.; Yan, Y.; Hararuk, O.

    2013-12-01

    Mitigation of global changes will depend on reliable projection for the future situation. As the major tools to predict future climate, Earth System Models (ESMs) used in Coupled Model Intercomparison Project Phase 5 (CMIP5) for the IPCC Fifth Assessment Report have incorporated carbon cycle components, which account for the important fluxes of carbon between the ocean, atmosphere, and terrestrial biosphere carbon reservoirs; and therefore are expected to provide more detailed and more certain projections. However, ESMs are never perfect; and evaluating the ESMs can help us to identify uncertainties in prediction and give the priorities for model development. In this study, we benchmarked carbon in live vegetation in the terrestrial ecosystems simulated by 19 ESMs models from CMIP5 with an observationally estimated data set of global carbon vegetation pool 'Olson's Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: An Updated Database Using the GLC2000 Land Cover Product' by Gibbs (2006). Our aim is to evaluate the ability of ESMs to reproduce the global vegetation carbon pool at different scales and what are the possible causes for the bias. We found that the performance CMIP5 ESMs is very scale-dependent. While CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM and CESM1-WACCM, and NorESM1-M and NorESM1-ME (they share the same model structure) have very similar global sums with the observation data but they usually perform poorly at grid cell and biome scale. In contrast, MIROC-ESM and MIROC-ESM-CHEM simulate the best on at grid cell and biome scale but have larger differences in global sums than others. Our results will help improve CMIP5 ESMs for more reliable prediction.

  10. GFDL's ESM2 global coupled climate-carbon Earth System Models. Part I: physical formulation and baseline simulation characteristics

    USGS Publications Warehouse

    Dunne, John P.; John, Jasmin G.; Adcroft, Alistair J.; Griffies, Stephen M.; Hallberg, Robert W.; Shevalikova, Elena; Stouffer, Ronald J.; Cooke, William; Dunne, Krista A.; Harrison, Matthew J.; Krasting, John P.; Malyshev, Sergey L.; Milly, P.C.D.; Phillipps, Peter J.; Sentman, Lori A.; Samuels, Bonita L.; Spelman, Michael J.; Winton, Michael; Wittenberg, Andrew T.; Zadeh, Niki

    2012-01-01

    We describe the physical climate formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory's previous CM2.1 climate model while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in the El Niño-Southern Oscillation being overly strong in ESM2M and overly weak ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to: total heat content variability given its lack of long term drift, gyre circulation and ventilation in the North Pacific, tropical Atlantic and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to: surface circulation given its superior surface temperature, salinity and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. Our overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords us the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon-climate models.

  11. "To sleep, perchance to tweet": in-bed electronic social media use and its associations with insomnia, daytime sleepiness, mood, and sleep duration in adults.

    PubMed

    Bhat, Sushanth; Pinto-Zipp, Genevieve; Upadhyay, Hinesh; Polos, Peter G

    2018-04-01

    The use of mobile device-based electronic social media (ESM) in bed is rapidly becoming commonplace, with potentially adverse impacts on sleep and daytime functioning. The purpose of this study was to determine the extent to which in-bed ESM use is associated with insomnia, daytime sleepiness, mood, and sleep duration in adults. This was a cross-sectional observational study conducted among 855 hospital employees and university students (mean age, 43.6years; 85% female) via an online questionnaire. Nearly 70% of participants indulged in in-bed ESM use, with nearly 15% spending an hour or more a night doing so. The degree of in-bed ESM use did not vary by gender, but higher levels of in-bed ESM use were seen in younger and middle-aged than elderly participants. Compared with participants with no in-bed ESM use and controlling for age, gender, and ethnicity, participants with high in-bed ESM use were more likely to have insomnia, anxiety, and short sleep duration on weeknights, but not depression or daytime sleepiness; low in-bed ESM use only increased the likelihood of short sleep duration on weeknights. In-bed ESM use by a bed partner did not have an adverse association with sleep or mood. In-bed ESM use is associated with sleep and mood dysfunction in adults. These findings are of relevance to clinicians, therapists, and the public at large, as they suggest that limitation of in-bed ESM use is a potential interventional strategy in the overall management of sleep hygiene and mental health. Copyright © 2017 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.

  12. Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

  13. Can Earth System Model Provide Reasonable Natural Runoff Estimates to Support Water Management Studies?

    NASA Astrophysics Data System (ADS)

    Kao, S. C.; Shi, X.; Kumar, J.; Ricciuto, D. M.; Mao, J.; Thornton, P. E.

    2017-12-01

    With the concern of changing hydrologic regime, there is a crucial need to better understand how water availability may change and influence water management decisions in the projected future climate conditions. Despite that surface hydrology has long been simulated by land model within the Earth System modeling (ESM) framework, given the coarser horizontal resolution and lack of engineering-level calibration, raw runoff from ESM is generally discarded by water resource managers when conducting hydro-climate impact assessments. To identify a likely path to improve the credibility of ESM-simulated natural runoff, we conducted regional model simulation using the land component (ALM) of the Accelerated Climate Modeling for Energy (ACME) version 1 focusing on the conterminous United States (CONUS). Two very different forcing data sets, including (1) the conventional 0.5° CRUNCEP (v5, 1901-2013) and (2) the 1-km Daymet (v3, 1980-2013) aggregated to 0.5°, were used to conduct 20th century transient simulation with satellite phenology. Additional meteorologic and hydrologic observations, including PRISM precipitation and U.S. Geological Survey WaterWatch runoff, were used for model evaluation. For various CONUS hydrologic regions (such as Pacific Northwest), we found that Daymet can significantly improve the reasonableness of simulated ALM runoff even without intensive calibration. The large dry bias of CRUNCEP precipitation (evaluated by PRISM) in multiple CONUS hydrologic regions is believed to be the main reason causing runoff underestimation. The results suggest that when driving with skillful precipitation estimates, ESM has the ability to produce reasonable natural runoff estimates to support further water management studies. Nevertheless, model calibration will be required for regions (such as Upper Colorado) where ill performance is showed for multiple different forcings.

  14. Consequences of ions and pH on the supramolecular organization of sphingomyelin and sphingomyelin/cholesterol bilayers.

    PubMed

    Chemin, Caroline; Bourgaux, Claudie; Péan, Jean-Manuel; Pabst, Georg; Wüthrich, Patrick; Couvreur, Patrick; Ollivon, Michel

    2008-06-01

    For drug delivery purpose the anticancer drug S12363 was loaded into ESM/Chol-liposomes using either a pH or an ammonium gradient. Association between the drug and the liposome depends markedly on the liposome membrane structure. Thus, ESM and ESM/Chol bilayer organization had been characterized by coupled DSC and XRDT as a function of both cholesterol concentration and aqueous medium composition. ESM bilayers exhibited a ripple lamellar gel phase P(beta') below the melting temperature and adopted a L(beta)-like gel phase upon Chol insertion. Supramolecular organization of ESM and ESM/Chol bilayers was not modified by citrate buffer or ammonium sulfate solution whatever the pH (3< or = pH < or =7). Nevertheless, in ESM bilayer, ammonium sulfate salt induced a peculiar organization of head groups, leading to irregular d-spacing and weakly correlated bilayers. Moreover, in the presence of salts, a weakening of van der Waals attraction forces was seen and led to a swelling of the water layer.

  15. 8 years of experience in international, interdisciplinary and structured doctoral training in Earth system modelling

    NASA Astrophysics Data System (ADS)

    Weitz, Antje; Stevens, Bjorn; Marotzke, Jochem

    2010-05-01

    The mission of the International Max Planck Research School on Earth System Modelling (IMPRS-ESM) is to provide a high quality, modern and structured graduate education to students pursuing a doctoral degree in Earth system modelling. In so doing, the IMPRS-ESM also strives to advance the emerging discipline (or cross-discipline) of Earth system modelling; to provide a framework for attracting the most talented and creative young women and men from around the world to pursue their doctoral education in Germany; to provide advanced as well as specialized academic training and scientific guidance to doctoral students; to encourage academic networking and publication of research results; to better integrate doctoral research at the Max Planck Institute for Meteorology (MPI-M) with education and research at the University of Hamburg and other cooperating institutions. Core elements are rigorous selection of doctoral students, effective academic supervision, advanced academic training opportunities and interdisciplinary communication as well as administrative support. IMPRS-ESM graduates have been recognized with a variety of awards. 85% of our alumni continue a career in research. In this presentation we review the challenges for an interdisciplinary PhD program in Earth system sciences and the types of routines we have implemented to surmount them as well as key elements that we believe contribute to the success of our doctoral program.

  16. Benchmarking global land surface models in CMIP5: analysis of ecosystem water use efficiency (WUE) and Budyko framework

    NASA Astrophysics Data System (ADS)

    Li, Longhui

    2015-04-01

    Twelve Earth System Models (ESMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are evaluated in terms of ecosystem water use efficiency (WUE) and Budyko framework. Simulated values of GPP and ET from ESMs were validated against with FLUXNET measurements, and the slope of linear regression between the measurement and the model ranged from 0.24 in CanESM2 to 0.8 in GISS-E2 for GPP, and from 0.51 to 0.86 for ET. The performances of 12 ESMs in simulating ET are generally better than GPP. Compared with flux-tower-based estimates by Jung et al. [Journal of Geophysical Research 116 (2011) G00J07] (JU11), all ESMs could capture the latitudinal variations of GPP and ET, but the majority of models extremely overestimated GPP and ET, particularly around the equator. The 12 ESMs showed much larger variations in latitudinal WUE. 4 of 12 ESMs predicted global annual GPP of higher than 150 Pg C year-1, and the other 8 ESMs predicted global GPP with ±15% error of the JU11 GPP. In contrast, all EMSs predicted moderate bias for global ET. The coefficient of variation (CV) of ET (0.11) is significantly less than that of GPP (0.25). More than half of 12 ESMs generally comply with the Budyko framework but some models deviated much. Spatial analysis of error in GPP and ET indicated that model results largely differ among models at different regions. This study suggested that the estimate of ET was much better than GPP. Incorporating the convergence of WUE and the Budyko framework into ESMs as constraints in the next round of CMIP scheme is expected to decrease the uncertainties of carbon and water fluxes estimates.

  17. Significant inconsistency of vegetation carbon density in CMIP5 Earth system models against observational data: Vegetation Carbon Density in ESMs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.

    Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. Here we have compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (r = 0.71) and total vegetation (r = 0.62).more » However, ESM models had significant biases in simulating absolute carbon densities in root and total vegetation biomass across the majority of land ecosystems, especially in tropical and arctic ecosystems. Particularly, ESMs significantly overestimated carbon density in root (183%) and total vegetation biomass (167%) in climate zones of 10°S–10°N. Substantial discrepancies between modeled and observed R/T ratios were found: the R/T ratios from ESMs were relatively constant, approximately 0.2 across all ecosystems, along latitudinal gradients, and in tropic, temperate, and arctic climatic zones, which was significantly different from the observed large variations in the R/T ratios (0.1–0.8). There were substantial inconsistencies between ESM-derived carbon density in root and total vegetation biomass and the R/T ratio at multiple scales, indicating urgent needs for model improvements on carbon allocation algorithms and more intensive field campaigns targeting carbon density in all key vegetation components.« less

  18. Significant inconsistency of vegetation carbon density in CMIP5 Earth system models against observational data: Vegetation Carbon Density in ESMs

    DOE PAGES

    Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.; ...

    2017-09-09

    Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. Here we have compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (r = 0.71) and total vegetation (r = 0.62).more » However, ESM models had significant biases in simulating absolute carbon densities in root and total vegetation biomass across the majority of land ecosystems, especially in tropical and arctic ecosystems. Particularly, ESMs significantly overestimated carbon density in root (183%) and total vegetation biomass (167%) in climate zones of 10°S–10°N. Substantial discrepancies between modeled and observed R/T ratios were found: the R/T ratios from ESMs were relatively constant, approximately 0.2 across all ecosystems, along latitudinal gradients, and in tropic, temperate, and arctic climatic zones, which was significantly different from the observed large variations in the R/T ratios (0.1–0.8). There were substantial inconsistencies between ESM-derived carbon density in root and total vegetation biomass and the R/T ratio at multiple scales, indicating urgent needs for model improvements on carbon allocation algorithms and more intensive field campaigns targeting carbon density in all key vegetation components.« less

  19. Submarine Combat Systems Engineering Project Capstone Project

    DTIC Science & Technology

    2011-06-06

    sonar , imaging, Electronic Surveillance (ES) and communications. These sensors passively detect contacts, which emit... passive sensors is included. A Search Detect Identify Track Decide Engage Assess 3 contact can be sensed by the system as either surface or... Detect Track Avoid Search Detect Identify Track Search Engage Assess Detect Track Avoid Search • SONAR •Imagery •TC • SONAR • SONAR •EW •Imagery •ESM

  20. Technology Experiences of Student Interns in a One to One Mobile Program

    ERIC Educational Resources Information Center

    Cullen, Theresa A.; Karademir, Tugra

    2018-01-01

    This article describes how a group of student intern teachers (n = 51) in a one to one teacher education iPad program were asked to reflect using Experience Sampling Method (ESM) on their use of technology in the classroom during internship. Interns also completed summative reflections and class discussions. Data collected both in online and…

  1. Characterization of LiMn 2O 4 cathodes by electrochemical strain microscopy

    DOE PAGES

    Alikin, D. O.; Ievlev, A. V.; Luchkin, S. Yu.; ...

    2016-03-15

    Electrochemical strain microscopy (ESM) is a scanning probe microscopy(SPM) method in which the local electrodiffusion is probed via application of AC voltage to the SPM tip and registration of resulting electrochemical strain. In this study, we implemented ESM to measure local strain in bulk LiMn 2O 4 cathodes of a commercial Li-battery in different states of charge to investigate distribution of Li-ion mobility and concentration. Ramped AC ESM imaging and voltage spectroscopy were used to find the most reliable regime of measurements allowing separating and diminishing different contributions to ESM. This is not a trivial task due to complex geometrymore » of the sample and various obstacles resulting in less predictable contributions of different origins into ESM response: electrostatic tip–surface interactions, charge injection, electrostriction, and flexoelectricity. Finally, understanding and control of these contributions is an important step towards quantitative interpretation of ESM data.« less

  2. Significant inconsistency of vegetation carbon density in CMIP5 Earth system models against observational data

    NASA Astrophysics Data System (ADS)

    Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.; Yin, Yunhe; Kumar, Jitendra; Ma, Chun; Xu, Xiaofeng

    2017-09-01

    Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. We compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (r = 0.71) and total vegetation (r = 0.62). However, ESM models had significant biases in simulating absolute carbon densities in root and total vegetation biomass across the majority of land ecosystems, especially in tropical and arctic ecosystems. Particularly, ESMs significantly overestimated carbon density in root (183%) and total vegetation biomass (167%) in climate zones of 10°S-10°N. Substantial discrepancies between modeled and observed R/T ratios were found: the R/T ratios from ESMs were relatively constant, approximately 0.2 across all ecosystems, along latitudinal gradients, and in tropic, temperate, and arctic climatic zones, which was significantly different from the observed large variations in the R/T ratios (0.1-0.8). There were substantial inconsistencies between ESM-derived carbon density in root and total vegetation biomass and the R/T ratio at multiple scales, indicating urgent needs for model improvements on carbon allocation algorithms and more intensive field campaigns targeting carbon density in all key vegetation components.

  3. Prevention and control of sexually transmissible infections among hotel-based female sex workers in Dhaka, Bangladesh.

    PubMed

    McCormick, Duncan F; Rahman, Motiur; Zadrozny, Sabrina; Alam, Anadil; Ashraf, Lutfa; Neilsen, Graham A; Kelly, Robert; Menezes, Prema; Miller, William C; Hoffman, Irving F

    2013-12-01

    Hotel-based sex workers in Bangladesh have high rates of sexually transmissible infections (STIs), high client turnover and low condom use. Two monthly clinic-based strategies were compared: periodic presumptive treatment (PPT) and enhanced syndromic management (ESM) - one round of presumptive treatment followed by treatment based on assessment and laboratory tests. A randomised controlled trial compared PPT and ESM by prevalence and incidence, behaviour, retention, cost and STI incidence and prevalence. Demographic, behavioural and clinical data were collected from women at two clinics in Dhaka. All women received presumptive treatment and were randomised to receive PPT or ESM at nine monthly visits. In total, 549 women (median age: <20 years) were enrolled. At baseline, the prevalence of chlamydia (Chlamydia trachomatis) and gonorrhoea (Neisseria gonorrhoeae) was 41% (ESM: 41%; PPT: 42%). After 9 months, chlamydia and gonorrhoea decreased to 7% overall, (ESM: 7.4%; PPT: 6.8%). At each visit, 98% of women receiving ESM met the therapy criteria and were treated. Retention was low (50%). Total costs were 50% lower per visit for each woman for PPT (ESM: $11.62 v. PPT: $5.80). The number of sex work sessions was reduced from 3.3 to 2.5 (P<0.001), but income did not change. Coercion was reduced but condom use at last sex did not change significantly. Monthly PPT and ESM were effective approaches for STI control. PPT offered a feasible, low-cost alternative to ESM. Educational aspects led to a reduction in coercion and fewer sessions. Implementation studies are needed to improve condom use and retention.

  4. Facilitating the Easy Use of Earth Observation Data in Earth System Models through CyberConnector

    NASA Astrophysics Data System (ADS)

    Di, L.; Sun, Z.; Zhang, C.

    2017-12-01

    Earth system models (ESM) are an important tool used to understand the Earth system and predict its future states. On other hand, Earth observations (EO) provides the current state of the system. EO data are very useful in ESM initialization, verification, validation, and inter-comparison. However, EO data often cannot directly be consumed by ESMs because of the syntactic and semantic mismatches between EO products and ESM requirements. In order to remove the mismatches, scientists normally spend long time to customize EO data for ESM consumption. CyberConnector, a NSF EarthCube building block, is intended to automate the data customization so that scientists can be relieved from the laborious EO data customization. CyberConnector uses web-service-based geospatial processing models (GPM) as the mechanism to automatically customize the EO data into the right products in the right form needed by ESMs. It can support many different ESMs through its standard interfaces. It consists of seven modules: GPM designer, GPM binder, GPM runner, GPM monitor, resource register, order manager, and result display. In CyberConnector, EO data instances and GPMs are independent and loosely coupled. A modeler only needs to create a GPM in the GMP designer for EO data customization. Once the modeler specifies a study area, the designed GPM will be activated and take the temporal and spatial extents as constraints to search the data sources and customize the available EO data into the ESM-acceptable form. The execution of GMP is completely automatic. Currently CyberConnector has been fully developed. In order to validate the feasibility, flexibility, and ESM independence of CyberConnector, three ESMs from different geoscience disciplines, including the Cloud-Resolving Model (CRM), the Finite Volume Coastal Ocean Model (FVCOM), and the Community Multiscale Air Quality Model (CMAQ), have been experimented with CyberConnector through closely collaborating with modelers. In the experiment, the time of traditional manual operation and CyberConnector operation was compared and other benefits were identified. The result indicates that CyberConnector can save about 80% of data customization time. In addition, it can simplify the steps to plug in a data source into an ESM and lower the entry barriers for beginners to use EO data in ESMs.

  5. Second harmonic detection in the electrochemical strain microscopy of Ag-ion conducting glass

    DOE PAGES

    Yang, Sangmo; Okatan, Mahmut Baris; Paranthaman, Mariappan Parans; ...

    2014-11-14

    The first and second harmonic electromechanical responses and their cross-correlation in Ag-ion conducting glass were investigated using band-excitation electrochemical strain microscopy (ESM). Consecutive ESM images with increasing magnitudes of the applied AC voltage allowed observation of not only reversible surface displacement but also irreversible silver nanoparticle formation above a certain threshold voltage. The second harmonic ESM response was anticorrelated with the first harmonic response in many local regions. Furthermore, the nucleation sites of silver nanoparticles were closely related to the anti-correlated regions, specifically, with low second harmonic and high first harmonic ESM responses. The possible origins of the second harmonicmore » ESM response are discussed.« less

  6. Improving model biases in an ESM with an isopycnic ocean component by accounting for wind work on oceanic near-inertial motions.

    NASA Astrophysics Data System (ADS)

    de Wet, P. D.; Bentsen, M.; Bethke, I.

    2016-02-01

    It is well-known that, when comparing climatological parameters such as ocean temperature and salinity to the output of an Earth System Model (ESM), the model exhibits biases. In ESMs with an isopycnic ocean component, such as NorESM, insufficient vertical mixing is thought to be one of the causes of such differences between observational and model data. However, enhancing the vertical mixing of the model's ocean component not only requires increasing the energy input, but also sound physical reasoning for doing so. Various authors have shown that the action of atmospheric winds on the ocean's surface is a major source of energy input into the upper ocean. However, due to model and computational constraints, oceanic processes linked to surface winds are incompletely accounted for. Consequently, despite significantly contributing to the energy required to maintain ocean stratification, most ESMs do not directly make provision for this energy. In this study we investigate the implementation of a routine in which the energy from work done on oceanic near-inertial motions is calculated in an offline slab model. The slab model, which has been well-documented in the literature, runs parallel to but independently from the ESM's ocean component. It receives wind fields with a frequency higher than that of the coupling frequency, allowing it to capture the fluctuations in the winds on shorter time scales. The additional energy calculated thus is then passed to the ocean component, avoiding the need for increased coupling between the components of the ESM. Results show localised reduction in, amongst others, the salinity and temperature biases of NorESM, confirming model sensitivity to wind-forcing and points to the need for better representation of surface processes in ESMs.

  7. Safety of a condom uterine balloon tamponade (ESM-UBT) device for uncontrolled primary postpartum hemorrhage among facilities in Kenya and Sierra Leone.

    PubMed

    Ramanathan, Aparna; Eckardt, Melody J; Nelson, Brett D; Guha, Moytrayee; Oguttu, Monica; Altawil, Zaid; Burke, Thomas

    2018-05-15

    Postpartum hemorrhage is the leading cause of maternal mortality in low- and middle-income countries. While evidence on uterine balloon tamponade efficacy for severe hemorrhage is encouraging, little is known about safety of this intervention. The objective of this study was to evaluate the safety of an ultra-low-cost uterine balloon tamponade package (named ESM-UBT) for facility-based management of uncontrolled postpartum hemorrhage (PPH) in Kenya and Sierra Leone. Data were collected on complications/adverse events in all women who had an ESM-UBT device placed among 92 facilities in Sierra Leone and Kenya, between September 2012 and December 2015, as part of a multi-country study. Three expert maternal health investigator physicians analyzed each complication/adverse event and developed consensus on whether there was a potential causal relationship associated with use of the ESM-UBT device. Adverse events/complications specifically investigated included death, hysterectomy, uterine rupture, perineal or cervical injury, serious or minor infection, and latex allergy/anaphylaxis. Of the 201 women treated with an ESM-UBT device in Kenya and Sierra Leone, 189 (94.0%) survived. Six-week or longer follow-up was recorded in 156 of the 189 (82.5%). A causal relationship between use of an ESM-UBT device and one death, three perineal injuries and one case of mild endometritis could not be completely excluded. Three experts found a potential association between these injuries and an ESM-UBT device highly unlikely. The ESM-UBT device appears safe for use in women with uncontrolled PPH. Trial registration was not completed as data was collected as a quality assurance measure for the ESM-UBT kit.

  8. Educator Sexual Misconduct and Texas Educator Discipline Database Construction.

    PubMed

    Robert, Catherine E; Thompson, David P

    2018-05-24

    The purpose of this research is to describe Texas educator sexual misconduct (ESM) by examining 8 years of sanctions issued to educators (N = 1415) for either sexual misconduct or inappropriate relationships with students or minors. We first examine Texas ESM from the perspective of quality database construction and then describe the demographic characteristics of educators sanctioned for ESM between 2008 and 2016. Differences in the demographic characteristics of educators sanctioned for ESM vary according to the definition of ESM employed by the state education agency. Younger and early career educators are more likely to engage in inappropriate relationships with students or minors, whereas older and later-career teachers are more likely to engage in sexual misconduct as that term is defined by the state education agency. Over one-third of educators sanctioned for ESM were either new to the profession or new to their school district when sanctioned. Recommendations are offered for database construction, policy, and practice.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, William D.; Craig, Anthony P.; Truesdale, John E.

    The integrated Earth System Model (iESM) has been developed as a new tool for pro- jecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling in- frastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a sin- gle simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore- omitted feedbacks between natural and societal drivers, we can improve scientific under- standing of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper de- scribes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  11. Experience sampling and ecological momentary assessment studies in psychopharmacology: A systematic review.

    PubMed

    Bos, Fionneke M; Schoevers, Robert A; aan het Rot, Marije

    2015-11-01

    Experience sampling methods (ESM) and ecological momentary assessment (EMA) offer insight into daily life experiences, including symptoms of mental disorders. The application of ESM/EMA in psychopharmacology can be a valuable addition to more traditional measures such as retrospective self-report questionnaires because they may help reveal the impact of psychotropic medication on patients' actual experiences. In this paper we systematically review the existing literature on the use of ESM/EMA in psychopharmacology research. To this end, we searched the PsycInfo and Medline databases for all available ESM/EMA studies on the use of psychotropic medication in patients with DSM-III-R and DSM-IV disorders. Dissertations were excluded. We included 18 studies that applied ESM/EMA to study the effects of medication on patients with major depressive disorder, substance use disorder, attention-deficit hyperactivity disorder, psychotic disorder, and anxiety disorder. We found that ESM/EMA may allow researchers and clinicians to track patients during different phases of treatment: before treatment to predict outcome, during treatment to examine the effects of treatment on symptoms and different aspects of daily life experience, and after treatment to detect vulnerability for relapse. Moreover, ESM/EMA can potentially help determine how long and in what contexts medications are effective. Thus, ESM/EMA may benefit both researchers and clinicians and might prove to be an effective tool for improving the treatment of psychiatric patients. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  12. Decadal prediction of European soil moisture from 1961 to 2010 using a regional climate model

    NASA Astrophysics Data System (ADS)

    Mieruch-Schnuelle, S.; Schädler, G.; Feldmann, H.

    2014-12-01

    The German national research program on decadal climate prediction(MiKlip) aims at the development of an operational decadal predictionsystem. To explore the potential of decadal predictions a hindcastensemble from 1961 to 2010 has been generated by the MPI-ESM, the newEarth system model of the Max Planck Institute for Meteorology. Toimprove the decadal predictions on higher spatial resolutions wedownscaled the MPI-ESM simulations by the regional model COSMO-CLM(CCLM) for Europe. In this study we will characterize and validatethe predictability of extreme states of soil moisture in Europesimulated by the MPI-ESM and the value added by the CCLM. The wateramount stored in the soil is a crucial component of the climate systemand especially important for agriculture, and has an influence onevaporation, groundwater and runoff. Thus, skillful prediction of soilmoisture in the order of years up to a decade could be used tomitigate risk and benefit society. Since soil moisture observationsare rare and validation of model output is difficult, we will ratherinvestigate the effective drought index (EDI), which can be retrievedsolely from precipitation data. Therefore we show that the EDI is agood estimator of the soil water content.

  13. Photosynthesis, Earth System Models and the Arctic

    NASA Astrophysics Data System (ADS)

    Rogers, A.; Sloan, V. L.; Xu, C.; Wullschleger, S. D.

    2013-12-01

    The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this they must accurately represent the huge carbon fluxes associated with the terrestrial carbon cycle. Photosynthetic CO2 uptake is the largest of these fluxes, and is well described by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis. Most ESMs use a derivation of the FvCB model to calculate gross primary productivity (GPP). One of the key parameters required by the FvCB model is an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max). In ESMs the parameter Vc,max is usually fixed for a given plant functional type (PFT). Although Arctic GPP a small flux relative to global GPP, uncertainty is large. Only four ESMs currently have an explicit Arctic PFT and the data used to derive Vc,max for the Arctic PFT in these models relies on small data sets and unjustified assumptions. As part of a multidisciplinary project to improve the representation of the Arctic in ESMs (Next Generation Ecosystem Experiments - Arctic) we examined the derivation of Vc,max in current Arctic PFTs and estimated Vc,max for 12 species representing both dominant vegetation and key PFTs growing on the Barrow Environmental Observatory, Barrow, AK. The values of Vc,max currently used to represent Arctic PFTs in ESMs are 70% lower than the values we measured in these species. Separate measurements of CO2 assimilation (A) made at ambient conditions were compared with A modeled using the Vc,max values we measured in Barrow and those used by the ESMs. The A modeled with the Vc,max values used by the ESMs was 80% lower than the observed A. When our measured Vc,max values were used, modeled A was within 5% of observed A. Examination of the derivation of Vc,max in ESMs identified that the cause of the relatively low Vc,max value was the result of underestimating both the leaf N content and the investment of that N in Rubisco. Here we have identified possible improvements to the derivation of Vc,max in ESMs and provided new physiological characterization of Arctic species that is mechanistically consistent with observed leaf level CO2 uptake. These data suggest that the Arctic tundra has a much greater capacity for CO2 uptake than is currently represented in ESMs. Our parameterization can be used in future model projections to improve representation of the Arctic landscape in ESMs.

  14. The integrated Earth system model version 1: formulation and functionality

    DOE PAGES

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; ...

    2015-07-23

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  15. Using System Mass (SM), Equivalent Mass (EM), Equivalent System Mass (ESM) or Life Cycle Mass (LCM) in Advanced Life Support (ALS) Reporting

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2003-01-01

    The Advanced Life Support (ALS) has used a single number, Equivalent System Mass (ESM), for both reporting progress and technology selection. ESM is the launch mass required to provide a space system. ESM indicates launch cost. ESM alone is inadequate for technology selection, which should include other metrics such as Technology Readiness Level (TRL) and Life Cycle Cost (LCC) and also consider perfom.arxe 2nd risk. ESM has proven difficult to implement as a reporting metric, partly because it includes non-mass technology selection factors. Since it will not be used exclusively for technology selection, a new reporting metric can be made easier to compute and explain. Systems design trades-off performance, cost, and risk, but a risk weighted cost/benefit metric would be too complex to report. Since life support has fixed requirements, different systems usually have roughly equal performance. Risk is important since failure can harm the crew, but it is difficult to treat simply. Cost is not easy to estimate, but preliminary space system cost estimates are usually based on mass, which is better estimated than cost. Amass-based cost estimate, similar to ESM, would be a good single reporting metric. The paper defines and compares four mass-based cost estimates, Equivalent Mass (EM), Equivalent System Mass (ESM), Life Cycle Mass (LCM), and System Mass (SM). EM is traditional in life support and includes mass, volume, power, cooling and logistics. ESM is the specifically defined ALS metric, which adds crew time and possibly other cost factors to EM. LCM is a new metric, a mass-based estimate of LCC measured in mass units. SM includes only the factors of EM that are originally measured in mass, the hardware and logistics mass. All four mass-based metrics usually give similar comparisons. SM is by far the simplest to compute and easiest to explain.

  16. integrated Earth System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Andew; Di Vittorio, Alan; Collins, William

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human-Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human-Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems.« less

  17. Self-consistent modeling of electrochemical strain microscopy of solid electrolytes

    DOE PAGES

    Tselev, Alexander; Morozovska, Anna N.; Udod, Alexei; ...

    2014-10-10

    Electrochemical strain microscopy (ESM) employs a strong electromechanical coupling in solid ionic conductors to map ionic transport and electrochemical processes with nanometer-scale spatial resolution. To elucidate the mechanisms of the ESM image formation, we performed self-consistent numerical modeling of the electromechanical response in solid electrolytes under the probe tip in a linear, small-signal regime using the Boltzmann–Planck–Nernst–Einstein theory and Vegard's law while taking account of the electromigration and diffusion. We identified the characteristic time scales involved in the formation of the ESM response and found that the dynamics of the charge carriers in the tip-electrolyte system with blocking interfaces canmore » be described as charging of the diffuse layer at the tip-electrolyte interface through the tip contact spreading resistance. At the high frequencies used in the detection regime, the distribution of the charge carriers under the tip is governed by evanescent concentration waves generated at the tip-electrolyte interface. The ion drift length in the electric field produced by the tip determines the ESM response at high frequencies, which follows a 1/f asymptotic law. The electronic conductivity, as well as the electron transport through the electrode-electrolyte interface, do not have a significant effect on the ESM signal in the detection regime. The results indicate, however, that for typical solid electrolytes at room temperature, the ESM response originates at and contains information about the very surface layer of a sample, and the properties of the one-unit-cell-thick surface layer may significantly contribute to the ESM response, implying a high surface sensitivity and a high lateral resolution of the technique. On the other hand, it follows that a rigorous analysis of the ESM signals requires techniques that account for the discrete nature of a solid.« less

  18. Improving the representation of Arctic photosynthesis in Earth system models

    NASA Astrophysics Data System (ADS)

    Rogers, A.; Serbin, S.; Ely, K.; Sloan, V. L.; Wyatt, R. A.; Kubien, D. S.; Ali, A. A.; Xu, C.; Wullschleger, S. D.

    2015-12-01

    The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this they must accurately represent the carbon fluxes associated with the terrestrial carbon cycle. Although Arctic carbon fluxes are small - relative to global carbon fluxes - uncertainty is large. As part of a multidisciplinary project to improve the representation of the Arctic in ESMs (Next Generation Ecosystem Experiments - Arctic) we are examining the photosynthetic parameterization of the Arctic plant functional type (PFT) in ESMs. Photosynthetic CO2 uptake is well described by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis. Most ESMs use a derivation of the FvCB model to calculate gross primary productivity. Two key parameters required by the FvCB model are an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max) and the maximum rate of electron transport (Jmax). In ESMs the parameter Vc,max is usually fixed for a given PFT. Only four ESMs currently have an explicit Arctic PFT and the data used to derive Vc,max for the Arctic PFT in these models relies on small data sets and unjustified assumptions. We examined the derivation of Vc,max and Jmax in current Arctic PFTs and estimated Vc,max and Jmax for 7 species representing both dominant vegetation and key Arctic PFTs growing on the Barrow Environmental Observatory, Barrow, AK. The values of Vc,max currently used to represent Arctic PFTs in ESMs are 70% lower than the values we measured in these species. Examination of the derivation of Vc,max in ESMs identified that the cause of the relatively low Vc,max value was the result of underestimating both the leaf N content and the investment of that N in Rubisco. Contemporary temperature response functions for Vc,max also appear to underestimate Vc,max at low temperature. ESMs typically use a single multiplier (JVratio) to convert Vc,max to Jmax for all PFTs. We found that the JVratio of Arctic plants is higher than current estimates suggesting that the Arctic PFT will be more responsive to rising carbon dioxide than currently projected. Our data suggest that the Arctic tundra has a much greater capacity for CO2 uptake, particularly at low temperature, and will be more CO2 responsive than is currently represented in ESMs.

  19. Examination of the Structural Response of the Orion European Service Module to Reverberant and Direct Field Acoustic Testing

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Hughes, William O.; Larko, Jeffrey M.; Bittinger, Samantha A.; Le-Plenier, Cyprien; Fogt, Vincent A.; Ngan, Ivan; Thirkettle, Anthony C.; Skinner, Mitch; Larkin, Paul

    2017-01-01

    The NASA Orion Multi-Purpose Crew Vehicle (MPCV), comprised of the Service Module, the Crew Module, and the Launch Abort System, is the next generation human spacecraft designed and built for deep space exploration. Orion will launch on NASAs new heavy-lift rocket, the Space Launch System. The European Space Agency (ESA) is responsible for providing the propulsion sub-assembly of the Service Module to NASA, called the European Service Module (ESM). The ESM is being designed and built by Airbus Safran Launchers for ESA. Traditionally, NASA has utilized reverberant acoustic testing for qualification of spaceflight hardware. The ESM Structural Test Article (E-STA) was tested at the NASA Plum Brook Stations (PBS) Reverberant Acoustic Test Facility in April-May 2016. However, Orion is evaluating an alternative acoustic test method, using direct field acoustic excitation, for the MPCVs Service Module and Crew Module. Lockheed Martin is responsible for the Orion proof-of-concept direct field acoustic test program. The E-STA was exposed to direct field acoustic testing at NASA PBS in February 2017. This paper compares the dynamic response of the E-STA structure and its components to both the reverberant and direct field acoustic test excitations. Advantages and disadvantages of direct field acoustic test excitation method are discussed.

  20. Evaluation of eggshell membrane-based bio-adsorbent for solid-phase extraction of linear alkylbenzene sulfonates coupled with high-performance liquid chromatography.

    PubMed

    Wang, Weidong; Chen, Bo; Huang, Yuming; Cao, Jia

    2010-09-03

    The potential of eggshell membrane (ESM) as a novel solid-phase extraction bio-adsorbent was investigated in the present study. The ESM with a unique structure of intricate lattice network showed a predominant ability to capture linear alkylbenzene sulfonates (LAS) as a model of organic pollutants by the hydrophobic interactions between ESM and LAS molecular at pH very close to the isoelectric point of ESM, which was similar to the most widely used trapping mechanism for SPE. Under the optimal conditions, the breakthrough capacities of the ESM packed cartridge for C10-C13 LAS homologues were found to be 30, 53, 50, and 43microgg(-1), respectively. On the basis of high-performance liquid chromatography separation and UV detection of LAS homologues, the proposed system could respond down to 0.027ngmL(-1) of LAS with a linear calibration range from 0.2 to 100ngmL(-1), showing a good LAS enrichment ability of eggshell membrane biomaterial with high sensitivity, and could be successfully used for the detection of residual LAS in environmental water samples. The reproducibility among columns was satisfactory (RSD among columns is less than 10%). A comparison study with ESM, C8 and C18 as adsorbents for LAS demonstrated that ESM-based bio-adsorbent was advantageous over C8 and C18, the widely used traditional adsorbents. 2010 Elsevier B.V. All rights reserved.

  1. Climate Projections over Mediterranean Basin under RCP8.5 and RCP4.5 emission scenarios

    NASA Astrophysics Data System (ADS)

    Ilhan, Asli; Ünal, Yurdanur S.

    2017-04-01

    Climate Projections over Mediterranean Basin under RCP8.5 and RCP4.5 emission scenarios A. ILHAN ve Y. S. UNAL Istanbul Technical University, Department of Meteorology In the study, 50 km resolution downscaled results of two different Earth System Models (ESM) HadGEM2-ES and MPI-ESM with regional climate model of RegCM are used to estimate present and future climate conditions over Mediterranean Basin. The purpose of this study is to compare the projections of two ESMs under Representative Concentration Pathways 4.5 (RCP4.5) and 8.5 (RCP8.5) over the region of interest seasonally and annually with 50 km resolution. Temperature and precipitation parameters for reference period (1971-2000) and future (2015-2100) are analyzed. The average temperature and total precipitation distributions of each downscaled ESM simulations were compared with observation data (Climate Research Unit-CRU data) to explore the capability of each model for the representation of the current climate. According to reference period values of CRU, HadGEM2-ES and MPI-ESM, it is seen that both models are warmer and wetter than observations and have positive temperature biases only around Caspian Sea and positive precipitation biases over Eastern and Central Europe. The future projections (from 2015 to 2100) of HadGEM2-ES and MPI-ESM-MR simulations under RCP4.5 and RCP8.5 emission scenarios are compared with reference period (from 1971 to 2000) and analyzed for temperature and precipitation parameters. The downscaled HadGEM2-ES forced by RCP8.5 scenario produces higher temperatures than the MPI-ESM-MR. The reasons of this warming can be sensitivity of HadGEM2-ES to greenhouse gases and high radiative forcing (+8.5 W/m2). On the other hand, MPI-ESM produce more precipitation than HadGEM2-ES. In order to analyze regional responses of the climate model chains, five main regions are selected which are Turkey, Central Europe, Western Europe, Eastern Europe and North Africa. The average biases of the HadGEM2-ES+RegCM and MPI-ESM-MR+RegCM model chains are also calculated for temperature and precipitation variables, and future expectations in each region are discussed under RCP4.5 and RCP8.5 scenarios. According to the regional analysis, North Africa is the warmest region for HadGEM2-ES and MPI-ESM-MR, and Central Europe warms up similar to North Africa in MPI-ESM-MR coupled simulations under both RCPs. In addition, Eastern Europe is expected to be the wettest region in both models and in both emission scenarios. On the other hand, the driest conditions are expected over Western Europe for MPI-ESM-MR and over Turkey for HadGEM2-ES under RCPs.

  2. Small Business Innovation Research (SBIR) Program FY 1991. Program Solicitation 91.1

    DTIC Science & Technology

    1990-10-01

    battlefield. Technological advances in the development of broadband ECM,ECCM and ESM are required. Multispectral Sensor Technology needs to be developed...such as missiles, aircraft, ground vehicles, artillery and high value assets should be addressed. Smart munitions ECM techniques must be as broadband as... Broadband W-band and Higher RF Medium Power Amplifier NAVAL TRAINING SYSTEMS CENTER N91- 35 High Definition TV Projection Via Single Crystal CRT

  3. Data-mining analysis of the global distribution of soil carbon in observational databases and Earth system models

    NASA Astrophysics Data System (ADS)

    Hashimoto, Shoji; Nanko, Kazuki; Ťupek, Boris; Lehtonen, Aleksi

    2017-03-01

    Future climate change will dramatically change the carbon balance in the soil, and this change will affect the terrestrial carbon stock and the climate itself. Earth system models (ESMs) are used to understand the current climate and to project future climate conditions, but the soil organic carbon (SOC) stock simulated by ESMs and those of observational databases are not well correlated when the two are compared at fine grid scales. However, the specific key processes and factors, as well as the relationships among these factors that govern the SOC stock, remain unclear; the inclusion of such missing information would improve the agreement between modeled and observational data. In this study, we sought to identify the influential factors that govern global SOC distribution in observational databases, as well as those simulated by ESMs. We used a data-mining (machine-learning) (boosted regression trees - BRT) scheme to identify the factors affecting the SOC stock. We applied BRT scheme to three observational databases and 15 ESM outputs from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and examined the effects of 13 variables/factors categorized into five groups (climate, soil property, topography, vegetation, and land-use history). Globally, the contributions of mean annual temperature, clay content, carbon-to-nitrogen (CN) ratio, wetland ratio, and land cover were high in observational databases, whereas the contributions of the mean annual temperature, land cover, and net primary productivity (NPP) were predominant in the SOC distribution in ESMs. A comparison of the influential factors at a global scale revealed that the most distinct differences between the SOCs from the observational databases and ESMs were the low clay content and CN ratio contributions, and the high NPP contribution in the ESMs. The results of this study will aid in identifying the causes of the current mismatches between observational SOC databases and ESM outputs and improve the modeling of terrestrial carbon dynamics in ESMs. This study also reveals how a data-mining algorithm can be used to assess model outputs.

  4. Reliability Impacts in Life Support Architecture and Technology Selection

    NASA Technical Reports Server (NTRS)

    Lange Kevin E.; Anderson, Molly S.

    2012-01-01

    Quantitative assessments of system reliability and equivalent system mass (ESM) were made for different life support architectures based primarily on International Space Station technologies. The analysis was applied to a one-year deep-space mission. System reliability was increased by adding redundancy and spares, which added to the ESM. Results were thus obtained allowing a comparison of the ESM for each architecture at equivalent levels of reliability. Although the analysis contains numerous simplifications and uncertainties, the results suggest that achieving necessary reliabilities for deep-space missions will add substantially to the life support ESM and could influence the optimal degree of life support closure. Approaches for reducing reliability impacts were investigated and are discussed.

  5. Evaluating soil carbon in global climate models: benchmarking, future projections, and model drivers

    NASA Astrophysics Data System (ADS)

    Todd-Brown, K. E.; Randerson, J. T.; Post, W. M.; Allison, S. D.

    2012-12-01

    The carbon cycle plays a critical role in how the climate responds to anthropogenic carbon dioxide. To evaluate how well Earth system models (ESMs) from the Climate Model Intercomparison Project (CMIP5) represent the carbon cycle, we examined predictions of current soil carbon stocks from the historical simulation. We compared the soil and litter carbon pools from 17 ESMs with data on soil carbon stocks from the Harmonized World Soil Database (HWSD). We also examined soil carbon predictions for 2100 from 16 ESMs from the rcp85 (highest radiative forcing) simulation to investigate the effects of climate change on soil carbon stocks. In both analyses, we used a reduced complexity model to separate the effects of variation in model drivers from the effects of model parameters on soil carbon predictions. Drivers included NPP, soil temperature, and soil moisture, and the reduced complexity model represented one pool of soil carbon as a function of these drivers. The ESMs predicted global soil carbon totals of 500 to 2980 Pg-C, compared to 1260 Pg-C in the HWSD. This 5-fold variation in predicted soil stocks was a consequence of a 3.4-fold variation in NPP inputs and 3.8-fold variability in mean global turnover times. None of the ESMs correlated well with the global distribution of soil carbon in the HWSD (Pearson's correlation <0.40, RMSE 9-22 kg m-2). On a biome level there was a broad range of agreement between the ESMs and the HWSD. Some models predicted HWSD biome totals well (R2=0.91) while others did not (R2=0.23). All of the ESM terrestrial decomposition models are structurally similar with outputs that were well described by a reduced complexity model that included NPP and soil temperature (R2 of 0.73-0.93). However, MPI-ESM-LR outputs showed only a moderate fit to this model (R2=0.51), and CanESM2 outputs were better described by a reduced model that included soil moisture (R2=0.74), We also found a broad range in soil carbon responses to climate change predicted by the ESMs, with changes of -480 to 230 Pg-C from 2005-2100. All models that reported NPP and heterotrophic respiration showed increases in both of these processes over the simulated period. In two of the models, soils switched from a global sink for carbon to a net source. Of the remaining models, half predicted that soils were a sink for carbon throughout the time period and the other half predicted that soils were a carbon source.. Heterotrophic respiration in most of the models from 2005-2100 was well explained by a reduced complexity model dependent on soil carbon, soil temperature, and soil moisture (R2 values >0.74). However, MPI-ESM (R2=0.45) showed only moderate fit to this model. Our analysis shows that soil carbon predictions from ESMs are highly variable, with much of this variability due to model parameterization and variations in driving variables. Furthermore, our reduced complexity models show that most variation in ESM outputs can be explained by a simple one-pool model with a small number of drivers and parameters. Therefore, agreement between soil carbon predictions across models could improve substantially by reconciling differences in driving variables and the parameters that link soil carbon with environmental drivers. However it is unclear if this model agreement would reflect what is truly happening in the Earth system.

  6. Impact of chlorophyll bias on the tropical Pacific mean climate in an earth system model

    NASA Astrophysics Data System (ADS)

    Lim, Hyung-Gyu; Park, Jong-Yeon; Kug, Jong-Seong

    2017-12-01

    Climate modeling groups nowadays develop earth system models (ESMs) by incorporating biogeochemical processes in their climate models. The ESMs, however, often show substantial bias in simulated marine biogeochemistry which can potentially introduce an undesirable bias in physical ocean fields through biogeophysical interactions. This study examines how and how much the chlorophyll bias in a state-of-the-art ESM affects the mean and seasonal cycle of tropical Pacific sea-surface temperature (SST). The ESM used in the present study shows a sizeable positive bias in the simulated tropical chlorophyll. We found that the correction of the chlorophyll bias can reduce the ESM's intrinsic cold SST mean bias in the equatorial Pacific. The biologically-induced cold SST bias is strongly affected by seasonally-dependent air-sea coupling strength. In addition, the correction of chlorophyll bias can improve the annual cycle of SST by up to 25%. This result suggests a possible modeling approach in understanding the two-way interactions between physical and chlorophyll biases by biogeophysical effects.

  7. Experience sampling methodology in mental health research: new insights and technical developments

    PubMed Central

    Myin‐Germeys, Inez; Kasanova, Zuzana; Vaessen, Thomas; Vachon, Hugo; Kirtley, Olivia; Viechtbauer, Wolfgang; Reininghaus, Ulrich

    2018-01-01

    In the mental health field, there is a growing awareness that the study of psychiatric symptoms in the context of everyday life, using experience sampling methodology (ESM), may provide a powerful and necessary addition to more conventional research approaches. ESM, a structured self‐report diary technique, allows the investigation of experiences within, and in interaction with, the real‐world context. This paper provides an overview of how zooming in on the micro‐level of experience and behaviour using ESM adds new insights and additional perspectives to standard approaches. More specifically, it discusses how ESM: a) contributes to a deeper understanding of psychopathological phenomena, b) allows to capture variability over time, c) aids in identifying internal and situational determinants of variability in symptomatology, and d) enables a thorough investigation of the interaction between the person and his/her environment and of real‐life social interactions. Next to improving assessment of psychopathology and its underlying mechanisms, ESM contributes to advancing and changing clinical practice by allowing a more fine‐grained evaluation of treatment effects as well as by providing the opportunity for extending treatment beyond the clinical setting into real life with the development of ecological momentary interventions. Furthermore, this paper provides an overview of the technical details of setting up an ESM study in terms of design, questionnaire development and statistical approaches. Overall, although a number of considerations and challenges remain, ESM offers one of the best opportunities for personalized medicine in psychiatry, from both a research and a clinical perspective. PMID:29856567

  8. Experience sampling methodology in mental health research: new insights and technical developments.

    PubMed

    Myin-Germeys, Inez; Kasanova, Zuzana; Vaessen, Thomas; Vachon, Hugo; Kirtley, Olivia; Viechtbauer, Wolfgang; Reininghaus, Ulrich

    2018-06-01

    In the mental health field, there is a growing awareness that the study of psychiatric symptoms in the context of everyday life, using experience sampling methodology (ESM), may provide a powerful and necessary addition to more conventional research approaches. ESM, a structured self-report diary technique, allows the investigation of experiences within, and in interaction with, the real-world context. This paper provides an overview of how zooming in on the micro-level of experience and behaviour using ESM adds new insights and additional perspectives to standard approaches. More specifically, it discusses how ESM: a) contributes to a deeper understanding of psychopathological phenomena, b) allows to capture variability over time, c) aids in identifying internal and situational determinants of variability in symptomatology, and d) enables a thorough investigation of the interaction between the person and his/her environment and of real-life social interactions. Next to improving assessment of psychopathology and its underlying mechanisms, ESM contributes to advancing and changing clinical practice by allowing a more fine-grained evaluation of treatment effects as well as by providing the opportunity for extending treatment beyond the clinical setting into real life with the development of ecological momentary interventions. Furthermore, this paper provides an overview of the technical details of setting up an ESM study in terms of design, questionnaire development and statistical approaches. Overall, although a number of considerations and challenges remain, ESM offers one of the best opportunities for personalized medicine in psychiatry, from both a research and a clinical perspective. © 2018 World Psychiatric Association.

  9. Constructing a Reward-Related Quality of Life Statistic in Daily Life—a Proof of Concept Study Using Positive Affect

    PubMed Central

    Verhagen, Simone J. W.; Simons, Claudia J. P.; van Zelst, Catherine; Delespaul, Philippe A. E. G.

    2017-01-01

    Background: Mental healthcare needs person-tailored interventions. Experience Sampling Method (ESM) can provide daily life monitoring of personal experiences. This study aims to operationalize and test a measure of momentary reward-related Quality of Life (rQoL). Intuitively, quality of life improves by spending more time on rewarding experiences. ESM clinical interventions can use this information to coach patients to find a realistic, optimal balance of positive experiences (maximize reward) in daily life. rQoL combines the frequency of engaging in a relevant context (a ‘behavior setting’) with concurrent (positive) affect. High rQoL occurs when the most frequent behavior settings are combined with positive affect or infrequent behavior settings co-occur with low positive affect. Methods: Resampling procedures (Monte Carlo experiments) were applied to assess the reliability of rQoL using various behavior setting definitions under different sampling circumstances, for real or virtual subjects with low-, average- and high contextual variability. Furthermore, resampling was used to assess whether rQoL is a distinct concept from positive affect. Virtual ESM beep datasets were extracted from 1,058 valid ESM observations for virtual and real subjects. Results: Behavior settings defined by Who-What contextual information were most informative. Simulations of at least 100 ESM observations are needed for reliable assessment. Virtual ESM beep datasets of a real subject can be defined by Who-What-Where behavior setting combinations. Large sample sizes are necessary for reliable rQoL assessments, except for subjects with low contextual variability. rQoL is distinct from positive affect. Conclusion: rQoL is a feasible concept. Monte Carlo experiments should be used to assess the reliable implementation of an ESM statistic. Future research in ESM should asses the behavior of summary statistics under different sampling situations. This exploration is especially relevant in clinical implementation, where often only small datasets are available. PMID:29163294

  10. Economic evaluation of an experience sampling method intervention in depression compared with treatment as usual using data from a randomized controlled trial.

    PubMed

    Simons, Claudia J P; Drukker, Marjan; Evers, Silvia; van Mastrigt, Ghislaine A P G; Höhn, Petra; Kramer, Ingrid; Peeters, Frenk; Delespaul, Philippe; Menne-Lothmann, Claudia; Hartmann, Jessica A; van Os, Jim; Wichers, Marieke

    2017-12-29

    Experience sampling, a method for real-time self-monitoring of affective experiences, holds opportunities for person-tailored treatment. By focussing on dynamic patterns of positive affect, experience sampling method interventions (ESM-I) accommodate strategies to enhance personalized treatment of depression-at potentially low-costs. This study aimed to investigate the cost-effectiveness of an experience sampling method intervention in patients with depression, from a societal perspective. Participants were recruited between January 2010 and February 2012 from out-patient mental health care facilities in or near the Dutch cities of Eindhoven and Maastricht, and through local advertisements. Out-patients diagnosed with major depression (n = 101) receiving pharmacotherapy were randomized into: (i) ESM-I consisting of six weeks of ESM combined with weekly feedback regarding the individual's positive affective experiences, (ii) six weeks of ESM without feedback, or (iii) treatment as usual only. Alongside this randomised controlled trial, an economic evaluation was conducted consisting of a cost-effectiveness and a cost-utility analysis, using Hamilton Depression Rating Scale (HDRS) and quality adjusted life years (QALYs) as outcome, with willingness-to-pay threshold for a QALY set at €50,000 (based on Dutch guidelines for moderate severe to severe illnesses). The economic evaluation showed that ESM-I is an optimal strategy only when willingness to pay is around €3000 per unit HDRS and around €40,500 per QALY. ESM-I was the least favourable treatment when willingness to pay was lower than €30,000 per QALY. However, at the €50,000 willingness-to-pay threshold, ESM-I was, with a 46% probability, the most favourable treatment (base-case analysis). Sensitivity analyses confirmed the robustness of these results. We may tentatively conclude that ESM-I is a cost-effective add-on intervention to pharmacotherapy in outpatients with major depression. Netherlands Trial register, NTR1974 .

  11. Constructing a Reward-Related Quality of Life Statistic in Daily Life-a Proof of Concept Study Using Positive Affect.

    PubMed

    Verhagen, Simone J W; Simons, Claudia J P; van Zelst, Catherine; Delespaul, Philippe A E G

    2017-01-01

    Background: Mental healthcare needs person-tailored interventions. Experience Sampling Method (ESM) can provide daily life monitoring of personal experiences. This study aims to operationalize and test a measure of momentary reward-related Quality of Life (rQoL). Intuitively, quality of life improves by spending more time on rewarding experiences. ESM clinical interventions can use this information to coach patients to find a realistic, optimal balance of positive experiences (maximize reward) in daily life. rQoL combines the frequency of engaging in a relevant context (a 'behavior setting') with concurrent (positive) affect. High rQoL occurs when the most frequent behavior settings are combined with positive affect or infrequent behavior settings co-occur with low positive affect. Methods: Resampling procedures (Monte Carlo experiments) were applied to assess the reliability of rQoL using various behavior setting definitions under different sampling circumstances, for real or virtual subjects with low-, average- and high contextual variability. Furthermore, resampling was used to assess whether rQoL is a distinct concept from positive affect. Virtual ESM beep datasets were extracted from 1,058 valid ESM observations for virtual and real subjects. Results: Behavior settings defined by Who-What contextual information were most informative. Simulations of at least 100 ESM observations are needed for reliable assessment. Virtual ESM beep datasets of a real subject can be defined by Who-What-Where behavior setting combinations. Large sample sizes are necessary for reliable rQoL assessments, except for subjects with low contextual variability. rQoL is distinct from positive affect. Conclusion: rQoL is a feasible concept. Monte Carlo experiments should be used to assess the reliable implementation of an ESM statistic. Future research in ESM should asses the behavior of summary statistics under different sampling situations. This exploration is especially relevant in clinical implementation, where often only small datasets are available.

  12. Integrated Earth System Model (iESM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Peter Edmond; Mao, Jiafu; Shi, Xiaoying

    2016-12-02

    The iESM is a simulation code that represents the physical and biological aspects of Earth's climate system, and also includes the macro-economic and demographic properties of human societies. The human aspect of the simulation code is focused in particular on the effects of human activities on land use and land cover change, but also includes aspects such as energy economies. The time frame for predictions with iESM is approximately 1970 through 2100.

  13. An Overview of the GIS Weasel

    USGS Publications Warehouse

    Viger, Roland J.

    2008-01-01

    This fact sheet provides a high-level description of the GIS Weasel, a software system designed to aid users in preparing spatial information as input to lumped and distributed parameter environmental simulation models (ESMs). The GIS Weasel provides geographic information system (GIS) tools to help create maps of geographic features relevant to the application of a user?s ESM and to generate parameters from those maps. The operation of the GIS Weasel does not require a user to be a GIS expert, only that a user has an understanding of the spatial information requirements of the model. The GIS Weasel software system provides a GIS-based graphical user interface (GUI), C programming language executables, and general utility scripts. The software will run on any computing platform where ArcInfo Workstation (version 8.1 or later) and the GRID extension are accessible. The user controls the GIS Weasel by interacting with menus, maps, and tables.

  14. Dealing with daily challenges in dementia (deal-id study): effectiveness of the experience sampling method intervention 'Partner in Sight' for spousal caregivers of people with dementia: design of a randomized controlled trial.

    PubMed

    van Knippenberg, Rosalia J M; de Vugt, Marjolein E; Ponds, Rudolf W; Myin-Germeys, Inez; Verhey, Frans R J

    2016-05-11

    There is an urgent need for psychosocial interventions that effectively support dementia caregivers in daily life. The Experience Sampling Methodology (ESM) offers the possibility to provide a more dynamic view of caregiver functioning. ESM-derived feedback may help to redirect caregivers' behavior towards situations that elicit positive emotions and to increase their feelings of competence in the caretaking process. This paper presents the design of a study that evaluates the process characteristics and effects of the ESM-based intervention 'Partner in Sight'. A randomized controlled trial with 90 spousal caregivers of people with dementia will be conducted. Participants will be randomly assigned to the experimental (6-week ESM intervention including feedback), pseudo-experimental (6-week ESM intervention without feedback), or control group (care as usual). Assessments will be performed pre- and post-intervention and at 2-, and 6-month follow-up. Main outcomes will be sense of competence, perceived control, momentary positive affect, and psychological complaints (depressive symptoms, perceived stress, anxiety, momentary negative affect). In addition to the effect evaluation, a process and economic evaluation will be conducted to investigate the credibility and generalizability of the intervention, and its cost-effectiveness. The potential effects of the ESM intervention may help caregivers to endure their care responsibilities and prevent them from becoming overburdened. This is the first ESM intervention for caregivers of people with dementia. The results of this study, therefore, provide a valuable contribution to the growing knowledge on m-health interventions for dementia caregivers. Dutch Trial Register NTR4847 ; date registered Oct 9, 2014.

  15. Ephedra-Treated Donor-Derived Gut Microbiota Transplantation Ameliorates High Fat Diet-Induced Obesity in Rats

    PubMed Central

    Wang, Jing-Hua; Kim, Bong-Soo; Han, Kyungsun; Kim, Hojun

    2017-01-01

    Changes in gut microbiota (GM) are closely associated with metabolic syndrome, obesity, type 2 diabetes and so on. Several medicinal herbs, including Ephedra sinica (Es), have anti-obesity effects that ameliorate metabolic disorders. Therefore, in this study we evaluated whether Es maintains its anti-obesity effect through Es-altered gut microbiota (EsM) transplantation. GM was isolated from cecal contents of Es treated and untreated rats following repeated transplants into obese rats via oral gavage over three weeks. High-fat-diet (HFD)-induced obese rats transplanted with EsM lost significant body weight, epididymal fat, and perirenal fat weight, but no remarkable changes were observed in abdominal fat, liver, cecum weight and food efficiency ratio. In addition, treatment with EsM also significantly lowered the fasting blood glucose, serum insulin level, and insulin resistance index. Meanwhile, EsM transplantation significantly reduced gene expression of proinflammatory cytokines interleukin-1 and monocyte chemotactic protein-1. Rats treated with EsM also showed changed GM composition, especially blautia, roseburia and clostridium, significantly reduced the level of endotoxin and markedly increased the acetic acid in feces. Overall, our results demonstrated that EsM ameliorates HFD-induced obesity and related metabolic disorders, like hyperglycemia and insulin resistance, and is strongly associated with modulating the distribution of GM, enterogenous endotoxin and enteral acetic acid. PMID:28545248

  16. Ephedra-Treated Donor-Derived Gut Microbiota Transplantation Ameliorates High Fat Diet-Induced Obesity in Rats.

    PubMed

    Wang, Jing-Hua; Kim, Bong-Soo; Han, Kyungsun; Kim, Hojun

    2017-05-23

    Changes in gut microbiota (GM) are closely associated with metabolic syndrome, obesity, type 2 diabetes and so on. Several medicinal herbs, including Ephedra sinica (Es), have anti-obesity effects that ameliorate metabolic disorders. Therefore, in this study we evaluated whether Es maintains its anti-obesity effect through Es-altered gut microbiota (EsM) transplantation. GM was isolated from cecal contents of Es treated and untreated rats following repeated transplants into obese rats via oral gavage over three weeks. High-fat-diet (HFD)-induced obese rats transplanted with EsM lost significant body weight, epididymal fat, and perirenal fat weight, but no remarkable changes were observed in abdominal fat, liver, cecum weight and food efficiency ratio. In addition, treatment with EsM also significantly lowered the fasting blood glucose, serum insulin level, and insulin resistance index. Meanwhile, EsM transplantation significantly reduced gene expression of proinflammatory cytokines interleukin-1 and monocyte chemotactic protein-1. Rats treated with EsM also showed changed GM composition, especially blautia, roseburia and clostridium, significantly reduced the level of endotoxin and markedly increased the acetic acid in feces. Overall, our results demonstrated that EsM ameliorates HFD-induced obesity and related metabolic disorders, like hyperglycemia and insulin resistance, and is strongly associated with modulating the distribution of GM, enterogenous endotoxin and enteral acetic acid.

  17. Bioregenerative food system cost based on optimized menus for advanced life support

    NASA Technical Reports Server (NTRS)

    Waters, Geoffrey C R.; Olabi, Ammar; Hunter, Jean B.; Dixon, Mike A.; Lasseur, Christophe

    2002-01-01

    Optimized menus for a bioregenerative life support system have been developed based on measures of crop productivity, food item acceptability, menu diversity, and nutritional requirements of crew. Crop-specific biomass requirements were calculated from menu recipe demands while accounting for food processing and preparation losses. Under the assumption of staggered planting, the optimized menu demanded a total crop production area of 453 m2 for six crew. Cost of the bioregenerative food system is estimated at 439 kg per menu cycle or 7.3 kg ESM crew-1 day-1, including agricultural waste processing costs. On average, about 60% (263.6 kg ESM) of the food system cost is tied up in equipment, 26% (114.2 kg ESM) in labor, and 14% (61.5 kg ESM) in power and cooling. This number is high compared to the STS and ISS (nonregenerative) systems but reductions in ESM may be achieved through intensive crop productivity improvements, reductions in equipment masses associated with crop production, and planning of production, processing, and preparation to minimize the requirement for crew labor.

  18. Collaborative Project: Development of an Isotope-Enabled CESM for Testing Abrupt Climate Changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhengyu

    One of the most important validations for a state-of-art Earth System Model (ESM) with respect to climate changes is the simulation of the climate evolution and abrupt climate change events in the Earth’s history of the last 21,000 years. However, one great challenge for model validation is that ESMs usually do not directly simulate geochemical variables that can be compared directly with past proxy records. In this proposal, we have met this challenge by developing the simulation capability of major isotopes in a state-of-art ESM, the Community Earth System Model (CESM), enabling us to make direct model-data comparison by comparingmore » the model directly against proxy climate records. Our isotope-enabled ESM incorporates the capability of simulating key isotopes and geotracers, notably δ 18O, δD, δ 14C, and δ 13C, Nd and Pa/Th. The isotope-enabled ESM have been used to perform some simulations for the last 21000 years. The direct comparison of these simulations with proxy records has shed light on the mechanisms of important climate change events.« less

  19. Using experience sampling methods/ecological momentary assessment (ESM/EMA) in clinical assessment and clinical research: introduction to the special section.

    PubMed

    Trull, Timothy J; Ebner-Priemer, Ulrich W

    2009-12-01

    This article introduces the special section on experience sampling methods and ecological momentary assessment in clinical assessment. We review the conceptual basis for experience sampling methods (ESM; Csikszentmihalyi & Larson, 1987) and ecological momentary assessment (EMA; Stone & Shiffman, 1994). Next, we highlight several advantageous features of ESM/EMA as applied to psychological assessment and clinical research. We provide a brief overview of the articles in this special section, each of which focuses on 1 of the following major classes of psychological disorders: mood disorders and mood dysregulation (Ebner-Priemer & Trull, 2009), anxiety disorders (Alpers, 2009), substance use disorders (Shiffman, 2009), and psychosis (Oorschot, Kwapil, Delespaul, & Myin-Germeys, 2009). Finally, we discuss prospects, future challenges, and limitations of ESM/EMA.

  20. Cryogenic temperature control by means of energy storage materials. [for long space voyages

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Picklesimer, E. A.; Connor, L. E.

    1977-01-01

    An investigation was conducted to study the concept of thermal control by means of physical or chemical reaction heats for applications involving the storage of cryogens during long-term space voyages. The investigation included some preliminary experimental tests of energy storage material (ESM) effectiveness. The materials considered can store and liberate large amounts of thermal energy by means of mechanisms such as sensible heat, heat of fusion, and physical or chemical reaction heat. A differential thermal analysis was utilized in the laboratory tests. Attention is given to the evaluation of cryogenic ESM thermal control concepts, the experimental determination of phase change materials characteristics, and adsorption ESMs. It is found that an ESM shield surrounded by multiple layer insulation provides the best protection for a cryogen store.

  1. Evaluation of NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwinger, Jorg; Goris, Nadine; Tjiputra, Jerry F.

    Idealised and hindcast simulations performed with the stand-alone ocean carbon-cycle configuration of the Norwegian Earth System Model (NorESM-OC) are described and evaluated. We present simulation results of three different model configurations (two different model versions at different grid resolutions) using two different atmospheric forcing data sets. Model version NorESM-OC1 corresponds to the version that is included in the NorESM-ME1 fully coupled model, which participated in CMIP5. The main update between NorESM-OC1 and NorESM-OC1.2 is the addition of two new options for the treatment of sinking particles. We find that using a constant sinking speed, which has been the standard in NorESM'smore » ocean carbon cycle module HAMOCC (HAMburg Ocean Carbon Cycle model), does not transport enough particulate organic carbon (POC) into the deep ocean below approximately 2000 m depth. The two newly implemented parameterisations, a particle aggregation scheme with prognostic sinking speed, and a simpler scheme that uses a linear increase in the sinking speed with depth, provide better agreement with observed POC fluxes. Additionally, reduced deep ocean biases of oxygen and remineralised phosphate indicate a better performance of the new parameterisations. For model version 1.2, a re-tuning of the ecosystem parameterisation has been performed, which (i) reduces previously too high primary production at high latitudes, (ii) consequently improves model results for surface nutrients, and (iii) reduces alkalinity and dissolved inorganic carbon biases at low latitudes. We use hindcast simulations with prescribed observed and constant (pre-industrial) atmospheric CO 2 concentrations to derive the past and contemporary ocean carbon sink. As a result, for the period 1990–1999 we find an average ocean carbon uptake ranging from 2.01 to 2.58 Pg C yr -1 depending on model version, grid resolution, and atmospheric forcing data set.« less

  2. Evaluation of NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1)

    DOE PAGES

    Schwinger, Jorg; Goris, Nadine; Tjiputra, Jerry F.; ...

    2016-08-02

    Idealised and hindcast simulations performed with the stand-alone ocean carbon-cycle configuration of the Norwegian Earth System Model (NorESM-OC) are described and evaluated. We present simulation results of three different model configurations (two different model versions at different grid resolutions) using two different atmospheric forcing data sets. Model version NorESM-OC1 corresponds to the version that is included in the NorESM-ME1 fully coupled model, which participated in CMIP5. The main update between NorESM-OC1 and NorESM-OC1.2 is the addition of two new options for the treatment of sinking particles. We find that using a constant sinking speed, which has been the standard in NorESM'smore » ocean carbon cycle module HAMOCC (HAMburg Ocean Carbon Cycle model), does not transport enough particulate organic carbon (POC) into the deep ocean below approximately 2000 m depth. The two newly implemented parameterisations, a particle aggregation scheme with prognostic sinking speed, and a simpler scheme that uses a linear increase in the sinking speed with depth, provide better agreement with observed POC fluxes. Additionally, reduced deep ocean biases of oxygen and remineralised phosphate indicate a better performance of the new parameterisations. For model version 1.2, a re-tuning of the ecosystem parameterisation has been performed, which (i) reduces previously too high primary production at high latitudes, (ii) consequently improves model results for surface nutrients, and (iii) reduces alkalinity and dissolved inorganic carbon biases at low latitudes. We use hindcast simulations with prescribed observed and constant (pre-industrial) atmospheric CO 2 concentrations to derive the past and contemporary ocean carbon sink. As a result, for the period 1990–1999 we find an average ocean carbon uptake ranging from 2.01 to 2.58 Pg C yr -1 depending on model version, grid resolution, and atmospheric forcing data set.« less

  3. Whale Hearing Models

    DTIC Science & Technology

    2005-06-20

    methodologies and partnership projects developed under the ONR Effect of Sound in the Marine Environment (ESME) Program. The effort involved an integration...computational models to predict audiograms for these species. National Security These data will assist in designing effective noise mitigation measures and...includes marine species for which there are reliable hearing data as well as sample sources with appropriate distance effects in their renditions, including

  4. Regional Arctic System Model (RASM): A Tool to Advance Understanding and Prediction of Arctic Climate Change at Process Scales

    NASA Astrophysics Data System (ADS)

    Maslowski, W.; Roberts, A.; Osinski, R.; Brunke, M.; Cassano, J. J.; Clement Kinney, J. L.; Craig, A.; Duvivier, A.; Fisel, B. J.; Gutowski, W. J., Jr.; Hamman, J.; Hughes, M.; Nijssen, B.; Zeng, X.

    2014-12-01

    The Arctic is undergoing rapid climatic changes, which are some of the most coordinated changes currently occurring anywhere on Earth. They are exemplified by the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Global Climate and Global Earth System Models (GC/ESMs) are in broad agreement with these changes, the rate of change in the GC/ESMs remains outpaced by observations. Reasons for that stem from a combination of coarse model resolution, inadequate parameterizations, unrepresented processes and a limited knowledge of physical and other real world interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the GC/ESM limitations in simulating observed seasonal to decadal variability and trends in the sea ice cover and climate. RASM is a high resolution, fully coupled, pan-Arctic climate model that uses the Community Earth System Model (CESM) framework. It uses the Los Alamos Sea Ice Model (CICE) and Parallel Ocean Program (POP) configured at an eddy-permitting resolution of 1/12° as well as the Weather Research and Forecasting (WRF) and Variable Infiltration Capacity (VIC) models at 50 km resolution. All RASM components are coupled via the CESM flux coupler (CPL7) at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled earth system model, which due to the additional constraints from lateral boundary conditions and nudging within a regional model domain facilitates detailed comparisons with observational statistics that are not possible with GC/ESMs. In this talk, we will emphasize the utility of RASM to understand sensitivity to variable parameter space, importance of critical processes, coupled feedbacks and ultimately to reduce uncertainty in arctic climate change projections.

  5. Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century

    USGS Publications Warehouse

    He, Yujie; Trumbore, Susan E.; Torn, Margaret S.; Harden, Jennifer W.; Vaughn, Lydia J.S.; Allison, Steven D.; Randerson, J.T.

    2016-01-01

    Soil is the largest terrestrial carbon reservoir and may influence the sign and magnitude of carbon cycle-climate feedbacks. Many Earth system models (ESMs) estimate a significant soil carbon sink by 2100, yet the underlying carbon dynamics determining this response have not been systematically tested against observations. We used 14C data from 157 globally distributed soil profiles sampled to 1 m depth to show that ESMs underestimated the mean age of soil carbon by more than six-fold (430±50 years vs. 3100±1800 years). Consequently, ESMs overestimated the carbon sequestration potential of soils by nearly two-fold (40±27%). These biases suggest that ESMs must better represent carbon stabilization processes and the turnover time of slow and passive reservoirs when simulating future atmospheric CO2 dynamics.

  6. Nutrient cycle benchmarks for earth system land model

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Riley, W. J.; Tang, J.; Zhao, L.

    2017-12-01

    Projecting future biosphere-climate feedbacks using Earth system models (ESMs) relies heavily on robust modeling of land surface carbon dynamics. More importantly, soil nutrient (particularly, nitrogen (N) and phosphorus (P)) dynamics strongly modulate carbon dynamics, such as plant sequestration of atmospheric CO2. Prevailing ESM land models all consider nitrogen as a potentially limiting nutrient, and several consider phosphorus. However, including nutrient cycle processes in ESM land models potentially introduces large uncertainties that could be identified and addressed by improved observational constraints. We describe the development of two nutrient cycle benchmarks for ESM land models: (1) nutrient partitioning between plants and soil microbes inferred from 15N and 33P tracers studies and (2) nutrient limitation effects on carbon cycle informed by long-term fertilization experiments. We used these benchmarks to evaluate critical hypotheses regarding nutrient cycling and their representation in ESMs. We found that a mechanistic representation of plant-microbe nutrient competition based on relevant functional traits best reproduced observed plant-microbe nutrient partitioning. We also found that for multiple-nutrient models (i.e., N and P), application of Liebig's law of the minimum is often inaccurate. Rather, the Multiple Nutrient Limitation (MNL) concept better reproduces observed carbon-nutrient interactions.

  7. The Multi-purpose Crew Vehicle European Service Module: a European Contribution to Human Exploration

    NASA Technical Reports Server (NTRS)

    Schubert, Kathleen; Berthe, Philippe; Grantier, Julie; Pietsch, Klaus; Angelillo, Philippe; Price, Laurence

    2013-01-01

    This paper provides an overview of the system and subsystem configuration of the MPCV European Service Module (ESM) at Preliminary Design Review (PDR) stage as well as its perspectives of utilisation within the global space exploration endeavour. The MPCV ESM is a cylindrical module with a diameter of 4500 mm and a total length - main engine excluded - of 2700 mm. It is fitted with four solar array wings with a span of 18.8 m. Its dry mass is 3.5 metric tons and it can carry 8.6 tons of propellant. The main functions of the European Service Module are to bring the structural continuity between the launcher and the crew module, to provide propulsion to the MPCV, to ensure its thermal control as well as electrical power and to store water, oxygen and nitrogen for the mission. The current agreement foresees the development and production by Europe of one flight model, with an option for a second one. This module will be assembled in Europe and delivered to NASA in 2016. It will be used for a flight of the MPCV Orion in December 2017.

  8. The Multi-purpose Crew Vehicle European Service Module: a European Contribution to Human Exploration

    NASA Technical Reports Server (NTRS)

    Berthe, Philippe; Schubert, Kathleen; Grantier, Julie; Pietsch, Klaus; Angelillo, Philippe; Price, Laurence

    2013-01-01

    This paper provides an overview of the system and subsystem configuration of the MPCV European Service Module (ESM) at Preliminary Design Review (PDR) stage as well as its perspectives of utilisation within the global space exploration endeavour. The MPCV ESM is a cylindrical module with a diameter of 4500 mm and a total length – main engine excluded – of 2700 mm. It is fitted with four solar array wings with a span of 18.8 m. Its dry mass is 3.5 metric tons and it can carry 8.6 tons of propellant. The main functions of the European Service Module are to bring the structural continuity between the launcher and the crew module, to provide propulsion to the MPCV, to ensure its thermal control as well as electrical power and to store water, oxygen and nitrogen for the mission. The current agreement foresees the development and production by Europe of one flight model, with an option for a second one. This module will be assembled in Europe and delivered to NASA in 2016. It will be used for a flight of the MPCV Orion in December 2017.

  9. Highly Efficient Catalysis of Azo Dyes Using Recyclable Silver Nanoparticles Immobilized on Tannic Acid-Grafted Eggshell Membrane

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojing; Liang, Miao; Liu, Mingyue; Su, Rongxin; Wang, Mengfan; Qi, Wei; He, Zhimin

    2016-10-01

    In this study, a facile one-step synthesis of a novel nanocomposite catalytic film was developed based on silver nanoparticles (AgNPs) immobilized in tannic acid-modified eggshell membrane (Tan-ESM). Tannic acid, as a typical plant polyphenol from oak wood, was first grafted onto ESM fibers to serve as both the reductant and the stabilizer during the synthesis of AgNPs. The morphology, constitution, and thermal stability of the resulting AgNPs@Tan-ESM composites were fully characterized to explain the excellent catalytic efficiency of AgNPs@Tan-ESM composites. These composite catalysts were applied to the degradation of azo dyes which exhibited the high catalytic activity toward Congo red and methyl orange according to the kinetic curves. More importantly, they can be easily recovered and reused for many times because of their good stability.

  10. Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations

    NASA Astrophysics Data System (ADS)

    Schneider, Tapio; Lan, Shiwei; Stuart, Andrew; Teixeira, João.

    2017-12-01

    Climate projections continue to be marred by large uncertainties, which originate in processes that need to be parameterized, such as clouds, convection, and ecosystems. But rapid progress is now within reach. New computational tools and methods from data assimilation and machine learning make it possible to integrate global observations and local high-resolution simulations in an Earth system model (ESM) that systematically learns from both and quantifies uncertainties. Here we propose a blueprint for such an ESM. We outline how parameterization schemes can learn from global observations and targeted high-resolution simulations, for example, of clouds and convection, through matching low-order statistics between ESMs, observations, and high-resolution simulations. We illustrate learning algorithms for ESMs with a simple dynamical system that shares characteristics of the climate system; and we discuss the opportunities the proposed framework presents and the challenges that remain to realize it.

  11. Overview of the Acoustic Testing of the European Service Module Structural Test Article (E-STA)

    NASA Technical Reports Server (NTRS)

    Hughes, William; Fogt, Vince; Le Plenier, Cyprien; Duval, Francois; Durand, Jean-Francois; Staab, Lucas D.; Hozman, Aron; Mcnelis, Anne; Bittinger, Samantha; Thirkettle, Anthony; hide

    2017-01-01

    The European Space Agency (ESA) and their prime contractor Airbus Defense Space (ADS) are developing the European Service Module (ESM) for integration and utilization with other modules of NASAs Orion Multi-Purpose Crew Vehicle. As part of this development, ESA, ADS, NASA and the Lockheed Martin Company performed a series of reverberant acoustic tests in April-May 2016 on the ESM Structural Test Article (E-STA), the mechanical mock-up of the ESM designated for mechanical tests. Testing the E-STA under acoustic qualification loads verifies whether it can successfully withstand the medium and high frequency mechanical environment occurring during the vehicles lift-off and atmospheric phases of flight. The testing occurred at the Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Centers Plum Brook Station site in Sandusky, OH, USA. This highly successful acoustic test campaign excited the E-STA to acoustic test levels as high as 149.4 dB Overall Sound Pressure Level. This acoustic testing met all the ESA and ADSs test objectives, including establishingverifying the random vibration qualification test levels for numerous hardware components of the ESM, and qualifying the ESMs Solar Array Wing electrical power system. This paper will address the test objectives, the test articles configuration, the test instrumentation and excitation levels, the RATF site and capabilities, the series of acoustic tests performed, and the technical issues faced and overcome to result in a successful acoustic test campaign for the ESM. A discussion of several test results is also included.

  12. Overview of the Acoustic Testing of the European Service Module Structural Test Article (E-STA)

    NASA Technical Reports Server (NTRS)

    Hughes, William; Le Plenier, Cyprien; Duval, Francois; Staab, Lucas; Hozman, Aron; Thirkettle, Anthony; Fogt, Vincent; Durand, Jean-Francois; McNelis, Anne; Bittinger, Samantha; hide

    2017-01-01

    The European Space Agency (ESA) and their prime contractor Airbus Defense Space (ADS) are developing the European Service Module (ESM) for integration and utilization with other modules of NASAs Orion Multi-Purpose Crew Vehicle. As part of this development, ESA, ADS, NASA and the Lockheed Martin Company performed a series of reverberant acoustic tests in April-May 2016 on the ESM Structural Test Article (E-STA), the mechanical mock-up of the ESM designated for mechanical tests. Testing the E-STA under acoustic qualification loads verifies whether it can successfully withstand the medium and high frequency mechanical environment occurring during the vehicles lift-off and atmospheric phases of flight. The testing occurred at the Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Centers Plum Brook Station site in Sandusky, OH, USA. This highly successful acoustic test campaign excited the E-STA to acoustic test levels as high as 149.4 dB Overall Sound Pressure Level. This acoustic testing met all the ESA and ADSs test objectives, including establishing/verifying the random vibration qualification test levels for numerous hardware components of the ESM, and qualifying the ESMs Solar Array Wing electrical power system. This paper will address the test objectives, the test articles configuration, the test instrumentation and excitation levels, the RATF site and capabilities, the series of acoustic tests performed, and the technical issues faced and overcome to result in a successful acoustic test campaign for the ESM. A discussion of several test results is also included.

  13. The Development and Validation of a Human Systems Integration (HSI) Program for the Canadian Department of National Defence (DND)

    DTIC Science & Technology

    2008-09-01

    inputs to interface and workspace design , and iterative user testing is not required. However, an effective HSI Program is just as important on a COTS...this phase is the contract, and the various design reviews, tests , and evaluations that occur to ensure that the system meets it goals. 3.3 DBCM ESM...Report(s). • HSI Approvals of Relevant Design Changes. • HSI Test Plans and Reports. • HSI Review Progress and Evaluation Memos and Reports. • HSI

  14. Electron transport estimated from electron spectra using electron spectrometer in LFEX laser target experiments

    NASA Astrophysics Data System (ADS)

    Ozaki, T.; Hata, M.; Matsuo, K.; Kojima, S.; Arikawa, Y.; Fujioka, S.; Sakagami, H.; Sunahara, A.; Nagatomo, H.; Johzaki, T.; Yogo, A.; Morace, A.; Zhang, Z.; Shiraga, H.; Sakata, S.; Nagai, T.; Abe, Y.; Lee, S.; Nakai, M.; Nishimura, H.; Azechi, H.; FIREX Group; GXII-LFEX Group

    2016-05-01

    Hot electrons which are generated from targets irradiated by a high-intense laser are measured by two electron spectrometers (ESMs). However, total electron energy observed by the ESM is only less than 1%. Hot electrons are confined by self-fields due to the huge current. When an external magnetic field of several hundred Tesla is applied during the laser irradiation on targets, the ESM signals always increase. In the simulation, the same result can be obtained. The reason is that the Alfvén limit can be mitigated due to the external longitudinal magnetic field.

  15. A new performance measurement system for maternal and child health in the United States.

    PubMed

    Kogan, Michael D; Dykton, Christopher; Hirai, Ashley H; Strickland, Bonnie B; Bethell, Christina D; Naqvi, Iran; Cano, Carlos E; Downing-Futrell, Sheri L; Lu, Michael C

    2015-05-01

    The Title V Maternal and Child Health (MCH) Block Grant is the linchpin for US MCH services. The first national performance measures (NPMs) for MCH were instituted in 1997. Changing trends in MCH risk factors, outcomes, health services, data sources, and advances in scientific knowledge, in conjunction with budgetary constraints led the Maternal and Child Health Bureau (MCHB) to design a new performance measurement system. A workgroup was formed to develop a new system. The following guiding principles were used: (1) Afford States more flexibility and reduce the overall reporting burden; (2) Improve accountability to better document Title V's impact; (3) Develop NPMs that encompass measures in: maternal and women's health, perinatal health, child health, children with special health care needs, adolescent health, and cross-cutting areas. A three-tiered performance measurement system was proposed with national outcome measures (NOMs), NPMs and evidence-based/informed strategy measures (ESMs). NOMs are the ultimate goals that MCHB and States are attempting to achieve. NPMs are measures, generally associated with processes or programs, shown to affect NOMs. ESMs are evidence-based or informed measures that each State Title V program develops to affect the NPMs. There are 15 NPMs from which States select eight, with at least one from each population area. MCHB will provide the data for the NOMs and NPMs, when possible. The new performance measurement system increases the flexibility and reduces the reporting burden for States by allowing them to choose 8 NPMs to target, and increases accountability by having States develop actionable ESMs. The new national performance measure framework for maternal and child health will allow States more flexibility to address their areas of greatest need, reduce their data reporting burden by having the Maternal and Child Health Bureau provide data for the National Outcome and Performance Measures, yet afford States the opportunity to develop measurable strategies to address their selected performance measures.

  16. Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, D. S.; Shevliakova, E.; Malyshev, S.

    Connections between wildfires and modes of variability in climate are sought as a means for predicting fire activity on interannual to multi-decadal timescales. Several fire drivers, such as temperature and local drought index, have been shown to vary on these timescales, and analysis of tree-ring data suggests covariance between fires and climate oscillation indices in some regions. HBut, the shortness of the satellite record of global fire events limits investigations on larger spatial scales. Here we explore the interplay between climate variability and wildfire emissions with the preindustrial long control numerical experiments and historical ensembles of CESM1 and the NOAA/GFDLmore » ESM2Mb. We find that interannual variability in fires is underpredicted in both Earth System models (ESMs) compared to present day fire emission inventories. Modeled fire emissions respond to the El Niño/southern oscillation (ENSO) and Pacific decadal oscillation (PDO) with increases in southeast Asia and boreal North America emissions, and decreases in southern North America and Sahel emissions, during the ENSO warm phase in both ESMs, and the PDO warm phase in CESM1. In addition, CESM1 produces decreases in boreal northern hemisphere fire emissions for the warm phase of the Atlantic Meridional Oscillation. Through analysis of the long control simulations, we show that the 20th century trends in both ESMs are statistically significant, meaning that the signal of anthropogenic activity on fire emissions over this time period is detectable above the annual to decadal timescale noise. However, the trends simulated by the two ESMs are of opposite sign (CESM1 decreasing, ESM2Mb increasing), highlighting the need for improved understanding, proxy observations, and modeling to resolve this discrepancy.« less

  17. Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Shevliakova, E.; Malyshev, S.; Lamarque, J.-F.; Wittenberg, A. T.

    2016-12-01

    Connections between wildfires and modes of variability in climate are sought as a means for predicting fire activity on interannual to multi-decadal timescales. Several fire drivers, such as temperature and local drought index, have been shown to vary on these timescales, and analysis of tree-ring data suggests covariance between fires and climate oscillation indices in some regions. However, the shortness of the satellite record of global fire events limits investigations on larger spatial scales. Here we explore the interplay between climate variability and wildfire emissions with the preindustrial long control numerical experiments and historical ensembles of CESM1 and the NOAA/GFDL ESM2Mb. We find that interannual variability in fires is underpredicted in both Earth System models (ESMs) compared to present day fire emission inventories. Modeled fire emissions respond to the El Niño/southern oscillation (ENSO) and Pacific decadal oscillation (PDO) with increases in southeast Asia and boreal North America emissions, and decreases in southern North America and Sahel emissions, during the ENSO warm phase in both ESMs, and the PDO warm phase in CESM1. Additionally, CESM1 produces decreases in boreal northern hemisphere fire emissions for the warm phase of the Atlantic Meridional Oscillation. Through analysis of the long control simulations, we show that the 20th century trends in both ESMs are statistically significant, meaning that the signal of anthropogenic activity on fire emissions over this time period is detectable above the annual to decadal timescale noise. However, the trends simulated by the two ESMs are of opposite sign (CESM1 decreasing, ESM2Mb increasing), highlighting the need for improved understanding, proxy observations, and modeling to resolve this discrepancy.

  18. Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models

    DOE PAGES

    Ward, D. S.; Shevliakova, E.; Malyshev, S.; ...

    2016-12-02

    Connections between wildfires and modes of variability in climate are sought as a means for predicting fire activity on interannual to multi-decadal timescales. Several fire drivers, such as temperature and local drought index, have been shown to vary on these timescales, and analysis of tree-ring data suggests covariance between fires and climate oscillation indices in some regions. HBut, the shortness of the satellite record of global fire events limits investigations on larger spatial scales. Here we explore the interplay between climate variability and wildfire emissions with the preindustrial long control numerical experiments and historical ensembles of CESM1 and the NOAA/GFDLmore » ESM2Mb. We find that interannual variability in fires is underpredicted in both Earth System models (ESMs) compared to present day fire emission inventories. Modeled fire emissions respond to the El Niño/southern oscillation (ENSO) and Pacific decadal oscillation (PDO) with increases in southeast Asia and boreal North America emissions, and decreases in southern North America and Sahel emissions, during the ENSO warm phase in both ESMs, and the PDO warm phase in CESM1. In addition, CESM1 produces decreases in boreal northern hemisphere fire emissions for the warm phase of the Atlantic Meridional Oscillation. Through analysis of the long control simulations, we show that the 20th century trends in both ESMs are statistically significant, meaning that the signal of anthropogenic activity on fire emissions over this time period is detectable above the annual to decadal timescale noise. However, the trends simulated by the two ESMs are of opposite sign (CESM1 decreasing, ESM2Mb increasing), highlighting the need for improved understanding, proxy observations, and modeling to resolve this discrepancy.« less

  19. Language Mapping in Multilingual Patients: Electrocorticography and Cortical Stimulation During Naming

    PubMed Central

    Cervenka, Mackenzie C.; Boatman-Reich, Dana F.; Ward, Julianna; Franaszczuk, Piotr J.; Crone, Nathan E.

    2011-01-01

    Multilingual patients pose a unique challenge when planning epilepsy surgery near language cortex because the cortical representations of each language may be distinct. These distinctions may not be evident with routine electrocortical stimulation mapping (ESM). Electrocorticography (ECoG) has recently been used to detect task-related spectral perturbations associated with functional brain activation. We hypothesized that using broadband high gamma augmentation (HGA, 60–150 Hz) as an index of cortical activation, ECoG would complement ESM in discriminating the cortical representations of first (L1) and second (L2) languages. We studied four adult patients for whom English was a second language, in whom subdural electrodes (a total of 358) were implanted to guide epilepsy surgery. Patients underwent ECoG recordings and ESM while performing the same visual object naming task in L1 and L2. In three of four patients, ECoG found sites activated during naming in one language but not the other. These language-specific sites were not identified using ESM. In addition, ECoG HGA was observed at more sites during L2 versus L1 naming in two patients, suggesting that L2 processing required additional cortical resources compared to L1 processing in these individuals. Post-operative language deficits were identified in three patients (one in L2 only). These deficits were predicted by ECoG spectral mapping but not by ESM. These results suggest that pre-surgical mapping should include evaluation of all utilized languages to avoid post-operative functional deficits. Finally, this study suggests that ECoG spectral mapping may potentially complement the results of ESM of language. PMID:21373361

  20. A prospective study comparing endoscopic subcutaneous mastectomy plus immediate reconstruction with implants and breast conserving surgery for breast cancer.

    PubMed

    Fan, Lin-Jun; Jiang, Jun; Yang, Xin-Hua; Zhang, Yi; Li, Xing-Gang; Chen, Xian-Chun; Zhong, Ling

    2009-12-20

    Breast conserving surgery (BCS) has been the standard surgical procedure for the treatment of early breast cancer. Endoscopic subcutaneous mastectomy (ESM) plus immediate reconstruction with implants is an emerging procedure. The objective of this prospective study was to evaluate the clinical outcomes of these two surgical procedures in our clinical setting. From March 2004 to October 2007, 43 patients with breast cancer underwent ESM plus axillary lymph node dissection and immediate reconstruction with implants, while 54 patients underwent BCS. The clinical and pathological characteristics, surgical safety, and therapeutic effects were compared between the two groups. There were no significant differences in the age, clinical stage, histopathologic type of tumor, operative blood loss, postoperative drainage time, and postoperative complications between the two groups (P > 0.05). The postoperative complications were partial necrosis of the nipple and superficial skin flap in the ESM patients, and hydrops in the axilla and residual cavity in the BCS patients. There was no significant difference in the rate of satisfactory postoperative cosmetic outcomes between the ESM (88.4%, 38/43) and BCS (92.6%, 50/54) patients (P > 0.05). During follow-up of 6 months to 4 years, all patients treated with ESM were disease-free, but 3 patients who underwent BCS had metastasis or recurrence -one of these patients died of multiple organ metastasis. After considering the wide indications for use, high surgical safety, and favorable cosmetic outcomes, we conclude that ESM plus axillary lymph node dissection and immediate reconstruction with implants - the new surgery of choice for breast cancer - warrants serious consideration as the prospective next standard surgical procedure.

  1. Eggshell membrane as a novel bio sorbent for remediation of boron from desalinated water.

    PubMed

    Al-Ghouti, Mohammad A; Khan, Mariam

    2018-02-01

    This study investigated the use of eggshell membrane (ESM) as a bio-sorbent and the effect of temperature, pH, and initial concentration on its efficiency. Furthermore, by altering the chemical composition, modified eggshell membrane (MESM) was prepared, and its efficiency was compared with the ESM. Results showed that the adsorption of boron preferred an acidic condition; pH 6 at 35 °C. In addition, the positive value of ΔH° suggested that the reaction favored endothermic pathway, while the negative value for ΔG° further suggested that the adsorption process was spontaneous. Furthermore, the ESM could adsorb 97% of boron, while MESM was able to adsorb 95%. From the Fourier transform infrared (FTIR), different functional groups were recorded on the surface of the ESM and MESM, and they played key role in the boron adsorption mechanisms. Linear Freundlich model was suggested to best describe the experimental data with 99.4% correlation coefficient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Extension and applications of switching model: Range theory, multiple scattering model of Goudsmit-Saunderson, and lateral spread treatment of Marwick-Sigmund

    NASA Astrophysics Data System (ADS)

    Ikegami, Seiji

    2017-09-01

    The switching model (PSM) developed in the previous paper is extended to obtain an ;extended switching model (ESM). In the ESM, the mixt electronic-and-nuclear energy-loss region, in addition to the electronic and nuclear energy-loss regions in PSM, is taken into account analytically and appropriately. This model is combined with a small-angle multiple scattering range theory considering both nuclear and electronic stopping effects developed by Marwick-Sigmund and Valdes-Arista to formulate a improved range theory. The ESM is also combined with the multiple scattering theory with non-small angle approximation by Goudsmit-Saunderson. Furthermore, we applied ESM to lateral spread model of Marwick-Sigmund. Numerical calculations of the entire distribution functions including one of the mixt region are roughly and approximately possible. However, exact numerical calculation may be impossible. Consequently, several preliminary numerical calculations of the electronic, mixt, and nuclear regions are performed to examine their underlying behavior with respect to the incident energy, the scattering angle, the outgoing projectile intensity, and the target thickness. We show the numerical results not only of PSM and but also of ESM. Both numerical results are shown in the present paper for the first time. Since the theoretical relations are constructed using reduced variables, the calculations are made only on the case of C colliding on C.

  3. Nutritional effects of egg shell membrane supplements on chicken performance and immunity

    USDA-ARS?s Scientific Manuscript database

    Eggshell membranes (ESM) contain a variety of proteins and peptides which help in the development of embryo and provide protection to it. Many of the peptides and proteins associated with ESM have antimicrobial, immune-modulatory, and adjuvant properties. We hypothesized that the membrane byproducts...

  4. Parallel Optimization of an Earth System Model (100 Gigaflops and Beyond?)

    NASA Technical Reports Server (NTRS)

    Drummond, L. A.; Farrara, J. D.; Mechoso, C. R.; Spahr, J. A.; Chao, Y.; Katz, S.; Lou, J. Z.; Wang, P.

    1997-01-01

    We are developing an Earth System Model (ESM) to be used in research aimed to better understand the interactions between the components of the Earth System and to eventually predict their variations. Currently, our ESM includes models of the atmosphere, oceans and the important chemical tracers therein.

  5. Becoming Something Different: Learning from Esme

    ERIC Educational Resources Information Center

    Fairbanks, Colleen M.; Crooks, Penny Mason; Ariail, Mary

    2011-01-01

    In this article, Fairbanks, Crooks, and Ariail followed Esme Martinez, a Spanish-speaking Latina, from the sixth grade to the eleventh grade, focusing on her perspectives of schooling and her shifting identities related to home, school, friendships, and future. Drawing on the construct of artifacts, a sociohistorical concept that understands…

  6. Experience-Sampling Research Methods and Their Potential for Education Research

    ERIC Educational Resources Information Center

    Zirkel, Sabrina; Garcia, Julie A.; Murphy, Mary C.

    2015-01-01

    Experience-sampling methods (ESM) enable us to learn about individuals' lives in context by measuring participants' feelings, thoughts, actions, context, and/or activities as they go about their daily lives. By capturing experience, affect, and action "in the moment" and with repeated measures, ESM approaches allow researchers…

  7. Variability in Cortical Representations of Speech Sound Perception

    ERIC Educational Resources Information Center

    Boatman, Dana F.

    2007-01-01

    Recent brain mapping studies have provided new insights into the cortical systems that mediate human speech perception. Electrocortical stimulation mapping (ESM) is a brain mapping method that is used clinically to localize cortical functions in neurosurgical patients. Recent ESM studies have yielded new insights into the cortical systems that…

  8. Marine cloud brightening – as effective without clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlm, Lars; Jones, Andy; Stjern, Camilla W.

    Marine cloud brightening through sea spray injection has been proposed as a climate engineering method for avoiding the most severe consequences of global warming. A limitation of most of the previous modelling studies on marine cloud brightening is that they have either considered individual models or only investigated the effects of a specific increase in the number of cloud droplets. Here we present results from coordinated simulations with three Earth system models (ESMs) participating in the Geoengineering Model Intercomparison Project (GeoMIP) G4sea-salt experiment. Injection rates of accumulation-mode sea spray aerosol particles over ocean between 30°N and 30°S are set in each model tomore » generate a global-mean effective radiative forcing (ERF) of –2.0 W m –2 at the top of the atmosphere. We find that the injection increases the cloud droplet number concentration in lower layers, reduces the cloud-top effective droplet radius, and increases the cloud optical depth over the injection area. We also find, however, that the global-mean clear-sky ERF by the injected particles is as large as the corresponding total ERF in all three ESMs, indicating a large potential of the aerosol direct effect in regions of low cloudiness. The largest enhancement in ERF due to the presence of clouds occur as expected in the subtropical stratocumulus regions off the west coasts of the American and African continents. However, outside these regions, the ERF is in general equally large in cloudy and clear-sky conditions. Lastly, these findings suggest a more important role of the aerosol direct effect in sea spray climate engineering than previously thought.« less

  9. Marine cloud brightening – as effective without clouds

    DOE PAGES

    Ahlm, Lars; Jones, Andy; Stjern, Camilla W.; ...

    2017-11-06

    Marine cloud brightening through sea spray injection has been proposed as a climate engineering method for avoiding the most severe consequences of global warming. A limitation of most of the previous modelling studies on marine cloud brightening is that they have either considered individual models or only investigated the effects of a specific increase in the number of cloud droplets. Here we present results from coordinated simulations with three Earth system models (ESMs) participating in the Geoengineering Model Intercomparison Project (GeoMIP) G4sea-salt experiment. Injection rates of accumulation-mode sea spray aerosol particles over ocean between 30°N and 30°S are set in each model tomore » generate a global-mean effective radiative forcing (ERF) of –2.0 W m –2 at the top of the atmosphere. We find that the injection increases the cloud droplet number concentration in lower layers, reduces the cloud-top effective droplet radius, and increases the cloud optical depth over the injection area. We also find, however, that the global-mean clear-sky ERF by the injected particles is as large as the corresponding total ERF in all three ESMs, indicating a large potential of the aerosol direct effect in regions of low cloudiness. The largest enhancement in ERF due to the presence of clouds occur as expected in the subtropical stratocumulus regions off the west coasts of the American and African continents. However, outside these regions, the ERF is in general equally large in cloudy and clear-sky conditions. Lastly, these findings suggest a more important role of the aerosol direct effect in sea spray climate engineering than previously thought.« less

  10. Integration of Marine Mammal Movement and Behavior into the Effects of Sound on the Marine Environment

    DTIC Science & Technology

    2010-09-30

    environmental impact than do 5 historic approaches used in Navy environmental assessments (EA) and impact statements (EIS). Many previous methods...of Sound on the Marine Environment (ESME) program contributes to the ultimate goal of creating an environmental assessment tool for activities that...expand the species library available for use in 3MB, 2) continue incorporating the ability to project environmental influences on simulated animal

  11. Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms

    NASA Astrophysics Data System (ADS)

    Morozovska, A. N.; Eliseev, E. A.; Balke, N.; Kalinin, S. V.

    2010-09-01

    Electrochemical insertion-deintercalation reactions are typically associated with significant change in molar volume of the host compound. This strong coupling between ionic currents and strains underpins image formation mechanisms in electrochemical strain microscopy (ESM), and allows exploring the tip-induced electrochemical processes locally. Here we analyze the signal formation mechanism in ESM, and develop the analytical description of operation in frequency and time domains. The ESM spectroscopic modes are compared to classical electrochemical methods including potentiostatic and galvanostatic intermittent titration, and electrochemical impedance spectroscopy. This analysis illustrates the feasibility of spatially resolved studies of Li-ion dynamics on the sub-10-nm level using electromechanical detection.

  12. Mania Symptoms and HIV-Risk Behavior among Adolescents in Mental Health Treatment

    ERIC Educational Resources Information Center

    Stewart, Angela J.; Theodore-Oklota, Christina; Hadley, Wendy; Brown, Larry K.; Donenberg, Geri; DiClemente, Ralph

    2012-01-01

    This study explored whether adolescents with elevated symptoms of mania (ESM+) engage in more HIV risk behaviors than those with other psychiatric disorders and examined factors associated with HIV risk behavior among ESM+ adolescents. Eight hundred forty adolescents (56% female, 58% African American, "M" age = 14.9 years) who received mental…

  13. Crossing the Line: When Pedagogical Relationships Go Awry

    ERIC Educational Resources Information Center

    Johnson, Tara Star

    2010-01-01

    Background/Context: Very little empirical research has been conducted on the issue of educator sexual misconduct (ESM) in secondary settings. The few reports available typically treat a larger social issue, such as sexual harassment or child abuse; therefore, data on ESM specifically must be extrapolated. When such data are obtained, the focus has…

  14. Erratum: Correction to: Rearrangements of Open Magnetic Flux and Formation of Polar Coronal Holes in Cycle 24

    NASA Astrophysics Data System (ADS)

    Golubeva, E. M.; Mordvinov, A. V.

    2017-12-01

    Correction to: Solar Phys DOI 10.1007/s11207-017-1200-6 Due to an error during processing the Electronic Supplementary Material (ESM) supplied by the author was not included with the article. Please find in this correction document the reference to the ESM.

  15. HULC long noncoding RNA silencing suppresses angiogenesis by regulating ESM-1 via the PI3K/Akt/mTOR signaling pathway in human gliomas.

    PubMed

    Zhu, Yu; Zhang, Xuebin; Qi, Lisha; Cai, Ying; Yang, Ping; Xuan, Geng; Jiang, Yuan

    2016-03-22

    Tumor angiogenesis plays a critical role in the tumor progression. Highly upregulated in liver cancer (HULC) is a long noncoding RNA (lncRNA) that acts as an oncogene in gliomas. We found that HULC, vascular endothelial growth factor (VEGF), and ESM-1 (endothelial cell specific molecule 1) expression and microvessel density were positively correlated with grade dependency in glioma patient tissues, and that HULC silencing suppressed angiogenesis by inhibiting glioma cells proliferation and invasion. This process induced anoikis and blocked the cell cycle at G1/S phase via the PI3K/Akt/mTOR signaling pathway, thus regulating the tumor-related genes involved in the above biological behavior in human glioma U87MG and U251 cells. However, these effects were reversed by ESM-1 overexpression, suggesting a mediating role of ESM-1 in the pro-angiogenesis effect of HULC. Our results define the mechanism of the pro-angiogenesis activity of HULC, which shows potential for application as a therapeutic target in glioma.

  16. Emotional and Social Mind Training: A Randomised Controlled Trial of a New Group-Based Treatment for Bulimia Nervosa

    PubMed Central

    Lavender, Anna; Startup, Helen; Naumann, Ulrike; Samarawickrema, Nelum; DeJong, Hannah; Kenyon, Martha; van den Eynde, Frederique; Schmidt, Ulrike

    2012-01-01

    Objective There is a need to improve treatment for individuals with bulimic disorders. It was hypothesised that a focus in treatment on broader emotional and social/interpersonal issues underlying eating disorders would increase treatment efficacy. This study tested a novel treatment based on the above hypothesis, an Emotional and Social Mind Training Group (ESM), against a Cognitive Behavioural Therapy Group (CBT) treatment. Method 74 participants were randomised to either ESM or CBT Group treatment programmes. All participants were offered 13 group and 4 individual sessions. The primary outcome measure was the Eating Disorder Examination (EDE) Global score. Assessments were carried out at baseline, end of treatment (four months) and follow-up (six months). Results There were no differences in outcome between the two treatments. No moderators of treatment outcome were identified. Adherence rates were higher for participants in the ESM group. Discussion This suggests that ESM may be a viable alternative to CBT for some individuals. Further research will be required to identify and preferentially allocate suitable individuals accordingly. Trial Registration ISRCTN61115988 PMID:23118850

  17. Use of Direct-Infusion Electrospray Mass Spectrometry To Guide Empirical Development of Improved Conditions for Expression of Secondary Metabolites from Actinomycetes

    PubMed Central

    Zahn, James A.; Higgs, Richard E.; Hilton, Matthew D.

    2001-01-01

    A major barrier in the discovery of new secondary metabolites from microorganisms is the difficulty of distinguishing the minor fraction of productive cultures from the majority of unproductive cultures and growth conditions. In this study, a rapid, direct-infusion electrospray mass spectrometry (ES-MS) technique was used to identify chemical differences that occurred in the expression of secondary metabolites by 44 actinomycetes cultivated under six different fermentation conditions. Samples from actinomycete fermentations were prepared by solid-phase extraction, analyzed by ES-MS, and ranked according to a chemical productivity index based on the total number and relative intensity of ions present in each sample. The actinomycete cultures were tested for chemical productivity following treatments that included nutritional manipulations, autoregulator additions, and different agitation speeds and incubation temperatures. Evaluation of the ES-MS data from submerged and solid-state fermentations by paired t test analyses showed that solid-state growth significantly altered the chemical profiles of extracts from 75% of the actinomycetes evaluated. Parallel analysis of the same extracts by high-performance liquid chromatography–ES-MS–evaporative light scattering showed that the chemical differences detected by the ES-MS method were associated with growth condition-dependent changes in the yield of secondary metabolites. Our results indicate that the high-throughput ES-MS method is useful for identification of fermentation conditions that enhance expression of secondary metabolites from actinomycetes. PMID:11133469

  18. Use of direct-infusion electrospray mass spectrometry to guide empirical development of improved conditions for expression of secondary metabolites from actinomycetes.

    PubMed

    Zahn, J A; Higgs, R E; Hilton, M D

    2001-01-01

    A major barrier in the discovery of new secondary metabolites from microorganisms is the difficulty of distinguishing the minor fraction of productive cultures from the majority of unproductive cultures and growth conditions. In this study, a rapid, direct-infusion electrospray mass spectrometry (ES-MS) technique was used to identify chemical differences that occurred in the expression of secondary metabolites by 44 actinomycetes cultivated under six different fermentation conditions. Samples from actinomycete fermentations were prepared by solid-phase extraction, analyzed by ES-MS, and ranked according to a chemical productivity index based on the total number and relative intensity of ions present in each sample. The actinomycete cultures were tested for chemical productivity following treatments that included nutritional manipulations, autoregulator additions, and different agitation speeds and incubation temperatures. Evaluation of the ES-MS data from submerged and solid-state fermentations by paired t test analyses showed that solid-state growth significantly altered the chemical profiles of extracts from 75% of the actinomycetes evaluated. Parallel analysis of the same extracts by high-performance liquid chromatography-ES-MS-evaporative light scattering showed that the chemical differences detected by the ES-MS method were associated with growth condition-dependent changes in the yield of secondary metabolites. Our results indicate that the high-throughput ES-MS method is useful for identification of fermentation conditions that enhance expression of secondary metabolites from actinomycetes.

  19. Nitrogen limitation on land: how can it occur in Earth system models?

    PubMed

    Thomas, R Quinn; Brookshire, E N Jack; Gerber, Stefan

    2015-05-01

    The representation of the nitrogen (N) cycle in Earth system models (ESMs) is strongly motivated by the constraint N poses on the sequestration of anthropogenic carbon (C). Models typically implement a stoichiometric relationship between C and N in which external supply and assimilation by organisms are adjusted to maintain their internal stoichiometry. N limitation of primary productivity thus occurs if the N supply from uptake and fixation cannot keep up with the construction of tissues allowed by C assimilation. This basic approach, however, presents considerable challenges in how to faithfully represent N limitation. Here, we review how N limitation is currently implemented and evaluated in ESMs and highlight challenges and opportunities in their future development. At or near steady state, N limitation is governed by the magnitude of losses from the plant-unavailable pool vs. N fixation and there are considerable differences in how models treat both processes. In nonsteady-state systems, the accumulation of N in pools with slow turnover rates reduces N available for plant uptake and can be challenging to represent when initializing ESM simulations. Transactional N limitation occurs when N is incorporated into various vegetation and soil pools and becomes available to plants only after it is mineralized, the dynamics of which depends on how ESMs represent decomposition processes in soils. Other challenges for ESMs emerge when considering seasonal to interannual climatic oscillations as they create asynchronies between C and N demand, leading to transient alternations between N surplus and deficit. Proper evaluation of N dynamics in ESMs requires conceptual understanding of the main levers that trigger N limitation, and we highlight key measurements and observations that can help constrain these levers. Two of the biggest challenges are the mechanistic representation of plant controls on N availability and turnover, including N fixation and organic matter decomposition processes. © 2015 John Wiley & Sons Ltd.

  20. Emergent Hydrological Regimes in Amazonia Determine Vegetation Productivity and Structure.

    NASA Astrophysics Data System (ADS)

    Ahlström, A.; Canadell, J.; Schurgers, G.; Berry, J. A.; Guan, K.; Jackson, R. B.

    2016-12-01

    The Amazon rain forest has a disproportionate significance for global CO2 storage and biodiversity. Earth system models (ESMs) that estimate future climate and vegetation show little agreement in simulations in Amazonia. Here we show that evapotranspiration (ET), gross primary productivity (GPP) and above ground biomass in both models and empirical data align on an emergent hydrologically determined relationship that describes a functional relationship with annual precipitation (P). The physical relationship describes the potential for plant productivity and has a breakpoint at 2000 mm annual precipitation, where the system transitions between water and radiation limitation of annual ET. While ESM GPP is generally underestimated due to a low-bias in their internally generated P, their response to annual precipitation generally matches empirical data. It is different for biomass: ESMs show some ability in capturing biomass levels in the energy-limited wet hydrological regime above 2000 mm annual precipitation but they do not fully capture the biomass structure tipping point found in empirical data at the hydrological regime breakpoint that coincide with the forest-savanna transition. This discrepancy is likely due to the relatively simple representation of disturbances, primarily fires, and vegetation dynamics found in ESMs, and implies that ESMs likely overestimate the resilience to a potential future drying of the Amazon. Future elevated CO2 may increase plant water use efficiency and shift GPP upwards, but it will not affect the breakpoint between the regimes or the susceptibility of the forest which are both determined by precipitation and its role in determining the hydrological regime. This analysis reconciles and explains the findings of many studies on the Amazon. Our results suggests that future Amazonian biomass is governed by changes in precipitation, vegetation dynamics and disturbances, none of which are well predicted and represented by ESMs. Improvements of these processes are the most pressing challenges for more accurate future predictions on the fate of the Amazon and the global tropics.

  1. Molecular and biochemical characterization of mannitol-1-phosphate dehydrogenase from the model brown alga Ectocarpus sp.

    PubMed

    Bonin, Patricia; Groisillier, Agnès; Raimbault, Alice; Guibert, Anaïs; Boyen, Catherine; Tonon, Thierry

    2015-09-01

    The sugar alcohol mannitol is important in the food, pharmaceutical, medical and chemical industries. It is one of the most commonly occurring polyols in nature, with the exception of Archaea and animals. It has a range of physiological roles, including as carbon storage, compatible solute, and osmolyte. Mannitol is present in large amounts in brown algae, where its synthesis involved two steps: a mannitol-1-phosphate dehydrogenase (M1PDH) catalyzes a reversible reaction between fructose-6-phosphate (F6P) and mannitol-1-phosphate (M1P) (EC 1.1.1.17), and a mannitol-1-phosphatase hydrolyzes M1P to mannitol (EC 3.1.3.22). Analysis of the model brown alga Ectocarpus sp. genome provided three candidate genes for M1PDH activities. We report here the sequence analysis of Ectocarpus M1PDHs (EsM1PDHs), and the biochemical characterization of the recombinant catalytic domain of EsM1PDH1 (EsM1PDH1cat). Ectocarpus M1PDHs are representatives of a new type of modular M1PDHs among the polyol-specific long-chain dehydrogenases/reductases (PSLDRs). The N-terminal domain of EsM1PDH1 was not necessary for enzymatic activity. Determination of kinetic parameters indicated that EsM1PDH1cat displayed higher catalytic efficiency for F6P reduction compared to M1P oxidation. Both activities were influenced by NaCl concentration and inhibited by the thioreactive compound pHMB. These observations were completed by measurement of endogenous M1PDH activity and of EsM1PDH gene expression during one diurnal cycle. No significant changes in enzyme activity were monitored between day and night, although transcription of two out of three genes was altered, suggesting different levels of regulation for this key metabolic pathway in brown algal physiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Real-time sampling of reasons for hedonic food consumption: further validation of the Palatable Eating Motives Scale

    PubMed Central

    Boggiano, Mary M.; Wenger, Lowell E.; Turan, Bulent; Tatum, Mindy M.; Sylvester, Maria D.; Morgan, Phillip R.; Morse, Kathryn E.; Burgess, Emilee E.

    2015-01-01

    Highly palatable foods play a salient role in obesity and binge-eating, and if habitually eaten to deal with intrinsic and extrinsic factors unrelated to metabolic need, may compromise adaptive coping and interpersonal skills. This study used event sampling methodology (ESM) to examine whether individuals who report eating palatable foods primarily to cope, to enhance reward, to be social, or to conform, as measured by the Palatable Eating Motives Scale (PEMS), actually eat these foods primarily for the motive(s) they report on the PEMS. Secondly this study examined if the previously reported ability of the PEMS Coping motive to predict BMI would replicate if the real-time (ESM-reported) coping motive was used to predict BMI. A total of 1691 palatable eating events were collected from 169 college students over 4 days. Each event included the day, time, and types of tasty foods or drinks consumed followed by a survey that included an abbreviated version of the PEMS, hunger as an additional possible motive, and a question assessing general perceived stress during the eating event. Two-levels mixed modeling confirmed that ESM-reported motives correlated most strongly with their respective PEMS motives and that all were negatively associated with eating for hunger. While stress surrounding the eating event was strongly associated with the ESM-coping motive, its inclusion in the model as a predictor of this motive did not abolish the significant association between ESM and PEMS Coping scores. Regression models confirmed that scores on the ESM-coping motive predicted BMI. These findings provide ecological validity for the PEMS to identify true-to-life motives for consuming palatable foods. This further adds to the utility of the PEMS in individualizing, and hence improving, treatment strategies for obesity, binge-eating, dietary nutrition, coping, reward acquisition, and psychosocial skills. PMID:26082744

  3. Spatial representation of organic carbon and active-layer thickness of high latitude soils in CMIP5 earth system models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Umakant; Drewniak, Beth; Jastrow, Julie D.

    Soil properties such as soil organic carbon (SOC) stocks and active-layer thickness are used in earth system models (F.SMs) to predict anthropogenic and climatic impacts on soil carbon dynamics, future changes in atmospheric greenhouse gas concentrations, and associated climate changes in the permafrost regions. Accurate representation of spatial and vertical distribution of these soil properties in ESMs is a prerequisite for redudng existing uncertainty in predicting carbon-climate feedbacks. We compared the spatial representation of SOC stocks and active-layer thicknesses predicted by the coupled Modellntercomparison Project Phase 5 { CMIP5) ESMs with those predicted from geospatial predictions, based on observation datamore » for the state of Alaska, USA. For the geospatial modeling. we used soil profile observations {585 for SOC stocks and 153 for active-layer thickness) and environmental variables (climate, topography, land cover, and surficial geology types) and generated fine-resolution (50-m spatial resolution) predictions of SOC stocks (to 1-m depth) and active-layer thickness across Alaska. We found large inter-quartile range (2.5-5.5 m) in predicted active-layer thickness of CMIP5 modeled results and small inter-quartile range (11.5-22 kg m-2) in predicted SOC stocks. The spatial coefficient of variability of active-layer thickness and SOC stocks were lower in CMIP5 predictions compared to our geospatial estimates when gridded at similar spatial resolutions (24.7 compared to 30% and 29 compared to 38%, respectively). However, prediction errors. when calculated for independent validation sites, were several times larger in ESM predictions compared to geospatial predictions. Primaly factors leading to observed differences were ( 1) lack of spatial heterogeneity in ESM predictions, (2) differences in assumptions concerning environmental controls, and (3) the absence of pedogenic processes in ESM model structures. Our results suggest that efforts to incorporate these factors in F.SMs should reduce current uncertainties associated with ESM predictions of carbon-climate feedbacks.« less

  4. Improving the representation of Arctic photosynthesis in Earth System Models

    NASA Astrophysics Data System (ADS)

    Rogers, A.; Serbin, S.; Sloan, V. L.; Norby, R. J.; Wullschleger, S. D.

    2014-12-01

    The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this models must accurately represent the terrestrial carbon cycle. Although Arctic carbon fluxes are small relative to global carbon fluxes, uncertainty is large. Photosynthetic CO2 uptake is well described by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis and most ESMs use a derivation of the FvCB model to calculate gross primary productivity. Two key parameters required by the FvCB model are an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max) and the maximum rate of electron transport (Jmax). In ESMs the parameter Vc,max is typically fixed for a given plant functional type (PFT). Only four ESMs currently have an explicit Arctic PFT and the data used to derive Vc,max in these models relies on small data sets and unjustified assumptions. We examined the derivation of Vc,max and Jmax in current Arctic PFTs and estimated Vc,max and Jmax for a range of Arctic PFTs growing on the Barrow Environmental Observatory, Barrow, AK. We found that the values of Vc,max currently used to represent Arctic plants in ESMs are 70% lower than the values we measured, and contemporary temperature response functions for Vc,max also appear to underestimate Vc,max at low temperature. ESMs typically use a single multiplier (JVratio) to convert Vc,max to Jmax, however we found that the JVratio of Arctic plants is higher than current estimates suggesting that Arctic PFTs will be more responsive to rising carbon dioxide than currently projected. In addition we are exploring remotely sensed methods to scale up key biochemical (e.g. leaf N, leaf mass area) and physiological (e.g. Vc,max and Jmax) properties that drive model representation of photosynthesis in the Arctic. Our data suggest that the Arctic tundra has a much greater capacity for CO2 uptake, particularly at low temperature, and will be more CO2 responsive than is currently represented in ESMs. As we build robust relationships between physiology and spectral signatures we hope to provide spatially and temporally resolved trait maps of key model parameters that can be ingested by new model frameworks, or used to validate emergent model properties.

  5. A novel approach to imaging extinct seafloor massive sulphides (eSMS) by using ocean bottom seismometer data from the Blue Mining project

    NASA Astrophysics Data System (ADS)

    Gil, A.; Chidlow, K. L.; Vardy, M. E.; Bialas, J.; Schroeder, H.; Stobbs, I. J.; Gehrmann, R. A. S.; North, L. J.; Minshull, T. A.; Petersen, S.; Murton, B. J.

    2017-12-01

    Seafloor massive sulphide (SMS) deposits have generated great interest regarding their formation and composition, since their discovery in 1977. SMS deposits form through hydrothermal circulation and are therefore commonly found near hydrothermal vent sites. The high base (Cu, Zn) and precious metal (Au, Ag) content has interested mining companies, due to their potentially high economic value. Currently, the possibility of mining extinct seafloor massive sulphides (eSMS) deposits has opened a debate about their environmentally and economically sustainable exploitation. A major goal is the rapid exploration and assessment of deposit structure and volume. This is challenging due to their small dimensions (100s m diameter) and typically great water depths (> 3000 mbsl). Here we present a novel approach combining seismic reflection/refraction forward modelling to data acquired from the TAG hydrothermal field (26ºN, Mid-Atlantic Ridge, 3500mbsl) to image deep-water eSMS deposits. In May 2016, the RV METEOR shot 30, short (<10km) MSC profiles across the TAG area. The data were recorded on a dense cluster (<75 m apart) of ocean bottom seismometers (OBS) and were able to image the subsurface of several 300m diameter eSMS deposits. The results show that the eSMS deposits present high velocities (5.4-6.6 km/s) to depths 200m below the seafloor where they are hosted in a 500m thick low-velocity (3.0-3.7 km/s) layer of altered basalt. In contrast to active hydrothermal systems, we see no evidence in the eSMS of a low-velocity anhydrite layer. The velocity-depth models obtained from this innovative method have been combined with other methods to study these eSMS deposits, such as electromagnetics, rocks physics and drilling technics, and the results are shown to concur, yielding information about deposit structure at depth. For example, the high-velocity layer extends deeper than the conductive layer, indicating a deep stock work of low-connectivity sulphides beneath a main ore body of more massive sulphide. These geophysical methods allow a better constraint on the volume of sulphide at typical SMS with implications for the metal budget within oceanic crust. This work was funded by the European Union's `Blue Mining' project, n˚ 604500.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Atul K.

    The overall objectives of this DOE funded project is to combine scientific and computational challenges in climate modeling by expanding our understanding of the biogeophysical-biogeochemical processes and their interactions in the northern high latitudes (NHLs) using an earth system modeling (ESM) approach, and by adopting an adaptive parallel runtime system in an ESM to achieve efficient and scalable climate simulations through improved load balancing algorithms.

  7. School Principals at Their Lonely Work: Recording Workday Practices through ESM Logs

    ERIC Educational Resources Information Center

    Lopez, Veronica; Ahumada, Luis; Galdames, Sergio; Madrid, Romina

    2012-01-01

    This study used portable technology based on Experience Sampling Methodology (ESM log) to register workday practices of school principals and heads from Chilean schools who were implementing school improvement plans aimed at developing a culture of organizational learning. For a week, Smartphone devices which beeped seven times a day were given to…

  8. Using the Experience Sampling Method in the Context of Contingency Management for Substance Abuse Treatment

    ERIC Educational Resources Information Center

    Husky, Mathilde M.; Mazure, Carolyn M.; Carroll, Kathleen M.; Barry, Danielle; Petry, Nancy M.

    2008-01-01

    Contingency management (CM) treatments have been shown to be effective in reducing substance use. This manuscript illustrates how the experience sampling method (ESM) can depict behavior and behavior change and can be used to explore CM treatment mechanisms. ESM characterizes idiosyncratic patterns of behavior and offers the potential to determine…

  9. Esme Hadfield (1921-92) and the Wycombe woodworkers.

    PubMed

    Whiteside, O J H; Corbridge, R J; Capper, J W R

    2010-02-01

    This paper reflects on the life and work of Esme Hadfield, an otolaryngologist based at Wycombe General Hospital and, in particular, on her discovery of the link between adenocarcinoma of the paranasal sinuses and wood dust exposure from those in the furniture industry. The paper also explores the woodworking industry that forms the backdrop to her discovery.

  10. Mathematics Student Teachers' Modelling Approaches While Solving the Designed Esme Rug Problem

    ERIC Educational Resources Information Center

    Hidiroglu, Çaglar Naci; Dede, Ayse Tekin; Ünver, Semiha Kula; Güzel, Esra Bukova

    2017-01-01

    The purpose of the study is to analyze the mathematics student teachers' solutions on the Esme Rug Problem through 7-stage mathematical modelling process. This problem was designed by the researchers by considering the modelling problems' main properties. The study was conducted with twenty one secondary mathematics student teachers. The data were…

  11. Eggshell membrane biomaterial as a platform for applications in materials science.

    PubMed

    Baláž, Matej

    2014-09-01

    Eggshell membrane (ESM) is a unique biomaterial, which is generally considered as waste. However, it has extraordinary properties which can be utilized in various fields and its potential applications are therefore now being widely studied. The first part of this review focuses on the chemical composition and morphology of ESM. The main areas of ESM application are discussed in the second part. These applications include its utilization as a biotemplate for the synthesis of nanoparticles; as a sorbent of heavy metals, organics, dyes, sulfonates and fluorides; as the main component of biosensors; in medicine; and various other applications. For each area of interest, a detailed literature survey is given. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Recent Progresses in Incorporating Human Land-Water Management into Global Land Surface Models Toward Their Integration into Earth System Models

    NASA Technical Reports Server (NTRS)

    Pokhrel, Yadu N.; Hanasaki, Naota; Wada, Yoshihide; Kim, Hyungjun

    2016-01-01

    The global water cycle has been profoundly affected by human land-water management. As the changes in the water cycle on land can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to represent human land-water management in Earth system models (ESMs). During the recent past, noteworthy progress has been made in large-scale modeling of human impacts on the water cycle but sufficient advancements have not yet been made in integrating the newly developed schemes into ESMs. This study reviews the progresses made in incorporating human factors in large-scale hydrological models and their integration into ESMs. The study focuses primarily on the recent advancements and existing challenges in incorporating human impacts in global land surface models (LSMs) as a way forward to the development of ESMs with humans as integral components, but a brief review of global hydrological models (GHMs) is also provided. The study begins with the general overview of human impacts on the water cycle. Then, the algorithms currently employed to represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, methodological deficiencies in current modeling approaches and existing challenges are identified. Furthermore, light is shed on the sources of uncertainties associated with model parameterizations, grid resolution, and datasets used for forcing and validation. Finally, representing human land-water management in LSMs is highlighted as an important research direction toward developing integrated models using ESM frameworks for the holistic study of human-water interactions within the Earths system.

  13. Representing agriculture in Earth System Models: Approaches and priorities for development

    NASA Astrophysics Data System (ADS)

    McDermid, S. S.; Mearns, L. O.; Ruane, A. C.

    2017-09-01

    Earth System Model (ESM) advances now enable improved representations of spatially and temporally varying anthropogenic climate forcings. One critical forcing is global agriculture, which is now extensive in land-use and intensive in management, owing to 20th century development trends. Agriculture and food systems now contribute nearly 30% of global greenhouse gas emissions and require copious inputs and resources, such as fertilizer, water, and land. Much uncertainty remains in quantifying important agriculture-climate interactions, including surface moisture and energy balances and biogeochemical cycling. Despite these externalities and uncertainties, agriculture is increasingly being leveraged to function as a net sink of anthropogenic carbon, and there is much emphasis on future sustainable intensification. Given its significance as a major environmental and climate forcing, there now exist a variety of approaches to represent agriculture in ESMs. These approaches are reviewed herein, and range from idealized representations of agricultural extent to the development of coupled climate-crop models that capture dynamic feedbacks. We highlight the robust agriculture-climate interactions and responses identified by these modeling efforts, as well as existing uncertainties and model limitations. To this end, coordinated and benchmarking assessments of land-use-climate feedbacks can be leveraged for further improvements in ESM's agricultural representations. We suggest key areas for continued model development, including incorporating irrigation and biogeochemical cycling in particular. Last, we pose several critical research questions to guide future work. Our review focuses on ESM representations of climate-surface interactions over managed agricultural lands, rather than on ESMs as an estimation tool for crop yields and productivity.

  14. Assessment of malaria transmission changes in Africa, due to the climate impact of land use change using Coupled Model Intercomparison Project Phase 5 earth system models.

    PubMed

    Tompkins, Adrian M; Caporaso, Luca

    2016-03-31

    Using mathematical modelling tools, we assessed the potential for land use change (LUC) associated with the Intergovernmental Panel on Climate Change low- and high-end emission scenarios (RCP2.6 and RCP8.5) to impact malaria transmission in Africa. To drive a spatially explicit, dynamical malaria model, data from the four available earth system models (ESMs) that contributed to the LUC experiment of the Fifth Climate Model Intercomparison Project are used. Despite the limited size of the ESM ensemble, stark differences in the assessment of how LUC can impact climate are revealed. In three out of four ESMs, the impact of LUC on precipitation and temperature over the next century is limited, resulting in no significant change in malaria transmission. However, in one ESM, LUC leads to increases in precipitation under scenario RCP2.6, and increases in temperature in areas of land use conversion to farmland under both scenarios. The result is a more intense transmission and longer transmission seasons in the southeast of the continent, most notably in Mozambique and southern Tanzania. In contrast, warming associated with LUC in the Sahel region reduces risk in this model, as temperatures are already above the 25-30°C threshold at which transmission peaks. The differences between the ESMs emphasise the uncertainty in such assessments. It is also recalled that the modelling framework is unable to adequately represent local-scale changes in climate due to LUC, which some field studies indicate could be significant.

  15. Etude d'integration fonctionnelle du cycle de developpement des produits et des communautes de pratique virtuelles

    NASA Astrophysics Data System (ADS)

    Doumit, Nancy

    Product development, subject to time constraints and system complexity, needs synchronous communication between different disciplines and locations in order to enable knowledge sharing. Being well supported, informal information flow increases productivity during product realization. Therefore, manufacturing industries are exploring the use of Enterprise Social Media (ESM) functionalities. This thesis explores the functional integration of formal information technologies such as Product Lifecycle Management (PLM) software with informal technologies as ESM through an industrial case study. Reviewing literature, the candidate has identified a gap between Virtual Communities of Practice (VCoP) and product development, as well as the correlation of PLM solutions and noncontrolled ESM in the aerospace industry. In order to disseminate a descriptive study of the current collaboration status, the author has undertaken online surveys for geodistant employees of the same department, semi-structured interviews and research among existing documentations. Subsequently, a Quality Functional Analysis is performed via two modified House of Quality matrices (PLM and ESM) to assign a convenient support for information transfer independently of its content maturity. Users' needs are categorized, and for each category a choice of platform is made with further recommendation regarding the use of the function or the need of human intervention. VCoP form an integrated part of the solution where employees support the technical content. Thus, essential roles and responsibilities are presented to maintain existing CoP and develop new ones. Finally, the candidate presents the limits of this research, gives recommendations for the manufacturing industry and suggests potential continuation of this study using PLM 2.0 with noncontrolled ESM tools.

  16. Higher climatological temperature sensitivity of soil carbon in cold than warm climates

    NASA Astrophysics Data System (ADS)

    Koven, Charles D.; Hugelius, Gustaf; Lawrence, David M.; Wieder, William R.

    2017-11-01

    The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models (ESMs). To assess the climatological temperature sensitivity of soil carbon, we calculate apparent soil carbon turnover times that reflect long-term and broad-scale rates of decomposition. Here, we show that the climatological temperature control on carbon turnover in the top metre of global soils is more sensitive in cold climates than in warm climates and argue that it is critical to capture this emergent ecosystem property in global-scale models. We present a simplified model that explains the observed high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Current ESMs fail to capture this pattern, except in an ESM that explicitly resolves vertical gradients in soil climate and carbon turnover. An observed weak tropical temperature sensitivity emerges in a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behaviour.

  17. A new theory of plant-microbe nutrient competition resolves inconsistencies between observations and model predictions.

    PubMed

    Zhu, Qing; Riley, William J; Tang, Jinyun

    2017-04-01

    Terrestrial plants assimilate anthropogenic CO 2 through photosynthesis and synthesizing new tissues. However, sustaining these processes requires plants to compete with microbes for soil nutrients, which therefore calls for an appropriate understanding and modeling of nutrient competition mechanisms in Earth System Models (ESMs). Here, we survey existing plant-microbe competition theories and their implementations in ESMs. We found no consensus regarding the representation of nutrient competition and that observational and theoretical support for current implementations are weak. To reconcile this situation, we applied the Equilibrium Chemistry Approximation (ECA) theory to plant-microbe nitrogen competition in a detailed grassland 15 N tracer study and found that competition theories in current ESMs fail to capture observed patterns and the ECA prediction simplifies the complex nature of nutrient competition and quantitatively matches the 15 N observations. Since plant carbon dynamics are strongly modulated by soil nutrient acquisition, we conclude that (1) predicted nutrient limitation effects on terrestrial carbon accumulation by existing ESMs may be biased and (2) our ECA-based approach may improve predictions by mechanistically representing plant-microbe nutrient competition. © 2016 by the Ecological Society of America.

  18. Climate engineering of vegetated land for hot extremes mitigation: an ESM sensitivity study

    NASA Astrophysics Data System (ADS)

    Wilhelm, Micah; Davin, Edouard; Seneviratne, Sonia

    2014-05-01

    Mitigation efforts to reduce anthropogenic climate forcing have thus far proven inadequate, as evident from accelerating greenhouse gas emissions. Many subtropical and mid-latitude regions are expected to experience longer and more frequent heat waves and droughts within the next century. This increased occurrence of weather extremes has important implications for human health, mortality and for socio-economic factors including forest fires, water availability and agricultural production. Various solar radiation management (SRM) schemes that attempt to homogeneously counter the anthropogenic forcing have been examined with different Earth System Models (ESM). Land climate engineering schemes have also been investigated which reduces the amount of solar radiation that is absorbed at the surface. However, few studies have investigated their effects on extremes but rather on mean climate response. Here we present the results of a series of climate engineering sensitivity experiments performed with the Community Earth System Model (CESM) version 1.0.2 at 2°-resolution. This configuration entails 5 fully coupled model components responsible for simulating the Earth's atmosphere, land, land-ice, ocean and sea-ice that interact through a central coupler. Historical and RCP8.5 scenarios were performed with transient land-cover changes and prognostic terrestrial Carbon/Nitrogen cycles. Four sets of experiments are performed in which surface albedo over snow-free vegetated grid points is increased by 0.5, 0.10, 0.15 and 0.20. The simulations show a strong preferential cooling of hot extremes throughout the Northern mid-latitudes during boreal summer. A strong linear scaling between the cooling of extremes and additional surface albedo applied to the land model is observed. The strongest preferential cooling is found in southeastern Europe and the central United States, where increases of soil moisture and evaporative fraction are the largest relative to the control simulation. This preferential cooling is found to intensify in the future scenario. Cloud cover strongly limits the efficacy of a given surface albedo increase to reflect incoming solar radiation back into space. As anthropogenic forcing increases, cloud cover decreases over much of the northern mid-latitudes in CESM.

  19. Massive Sulphide Exploration at the Mid-Atlantic Ridge 26oN: an interdisciplinary geophysical study

    NASA Astrophysics Data System (ADS)

    Gehrmann, R. A. S.; Hölz, S.; Jegen, M. D.; Graber, S.; Szitkar, F.; Petersen, S.; Yeo, I. A.; North, L. J.; Gil, A.; Vardy, M. E.; Haroon, A.; Schroeder, H.; Bialas, J.; Tan, Y. Y.; Attias, E.; Sommer, M.; Minshull, T. A.; Murton, B. J.

    2017-12-01

    During the summer 2016 two cruises (M127 and JC138) conducted an interdisciplinary survey as part of the EU FP7 project `Blue Mining' in the Trans-Atlantic Geotraverse (TAG) hydrothermal field, at the Mid-Atlantic Ridge (26° N), to study the geophysical and geochemical signature of extinct seafloor massive sulphide (eSMS) deposits. The survey comprised AUV-based high-resolution bathymetric mapping, magnetic and self-potential data acquisition, reflection and refraction seismic imaging and three types of controlled source electromagnetic (CSEM) experiments (Geomar, UoS). Additionally seafloor coring, drilling and video imaging (NOC, University of Lisbon, BGS) were realized. Laboratory measurements of physical and chemical properties were taken on and post-cruise from rock samples and sediment cores. Here, we present results from the geophysical data analysis with emphasis on the electromagnetic studies in respect to eSMS detection. Six multi-kilometre-long profiles were acquired with the towed CSEM experiment (UoS) and preliminary results indicate the sensitivity to the conductive eSMS deposits and the resistive background to a depth of about 200 m. The system is also sensitive to the rough topography and interpretation of eSMS deposits requires validation from other methods such as measurements with the MARTEMIS system, a seafloor source-receiver coil (Geomar), which were conducted in two collocated work areas for high-resolution imaging with a depth penetration of up to 50 m. Each geophysical method is sensitive to different SMS characteristics, for example, bathymetric and seismic data are sensitive to the shape and structure of the whole deposit, magnetic data are susceptive to the hydrothermal alteration of magnetic minerals, and self-potential and electromagnetic data respond to the electrically conductive sulphide bodies. Each method has different resolution, penetration depths and challenges with the rough-topographic terrain and navigation. Only implementing them together leads to a more robust identification of the eSMS deposits. We will show results for known and previously unknown deposits, case studies where methods support and complement, or contradict each other, and the overall distribution of eSMS deposits in the TAG hydrothermal field.

  20. Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Forrest M; Randerson, James T.; Arora, Vivek K.

    The strength of feedbacks between a changing climate and future CO2 concentrations are uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations--in which atmospheric CO2 levels were computed prognostically--for historical (1850-2005) and future periods (RCP 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisonsmore » with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2 levels for the multi-model ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2 estimates of 600 {plus minus} 14 ppm at 2060 and 947 {plus minus} 35 ppm at 2100, which were 21 ppm and 32 ppm below the multi-model mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era, and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2 from Mauna Loa, our analysis suggests uncertainties in future climate projections can be reduced.« less

  1. Empirical Succession Mapping and Data Assimilation to Constrain Demographic Processes in an Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Kelly, R.; Andrews, T.; Dietze, M.

    2015-12-01

    Shifts in ecological communities in response to environmental change have implications for biodiversity, ecosystem function, and feedbacks to global climate change. Community composition is fundamentally the product of demography, but demographic processes are simplified or missing altogether in many ecosystem, Earth system, and species distribution models. This limitation arises in part because demographic data are noisy and difficult to synthesize. As a consequence, demographic processes are challenging to formulate in models in the first place, and to verify and constrain with data thereafter. Here, we used a novel analysis of the USFS Forest Inventory Analysis to improve the representation of demography in an ecosystem model. First, we created an Empirical Succession Mapping (ESM) based on ~1 million individual tree observations from the eastern U.S. to identify broad demographic patterns related to forest succession and disturbance. We used results from this analysis to guide reformulation of the Ecosystem Demography model (ED), an existing forest simulator with explicit tree demography. Results from the ESM reveal a coherent, cyclic pattern of change in temperate forest tree size and density over the eastern U.S. The ESM captures key ecological processes including succession, self-thinning, and gap-filling, and quantifies the typical trajectory of these processes as a function of tree size and stand density. Recruitment is most rapid in early-successional stands with low density and mean diameter, but slows as stand density increases; mean diameter increases until thinning promotes recruitment of small-diameter trees. Strikingly, the upper bound of size-density space that emerges in the ESM conforms closely to the self-thinning power law often observed in ecology. The ED model obeys this same overall size-density boundary, but overestimates plot-level growth, mortality, and fecundity rates, leading to unrealistic emergent demographic patterns. In particular, the current ED formulation cannot capture steady state dynamics evident in the ESM. Ongoing efforts are aimed at reformulating ED to more closely approach overall forest dynamics evident in the ESM, and then assimilating inventory data to constrain model parameters and initial conditions.

  2. Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models

    NASA Astrophysics Data System (ADS)

    Hoffman, F. M.; Randerson, J. T.; Arora, V. K.; Bao, Q.; Cadule, P.; Ji, D.; Jones, C. D.; Kawamiya, M.; Khatiwala, S.; Lindsay, K.; Obata, A.; Shevliakova, E.; Six, K. D.; Tjiputra, J. F.; Volodin, E. M.; Wu, T.

    2014-02-01

    The strength of feedbacks between a changing climate and future CO2 concentrations is uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations—in which atmospheric CO2levels were computed prognostically—for historical (1850-2005) and future periods (Representative Concentration Pathway (RCP) 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2levels for the multimodel ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2estimates of 600±14 ppm at 2060 and 947±35 ppm at 2100, which were 21 ppm and 32 ppm below the multimodel mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2from Mauna Loa, our analysis suggests that uncertainties in future climate projections can be reduced.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiqi; Ahlström, Anders; Allison, Steven D.

    Soil carbon (C) is a critical component of Earth system models (ESMs) and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the 3rd to 5th assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe themore » environmental conditions that soils experience. Firstly, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by 1st-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic SOC dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Secondly, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based datasets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Thirdly, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable datasets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.« less

  4. Causes of the large warm bias in the Angola-Benguela Frontal Zone in the Norwegian Earth System Model

    NASA Astrophysics Data System (ADS)

    Koseki, Shunya; Keenlyside, Noel; Demissie, Teferi; Toniazzo, Thomas; Counillon, Francois; Bethke, Ingo; Ilicak, Mehmet; Shen, Mao-Lin

    2018-06-01

    We have investigated the causes of the sea surface temperature (SST) bias in the Angola-Benguela Frontal Zone (ABFZ) of the southeastern Atlantic Ocean simulated by the Norwegian Earth System Model (NorESM). Similar to other coupled-models, NorESM has a warm SST bias in the ABFZ of up to 8 °C in the annual mean. Our analysis of NorESM reveals that a cyclonic surface wind bias over the ABFZ drives a locally excessively strong southward (0.05 m/s (relative to observation)) Angola Current displacing the ABFZ southward. A series of uncoupled stand-alone atmosphere and ocean model simulations are performed to investigate the cause of the coupled model bias. The stand-alone atmosphere model driven with observed SST exhibits a similar cyclonic surface circulation bias; while the stand-alone ocean model forced with the reanalysis data produces a warm SST in the ABFZ with a magnitude approximately half of that in the coupled NorESM simulation. An additional uncoupled sensitivity experiment shows that the atmospheric model's local negative surface wind curl generates anomalously strong Angola Current at the ocean surface. Consequently, this contributes to the warm SST bias in the ABFZ by 2 °C (compared to the reanalysis forced simulation). There is no evidence that local air-sea feedbacks among wind stress curl, SST, and sea level pressure (SLP) affect the ABFZ SST bias. Turbulent surface heat flux differences between coupled and uncoupled experiments explain the remaining 2 °C warm SST bias in NorESM. Ocean circulation, upwelling and turbulent heat flux errors all modulate the intensity and the seasonality of the ABFZ errors.

  5. A physiologically-based plant hydraulics scheme for ESMs: impacts of hydraulic trait variability for tropical forests under drought

    NASA Astrophysics Data System (ADS)

    Christoffersen, B. O.; Xu, C.; Fisher, R.; Fyllas, N.; Gloor, M.; Fauset, S.; Galbraith, D.; Koven, C.; Knox, R. G.; Kueppers, L. M.; Chambers, J. Q.; Meir, P.; McDowell, N. G.

    2016-12-01

    A major challenge of Earth System Models (ESMs) is to capture the diversity of individual-level responses to changes in water availability. Yet, decades of research in plant physiological ecology have given us a means to quantify central tendencies and variances of plant hydraulic traits. If ESMs possessed the relevant hydrodynamic process structure, these traits could be incorporated into improved predictions of community- and ecosystem-level processes such as tree mortality. We present a model of plant hydraulics in which all parameters are biologically-interpretable and measurable traits, such as turgor loss point πtlp, bulk elastic modulus ɛ, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs). We applied this scheme to tropical forests by incorporating it into both an individual-based model `Trait Forest Simulator' (TFS) and the `Functionally Assembled Terrestrial Ecosystem Simulator' (FATES; derived from CLM(ED)), and explore the consequences of variability in plant hydraulic traits on simulated leaf water potential, a potentially powerful predictor of tree mortality. We show that, independent of the difference between P50,gs and P50,x, or the hydraulic safety margin (HSM), diversity in hydraulic traits can increase or decrease whole-ecosystem resistance to hydraulic failure, and thus ecosystem-level responses to drought. Key uncertainties remaining concern how coordination and trade-offs in hydraulic traits are parameterized. We conclude that inclusion of such a physiologically-based plant hydraulics scheme in ESMs will greatly improve the capability of ESMs to predict functional trait filtering within ecosystems in responding to environmental change.

  6. Effects of momentary self-monitoring on empowerment in a randomized controlled trial in patients with depression.

    PubMed

    Simons, C J P; Hartmann, J A; Kramer, I; Menne-Lothmann, C; Höhn, P; van Bemmel, A L; Myin-Germeys, I; Delespaul, P; van Os, J; Wichers, M

    2015-11-01

    Interventions based on the experience sampling method (ESM) are ideally suited to provide insight into personal, contextualized affective patterns in the flow of daily life. Recently, we showed that an ESM-intervention focusing on positive affect was associated with a decrease in symptoms in patients with depression. The aim of the present study was to examine whether ESM-intervention increased patient empowerment. Depressed out-patients (n=102) receiving psychopharmacological treatment who had participated in a randomized controlled trial with three arms: (i) an experimental group receiving six weeks of ESM self-monitoring combined with weekly feedback sessions, (ii) a pseudo-experimental group participating in six weeks of ESM self-monitoring without feedback, and (iii) a control group (treatment as usual only). Patients were recruited in the Netherlands between January 2010 and February 2012. Self-report empowerment scores were obtained pre- and post-intervention. There was an effect of group×assessment period, indicating that the experimental (B=7.26, P=0.061, d=0.44, statistically imprecise) and pseudo-experimental group (B=11.19, P=0.003, d=0.76) increased more in reported empowerment compared to the control group. In the pseudo-experimental group, 29% of the participants showed a statistically reliable increase in empowerment score and 0% reliable decrease compared to 17% reliable increase and 21% reliable decrease in the control group. The experimental group showed 19% reliable increase and 4% reliable decrease. These findings tentatively suggest that self-monitoring to complement standard antidepressant treatment may increase patients' feelings of empowerment. Further research is necessary to investigate long-term empowering effects of self-monitoring in combination with person-tailored feedback. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Toward more realistic projections of soil carbon dynamics by Earth system models

    USGS Publications Warehouse

    Luo, Y.; Ahlström, Anders; Allison, Steven D.; Batjes, Niels H.; Brovkin, V.; Carvalhais, Nuno; Chappell, Adrian; Ciais, Philippe; Davidson, Eric A.; Finzi, Adien; Georgiou, Katerina; Guenet, Bertrand; Hararuk, Oleksandra; Harden, Jennifer; He, Yujie; Hopkins, Francesca; Jiang, L.; Koven, Charles; Jackson, Robert B.; Jones, Chris D.; Lara, M.; Liang, J.; McGuire, A. David; Parton, William; Peng, Changhui; Randerson, J.; Salazar, Alejandro; Sierra, Carlos A.; Smith, Matthew J.; Tian, Hanqin; Todd-Brown, Katherine E. O; Torn, Margaret S.; van Groenigen, Kees Jan; Wang, Ying; West, Tristram O.; Wei, Yaxing; Wieder, William R.; Xia, Jianyang; Xu, Xia; Xu, Xiaofeng; Zhou, T.

    2016-01-01

    Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.

  8. Single- and multi-frequency detection of surface displacements via scanning probe microscopy.

    PubMed

    Romanyuk, Konstantin; Luchkin, Sergey Yu; Ivanov, Maxim; Kalinin, Arseny; Kholkin, Andrei L

    2015-02-01

    Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.

  9. Availability Estimate of a Conceptual ESM System.

    DTIC Science & Technology

    1979-06-01

    affect mission operation.t A functional block level failure modes and effects analysis ( FMEA ) performed on the filter resulted in an assessed failure rate...is based on an FMEA of failures that disable the function (see Appendix A). A further 29 examination of the filter piece-parts reveals that the driver...Digital-to-analog converter DC Direct current DF Direction finding ESM Electronic Support Measures FMEA Failure modes and effects analysis FMPO

  10. Climatological temperature senstivity of soil carbon turnover: Observations, simple scaling models, and ESMs

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Hugelius, G.; Lawrence, D. M.; Wieder, W. R.

    2016-12-01

    The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models. To assess the likely long-term response of soils to climate change, spatial gradients in soil carbon turnover times can identify broad-scale and long-term controls on the rate of carbon cycling as a function of climate and other factors. Here we show that the climatological temperature control on carbon turnover in the top meter of global soils is more sensitive in cold climates than in warm ones. We present a simplified model that explains the high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Critically, current Earth system models (ESMs) fail to capture this pattern, however it emerges from an ESM that explicitly resolves vertical gradients in soil climate and turnover. The weak tropical temperature sensitivity emerges from a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong future carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behavior.

  11. Purification and characterization of an eggshell membrane decomposing protease from Pseudomonas aeruginosa strain ME-4.

    PubMed

    Cheng, Minyi; Takenaka, Shinji; Aoki, Shunsuke; Murakami, Shuichiro; Aoki, Kenji

    2009-04-01

    A bacterial strain, ME-4, isolated from farm soil and identified as Pseudomonas aeruginosa, grew well on a medium containing eggshell membrane (ESM). P. aeruginosa strain ME-4 decomposed the ESM by producing an extracellular protease able to solubilize it. The protease was purified to homogeneity from culture supernatant by fractionation with (NH(4))(2)SO(4), as well as CM52 cellulose and DE52 cellulose column chromatography, with a final yield of 47%. The molecular mass of the enzyme was 33 kDa. The isolated enzyme was a metalloprotease and was strongly inhibited by EDTA, o-phenanthroline, and phosphoramidon. The enzyme inhibited by these reagents was reactivated in the presence of several metal ions. The enzyme acted on various proteins and showed higher activity with collagen than collagenase from Clostridium histolyticum. Results of assays with the FRETS combinatorial libraries revealed that the enzyme preferred Ser at the P1 position and Lys at the P2 position. It also preferred hydrophobic amino acid residues at the P1' and P2' positions. The enzyme showed a much higher solubilization activity with the ESM substrate than commercially obtained enzymes. The enzyme decomposed ESM to produce water-soluble peptides, Val-Leu-Pro-Pro and (X)-Val-Pro-Pro, and a free amino acid, tryptophan.

  12. Intracranial mapping of auditory perception: event-related responses and electrocortical stimulation.

    PubMed

    Sinai, A; Crone, N E; Wied, H M; Franaszczuk, P J; Miglioretti, D; Boatman-Reich, D

    2009-01-01

    We compared intracranial recordings of auditory event-related responses with electrocortical stimulation mapping (ESM) to determine their functional relationship. Intracranial recordings and ESM were performed, using speech and tones, in adult epilepsy patients with subdural electrodes implanted over lateral left cortex. Evoked N1 responses and induced spectral power changes were obtained by trial averaging and time-frequency analysis. ESM impaired perception and comprehension of speech, not tones, at electrode sites in the posterior temporal lobe. There was high spatial concordance between ESM sites critical for speech perception and the largest spectral power (100% concordance) and N1 (83%) responses to speech. N1 responses showed good sensitivity (0.75) and specificity (0.82), but poor positive predictive value (0.32). Conversely, increased high-frequency power (>60Hz) showed high specificity (0.98), but poorer sensitivity (0.67) and positive predictive value (0.67). Stimulus-related differences were observed in the spatial-temporal patterns of event-related responses. Intracranial auditory event-related responses to speech were associated with cortical sites critical for auditory perception and comprehension of speech. These results suggest that the distribution and magnitude of intracranial auditory event-related responses to speech reflect the functional significance of the underlying cortical regions and may be useful for pre-surgical functional mapping.

  13. Intracranial mapping of auditory perception: Event-related responses and electrocortical stimulation

    PubMed Central

    Sinai, A.; Crone, N.E.; Wied, H.M.; Franaszczuk, P.J.; Miglioretti, D.; Boatman-Reich, D.

    2010-01-01

    Objective We compared intracranial recordings of auditory event-related responses with electrocortical stimulation mapping (ESM) to determine their functional relationship. Methods Intracranial recordings and ESM were performed, using speech and tones, in adult epilepsy patients with subdural electrodes implanted over lateral left cortex. Evoked N1 responses and induced spectral power changes were obtained by trial averaging and time-frequency analysis. Results ESM impaired perception and comprehension of speech, not tones, at electrode sites in the posterior temporal lobe. There was high spatial concordance between ESM sites critical for speech perception and the largest spectral power (100% concordance) and N1 (83%) responses to speech. N1 responses showed good sensitivity (0.75) and specificity (0.82), but poor positive predictive value (0.32). Conversely, increased high-frequency power (>60 Hz) showed high specificity (0.98), but poorer sensitivity (0.67) and positive predictive value (0.67). Stimulus-related differences were observed in the spatial-temporal patterns of event-related responses. Conclusions Intracranial auditory event-related responses to speech were associated with cortical sites critical for auditory perception and comprehension of speech. Significance These results suggest that the distribution and magnitude of intracranial auditory event-related responses to speech reflect the functional significance of the underlying cortical regions and may be useful for pre-surgical functional mapping. PMID:19070540

  14. The Norwegian Earth System Model, NorESM1-M - Part 2: Climate response and scenario projections

    NASA Astrophysics Data System (ADS)

    Iversen, T.; Bentsen, M.; Bethke, I.; Debernard, J. B.; Kirkevåg, A.; Seland, Ø.; Drange, H.; Kristjansson, J. E.; Medhaug, I.; Sand, M.; Seierstad, I. A.

    2013-03-01

    NorESM is a generic name of the Norwegian earth system model. The first version is named NorESM1, and has been applied with medium spatial resolution to provide results for CMIP5 (http://cmip-pcmdi.llnl.gov/cmip5/index.html) without (NorESM1-M) and with (NorESM1-ME) interactive carbon-cycling. Together with the accompanying paper by Bentsen et al. (2012), this paper documents that the core version NorESM1-M is a valuable global climate model for research and for providing complementary results to the evaluation of possible anthropogenic climate change. NorESM1-M is based on the model CCSM4 operated at NCAR, but the ocean model is replaced by a modified version of MICOM and the atmospheric model is extended with online calculations of aerosols, their direct effect and their indirect effect on warm clouds. Model validation is presented in the companion paper (Bentsen et al., 2012). NorESM1-M is estimated to have equilibrium climate sensitivity of ca. 2.9 K and a transient climate response of ca. 1.4 K. This sensitivity is in the lower range amongst the models contributing to CMIP5. Cloud feedbacks dampen the response, and a strong AMOC reduces the heat fraction available for increasing near-surface temperatures, for evaporation and for melting ice. The future projections based on RCP scenarios yield a global surface air temperature increase of almost one standard deviation lower than a 15-model average. Summer sea-ice is projected to decrease considerably by 2100 and disappear completely for RCP8.5. The AMOC is projected to decrease by 12%, 15-17%, and 32% for the RCP2.6, 4.5, 6.0, and 8.5, respectively. Precipitation is projected to increase in the tropics, decrease in the subtropics and in southern parts of the northern extra-tropics during summer, and otherwise increase in most of the extra-tropics. Changes in the atmospheric water cycle indicate that precipitation events over continents will become more intense and dry spells more frequent. Extra-tropical storminess in the Northern Hemisphere is projected to shift northwards. There are indications of more frequent occurrence of spring and summer blocking in the Euro-Atlantic sector, while the amplitude of ENSO events weakens although they tend to appear more frequently. These indications are uncertain because of biases in the model's representation of present-day conditions. Positive phase PNA and negative phase NAO both appear less frequently under the RCP8.5 scenario, but also this result is considered uncertain. Single-forcing experiments indicate that aerosols and greenhouse gases produce similar geographical patterns of response for near-surface temperature and precipitation. These patterns tend to have opposite signs, although with important exceptions for precipitation at low latitudes. The asymmetric aerosol effects between the two hemispheres lead to a southward displacement of ITCZ. Both forcing agents, thus, tend to reduce Northern Hemispheric subtropical precipitation.

  15. Bearings Only Tracking with Fusion from Heterogenous Passive Sensors: ESM/EO and Acoustic

    DTIC Science & Technology

    2017-02-01

    consists of an unscented Kalman filter (UKF) to handle in-sequence ESM/EO measurements and an OOSM unscented Gauss-Helmert filter (OOSM-UGHF) to handle out...bearings-only tracking, target motion analysis, unscented Gauss-Helmert filter , out-of-sequence measurement. I. INTRODUCTION The commonly used passive...proposed an unscented Gauss-Helmert filter (UGHF) [22] [21] to solve this problem. The existing UGHF works with in-sequence measurements. Further

  16. Orion European Service Module (ESM) Development, Integration and Qualification Status

    NASA Technical Reports Server (NTRS)

    Berthe, Philippe; Over, Ann P.; Picardo, Michelle; Byers, Anthony W.

    2017-01-01

    ESA and the European Industry are supplying the European Service Module for Orion. An overview of the system and subsystem configuration of the Orion European Service Module (ESM) as designed and built for the EM-1 mission is provided as well as an outline of its development, assembly, integration and verification process performed by ESA and NASA in coordination with their respective Industrial prime contractors, Airbus Defence and Space and Lockheed Martin.

  17. Engagement with electronic screen media among students with autism spectrum disorders.

    PubMed

    Mineo, Beth A; Ziegler, William; Gill, Susan; Salkin, Donna

    2009-01-01

    This study investigated the relative engagement potential of four types of electronic screen media (ESM): animated video, video of self, video of a familiar person engaged with an immersive virtual reality (VR) game, and immersion of self in the VR game. Forty-two students with autism, varying in age and expressive communication ability, were randomly assigned to the experimental conditions. Gaze duration and vocalization served as dependent measures of engagement. The results reveal differential responding across ESM, with some variation related to the engagement metric employed. Preferences for seeing themselves on the screen, as well as for viewing the VR scenarios, emerged from the data. While the study did not yield definitive data about the relative engagement potential of ESM alternatives, it does provide a foundation for future research, including guidance related to participant profiles, stimulus characteristics, and data coding challenges.

  18. A sparse equivalent source method for near-field acoustic holography.

    PubMed

    Fernandez-Grande, Efren; Xenaki, Angeliki; Gerstoft, Peter

    2017-01-01

    This study examines a near-field acoustic holography method consisting of a sparse formulation of the equivalent source method, based on the compressive sensing (CS) framework. The method, denoted Compressive-Equivalent Source Method (C-ESM), encourages spatially sparse solutions (based on the superposition of few waves) that are accurate when the acoustic sources are spatially localized. The importance of obtaining a non-redundant representation, i.e., a sensing matrix with low column coherence, and the inherent ill-conditioning of near-field reconstruction problems is addressed. Numerical and experimental results on a classical guitar and on a highly reactive dipole-like source are presented. C-ESM is valid beyond the conventional sampling limits, making wide-band reconstruction possible. Spatially extended sources can also be addressed with C-ESM, although in this case the obtained solution does not recover the spatial extent of the source.

  19. Impact of sulphate geoengineering on rice yield in China

    NASA Astrophysics Data System (ADS)

    Zhan, Pei; Zhu, Wenquan; Zheng, Zhoutao; Zhang, Donghai; Li, Nan

    2017-04-01

    Sulphate geoengineering is one of the mostly discussed mitigation methods against global warming for its feasibility and inexpensiveness. With SO2 consistently injected into the stratosphere to balance the radiative force caused by anthropogenic emission, sulphate engineering will significantly influence the climate over the planet and moreover, affect agriculture productivity. In our study, BNU-ESM model was used to simulate the impact of sulphate engineering on climate and ORYZA(v3) model was used to simulate the impact of climate change on rice yield/production in China. Firstly, the ORYZA(v3) model was evaluated and calibrated using daily climate data, management data and county-level yield record during 1981-2010 in 19 provinces in China. Then climate anomalies of sulphate geoengineering simulated by BNU-ESM model was used to perturb the observed climate data over 318 stations evenly distribute in China during 1981-2010. In our study, a 30-year climate record of anomalies were extracted from BNU-ESM model to match the observed climate data, which consisted of a 15-year geoengineering record and a 15-year post-geoengineering record. Lastly, the perturbed climate data was used in calibrated-ORYZA(v3) model to simulate the rice yield over the 318 stations, which were later averaged into corresponding provincial yield. The results showed that (1) geoengineering would balance solar radiation for approximate 140 W ṡ m-2 per year (about 0.9 K per year in temperature), which would meet the pre-concerted goal of geoengineering but it would take only about 3 years for temperature to recover after the termination of geoengineering. In spite of this, there would be a declining of vapour pressure for about 0.12 KPa per year during geoengineering period, and it would take about 15 years to recover during post-geoengineering period. The simulation showed that geoengineering would have a little declining impact on average precipitation and would not have much impact on wind speed. (2) rice production in China would decline 7.67% (22.64 Mt) on average during the 15 years of geoengineering, when it comes to the last five years of geoengineering, this number would increase to 16.67% (40.38 Mt). While during the 15 years of post-geoengeering, rice production in China would decline 5.18% when compared with baseline. (3) When geoengineering was turned on, yield of 12 provinces, including all 7 coastal provinces in China, exhibited increasing trend. During this period, inland provinces showed both decreasing and increasing trend, where provinces that are near to the ocean were more likely to decrease in yield and provinces which were close to the interior were more likely to increase in yield.

  20. The BGC Feedbacks Scientific Focus Area 2016 Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Forrest M.; Riley, William J.; Randerson, James T.

    2016-06-01

    The BGC Feedbacks Project will identify and quantify the feedbacks between biogeochemical cycles and the climate system, and quantify and reduce the uncertainties in Earth System Models (ESMs) associated with those feedbacks. The BGC Feedbacks Project will contribute to the integration of the experimental and modeling science communities, providing researchers with new tools to compare measurements and models, thereby enabling DOE to contribute more effectively to future climate assessments by the U.S. Global Change Research Program (USGCRP) and the Intergovernmental Panel on Climate Change (IPCC).

  1. Climate consequences of large-scale land-use changes as climate engineering tools

    NASA Astrophysics Data System (ADS)

    Mayer, Dorothea; Kracher, Daniela; Reick, Christian; Pongratz, Julia

    2015-04-01

    Terrestrial carbon sinks are much-discussed as climate engineering methods both in politics and science. The debate focuses mostly on their potential for carbon sequestration and fossil-fuel substitution, whereas other effects such as changes in heat and water fluxes are often ignored. We assess potentials and side-effects of two different land-use types suggested as climate engineering tools, forest and herbaceous biomass plantations. We integrate herbaceous biomass plantations as new plant functional types into the land component (JSBACH) of the Max-Planck-Institute Earth System Model (MPI-ESM). Herbaceous biomass plantations alter surface albedo, carbon and water cycles compared to forests. We adapted the JSBACH carbon cycle (assimilation and respiration) to reflect a highly productive biomass grass and the phenology to account for harvests just before the beginning of the growing season. The harvested material is transferred to a separate pool that can be adapted to reflect different biomass utilization pathways. Where possible, the model was validated using yield measurements and water-use efficiency calculations available from literature data. We compare the potentials and side-effects of afforestation and herbaceous biomass plantations in a plausible global scenario: under the representative concentration pathway (RCP) 4.5, large areas of agricultural lands are projected to be abandoned as food production intensifies on the most productive soils. We intend to model the climatic consequences of using these abandoned croplands for afforestation or biomass plantations, under an RCP 8.5 forcing (high CO2 emissions). We emphasize differences between biogeochemical and biogeophysical effects of land-use on climate and how these factors interact on the local and global scale. Apart from direct climatic effects (energy, water, and carbon fluxes), we attempt to consistently account for fossil-fuel substitution effects of biomass plantations in a coupled model. This study comprises the fist part of a larger project analyzing four different land-use types: unmanaged forest, managed forest, woody biomass plantations and herbaceous biomass plantations. Our study is part of the interdisciplinary program 'Climate Engineering: Risks, Challenges and Opportunities?' which allows for a consistent comparison of land-based climate engineering to other methods such as solar radiation management or ocean alkalinization.

  2. The influence of an atmospheric Two-Way coupled model system on the predictability of extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Schuster, Mareike; Thürkow, Markus; Weiher, Stefan; Kirchner, Ingo; Ulbrich, Uwe; Will, Andreas

    2016-04-01

    A general bias of global atmosphere ocean models, and also of the MPI-ESM, is an under-representation of the high latitude cyclone activity and an overestimation of the mid latitude cyclone activity in the North Atlantic, thus representing the extra-tropical storm track too zonal. We will show, that this effect can be antagonized by applying an atmospheric Two-Way Coupling (TWC). In this study we present a newly developed Two-Way Coupled model system, which is based on the MPI-ESM, and show that it is able to capture the mean storm track location more accurate. It also influences the sub-decadal deterministic predictability of extra-tropical cyclones and shows significantly enhanced skill compared to the "uncoupled" MPI-ESM standalone system. This study evaluates a set of hindcast experiments performed with said Two-Way Coupled model system. The regional model COSMO CLM is Two-Way Coupled to the atmosphere of the global Max-Plack-Institute Earth System Model (MPI-ESM) and therefore integrates and exchanges the state of the atmosphere every 10 minutes (MPI-TWC-ESM). In the coupled source region (North Atlantic), mesoscale processes which are relevant for the formation and early-stage development of cyclones are expected to be better represented, and therefore influence the large scale dynamics of the target region (Europe). The database covers 102 "uncoupled" years and 102 Two-Way Coupled years of the recent climate (1960-2010). Results are validated against the ERA-Interim reanalysis. Besides the climatological point of view, the design of this single model ensemble allows for an analysis of the predictability of the first and second leadyears of the hindcasts. As a first step to understand the improved predictability of cyclones, we will show a detailed analysis of climatologies for specific cyclone categories, sorted by season and region. Especially for cyclones affecting Europe, the TWC is capable to counteract the AOGCM's biases in the North Atlantic. Also, cyclones which are generated in the northern North Atlantic and the Labrador Sea are to an extraordinary extent underestimated in the "uncoupled" MPI-ESM - for the latter region the TWC can balance this shortcoming. In the Northern Hemisphere annual mean statistics the TWC does not change the distribution of the strength of cyclones, but it changes the distribution of the lifetime of cyclones.

  3. Canadian snow and sea ice: assessment of snow, sea ice, and related climate processes in Canada's Earth system model and climate-prediction system

    NASA Astrophysics Data System (ADS)

    Kushner, Paul J.; Mudryk, Lawrence R.; Merryfield, William; Ambadan, Jaison T.; Berg, Aaron; Bichet, Adéline; Brown, Ross; Derksen, Chris; Déry, Stephen J.; Dirkson, Arlan; Flato, Greg; Fletcher, Christopher G.; Fyfe, John C.; Gillett, Nathan; Haas, Christian; Howell, Stephen; Laliberté, Frédéric; McCusker, Kelly; Sigmond, Michael; Sospedra-Alfonso, Reinel; Tandon, Neil F.; Thackeray, Chad; Tremblay, Bruno; Zwiers, Francis W.

    2018-04-01

    The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state-of-the-art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. This study presents an assessment from the CanSISE Network of the ability of the second-generation Canadian Earth System Model (CanESM2) and the Canadian Seasonal to Interannual Prediction System (CanSIPS) to simulate and predict snow and sea ice from seasonal to multi-decadal timescales, with a focus on the Canadian sector. To account for observational uncertainty, model structural uncertainty, and internal climate variability, the analysis uses multi-source observations, multiple Earth system models (ESMs) in Phase 5 of the Coupled Model Intercomparison Project (CMIP5), and large initial-condition ensembles of CanESM2 and other models. It is found that the ability of the CanESM2 simulation to capture snow-related climate parameters, such as cold-region surface temperature and precipitation, lies within the range of currently available international models. Accounting for the considerable disagreement among satellite-era observational datasets on the distribution of snow water equivalent, CanESM2 has too much springtime snow mass over Canada, reflecting a broader northern hemispheric positive bias. Biases in seasonal snow cover extent are generally less pronounced. CanESM2 also exhibits retreat of springtime snow generally greater than observational estimates, after accounting for observational uncertainty and internal variability. Sea ice is biased low in the Canadian Arctic, which makes it difficult to assess the realism of long-term sea ice trends there. The strengths and weaknesses of the modelling system need to be understood as a practical tradeoff: the Canadian models are relatively inexpensive computationally because of their moderate resolution, thus enabling their use in operational seasonal prediction and for generating large ensembles of multidecadal simulations. Improvements in climate-prediction systems like CanSIPS rely not just on simulation quality but also on using novel observational constraints and the ready transfer of research to an operational setting. Improvements in seasonal forecasting practice arising from recent research include accurate initialization of snow and frozen soil, accounting for observational uncertainty in forecast verification, and sea ice thickness initialization using statistical predictors available in real time.

  4. Turbulent particle transport in streams: can exponential settling be reconciled with fluid mechanics?

    PubMed

    McNair, James N; Newbold, J Denis

    2012-05-07

    Most ecological studies of particle transport in streams that focus on fine particulate organic matter or benthic invertebrates use the Exponential Settling Model (ESM) to characterize the longitudinal pattern of particle settling on the bed. The ESM predicts that if particles are released into a stream, the proportion that have not yet settled will decline exponentially with transport time or distance and will be independent of the release elevation above the bed. To date, no credible basis in fluid mechanics has been established for this model, nor has it been rigorously tested against more-mechanistic alternative models. One alternative is the Local Exchange Model (LEM), which is a stochastic advection-diffusion model that includes both longitudinal and vertical spatial dimensions and is based on classical fluid mechanics. The LEM predicts that particle settling will be non-exponential in the near field but will become exponential in the far field, providing a new theoretical justification for far-field exponential settling that is based on plausible fluid mechanics. We review properties of the ESM and LEM and compare these with available empirical evidence. Most evidence supports the prediction of both models that settling will be exponential in the far field but contradicts the ESM's prediction that a single exponential distribution will hold for all transport times and distances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieder, William R.; Allison, Steven D.; Davidson, Eric A.

    Microbes influence soil organic matter (SOM) decomposition and the long-term stabilization of carbon (C) in soils. We contend that by revising the representation of microbial processes and their interactions with the physicochemical soil environment, Earth system models (ESMs) may make more realistic global C cycle projections. Explicit representation of microbial processes presents considerable challenges due to the scale at which these processes occur. Thus, applying microbial theory in ESMs requires a framework to link micro-scale process-level understanding and measurements to macro-scale models used to make decadal- to century-long projections. Here, we review the diversity, advantages, and pitfalls of simulating soilmore » biogeochemical cycles using microbial-explicit modeling approaches. We present a roadmap for how to begin building, applying, and evaluating reliable microbial-explicit model formulations that can be applied in ESMs. Drawing from experience with traditional decomposition models we suggest: (1) guidelines for common model parameters and output that can facilitate future model intercomparisons; (2) development of benchmarking and model-data integration frameworks that can be used to effectively guide, inform, and evaluate model parameterizations with data from well-curated repositories; and (3) the application of scaling methods to integrate microbial-explicit soil biogeochemistry modules within ESMs. With contributions across scientific disciplines, we feel this roadmap can advance our fundamental understanding of soil biogeochemical dynamics and more realistically project likely soil C response to environmental change at global scales.« less

  6. Gold biorecovery from e-waste: An improved strategy through spent medium leaching with pH modification.

    PubMed

    Natarajan, Gayathri; Ting, Yen-Peng

    2015-10-01

    Rapid technological advancement and relatively short life time of electronic goods have resulted in an alarming growth rate of electronic waste which often contains significant quantities of toxic and precious metals. Compared to conventional recovery methods, bioleaching is an environmentally friendly process for metal extraction. Gold was bioleached from electronic scrap materials (ESM) via gold-cyanide complexation using cyanide produced from pure and mixed cultures of cyanogenic bacteria Chromobacterium violaceum, Pseudomonas aeruginosa and Pseudomonas fluorescens. As ESM was toxic to the bacteria, a two-step bioleaching approach was adopted where the solid waste was added to the bacterial culture after it has reached maximum growth and cyanide production during early stationary phase. Pure culture of C. violaceum showed the highest cyanide production, yielding maximum gold recovery of 11.3% at 0.5% w/v pulp density of ESM in two-step bioleaching. At the same pulp density of ESM, spent medium bioleaching using bacterial cell-free metabolites achieved gold recovery of 18%. Recovery increased to 30% when the pH of the spent medium was increased to shift the equilibrium in favor of cyanide ions production. It is demonstrated for the first time that pH modification of spent medium further improved metal solubilization and yielded higher metal recovery (compared to two-step bioleaching). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Electrocorticographic language mapping with a listening task consisting of alternating speech and music phrases.

    PubMed

    Mooij, Anne H; Huiskamp, Geertjan J M; Gosselaar, Peter H; Ferrier, Cyrille H

    2016-02-01

    Electrocorticographic (ECoG) mapping of high gamma activity induced by language tasks has been proposed as a more patient friendly alternative for electrocortical stimulation mapping (ESM), the gold standard in pre-surgical language mapping of epilepsy patients. However, ECoG mapping often reveals more language areas than considered critical with ESM. We investigated if critical language areas can be identified with a listening task consisting of speech and music phrases. Nine patients with implanted subdural grid electrodes listened to an audio fragment in which music and speech alternated. We analysed ECoG power in the 65-95 Hz band and obtained task-related activity patterns in electrodes over language areas. We compared the spatial distribution of sites that discriminated between listening to speech and music to ESM results using sensitivity and specificity calculations. Our listening task of alternating speech and music phrases had a low sensitivity (0.32) but a high specificity (0.95). The high specificity indicates that this test does indeed point to areas that are critical to language processing. Our test cannot replace ESM, but this short and simple task can give a reliable indication where to find critical language areas, better than ECoG mapping using language tasks alone. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. The Effect of Mission Location on Mission Costs and Equivalent System Mass

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Levri, Julie

    2002-01-01

    It is the goal of developers of advanced life support researcher to develop technology that reduces the cost of life support for future space missions and thereby enables missions that are currently infeasible or too expensive. Because the cost of propulsion dominates the cost of hardware emplacement in space and because the mass of a deliverable object controls its propulsive requirements, equivalent system mass (ESM) is used as a means for accounting for mission costs. ESM is typically calculated by adding to the actual mass the equivalent amount of mass that must be added to a mission due to other characteristics of a piece of hardware such as the item s volume or energy requirements. This approach works well for comparing different pieces of hardware when they go to the same location in space. However, different locations in mission space such low Earth orbit, Mars surface, or full trip to Mars and return to low Earth orbit require vastly different amounts of propulsion. Moving an object from Earth surface to the Martian surface and returning it to Earth will require as much as 100 times the propulsion that is required to move the object to low Earth orbit only. This paper presents the case for including the effect that location can have on cost as a part of ESM and suggests a method for achieving this improvement of ESM.

  9. Forecasting domestic water demand in the Haihe river basin under changing environment

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Jun; Zhang, Jian-Yun; Shahid, Shamsuddin; Xie, Yu-Xuan; Zhang, Xu

    2018-02-01

    A statistical model has been developed for forecasting domestic water demand in Haihe river basin of China due to population growth, technological advances and climate change. Historical records of domestic water use, climate, population and urbanization are used for the development of model. An ensemble of seven general circulation models (GCMs) namely, BCC-CSM1-1, BNU-ESM, CNRM-CM5, GISS-E2-R, MIROC-ESM, PI-ESM-LR, MRI-CGCM3 were used for the projection of climate and the changes in water demand in the Haihe River basin under Representative Concentration Pathways (RCPs) 4.5. The results showed that domestic water demand in different sub-basins of the Haihe river basin will gradually increase due to continuous increase of population and rise in temperature. It is projected to increase maximum 136.22 × 108 m3 by GCM BNU-ESM and the minimum 107.25 × 108 m3 by CNRM-CM5 in 2030. In spite of uncertainty in projection, it can be remarked that climate change and population growth would cause increase in water demand and consequently, reduce the gap between water supply and demand, which eventually aggravate the condition of existing water stress in the basin. Water demand management should be emphasized for adaptation to ever increasing water demand and mitigation of the impacts of environmental changes.

  10. The Transformation of Climate Models to Earth System Models and their Role in Policy Development and Decision Support

    NASA Astrophysics Data System (ADS)

    Washington, W. M.

    2012-12-01

    We have seen over the last few decades continued improvement in climate models such that they are becoming Earth system models (ESMs). Usually climate models use specified concentrations of greenhouse gases whereas ESMs allow carbon, water, biochemical and other cycles to be fully interactive between various model components. Typically ESMs have atmospheric, ocean, land/vegetation, sea ice, urbanization components and some are starting to include glacier change which can directly affect sea level change. Steve Schneider, for whom this lecture is named after, strongly encouraged the development of such models and he went further to strongly suggest that these tools be developed beyond just the climate science questions. The modeling community needs to be interacting with the social, behavioral, and economic science communities. This would allow for realistic humankind interactions with the Earth system. In 2012, the federal government with advice from the National Academies developed a new strategic plan for the U. S. Global Change Research Program entitled The National Global Change Research Plan 2012-2021. This new plan has added the social, behavioral, and economic sciences to the mix of research expertise. It should be pointed out that the Global Change Research Act of 1990 passed by Congress specified strategic goals: advance science, inform decisions, conduct assessments, and communicate and educate. In order to carry out these goals an implementation plan is being put together by the 13 federal agencies and departments. Throughout Steve's professional life, he knew that to make global change understood required this broad community of sciences to work together to answer the questions that the public and policymakers had about environmental change. This talk will not only be about the historical developments in the field but also about the future research challenges. As part of the talk I will show several unpublished video segments of Steve explaining what mankind should do about climate and global change.

  11. Toward more realistic projections of soil carbon dynamics by Earth system models

    DOE PAGES

    Luo, Yiqi; Ahlstrom, Anders; Allison, Steven D.; ...

    2016-01-21

    Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe themore » environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool-and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. Furthermore, we recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.« less

  12. Improving predictions of large scale soil carbon dynamics: Integration of fine-scale hydrological and biogeochemical processes, scaling, and benchmarking

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.

    2015-12-01

    Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we contend that creating believable soil carbon predictions requires a robust, transparent, and community-available benchmarking framework. I will present an ILAMB evaluation of several of the above-mentioned approaches in ACME, and attempt to motivate community adoption of this evaluation approach.

  13. Do state-of-the-art CMIP5 ESMs accurately represent observed vegetation-rainfall feedbacks? Focus on the Sahel

    NASA Astrophysics Data System (ADS)

    Notaro, M.; Wang, F.; Yu, Y.; Mao, J.; Shi, X.; Wei, Y.

    2017-12-01

    The semi-arid Sahel ecoregion is an established hotspot of land-atmosphere coupling. Ocean-land-atmosphere interactions received considerable attention by modeling studies in response to the devastating 1970s-90s Sahel drought, which models suggest was driven by sea-surface temperature (SST) anomalies and amplified by local vegetation-atmosphere feedbacks. Vegetation affects the atmosphere through biophysical feedbacks by altering the albedo, roughness, and transpiration and thereby modifying exchanges of energy, momentum, and moisture with the atmosphere. The current understanding of these potentially competing processes is primarily based on modeling studies, with biophysical feedbacks serving as a key uncertainty source in regional climate change projections among Earth System Models (ESMs). In order to reduce this uncertainty, it is critical to rigorously evaluate the representation of vegetation feedbacks in ESMs against an observational benchmark in order to diagnose systematic biases and their sources. However, it is challenging to successfully isolate vegetation's feedbacks on the atmosphere, since the atmospheric control on vegetation growth dominates the atmospheric feedback response to vegetation anomalies and the atmosphere is simultaneously influenced by oceanic and terrestrial anomalies. In response to this challenge, a model-validated multivariate statistical method, Stepwise Generalized Equilibrium Feedback Assessment (SGEFA), is developed, which extracts the forcing of a slowly-evolving environmental variable [e.g. SST or leaf area index (LAI)] on the rapidly-evolving atmosphere. By applying SGEFA to observational and remotely-sensed data, an observational benchmark is established for Sahel vegetation feedbacks. In this work, the simulated responses in key atmospheric variables, including evapotranspiration, albedo, wind speed, vertical motion, temperature, stability, and rainfall, to Sahel LAI anomalies are statistically assessed in Coupled Model Intercomparison Project Phase 5 (CMIP5) ESMs through SGEFA. The dominant mechanism, such as albedo feedback, moisture recycling, or momentum feedback, in each ESM is evaluated against the observed benchmark. SGEFA facilitates a systematic assessment of model biases in land-atmosphere interactions.

  14. Impact of physical permafrost processes on hydrological change

    NASA Astrophysics Data System (ADS)

    Hagemann, Stefan; Blome, Tanja; Beer, Christian; Ekici, Altug

    2015-04-01

    Permafrost or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. As it is a thermal phenomenon, its characteristics are highly dependent on climatic factors. The impact of the currently observed warming, which is projected to persist during the coming decades due to anthropogenic CO2 input, certainly has effects for the vast permafrost areas of the high northern latitudes. The quantification of these effects, however, is scientifically still an open question. This is partly due to the complexity of the system, where several feedbacks are interacting between land and atmosphere, sometimes counterbalancing each other. Moreover, until recently, many global circulation models (GCMs) and Earth system models (ESMs) lacked the sufficient representation of permafrost physics in their land surface schemes. Within the European Union FP7 project PAGE21, the land surface scheme JSBACH of the Max-Planck-Institute for Meteorology ESM (MPI-ESM) has been equipped with the representation of relevant physical processes for permafrost studies. These processes include the effects of freezing and thawing of soil water for both energy and water cycles, thermal properties depending on soil water and ice contents, and soil moisture movement being influenced by the presence of soil ice. In the present study, it will be analysed how these permafrost relevant processes impact projected hydrological changes over northern hemisphere high latitude land areas. For this analysis, the atmosphere-land part of MPI-ESM, ECHAM6-JSBACH, is driven by prescribed SST and sea ice in an AMIP2-type setup with and without the newly implemented permafrost processes. Observed SST and sea ice for 1979-1999 are used to consider induced changes in the simulated hydrological cycle. In addition, simulated SST and sea ice are taken from a MPI-ESM simulation conducted for CMIP5 following the RCP8.5 scenario. The corresponding simulations with ECHAM6-JSBACH are used to assess differences in projected hydrological changes induced by the permafrost relevant processes.

  15. Low methane concentrations in sediment along the continental slope north of Siberia: Inference from pore water geochemistry

    NASA Astrophysics Data System (ADS)

    Miller, C.; Dickens, G. R.; Jakobsson, M.; Koshurnikov, A.

    2016-12-01

    The Eastern Siberian Margin (ESM), a vast region of the Arctic, potentially holds large amounts of methane in sediments as gas hydrate and free gas. Although this CH4 has become a topic of discussion, primarily because of rapid regional climate change, the ESM remains sparingly explored. Here we present pore water chemistry results from 32 cores taken during Leg 2 of the 2014 SWERUS-C3 expedition. The cores come from depth transects across the continental slope of the ESM between Wrangel Island and the New Siberian Islands. Upward CH4 flux towards the seafloor, as inferred from profiles of dissolved sulfate (SO42-), alkalinity, and the δ13C-dissolved inorganic Carbon (DIC), is negligible at all stations east of where the Lomonosov Ridge abuts the ESM at about 143°E. In the upper eight meters of these cores, downward sulfate flux never exceeds 9.2 mol/m2-kyr, the upward alkalinity flux never exceeds 6.8 mol/m2-kyr, and δ13C-DIC only slowly decreases with depth (-3.6‰/m on average). Additionally, dissolved H2S was not detected in these cores, and nutrient and metal profiles reveal that metal oxide reduction by organic carbon dominates the geochemical environment. A single core on Lomonosov Ridge differs, as diffusive fluxes for SO42- and alkalinity were 13.9 and 11.3 mol/m2-kyr, respectively, the δ13C-DIC gradient was 5.6‰/m, and Mn2+ reduction terminated within 1.3 m of the seafloor. These are among the first pore water results generated from this vast climatically sensitive region, and they imply that significant quantities of CH4, including gas hydrates, do not exist in any of our investigated depth transects spread out along much of the ESM continental slope. This contradicts previous assumptions and hypothetical models and discussion, which generally have assumed the presence of substantial CH4.

  16. Variability and predictors of negative mood intensity in patients with borderline personality disorder and recurrent suicidal behavior: multilevel analyses applied to experience sampling methodology.

    PubMed

    Nisenbaum, Rosane; Links, Paul S; Eynan, Rahel; Heisel, Marnin J

    2010-05-01

    Variability in mood swings is a characteristic of borderline personality disorder (BPD) and is associated with suicidal behavior. This study investigated patterns of mood variability and whether such patterns could be predicted from demographic and suicide-related psychological risk factors. Eighty-two adults with BPD and histories of recurrent suicidal behavior were recruited from 3 outpatient psychiatric programs in Canada. Experience sampling methodology (ESM) was used to assess negative mood intensity ratings on a visual analogue scale, 6 random times daily, for 21 days. Three-level models estimated variability between times (52.8%), days (22.2%), and patients (25.1%) and supported a quadratic pattern of daily mood variability. Depression scores predicted variability between patients' initial rating of the day. Average daily mood patterns depended on levels of hopelessness, suicide ideation, and sexual abuse history. Patients reporting moderate to severe sexual abuse and elevated suicide ideation were characterized by worsening moods from early morning up through evening, with little or no relief; patients reporting mild sexual abuse and low suicide ideation reported improved mood throughout the day. These patterns, if replicated in larger ESM studies, may potentially assist the clinician in determining which patients require close monitoring.

  17. Seasonal variation of the global mixed layer depth: comparison between Argo data and FIO-ESM

    NASA Astrophysics Data System (ADS)

    Zhang, Yutong; Xu, Haiming; Qiao, Fangli; Dong, Changming

    2018-03-01

    The present study evaluates a simulation of the global ocean mixed layer depth (MLD) using the First Institute of Oceanography-Earth System Model (FIOESM). The seasonal variation of the global MLD from the FIO-ESM simulation is compared to Argo observational data. The Argo data show that the global ocean MLD has a strong seasonal variation with a deep MLD in winter and a shallow MLD in summer, while the spring and fall seasons act as transitional periods. Overall, the FIO-ESM simulation accurately captures the seasonal variation in MLD in most areas. It exhibits a better performance during summer and fall than during winter and spring. The simulated MLD in the Southern Hemisphere is much closer to observations than that in the Northern Hemisphere. In general, the simulated MLD over the South Atlantic Ocean matches the observation best among the six areas. Additionally, the model slightly underestimates the MLD in parts of the North Atlantic Ocean, and slightly overestimates the MLD over the other ocean basins.

  18. Death of Darkness: Artificial Sky Brightness in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Zender, C. S.

    2016-12-01

    Many species (including ours) need darkness to survive and thrive yet light pollution in the anthropocene has received scant attention in Earth System Models (ESMs). Anthropogenic aerosols can brighten background sky brightness and reduce the contrast between skylight and starlight. These are both aesthetic and health-related issues due to their accompanying disruption of circadian rhythms. We quantify aerosol contributions to light pollution using a single-column night sky model, NiteLite, suitable for implementation in ESMs. NiteLite accounts for physiologcal (photopic and scotopic vision, retinal diameter/age), anthropogenic (light and aerosol pollution properties), and natural (surface albedo, trace gases) effects on background brightness and threshold visibility. We find that stratospheric aerosol injection contemplated as a stop-gap measure to counter global warming would increase night-sky brightness by about 25%, and thus eliminate last pristine dark sky areas on Earth. Our results suggest that ESMs incorporate light pollution so that associated societal impacts can be better quantified and included in policy deliberations.

  19. Use of an Electromagnetic Seepage Meter to Investigate Temporal Variability in Lake Seepage

    USGS Publications Warehouse

    Rosenberry, D.O.; Morin, R.H.

    2004-01-01

    A commercially available electromagnetic flowmeter is attached to a seepage cylinder to create an electromagnetic seepage meter (ESM) for automating measurement of fluxes across the sediment/water interface between ground water and surface water. The ESM is evaluated through its application at two lakes in New England, one where water seeps into the lake and one where water seeps out of the lake. The electromagnetic flowmeter replaces the seepage-meter bag and provides a continuous series of measurements from which temporal seepage processes can be investigated. It provides flow measurements over a range of three orders of magnitude, and contains no protruding components or moving parts. The ESM was used to evaluate duration of seepage disturbance following meter installation and indicated natural seepage rates resumed approximately one hour following meter insertion in a sandy lakebed. Lakebed seepage also varied considerably in response to lakebed disturbances, near-shore waves, and rain-falls, indicating hydrologic processes are occurring in shallow lakebed settings at time scales that have largely gone unobserved.

  20. Piloting the use of experience sampling method to investigate the everyday social experiences of children with Asperger syndrome/high functioning autism.

    PubMed

    Cordier, Reinie; Brown, Nicole; Chen, Yu-Wei; Wilkes-Gillan, Sarah; Falkmer, Torbjorn

    2016-01-01

    This pilot study explored the nature and quality of social experiences of children with Asperger Syndrome/High Functioning Autism (AS/HFA) through experience sampling method (ESM) while participating in everyday activities. ESM was used to identify the contexts and content of daily life experiences. Six children with AS/HFA (aged 8-12) wore an iPod Touch on seven consecutive days, while being signalled to complete a short survey. Participants were in the company of others 88.3% of their waking time, spent 69.0% of their time with family and 3.8% with friends, but only conversed with others 26.8% of the time. Participants had more positive experiences and emotions when they were with friends compared with other company. Participating in leisure activities was associated with enjoyment, interest in the occasion, and having positive emotions. ESM was found to be helpful in identifying the nature and quality of social experiences of children with AS/HFA from their perspective.

  1. Use of an electromagnetic seepage meter to investigate temporal variability in lake seepage.

    PubMed

    Rosenberry, Donald O; Morin, Roger H

    2004-01-01

    A commercially available electromagnetic flowmeter is attached to a seepage cylinder to create an electromagnetic seepage meter (ESM) for automating measurement of fluxes across the sediment/water interface between ground water and surface water. The ESM is evaluated through its application at two lakes in New England, one where water seeps into the lake and one where water seeps out of the lake. The electromagnetic flowmeter replaces the seepage-meter bag and provides a continuous series of measurements from which temporal seepage processes can be investigated. It provides flow measurements over a range of three orders of magnitude, and contains no protruding components or moving parts. The ESM was used to evaluate duration of seepage disturbance following meter installation and indicated natural seepage rates resumed approximately one hour following meter insertion in a sandy lakebed. Lakebed seepage also varied considerably in response to lakebed disturbances, near-shore waves, and rainfalls, indicating hydrologic processes are occurring in shallow lakebed settings at time scales that have largely gone unobserved.

  2. Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders.

    PubMed

    Iturria-Medina, Yasser; Sotero, Roberto C; Toussaint, Paule J; Evans, Alan C

    2014-11-01

    Misfolded proteins (MP) are a key component in aging and associated neurodegenerative disorders. For example, misfolded Amyloid-ß (Aß) and tau proteins are two neuropathogenic hallmarks of Alzheimer's disease. Mechanisms underlying intra-brain MP propagation/deposition remain essentially uncharacterized. Here, is introduced an epidemic spreading model (ESM) for MP dynamics that considers propagation-like interactions between MP agents and the brain's clearance response across the structural connectome. The ESM reproduces advanced Aß deposition patterns in the human brain (explaining 46∼56% of the variance in regional Aß loads, in 733 subjects from the ADNI database). Furthermore, this model strongly supports a) the leading role of Aß clearance deficiency and early Aß onset age during Alzheimer's disease progression, b) that effective anatomical distance from Aß outbreak region explains regional Aß arrival time and Aß deposition likelihood, c) the multi-factorial impact of APOE e4 genotype, gender and educational level on lifetime intra-brain Aß propagation, and d) the modulatory impact of Aß propagation history on tau proteins concentrations, supporting the hypothesis of an interrelated pathway between Aß pathophysiology and tauopathy. To our knowledge, the ESM is the first computational model highlighting the direct link between structural brain networks, production/clearance of pathogenic proteins and associated intercellular transfer mechanisms, individual genetic/demographic properties and clinical states in health and disease. In sum, the proposed ESM constitutes a promising framework to clarify intra-brain region to region transference mechanisms associated with aging and neurodegenerative disorders.

  3. Epidemic Spreading Model to Characterize Misfolded Proteins Propagation in Aging and Associated Neurodegenerative Disorders

    PubMed Central

    Iturria-Medina, Yasser; Sotero, Roberto C.; Toussaint, Paule J.; Evans, Alan C.

    2014-01-01

    Misfolded proteins (MP) are a key component in aging and associated neurodegenerative disorders. For example, misfolded Amyloid-ß (Aß) and tau proteins are two neuropathogenic hallmarks of Alzheimer's disease. Mechanisms underlying intra-brain MP propagation/deposition remain essentially uncharacterized. Here, is introduced an epidemic spreading model (ESM) for MP dynamics that considers propagation-like interactions between MP agents and the brain's clearance response across the structural connectome. The ESM reproduces advanced Aß deposition patterns in the human brain (explaining 46∼56% of the variance in regional Aß loads, in 733 subjects from the ADNI database). Furthermore, this model strongly supports a) the leading role of Aß clearance deficiency and early Aß onset age during Alzheimer's disease progression, b) that effective anatomical distance from Aß outbreak region explains regional Aß arrival time and Aß deposition likelihood, c) the multi-factorial impact of APOE e4 genotype, gender and educational level on lifetime intra-brain Aß propagation, and d) the modulatory impact of Aß propagation history on tau proteins concentrations, supporting the hypothesis of an interrelated pathway between Aß pathophysiology and tauopathy. To our knowledge, the ESM is the first computational model highlighting the direct link between structural brain networks, production/clearance of pathogenic proteins and associated intercellular transfer mechanisms, individual genetic/demographic properties and clinical states in health and disease. In sum, the proposed ESM constitutes a promising framework to clarify intra-brain region to region transference mechanisms associated with aging and neurodegenerative disorders. PMID:25412207

  4. Development and Performance of the Modularized, High-performance Computing and Hybrid-architecture Capable GEOS-Chem Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Long, M. S.; Yantosca, R.; Nielsen, J.; Linford, J. C.; Keller, C. A.; Payer Sulprizio, M.; Jacob, D. J.

    2014-12-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been reengineered to serve as a platform for a range of computational atmospheric chemistry science foci and applications. Development included modularization for coupling to general circulation and Earth system models (ESMs) and the adoption of co-processor capable atmospheric chemistry solvers. This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of GEOS-Chem scientific code to permit seamless transition from the GEOS-Chem stand-alone serial CTM to deployment as a coupled ESM module. In this manner, the continual stream of updates contributed by the CTM user community is automatically available for broader applications, which remain state-of-science and directly referenceable to the latest version of the standard GEOS-Chem CTM. These developments are now available as part of the standard version of the GEOS-Chem CTM. The system has been implemented as an atmospheric chemistry module within the NASA GEOS-5 ESM. The coupled GEOS-5/GEOS-Chem system was tested for weak and strong scalability and performance with a tropospheric oxidant-aerosol simulation. Results confirm that the GEOS-Chem chemical operator scales efficiently for any number of processes. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemical operator means that the relative cost goes down with increasing number of processes, making fine-scale resolution simulations possible.

  5. Is psychotic disorder associated with increased levels of craving for cannabis? An Experience Sampling study.

    PubMed

    Kuepper, R; Oorschot, M; Myin-Germeys, I; Smits, M; van Os, J; Henquet, C

    2013-12-01

    Although cannabis use among individuals with psychotic disorder is considerable, little is known about patterns of use and factors contributing to continuation of use. Therefore, we investigated craving in relation to cannabis use in patients with psychotic disorder and healthy controls. The study included 58 patients with non-affective psychotic disorder and 63 healthy controls; all were frequent cannabis users. Craving was assessed with the Obsessive Compulsive Drug Use Scale (OCDUS) for cannabis, as well as in daily life using the Experience Sampling Method (ESM). Patients scored higher on the OCDUS (B = 1.18, P = 0.022), but did not differ from controls in ESM indices of craving (all P > 0.05). In daily life, ESM craving predicted cannabis use and this was stronger in controls (χ(2) = 4.5, P = 0.033; Bcontrols = 0.08, P < 0.001; Bpatients = 0.06, P < 0.001). In both groups ESM craving was predicted by negative affect, paranoia, and hallucinations (Bnegativeaffect = 0.12, P = 0.009; Bparanoia = 0.13, P = 0.013; Bhallucinations = 0.13, P = 0.028), and followed by an increase in negative affect at non-cannabis-using moments (B = 0.03, P = 0.002). The temporal dynamics of craving as well as craving intensity in daily life appear to be similar in patients and controls. Further research is needed to elucidate the inconsistencies between cross-sectional and daily-life measures of craving in psychosis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution.

    PubMed

    Balke, Nina; Jesse, Stephen; Kim, Yoongu; Adamczyk, Leslie; Tselev, Alexander; Ivanov, Ilia N; Dudney, Nancy J; Kalinin, Sergei V

    2010-09-08

    The electrical bias driven Li-ion motion in silicon anode materials in thin film battery heterostructures is investigated using electrochemical strain microscopy (ESM), which is a newly developed scanning probe microscopy based characterization method. ESM utilizes the intrinsic link between bias-controlled Li-ion concentration and molar volume of electrode materials, providing the capability for studies on the sub-20 nm scale, and allows the relationship between Li-ion flow and microstructure to be established. The evolution of Li-ion transport during the battery charging is directly observed.

  7. Improved Analysis of Earth System Models and Observations using Simple Climate Models

    NASA Astrophysics Data System (ADS)

    Nadiga, B. T.; Urban, N. M.

    2016-12-01

    Earth system models (ESM) are the most comprehensive tools we have to study climate change and develop climate projections. However, the computational infrastructure required and the cost incurred in running such ESMs precludes direct use of such models in conjunction with a wide variety of tools that can further our understanding of climate. Here we are referring to tools that range from dynamical systems tools that give insight into underlying flow structure and topology to tools that come from various applied mathematical and statistical techniques and are central to quantifying stability, sensitivity, uncertainty and predictability to machine learning tools that are now being rapidly developed or improved. Our approach to facilitate the use of such models is to analyze output of ESM experiments (cf. CMIP) using a range of simpler models that consider integral balances of important quantities such as mass and/or energy in a Bayesian framework.We highlight the use of this approach in the context of the uptake of heat by the world oceans in the ongoing global warming. Indeed, since in excess of 90% of the anomalous radiative forcing due greenhouse gas emissions is sequestered in the world oceans, the nature of ocean heat uptake crucially determines the surface warming that is realized (cf. climate sensitivity). Nevertheless, ESMs themselves are never run long enough to directly assess climate sensitivity. So, we consider a range of models based on integral balances--balances that have to be realized in all first-principles based models of the climate system including the most detailed state-of-the art climate simulations. The models range from simple models of energy balance to those that consider dynamically important ocean processes such as the conveyor-belt circulation (Meridional Overturning Circulation, MOC), North Atlantic Deep Water (NADW) formation, Antarctic Circumpolar Current (ACC) and eddy mixing. Results from Bayesian analysis of such models using both ESM experiments and actual observations are presented. One such result points to the importance of direct sequestration of heat below 700 m, a process that is not allowed for in the simple models that have been traditionally used to deduce climate sensitivity.

  8. Technical Note: The Modular Earth Submodel System (MESSy) - a new approach towards Earth System Modeling

    NASA Astrophysics Data System (ADS)

    Jöckel, P.; Sander, R.; Kerkweg, A.; Tost, H.; Lelieveld, J.

    2005-02-01

    The development of a comprehensive Earth System Model (ESM) to study the interactions between chemical, physical, and biological processes, requires coupling of the different domains (land, ocean, atmosphere, ...). One strategy is to link existing domain-specific models with a universal coupler, i.e. an independent standalone program organizing the communication between other programs. In many cases, however, a much simpler approach is more feasible. We have developed the Modular Earth Submodel System (MESSy). It comprises (1) a modular interface structure to connect to a , (2) an extendable set of such for miscellaneous processes, and (3) a coding standard. MESSy is therefore not a coupler in the classical sense, but exchanges data between a and several within one comprehensive executable. The internal complexity of the is controllable in a transparent and user friendly way. This provides remarkable new possibilities to study feedback mechanisms (by two-way coupling). Note that the MESSy and the coupler approach can be combined. For instance, an atmospheric model implemented according to the MESSy standard could easily be coupled to an ocean model by means of an external coupler. The vision is to ultimately form a comprehensive ESM which includes a large set of submodels, and a base model which contains only a central clock and runtime control. This can be reached stepwise, since each process can be included independently. Starting from an existing model, process submodels can be reimplemented according to the MESSy standard. This procedure guarantees the availability of a state-of-the-art model for scientific applications at any time of the development. In principle, MESSy can be implemented into any kind of model, either global or regional. So far, the MESSy concept has been applied to the general circulation model ECHAM5 and a number of process boxmodels.

  9. Laundry Study for a Lunar Outpost

    NASA Technical Reports Server (NTRS)

    Ewert, Michael; Jeng, Frank

    2009-01-01

    In support of the Constellation Program, which will return humans to the moon and establish an Outpost, NASA has conducted an analysis of crew clothing and laundry options. Single-use or "disposable" clothing has been used from Apollo until International Space Station (ISS) missions, meaning that clothes were worn for the whole mission or thrown away when they became too dirty to wear any longer. This is justified for short duration missions; however, as the Constellation mission will last much longer and each individual Outpost mission is expected to last up to 180 days, mission goals and launch penalties for mass and volume may lead to a different conclusion. Furthermore, the habitat atmosphere pressure and therefore oxygen volume percentage will be different from ISS or Shuttle. Almost daily EVA sorties will be a norm during Outpost exploration missions. All of these factors will have impacts on selection of crew clothing and laundry options for Outpost missions. Mass and volume estimates for disposable crew clothing have been shown as a major penalty in long-duration manned space exploration missions in previous analyses. Assuming disposable clothing like ISS, Equivalent System Mass (ESM) of crew clothing and hygiene towels was estimated to be 11,000 kg or about 11% of total life support system ESM for a 10-year Lunar Outpost mission with 4 crew members. Ways to reduce this clothing penalty, which are discussed in this paper, include: a) Reduce clothing supply rate through using clothes made of advanced fabrics; b) Reduce daily usage rate by extending its use duration before disposing; and c) Use laundry and reusable clothing. The report summarizes recent research efforts in advanced clothing, proposed clothing supply rates for Exploration missions, results of a trade-off study between disposable clothing and laundry, and conclusions and suggestions for Constellation Program clothing.

  10. Seasonal variability of convectively coupled equatorial waves (CCEWs) in recent high-top CMIP5 models

    NASA Astrophysics Data System (ADS)

    Zakaria, Dzaki; Lubis, Sandro W.; Setiawan, Sonni

    2018-05-01

    Tropical weather system is controlled by periodic atmospheric disturbances ranging from daily to subseasonal time scales. One of the most prominent atmospheric disturbances in the tropics is convectively coupled equatorial waves (CCEWs). CCEWs are excited by latent heating due to a large-scale convective system and have a significant influence on weather system. They include atmospheric equatorial Kelvin wave, Mixed Rossby Gravity (MRG) wave, Equatorial Rossby (ER) wave and Tropical Depression (TD-type) wave. In this study, we will evaluate the seasonal variability of CCEWs activity in nine high-top CMIP5 models, including their spatial distribution in the troposphere. Our results indicate that seasonal variability of Kelvin waves is well represented in MPI-ESM-LR and MPI-ESM-MR, with maximum activity occurring during boreal spring. The seasonal variability of MRG waves is well represented in CanESM2, HadGEM2-CC, IPSL-CM5A-LR and IPSL-CM5A-MR, with maximum activity observed during boreal summer. On the other hand, ER waves are well captured by IPSL-CM5A-LR and IPSL-CM5A-MR and maximize during boreal fall; while TD-type waves, with maximum activity observed during boreal summer, are well observed in CanESM2, HadGEM2-CC, IPSL-CM5A-LR and IPSL-CM5A-MR. Our results indicate that the skill of CMIP5 models in representing seasonal variability of CCEWs highly depends on the convective parameterization and the spatial or vertical resolution used by each model.

  11. A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.

    Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less

  12. A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems

    DOE PAGES

    Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.

    2018-04-23

    Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less

  13. Towards a universal model for carbon dioxide uptake by plants

    DOE PAGES

    Wang, Han; Prentice, I. Colin; Keenan, Trevor F.; ...

    2017-09-04

    Gross primary production (GPP) - the uptake of carbon dioxide (CO 2) by leaves, and its conversion to sugars by photosynthesis - is the basis for life on land. Earth System Models (ESMs) incorporating the interactions of land ecosystems and climate are used to predict the future of the terrestrial sink for anthropogenic CO 2. ESMs require accurate representation of GPP. However, current ESMs disagree on how GPP responds to environmental variations, suggesting a need for a more robust theoretical framework for modelling. Here in this work, we focus on a key quantity for GPP, the ratio of leaf internalmore » to external CO 2 (χ). χ is tightly regulated and depends on environmental conditions, but is represented empirically and incompletely in today's models. We show that a simple evolutionary optimality hypothesis predicts specific quantitative dependencies of χ on temperature, vapour pressure deficit and elevation; and that these same dependencies emerge from an independent analysis of empirical χ values, derived from a worldwide dataset of >3,500 leaf stable carbon isotope measurements. A single global equation embodying these relationships then unifies the empirical light-use efficiency model with the standard model of C 3 photosynthesis, and successfully predicts GPP measured at eddy-covariance flux sites. This success is notable given the equation's simplicity and broad applicability across biomes and plant functional types. Finally, it provides a theoretical underpinning for the analysis of plant functional coordination across species and emergent properties of ecosystems, and a potential basis for the reformulation of the controls of GPP in next-generation ESMs.« less

  14. A Global Data Analysis for Representing Sediment and Particulate Organic Carbon Yield in Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Zeli; Leung, L. Ruby; Li, Hongyi

    Although sediment yield (SY) from water erosion is ubiquitous and its environmental consequences are well recognized, its impacts on the global carbon cycle remain largely uncertain. This knowledge gap is partly due to the lack of soil erosion modeling in Earth System Models (ESMs), which are important tools used to understand the global carbon cycle and explore its changes. This study analyzed sediment and particulate organic carbon yield (CY) data from 1081 and 38 small catchments (0.1-200 km27 ), respectively, in different environments across the globe. Using multiple statistical analysis techniques, we explored environmental factors and hydrological processes important formore » SY and CY modeling in ESMs. Our results show clear correlations of high SY with traditional agriculture, seismicity and heavy storms, as well as strong correlations between SY and annual peak runoff. These highlight the potential limitation of SY models that represent only interrill and rill erosion because shallow overland flow and rill flow have limited transport capacity due to their hydraulic geometry to produce high SY. Further, our results suggest that SY modeling in ESMs should be implemented at the event scale to produce the catastrophic mass transport during episodic events. Several environmental factors such as seismicity and land management that are often not considered in current catchment-scale SY models can be important in controlling global SY. Our analyses show that SY is likely the primary control on CY in small catchments and a statistically significant empirical relationship is established to calculate SY and CY jointly in ESMs.« less

  15. Application of Energy Integration Techniques to the Design of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Levri, Julie; Finn, Cory

    2000-01-01

    Exchanging heat between hot and cold streams within an advanced life support system can save energy. This savings will reduce the equivalent system mass (ESM) of the system. Different system configurations are examined under steady-state conditions for various percentages of food growth and waste treatment. The scenarios investigated represent possible design options for a Mars reference mission. Reference mission definitions are drawn from the ALSS Modeling and Analysis Reference Missions Document, which includes definitions for space station evolution, Mars landers, and a Mars base. For each scenario, streams requiring heating or cooling are identified and characterized by mass flow, supply and target temperatures and heat capacities. The Pinch Technique is applied to identify good matches for energy exchange between the hot and cold streams and to calculate the minimum external heating and cooling requirements for the system. For each pair of hot and cold streams that are matched, there will be a reduction in the amount of external heating and cooling required, and the original heating and cooling equipment will be replaced with a heat exchanger. The net cost savings can be either positive or negative for each stream pairing, and the priority for implementing each pairing can be ranked according to its potential cost savings. Using the Pinch technique, a complete system heat exchange network is developed and heat exchangers are sized to allow for calculation of ESM. The energy-integrated design typically has a lower total ESM than the original design with no energy integration. A comparison of ESM savings in each of the scenarios is made to direct future Pinch Analysis efforts.

  16. Negative affect and a fluctuating jumping to conclusions bias predict subsequent paranoia in daily life: An online experience sampling study.

    PubMed

    Lüdtke, Thies; Kriston, Levente; Schröder, Johanna; Lincoln, Tania M; Moritz, Steffen

    2017-09-01

    Negative affect and a tendency to "jump to conclusions" (JTC) are associated with paranoia. So far, only negative affect has been examined as a precursor of subsequent paranoia in daily life using experience sampling (ESM). We addressed this research gap and used ESM to test whether JTC fluctuates in daily life, whether it predicts subsequent paranoia, and whether it mediates the effect of negative affect on paranoia. Thirty-five participants with schizophrenia spectrum disorders repeatedly self-reported negative affect, JTC, and paranoia via online questionnaires on two consecutive days. We measured JTC with a paradigm consisting of ambiguous written scenarios. Multilevel linear models were conducted. Most participants showed JTC consistently on two days rather than only on one day. When time was used as a predictor of JTC, significant slope variance indicated that for a subgroup of participants JTC fluctuated over time. For 48% of participants, these fluctuations equaled changes of approximately ±1 point on the four-point JTC scale within one day. There was no mediation. However, negative affect and JTC both significantly predicted subsequent paranoia. The ESM assessment period was short and encompassed few assessments (8 in total). Our findings indicate that JTC is both stable (regarding its mere occurrence) and fluctuating simultaneously (regarding its magnitude). Although JTC was not a mediator linking negative affect and paranoia, it did predict paranoia. Further ESM studies on JTC are needed to confirm our findings in longer assessment periods and with other JTC paradigms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Real-time functional mapping: potential tool for improving language outcome in pediatric epilepsy surgery

    PubMed Central

    Korostenskaja, Milena; Chen, Po-Ching; Salinas, Christine M.; Westerveld, Michael; Brunner, Peter; Schalk, Gerwin; Cook, Jane C.; Baumgartner, James; Lee, Ki H.

    2015-01-01

    Accurate language localization expands surgical treatment options for epilepsy patients and reduces the risk of postsurgery language deficits. Electrical cortical stimulation mapping (ESM) is considered to be the clinical gold standard for language localization. While ESM affords clinically valuable results, it can be poorly tolerated by children, requires active participation and compliance, carries a risk of inducing seizures, is highly time consuming, and is labor intensive. Given these limitations, alternative and/or complementary functional localization methods such as analysis of electrocorticographic (ECoG) activity in high gamma frequency band in real time are needed to precisely identify eloquent cortex in children. In this case report, the authors examined 1) the use of real-time functional mapping (RTFM) for language localization in a high gamma frequency band derived from ECoG to guide surgery in an epileptic pediatric patient and 2) the relationship of RTFM mapping results to postsurgical language outcomes. The authors found that RTFM demonstrated relatively high sensitivity (75%) and high specificity (90%) when compared with ESM in a “next-neighbor” analysis. While overlapping with ESM in the superior temporal region, RTFM showed a few other areas of activation related to expressive language function, areas that were eventually resected during the surgery. The authors speculate that this resection may be associated with observed postsurgical expressive language deficits. With additional validation in more subjects, this finding would suggest that surgical planning and associated assessment of the risk/benefit ratio would benefit from information provided by RTFM mapping. PMID:24995815

  18. Discrete- vs. Continuous-Time Modeling of Unequally Spaced Experience Sampling Method Data.

    PubMed

    de Haan-Rietdijk, Silvia; Voelkle, Manuel C; Keijsers, Loes; Hamaker, Ellen L

    2017-01-01

    The Experience Sampling Method is a common approach in psychological research for collecting intensive longitudinal data with high ecological validity. One characteristic of ESM data is that it is often unequally spaced, because the measurement intervals within a day are deliberately varied, and measurement continues over several days. This poses a problem for discrete-time (DT) modeling approaches, which are based on the assumption that all measurements are equally spaced. Nevertheless, DT approaches such as (vector) autoregressive modeling are often used to analyze ESM data, for instance in the context of affective dynamics research. There are equivalent continuous-time (CT) models, but they are more difficult to implement. In this paper we take a pragmatic approach and evaluate the practical relevance of the violated model assumption in DT AR(1) and VAR(1) models, for the N = 1 case. We use simulated data under an ESM measurement design to investigate the bias in the parameters of interest under four different model implementations, ranging from the true CT model that accounts for all the exact measurement times, to the crudest possible DT model implementation, where even the nighttime is treated as a regular interval. An analysis of empirical affect data illustrates how the differences between DT and CT modeling can play out in practice. We find that the size and the direction of the bias in DT (V)AR models for unequally spaced ESM data depend quite strongly on the true parameter in addition to data characteristics. Our recommendation is to use CT modeling whenever possible, especially now that new software implementations have become available.

  19. Discrete- vs. Continuous-Time Modeling of Unequally Spaced Experience Sampling Method Data

    PubMed Central

    de Haan-Rietdijk, Silvia; Voelkle, Manuel C.; Keijsers, Loes; Hamaker, Ellen L.

    2017-01-01

    The Experience Sampling Method is a common approach in psychological research for collecting intensive longitudinal data with high ecological validity. One characteristic of ESM data is that it is often unequally spaced, because the measurement intervals within a day are deliberately varied, and measurement continues over several days. This poses a problem for discrete-time (DT) modeling approaches, which are based on the assumption that all measurements are equally spaced. Nevertheless, DT approaches such as (vector) autoregressive modeling are often used to analyze ESM data, for instance in the context of affective dynamics research. There are equivalent continuous-time (CT) models, but they are more difficult to implement. In this paper we take a pragmatic approach and evaluate the practical relevance of the violated model assumption in DT AR(1) and VAR(1) models, for the N = 1 case. We use simulated data under an ESM measurement design to investigate the bias in the parameters of interest under four different model implementations, ranging from the true CT model that accounts for all the exact measurement times, to the crudest possible DT model implementation, where even the nighttime is treated as a regular interval. An analysis of empirical affect data illustrates how the differences between DT and CT modeling can play out in practice. We find that the size and the direction of the bias in DT (V)AR models for unequally spaced ESM data depend quite strongly on the true parameter in addition to data characteristics. Our recommendation is to use CT modeling whenever possible, especially now that new software implementations have become available. PMID:29104554

  20. Towards a universal model for carbon dioxide uptake by plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Han; Prentice, I. Colin; Keenan, Trevor F.

    Gross primary production (GPP) - the uptake of carbon dioxide (CO 2) by leaves, and its conversion to sugars by photosynthesis - is the basis for life on land. Earth System Models (ESMs) incorporating the interactions of land ecosystems and climate are used to predict the future of the terrestrial sink for anthropogenic CO 2. ESMs require accurate representation of GPP. However, current ESMs disagree on how GPP responds to environmental variations, suggesting a need for a more robust theoretical framework for modelling. Here in this work, we focus on a key quantity for GPP, the ratio of leaf internalmore » to external CO 2 (χ). χ is tightly regulated and depends on environmental conditions, but is represented empirically and incompletely in today's models. We show that a simple evolutionary optimality hypothesis predicts specific quantitative dependencies of χ on temperature, vapour pressure deficit and elevation; and that these same dependencies emerge from an independent analysis of empirical χ values, derived from a worldwide dataset of >3,500 leaf stable carbon isotope measurements. A single global equation embodying these relationships then unifies the empirical light-use efficiency model with the standard model of C 3 photosynthesis, and successfully predicts GPP measured at eddy-covariance flux sites. This success is notable given the equation's simplicity and broad applicability across biomes and plant functional types. Finally, it provides a theoretical underpinning for the analysis of plant functional coordination across species and emergent properties of ecosystems, and a potential basis for the reformulation of the controls of GPP in next-generation ESMs.« less

  1. A simple model of the effect of ocean ventilation on ocean heat uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadiga, Balasubramanya T.; Urban, Nathan Mark

    Presentation includes slides on Earth System Models vs. Simple Climate Models; A Popular SCM: Energy Balance Model of Anomalies; On calibrating against one ESM experiment, the SCM correctly captures that ESM's surface warming response with other forcings; Multi-Model Analysis: Multiple ESMs, Single SCM; Posterior Distributions of ECS; However In Excess of 90% of TOA Energy Imbalance is Sequestered in the World Oceans; Heat Storage in the Two Layer Model; Heat Storage in the Two Layer Model; Including TOA Rad. Imbalance and Ocean Heat in Calibration Improves Repr., but Significant Errors Persist; Improved Vertical Resolution Does Not Fix Problem; A Seriesmore » of Expts. Confirms That Anomaly-Diffusing Models Cannot Properly Represent Ocean Heat Uptake; Physics of the Thermocline; Outcropping Isopycnals and Horizontally-Averaged Layers; Local interactions between outcropping isopycnals leads to non-local interactions between horizontally-averaged layers; Both Surface Warming and Ocean Heat are Well Represented With Just 4 Layers; A Series of Expts. Confirms That When Non-Local Interactions are Allowed, the SCMs Can Represent Both Surface Warming and Ocean Heat Uptake; and Summary and Conclusions.« less

  2. Need for Cost Optimization of Space Life Support Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Anderson, Grant

    2017-01-01

    As the nation plans manned missions that go far beyond Earth orbit to Mars, there is an urgent need for a robust, disciplined systems engineering methodology that can identify an optimized Environmental Control and Life Support (ECLSS) architecture for long duration deep space missions. But unlike the previously used Equivalent System Mass (ESM), the method must be inclusive of all driving parameters and emphasize the economic analysis of life support system design. The key parameter for this analysis is Life Cycle Cost (LCC). LCC takes into account the cost for development and qualification of the system, launch costs, operational costs, maintenance costs and all other relevant and associated costs. Additionally, an effective methodology must consider system technical performance, safety, reliability, maintainability, crew time, and other factors that could affect the overall merit of the life support system.

  3. Evaluating Global Land-use Change Scenario: Carbon Emission in RCP Scenarios and its Effects on Climate Response

    NASA Astrophysics Data System (ADS)

    Kato, E.; Kawamiya, M.

    2011-12-01

    In CMIP5 experiments, new emissions scenarios for GCMs and Earth System Models (ESMs) have been constructed as Representative Concentration Pathways (RCPs) by a community effort of Integrated Assessment Modeling (IAM) groups. In RCP scenarios, regional land-use scenarios have been depicted based on the socio-economic assumption of IAMs, and also downscaled spatially explicit land-use maps from the regional scenarios are prepared. In the land-use harmonization project, integrated gridded land-use transition data for the past and future time period has been developed from the reconstruction based on HYDE 3 agricultural data and FAO wood harvest data, and the future land-use scenarios from IAMs. These gridded land-use dataset are used as a forcing of some ESMs participating to the CMIP5 experiments, to assess the biogeochemical and biogeophysical effects of land-use and land cover change in the climate change simulation. In this study, global net CO2 emissions from land-use change for RCP scenarios are evaluated with an offline terrestrial biogeochemical model, VISIT (Vegetation Integrative SImulation Tool). Also the emissions are evaluated with coupled ESM, MIROC-ESM following the LUCID-CMIP5 protocol to see the effect of land-use and land cover change on climate response. Using the model output, consistency of the land-use change CO2 emission scenarios provided by RCPs are evaluated in terms of effect of CO2 fertilization, climate change, and land-use transition itself including the effect of biomass crops production with CCS. We find that a land-use scenario with decreased agricultural land-use intensity such as RCP 6.0 shows possibility of further absorption of CO2 through the climate-carbon feedback, and cooling effect through both biogeochemical and biogeophysical effects.

  4. Models meet data: Challenges and opportunities in implementing land management in Earth system models.

    PubMed

    Pongratz, Julia; Dolman, Han; Don, Axel; Erb, Karl-Heinz; Fuchs, Richard; Herold, Martin; Jones, Chris; Kuemmerle, Tobias; Luyssaert, Sebastiaan; Meyfroidt, Patrick; Naudts, Kim

    2018-04-01

    As the applications of Earth system models (ESMs) move from general climate projections toward questions of mitigation and adaptation, the inclusion of land management practices in these models becomes crucial. We carried out a survey among modeling groups to show an evolution from models able only to deal with land-cover change to more sophisticated approaches that allow also for the partial integration of land management changes. For the longer term a comprehensive land management representation can be anticipated for all major models. To guide the prioritization of implementation, we evaluate ten land management practices-forestry harvest, tree species selection, grazing and mowing harvest, crop harvest, crop species selection, irrigation, wetland drainage, fertilization, tillage, and fire-for (1) their importance on the Earth system, (2) the possibility of implementing them in state-of-the-art ESMs, and (3) availability of required input data. Matching these criteria, we identify "low-hanging fruits" for the inclusion in ESMs, such as basic implementations of crop and forestry harvest and fertilization. We also identify research requirements for specific communities to address the remaining land management practices. Data availability severely hampers modeling the most extensive land management practice, grazing and mowing harvest, and is a limiting factor for a comprehensive implementation of most other practices. Inadequate process understanding hampers even a basic assessment of crop species selection and tillage effects. The need for multiple advanced model structures will be the challenge for a comprehensive implementation of most practices but considerable synergy can be gained using the same structures for different practices. A continuous and closer collaboration of the modeling, Earth observation, and land system science communities is thus required to achieve the inclusion of land management in ESMs. © 2017 John Wiley & Sons Ltd.

  5. Edgeworth streaming model for redshift space distortions

    NASA Astrophysics Data System (ADS)

    Uhlemann, Cora; Kopp, Michael; Haugg, Thomas

    2015-09-01

    We derive the Edgeworth streaming model (ESM) for the redshift space correlation function starting from an arbitrary distribution function for biased tracers of dark matter by considering its two-point statistics and show that it reduces to the Gaussian streaming model (GSM) when neglecting non-Gaussianities. We test the accuracy of the GSM and ESM independent of perturbation theory using the Horizon Run 2 N -body halo catalog. While the monopole of the redshift space halo correlation function is well described by the GSM, higher multipoles improve upon including the leading order non-Gaussian correction in the ESM: the GSM quadrupole breaks down on scales below 30 Mpc /h whereas the ESM stays accurate to 2% within statistical errors down to 10 Mpc /h . To predict the scale-dependent functions entering the streaming model we employ convolution Lagrangian perturbation theory (CLPT) based on the dust model and local Lagrangian bias. Since dark matter halos carry an intrinsic length scale given by their Lagrangian radius, we extend CLPT to the coarse-grained dust model and consider two different smoothing approaches operating in Eulerian and Lagrangian space, respectively. The coarse graining in Eulerian space features modified fluid dynamics different from dust while the coarse graining in Lagrangian space is performed in the initial conditions with subsequent single-streaming dust dynamics, implemented by smoothing the initial power spectrum in the spirit of the truncated Zel'dovich approximation. Finally, we compare the predictions of the different coarse-grained models for the streaming model ingredients to N -body measurements and comment on the proper choice of both the tracer distribution function and the smoothing scale. Since the perturbative methods we considered are not yet accurate enough on small scales, the GSM is sufficient when applied to perturbation theory.

  6. From land use to land cover: Restoring the afforestation signal in a coupled integrated assessment - earth system model and the implications for CMIP5 RCP simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Vittorio, Alan V.; Chini, Louise M.; Bond-Lamberty, Benjamin

    2014-11-27

    Climate projections depend on scenarios of fossil fuel emissions and land use change, and the IPCC AR5 parallel process assumes consistent climate scenarios across Integrated Assessment and Earth System Models (IAMs and ESMs). To facilitate consistency, CMIP5 used a novel land use harmonization to provide ESMs with seamless, 1500-2100 land use trajectories generated by historical data and four IAMs. However, we have identified and partially addressed a major gap in the CMIP5 land coupling design. The CMIP5 Community ESM (CESM) global afforestation is only 22% of RCP4.5 afforestation from 2005 to 2100. Likewise, only 17% of the Global Change Assessmentmore » Model’s (GCAM’s) 2040 RCP4.5 afforestation signal, and none of the pasture loss, were transmitted to CESM within a newly integrated model. This is a critical problem because afforestation is necessary for achieving the RCP4.5 climate stabilization. We attempted to rectify this problem by modifying only the ESM component of the integrated model, enabling CESM to simulate 66% of GCAM’s afforestation in 2040, and 94% of GCAM’s pasture loss as grassland and shrubland losses. This additional afforestation increases vegetation carbon gain by 19 PgC and decreases atmospheric CO2 gain by 8 ppmv from 2005 to 2040, implying different climate scenarios between CMIP5 GCAM and CESM. Similar inconsistencies likely exist in other CMIP5 model results, primarily because land cover information is not shared between models, with possible contributions from afforestation exceeding model-specific, potentially viable forest area. Further work to harmonize land cover among models will be required to adequately rectify this problem.« less

  7. Reliability Impacts in Life Support Architecture and Technology Selection

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Anderson, Molly S.

    2011-01-01

    Equivalent System Mass (ESM) and reliability estimates were performed for different life support architectures based primarily on International Space Station (ISS) technologies. The analysis was applied to a hypothetical 1-year deep-space mission. High-level fault trees were initially developed relating loss of life support functionality to the Loss of Crew (LOC) top event. System reliability was then expressed as the complement (nonoccurrence) this event and was increased through the addition of redundancy and spares, which added to the ESM. The reliability analysis assumed constant failure rates and used current projected values of the Mean Time Between Failures (MTBF) from an ISS database where available. Results were obtained showing the dependence of ESM on system reliability for each architecture. Although the analysis employed numerous simplifications and many of the input parameters are considered to have high uncertainty, the results strongly suggest that achieving necessary reliabilities for deep-space missions will add substantially to the life support system mass. As a point of reference, the reliability for a single-string architecture using the most regenerative combination of ISS technologies without unscheduled replacement spares was estimated to be less than 1%. The results also demonstrate how adding technologies in a serial manner to increase system closure forces the reliability of other life support technologies to increase in order to meet the system reliability requirement. This increase in reliability results in increased mass for multiple technologies through the need for additional spares. Alternative parallel architecture approaches and approaches with the potential to do more with less are discussed. The tall poles in life support ESM are also reexamined in light of estimated reliability impacts.

  8. Can smartphones measure momentary quality of life and participation? A proof of concept using experience sampling surveys with university students.

    PubMed

    Liddle, Jacki; Wishink, Anna; Springfield, Liz; Gustafsson, Louise; Ireland, David; Silburn, Peter

    2017-08-01

    Understanding quality of life and participation is a key aspect of occupational therapy research. The use of smartphones to deliver experience-sampling surveys may provide an accessible way to monitor these outcomes. This study used smartphone-based experience sampling methods (ESM) to investigate factors influencing momentary quality of life (mQOL) of university students. A convenience sample of students at an Australian university participated. Using a custom smartphone application, ESM surveys were sent six to eight times, every second day, over a week. Participants indicated their mQOL, occupational participation, occupational enjoyment, social context and location via surveys and provided demographic and health information in a single self-report questionnaire. The relationship between mQOL and variables was analysed at the survey level using logistic regression. Forty students completed 391 surveys. Higher mQOL was significantly related to participation in productive occupations (z = 3.48; P = 0.001), moderate (z = 4.00; P < 0.001) or high occupational enjoyment (z = 7.06; P < 0.001), being with someone (z = 2.15, P = 0.031), being at home (z = 2.49; P = 0.013) and an excellent self-rated health status (z = 2.35; P = 0.019). The magnitude of differences in mQOL was small. This study suggests that mQOL amongst university students relates to personal, environmental and occupational factors. The use of smartphone-based ESM appears to be a practical approach for investigating participation and QOL. Further research utilising a more diverse sample, analysing at the individual level, and using ESM in conjunction with other methodologies is recommended. © 2017 Occupational Therapy Australia.

  9. Distribution of N2O in the atmosphere under global warming - a simulation study with the MPI Earth System Model

    NASA Astrophysics Data System (ADS)

    Kracher, Daniela; Manzini, Elisa; Reick, Christian H.; Schultz, Martin; Stein, Olaf

    2014-05-01

    Climate change is driven by an increasing release of anthropogenic greenhouse gases (GHGs) such as carbon dioxide and nitrous oxide (N2O). Besides fossil fuel burning, also land use change and land management are anthropogenic sources of GHGs. Especially inputs of reactive nitrogen via fertilizer and deposition lead to enhanced emissions of N2O. One effect of a drastic future increase in surface temperature is a modification of atmospheric circulation, e.g. an accelerated Brewer Dobson circulation affecting the exchange between troposphere and stratosphere. N2O is inert in the troposphere and decayed only in the stratosphere. Thus, changes in atmospheric circulation, especially changes in the exchange between troposphere and stratosphere, will affect the atmospheric transport, decay, and distribution of N2O. In our study we assess the impact of global warming on atmospheric circulation and implied effects on the distribution and lifetime of atmospheric N2O. As terrestrial N2O emissions are highly determined by inputs of reactive nitrogen - the location of which being determined by human choice - we examine in particular the importance of latitudinal source regions of N2O for its global distribution. For this purpose we apply the Max Planck Institute Earth System Model, MPI-ESM. MPI-ESM consists of the atmospheric general circulation model ECHAM, the land surface model JSBACH, and MPIOM/HAMOCC representing ocean circulation and ocean biogeochemistry. Prognostic atmospheric N2O concentrations in MPI-ESM are determined by land N2O emissions, ocean N2O exchange and atmospheric tracer transport. As stratospheric chemistry is not explicitly represented in MPI-ESM, stratospheric decay rates of N2O are prescribed from a MACC MOZART simulation.

  10. How does dynamical downscaling affect model biases and future projections of explosive extratropical cyclones along North America's Atlantic coast?

    NASA Astrophysics Data System (ADS)

    Seiler, C.; Zwiers, F. W.; Hodges, K. I.; Scinocca, J. F.

    2018-01-01

    Explosive extratropical cyclones (EETCs) are rapidly intensifying low pressure systems that generate severe weather along North America's Atlantic coast. Global climate models (GCMs) tend to simulate too few EETCs, perhaps partly due to their coarse horizontal resolution and poorly resolved moist diabatic processes. This study explores whether dynamical downscaling can reduce EETC frequency biases, and whether this affects future projections of storms along North America's Atlantic coast. A regional climate model (CanRCM4) is forced with the CanESM2 GCM for the periods 1981 to 2000 and 2081 to 2100. EETCs are tracked from relative vorticity using an objective feature tracking algorithm. CanESM2 simulates 38% fewer EETC tracks compared to reanalysis data, which is consistent with a negative Eady growth rate bias (-0.1 day^{-1}). Downscaling CanESM2 with CanRCM4 increases EETC frequency by one third, which reduces the frequency bias to -22%, and increases maximum EETC precipitation by 22%. Anthropogenic greenhouse gas forcing is projected to decrease EETC frequency (-15%, -18%) and Eady growth rate (-0.2 day^{-1}, -0.2 day^{-1}), and increase maximum EETC precipitation (46%, 52%) in CanESM2 and CanRCM4, respectively. The limited effect of dynamical downscaling on EETC frequency projections is consistent with the lack of impact on the maximum Eady growth rate. The coarse spatial resolution of GCMs presents an important limitation for simulating extreme ETCs, but Eady growth rate biases are likely just as relevant. Further bias reductions could be achieved by addressing processes that lead to an underestimation of lower tropospheric meridional temperature gradients.

  11. Characterizing moisture sources over Mediterranean Basin in a Regional Earth System Model

    NASA Astrophysics Data System (ADS)

    Batibeniz, F.; Ashfaq, M.; Turuncoglu, U. U.; Onol, B.

    2017-12-01

    We investigate precipitation dynamics over the Mediterranean region using Reanalysis data and a coupled Regional Earth System Model (RegESM). The RegESM model is run in coupled (RegCM4 coupled with ROMS) and uncoupled mode (atmosphere -land only) for 1979-2013 period using Era-Interim Reanalysis. RegESM incorporates atmosphere, ocean, river routing and wave components and thereby is better capable to improve the understanding of coupled climate system processes. We compare two model configurations to investigate the role of air sea interaction in the simulation of key processes that govern precipitation variability over the study region. Seasonal trend analyses have been performed to understand the changes in precipitation tendencies over the 35 years of the simulation period and observations. Additionally, two moisture flux analyses (Eulerian and Lagrangian) have been implemented to understand the role of various oceanic and terrestrial evaporative sources in seasonal precipitation distribution and long-term trends over the Mediterranean basin. In Eulerian approach, we use 7 different terrestrial regions to identify sources and sinks using the inflows and outflows from their boundaries. In Lagrangian approach, we divide the whole region in 9 parts to backtrack moisture coming from each region to the core Mediterranean region at intra-seasonal time-scales. Variation in the moisture contribution from each source region is investigated to quantify its role in the observed precipitation variability particularly during the extreme wet and dry years. Overall, our results highlight the importance of air-sea interaction in precipitation distribution at intra-seasonal to inter-decadal timescales over Mediterranean region as coupled RegESM configuration is able to improve of many limitations that are found in the standalone configuration.

  12. Tropical Carbon Response to Seasonal Phasing and Intensity of Precipitation in CMIP5 Earth System Models

    NASA Astrophysics Data System (ADS)

    Basile, S.; Keppel-Aleks, G.

    2016-12-01

    Carbon cycling and water fluxes are connected over land. Understanding the current sensitivity of tropical ecosystems to climate drivers, such as precipitation, at short timescales is important for projecting future trends in the land sink of anthropogenic CO2. Several recent studies have shown that interannual droughts in 2005 and 2010 reduced net carbon uptake in the Amazon rainforest. In 2011 Southern Hemisphere semi-arid regions, especially Australian ecosystems, were found to largely contribute to the above average increase in the land carbon sink following consecutive wet seasons under La Nina conditions. Earth system models (ESMs) are able to simulate these sensitivities with varying degrees of fidelity, and ESMs also show a wide range of changes in precipitation phasing and intensity by 2100. Unsurprisingly, model projections of the land carbon sink also vary widely, with some simulations showing land becoming a CO2 source to the atmosphere. To constrain projections of the tropical land carbon balance among an ensemble of ESMs, we analyzed seasonal and interannual precipitation-carbon relationships in Coupled Model Intercomparison Project Phase 5 (CMIP5) ESMs for the period from 1982-2006. The sensitivity of net biospheric production on land (NBP) to precipitation was quantified on seasonal and annual timescales, and NBP was spatially correlated to precipitation across tropical and subtropical regions (+/- 30 degrees) within humid and semi-arid ecosystems. This analysis was expanded to soil moisture and drought metrics were used to distinguish between wet and dry seasons. Large scale precipitation was used to resolve Intertropical Convergence Zone (ITCZ) movement and convective precipitation was used to diagnose the short-term NBP response within the wet season. Results revealed a spread in NBP sensitivity to precipitation intensity as well as how individual models simulated precipitation phasing across different tropical regions.

  13. The Effect of Mission Location on Mission Costs and Equivalent System Mass

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Levri, Julie A.; Jones, Harry W.

    2003-01-01

    Equivalent System Mass (ESM) is used by the Advanced Life Support (ALS) community to quantify mission costs of technologies for space applications (Drysdale et al, 1999, Levri et al, 2000). Mass is used as a cost measure because the mass of an object determines propulsion (acceleration) cost (i.e. amount of fuel needed), and costs relating to propulsion dominate mission cost. Mission location drives mission cost because acceleration is typically required to initiate and complete a change in location. Total mission costs may be reduced by minimizing the mass of materials that must be propelled to each distinct location. In order to minimize fuel requirements for missions beyond low-Earth orbit (LEO), the hardware and astronauts may not all go to the same location. For example, on a Lunar or Mars mission, some of the hardware or astronauts may stay in orbit while the rest of the hardware and astronauts descend to the planetary surface. In addition, there may be disposal of waste or used hardware at various mission locations to avoid propulsion of mass that is no longer needed in the mission. This paper demonstrates how using location factors in the calculation of ESM can account for the effects of various acceleration events and can improve the accuracy and value of the ESM metric to mission planners. Even a mission with one location can benefit from location factor analysis if the alternative technologies under consideration consume resources at different rates. For example, a mission that regenerates resources will have a relatively constant mass compared to one that uses consumables and vents/discards mass along the way. This paper shows examples of how location factors can affect ESM calculations and how the inclusion of location factors can change the relative value of technologies being considered for development.

  14. A stand-alone tree demography and landscape structure module for Earth system models: integration with global forest data

    NASA Astrophysics Data System (ADS)

    Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.

    2014-02-01

    Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESM). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first generation Dynamic Vegetation Models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second generation DVMs, that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to a range of forest types around the globe, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 yr. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents a preferable alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.

  15. Proceedings of the DRG Seminar on The Defence of Small Ships against Missile Attacks (30th) Held in Ottawa, Canada on 12-14 September 1990. Volume 1 (Actes de 30ieme Seminaire sur la Defense de Petits Navires Contre les Attaques de Missiles)

    DTIC Science & Technology

    1991-04-12

    LONG TERM 14. Abstract: The paper gives an overview of US Navy programme and objectives of anti-ship missile defence. Both evolutionary near term ...Integration of ESM with radar and IR sensors has Impli- cations with respect to ESM performance in terms of bearing accuracy, sensitivity and robustness in...defence budgets. The Terms of Reference of the Defence Research Group call for exchange of information, and the development of co-operative research

  16. Test of High-resolution Global and Regional Climate Model Projections

    NASA Astrophysics Data System (ADS)

    Stenchikov, Georgiy; Nikulin, Grigory; Hansson, Ulf; Kjellström, Erik; Raj, Jerry; Bangalath, Hamza; Osipov, Sergey

    2014-05-01

    In scope of CORDEX project we have simulated the past (1975-2005) and future (2006-2050) climates using the GFDL global high-resolution atmospheric model (HIRAM) and the Rossby Center nested regional model RCA4 for the Middle East and North Africa (MENA) region. Both global and nested runs were performed with roughly the same spatial resolution of 25 km in latitude and longitude, and were driven by the 2°x2.5°-resolution fields from GFDL ESM2M IPCC AR5 runs. The global HIRAM simulations could naturally account for interaction of regional processes with the larger-scale circulation features like Indian Summer Monsoon, which is lacking from regional model setup. Therefore in this study we specifically address the consistency of "global" and "regional" downscalings. The performance of RCA4, HIRAM, and ESM2M is tested based on mean, extreme, trends, seasonal and inter-annual variability of surface temperature, precipitation, and winds. The impact of climate change on dust storm activity, extreme precipitation and water resources is specifically addressed. We found that the global and regional climate projections appear to be quite consistent for the modeled period and differ more significantly from ESM2M than between each other.

  17. Description and Evaluation of IAP-AACM: A Global-regional Aerosol Chemistry Model for the Earth System Model CAS-ESM

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Chen, X.

    2017-12-01

    We present a first description and evaluation of the IAP Atmospheric Aerosol Chemistry Model (IAP-AACM) which has been integrated into the earth system model CAS-ESM. In this way it is possible to research into interaction of clouds and aerosol by its two-way coupling with the IAP Atmospheric General Circulation Model (IAP-AGCM). The model has a nested global-regional grid based on the Global Environmental Atmospheric Transport Model (GEATM) and the Nested Air Quality Prediction Modeling System (NAQPMS). The AACM provides two optional gas chemistry schemes, the CBM-Z gas chemistry as well as a sulfur oxidize box designed specifically for the CAS-ESM. Now the model driven by AGCM has been applied to a 1-year simulation of tropospheric chemistry both on global and regional scales for 2014, and been evaluated against various observation datasets, including aerosol precursor gas concentration, aerosol mass and number concentrations. Furthermore, global budgets in AACM are compared with other global aerosol models. Generally, the AACM simulations are within the range of other global aerosol model predictions, and the model has a reasonable agreement with observations of gases and particles concentration both on global and regional scales.

  18. On the reduced lifetime of nitrous oxide due to climate change induced acceleration of the Brewer-Dobson circulation as simulated by the MPI Earth System Model

    NASA Astrophysics Data System (ADS)

    Kracher, D.; Manzini, E.; Reick, C. H.; Schultz, M. G.; Stein, O.

    2014-12-01

    Greenhouse gas induced climate change will modify the physical conditions of the atmosphere. One of the projected changes is an acceleration of the Brewer-Dobson circulation in the stratosphere, as it has been shown in many model studies. This change in the stratospheric circulation consequently bears an effect on the transport and distribution of atmospheric components such as N2O. Since N2O is involved in ozone destruction, a modified distribution of N2O can be of importance for ozone chemistry. N2O is inert in the troposphere and decays only in the stratosphere. Thus, changes in the exchange between troposphere and stratosphere can also affect the stratospheric sink of N2O, and consequently its atmospheric lifetime. N2O is a potent greenhouse gas with a global warming potential of currently approximately 300 CO2-equivalents in a 100-year perspective. A faster decay in atmospheric N2O mixing ratios, i.e. a decreased atmospheric lifetime of N2O, will also reduce its global warming potential. In order to assess the impact of climate change on atmospheric circulation and implied effects on the distribution and lifetime of atmospheric N2O, we apply the Max Planck Institute Earth System Model, MPI-ESM. MPI-ESM consists of the atmospheric general circulation model ECHAM, the land surface model JSBACH, and MPIOM/HAMOCC representing ocean circulation and ocean biogeochemistry. Prognostic atmospheric N2O concentrations in MPI-ESM are determined by land N2O emissions, ocean-atmosphere N2O exchange and atmospheric tracer transport. As stratospheric chemistry is not explicitly represented in MPI-ESM, stratospheric decay rates of N2O are prescribed from a MACC MOZART simulation. Increasing surface temperatures and CO2 concentrations in the stratosphere impact atmospheric circulation differently. Thus, we conduct a series of transient runs with the atmospheric model of MPI-ESM to isolate different factors governing a shift in atmospheric circulation. From those transient simulations we diagnose decreasing tropospheric N2O concentrations, increased transport of N2O from the troposphere to the stratosphere, and increasing stratospheric decay of N2O leading to a reduction in atmospheric lifetime of N2O, in dependency to climate change evolution.

  19. The role of internal variability for decadal carbon uptake anomalies in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Spring, Aaron; Hi, Hongmei; Ilyina, Tatiana

    2017-04-01

    The Southern Ocean is a major sink for anthropogenic CO2 emissions and hence it plays an essential role in modulating global carbon cycle and climate change. Previous studies based on observations (e.g., Landschützer et al. 2015) show pronounced decadal variations of carbon uptake in the Southern Ocean in recent decades and this variability is largely driven by internal climate variability. However, due to limited ensemble size of simulations, the variability of this important ocean sink is still poorly assessed by the state-of-the-art earth system models (ESMs). To assess the internal variability of carbon sink in the Southern Ocean, we use a large ensemble of 100 member simulations based on the Max Planck Institute-ESM (MPI-ESM). The large ensemble of simulations is generated via perturbed initial conditions in the ocean and atmosphere. Each ensemble member includes a historical simulation from 1850 to 2005 with an extension until 2100 under Representative Concentration Pathway (RCP) 4.5 future projections. Here we use model simulations from 1980-2015 to compare with available observation-based dataset. We found several ensemble members showing decadal decreasing trends in the carbon sink, which are similar to the trend shown in observations. This result suggests that MPI-ESM large ensemble simulations are able to reproduce decadal variation of carbon sink in the Southern Ocean. Moreover, the decreasing trends of Southern Ocean carbon sink in MPI-ESM are mainly contributed by region between 50-60°S. To understand the internal variability of the air-sea carbon fluxes in the Southern Ocean, we further investigate the variability of underlying processes, such as physical climate variability and ocean biological processes. Our results indicate two main drivers for the decadal decreasing trend of carbon sink: i) Intensified winds enhance upwelling of old carbon-rich waters, this leads to increase of the ocean surface pCO2; ii) Primary production is reduced in area from 50-60°S, probably induced by reduced euphotic water column stability; therefore the biological drawdown of ocean surface pCO2 is weakened accordingly and hence the ocean is in favor of carbon outgassing. Landschützer, et al. (2015): The reinvigoration of the Southern Ocean carbon sink, Science, 349, 1221-1224.

  20. Evaluating Carbon and Climate Sensitivities of the NOAA/GFDL Earth System Model ESM2Mb to Forcing Perturbations during the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Tandy, H.; Shevliakova, E.; Keller, G.

    2017-12-01

    The Paleocene-Eocene Thermal Maximum (PETM, 55.5 Myr) was a period of rapid warming resulting from major changes in the carbon cycle and has been cited as the closest historical analogue to anthropogenic carbon release. Up to now, modeling studies of the PETM used either a low-resolution coupled model of the ocean and atmosphere with prescribed CO2 or CH4, or coupled climate-carbon models of intermediate complexity (i.e. simplified ocean or atmosphere). In this study we carried a suit of numerical experiments with the NOAA/GFDL comprehensive atmosphere-ocean coupled model with integrated terrestrial and marine carbon cycle components, known as an Earth System Model (ESM2Mb). We analyzed the output from millennia-scale ESM2Mb simulations with different combinations of forcings from the pre-PETM and PETM, including greenhouse gas concentrations and solar intensity. In addition we explore sensitivities of climate and carbon cycling to changes in geology such as topography, continental positions, and the presence and absence of large land glaciers. Furthermore, we examine ESM2Mb climate and carbon sensitivities to PETM conditions with a focus on how alternate conditions and forcings relate to the uncertainty in the climate and carbon cycling estimates from paleo observations. We explore changes in atmosphere, land, and ocean temperatures and circulation patterns as well as vegetation distribution, permafrost, and carbon storage in terrestrial and marine ecosystems from pre-PETM to PETM conditions. We found that with the present day land/sea mask and land glaciers in ESM2Mb, changes in only greenhouse gas concentrations (CO2 and CH4) from pre-PETM to PETM conditions induce global warming of 3-5 °C, consistent with the lower range of estimates from paleo proxies. Changes in the carbon permafrost storage from warming cannot explain the rapid increase in the atmospheric CO2 concentration. Changes in the ocean circulation and carbon storage critically depend on geological conditions such as continental positions. The study illustrates how models designed for studying future climate change can capture past paleo events, such as the PETM, and how modern day geological conditions may affect climate and carbon cycle sensitivities.

  1. Climate change impacts analysis on hydrological processes in the Weyib River basin in Ethiopia

    NASA Astrophysics Data System (ADS)

    Serur, Abdulkerim Bedewi; Sarma, Arup Kumar

    2017-12-01

    The study aims to examine the variation of hydrological processes (in terms of mean annual, seasonal, and monthly) under changing climate within the Weyib River basin in Ethiopia at both basin and sub-basin level using ArcSWAT hydrologic model. The climate change impacts on temperature and precipitation characteristics within the basin have been studied using GFDL-ESM2M, CanESM2, and GFDL-ESM2G models for RCP8.5, RCP4.5, and RCP2.6 scenarios from coupled model inter-comparison project 5 (CMIP5) which have been downscaled by SDSM. The results revealed that the mean annual temperature and precipitation reveal a statistically significant (at 5% significant level) increasing trend in the nine ESM-RCP scenarios for all the future time slices. The mean annual actual evapotranspiration, baseflow, soil water content, percolation, and water availability in the stream exhibit a rise for all the ESMs-RCP scenarios in the entire basin and in all the sub-basins. However, surface runoff and potential evapotranspiration show a decreasing trend. The mean annual water availability increases between 9.18 and 27.97% (RCP8.5), 3.98 and 19.61% (RCP4.5), and 11.82 and 17.06% (RCP2.6) in the entire basin. The sub-basin level analysis reveals that the annual, seasonal, and monthly variations of hydrological processes in all the sub-basins are similar regarding direction but different in magnitude as compared to that of the entire basin analysis. In addition, it is observed that there is a larger monthly and seasonal variation in hydrological processes as compared to the variation in annual scale. The net water availability tends to decline in the dry season; this might cause water shortage in the lowland region and greater increases in an intermediate and rainy seasons; this might cause flooding to some flood prone region of the basin. Since the variation of water availability among the sub-basins in upcoming period is high, there is a scope of meeting agriculture water demand through water transfer from sub-basin having more available water in small area to the sub-basin having less available water in a larger agricultural area.

  2. A study on industrial accident rate forecasting and program development of estimated zero accident time in Korea.

    PubMed

    Kim, Tae-gu; Kang, Young-sig; Lee, Hyung-won

    2011-01-01

    To begin a zero accident campaign for industry, the first thing is to estimate the industrial accident rate and the zero accident time systematically. This paper considers the social and technical change of the business environment after beginning the zero accident campaign through quantitative time series analysis methods. These methods include sum of squared errors (SSE), regression analysis method (RAM), exponential smoothing method (ESM), double exponential smoothing method (DESM), auto-regressive integrated moving average (ARIMA) model, and the proposed analytic function method (AFM). The program is developed to estimate the accident rate, zero accident time and achievement probability of an efficient industrial environment. In this paper, MFC (Microsoft Foundation Class) software of Visual Studio 2008 was used to develop a zero accident program. The results of this paper will provide major information for industrial accident prevention and be an important part of stimulating the zero accident campaign within all industrial environments.

  3. A JavaScript API for the Ice Sheet System Model (ISSM) 4.11: towards an online interactive model for the cryosphere community

    NASA Astrophysics Data System (ADS)

    Larour, Eric; Cheng, Daniel; Perez, Gilberto; Quinn, Justin; Morlighem, Mathieu; Duong, Bao; Nguyen, Lan; Petrie, Kit; Harounian, Silva; Halkides, Daria; Hayes, Wayne

    2017-12-01

    Earth system models (ESMs) are becoming increasingly complex, requiring extensive knowledge and experience to deploy and use in an efficient manner. They run on high-performance architectures that are significantly different from the everyday environments that scientists use to pre- and post-process results (i.e., MATLAB, Python). This results in models that are hard to use for non-specialists and are increasingly specific in their application. It also makes them relatively inaccessible to the wider science community, not to mention to the general public. Here, we present a new software/model paradigm that attempts to bridge the gap between the science community and the complexity of ESMs by developing a new JavaScript application program interface (API) for the Ice Sheet System Model (ISSM). The aforementioned API allows cryosphere scientists to run ISSM on the client side of a web page within the JavaScript environment. When combined with a web server running ISSM (using a Python API), it enables the serving of ISSM computations in an easy and straightforward way. The deep integration and similarities between all the APIs in ISSM (MATLAB, Python, and now JavaScript) significantly shortens and simplifies the turnaround of state-of-the-art science runs and their use by the larger community. We demonstrate our approach via a new Virtual Earth System Laboratory (VESL) website (http://vesl.jpl.nasa.gov, VESL(2017)).

  4. The Functionally-Assembled Terrestrial Ecosystem Simulator Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Chonggang; Christoffersen, Bradley

    The Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) is a vegetation model for use in Earth system models (ESMs). The model includes a size- and age-structured representation of tree dynamics, competition between functionally diverse plant functional types, and the biophysics underpinning plant growth, competition, mortality, as well as the carbon, water, and energy exchange with the atmosphere. The FATES model is designed as a modular vegetation model that can be integrated within a host land model for inclusion in ESMs. The model is designed for use in global change studies to understand and project the responses and feedbacks between terrestrial ecosystems andmore » the Earth system under changing climate and other forcings.« less

  5. Earth System Models Underestimate Soil Carbon Diagnostic Times in Dry and Cold Regions.

    NASA Astrophysics Data System (ADS)

    Jing, W.; Xia, J.; Zhou, X.; Huang, K.; Huang, Y.; Jian, Z.; Jiang, L.; Xu, X.; Liang, J.; Wang, Y. P.; Luo, Y.

    2017-12-01

    Soils contain the largest organic carbon (C) reservoir in the Earth's surface and strongly modulate the terrestrial feedback to climate change. Large uncertainty exists in current Earth system models (ESMs) in simulating soil organic C (SOC) dynamics, calling for a systematic diagnosis on their performance based on observations. Here, we built a global database of SOC diagnostic time (i.e.,turnover times; τsoil) measured at 320 sites with four different approaches. We found that the estimated τsoil was comparable among approaches of 14C dating () (median with 25 and 75 percentiles), 13C shifts due to vegetation change () and the ratio of stock over flux (), but was shortest from laboratory incubation studies (). The state-of-the-art ESMs underestimated the τsoil in most biomes, even by >10 and >5 folds in cold and dry regions, respectively. Moreover,we identified clear negative dependences of τsoil on temperature and precipitation in both of the observational and modeling results. Compared with Community Land Model (version 4), the incorporation of soil vertical profile (CLM4.5) could substantially extend the τsoil of SOC. Our findings suggest the accuracy of climate-C cycle feedback in current ESMs could be enhanced by an improved understanding of SOC dynamics under the limited hydrothermal conditions.

  6. Shock progression and survival after use of a condom uterine balloon tamponade package in women with uncontrolled postpartum hemorrhage.

    PubMed

    Burke, Thomas F; Danso-Bamfo, Sandra; Guha, Moytrayee; Oguttu, Monica; Tarimo, Vincent; Nelson, Brett D

    2017-10-01

    To examine the outcomes of women in advanced shock from uncontrolled postpartum hemorrhage (PPH) who underwent placement of an Every Second Matters for Mothers and Babies Uterine Balloon Tamponade (ESM-UBT) device. In a prospective case series, data were collected for women who received an ESM-UBT device at healthcare facilities in Kenya, Senegal, Sierra Leone, and Tanzania between September 1, 2012, and September 30, 2016. Shock class was assigned on the basis of recorded blood pressures and mental status at the time of UBT placement. Data for 306 women with uncontrolled PPH from uterine atony across 117 facilities were analyzed. Normal vital signs or class I/II shock were reported for 166 (54.2%). In this group, one death occurred and was attributed to PPH (survival rate 99.4%). There were no cases of shock progression. One hundred and eleven (36.3%) were in class III shock and 29 (9.5%) in class IV shock; the respective survival rates were 97.3% (n=108) and 86.2% (n=25). The ESM-UBT device arrests hemorrhage, prevents shock progression, and is associated with high survival rates among women with uncontrolled PPH from uterine atony. © 2017 International Federation of Gynecology and Obstetrics.

  7. Quality of experience in real and virtual environments: some suggestions for the development of positive technologies.

    PubMed

    Gaggioli, Andrea

    2012-01-01

    What does one feel when one uses virtual reality? How does this experience differ from the experience associated with "real life" activities and situations? To answer these questions, we used the Experience Sampling Method (ESM), a procedure that allows researchers to investigate the daily fluctuations in the quality of experience through on-line self reports that participants fill out during daily life. The investigation consisted in one-week ESM observation (N = 42). During this week, participants underwent two virtual reality sessions: Immediately after the exposure to virtual environments, they were asked to complete a ESM report. For data analysis, experiential variables were aggregated into four dimensions: Mood, Engagement, Confidence, and Intrinsic Motivation Intrinsic Motivation. Findings showed that virtual experience is characterized by a specific configuration, which comprises significantly positive values for affective and cognitive components. In particular, positive scores of Mood suggest that participants perceived VR as an intrinsically pleasurable activity, while positive values of Engagement indicate that the use of VR and the experimental task provided valid opportunities for action and high skill investment. Furthermore, results showed that virtual experience is associated with Flow, a state of consciousness characterized by narrowed focus of attention, deep concentration, positive affect and intrinsic reward. Implications for VR research and practice are discussed.

  8. A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Millar, Richard J.; Nicholls, Zebedee R.; Friedlingstein, Pierre; Allen, Myles R.

    2017-06-01

    Projections of the response to anthropogenic emission scenarios, evaluation of some greenhouse gas metrics, and estimates of the social cost of carbon often require a simple model that links emissions of carbon dioxide (CO2) to atmospheric concentrations and global temperature changes. An essential requirement of such a model is to reproduce typical global surface temperature and atmospheric CO2 responses displayed by more complex Earth system models (ESMs) under a range of emission scenarios, as well as an ability to sample the range of ESM response in a transparent, accessible and reproducible form. Here we adapt the simple model of the Intergovernmental Panel on Climate Change 5th Assessment Report (IPCC AR5) to explicitly represent the state dependence of the CO2 airborne fraction. Our adapted model (FAIR) reproduces the range of behaviour shown in full and intermediate complexity ESMs under several idealised carbon pulse and exponential concentration increase experiments. We find that the inclusion of a linear increase in 100-year integrated airborne fraction with cumulative carbon uptake and global temperature change substantially improves the representation of the response of the climate system to CO2 on a range of timescales and under a range of experimental designs.

  9. Underestimated effects of sediments on enhanced startup performance of biofilm systems for polluted source water pretreatment.

    PubMed

    Lv, Zheng-Hui; Wang, Jing; Yang, Guang-Feng; Feng, Li-Juan; Mu, Jun; Zhu, Liang; Xu, Xiang-Yang

    2018-02-01

    In order to evaluate the enhancement mechanisms of enhanced startup performance in biofilm systems for polluted source water pretreatment, three lab-scale reactors with elastic stereo media (ESM) were operated under different enhanced sediment and hydraulic agitation conditions. It is interesting to found the previously underestimated or overlooked effects of sediment on the enhancement of pollutants removal performance and enrichment of functional bacteria in biofilm systems. The maximum NH 4 + -N removal rate of 0.35 mg L -1 h -1 in sediment enhanced condition was 2.19 times of that in control reactor. Sediment contributed to 42.0-56.5% of NH 4 + -N removal and 15.4-41.2% of total nitrogen removal in different reactors under different operation conditions. The enhanced hydraulic agitation with sediment further improved the operation performance and accumulation of functional bacteria. Generally, Proteobacteria (48.9-52.1%), Bacteroidetes (18.9-20.8%) and Actinobacteria (15.7-18.5%) were dominant in both sediment and ESM bioiflm at  phylum level. The potentially functional bacteria found in sediment and ESM biofilm samples with some functional bacteria mainly presented in sediment samples only (e.g., Genera Bacillus and Lactococcus of Firmicutes phylum) may commonly contribute to the removal of nitrogen and organics.

  10. Simulated climate effects of desert irrigation geoengineering.

    PubMed

    Cheng, Wei; Moore, John C; Cao, Long; Ji, Duoying; Zhao, Liyun

    2017-04-18

    Geoengineering, the deliberate large-scale manipulation of earth's energy balance to counteract global warming, is an attractive proposition for sparsely populated deserts. We use the BNU and UVic Earth system models to simulate the effects of irrigating deserts under the RCP8.5 scenario. Previous studies focused on increasing desert albedo to reduce global warming; in contrast we examine how extending afforestation and ecological projects, that successfully improve regional environments, fair for geoengineering purposes. As expected desert irrigation allows vegetation to grow, with bare soil or grass gradually becoming shrub or tree covered, with increases in terrestrial carbon storage of 90.3 Pg C (UVic-ESCM) - 143.9 Pg C (BNU-ESM). Irrigating global deserts makes the land surface temperature decrease by 0.48 °C and land precipitation increase by 100 mm yr -1 . In the irrigated areas, BNU-ESM simulates significant cooling of up to 4.2 °C owing to the increases in low cloud and latent heat which counteract the warming effect due to decreased surface albedo. Large volumes of water would be required to maintain global desert irrigation, equivalent 10 mm/year of global sea level (BNU-ESM) compensate for evapotranspiration losses. Differences in climate responses between the deserts prompt research into tailored albedo-irrigation schemes.

  11. Simulated climate effects of desert irrigation geoengineering

    PubMed Central

    Cheng, Wei; Moore, John C.; Cao, Long; Ji, Duoying; Zhao, Liyun

    2017-01-01

    Geoengineering, the deliberate large-scale manipulation of earth’s energy balance to counteract global warming, is an attractive proposition for sparsely populated deserts. We use the BNU and UVic Earth system models to simulate the effects of irrigating deserts under the RCP8.5 scenario. Previous studies focused on increasing desert albedo to reduce global warming; in contrast we examine how extending afforestation and ecological projects, that successfully improve regional environments, fair for geoengineering purposes. As expected desert irrigation allows vegetation to grow, with bare soil or grass gradually becoming shrub or tree covered, with increases in terrestrial carbon storage of 90.3 Pg C (UVic-ESCM) – 143.9 Pg C (BNU-ESM). Irrigating global deserts makes the land surface temperature decrease by 0.48 °C and land precipitation increase by 100 mm yr−1. In the irrigated areas, BNU-ESM simulates significant cooling of up to 4.2 °C owing to the increases in low cloud and latent heat which counteract the warming effect due to decreased surface albedo. Large volumes of water would be required to maintain global desert irrigation, equivalent 10 mm/year of global sea level (BNU-ESM) compensate for evapotranspiration losses. Differences in climate responses between the deserts prompt research into tailored albedo-irrigation schemes. PMID:28418005

  12. Effects-Driven Participatory Design: Learning from Sampling Interruptions.

    PubMed

    Brandrup, Morten; Østergaard, Kija Lin; Hertzum, Morten; Karasti, Helena; Simonsen, Jesper

    2017-01-01

    Participatory design (PD) can play an important role in obtaining benefits from healthcare information technologies, but we contend that to fulfil this role PD must incorporate feedback from real use of the technologies. In this paper we describe an effects-driven PD approach that revolves around a sustained focus on pursued effects and uses the experience sampling method (ESM) to collect real-use feedback. To illustrate the use of the method we analyze a case that involves the organizational implementation of electronic whiteboards at a Danish hospital to support the clinicians' intra- and interdepartmental coordination. The hospital aimed to reduce the number of phone calls involved in coordinating work because many phone calls were seen as unnecessary interruptions. To learn about the interruptions we introduced an app for capturing quantitative data and qualitative feedback about the phone calls. The investigation showed that the electronic whiteboards had little potential for reducing the number of phone calls at the operating ward. The combination of quantitative data and qualitative feedback worked both as a basis for aligning assumptions to data and showed ESM as an instrument for triggering in-situ reflection. The participant-driven design and redesign of the way data were captured by means of ESM is a central contribution to the understanding of how to conduct effects-driven PD.

  13. Reductions in labour capacity from heat stress under climate warming

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  14. Comparison of SPI and SPEI indices for Drought Characterization under Climate Change Scenario in India

    NASA Astrophysics Data System (ADS)

    Gupta, V.; Jain, M. K.

    2017-12-01

    Many drought indices are available for quantifying and characterizing the drought events. Selection of a particular drought index could influence the outcome of the study. In this study, we compared two drought indices namely, Standardized precipitation index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI) under climate change condition. Data from 7 RCM models namely, CCCma-CanESM2, CERFACS-CNRM-CM5, GFDL-ESM2M, MOHC-HadGEM2, MIROC-MIROC5, MPI-ESM-LR and MPI-ESM-MR for RCP 4.5 scenario have been used to calculate 12 month SPI and SPEI values. L-moments which provides robust distribution parameter estimation, have been used to identify best fit distribution for projected data at each grid point for each month. Mann-Kendall and Sen's slope test have been used to detect trends in drought severity, duration, peak, and interval between drought events. Results of this study reveal that SPI shows decreasing trends in drought severity, duration and peak with negative Sen's slope, however, the SPEI shows increasing trends of severity, duration and peak with a positive Sen's slope for almost all over India. The analysis reveals that projected percentage of drought affected area based on SPI in the first half of the 21st century is higher compared to those obtained using SPEI, however for the second half of the 21st century, the projected drought affected computed using SPEI is higher compared to the corresponding area obtained using SPI. Decrease in droughts severity, duration and peaks in SPI analysis could be attributed to projected increase in monsoon rainfall in Indian Subcontinent during second half of 21st century however, SPI was found incapable to account the increase in temperature thus neglecting the drying due to increased evapotranspiration whereas SPEI shows significant drying in Indian subcontinent on account of increasing trend in temperature observed in projected future RCM scenarios.

  15. Potential impact of climate change on groundwater resources in the Central Huai Luang Basin, Northeast Thailand.

    PubMed

    Pholkern, Kewaree; Saraphirom, Phayom; Srisuk, Kriengsak

    2018-08-15

    The Central Huai Luang Basin is one of the important rice producing areas of Udon Thani Province in Northeastern Thailand. The basin is underlain by the rock salt layers of the Maha Sarakham Formation and is the source of saline groundwater and soil salinity. The regional and local groundwater flow systems are the major mechanisms responsible for spreading saline groundwater and saline soils in this basin. Climate change may have an impact on groundwater recharge, on water table depth and the consequences of waterlogging, and on the distribution of soil salinity in this basin. Six future climate conditions from the SEACAM and CanESM2 models were downscaled to investigate the potential impact of future climate conditions on groundwater quantity and quality in this basin. The potential impact was investigated by using a set of numerical models, namely HELP3 and SEAWAT, to estimate the groundwater recharge and flow and the salt transport of groundwater simulation, respectively. The results revealed that within next 30years (2045), the future average annual temperature is projected to increase by 3.1°C and 2.2°C under SEACAM and CanESM2 models, respectively, while the future precipitation is projected to decrease by 20.85% under SEACAM and increase by 18.35% under the CanESM2. Groundwater recharge is projected to increase under the CanESM2 model and to slightly decrease under the SEACAM model. Moreover, for all future climate conditions, the depths of the groundwater water table are projected to continuously increase. The results showed the impact of climate change on salinity distribution for both the deep and shallow groundwater systems. The salinity distribution areas are projected to increase by about 8.08% and 56.92% in the deep and shallow groundwater systems, respectively. The waterlogging areas are also projected to expand by about 63.65% from the baseline period. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Climate Variability and Wildfires: Insights from Global Earth System Models

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Shevliakova, E.; Malyshev, S.; Lamarque, J. F.; Wittenberg, A. T.

    2016-12-01

    Better understanding of the relationship between variability in global climate and emissions from wildfires is needed for predictions of fire activity on interannual to multi-decadal timescales. Here we investigate this relationship using the long, preindustrial control simulations and historical ensembles of two Earth System models; CESM1 and the NOAA/GFDL ESM2Mb. There is smaller interannual variability of global fires in both models than in present day inventories, especially in boreal regions where observed fires vary substantially from year to year. Patterns of fire response to climate oscillation indices, including the El Niño / Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Meridional Oscillation (AMO) are explored with the model results and compared to the response derived from satellite measurements and proxy observations. Increases in fire emissions in southeast Asia and boreal North America are associated with positive ENSO and PDO, while United States fires and Sahel fires decrease for the same climate conditions. Boreal fire emissions decrease in CESM1 for the warm phase of the AMO, while ESM2Mb did not produce a reliable AMO. CESM1 produces a weak negative trend in global fire emissions for the period 1920 to 2005, while ESM2Mb produces a positive trend over the same period. Both trends are statistically significant at a confidence level of 95% or greater given the variability derived from the respective preindustrial controls. In addition to climate variability impacts on fires, we also explore the impacts of fire emissions on climate variability and atmospheric chemistry. We analyze three long, free-evolving ESM2Mb simulations; one without fire emissions, one with constant year-over-year fire emissions based on a present day inventory, and one with interannually varying fire emissions coupled between the terrestrial and atmospheric components of the model, to gain a better understanding of the role of fire emissions in climate over long timescales.

  17. Evolution of Precipitation Extremes in Three Large Ensembles of Climate Simulations - Impact of Spatial and Temporal Resolutions

    NASA Astrophysics Data System (ADS)

    Martel, J. L.; Brissette, F.; Mailhot, A.; Wood, R. R.; Ludwig, R.; Frigon, A.; Leduc, M.; Turcotte, R.

    2017-12-01

    Recent studies indicate that the frequency and intensity of extreme precipitation will increase in future climate due to global warming. In this study, we compare annual maxima precipitation series from three large ensembles of climate simulations at various spatial and temporal resolutions. The first two are at the global scale: the Canadian Earth System Model (CanESM2) 50-member large ensemble (CanESM2-LE) at a 2.8° resolution and the Community Earth System Model (CESM1) 40-member large ensemble (CESM1-LE) at a 1° resolution. The third ensemble is at the regional scale over both Eastern North America and Europe: the Canadian Regional Climate Model (CRCM5) 50-member large ensemble (CRCM5-LE) at a 0.11° resolution, driven at its boundaries by the CanESM-LE. The CRCM5-LE is a new ensemble issued from the ClimEx project (http://www.climex-project.org), a Québec-Bavaria collaboration. Using these three large ensembles, change in extreme precipitations over the historical (1980-2010) and future (2070-2100) periods are investigated. This results in 1 500 (30 years x 50 members for CanESM2-LE and CRCM5-LE) and 1200 (30 years x 40 members for CESM1-LE) simulated years over both the historical and future periods. Using these large datasets, the empirical daily (and sub-daily for CRCM5-LE) extreme precipitation quantiles for large return periods ranging from 2 to 100 years are computed. Results indicate that daily extreme precipitations generally will increase over most land grid points of both domains according to the three large ensembles. Regarding the CRCM5-LE, the increase in sub-daily extreme precipitations will be even more important than the one observed for daily extreme precipitations. Considering that many public infrastructures have lifespans exceeding 75 years, the increase in extremes has important implications on service levels of water infrastructures and public safety.

  18. The use and misuse of V(c,max) in Earth System Models.

    PubMed

    Rogers, Alistair

    2014-02-01

    Earth System Models (ESMs) aim to project global change. Central to this aim is the need to accurately model global carbon fluxes. Photosynthetic carbon dioxide assimilation by the terrestrial biosphere is the largest of these fluxes, and in many ESMs is represented by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis. The maximum rate of carboxylation by the enzyme Rubisco, commonly termed V c,max, is a key parameter in the FvCB model. This study investigated the derivation of the values of V c,max used to represent different plant functional types (PFTs) in ESMs. Four methods for estimating V c,max were identified; (1) an empirical or (2) mechanistic relationship was used to relate V c,max to leaf N content, (3) V c,max was estimated using an approach based on the optimization of photosynthesis and respiration or (4) calibration of a user-defined V c,max to obtain a target model output. Despite representing the same PFTs, the land model components of ESMs were parameterized with a wide range of values for V c,max (-46 to +77% of the PFT mean). In many cases, parameterization was based on limited data sets and poorly defined coefficients that were used to adjust model parameters and set PFT-specific values for V c,max. Examination of the models that linked leaf N mechanistically to V c,max identified potential changes to fixed parameters that collectively would decrease V c,max by 31% in C3 plants and 11% in C4 plants. Plant trait data bases are now available that offer an excellent opportunity for models to update PFT-specific parameters used to estimate V c,max. However, data for parameterizing some PFTs, particularly those in the Tropics and the Arctic are either highly variable or largely absent.

  19. Practical Considerations of Waste Heat Reuse for a Mars Mission Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Levri, Julie; Finn, Cory; Luna, Bernadette (Technical Monitor)

    2000-01-01

    Energy conservation is a key issue in design optimization of Advanced Life Support Systems (ALSS) for long-term space missions. By considering designs for conservation at the system level, energy saving opportunities arise that would otherwise go unnoticed. This paper builds on a steady-state investigation of system-level waste heat reuse in an ALSS with a low degree of crop growth for a Mars mission. In past studies, such a system has been defined in terms of technology types, hot and cold stream identification and stream energy content. The maximum steady-state potential for power and cooling savings within the system was computed via the Pinch Method. In this paper, several practical issues are considered for achieving a pragmatic estimate of total system savings in terms of equivalent system mass (ESM), rather than savings solely in terms of power and cooling. In this paper, more realistic ESM savings are computed by considering heat transfer inefficiencies during material transfer. An estimate of the steady-state mass, volume and crewtime requirements associated with heat exchange equipment is made by considering heat exchange equipment material type and configuration, stream flow characteristics and associated energy losses during the heat exchange process. Also, previously estimated power and cooling savings are adjusted to reflect the impact of such energy losses. This paper goes one step further than the traditional Pinch Method of considering waste heat reuse in heat exchangers to include ESM savings that occur with direct reuse of a stream. For example, rather than exchanging heat between crop growth lamp cooling air and air going to a clothes dryer, air used to cool crop lamps might be reused directly for clothes drying purposes. When thermodynamically feasible, such an approach may increase ESM savings by minimizing the mass, volume and crewtime requirements associated with stream routing equipment.

  20. Tracking human activity and well-being in natural environments using wearable sensors and experience sampling.

    PubMed

    Doherty, Sean T; Lemieux, Christopher J; Canally, Culum

    2014-04-01

    A growing range of studies have begun to document the health and well-being benefits associated with contact with nature. Most studies rely on generalized self-reports following engagement in the natural environment. The actual in-situ experience during contact with nature, and the environmental features and factors that evoke health benefits have remained relatively unexplored. Smartphones offer a new opportunity to monitor and interact with human subjects during everyday life using techniques such as Experience Sampling Methods (ESM) that involve repeated self-reports of experiences as they occur in-situ. Additionally, embedded sensors in smartphones such as Global Positioning Systems (GPS) and accelerometers can accurately trace human activities. This paper explores how these techniques can be combined to comprehensively explore the perceived health and well-being impacts of contact with nature. Custom software was developed to passively track GPS and accelerometer data, and actively prompt subjects to complete an ESM survey at regular intervals throughout their visit to a provincial park in Ontario, Canada. The ESM survey includes nine scale questions concerning moods and emotions, followed by a series of open-ended experiential questions that subjects provide recorded audio responses to. Pilot test results are used to illustrate the nature, quantity and quality of data obtained. Participant activities were clearly evident from GPS maps, including especially walking, cycling and sedate activities. From the ESM surveys, participants reported an average of 25 words per question, taking an average of 15 s to record them. Further qualitative analysis revealed that participants were willing to provide considerable insights into their experiences and perceived health impacts. The combination of passive and interactive techniques is sure to make larger studies of this type more affordable and less burdensome in the future, further enhancing the ability to understand how contact with nature enhances health and well-being. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Review Over a 3-Year Period of European Union Proficiency Tests for Detection of Staphylococcal Enterotoxins in Food Matrices.

    PubMed

    Nia, Yacine; Mutel, Isabelle; Assere, Adrien; Lombard, Bertrand; Auvray, Frederic; Hennekinne, Jacques-Antoine

    2016-04-13

    Staphylococcal food poisoning outbreaks are a major cause of foodborne illnesses in Europe and their notifications have been mandatory since 2005. Even though the European regulation on microbiological criteria for food defines a criterion on staphylococcal enterotoxin (SE) only in cheese and dairy products, European Food Safety Authority (EFSA) data reported that various types of food matrices are involved in staphylococcal food poisoning outbreaks. The European Screening Method (ESM) of European Union Reference Laboratory for Coagulase Positive Staphylococci (EURL CPS) was validated in 2011 for SE detection in food matrices and is currently the official method used for screening purposes in Europe. In this context, EURLCPS is annually organizing Inter-Laboratory Proficiency Testing Trials (ILPT) to evaluate the competency of the European countries' National Reference Laboratories (NRLs) to analyse SE content in food matrices. A total of 31 NRLs representing 93% of European countries participated in these ILPTs. Eight food matrices were used for ILPT over the period 2013-2015, including cheese, freeze-dried cheese, tuna, mackerel, roasted chicken, ready-to-eat food, milk, and pastry. Food samples were spiked with four SE types (i.e., SEA, SEC, SED, and SEE) at various concentrations. Homogeneity and stability studies showed that ILPT samples were both homogeneous and stable. The analysis of results obtained by participants for a total of 155 blank and 620 contaminated samples allowed for evaluation of trueness (>98%) and specificity (100%) of ESM. Further to the validation study of ESM carried out in 2011, these three ILPTs allowed for the assessment of the proficiency of the NRL network and the performance of ESM on a large variety of food matrices and samples. The ILPT design presented here will be helpful for the organization of ILPT on SE detection by NRLs or other expert laboratories.

  2. A stand-alone tree demography and landscape structure module for Earth system models: integration with inventory data from temperate and boreal forests

    NASA Astrophysics Data System (ADS)

    Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.

    2014-08-01

    Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESMs). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first-generation dynamic vegetation models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second-generation DVMs that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE (Community Atmosphere Biosphere Land Exchange) or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub-grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to wide-ranging temporal and boreal forests, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model, and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 year. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents an ecologically plausible and efficient alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.

  3. Constraining the long-term climate reponse to stratospheric sulfate aerosols injection by the short-term volcanic climate response

    NASA Astrophysics Data System (ADS)

    Plazzotta, M.; Seferian, R.; Douville, H.; Kravitz, B.; Tilmes, S.; Tjiputra, J.

    2016-12-01

    Rising greenhouse gas emissions are leading to global warming and climate change, which will have multiple impacts on human society. Geoengineering methods like solar radiation management by stratospheric sulfate aerosols injection (SSA-SRM) aim at treating the symptoms of climate change by reducing the global temperature. Since a real-world testing cannot be implemented, Earth System Models (ESMs) are useful tools to assess the climate impacts of such geoengineering methods. However, coordinated simulations performed with the Geoengineering Model Intercomparison Project (GeoMIP) have shown that climate cooling in response to a continuous injection of 5Tg of SO2 per year under RCP45 future projection (the so-called G4 experiment) differs substantially between ESMs. Here, we employ a volcano analog approach to constrain the climate response in SSA-SRM geoengineering simulations across an ensemble of 10 ESMs. We identify an emergent relationship between the long-term cooling in responses to the mitigation of the clear-sky surface downwelling shortwave radiation (RSDSCS), and the short-term cooling related to the change in RSDSCS during the major tropical volcanic eruptions observed over the historical period (1850-2005). This relationship explains almost 80% of the multi-model spread. Combined with contemporary observations of the latest volcanic eruptions (satellite observations and model reanalyzes), this relationship provides a tight constraint on the climate impacts of SSA-SRM. We estimate that a continuous injection of SO2 aerosols into the stratosphere will reduce the global average temperature of continental land surface by 0.47 K per W m-2, impacting both hydrological and carbon cycles. Compared with the unconstrained ESMs ensemble (range from 0.32 to 0.92 K per W m-2 ), our estimate represents much higher confidence ways to assess the impacts of SSA-SRM on the climate while ruling the most extreme projections of the unconstrained ensemble extremely unlikely.

  4. Express saccades in distinct populations: east, west, and in-between.

    PubMed

    Knox, Paul C; Wolohan, Felicity D A; Helmy, Mai S

    2017-12-01

    Express saccades are low latency (80-130 ms), visually guided saccades. While their occurrence is encouraged by the use of gap tasks (the fixation target is extinguished 200 ms prior to the saccade target appearing) and suppressed by the use of overlap tasks (the fixation target remains present when the saccade target appears), there are some healthy, adult participants, "express saccade makers" (ESMs), who persist in generating high proportions (> 30%) of express saccades in overlap conditions. These participants are encountered much more frequently in Chinese participant groups than amongst the Caucasian participants tested to date. What is not known is whether this high number of ESMs is only a feature of Chinese participant groups. More broadly, there are few comparative studies of saccade behaviour across large participant groups drawn from different populations. We, therefore, tested an independent group of 70 healthy adult Egyptian participants, using the same equipment and procedures as employed in the previous studies. Each participant was exposed to two blocks of 200 gap, and two blocks of 200 overlap trials, with block order counterbalanced. Results from the Schwartz Value Survey were used to confirm that this group of participants was culturally distinct from the Chinese and Caucasian (white British) groups tested previously. Fourteen percent (10/70) of this new group were ESMs, and the pattern of latency distribution in these ESMs was identical to that identified in the other participant groups, with a prominent peak in the express latency range in overlap conditions. Overall, we identified three modes in the distribution of saccade latency in overlap conditions, the timing of which (express peak at 110 ms, subsequent peaks at 160 and 210 ms) were strikingly consistent with our previous observations. That these behavioural patterns of saccade latency are observed consistently in large participant groups, drawn from geographically, ethnically, and culturally distinct populations, suggests that they relate to the underlying architecture of the saccade system.

  5. From the Last Interglacial to the Anthropocene: Modelling a Complete Glacial Cycle (PalMod)

    NASA Astrophysics Data System (ADS)

    Brücher, Tim; Latif, Mojib

    2017-04-01

    We will give a short overview and update on the current status of the national climate modelling initiative PalMod (Paleo Modelling, www.palmod.de). PalMod focuses on the understanding of the climate system dynamics and its variability during the last glacial cycle. The initiative is funded by the German Federal Ministry of Education and Research (BMBF) and its specific topics are: (i) to identify and quantify the relative contributions of the fundamental processes which determined the Earth's climate trajectory and variability during the last glacial cycle, (ii) to simulate with comprehensive Earth System Models (ESMs) the climate from the peak of the last interglacial - the Eemian warm period - up to the present, including the changes in the spectrum of variability, and (iii) to assess possible future climate trajectories beyond this century during the next millennia with sophisticated ESMs tested in such a way. The research is intended to be conducted over a period of 10 years, but with shorter funding cycles. PalMod kicked off in February 2016. The first phase focuses on the last deglaciation (app. the last 23.000 years). From the ESM perspective PalMod pushes forward model development by coupling ESM with dynamical ice sheet models. Computer scientists work on speeding up climate models using different concepts (like parallelisation in time) and one working group is dedicated to perform a comprehensive data synthesis to validate model performance. The envisioned approach is innovative in three respects. First, the consortium aims at simulating a full glacial cycle in transient mode and with comprehensive ESMs which allow full interactions between the physical and biogeochemical components of the Earth system, including ice sheets. Second, we shall address climate variability during the last glacial cycle on a large range of time scales, from interannual to multi-millennial, and attempt to quantify the relative contributions of external forcing and processes internal to the Earth system to climate variability at different time scales. Third, in order to achieve a higher level of understanding of natural climate variability at time scales of millennia, its governing processes and implications for the future climate, we bring together three different research communities: the Earth system modeling community, the proxy data community and the computational science community. The consortium consists of 18 partners including all major modelling centers within Germany. The funding comprises approximately 65 PostDoc positions and more than 120 scientists are involved. PalMod is coordinated at the Helmholtz Centre for Ocean Research Kiel (GEOMAR).

  6. Integrating land management into Earth system models: the importance of land use transitions at sub-grid-scale

    NASA Astrophysics Data System (ADS)

    Pongratz, Julia; Wilkenskjeld, Stiig; Kloster, Silvia; Reick, Christian

    2014-05-01

    Recent studies indicate that changes in surface climate and carbon fluxes caused by land management (i.e., modifications of vegetation structure without changing the type of land cover) can be as large as those caused by land cover change. Further, such effects may occur on substantial areas: while about one quarter of the land surface has undergone land cover change, another fifty percent are managed. This calls for integration of management processes in Earth system models (ESMs). This integration increases the importance of awareness and agreement on how to diagnose effects of land use in ESMs to avoid additional model spread and thus unnecessary uncertainties in carbon budget estimates. Process understanding of management effects, their model implementation, as well as data availability on management type and extent pose challenges. In this respect, a significant step forward has been done in the framework of the current IPCC's CMIP5 simulations (Coupled Model Intercomparison Project Phase 5): The climate simulations were driven with the same harmonized land use dataset that, different from most datasets commonly used before, included information on two important types of management: wood harvest and shifting cultivation. However, these new aspects were employed by only part of the CMIP5 models, while most models continued to use the associated land cover maps. Here, we explore the consequences for the carbon cycle of including subgrid-scale land transformations ("gross transitions"), such as shifting cultivation, as example of the current state of implementation of land management in ESMs. Accounting for gross transitions is expected to increase land use emissions because it represents simultaneous clearing and regrowth of natural vegetation in different parts of the grid cell, reducing standing carbon stocks. This process cannot be captured by prescribing land cover maps ("net transitions"). Using the MPI-ESM we find that ignoring gross transitions underestimates emissions substantially, for historical times by about 40%. Implementation of land management such as gross transitions is a step forward in terms of comprehensiveness of simulated processes. However, it has increased model spread in carbon fluxes, because land management processes have been considered by only a subset of recent ESMs contributing to major projects such as IPCC or the Global Carbon Project. This model spread still causes the net land use flux to be the most uncertain component in the global carbon budget. Other causes have previously been identified as differences in land use datasets, differing types of vegetation model, accounting of nutrient limitation, the inclusion of land use feedbacks (increase in atmospheric CO2 due to land use emissions causing terrestrial carbon uptake), and a confusion of whether the net land use flux in ESMs should be reported as instantaneous emissions, or also account for delayed carbon responses and regrowth. These differences explain a factor 2-6 difference between model estimates and are expected to be further affected by interactions with land management. This highlights the importance of an accurate protocol for future model intercomparisons of carbon fluxes from land cover change and land management to ensure comparison of the same processes and fluxes.

  7. Reduced Future Precipitation Makes Permanence of Amazonian Carbon Sinks Questionable

    NASA Astrophysics Data System (ADS)

    Arora, V.

    2011-12-01

    The tropical forests of the Amazon, considered as a tipping element in Earth's climate system, provide several ecosystem services including the maintenance of favourable regional climatic conditions in the region and storage of large amounts of carbon in their above- and below-ground pools. While it is nearly impossible, at present, to put a dollar value on these ecosystem services, the developed countries have started paying large sums of money to developing countries in the tropics to reduce deforestation. Norway recently committed up to $1 billion to the Amazon fund. The United Nations' Reducing Emissions from Deforestation and forest Degradation (REDD) program also financially supports national activities of 13 countries worldwide. The primary assumption inherent in paying for avoiding deforestation is that avoided land use change emissions contribute towards climate change mitigation. In addition, the standing forests that are spared deforestation contribute towards additional carbon sinks associated with the CO2 fertilization effect. Implicit in this reasoning is the understanding that the carbon sinks provided by avoided deforestation have some "permanence" associated with them, at least in the order of 50-100 years. Clearly, if "avoided deforestation" is essentially "delayed deforestation" then the benefits will not be long lasting. More importantly, changes in climate have the potential to adversely affect the permanence of carbon sinks, whether they are being paid for or not. This presentation will address the question of "permanence" by analyzing simulations of the second generation Canadian Earth system model (CanESM2) that are contributing results to the upcoming fifth Coupled Modeled Intercomparison Project (CMIP5). CanESM2 results for the future RCP 2.6, 4.5 and 8.5 scenarios show, that due to reduced future precipitation, the Amazonian region remains a net source of carbon over the 21st century in all scenarios. The carbon losses during the recent 2005 and 2010 droughts in the Amazonian region nearly wiped away the gains made during a decade indicating that the era of intact Amazonian forests acting as carbon sinks may be over. CanESM2 simulations imply that the future of the Amazonian region may look more like these drought years, suggesting that the future reduced precipitation over the region can indeed "tip over" the Amazonian forests.

  8. Experience-Sampling Methodology with a Mobile Device in Fibromyalgia

    PubMed Central

    Diana, Castilla; Cristina, Botella; Azucena, García-Palacios; Luis, Farfallini; Ignacio, Miralles

    2012-01-01

    This work describes the usability studies conducted in the development of an experience-sampling methodology (ESM) system running in a mobile device. The goal of the system is to improve the accuracy and ecology in gathering daily self-report data in individuals suffering a chronic pain condition, fibromyalgia. The usability studies showed that the developed software to conduct ESM with mobile devices (smartphones, cell phones) can be successfully used by individuals with fibromyalgia of different ages and with low level of expertise in the use of information and communication technologies. 100% of users completed the tasks successfully, although some have completely illiterate. Also there seems to be a clear difference in the way of interaction obtained in the two studies carried out. PMID:23304132

  9. A multicomponent CuAAC "click" approach to a library of hybrid polydentate 2-pyridyl-1,2,3-triazole ligands: new building blocks for the generation of metallosupramolecular architectures.

    PubMed

    Crowley, James D; Bandeen, Pauline H

    2010-01-14

    A one pot, multicomponent CuAAC reaction has been exploited for the safe generation of alkyl, benzyl or aryl linked polydentate pyridyl-1,2,3-triazole ligands from their corresponding halides, sodium azide and alkynes in excellent yields. The ligands have been fully characterised by elemental analysis, HR-ESMS, IR, (1)H and (13)C NMR and in two cases the structures were confirmed by X-ray crystallography. Additionally, we have examined the Ag(I) coordination chemistry of these ligands and found, using HR-ESMS, (1)H NMR, and X-ray crystallography, that both discrete and polymeric metallosupramolecular architectures can be formed.

  10. Life support approaches for Mars missions

    NASA Astrophysics Data System (ADS)

    Drysdale, A. E.; Ewert, M. K.; Hanford, A. J.

    Life support approaches for Mars missions are evaluated using an equivalent system mass (ESM) approach, in which all significant costs are converted into mass units. The best approach, as defined by the lowest mission ESM, depends on several mission parameters, notably duration, environment and consequent infrastructure costs, and crew size, as well as the characteristics of the technologies which are available. Generally, for the missions under consideration, physicochemical regeneration is most cost effective. However, bioregeneration is likely to be of use for producing salad crops for any mission, for producing staple crops for medium duration missions, and for most food, air and water regeneration for long missions (durations of a decade). Potential applications of in situ resource utilization need to be considered further.

  11. Vegetation masking effect on future warming and snow albedo feedback in a boreal forest region of northern Eurasia according to MIROC-ESM

    NASA Astrophysics Data System (ADS)

    Abe, Manabu; Takata, Kumiko; Kawamiya, Michio; Watanabe, Shingo

    2017-09-01

    The Earth system model, Model for Interdisciplinary Research on Climate-Earth system model (MIROC-ESM), in which the leaf area index (LAI) is calculated interactively with an ecological land model, simulated future changes in the snow water equivalent under the scenario of global warming. Using MIROC-ESM, the effects of the snow albedo feedback (SAF) in a boreal forest region of northern Eurasia were examined under the possible climate future scenario RCP8.5. The simulated surface air temperature (SAT) in spring greatly increases across Siberia and the boreal forest region, whereas the snow cover decreases remarkably only in western Eurasia. The large increase in SAT across Siberia is attributed to strong SAF, which is caused by both the reduced snow-covered fraction and the reduced surface albedo of the snow-covered portion due to the vegetation masking effect in those grid cells. A comparison of the future changes with and without interactive LAI changes shows that in Siberia, the vegetation masking effect increases the spring SAF by about two or three times and enhances the spring warming by approximately 1.5 times. This implies that increases in vegetation biomass in the future are a potential contributing factor to warming trends and that further research on the vegetation masking effect is needed for reliable future projection.

  12. Detection of nonlinear interactions of EEG alpha waves in the brain by a new coherence measure and its application to epilepsy and anti-epileptic drug therapy.

    PubMed

    Sherman, David; Zhang, Ning; Garg, Shikha; Thakor, Nitish V; Mirski, Marek A; White, Mirinda Anderson; Hinich, Melvin J

    2011-04-01

    EEG and field potential rhythms established in the cortex and thalamus may accommodate the propagation of seizures. This article describes the interaction between thalamus and cortex during pentylenetetrazol (PTZ) seizures in rats with and without prior treatment with ethosuximide (ESM), a well-known antiepileptic drug (AED) that raises the threshold for seizures, was given before PTZ. The AED was given before PTZ convulsant administration. We track this thalamo-cortical association with a novel measure we have called the cross-bicoherence gain, or BISCOH. This quantity allows us to measure the spectral coherence in a purely higher order spectralmethodology. BISCOH is able to track the formation of nonlinearities at specific frequencies in the recorded EEG. BISCOH showed a strong increase in low alpha wave harmonic generationat 10 and 12.5 Hz after ESM treatment (p < 0.02 and p < 0.007, respectively). Conventional coherence failed to show distinctive and significant changes in thalamo-cortical coupling after ESM treatment at those frequencies and instead showed changes at 5 Hz. This rise in cortical rhythms is evidence of harmonic generation or new frequency formation in the thalamo-cortical system withAED therapy. BISCOH could become a powerful tool in unraveling changes in coherence due to neuroelectric modulation resulting from drug treatment or electrical stimulation.

  13. Smartphone Ownership and Interest in Mobile Applications to Monitor Symptoms of Mental Health Conditions

    PubMed Central

    Friedman, Rohn; Keshavan, Matcheri

    2014-01-01

    Background Patient retrospective recollection is a mainstay of assessing symptoms in mental health and psychiatry. However, evidence suggests that these retrospective recollections may not be as accurate as data collection though the experience sampling method (ESM), which captures patient data in “real time” and “real life.” However, the difficulties in practical implementation of ESM data collection have limited its impact in psychiatry and mental health. Smartphones with the capability to run mobile applications may offer a novel method of collecting ESM data that may represent a practical and feasible tool for mental health and psychiatry. Objective This paper aims to provide data on psychiatric patients’ prevalence of smartphone ownership, patterns of use, and interest in utilizing mobile applications to monitor their mental health conditions. Methods One hundred psychiatric outpatients at a large urban teaching hospital completed a paper-and-pencil survey regarding smartphone ownership, use, and interest in utilizing mobile applications to monitor their mental health condition. Results Ninety-seven percent of patients reported owning a phone and 72% reported that their phone was a smartphone. Patients in all age groups indicated greater than 50% interest in using a mobile application on a daily basis to monitor their mental health condition. Conclusions Smartphone and mobile applications represent a practical opportunity to explore new modalities of monitoring, treatment, and research of psychiatric and mental health conditions. PMID:25098314

  14. Smartphone ownership and interest in mobile applications to monitor symptoms of mental health conditions.

    PubMed

    Torous, John; Friedman, Rohn; Keshavan, Matcheri

    2014-01-21

    Patient retrospective recollection is a mainstay of assessing symptoms in mental health and psychiatry. However, evidence suggests that these retrospective recollections may not be as accurate as data collection though the experience sampling method (ESM), which captures patient data in "real time" and "real life." However, the difficulties in practical implementation of ESM data collection have limited its impact in psychiatry and mental health. Smartphones with the capability to run mobile applications may offer a novel method of collecting ESM data that may represent a practical and feasible tool for mental health and psychiatry. This paper aims to provide data on psychiatric patients' prevalence of smartphone ownership, patterns of use, and interest in utilizing mobile applications to monitor their mental health conditions. One hundred psychiatric outpatients at a large urban teaching hospital completed a paper-and-pencil survey regarding smartphone ownership, use, and interest in utilizing mobile applications to monitor their mental health condition. Ninety-seven percent of patients reported owning a phone and 72% reported that their phone was a smartphone. Patients in all age groups indicated greater than 50% interest in using a mobile application on a daily basis to monitor their mental health condition. Smartphone and mobile applications represent a practical opportunity to explore new modalities of monitoring, treatment, and research of psychiatric and mental health conditions.

  15. Constraining Centennial-Scale Ecosystem-Climate Interactions with a Pre-colonial Forest Reconstruction across the Upper Midwest and Northeastern United States

    NASA Astrophysics Data System (ADS)

    Matthes, J. H.; Dietze, M.; Fox, A. M.; Goring, S. J.; McLachlan, J. S.; Moore, D. J.; Poulter, B.; Quaife, T. L.; Schaefer, K. M.; Steinkamp, J.; Williams, J. W.

    2014-12-01

    Interactions between ecological systems and the atmosphere are the result of dynamic processes with system memories that persist from seconds to centuries. Adequately capturing long-term biosphere-atmosphere exchange within earth system models (ESMs) requires an accurate representation of changes in plant functional types (PFTs) through time and space, particularly at timescales associated with ecological succession. However, most model parameterization and development has occurred using datasets than span less than a decade. We tested the ability of ESMs to capture the ecological dynamics observed in paleoecological and historical data spanning the last millennium. Focusing on an area from the Upper Midwest to New England, we examined differences in the magnitude and spatial pattern of PFT distributions and ecotones between historic datasets and the CMIP5 inter-comparison project's large-scale ESMs. We then conducted a 1000-year model inter-comparison using six state-of-the-art biosphere models at sites that bridged regional temperature and precipitation gradients. The distribution of ecosystem characteristics in modeled climate space reveals widely disparate relationships between modeled climate and vegetation that led to large differences in long-term biosphere-atmosphere fluxes for this region. Model simulations revealed that both the interaction between climate and vegetation and the representation of ecosystem dynamics within models were important controls on biosphere-atmosphere exchange.

  16. An environmental stress model correctly predicts unimodal trends in overall species richness and diversity along intertidal elevation gradients

    NASA Astrophysics Data System (ADS)

    Zwerschke, Nadescha; Bollen, Merle; Molis, Markus; Scrosati, Ricardo A.

    2013-12-01

    Environmental stress is a major factor structuring communities. An environmental stress model (ESM) predicts that overall species richness and diversity should follow a unimodal trend along the full stress gradient along which assemblages from a regional biota can occur (not to be confused with the intermediate disturbance hypothesis, which makes predictions only for basal species along an intermediate-to-high stress range). Past studies could only provide partial support for ESM predictions because of the limited stress range surveyed or a low sampling resolution. In this study, we measured overall species richness and diversity (considering all seaweeds and invertebrates) along the intertidal elevation gradient on two wave-sheltered rocky shores from Helgoland Island, on the NE Atlantic coast. In intertidal habitats, tides cause a pronounced gradient of increasing stress from low to high elevations. We surveyed up to nine contiguous elevation zones between the lowest intertidal elevation (low stress) and the high intertidal boundary (high stress). Nonlinear regression analyses revealed that overall species richness and diversity followed unimodal trends across elevations on the two studied shores. Therefore, our study suggests that the ESM might constitute a useful tool to predict local richness and diversity as a function of environmental stress. Performing tests on other systems (marine as well as terrestrial) should help to refine the model.

  17. Self-consistent modelling of electrochemical strain microscopy in mixed ionic-electronic conductors: Nonlinear and dynamic regimes

    DOE PAGES

    Varenyk, O. V.; Silibin, M. V.; Kiselev, Dmitri A.; ...

    2015-08-19

    The frequency dependent Electrochemical Strain Microscopy (ESM) response of mixed ionic-electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is numerically explored. The 2D maps of the strain and concentration distributions across the mixed ionic-electronic conductor and bias-induced surface displacements are calculated. Furthermore, the obtained numerical results can be applied to quantify the ESM response of Li-based solid electrolytes, materials with resistive switching, and electroactive ferroelectric polymers,more » which are of potential interest for flexible and high-density non-volatile memory devices.« less

  18. A Comparative Analysis of Phase-Change Wastewater Processing Approaches for Microgravity

    NASA Technical Reports Server (NTRS)

    Lange, Kevin

    2016-01-01

    Two phase-change wastewater processing candidates, the ISS Vapor Compression Distillation (VCD) System and the Cascade Distiller System (CDS), are compared based on dynamic modeling of both technologies. Differences in fluid handling and energy recovery for the technologies are described and contrasted. Model predictions are presented showing how temperatures, pressures, and compositions vary locally within each distiller. These dynamic variations are difficult to observe experimentally and have implications regarding non-condensable buildup and salt precipitation potential. Alternative architectures involving VCD and CDS components are analyzed in terms of predicted performance and equivalent system mass (ESM). The addition of a downstream brine processor to increase water recovery is also evaluated. Options for reducing overall ESM are discussed, including the possibility of developing a single precipitation-tolerant primary wastewater processor.

  19. Launch device using endlessly single-mode PCF for ultra-wideband WDM transmission in graded-index multi-mode fiber.

    PubMed

    Ma, Lin; Hanzawa, Nobutomo; Tsujikawa, Kyozo; Azuma, Yuji

    2012-10-22

    We demonstrated ultra-wideband wavelength division multiplexing (WDM) transmission from 850 to 1550 nm in graded-index multi-mode fiber (GI-MMF) using endlessly single-mode photonic crystal fiber (ESM-PCF) as a launch device. Effective single-mode guidance is obtained in multi-mode fiber at all wavelengths by splicing cm-order length ESM-PCF to the transmission fiber. We achieved 3 × 10 Gbit/s WDM transmission in a 1 km-long 50-μm-core GI-MMF. We also realized penalty free 10 Gbit/s data transmission at a wavelength of 850 nm by optimizing the PCF structure. This method has the potential to achieve greater total transmission capacity for MMF systems by the addition of more wavelength channels.

  20. Life support approaches for Mars missions

    NASA Technical Reports Server (NTRS)

    Drysdale, A. E.; Ewert, M. K.; Hanford, A. J.

    2003-01-01

    Life support approaches for Mars missions are evaluated using an equivalent system mass (ESM) approach, in which all significant costs are converted into mass units. The best approach, as defined by the lowest mission ESM, depends on several mission parameters, notably duration, environment and consequent infrastructure costs, and crew size, as well as the characteristics of the technologies which are available. Generally, for the missions under consideration, physicochemical regeneration is most cost effective. However, bioregeneration is likely to be of use for producing salad crops for any mission, for producing staple crops for medium duration missions, and for most food, air and water regeneration for long missions (durations of a decade). Potential applications of in situ resource utilization need to be considered further. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  1. Self-consistent modelling of electrochemical strain microscopy in mixed ionic-electronic conductors: Nonlinear and dynamic regimes

    NASA Astrophysics Data System (ADS)

    Varenyk, O. V.; Silibin, M. V.; Kiselev, D. A.; Eliseev, E. A.; Kalinin, S. V.; Morozovska, A. N.

    2015-08-01

    The frequency dependent Electrochemical Strain Microscopy (ESM) response of mixed ionic-electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is numerically explored. The 2D maps of the strain and concentration distributions across the mixed ionic-electronic conductor and bias-induced surface displacements are calculated. The obtained numerical results can be applied to quantify the ESM response of Li-based solid electrolytes, materials with resistive switching, and electroactive ferroelectric polymers, which are of potential interest for flexible and high-density non-volatile memory devices.

  2. Life support approaches for Mars missions.

    PubMed

    Drysdale, A E; Ewert, M K; Hanford, A J

    2003-01-01

    Life support approaches for Mars missions are evaluated using an equivalent system mass (ESM) approach, in which all significant costs are converted into mass units. The best approach, as defined by the lowest mission ESM, depends on several mission parameters, notably duration, environment and consequent infrastructure costs, and crew size, as well as the characteristics of the technologies which are available. Generally, for the missions under consideration, physicochemical regeneration is most cost effective. However, bioregeneration is likely to be of use for producing salad crops for any mission, for producing staple crops for medium duration missions, and for most food, air and water regeneration for long missions (durations of a decade). Potential applications of in situ resource utilization need to be considered further. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  3. Towards improved and more routine Earth system model evaluation in CMIP

    DOE PAGES

    Eyring, Veronika; Gleckler, Peter J.; Heinze, Christoph; ...

    2016-11-01

    The Coupled Model Intercomparison Project (CMIP) has successfully provided the climate community with a rich collection of simulation output from Earth system models (ESMs) that can be used to understand past climate changes and make projections and uncertainty estimates of the future. Confidence in ESMs can be gained because the models are based on physical principles and reproduce many important aspects of observed climate. More research is required to identify the processes that are most responsible for systematic biases and the magnitude and uncertainty of future projections so that more relevant performance tests can be developed. At the same time,more » there are many aspects of ESM evaluation that are well established and considered an essential part of systematic evaluation but have been implemented ad hoc with little community coordination. Given the diversity and complexity of ESM analysis, we argue that the CMIP community has reached a critical juncture at which many baseline aspects of model evaluation need to be performed much more efficiently and consistently. We provide a perspective and viewpoint on how a more systematic, open, and rapid performance assessment of the large and diverse number of models that will participate in current and future phases of CMIP can be achieved, and announce our intention to implement such a system for CMIP6. Accomplishing this could also free up valuable resources as many scientists are frequently "re-inventing the wheel" by re-writing analysis routines for well-established analysis methods. A more systematic approach for the community would be to develop and apply evaluation tools that are based on the latest scientific knowledge and observational reference, are well suited for routine use, and provide a wide range of diagnostics and performance metrics that comprehensively characterize model behaviour as soon as the output is published to the Earth System Grid Federation (ESGF). The CMIP infrastructure enforces data standards and conventions for model output and documentation accessible via the ESGF, additionally publishing observations (obs4MIPs) and reanalyses (ana4MIPs) for model intercomparison projects using the same data structure and organization as the ESM output. This largely facilitates routine evaluation of the ESMs, but to be able to process the data automatically alongside the ESGF, the infrastructure needs to be extended with processing capabilities at the ESGF data nodes where the evaluation tools can be executed on a routine basis. Efforts are already underway to develop community-based evaluation tools, and we encourage experts to provide additional diagnostic codes that would enhance this capability for CMIP. And, at the same time, we encourage the community to contribute observations and reanalyses for model evaluation to the obs4MIPs and ana4MIPs archives. The intention is to produce through the ESGF a widely accepted quasi-operational evaluation framework for CMIP6 that would routinely execute a series of standardized evaluation tasks. Over time, as this capability matures, we expect to produce an increasingly systematic characterization of models which, compared with early phases of CMIP, will more quickly and openly identify the strengths and weaknesses of the simulations. This will also reveal whether long-standing model errors remain evident in newer models and will assist modelling groups in improving their models. Finally, this framework will be designed to readily incorporate updates, including new observations and additional diagnostics and metrics as they become available from the research community.« less

  4. Toward an in-situ analytics and diagnostics framework for earth system models

    NASA Astrophysics Data System (ADS)

    Anantharaj, Valentine; Wolf, Matthew; Rasch, Philip; Klasky, Scott; Williams, Dean; Jacob, Rob; Ma, Po-Lun; Kuo, Kwo-Sen

    2017-04-01

    The development roadmaps for many earth system models (ESM) aim for a globally cloud-resolving model targeting the pre-exascale and exascale systems of the future. The ESMs will also incorporate more complex physics, chemistry and biology - thereby vastly increasing the fidelity of the information content simulated by the model. We will then be faced with an unprecedented volume of simulation output that would need to be processed and analyzed concurrently in order to derive the valuable scientific results. We are already at this threshold with our current generation of ESMs at higher resolution simulations. Currently, the nominal I/O throughput in the Community Earth System Model (CESM) via Parallel IO (PIO) library is around 100 MB/s. If we look at the high frequency I/O requirements, it would require an additional 1 GB / simulated hour, translating to roughly 4 mins wallclock / simulated-day => 24.33 wallclock hours / simulated-model-year => 1,752,000 core-hours of charge per simulated-model-year on the Titan supercomputer at the Oak Ridge Leadership Computing Facility. There is also a pending need for 3X more volume of simulation output . Meanwhile, many ESMs use instrument simulators to run forward models to compare model simulations against satellite and ground-based instruments, such as radars and radiometers. The CFMIP Observation Simulator Package (COSP) is used in CESM as well as the Accelerated Climate Model for Energy (ACME), one of the ESMs specifically targeting current and emerging leadership-class computing platforms These simulators can be computationally expensive, accounting for as much as 30% of the computational cost. Hence the data are often written to output files that are then used for offline calculations. Again, the I/O bottleneck becomes a limitation. Detection and attribution studies also use large volume of data for pattern recognition and feature extraction to analyze weather and climate phenomenon such as tropical cyclones, atmospheric rivers, blizzards, etc. It is evident that ESMs need an in-situ framework to decouple the diagnostics and analytics from the prognostics and physics computations of the models so that the diagnostic computations could be performed concurrently without limiting model throughput. We are designing a science-driven online analytics framework for earth system models. Our approach is to adopt several data workflow technologies, such as the Adaptable IO System (ADIOS), being developed under the U.S. Exascale Computing Project (ECP) and integrate these to allow for extreme performance IO, in situ workflow integration, science-driven analytics and visualization all in a easy to use computational framework. This will allow science teams to write data 100-1000 times faster and seamlessly move from post processing the output for validation and verification purposes to performing these calculations in situ. We can easily and knowledgeably envision a near-term future where earth system models like ACME and CESM will have to address not only the challenges of the volume of data but also need to consider the velocity of the data. The earth system model of the future in the exascale era, as they incorporate more complex physics at higher resolutions, will be able to analyze more simulation content without having to compromise targeted model throughput.

  5. The Fast Scattering Code (FSC): Validation Studies and Program Guidelines

    NASA Technical Reports Server (NTRS)

    Tinetti, Ana F.; Dunn, Mark H.

    2011-01-01

    The Fast Scattering Code (FSC) is a frequency domain noise prediction program developed at the NASA Langley Research Center (LaRC) to simulate the acoustic field produced by the interaction of known, time harmonic incident sound with bodies of arbitrary shape and surface impedance immersed in a potential flow. The code uses the equivalent source method (ESM) to solve an exterior 3-D Helmholtz boundary value problem (BVP) by expanding the scattered acoustic pressure field into a series of point sources distributed on a fictitious surface placed inside the actual scatterer. This work provides additional code validation studies and illustrates the range of code parameters that produce accurate results with minimal computational costs. Systematic noise prediction studies are presented in which monopole generated incident sound is scattered by simple geometric shapes - spheres (acoustically hard and soft surfaces), oblate spheroids, flat disk, and flat plates with various edge topologies. Comparisons between FSC simulations and analytical results and experimental data are presented.

  6. The representation of non-equilibrium soil types in earth system models and its impact on carbon cycle projections

    NASA Astrophysics Data System (ADS)

    Hugelius, G.; Ahlström, A.; Canadell, J.; Koven, C. D.; Jackson, R. B.; Luo, Y.

    2016-12-01

    Soils hold the largest reactive pool of carbon (C) on earth. Global soil organic C stocks (0-200 cm depth plus full peatland depth) are estimated to 2200 Pg C (adapted from Hugelius et al., 2014, Köchy et al., 2015 and Batjes, 2016). Soil C stocks in Earth system models (ESMs) can be generated by running the model over a longer time period until soil C pools are in or near steady-state. Inherent in this concept is the idea that soil C stocks are in (quasi)equilibrium as determined by the balance of net ecosystem input to soil organic matter and its turnover. The rate of turnover is sometimes subdivided into several pools and the rates are affected by various environmental factors. Here we break down the empirically based estimates of global soil C pools into equilibrium-type soils which current (Coupled Model Intercomparison Project, phase 5; CMIP5) generation ESMs are set-up to represent and non-equilibrium type soils which are generally not represented in current ESMs. We define equilibrium soils as those where pedogenesis (and associated soil C formation) is not significantly limited by the environmental factors perennial soil freezing, waterlogging/anoxia or limited unconsolidated soil substrate. This is essentially all permafrost-free mineral soils that are not in a wetland or alpine setting. On the other hand, non-equlibrium soils are defined as permafrost soils, peatlands and alpine soils with a limited fine-soil matrix. Based on geospatial analyses of state-of-the-art datasets on soil C stocks, we estimate that the global soil C pool is divided roughly equally between equilibrium and non-equlibrium type soils. We discuss the ways in which this result affects C cycling in ESMs and projections of soil C sensitivity under a changing climate. ReferencesBatjes N.H. (2016) Geoderma, 269, 61-68, doi: 10.1016/j.geoderma.2016.01.034 Hugelius G. et al. (2014) Biogeosciences, 11, 6573-6593, doi:10.5194/bg-11-6573-2014 Köchy M. et al. (2015) Soil 1, 351-365. DOI: doi:10.5194/soil-1-351-2015

  7. An extended linear scaling method for downscaling temperature and its implication in the Jhelum River basin, Pakistan, and India, using CMIP5 GCMs

    NASA Astrophysics Data System (ADS)

    Mahmood, Rashid; JIA, Shaofeng

    2017-11-01

    In this study, the linear scaling method used for the downscaling of temperature was extended from monthly scaling factors to daily scaling factors (SFs) to improve the daily variations in the corrected temperature. In the original linear scaling (OLS), mean monthly SFs are used to correct the future data, but mean daily SFs are used to correct the future data in the extended linear scaling (ELS) method. The proposed method was evaluated in the Jhelum River basin for the period 1986-2000, using the observed maximum temperature (Tmax) and minimum temperature (Tmin) of 18 climate stations and the simulated Tmax and Tmin of five global climate models (GCMs) (GFDL-ESM2G, NorESM1-ME, HadGEM2-ES, MIROC5, and CanESM2), and the method was also compared with OLS to observe the improvement. Before the evaluation of ELS, these GCMs were also evaluated using their raw data against the observed data for the same period (1986-2000). Four statistical indicators, i.e., error in mean, error in standard deviation, root mean square error, and correlation coefficient, were used for the evaluation process. The evaluation results with GCMs' raw data showed that GFDL-ESM2G and MIROC5 performed better than other GCMs according to all the indicators but with unsatisfactory results that confine their direct application in the basin. Nevertheless, after the correction with ELS, a noticeable improvement was observed in all the indicators except correlation coefficient because this method only adjusts (corrects) the magnitude. It was also noticed that the daily variations of the observed data were better captured by the corrected data with ELS than OLS. Finally, the ELS method was applied for the downscaling of five GCMs' Tmax and Tmin for the period of 2041-2070 under RCP8.5 in the Jhelum basin. The results showed that the basin would face hotter climate in the future relative to the present climate, which may result in increasing water requirements in public, industrial, and agriculture sectors; change in the hydrological cycle and monsoon pattern; and lack of glaciers in the basin.

  8. Mean-state SST Response to global warming caused by the ENSO Nonlinearity

    NASA Astrophysics Data System (ADS)

    Kohyama, T.; Hartmann, D. L.

    2017-12-01

    The majority of the models that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5) exhibit El Niño-like trends under global warming. GFDL-ESM2M, however, is an exception that exhibits a La Niña-like response with strengthened trade winds. Our previous studies have shown that this La Niña-like trend could be a physically consistent warming response, and we proposed the Nonlinear ENSO Warming Suppression (NEWS) mechanism to explain this La Niña-like response to global warming. The most important necessary condition of NEWS is the ENSO skewness (El Niños are stronger than La Niñas). Most CMIP5 models do not reproduce the observed ENSO skewness, while GFDL-ESM2M exhibits the realistic ENSO skewness, which suggests that, despite being in the minority, the La Niña-like trend of GFDL-ESM2M could be a plausible equatorial Pacific response to warming. In this study, we introduce another interesting outlier, MIROC5, which reproduces the observed skewness, yet exhibits an El Niño-like response. By decomposing the source of the ENSO nonlinearity into the following three components: "SST anomalies modulate winds", "winds excite oceanic waves", and "oceanic waves modulate the subsurface temperature", we show that the large inter-model spread of the third component appears to explain the most important cause of the poor reproducibility of the ENSO nonlinearity in CMIP5 models. It is concluded that the change in the response of subsurface temperature to oceanic waves is the primary explanation for the different warming response of GFDL-ESM2M and MIROC5. Our analyses suggest that the difference of the warming response are caused by difference in the climatological thermal stratification. This study may shed new light on the fundamental question of why observed ENSO has a strong skewness and on the implications of this skewed ENSO for the mean-state sea surface temperature response to global warming.

  9. CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models.

    PubMed

    Anderson, Thomas R; Hawkins, Ed; Jones, Philip D

    2016-09-01

    Climate warming during the course of the twenty-first century is projected to be between 1.0 and 3.7°C depending on future greenhouse gas emissions, based on the ensemble-mean results of state-of-the-art Earth System Models (ESMs). Just how reliable are these projections, given the complexity of the climate system? The early history of climate research provides insight into the understanding and science needed to answer this question. We examine the mathematical quantifications of planetary energy budget developed by Svante Arrhenius (1859-1927) and Guy Stewart Callendar (1898-1964) and construct an empirical approximation of the latter, which we show to be successful at retrospectively predicting global warming over the course of the twentieth century. This approximation is then used to calculate warming in response to increasing atmospheric greenhouse gases during the twenty-first century, projecting a temperature increase at the lower bound of results generated by an ensemble of ESMs (as presented in the latest assessment by the Intergovernmental Panel on Climate Change). This result can be interpreted as follows. The climate system is conceptually complex but has at its heart the physical laws of radiative transfer. This basic, or "core" physics is relatively straightforward to compute mathematically, as exemplified by Callendar's calculations, leading to quantitatively robust projections of baseline warming. The ESMs include not only the physical core but also climate feedbacks that introduce uncertainty into the projections in terms of magnitude, but not sign: positive (amplification of warming). As such, the projections of end-of-century global warming by ESMs are fundamentally trustworthy: quantitatively robust baseline warming based on the well-understood physics of radiative transfer, with extra warming due to climate feedbacks. These projections thus provide a compelling case that global climate will continue to undergo significant warming in response to ongoing emissions of CO 2 and other greenhouse gases to the atmosphere. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Comparison of surface freshwater fluxes from different climate forecasts produced through different ensemble generation schemes.

    NASA Astrophysics Data System (ADS)

    Romanova, Vanya; Hense, Andreas; Wahl, Sabrina; Brune, Sebastian; Baehr, Johanna

    2016-04-01

    The decadal variability and its predictability of the surface net freshwater fluxes is compared in a set of retrospective predictions, all using the same model setup, and only differing in the implemented ocean initialisation method and ensemble generation method. The basic aim is to deduce the differences between the initialization/ensemble generation methods in view of the uncertainty of the verifying observational data sets. The analysis will give an approximation of the uncertainties of the net freshwater fluxes, which up to now appear to be one of the most uncertain products in observational data and model outputs. All ensemble generation methods are implemented into the MPI-ESM earth system model in the framework of the ongoing MiKlip project (www.fona-miklip.de). Hindcast experiments are initialised annually between 2000-2004, and from each start year 10 ensemble members are initialized for 5 years each. Four different ensemble generation methods are compared: (i) a method based on the Anomaly Transform method (Romanova and Hense, 2015) in which the initial oceanic perturbations represent orthogonal and balanced anomaly structures in space and time and between the variables taken from a control run, (ii) one-day-lagged ocean states from the MPI-ESM-LR baseline system (iii) one-day-lagged of ocean and atmospheric states with preceding full-field nudging to re-analysis in both the atmospheric and the oceanic component of the system - the baseline one MPI-ESM-LR system, (iv) an Ensemble Kalman Filter (EnKF) implemented into oceanic part of MPI-ESM (Brune et al. 2015), assimilating monthly subsurface oceanic temperature and salinity (EN3) using the Parallel Data Assimilation Framework (PDAF). The hindcasts are evaluated probabilistically using fresh water flux data sets from four different reanalysis data sets: MERRA, NCEP-R1, GFDL ocean reanalysis and GECCO2. The assessments show no clear differences in the evaluations scores on regional scales. However, on the global scale the physically motivated methods (i) and (iv) provide probabilistic hindcasts with a consistently higher reliability than the lagged initialization methods (ii)/(iii) despite the large uncertainties in the verifying observations and in the simulations.

  11. [Determination of five naphthaquinones in Arnebia euchroma by quantitative analysis multi-components with single-marker].

    PubMed

    Zhao, Wen-Wen; Wu, Zhi-Min; Wu, Xia; Zhao, Hai-Yu; Chen, Xiao-Qing

    2016-10-01

    This study is to determine five naphthaquinones (acetylshikonin, β-acetoxyisovalerylalkannin, isobutylshikonin, β,β'-dimethylacrylalkannin,α-methyl-n-butylshikonin) by quantitative analysis of multi-components with a single marker (QAMS). β,β'-Dimethylacrylalkannin was selected as the internal reference substance, and the relative correlation factors (RCFs) of acetylshikonin, β-acetoxyisovalerylalkannin, isobutylshikonin and α-methyl-n-butylshikonin were calculated. Then the ruggedness of relative correction factors was tested on different instruments and columns. Meanwhile, 16 batches of Arnebia euchroma were analyzed by external standard method (ESM) and QAMS, respectively. The peaks were identifited by LC-MS. The ruggedness of relative correction factors was good. And the analytical results calculated by ESM and QAMS showed no difference. The quantitative method established was feasible and suitable for the quality evaluation of A. euchroma. Copyright© by the Chinese Pharmaceutical Association.

  12. Higher education provision using systems thinking approach - case studies

    NASA Astrophysics Data System (ADS)

    Dhukaram, Anandhi Vivekanandan; Sgouropoulou, Cleo; Feldman, Gerald; Amini, Ardavan

    2018-01-01

    The purpose of this paper is to highlight the complexities involved in higher education provision and how systems thinking and socio-technical systems (STS) thinking approach can be used to understand the education ecosystem. Systems thinking perspective is provided using two case studies: the development of European Learner Mobility (EuroLM) service and the delivery of Enterprise System Management (ESM) course at the Birmingham City University, UK. The case studies present how systems thinking using STS approaches like applied organisational change and Cognitive Work Analysis can be used to capture a conceptual model of the education system for understanding the interactions and relationships between the people, technology, processes and the organisations. Using systems thinking perspective, EuroLM has developed a set of technical standards addressed to the European systems developers and ESM delivery ensures that students communicate and collaborate.

  13. Climate change impact on streamflow in large-scale river basins: projections and their uncertainties sourced from GCMs and RCP scenarios

    NASA Astrophysics Data System (ADS)

    Nasonova, Olga N.; Gusev, Yeugeniy M.; Kovalev, Evgeny E.; Ayzel, Georgy V.

    2018-06-01

    Climate change impact on river runoff was investigated within the framework of the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP2) using a physically-based land surface model Soil Water - Atmosphere - Plants (SWAP) (developed in the Institute of Water Problems of the Russian Academy of Sciences) and meteorological projections (for 2006-2099) simulated by five General Circulation Models (GCMs) (including GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M) for each of four Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). Eleven large-scale river basins were used in this study. First of all, SWAP was calibrated and validated against monthly values of measured river runoff with making use of forcing data from the WATCH data set and all GCMs' projections were bias-corrected to the WATCH. Then, for each basin, 20 projections of possible changes in river runoff during the 21st century were simulated by SWAP. Analysis of the obtained hydrological projections allowed us to estimate their uncertainties resulted from application of different GCMs and RCP scenarios. On the average, the contribution of different GCMs to the uncertainty of the projected river runoff is nearly twice larger than the contribution of RCP scenarios. At the same time the contribution of GCMs slightly decreases with time.

  14. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization

    USGS Publications Warehouse

    Smith, W. Kolby; Reed, Sasha C.; Cleveland, Cory C.; Ballantyne, Ashley P; Anderegg, William R. L.; Wieder, William R.; Liu, Yi Y; Running, Steven W.

    2015-01-01

    Atmospheric mass balance analyses suggest that terrestrial carbon (C) storage is increasing, partially abating the atmospheric [CO2] growth rate, although the continued strength of this important ecosystem service remains uncertain. Some evidence suggests that these increases will persist owing to positive responses of vegetation growth (net primary productivity; NPP) to rising atmospheric [CO2] (that is, ‘CO2 fertilization’). Here, we present a new satellite-derived global terrestrial NPP data set, which shows a significant increase in NPP from 1982 to 2011. However, comparison against Earth system model (ESM) NPP estimates reveals a significant divergence, with satellite-derived increases (2.8 ± 1.50%) less than half of ESM-derived increases (7.6  ±  1.67%) over the 30-year period. By isolating the CO2 fertilization effect in each NPP time series and comparing it against a synthesis of available free-air CO2 enrichment data, we provide evidence that much of the discrepancy may be due to an over-sensitivity of ESMs to atmospheric [CO2], potentially reflecting an under-representation of climatic feedbacks and/or a lack of representation of nutrient constraints. Our understanding of CO2 fertilization effects on NPP needs rapid improvement to enable more accurate projections of future C cycle–climate feedbacks; we contend that better integration of modelling, satellite and experimental approaches offers a promising way forward.

  15. Future projections of active-break spells of Indian summer monsoon in a climate change perspective

    NASA Astrophysics Data System (ADS)

    Sudeepkumar, B. L.; Babu, C. A.; Varikoden, Hamza

    2018-02-01

    The effect of global climate change on Indian summer monsoon has been analysed with special emphasis on active-break cycle. The changes in intensity and duration of active and break monsoon conditions towards the end of the century are studied by using 850 hPa zonal circulations. The analysis is carried out using twenty year climatology of historical period (1986-2005) and future projections (2080-2099) simulated as part of Coupled Model Intercomparison Project phase 5 (CMIP5). Models are compared with NCEP/NCAR reanalysis data. The models that effectively capture the circulation pattern of monsoon (JJAS) are considered for assessing the future climate in RCP 4.5 scenario. They are CanESM2, CNRM-CM5, GFDL-ESM2M, MIROC5 and MPI-ESM-LR. During the southwest monsoon period, the ensemble mean of models projects a strengthening of the wind speed towards north (north of 15°N) and weakening to the southern region (especially south of 12°N) which facilitates wetting of northern Indian regions and drying of southern peninsular regions. In the case of active-break conditions, the active spells are found to be strengthening over northern India and weakening over the peninsular India, the break spells intensify over southern tip of peninsular India indicating intense breaks. Increased propensity of short intense active days and decreased propensity of long active days are also projected by the models. The number of break spells does not show any significant changes.

  16. Initialization shock in decadal hindcasts due to errors in wind stress over the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Pohlmann, Holger; Kröger, Jürgen; Greatbatch, Richard J.; Müller, Wolfgang A.

    2017-10-01

    Low prediction skill in the tropical Pacific is a common problem in decadal prediction systems, especially for lead years 2-5 which, in many systems, is lower than in uninitialized experiments. On the other hand, the tropical Pacific is of almost worldwide climate relevance through its teleconnections with other tropical and extratropical regions and also of importance for global mean temperature. Understanding the causes of the reduced prediction skill is thus of major interest for decadal climate predictions. We look into the problem of reduced prediction skill by analyzing the Max Planck Institute Earth System Model (MPI-ESM) decadal hindcasts for the fifth phase of the Climate Model Intercomparison Project and performing a sensitivity experiment in which hindcasts are initialized from a model run forced only by surface wind stress. In both systems, sea surface temperature variability in the tropical Pacific is successfully initialized, but most skill is lost at lead years 2-5. Utilizing the sensitivity experiment enables us to pin down the reason for the reduced prediction skill in MPI-ESM to errors in wind stress used for the initialization. A spurious trend in the wind stress forcing displaces the equatorial thermocline in MPI-ESM unrealistically. When the climate model is then switched into its forecast mode, the recovery process triggers artificial El Niño and La Niña events at the surface. Our results demonstrate the importance of realistic wind stress products for the initialization of decadal predictions.

  17. Comparisons with observational and experimental manipulation data imply needed conceptual changes to ESM land models

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Zhu, Q.; Tang, J.

    2016-12-01

    The land models integrated in Earth System Models (ESMs) are critical components necessary to predict soil carbon dynamics and carbon-climate interactions under a changing climate. Yet, these models have been shown to have poor predictive power when compared with observations and ignore many processes known to the observational communities to influence above and belowground carbon dynamics. Here I will report work to tightly couple observations and perturbation experiment results with development of an ESM land model (ALM), focusing on nutrient constraints of the terrestrial C cycle. Using high-frequency flux tower observations and short-term nitrogen and phosphorus perturbation experiments, we show that conceptualizing plant and soil microbe interactions as a multi-substrate, multi-competitor kinetic network allows for accurate prediction of nutrient acquisition. Next, using multiple-year FACE and fertilization response observations at many forest sites, we show that capturing the observed responses requires representation of dynamic allocation to respond to the resulting stresses. Integrating the mechanisms implied by these observations into ALM leads to much lower observational bias and to very different predictions of long-term soil and aboveground C stocks and dynamics, and therefore C-climate feedbacks. I describe how these types of observational constraints are being integrated into the open-source International Land Model Benchmarking (ILAMB) package, and end with the argument that consolidating as many observations of all sorts for easy use by modelers is an important goal to improve C-climate feedback predictions.

  18. Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Peng, Shushi; Goll, Daniel S.; Ciais, Philippe; Guenet, Bertrand; Guimberteau, Matthieu; Hinsinger, Philippe; Janssens, Ivan A.; Peñuelas, Josep; Piao, Shilong; Poulter, Benjamin; Violette, Aurélie; Yang, Xiaojuan; Yin, Yi; Zeng, Hui

    2017-07-01

    Most of the Earth System Models (ESMs) project increases in net primary productivity (NPP) and terrestrial carbon (C) storage during the 21st century. Despite empirical evidence that limited availability of phosphorus (P) may limit the response of NPP to increasing atmospheric CO2, none of the ESMs used in the previous Intergovernmental Panel on Climate Change assessment accounted for P limitation. We diagnosed from ESM simulations the amount of P need to support increases in carbon uptake by natural ecosystems using two approaches: the demand derived from (1) changes in C stocks and (2) changes in NPP. The C stock-based additional P demand was estimated to range between -31 and 193 Tg P and between -89 and 262 Tg P for Representative Concentration Pathway (RCP) 2.6 and RCP8.5, respectively, with negative values indicating a P surplus. The NPP-based demand, which takes ecosystem P recycling into account, results in a significantly higher P demand of 648-1606 Tg P for RCP2.6 and 924-2110 Tg P for RCP8.5. We found that the P demand is sensitive to the turnover of P in decomposing plant material, explaining the large differences between the NPP-based demand and C stock-based demand. The discrepancy between diagnosed P demand and actual P availability (potential P deficit) depends mainly on the assumptions about availability of the different soil P forms. Overall, future P limitation strongly depends on both soil P availability and P recycling on ecosystem scale.

  19. Device interoperability and authentication for telemedical appliance based on the ISO/IEEE 11073 Personal Health Device (PHD) Standards.

    PubMed

    Caranguian, Luther Paul R; Pancho-Festin, Susan; Sison, Luis G

    2012-01-01

    In this study, we focused on the interoperability and authentication of medical devices in the context of telemedical systems. A recent standard called the ISO/IEEE 11073 Personal Health Device (X73-PHD) Standards addresses the device interoperability problem by defining common protocols for agent (medical device) and manager (appliance) interface. The X73-PHD standard however has not addressed security and authentication of medical devices which is important in establishing integrity of a telemedical system. We have designed and implemented a security policy within the X73-PHD standards. The policy will enable device authentication using Asymmetric-Key Cryptography and the RSA algorithm as the digital signature scheme. We used two approaches for performing the digital signatures: direct software implementation and use of embedded security modules (ESM). The two approaches were evaluated and compared in terms of execution time and memory requirement. For the standard 2048-bit RSA, ESM calculates digital signatures only 12% of the total time for the direct implementation. Moreover, analysis shows that ESM offers more security advantage such as secure storage of keys compared to using direct implementation. Interoperability with other systems was verified by testing the system with LNI Healthlink, a manager software that implements the X73-PHD standard. Lastly, security analysis was done and the system's response to common attacks on authentication systems was analyzed and several measures were implemented to protect the system against them.

  20. Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models.

    PubMed

    Sun, Yan; Peng, Shushi; Goll, Daniel S; Ciais, Philippe; Guenet, Bertrand; Guimberteau, Matthieu; Hinsinger, Philippe; Janssens, Ivan A; Peñuelas, Josep; Piao, Shilong; Poulter, Benjamin; Violette, Aurélie; Yang, Xiaojuan; Yin, Yi; Zeng, Hui

    2017-07-01

    Most of the Earth System Models (ESMs) project increases in net primary productivity (NPP) and terrestrial carbon (C) storage during the 21st century. Despite empirical evidence that limited availability of phosphorus (P) may limit the response of NPP to increasing atmospheric CO 2 , none of the ESMs used in the previous Intergovernmental Panel on Climate Change assessment accounted for P limitation. We diagnosed from ESM simulations the amount of P need to support increases in carbon uptake by natural ecosystems using two approaches: the demand derived from (1) changes in C stocks and (2) changes in NPP. The C stock-based additional P demand was estimated to range between -31 and 193 Tg P and between -89 and 262 Tg P for Representative Concentration Pathway (RCP) 2.6 and RCP8.5, respectively, with negative values indicating a P surplus. The NPP-based demand, which takes ecosystem P recycling into account, results in a significantly higher P demand of 648-1606 Tg P for RCP2.6 and 924-2110 Tg P for RCP8.5. We found that the P demand is sensitive to the turnover of P in decomposing plant material, explaining the large differences between the NPP-based demand and C stock-based demand. The discrepancy between diagnosed P demand and actual P availability (potential P deficit) depends mainly on the assumptions about availability of the different soil P forms. Overall, future P limitation strongly depends on both soil P availability and P recycling on ecosystem scale.

  1. Parametric Analysis of Life Support Systems for Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Swickrath, Michael J.; Anderson, Molly S.; Bagdigian, Bob M.

    2011-01-01

    The National Aeronautics and Space Administration is in a process of evaluating future targets for space exploration. In order to maintain the welfare of a crew during future missions, a suite of life support technology is responsible for oxygen and water generation, carbon dioxide control, the removal of trace concentrations of organic contaminants, processing and recovery of water, and the storage and reclamation of solid waste. For each particular life support subsystem, a variety competing technologies either exist or are under aggressive development efforts. Each individual technology has strengths and weaknesses with regard to launch mass, power and cooling requirements, volume of hardware and consumables, and crew time requirements for operation. However, from a system level perspective, the favorability of each life support architecture is better assessed when the sub-system technologies are analyzed in aggregate. In order to evaluate each specific life support system architecture, the measure of equivalent system mass (ESM) was employed to benchmark system favorability. Moreover, the results discussed herein will be from the context of loop-closure with respect to the air, water, and waste sub-systems. Specifically, closure relates to the amount of consumables mass that crosses the boundary of the vehicle over the lifetime of a mission. As will be demonstrated in this manuscript, the optimal level of loop closure is heavily dependent upon mission requirements such as duration and the level of extra-vehicular activity (EVA) performed. Sub-system level trades were also considered as a function of mission duration to assess when increased loop closure is practical. Although many additional factors will likely merit consideration in designing life support systems for future missions, the ESM results described herein provide a context for future architecture design decisions toward a flexible path program.

  2. Towards an integrated European strong motion data distribution

    NASA Astrophysics Data System (ADS)

    Luzi, Lucia; Clinton, John; Cauzzi, Carlo; Puglia, Rodolfo; Michelini, Alberto; Van Eck, Torild; Sleeman, Reinhoud; Akkar, Sinan

    2013-04-01

    Recent decades have seen a significant increase in the quality and quantity of strong motion data collected in Europe, as dense and often real-time and continuously monitored broadband strong motion networks have been constructed in many nations. There has been a concurrent increase in demand for access to strong motion data not only from researchers for engineering and seismological studies, but also from civil authorities and seismic networks for the rapid assessment of ground motion and shaking intensity following significant earthquakes (e.g. ShakeMaps). Aside from a few notable exceptions on the national scale, databases providing access to strong motion data has not appeared to keep pace with these developments. In the framework of the EC infrastructure project NERA (2010 - 2014), that integrates key research infrastructures in Europe for monitoring earthquakes and assessing their hazard and risk, the network activity NA3 deals with the networking of acceleration networks and SM data. Within the NA3 activity two infrastructures are being constructed: i) a Rapid Response Strong Motion (RRSM) database, that following a strong event, automatically parameterises all available on-scale waveform data within the European Integrated waveform Data Archives (EIDA) and makes the waveforms easily available to the seismological community within minutes of an event; and ii) a European Strong Motion (ESM) database of accelerometric records, with associated metadata relevant to earthquake engineering and seismology research communities, using standard, manual processing that reflects the state of the art and research needs in these fields. These two separate repositories form the core infrastructures being built to distribute strong motion data in Europe in order to guarantee rapid and long-term availability of high quality waveform data to both the international scientific community and the hazard mitigation communities. These infrastructures will provide the access to strong motion data in an eventual EPOS seismological service. A working group on Strong Motion data is being created at ORFEUS in 2013. This body, consisting of experts in strong motion data collection, processing and research from across Europe, will provide the umbrella organisation that will 1) have the political clout to negotiate data sharing agreements with strong motion data providers and 2) manage the software during a transition from the end of NERA to the EPOS community. We expect the community providing data to the RRSM and ESM will gradually grow, under the supervision of ORFEUS, and eventually include strong motion data from networks from all European countries that can have an open data policy.

  3. Control of Laser Plasma Based Accelerators up to 1 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Kei

    2007-12-01

    This dissertation documents the development of a broadband electron spectrometer (ESM) for GeV class Laser Wakefield Accelerators (LWFA), the production of high quality GeV electron beams (e-beams) for the first time in a LWFA by using a capillary discharge guide (CDG), and a statistical analysis of CDG-LWFAs. An ESM specialized for CDG-LWFAs with an unprecedented wide momentum acceptance, from 0.01 to 1.1 GeV in a single shot, has been developed. Simultaneous measurement of e-beam spectra and output laser properties as well as a large angular acceptance (> ± 10 mrad) were realized by employing a slitless scheme. A scintillating screenmore » (LANEX Fast back, LANEX-FB)--camera system allowed faster than 1 Hz operation and evaluation of the spatial properties of e-beams. The design provided sufficient resolution for the whole range of the ESM (below 5% for beams with 2 mrad divergence). The calibration between light yield from LANEX-FB and total charge, and a study on the electron energy dependence (0.071 to 1.23 GeV) of LANEX-FB were performed at the Advanced light source (ALS), Lawrence Berkeley National Laboratory (LBNL). Using this calibration data, the developed ESM provided a charge measurement as well. The production of high quality electron beams up to 1 GeV from a centimeter-scale accelerator was demonstrated. The experiment used a 310 μm diameter gas-filled capillary discharge waveguide that channeled relativistically-intense laser pulses (42 TW, 4.5 x 10 18 W/cm 2) over 3.3 centimeters of sufficiently low density (≃ 4.3 x 10 18/cm 3) plasma. Also demonstrated was stable self-injection and acceleration at a beam energy of ≃ 0.5 GeV by using a 225 μm diameter capillary. Relativistically-intense laser pulses (12 TW, 1.3 x 10 18W/cm 2) were guided over 3.3 centimeters of low density (≃ 3.5 x 10 18/cm 3) plasma in this experiment. A statistical analysis of the CDG-LWFAs performance was carried out. By taking advantage of the high repetition rate experimental system, several thousands of shots were taken in a broad range of the laser and plasma parameters. An analysis program was developed to sort and select the data by specified parameters, and then to evaluate performance statistically. The analysis suggested that the generation of GeV-level beams comes from a highly unstable and regime. By having the plasma density slightly above the threshold density for self injection, (1) the longest dephasing length possible was provided, which led to the generation of high energy e-beams, and (2) the number of electrons injected into the wakefield was kept small, which led to the generation of high quality (low energy spread) e-beams by minimizing the beam loading effect on the wake. The analysis of the stable half-GeV beam regime showed the requirements for stable self injection and acceleration. A small change of discharge delay t dsc, and input energy E in, significantly affected performance. The statistical analysis provided information for future optimization, and suggested possible schemes for improvement of the stability and higher quality beam generation. A CDG-LWFA is envisioned as a construction block for the next generation accelerator, enabling significant cost and size reductions.« less

  4. The Norwegian Earth System Model, NorESM1-M - Part 2: Climate response and scenario projections

    NASA Astrophysics Data System (ADS)

    Iversen, T.; Bentsen, M.; Bethke, I.; Debernard, J. B.; Kirkevåg, A.; Seland, Ø.; Drange, H.; Kristjánsson, J. E.; Medhaug, I.; Sand, M.; Seierstad, I. A.

    2012-09-01

    The NorESM1-M simulation results for CMIP5 (http://cmip-pcmdi.llnl.gov/cmip5/index.html) are described and discussed. Together with the accompanying paper by Bentsen et al. (2012), this paper documents that NorESM1-M is a valuable global climate model for research and for providing complementary results to the evaluation of possible man made climate change. NorESM is based on the model CCSM4 operated at NCAR on behalf of many contributors in USA. The ocean model is replaced by a developed version of MICOM and the atmospheric model is extended with on-line calculations of aerosols, their direct effect, and their indirect effect on warm clouds. Model validation is presented in a companion paper (Bentsen et al., 2012). NorESM1-M is estimated to have equilibrium climate sensitivity slightly smaller than 2.9 K, a transient climate response just below 1.4 K, and is less sensitive than most other models. Cloud feedbacks damp the response, and a strong AMOC reduces the heat fraction available for increasing near surface temperatures, for evaporation, and for melting ice. The future projections based on RCP scenarios yield global surface air temperature increase almost one standard deviation lower than a 15-model average. Summer sea-ice is projected to decrease considerably by 2100, and completely for RCP8.5. The AMOC is projected to reduce by 12%, 15-17%, and 32% for the RCP2.6, 4.5, 6.0 and 8.5 respectively. Precipitation is projected to increase in the tropics, decrease in the subtropics and in southern parts of the northern extra-tropics during summer, and otherwise increase in most of the extra-tropics. Changes in the atmospheric water cycle indicate that precipitation events over continents will become more intense and dry spells more frequent. Extra-tropical storminess in the Northern Hemisphere is projected to shift northwards. There are indications of more frequent spring and summer blocking in the Euro-Atlantic sectors and that ENSO events weaken but appear more frequent. These indications are uncertain because of biases in the model's representation of present-day conditions. There are indications that positive phase PNA and negative phase NAO become less frequent under the RCP8.5 scenario, but also this result is considered uncertain. Single-forcing experiments indicate that aerosols and greenhouse gases produce similar geographical patterns of response for near surface temperature and precipitation. These patterns tend to have opposite sign, with important exceptions for precipitation at low latitudes. The asymmetric aerosol effects between the two hemispheres leads to a southward displacement of ITCZ. Both forcing agents thus tend to reduce northern hemispheric subtropical precipitation.

  5. Encyclopedia of Smart Materials, 2 Volume Set

    NASA Astrophysics Data System (ADS)

    Schwartz, Mel

    2002-03-01

    Smart materials--materials and structures that can impart information about their environment to an observer or monitoring device--are revolutionizing fields as diverse as engineering, optics, and medical technology. Advances in smart materials are impacting disciplines across the scientific and technological landscape. Now, practictioners and researchers have an authoritative source to go to for answers about this emerging new area. Encyclopedia of Smart Materials provides A-to-Z coverage of the entire field of intelligent materials. Discussions of theory, fabrication, processing, applications, and uses of these unique materials are presented here in a collection of concise entries from the world's foremost experts in the field--including scientists, educators and engineers. This encyclopedia is as broad in scope as the technology itself, addressing daily, commercial applications as well as sophisticated units designed to operate in space, underwater, underground, and within the human body. Extensively cross-referenced and generously supplemented with bibliographies and indexes, this book's treatment also broaches the specialized properties and coatings that are required for the use of materials in extreme conditions. Illustrated with photographs, tables, line drawings, and equations, Encyclopedia of Smart Materials is the premier reference for material scientists, chemists, chemical engineers, process engineers, consultants, patent attorneys and students in these areas. An essential resource on the shelves of laboratories, government facilities, and academic libraries. Editor-in-Chief, Mel Schwartz has over forty years of experience with metals, ceramics, and composites, with special expertise in brazing. The holder of five patents, he has authored thirteen books and more than one hundred technical papers and articles. Reach the information you need rapidly and easily with the ONLINE edition of the Encyclopedia of Smart Materials. The online edition delivers all the rich content of the print edition with the added benefits of an advanced search engine and the desktop convenience of web access. For more information or to license the online edition (beginning July 2002) please visit: www.interscience.wiley.com/reference/esm

  6. A whole brain morphometric analysis of changes associated with pre-term birth

    NASA Astrophysics Data System (ADS)

    Thomaz, C. E.; Boardman, J. P.; Counsell, S.; Hill, D. L. G.; Hajnal, J. V.; Edwards, A. D.; Rutherford, M. A.; Gillies, D. F.; Rueckert, D.

    2006-03-01

    Pre-term birth is strongly associated with subsequent neuropsychiatric impairment. To identify structural differences in preterm infants we have examined a dataset of magnetic resonance (MR) images containing 88 preterm infants and 19 term born controls. We have analyzed these images by combining image registration, deformation based morphometry (DBM), multivariate statistics, and effect size maps (ESM). The methodology described has been performed directly on the MR intensity images rather than on segmented versions of the images. The results indicate that the approach described makes clear the statistical differences between the control and preterm samples, showing a leave-one-out classification accuracy of 94.74% and 95.45% respectively. In addition, finding the most discriminant direction between the groups and using DBM features and ESM we are able to identify not only what are the changes between preterm and term groups but also how relatively relevant they are in terms of volume expansion and contraction.

  7. Silymarin in liposomes and ethosomes: pharmacokinetics and tissue distribution in free-moving rats by high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Chang, Li-Wen; Hou, Mei-Ling; Tsai, Tung-Hu

    2014-12-03

    The aim of this study was to prepare silymarin formulations (silymarin entrapped in liposomes and ethosomes, formulations referred to as LSM and ESM, respectively) to improve oral bioavailability of silymarin and evaluate its tissue distribution by liquid chromatography with tandem mass spectrometry (LC-MS/MS) in free-moving rats. Silibinin is the major active constituent of silymarin, which is the main component to be analyzed. A rapid, sensitive, and repeatable LC-MS/MS method was developed and validated in terms of precision, accuracy, and extraction recovery. Furthermore, the established method was applied to study the pharmacokinetics and tissue distribution of silymarin in rats. The size, ζ potential, and drug release of the formulations were characterized. These results showed that the LSM and ESM encapsulated formulations of silymarin may provide more efficient tissue distribution and increased oral bioavailability, thus improving its therapeutic bioactive properties in the body.

  8. Improved Seasonal Prediction of European Summer Temperatures With New Five-Layer Soil-Hydrology Scheme

    NASA Astrophysics Data System (ADS)

    Bunzel, Felix; Müller, Wolfgang A.; Dobrynin, Mikhail; Fröhlich, Kristina; Hagemann, Stefan; Pohlmann, Holger; Stacke, Tobias; Baehr, Johanna

    2018-01-01

    We evaluate the impact of a new five-layer soil-hydrology scheme on seasonal hindcast skill of 2 m temperatures over Europe obtained with the Max Planck Institute Earth System Model (MPI-ESM). Assimilation experiments from 1981 to 2010 and 10-member seasonal hindcasts initialized on 1 May each year are performed with MPI-ESM in two soil configurations, one using a bucket scheme and one a new five-layer soil-hydrology scheme. We find the seasonal hindcast skill for European summer temperatures to improve with the five-layer scheme compared to the bucket scheme and investigate possible causes for these improvements. First, improved indirect soil moisture assimilation allows for enhanced soil moisture-temperature feedbacks in the hindcasts. Additionally, this leads to improved prediction of anomalies in the 500 hPa geopotential height surface, reflecting more realistic atmospheric circulation patterns over Europe.

  9. Coiling of elastic rods from a geometric perspective

    NASA Astrophysics Data System (ADS)

    Jawed, Mohammad; Brun, Pierre-Thomas; Reis, Pedro

    2015-03-01

    We present results from a systematic numerical investigation of the pattern formation of coiling obtained when a slender elastic rod is deployed onto a moving substrate; a system known as the elastic sewing machine (ESM). The Discrete Elastic Rods method is employed to explore the parameter space, construct phase diagrams, identify their phase boundaries and characterize the morphology of the patterns. The nontrivial geometric nonlinearities are described in terms of the gravito-bending length and the deployment height. Our results are interpreted using a reduced geometric model for the evolution of the position of the contact point with the belt and the curvature of the rod in its neighborhood. This geometric model reproduces all of the coiling patterns of the ESM, which allows us to establish a universal link between our elastic problem and the analogous patterns obtained when depositing a viscous thread onto a moving surface; a well-known system referred to as the fluid mechanical sewing machine.

  10. Towards Actionable Waterborne and Vector-borne Disease Forecasts

    NASA Astrophysics Data System (ADS)

    Zaitchik, B. F.

    2015-12-01

    Numerous studies have shown that remote sensing (RS) and Earth System Models (ESM) can make important contributions to the analysis, monitoring and prediction of waterborne and vector-borne illnesses. Unsurprisingly, however, the great majority of these studies have been proof-of-concept investigations, and vanishingly few have been translated into operational and utilized disease early warning systems. To some extent this is simply an example of the general challenge of translating research findings into decision-relevant operations. Disease early warning, however, entails specific challenges that distinguish it from many other fields of environmental monitoring and prediction. Some of these challenges stem from predictability and data constraints, while others relate to the difficulty of communicating predictions and the particularly high price of false alarms. This presentation will review progress on the translation of analysis to decision making, identify avenues for enhancing forecast utility, and propose priorities for future RS and ESM investments in disease monitoring and prediction.

  11. New imaging algorithm in diffusion tomography

    NASA Astrophysics Data System (ADS)

    Klibanov, Michael V.; Lucas, Thomas R.; Frank, Robert M.

    1997-08-01

    A novel imaging algorithm for diffusion/optical tomography is presented for the case of the time dependent diffusion equation. Numerical tests are conducted for ranges of parameters realistic for applications to an early breast cancer diagnosis using ultrafast laser pulses. This is a perturbation-like method which works for both homogeneous a heterogeneous background media. Its main innovation lies in a new approach for a novel linearized problem (LP). Such an LP is derived and reduced to a boundary value problem for a coupled system of elliptic partial differential equations. As is well known, the solution of such a system amounts to the factorization of well conditioned, sparse matrices with few non-zero entries clustered along the diagonal, which can be done very rapidly. Thus, the main advantages of this technique are that it is fast and accurate. The authors call this approach the elliptic systems method (ESM). The ESM can be extended for other data collection schemes.

  12. Constraints on High Northern Photosynthesis Increase Using Earth System Models and a Set of Independent Observations

    NASA Astrophysics Data System (ADS)

    Winkler, A. J.; Brovkin, V.; Myneni, R.; Alexandrov, G.

    2017-12-01

    Plant growth in the northern high latitudes benefits from increasing temperature (radiative effect) and CO2 fertilization as a consequence of rising atmospheric CO2 concentration. This enhanced gross primary production (GPP) is evident in large scale increase in summer time greening over the 36-year record of satellite observations. In this time period also various global ecosystem models simulate a greening trend in terms of increasing leaf area index (LAI). We also found a persistent greening trend analyzing historical simulations of Earth system models (ESM) participating in Phase 5 of the Coupled Model Intercomparison Project (CMIP5). However, these models span a large range in strength of the LAI trend, expressed as sensitivity to both key environmental factors, temperature and CO2 concentration. There is also a wide spread in magnitude of the associated increase of terrestrial GPP among the ESMs, which contributes to pronounced uncertainties in projections of future climate change. Here we demonstrate that there is a linear relationship across the CMIP5 model ensemble between projected GPP changes and historical LAI sensitivity, which allows using the observed LAI sensitivity as an "emerging constraint" on GPP estimation at future CO2 concentration. This constrained estimate of future GPP is substantially higher than the traditional multi-model mean suggesting that the majority of current ESMs may be significantly underestimating carbon fixation by vegetation in NHL. We provide three independent lines of evidence in analyzing observed and simulated CO2 amplitude as well as atmospheric CO2 inversion products to arrive at the same conclusion.

  13. Evaluation of the New Dynamic Global Vegetation Model in CAS-ESM

    NASA Astrophysics Data System (ADS)

    Zhu, Jiawen; Zeng, Xiaodong; Zhang, Minghua; Dai, Yongjiu; Ji, Duoying; Li, Fang; Zhang, Qian; Zhang, He; Song, Xiang

    2018-06-01

    In the past several decades, dynamic global vegetation models (DGVMs) have been the most widely used and appropriate tool at the global scale to investigate vegetation-climate interactions. At the Institute of Atmospheric Physics, a new version of DGVM (IAP-DGVM) has been developed and coupled to the Common Land Model (CoLM) within the framework of the Chinese Academy of Sciences' Earth System Model (CAS-ESM). This work reports the performance of IAP-DGVM through comparisons with that of the default DGVM of CoLM (CoLM-DGVM) and observations. With respect to CoLMDGVM, IAP-DGVM simulated fewer tropical trees, more "needleleaf evergreen boreal tree" and "broadleaf deciduous boreal shrub", and a better representation of grasses. These contributed to a more realistic vegetation distribution in IAP-DGVM, including spatial patterns, total areas, and compositions. Moreover, IAP-DGVM also produced more accurate carbon fluxes than CoLM-DGVM when compared with observational estimates. Gross primary productivity and net primary production in IAP-DGVM were in better agreement with observations than those of CoLM-DGVM, and the tropical pattern of fire carbon emissions in IAP-DGVM was much more consistent with the observation than that in CoLM-DGVM. The leaf area index simulated by IAP-DGVM was closer to the observation than that of CoLM-DGVM; however, both simulated values about twice as large as in the observation. This evaluation provides valuable information for the application of CAS-ESM, as well as for other model communities in terms of a comparative benchmark.

  14. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity.

    PubMed

    Swann, Abigail L S; Hoffman, Forrest M; Koven, Charles D; Randerson, James T

    2016-09-06

    Rising atmospheric CO2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area. This area drops to 37% with the use of precipitation minus evapotranspiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment.

  15. A Data-Driven Assessment of the Sensitivity of Global Ecosystems to Climate Anomalies

    NASA Astrophysics Data System (ADS)

    Miralles, D. G.; Papagiannopoulou, C.; Demuzere, M.; Decubber, S.; Waegeman, W.; Verhoest, N.; Dorigo, W.

    2017-12-01

    Vegetation is a central player in the climate system, constraining atmospheric conditions through a series of feedbacks. This fundamental role highlights the importance of understanding regional drivers of ecological sensitivity and the response of vegetation to climatic changes. While nutrient availability and short-term disturbances can be crucial for vegetation at various spatiotemporal scales, natural vegetation dynamics are overall driven by climate. At monthly scales, the interactions between vegetation and climate become complex: some vegetation types react preferentially to specific climatic changes, with different levels of intensity, resilience and lagged response. For our current Earth System Models (ESMs) being able to capture this complexity is crucial but extremely challenging. This adds uncertainty to our projections of future climate and the fate of global ecosystems. Here, following a Granger causality framework based on a non-linear random forest predictive model, we exploit the current wealth of satellite data records to uncover the main climatic drivers of monthly vegetation variability globally. Results based on three decades of satellite data indicate that water availability is the most dominant factor driving vegetation in over 60% of the vegetated land. This overall dependency of ecosystems on water availability is larger than previously reported, partly owed to the ability of our machine-learning framework to disentangle the co-linearites between climatic drivers, and to quantify non-linear impacts of climate on vegetation. Our observation-based results are then used to benchmark ESMs on their representation of vegetation sensitivity to climate and climatic extremes. Our findings indicate that the sensitivity of vegetation to climatic anomalies is ill-reproduced by some widely-used ESMs.

  16. Development, content validity, and cross-cultural adaptation of a patient-reported outcome measure for real-time symptom assessment in irritable bowel syndrome.

    PubMed

    Vork, L; Keszthelyi, D; Mujagic, Z; Kruimel, J W; Leue, C; Pontén, I; Törnblom, H; Simrén, M; Albu-Soda, A; Aziz, Q; Corsetti, M; Holvoet, L; Tack, J; Rao, S S; van Os, J; Quetglas, E G; Drossman, D A; Masclee, A A M

    2018-03-01

    End-of-day questionnaires, which are considered the gold standard for assessing abdominal pain and other gastrointestinal (GI) symptoms in irritable bowel syndrome (IBS), are influenced by recall and ecological bias. The experience sampling method (ESM) is characterized by random and repeated assessments in the natural state and environment of a subject, and herewith overcomes these limitations. This report describes the development of a patient-reported outcome measure (PROM) based on the ESM principle, taking into account content validity and cross-cultural adaptation. Focus group interviews with IBS patients and expert meetings with international experts in the fields of neurogastroenterology & motility and pain were performed in order to select the items for the PROM. Forward-and-back translation and cognitive interviews were performed to adapt the instrument for the use in different countries and to assure on patients' understanding with the final items. Focus group interviews revealed 42 items, categorized into five domains: physical status, defecation, mood and psychological factors, context and environment, and nutrition and drug use. Experts reduced the number of items to 32 and cognitive interviewing after translation resulted in a few slight adjustments regarding linguistic issues, but not regarding content of the items. An ESM-based PROM, suitable for momentary assessment of IBS symptom patterns was developed, taking into account content validity and cross-cultural adaptation. This PROM will be implemented in a specifically designed smartphone application and further validation in a multicenter setting will follow. © 2017 John Wiley & Sons Ltd.

  17. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity

    PubMed Central

    Koven, Charles D.; Randerson, James T.

    2016-01-01

    Rising atmospheric CO2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area. This area drops to 37% with the use of precipitation minus evapotranspiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment. PMID:27573831

  18. Virtual Electrochemical Strain Microscopy of Polycrystalline LiCoO2 Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Ding-wen; Balke, Nina; Kalinin, Sergei V

    2011-01-01

    A recently developed technique, electrochemical strain microscopy (ESM), utilizes the strong coupling between ionic current and anisotropic volumetric chemical expansion of lithium-ion electrode materials to dynamically probe the sub-one-hundred? nm inter-facial kinetic intercalation properties. A numerical technique based on the finite element method was developed to analyze the underlying physics that govern the ESM signal generation and establish relations to battery performance. The performed analysis demonstrates that the diffusion path within a thin film is tortuous and the extent of lithium diffusion into the electrode is dependent on the SPM-tip-imposed overpotential frequency. The detected surface actuation gives rise to themore » development of an electromechanical hysteresis loop whose shape is dependent on grain size and overpotential frequency. Shape and tilting angle of the loop are classified into low and high frequency regimes, separated by a transition frequency which is also a function of lithium diffusivity and grain size, f{sub T} = D//{sup 2}. Research shows that the crystallographic orientation of the surface actuated grain has a significant impact on the shape of the loop. The polycrystalline crystallographic orientation of the grains induces a diffusion path network in the electrode which impacts on the mechanical reliability of the battery. Simulations demonstrate that continuous battery cycling results in a cumulative capacity loss as a result of the hysteric non-reversible lithium intercalation. Furthermore, results suggest that ESM has the capability to infer the local out-of-plane lithium diffusivity and the out-of-plane contribution to Vegard tensor.« less

  19. Virtual Electrochemical Strain Microscopy of Polycrystalline LiCoO2 Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Ding-Wen; Balke, Nina; Kalinin, Sergei V.

    2011-08-03

    A recently developed technique, electrochemical strain microscopy (ESM), utilizes the strong coupling between ionic current and anisotropic volumetric chemical expansion of lithium-ion electrode materials to dynamically probe the sub-one-hundred? nm inter-facial kinetic intercalation properties. A numerical technique based on the finite element method was developed to analyze the underlying physics that govern the ESM signal generation and establish relations to battery performance. The performed analysis demonstrates that the diffusion path within a thin film is tortuous and the extent of lithium diffusion into the electrode is dependent on the SPM-tip-imposed overpotential frequency. The detected surface actuation gives rise to themore » development of an electromechanical hysteresis loop whose shape is dependent on grain size and overpotential frequency. Shape and tilting angle of the loop are classified into low and high frequency regimes, separated by a transition frequency which is also a function of lithium diffusivity and grain size, f T = D/l₂. Research shows that the crystallographic orientation of the surface actuated grain has a significant impact on the shape of the loop. The polycrystalline crystallographic orientation of the grains induces a diffusion path network in the electrode which impacts on the mechanical reliability of the battery. Simulations demonstrate that continuous battery cycling results in a cumulative capacity loss as a result of the hysteric non-reversible lithium intercalation. Furthermore, results suggest that ESM has the capability to infer the local out-of-plane lithium diffusivity and the out-of-plane contribution to Vegard tensor.« less

  20. Effectiveness of asthma education with and without a self-management plan in hospitalized children.

    PubMed

    Espinoza-Palma, Tatiana; Zamorano, Alejandra; Arancibia, Francisca; Bustos, María-Francisca; Silva, Maria José; Cardenas, Consuelo; De La Barra, Pedro; Puente, Victoria; Cerda, Jaime; Castro-Rodriguez, José A; Prado, Francisco

    2009-11-01

    Background. Formal education in primary care can reduce asthma exacerbations. However, there are few studies in hospitalized children, with none originating in Latin America. Methods. A prospective randomized study was designed to evaluate whether a full education with self-management plan (ESM) was more effective than an education without self-management plan (E) in reducing asthma hospitalization. Children (5 to 15 years of age) who were hospitalized for an asthma attack were divided in two groups. Children in the E group received general instructions based on a booklet. Those in the ESM group received the same booklet plus a self-management guide and a puzzle game that reinforces the lessons learned in the booklet. Patients were interviewed every 3 months, by telephone, for one year. Interviewers recording the number of hospitalizations, exacerbations, and emergency visits for asthma and oral steroid burst uses. Results. From 88 children who met the inclusion criteria, 77 (86%) completed one year of follow-up (41 from E and 36 from ESM group). Overall, after one year, the hospitalization decreased by 66% and the inhaled corticosteroids therapy increased from 36% to 79%. At the end of the study, there was no difference in exacerbations, emergency visits, oral steroid burst uses, or hospitalizations between the two groups. Conclusions. Asthma education with or without a self-management plan during asthma hospitalization were effective in reducing exacerbations, emergency visits, oral steroid burst uses, and future rehospitalizations. This evidence supports the importance of providing a complete asthma education plan in any patient who is admitted for asthma exacerbation.

  1. Towards a more efficient and robust representation of subsurface hydrological processes in Earth System Models

    NASA Astrophysics Data System (ADS)

    Rosolem, R.; Rahman, M.; Kollet, S. J.; Wagener, T.

    2017-12-01

    Understanding the impacts of land cover and climate changes on terrestrial hydrometeorology is important across a range of spatial and temporal scales. Earth System Models (ESMs) provide a robust platform for evaluating these impacts. However, current ESMs lack the representation of key hydrological processes (e.g., preferential water flow, and direct interactions with aquifers) in general. The typical "free drainage" conceptualization of land models can misrepresent the magnitude of those interactions, consequently affecting the exchange of energy and water at the surface as well as estimates of groundwater recharge. Recent studies show the benefits of explicitly simulating the interactions between subsurface and surface processes in similar models. However, such parameterizations are often computationally demanding resulting in limited application for large/global-scale studies. Here, we take a different approach in developing a novel parameterization for groundwater dynamics. Instead of directly adding another complex process to an established land model, we examine a set of comprehensive experimental scenarios using a very robust and establish three-dimensional hydrological model to develop a simpler parameterization that represents the aquifer to land surface interactions. The main goal of our developed parameterization is to simultaneously maximize the computational gain (i.e., "efficiency") while minimizing simulation errors in comparison to the full 3D model (i.e., "robustness") to allow for easy implementation in ESMs globally. Our study focuses primarily on understanding both the dynamics for groundwater recharge and discharge, respectively. Preliminary results show that our proposed approach significantly reduced the computational demand while model deviations from the full 3D model are considered to be small for these processes.

  2. Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models

    DOE PAGES

    Sun, Yan; Peng, Shushi; Goll, Daniel S.; ...

    2017-04-28

    Most of the Earth System Models (ESMs) project increases in net primary productivity (NPP) and terrestrial carbon (C) storage during the 21st century. Despite empirical evidence that limited availability of phosphorus (P) may limit the response of NPP to increasing atmospheric CO 2, none of the ESMs used in the previous Intergovernmental Panel on Climate Change assessment accounted for P limitation. We diagnosed from ESM simulations the amount of P need to support increases in carbon uptake by natural ecosystems using two approaches: the demand derived from changes in C stocks and changes in NPP. The C stock-based additional Pmore » demand was estimated to range between -31 and 193 Tg P and between -89 and 262 Tg P for Representative Concentration Pathway (RCP) 2.6 and RCP8.5, respectively, with negative values indicating a P surplus. The NPP-based demand, which takes ecosystem P recycling into account, results in a significantly higher P demand of 648–1606 Tg P for RCP2.6 and 924–2110 Tg P for RCP8.5. We found that the P demand is sensitive to the turnover of P in decomposing plant material, explaining the large differences between the NPP-based demand and C stock-based demand. The discrepancy between diagnosed P demand and actual P availability (potential P deficit) depends mainly on the assumptions about availability of the different soil P forms. Altogether, future P limitation strongly depends on both soil P availability and P recycling on ecosystem scale.« less

  3. Monthly streamflow forecasting at varying spatial scales in the Rhine basin

    NASA Astrophysics Data System (ADS)

    Schick, Simon; Rössler, Ole; Weingartner, Rolf

    2018-02-01

    Model output statistics (MOS) methods can be used to empirically relate an environmental variable of interest to predictions from earth system models (ESMs). This variable often belongs to a spatial scale not resolved by the ESM. Here, using the linear model fitted by least squares, we regress monthly mean streamflow of the Rhine River at Lobith and Basel against seasonal predictions of precipitation, surface air temperature, and runoff from the European Centre for Medium-Range Weather Forecasts. To address potential effects of a scale mismatch between the ESM's horizontal grid resolution and the hydrological application, the MOS method is further tested with an experiment conducted at the subcatchment scale. This experiment applies the MOS method to 133 additional gauging stations located within the Rhine basin and combines the forecasts from the subcatchments to predict streamflow at Lobith and Basel. In doing so, the MOS method is tested for catchments areas covering 4 orders of magnitude. Using data from the period 1981-2011, the results show that skill, with respect to climatology, is restricted on average to the first month ahead. This result holds for both the predictor combination that mimics the initial conditions and the predictor combinations that additionally include the dynamical seasonal predictions. The latter, however, reduce the mean absolute error of the former in the range of 5 to 12 %, which is consistently reproduced at the subcatchment scale. An additional experiment conducted for 5-day mean streamflow indicates that the dynamical predictions help to reduce uncertainties up to about 20 days ahead, but it also reveals some shortcomings of the present MOS method.

  4. Predicting dense nonaqueous phase liquid dissolution using a simplified source depletion model parameterized with partitioning tracers

    NASA Astrophysics Data System (ADS)

    Basu, Nandita B.; Fure, Adrian D.; Jawitz, James W.

    2008-07-01

    Simulations of nonpartitioning and partitioning tracer tests were used to parameterize the equilibrium stream tube model (ESM) that predicts the dissolution dynamics of dense nonaqueous phase liquids (DNAPLs) as a function of the Lagrangian properties of DNAPL source zones. Lagrangian, or stream-tube-based, approaches characterize source zones with as few as two trajectory-integrated parameters, in contrast to the potentially thousands of parameters required to describe the point-by-point variability in permeability and DNAPL in traditional Eulerian modeling approaches. The spill and subsequent dissolution of DNAPLs were simulated in two-dimensional domains having different hydrologic characteristics (variance of the log conductivity field = 0.2, 1, and 3) using the multiphase flow and transport simulator UTCHEM. Nonpartitioning and partitioning tracers were used to characterize the Lagrangian properties (travel time and trajectory-integrated DNAPL content statistics) of DNAPL source zones, which were in turn shown to be sufficient for accurate prediction of source dissolution behavior using the ESM throughout the relatively broad range of hydraulic conductivity variances tested here. The results were found to be relatively insensitive to travel time variability, suggesting that dissolution could be accurately predicted even if the travel time variance was only coarsely estimated. Estimation of the ESM parameters was also demonstrated using an approximate technique based on Eulerian data in the absence of tracer data; however, determining the minimum amount of such data required remains for future work. Finally, the stream tube model was shown to be a more unique predictor of dissolution behavior than approaches based on the ganglia-to-pool model for source zone characterization.

  5. Surface mapping and drilling of extinct seafloor massive sulphide deposits (eSMS) from the TAG Hydrothermal Field, 26oN: A tale of two `Jaspers'

    NASA Astrophysics Data System (ADS)

    Stobbs, I. J.; Lusty, P.; Petersen, S.; Murton, B. J.

    2017-12-01

    Two extinct seafloor massive sulphide (eSMS) deposits within the TAG hydrothermal field, 26oN, mid-Atlantic ridge, were mapped and drilled: Southern Mound and the newly discovered `Rona Mound'. Surface mapping was undertaken by combining high definition video footage and high resolution bathymetry to interpret surface geological and geomorphological features. Drill core was recovered using the BGS RD2 robotic drilling rig. Surface mapping of the mounds revealed a superficial cover of carbonate and iron-oxyhydroxides sediments, observed to directly overly oxide coated sulphide material within fault scarps, which dissect the flanks of both mounds. Drilling at the summits of the mounds revealed similar stratigraphy to the mapping, with the addition of a coherent and dense layer of red-coloured silica-rich `jasper', up to 3m thick, underlying the sediments and overlying unoxidised massive sulphides. The jasper mineralogy is dominated by silica, with minor iron oxides and rare disseminated sulphides. It displays a range of complex textures including filamentous and dendritic iron oxides often coated in silica. Drill core samples show the material to be porous, but relatively impermeable. Strong and positive Eu (REE) anomalies indicates a hydrothermal origin with little evidence of a seawater signature (lack of negative Ce anomaly). Silica precipitation is associated with low temperature hydrothermal activity, chert and jasper materials are locally present within the nearby hydrothermally active TAG mound and are more widespread at low-temperature diffuse hydrothermal sites such as within the MESO field. We interpret the `jasper' layers to be a common product, formed during the waning, low temperature, stage of the hydrothermal cycle which may form an impermeable and resistant `cap' that protects the underlying massive sulphide ore body from oxidation and dissolution. The formation of a `jasper cap' could act automatically to preserve eSMS deposits when hydrothermal circulation ceases and is essential to preserving the resource potential of eSMS deposits. This `jasper' capping layer is important from an economic perspective, and reinforces the need for shallow sub-seafloor mapping as part of any deep-sea mineral exploration. This research received funding from the EC FP7 project Blue Mining (604500).

  6. Evaluation of GCMs in the context of regional predictive climate impact studies.

    NASA Astrophysics Data System (ADS)

    Kokorev, Vasily; Anisimov, Oleg

    2016-04-01

    Significant improvements in the structure, complexity, and general performance of earth system models (ESMs) have been made in the recent decade. Despite these efforts, the range of uncertainty in predicting regional climate impacts remains large. The problem is two-fold. Firstly, there is an intrinsic conflict between the local and regional scales of climate impacts and adaptation strategies, on one hand, and larger scales, at which ESMs demonstrate better performance, on the other. Secondly, there is a growing understanding that majority of the impacts involve thresholds, and are thus driven by extreme climate events, whereas accent in climate projections is conventionally made on gradual changes in means. In this study we assess the uncertainty in projecting extreme climatic events within a region-specific and process-oriented context by examining the skills and ranking of ESMs. We developed a synthetic regionalization of Northern Eurasia that accounts for the spatial features of modern climatic changes and major environmental and socio-economical impacts. Elements of such fragmentation could be considered as natural focus regions that bridge the gap between the spatial scales adopted in climate-impacts studies and patterns of climate change simulated by ESMs. In each focus region we selected several target meteorological variables that govern the key regional impacts, and examined the ability of the models to replicate their seasonal and annual means and trends by testing them against observations. We performed a similar evaluation with regard to extremes and statistics of the target variables. And lastly, we used the results of these analyses to select sets of models that demonstrate the best performance at selected focus regions with regard to selected sets of target meteorological parameters. Ultimately, we ranked the models according to their skills, identified top-end models that "better than average" reproduce the behavior of climatic parameters, and eliminated the outliers. Since the criteria of selecting the "best" models are somewhat loose, we constructed several regional ensembles consisting of different number of high-ranked models and compared results from these optimized ensembles with observations and with the ensemble of all models. We tested our approach in specific regional application of the terrestrial Russian Arctic, considering permafrost and Artic biomes as key regional climate-dependent systems, and temperature and precipitation characteristics governing their state as target meteorological parameters. Results of this case study are deposited on the web portal www.permafrost.su/gcms

  7. Evaluating climate change impacts on streamflow variability based on a multisite multivariate GCM downscaling method in the Jing River of China

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Jin, Jiming

    2017-11-01

    Projected hydrological variability is important for future resource and hazard management of water supplies because changes in hydrological variability can cause more disasters than changes in the mean state. However, climate change scenarios downscaled from Earth System Models (ESMs) at single sites cannot meet the requirements of distributed hydrologic models for simulating hydrological variability. This study developed multisite multivariate climate change scenarios via three steps: (i) spatial downscaling of ESMs using a transfer function method, (ii) temporal downscaling of ESMs using a single-site weather generator, and (iii) reconstruction of spatiotemporal correlations using a distribution-free shuffle procedure. Multisite precipitation and temperature change scenarios for 2011-2040 were generated from five ESMs under four representative concentration pathways to project changes in streamflow variability using the Soil and Water Assessment Tool (SWAT) for the Jing River, China. The correlation reconstruction method performed realistically for intersite and intervariable correlation reproduction and hydrological modeling. The SWAT model was found to be well calibrated with monthly streamflow with a model efficiency coefficient of 0.78. It was projected that the annual mean precipitation would not change, while the mean maximum and minimum temperatures would increase significantly by 1.6 ± 0.3 and 1.3 ± 0.2 °C; the variance ratios of 2011-2040 to 1961-2005 were 1.15 ± 0.13 for precipitation, 1.15 ± 0.14 for mean maximum temperature, and 1.04 ± 0.10 for mean minimum temperature. A warmer climate was predicted for the flood season, while the dry season was projected to become wetter and warmer; the findings indicated that the intra-annual and interannual variations in the future climate would be greater than in the current climate. The total annual streamflow was found to change insignificantly but its variance ratios of 2011-2040 to 1961-2005 increased by 1.25 ± 0.55. Streamflow variability was predicted to become greater over most months on the seasonal scale because of the increased monthly maximum streamflow and decreased monthly minimum streamflow. The increase in streamflow variability was attributed mainly to larger positive contributions from increased precipitation variances rather than negative contributions from increased mean temperatures.

  8. Soil frost-induced soil moisture precipitation feedback and effects on atmospheric states

    NASA Astrophysics Data System (ADS)

    Hagemann, Stefan; Blome, Tanja; Ekici, Altug; Beer, Christian

    2016-04-01

    Permafrost or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. As it is a thermal phenomenon, its characteristics are highly dependent on climatic factors. The impact of the currently observed warming, which is projected to persist during the coming decades due to anthropogenic CO2 input, certainly has effects for the vast permafrost areas of the high northern latitudes. The quantification of these effects, however, is scientifically still an open question. This is partly due to the complexity of the system, where several feedbacks are interacting between land and atmosphere, sometimes counterbalancing each other. Moreover, until recently, many global circulation models (GCMs) and Earth system models (ESMs) lacked the sufficient representation of permafrost physics in their land surface schemes. Within the European Union FP7 project PAGE21, the land surface scheme JSBACH of the Max-Planck-Institute for Meteorology ESM (MPI-ESM) has been equipped with the representation of relevant physical processes for permafrost studies. These processes include the effects of freezing and thawing of soil water for both energy and water cycles, thermal properties depending on soil water and ice contents, and soil moisture movement being influenced by the presence of soil ice. In the present study, it will be analysed how these permafrost relevant processes impact large-scale hydrology and climate over northern hemisphere high latitude land areas. For this analysis, the atmosphere-land part of MPI-ESM, ECHAM6-JSBACH, is driven by prescribed observed SST and sea ice in an AMIP2-type setup with and without the newly implemented permafrost processes. Results show a large improvement in the simulated discharge. On one hand this is related to an improved snowmelt peak of runoff due to frozen soil in spring. On the other hand a subsequent reduction of soil moisture leads to a positive land atmosphere feedback to precipitation over the high latitudes, which reduces the model's wet biases in precipitation and evapotranspiration during the summer. This is noteworthy as soil moisture - atmosphere feedbacks have previously not been in the research focus over the high latitudes. These results point out the importance of high latitude physical processes at the land surface for the regional climate.

  9. Systems Engineering Techniques for ALS Decision Making

    NASA Technical Reports Server (NTRS)

    Rodriquez, Luis F.; Drysdale, Alan E.; Jones, Harry; Levri, Julie A.

    2004-01-01

    The Advanced Life Support (ALS) Metric is the predominant tool for predicting the cost of ALS systems. Metric goals for the ALS Program are daunting, requiring a threefold increase in the ALS Metric by 2010. Confounding the problem, the rate new ALS technologies reach the maturity required for consideration in the ALS Metric and the rate at which new configurations are developed is slow, limiting the search space and potentially giving the perspective of a ALS technology, the ALS Metric may remain elusive. This paper is a sequel to a paper published in the proceedings of the 2003 ICES conference entitled, "Managing to the metric: an approach to optimizing life support costs." The conclusions of that paper state that the largest contributors to the ALS Metric should be targeted by ALS researchers and management for maximum metric reductions. Certainly, these areas potentially offer large potential benefits to future ALS missions; however, the ALS Metric is not the only decision-making tool available to the community. To facilitate decision-making within the ALS community a combination of metrics should be utilized, such as the Equivalent System Mass (ESM)-based ALS metric, but also those available through techniques such as life cycle costing and faithful consideration of the sensitivity of the assumed models and data. Often a lack of data is cited as the reason why these techniques are not considered for utilization. An existing database development effort within the ALS community, known as OPIS, may provide the opportunity to collect the necessary information to enable the proposed systems analyses. A review of these additional analysis techniques is provided, focusing on the data necessary to enable these. The discussion is concluded by proposing how the data may be utilized by analysts in the future.

  10. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    Ianson, Eric E.

    2016-01-01

    NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances NASA's capability for better understanding the current state of the Earth system. ESM and ESSP projects often involve partnerships with other US agencies and/or international organizations. This adds to the complexity of mission development, but allows for a greater scientific return on NASA's investments. The Earth Science Airborne Science Program provides manned and unmanned aircraft systems that further science and advance the use of satellite data. NASA uses these assets worldwide in campaigns to investigate extreme weather events, observe Earth system processes, obtain data for Earth science modeling activities, and calibrate instruments flying aboard Earth science spacecraft. The Airborne Science Program has six dedicated aircraft and access to many other platforms. The Earth Science Multi-Mission Operations program acquires, preserves, and distributes observational data from operating spacecraft to support Earth Science research focus areas. The Earth Observing System Data and Information System (EOSDIS), which has been in operations since 1994, primarily accomplishes this. EOSDIS acquires, processes, archives, and distributes Earth Science data and information products. The archiving of NASA Earth Science information happens at eight Distributed Active Archive Centers (DAACs) and four disciplinary data centers located across the United States. The DAACs specialize by topic area, and make their data available to researchers around the world. The DAACs currently house over 9 petabytes of data, growing at a rate of 6.4 terabytes per day. NASA's current Earth Science portfolio is responsive to the National Research Council (NRC) 2007 Earth Science Decadal Survey and well as the 2010 NASA Response to President Obama's Climate Plan. As the program evolves into the future it will leverage the lessons learned from the current missions in operations and development, and plan for adjustments to future objectives in response to the anticipated 2017 NRC Decadal Survey.

  11. Minority Engineering Program Pipeline: A Proposal to Increase Minority Student Enrollment and Retention in Engineering

    NASA Technical Reports Server (NTRS)

    Charity, Pamela C.; Klein, Paul B.; Wadhwa, Bhushan

    1995-01-01

    The Cleveland State University Minority Engineering Program Pipeline consist of programs which foster engineering career awareness, academic enrichment, and professional development for historically underrepresented minority studies. The programs involved are the Access to Careers in Engineering (ACE) Program for high school pre-engineering students: the LINK Program for undergraduate students pursuing degree which include engineering; and the PEP (Pre-calculus Enrichment Program) and EPIC (Enrichment Program in Calculus) mathematics programs for undergraduate academic enrichment. The pipeline is such that high school graduates from the ACE Program who enroll at Cleveland State University in pursuit of engineering degrees are admitted to the LINK Program for undergraduate level support. LINK Program students are among the minority participants who receive mathematics enrichment through the PEP and EPIC Programs for successful completion of their engineering required math courses. THese programs are interdependent and share the goal of preparing minority students for engineering careers by enabling them to achieve academically and obtain college degree and career related experience.

  12. Protein profiles of hatchery egg shell membrane

    USDA-ARS?s Scientific Manuscript database

    Background: Eggshells, which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of m...

  13. Process-level improvements in CMIP5 models and their impact on tropical variability, the Southern Ocean, and monsoons

    NASA Astrophysics Data System (ADS)

    Lauer, Axel; Jones, Colin; Eyring, Veronika; Evaldsson, Martin; Hagemann, Stefan; Mäkelä, Jarmo; Martin, Gill; Roehrig, Romain; Wang, Shiyu

    2018-01-01

    The performance of updated versions of the four earth system models (ESMs) CNRM, EC-Earth, HadGEM, and MPI-ESM is assessed in comparison to their predecessor versions used in Phase 5 of the Coupled Model Intercomparison Project. The Earth System Model Evaluation Tool (ESMValTool) is applied to evaluate selected climate phenomena in the models against observations. This is the first systematic application of the ESMValTool to assess and document the progress made during an extensive model development and improvement project. This study focuses on the South Asian monsoon (SAM) and the West African monsoon (WAM), the coupled equatorial climate, and Southern Ocean clouds and radiation, which are known to exhibit systematic biases in present-day ESMs. The analysis shows that the tropical precipitation in three out of four models is clearly improved. Two of three updated coupled models show an improved representation of tropical sea surface temperatures with one coupled model not exhibiting a double Intertropical Convergence Zone (ITCZ). Simulated cloud amounts and cloud-radiation interactions are improved over the Southern Ocean. Improvements are also seen in the simulation of the SAM and WAM, although systematic biases remain in regional details and the timing of monsoon rainfall. Analysis of simulations with EC-Earth at different horizontal resolutions from T159 up to T1279 shows that the synoptic-scale variability in precipitation over the SAM and WAM regions improves with higher model resolution. The results suggest that the reasonably good agreement of modeled and observed mean WAM and SAM rainfall in lower-resolution models may be a result of unrealistic intensity distributions.

  14. Elementary signaling modes predict the essentiality of signal transduction network components

    PubMed Central

    2011-01-01

    Background Understanding how signals propagate through signaling pathways and networks is a central goal in systems biology. Quantitative dynamic models help to achieve this understanding, but are difficult to construct and validate because of the scarcity of known mechanistic details and kinetic parameters. Structural and qualitative analysis is emerging as a feasible and useful alternative for interpreting signal transduction. Results In this work, we present an integrative computational method for evaluating the essentiality of components in signaling networks. This approach expands an existing signaling network to a richer representation that incorporates the positive or negative nature of interactions and the synergistic behaviors among multiple components. Our method simulates both knockout and constitutive activation of components as node disruptions, and takes into account the possible cascading effects of a node's disruption. We introduce the concept of elementary signaling mode (ESM), as the minimal set of nodes that can perform signal transduction independently. Our method ranks the importance of signaling components by the effects of their perturbation on the ESMs of the network. Validation on several signaling networks describing the immune response of mammals to bacteria, guard cell abscisic acid signaling in plants, and T cell receptor signaling shows that this method can effectively uncover the essentiality of components mediating a signal transduction process and results in strong agreement with the results of Boolean (logical) dynamic models and experimental observations. Conclusions This integrative method is an efficient procedure for exploratory analysis of large signaling and regulatory networks where dynamic modeling or experimental tests are impractical. Its results serve as testable predictions, provide insights into signal transduction and regulatory mechanisms and can guide targeted computational or experimental follow-up studies. The source codes for the algorithms developed in this study can be found at http://www.phys.psu.edu/~ralbert/ESM. PMID:21426566

  15. A mechanistic diagnosis of the simulation of soil CO2 efflux of the ACME Land Model

    NASA Astrophysics Data System (ADS)

    Liang, J.; Ricciuto, D. M.; Wang, G.; Gu, L.; Hanson, P. J.; Mayes, M. A.

    2017-12-01

    Accurate simulation of the CO2 efflux from soils (i.e., soil respiration) to the atmosphere is critical to project global biogeochemical cycles and the magnitude of climate change in Earth system models (ESMs). Currently, the simulated soil respiration by ESMs still have a large uncertainty. In this study, a mechanistic diagnosis of soil respiration in the Accelerated Climate Model for Energy (ACME) Land Model (ALM) was conducted using long-term observations at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the central U.S. The results showed that the ALM default run significantly underestimated annual soil respiration and gross primary production (GPP), while incorrectly estimating soil water potential. Improved simulations of soil water potential with site-specific data significantly improved the modeled annual soil respiration, primarily because annual GPP was simultaneously improved. Therefore, accurate simulations of soil water potential must be carefully calibrated in ESMs. Despite improved annual soil respiration, the ALM continued to underestimate soil respiration during peak growing seasons, and to overestimate soil respiration during non-peak growing seasons. Simulations involving increased GPP during peak growing seasons increased soil respiration, while neither improved plant phenology nor increased temperature sensitivity affected the simulation of soil respiration during non-peak growing seasons. One potential reason for the overestimation of the soil respiration during non-peak growing seasons may be that the current model structure is substrate-limited, while microbial dormancy under stress may cause the system to become decomposer-limited. Further studies with more microbial data are required to provide adequate representation of soil respiration and to understand the underlying reasons for inaccurate model simulations.

  16. Biospheric feedback effects in a synchronously coupled model of human and Earth systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.

    Fossil fuel combustion and land-use change are the first and second largest contributors to industrial-era increases in atmospheric carbon dioxide concentration, which is itself the largest driver of present-day climate change1. Projections of fossil fuel consumption and land-use change are thus fundamental inputs for coupled Earth system models (ESM) used to estimate the physical and biological consequences of future climate system forcing2,3. While empirical datasets are available to inform historical analyses4,5, assessments of future climate change have relied on projections of energy and land use based on energy economic models, constrained using historical and present-day data and forced with assumptionsmore » about future policy, land-use patterns, and socio-economic development trajectories6. Here we show that the influence of biospheric change – the integrated effect of climatic, ecological, and geochemical processes – on land ecosystems has a significant impact on energy, agriculture, and land-use projections for the 21st century. Such feedbacks have been ignored in previous ESM studies of future climate. We find that synchronous exposure of land ecosystem productivity in the economic system to biospheric change as it develops in an ESM results in a 10% reduction of land area used for crop cultivation; increased managed forest area and land carbon; a 15-20% decrease in global crop price; and a 17% reduction in fossil fuel emissions for a low-mid range forcing scenario7. These simulation results demonstrate that biospheric change can significantly alter primary human system forcings to the climate system. This synchronous two-way coupling approach removes inconsistencies in description of climate change between human and biosphere components of the coupled model, mitigating a major source of uncertainty identified in assessments of future climate projections8-10.« less

  17. Emergent constraints on climate-carbon cycle feedbacks in the CMIP5 Earth system models

    NASA Astrophysics Data System (ADS)

    Wenzel, Sabrina; Cox, Peter M.; Eyring, Veronika; Friedlingstein, Pierre

    2014-05-01

    An emergent linear relationship between the long-term sensitivity of tropical land carbon storage to climate warming (γLT) and the short-term sensitivity of atmospheric carbon dioxide (CO2) to interannual temperature variability (γIAV) has previously been identified by Cox et al. (2013) across an ensemble of Earth system models (ESMs) participating in the Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP). Here we examine whether such a constraint also holds for a new set of eight ESMs participating in Phase 5 of the Coupled Model Intercomparison Project. A wide spread in tropical land carbon storage is found for the quadrupling of atmospheric CO2, which is of the order of 252 ± 112 GtC when carbon-climate feedbacks are enabled. Correspondingly, the spread in γLT is wide (-49 ± 40 GtC/K) and thus remains one of the key uncertainties in climate projections. A tight correlation is found between the long-term sensitivity of tropical land carbon and the short-term sensitivity of atmospheric CO2 (γLT versus γIAV), which enables the projections to be constrained with observations. The observed short-term sensitivity of CO2 (-4.4 ± 0.9 GtC/yr/K) sharpens the range of γLT to -44 ± 14 GtC/K, which overlaps with the probability density function derived from the C4MIP models (-53 ± 17 GtC/K) by Cox et al. (2013), even though the lines relating γLT and γIAV differ in the two cases. Emergent constraints of this type provide a means to focus ESM evaluation against observations on the metrics most relevant to projections of future climate change.

  18. Plant responses to increasing CO 2 reduce estimates of climate impacts on drought severity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swann, Abigail L. S.; Hoffman, Forrest M.; Koven, Charles D.

    Rising atmospheric CO 2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO 2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO 2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area.more » This area drops to 37% with the use of precipitation minus evapo-transpiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO 2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO 2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment.« less

  19. Plant responses to increasing CO 2 reduce estimates of climate impacts on drought severity

    DOE PAGES

    Swann, Abigail L. S.; Hoffman, Forrest M.; Koven, Charles D.; ...

    2016-08-29

    Rising atmospheric CO 2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO 2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO 2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area.more » This area drops to 37% with the use of precipitation minus evapo-transpiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO 2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO 2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment.« less

  20. Biotic responses buffer warming-induced soil organic carbon loss in Arctic tundra.

    PubMed

    Liang, Junyi; Xia, Jiangyang; Shi, Zheng; Jiang, Lifen; Ma, Shuang; Lu, Xingjie; Mauritz, Marguerite; Natali, Susan M; Pegoraro, Elaine; Penton, C Ryan; Plaza, César; Salmon, Verity G; Celis, Gerardo; Cole, James R; Konstantinidis, Konstantinos T; Tiedje, James M; Zhou, Jizhong; Schuur, Edward A G; Luo, Yiqi

    2018-05-26

    Climate warming can result in both abiotic (e.g., permafrost thaw) and biotic (e.g., microbial functional genes) changes in Arctic tundra. Recent research has incorporated dynamic permafrost thaw in Earth system models (ESMs) and indicates that Arctic tundra could be a significant future carbon (C) source due to the enhanced decomposition of thawed deep soil C. However, warming-induced biotic changes may influence biologically related parameters and the consequent projections in ESMs. How model parameters associated with biotic responses will change under warming and to what extent these changes affect projected C budgets have not been carefully examined. In this study, we synthesized six data sets over five years from a soil warming experiment at the Eight Mile Lake, Alaska, into the Terrestrial ECOsystem (TECO) model with a probabilistic inversion approach. The TECO model used multiple soil layers to track dynamics of thawed soil under different treatments. Our results show that warming increased light use efficiency of vegetation photosynthesis but decreased baseline (i.e., environment-corrected) turnover rates of SOC in both the fast and slow pools in comparison with those under control. Moreover, the parameter changes generally amplified over time, suggesting processes of gradual physiological acclimation and functional gene shifts of both plants and microbes. The TECO model predicted that field warming from 2009 to 2013 resulted in cumulative C losses of 224 or 87 g m -2 , respectively, without or with changes in those parameters. Thus, warming-induced parameter changes reduced predicted soil C loss by 61%. Our study suggests that it is critical to incorporate biotic changes in ESMs to improve the model performance in predicting C dynamics in permafrost regions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO2

    PubMed Central

    Keppel-Aleks, Gretchen; Wolf, Aaron S; Mu, Mingquan; Doney, Scott C; Morton, Douglas C; Kasibhatla, Prasad S; Miller, John B; Dlugokencky, Edward J; Randerson, James T

    2014-01-01

    The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO2) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO2 anomalies. Here we examined how the temporal evolution of CO2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO2 variability. We developed atmospheric CO2 patterns from each of these mechanisms during 1997–2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9 ± 0.4 Pg C yr−1 K−1. These results underscore the need for accurate attribution of the drivers of CO2 variability prior to using contemporary observations to constrain long-term ESM responses. PMID:26074665

  2. Designing the Sniper: Improving Targeted Human Cytolytic Fusion Proteins for Anti-Cancer Therapy via Molecular Simulation.

    PubMed

    Bochicchio, Anna; Jordaan, Sandra; Losasso, Valeria; Chetty, Shivan; Perera, Rodrigo Casasnovas; Ippoliti, Emiliano; Barth, Stefan; Carloni, Paolo

    2017-02-17

    Targeted human cytolytic fusion proteins (hCFPs) are humanized immunotoxins for selective treatment of different diseases including cancer. They are composed of a ligand specifically binding to target cells genetically linked to a human apoptosis-inducing enzyme. hCFPs target cancer cells via an antibody or derivative (scFv) specifically binding to e.g., tumor associated antigens (TAAs). After internalization and translocation of the enzyme from endocytosed endosomes, the human enzymes introduced into the cytosol are efficiently inducing apoptosis. Under in vivo conditions such enzymes are subject to tight regulation by native inhibitors in order to prevent inappropriate induction of cell death in healthy cells. Tumor cells are known to upregulate these inhibitors as a survival mechanism resulting in escape of malignant cells from elimination by immune effector cells. Cytosolic inhibitors of Granzyme B and Angiogenin (Serpin P9 and RNH1, respectively), reduce the efficacy of hCFPs with these enzymes as effector domains, requiring detrimentally high doses in order to saturate inhibitor binding and rescue cytolytic activity. Variants of Granzyme B and Angiogenin might feature reduced affinity for their respective inhibitors, while retaining or even enhancing their catalytic activity. A powerful tool to design hCFPs mutants with improved potency is given by in silico methods. These include molecular dynamics (MD) simulations and enhanced sampling methods (ESM). MD and ESM allow predicting the enzyme-protein inhibitor binding stability and the associated conformational changes, provided that structural information is available. Such "high-resolution" detailed description enables the elucidation of interaction domains and the identification of sites where particular point mutations may modify those interactions. This review discusses recent advances in the use of MD and ESM for hCFP development from the viewpoints of scientists involved in both fields.

  3. Does the Social Functioning Scale reflect real-life social functioning? An experience sampling study in patients with a non-affective psychotic disorder and healthy control individuals.

    PubMed

    Schneider, M; Reininghaus, U; van Nierop, M; Janssens, M; Myin-Germeys, I

    2017-12-01

    The ecological validity of retrospective measures of social functioning is currently unknown in patients with schizophrenia. In the present study, patients with a diagnosis of non-affective psychosis were compared with controls on two measures of social functioning: the Social Functioning Scale (SFS) and daily-life measures collected with the Experience Sampling Methodology (ESM). The associations between both measures were examined in each group of participants to test for the ecological validity of the SFS. A total of 126 participants with a non-affective psychotic disorder and 109 controls completed the SFS and a 6-day momentary ESM protocol assessing various aspects of social functioning. Multiple linear and multilevel regression analyses were performed to test for group differences in social functioning level and examine associations between the two assessment techniques. Lower social functioning was observed in patients compared with controls on retrospective and momentary measures. The SFS interpersonal domain (social engagement/withdrawal and interpersonal behaviour dimensions) was associated with the percentage of time spent alone and negative appraisal of social interactions. The SFS activity domain (pro-social and recreational activities dimensions) was negatively associated with time spent in leisure activities. The SFS showed some degree of ecological validity at assessing broad aspects of social functioning. Low scores on the SFS social engagement/withdrawal and interpersonal behaviour dimensions captured social isolation and social avoidance in daily life, but not lack of interest in socializing. Ecological validity of the SFS activity domain was low. ESM offers a rich alternative to classical assessment techniques of social functioning.

  4. Longitudinal structure in temperate stream fish communities: evaluating conceptual models with temporal data

    USGS Publications Warehouse

    Roberts, James H.; Hitt, Nathaniel P.

    2010-01-01

    Five conceptual models of longitudinal fish community organization in streams were examined: (1) niche diversity model (NDM), (2) stream continuum model (SCM), (3) immigrant accessibility model (IAM), (4) environmental stability model (ESM), and (5) adventitious stream model (ASM). We used differences among models in their predictions about temporal species turnover, along with five spatiotemporal fish community data sets, to evaluate model applicability. Models were similar in predicting a positive species richness–stream size relationship and longitudinal species nestedness, but differed in predicting either similar temporal species turnover throughout the stream continuum (NDM, SCM), higher turnover upstream (IAM, ESM), or higher turnover downstream (ASM). We calculated measures of spatial and temporal variation from spatiotemporal fish data in five wadeable streams in central and eastern North America spanning 34–68 years (French Creek [New York], Piasa Creek [Illinois], Spruce Run [Virginia], Little Stony Creek [Virginia], and Sinking Creek [Virginia]). All streams exhibited substantial species turnover (i.e., at least 27% turnover in stream-scale species pools), in contrast to the predictions of the SCM. Furthermore, community change was greater in downstream than upstream reaches in four of five streams. This result is most consistent with the ASM and suggests that downstream communities are strongly influenced by migrants to and from species pools outside the focal stream. In Sinking Creek, which is isolated from external species pools, temporal species turnover (via increased richness) was higher upstream than downstream, which is a pattern most consistent with the IAM or ESM. These results corroborate the hypothesis that temperate stream habitats and fish communities are temporally dynamic and that fish migration and environmental disturbances play fundamental roles in stream fish community organization.

  5. Simulation and Projection of the Western Pacific Subtropical High by CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Liu, Y.

    2016-12-01

    This work examined the performance of 26 coupled climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in the simulation of the present-day temporal variability and spatial pattern of the western Pacific subtropical high (WPSH). The results show that most models are able to capture the spatial distribution and variability of the 500-hPa geopotential height and zonal wind fields in the western subtropical Pacific, with the underestimation of the mean intensities of WPSH. The underestimation may be associated with the cold bias of sea surface temperature in the tropical Indian and western Pacific oceans in the models. To eliminate the impact of the climatology biases, the climatology of these models is replaced by that of the NCEP/NCAR reanalysis in the verification. It is noted that on interdecadal timescales, the models reproduce the shift of WPSH with enhancement and westward extension after the late 1970s. According to assessment of the simulations of the WPSH indices, it is found that some models (CNRM-CM5, FGOALS-g2, FIO-ESM, MIROC-ESM, and MPI-ESM-P) are better than others in simulating WPSH. Then, the ensemble mean of these better models are used to project the future changes of WPSH under three typical representation concentration pathway scenarios (RCP8.5, RCP4.5, and RCP2.6). It is suggested that the WPSH enlarges and strengthens, and its position extends westward under the scenarios, with the largest linear growth trend in RCP8.5, smallest in RCP2.6, and in between in RCP4.5; while the ridge line of WPSH does not show obvious long-term trend. These results may have implications for the attribution and prediction of climate variations and changes in East Asia.

  6. Designing the Sniper: Improving Targeted Human Cytolytic Fusion Proteins for Anti-Cancer Therapy via Molecular Simulation

    PubMed Central

    Bochicchio, Anna; Jordaan, Sandra; Losasso, Valeria; Chetty, Shivan; Casasnovas Perera, Rodrigo; Ippoliti, Emiliano; Barth, Stefan; Carloni, Paolo

    2017-01-01

    Targeted human cytolytic fusion proteins (hCFPs) are humanized immunotoxins for selective treatment of different diseases including cancer. They are composed of a ligand specifically binding to target cells genetically linked to a human apoptosis-inducing enzyme. hCFPs target cancer cells via an antibody or derivative (scFv) specifically binding to e.g., tumor associated antigens (TAAs). After internalization and translocation of the enzyme from endocytosed endosomes, the human enzymes introduced into the cytosol are efficiently inducing apoptosis. Under in vivo conditions such enzymes are subject to tight regulation by native inhibitors in order to prevent inappropriate induction of cell death in healthy cells. Tumor cells are known to up-regulate these inhibitors as a survival mechanism resulting in escape of malignant cells from elimination by immune effector cells. Cytosolic inhibitors of Granzyme B and Angiogenin (Serpin P9 and RNH1, respectively), reduce the efficacy of hCFPs with these enzymes as effector domains, requiring detrimentally high doses in order to saturate inhibitor binding and rescue cytolytic activity. Variants of Granzyme B and Angiogenin might feature reduced affinity for their respective inhibitors, while retaining or even enhancing their catalytic activity. A powerful tool to design hCFPs mutants with improved potency is given by in silico methods. These include molecular dynamics (MD) simulations and enhanced sampling methods (ESM). MD and ESM allow predicting the enzyme-protein inhibitor binding stability and the associated conformational changes, provided that structural information is available. Such “high-resolution” detailed description enables the elucidation of interaction domains and the identification of sites where particular point mutations may modify those interactions. This review discusses recent advances in the use of MD and ESM for hCFP development from the viewpoints of scientists involved in both fields. PMID:28536352

  7. Shifts in nitrogen acquisition strategies enable enhanced terrestrial carbon storage under elevated CO2 in a global model

    NASA Astrophysics Data System (ADS)

    Sulman, B. N.; Brzostek, E. R.; Menge, D.; Malyshev, S.; Shevliakova, E.

    2017-12-01

    Earth System Model (ESM) projections of terrestrial carbon (C) uptake are critical to understanding the future of the global C cycle. Current ESMs include intricate representations of photosynthetic C fixation in plants, allowing them to simulate the stimulatory effect of increasing atmospheric CO2 levels on photosynthesis. However, they lack sophisticated representations of plant nutrient acquisition, calling into question their ability to project the future land C sink. We conducted simulations using a new model of terrestrial C and nitrogen (N) cycling within the Geophysical Fluid Dynamics Laboratory (GFDL) global land model LM4 that uses a return on investment framework to simulate global patterns of N acquisition via fixation of N2 from the atmosphere, scavenging of inorganic N from soil solution, and mining of organic N from soil organic matter (SOM). We show that these strategies drive divergent C cycle responses to elevated CO2 at the ecosystem scale, with the scavenging strategy leading to N limitation of plant growth and the mining strategy facilitating stimulation of plant biomass accumulation over decadal time scales. In global simulations, shifts in N acquisition from inorganic N scavenging to organic N mining along with increases in N fixation supported long-term acceleration of C uptake under elevated CO2. Our results indicate that the ability of the land C sink to mitigate atmospheric CO2 levels is tightly coupled to the functional diversity of ecosystems and their capacity to change their N acquisition strategies over time. Incorporation of these mechanisms into ESMs is necessary to improve confidence in model projections of the global C cycle.

  8. Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO2.

    PubMed

    Keppel-Aleks, Gretchen; Wolf, Aaron S; Mu, Mingquan; Doney, Scott C; Morton, Douglas C; Kasibhatla, Prasad S; Miller, John B; Dlugokencky, Edward J; Randerson, James T

    2014-11-01

    The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO 2 ) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO 2 anomalies. Here we examined how the temporal evolution of CO 2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO 2 variability. We developed atmospheric CO 2 patterns from each of these mechanisms during 1997-2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO 2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO 2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO 2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9 ± 0.4 Pg C yr -1  K -1 . These results underscore the need for accurate attribution of the drivers of CO 2 variability prior to using contemporary observations to constrain long-term ESM responses.

  9. (A)biotic processes control soil carbon dynamics: quantitative assessment of model complexity, stability and response to perturbations for improving ESMs

    NASA Astrophysics Data System (ADS)

    Georgiou, K.; Abramoff, R. Z.; Harte, J.; Riley, W. J.; Torn, M. S.

    2016-12-01

    As global temperatures and atmospheric CO2 concentrations continue to increase, soil microbial activity and decomposition of soil organic matter (SOM) are expected to follow suit, potentially limiting soil carbon storage. Traditional global- and ecosystem-scale models simulate SOM decomposition using linear kinetics, which are inherently unable to reproduce carbon-concentration feedbacks, such as priming of native SOM at elevated CO2 concentrations. Recent studies using nonlinear microbial models of SOM decomposition seek to capture these interactions, and several groups are currently integrating these microbial models into Earth System Models (ESMs). However, despite their widespread ability to exhibit nonlinear responses, these models vary tremendously in complexity and, consequently, dynamics. In this study, we explore, both analytically and numerically, the emergent oscillatory behavior and insensitivity of SOM stocks to carbon inputs that have been deemed `unrealistic' in recent microbial models. We discuss the sources of instability in four models of varying complexity, by sequentially reducing complexity of a detailed model that includes microbial physiology, a mineral sorption isotherm, and enzyme dynamics. We also present an alternative representation of microbial turnover that limits population sizes and, thus, reduces oscillations. We compare these models to several long-term carbon input manipulations, including the Detritus Input and Removal Treatment (DIRT) experiments, to show that there are clear metrics that can be used to distinguish and validate the inherent dynamics of each model structure. We find that traditional linear and nonlinear models cannot readily capture the range of long-term responses observed across the DIRT experiments as a direct consequence of their model structures, and that modifying microbial turnover results in more realistic predictions. Finally, we discuss our findings in the context of improving microbial model behavior for inclusion in ESMs.

  10. Strong dependence of CO 2 emissions from anthropogenic land cover change on initial land cover and soil carbon parametrization

    DOE PAGES

    Goll, Daniel S.; Brovkin, Victor; Liski, Jari; ...

    2015-08-12

    The quantification of sources and sinks of carbon from land use and land cover changes (LULCC) is uncertain. We investigated how the parametrization of LULCC and of organic matter decomposition, as well as initial land cover, affects the historical and future carbon fluxes in an Earth System Model (ESM). Using the land component of the Max Planck Institute ESM, we found that the historical (1750–2010) LULCC flux varied up to 25% depending on the fraction of biomass which enters the atmosphere directly due to burning or is used in short-lived products. The uncertainty in the decadal LULCC fluxes of themore » recent past due to the parametrization of decomposition and direct emissions was 0.6 Pg C yr $-$1, which is 3 times larger than the uncertainty previously attributed to model and method in general. Preindustrial natural land cover had a larger effect on decadal LULCC fluxes than the aforementioned parameter sensitivity (1.0 Pg C yr $-$1). Regional differences between reconstructed and dynamically computed land covers, in particular, at low latitudes, led to differences in historical LULCC emissions of 84–114 Pg C, globally. This effect is larger than the effects of forest regrowth, shifting cultivation, or climate feedbacks and comparable to the effect of differences among studies in the terminology of LULCC. Finally, in general, we find that the practice of calibrating the net land carbon balance to provide realistic boundary conditions for the climate component of an ESM hampers the applicability of the land component outside its primary field of application.« less

  11. Combined deep sampling and mass-based approaches to assess soil carbon and nitrogen losses due to land-use changes in karst area of southwestern China

    NASA Astrophysics Data System (ADS)

    Hu, Yecui; Du, Zhangliu; Wang, Qibing; Li, Guichun

    2016-07-01

    The conversion of natural vegetation to human-managed ecosystems, especially the agricultural systems, may decrease soil organic carbon (SOC) and total nitrogen (TN) stocks. The objective of present study was to assess SOC and TN stocks losses by combining deep sampling with mass-based calculations upon land-use changes in a typical karst area of southwestern China. We quantified the changes from native forest to grassland, secondary shrub, eucalyptus plantation, sugarcane and corn fields (both defined as croplands), on the SOC and TN stocks down to 100 cm depth using fixed-depth (FD) and equivalent soil mass (ESM) approaches. The results showed that converting forest to cropland and other types significantly led to SOC and TN losses, but the extent depended on both sampling depths and calculation methods selected (i.e., FD or ESM). On average, the shifting from native forest to cropland led to SOC losses by 19.1, 25.1, 30.6, 36.8 and 37.9 % for the soil depths of 0-10, 0-20, 0-40, 0-60 and 0-100 cm, respectively, which highlighted that shallow sampling underestimated SOC losses. Moreover, the FD method underestimated SOC and TN losses for the upper 40 cm layer, but overestimated the losses in the deeper layers. We suggest that the ESM together with deep sampling should be encouraged to detect the differences in SOC stocks. In conclusion, the conversion of forest to managed systems, in particular croplands significantly decreased in SOC and TN stocks, although the effect magnitude to some extent depended on sampling depth and calculation approach selected.

  12. Strong dependence of CO 2 emissions from anthropogenic land cover change on initial land cover and soil carbon parametrization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goll, Daniel S.; Brovkin, Victor; Liski, Jari

    The quantification of sources and sinks of carbon from land use and land cover changes (LULCC) is uncertain. We investigated how the parametrization of LULCC and of organic matter decomposition, as well as initial land cover, affects the historical and future carbon fluxes in an Earth System Model (ESM). Using the land component of the Max Planck Institute ESM, we found that the historical (1750–2010) LULCC flux varied up to 25% depending on the fraction of biomass which enters the atmosphere directly due to burning or is used in short-lived products. The uncertainty in the decadal LULCC fluxes of themore » recent past due to the parametrization of decomposition and direct emissions was 0.6 Pg C yr $-$1, which is 3 times larger than the uncertainty previously attributed to model and method in general. Preindustrial natural land cover had a larger effect on decadal LULCC fluxes than the aforementioned parameter sensitivity (1.0 Pg C yr $-$1). Regional differences between reconstructed and dynamically computed land covers, in particular, at low latitudes, led to differences in historical LULCC emissions of 84–114 Pg C, globally. This effect is larger than the effects of forest regrowth, shifting cultivation, or climate feedbacks and comparable to the effect of differences among studies in the terminology of LULCC. Finally, in general, we find that the practice of calibrating the net land carbon balance to provide realistic boundary conditions for the climate component of an ESM hampers the applicability of the land component outside its primary field of application.« less

  13. Life Support Goals Including High Closure and Low Mass Should Be Reconsidered Using Systems Analysis

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2017-01-01

    Recycling space life support systems have been built and tested since the 1960s and have operated on the International Space Station (ISS) since the mid 2000s. The development of space life support has been guided by a general consensus focused on two important related goals, increasing system closure and reducing launch mass. High closure is achieved by recycling crew waste products such as carbon dioxide and condensed humidity. Recycling directly reduces the mass of oxygen and water for the crew that must be launched from Earth. The launch mass of life support can be further reduced by developing recycling systems with lower hardware mass and reduced power. The life support consensus has also favored using biological systems. The goal of increasing closure using biological systems suggests that food should be grown in space and that biological processors be used for air, water, and waste recycling. The goal of reducing launch mass led to use of Equivalent System Mass (ESM) in life support advocacy and technology selection. The recent consensus assumes that the recycling systems architecture developed in the 1960s and implemented on ISS will be used on all future long missions. NASA and other project organizations use the standard systems engineering process to guide hardware development. The systems process was used to develop ISS life support, but it has been less emphasized in planning future systems for the moon and Mars. Since such missions are far in the future, there has been less immediate need for systems engineering analysis to consider trade-offs, reliability, and Life Cycle Cost (LCC). Preliminary systems analysis suggests that the life support consensus concepts should be revised to reflect systems engineering requirements.

  14. ENVIRONMENTAL SYSTEMS MANAGEMENT: TOWARDS A NEW SCIENCE OF SUSTAINABLE ENVIRONMENTAL MANAGEMENT

    EPA Science Inventory

    Environmental Systems Management (ESM) is the management of environmental problems at the systems level fully accounting for the multi-dimensional nature of the environment. This includes socio-economic dimensions as well as the usual physical and life science aspects of environm...

  15. Scaling Impacts in Life Support Architecture and Technology Selection

    NASA Technical Reports Server (NTRS)

    Lange, Kevin

    2016-01-01

    For long-duration space missions outside of Earth orbit, reliability considerations will drive higher levels of redundancy and/or on-board spares for life support equipment. Component scaling will be a critical element in minimizing overall launch mass while maintaining an acceptable level of system reliability. Building on an earlier reliability study (AIAA 2012-3491), this paper considers the impact of alternative scaling approaches, including the design of technology assemblies and their individual components to maximum, nominal, survival, or other fractional requirements. The optimal level of life support system closure is evaluated for deep-space missions of varying duration using equivalent system mass (ESM) as the comparative basis. Reliability impacts are included in ESM by estimating the number of component spares required to meet a target system reliability. Common cause failures are included in the analysis. ISS and ISS-derived life support technologies are considered along with selected alternatives. This study focusses on minimizing launch mass, which may be enabling for deep-space missions.

  16. What are the effects of Agro-Ecological Zones and land use region boundaries on land resource projection using the Global Change Assessment Model?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Vittorio, Alan V.; Kyle, Page; Collins, William D.

    Understanding the potential impacts of climate change is complicated by mismatched spatial representations between gridded Earth System Models (ESMs) and Integrated Assessment Models (IAMs), whose regions are typically larger and defined by geopolitical and biophysical criteria. In this study we address uncertainty stemming from the construction of land use regions in an IAM, the Global Change Assessment Model (GCAM), whose regions are currently based on historical climatic conditions (1961-1990). We re-define GCAM’s regions according to projected climatic conditions (2070-2099), and investigate how this changes model outcomes for land use, agriculture, and forestry. By 2100, we find potentially large differences inmore » projected global and regional area of biomass energy crops, fodder crops, harvested forest, and intensive pasture. These land area differences correspond with changes in agricultural commodity prices and production. These results have broader implications for understanding policy scenarios and potential impacts, and for evaluating and comparing IAM and ESM simulations.« less

  17. Redefining plant functional types for forests based on plant traits

    NASA Astrophysics Data System (ADS)

    Wei, L.; Xu, C.; Christoffersen, B. O.; McDowell, N. G.; Zhou, H.

    2016-12-01

    Our ability to predict forest mortality is limited by the simple plant functional types (PFTs) in current generations of Earth System models (ESMs). For example, forests were formerly separated into PFTs only based on leaf form and phenology across different regions (arctic, temperate, and tropic areas) in the Community Earth System Model (CESM). This definition of PFTs ignored the large variation in vulnerability of species to drought and shade tolerance within each PFT. We redefined the PFTs for global forests based on plant traits including phenology, wood density, leaf mass per area, xylem-specific conductivity, and xylem pressure at 50% loss of conductivity. Species with similar survival strategies were grouped into the same PFT. New PFTs highlighted variation in vulnerability and physiological adaptation to drought and shade. New PFTs were better clustered than old ones in the two-dimensional plane of the first two principle components in a principle component analysis. We expect that the new PFTs will strengthen ESMs' ability on predicting drought-induced mortality in the future.

  18. The Uptake of Heat and Carbon by the Southern Ocean in the CMIP5 Earth System Models

    NASA Astrophysics Data System (ADS)

    Russell, J. L.; Stouffer, R. J.; Dunne, J. P.; John, J. G.

    2011-12-01

    The Southern Ocean surrounding the Antarctic continent accounts for a disproportionate share of the heat and carbon dioxide that is removed from contact with the atmosphere into the ocean. The vigorous air-sea exchange driven by the Southern Hemisphere Westerlies, combined with the dearth of observations, makes the Southern Ocean a major source of uncertainty in projecting the rate of warming of our atmosphere, especially considering that the vertical mixing of the ocean and the corollary air-sea fluxes may be vulnerable to climate change. We assess the heat and carbon uptake by the Southern Ocean in future simulations by the IPCC-AR5 Earth System Models (ESMs), focusing on the GFDL simulations. Using the 1860 control simulation as our baseline, we explore the differences in heat and carbon uptake between the major "Representative Concentration Pathways" (RCPs) as simulated by the various ESMs in order to quantify the uncertainties in the climate projections related to the Southern Ocean window into the deep ocean reservoir.

  19. Current and Future Decadal Trends in the Oceanic Carbon Uptake Are Dominated by Internal Variability

    NASA Astrophysics Data System (ADS)

    Li, Hongmei; Ilyina, Tatiana

    2018-01-01

    We investigate the internal decadal variability of the ocean carbon uptake using 100 ensemble simulations based on the Max Planck Institute Earth system model (MPI-ESM). We find that on decadal time scales, internal variability (ensemble spread) is as large as the forced temporal variability (ensemble mean), and the largest internal variability is found in major carbon sink regions, that is, the 50-65°S band of the Southern Ocean, the North Pacific, and the North Atlantic. The MPI-ESM ensemble produces both positive and negative 10 year trends in the ocean carbon uptake in agreement with observational estimates. Negative decadal trends are projected to occur in the future under RCP4.5 scenario. Due to the large internal variability, the Southern Ocean and the North Pacific require the most ensemble members (more than 53 and 46, respectively) to reproduce the forced decadal trends. This number increases up to 79 in future decades as CO2 emission trajectory changes.

  20. [Early-summer meningo-encephalitis (ESME) and ESME-vaccination: status 2000].

    PubMed

    Kunze, U; Bernhard, G; Böhm, G; Groman, E

    2000-01-01

    Tick-borne encephalitis (TBE) is a public health problem very well under control in Austria because of a vaccination programme using a safe, efficient and well tolerated vaccine and a carefully designed social marketing concept. The Austrian vaccine underwent another technological updating and is now marketed under a new brand name (TicoVac) on the basis of an EU registration. A second product is also available (Encepur), but some limitations of use have to be taken into account. To improve the epidemiological situation even further (only 41 hospital cases in 1999) special attention has to be given to the age group 50 years and older as this is the segment of the population where the majority of cases is observed. TBE is a growing international health problem as awareness increases and cases are identified in many European countries, even in regions where TBE so far was not diagnosed. An "International Scientific Working-group on Tick-borne encephalitis (ISW-TBE)" was established to coordinate research and public health activities.

  1. Food System Trade Study for a Near-Term Mars Mission

    NASA Technical Reports Server (NTRS)

    Levri, Julie; Luna, Bernadette (Technical Monitor)

    2000-01-01

    This paper evaluates several food system options for a near-term Mars mission, based on plans for the 120-day BIO-Plex test. Food systems considered in the study are based on the International Space Station (ISS) Assembly Phase and Assembly Complete food systems. The four systems considered are: 1) ISS assembly phase food system (US portion) with individual packaging without salad production; 2) ISS assembly phase food system (US portion) with individual packaging, with salad production; 3) ISS assembly phase food system (US portion) with bulk packaging, with salad production; 4) ISS assembly complete food system (US portion) with bulk packaging with salad and refrigeration/freezing. The food system options are assessed using equivalent system mass (ESM), which evaluates each option based upon the mass, volume, power, cooling and crewtime requirements that are associated with each food system option. However, since ESM is unable to elucidate the differences in psychological benefits between the food systems, a qualitative evaluation of each option is also presented.

  2. Day-to-day associations between subjective sleep and affect in regard to future depression in a female population-based sample.

    PubMed

    de Wild-Hartmann, Jessica A; Wichers, Marieke; van Bemmel, Alex L; Derom, Catherine; Thiery, Evert; Jacobs, Nele; van Os, Jim; Simons, Claudia J P

    2013-06-01

    Poor sleep is a risk factor for depression, but little is known about the underlying mechanisms. Disentangling potential mechanisms by which sleep may be related to depression by zooming down to the 'micro-level' of within-person daily life patterns of subjective sleep and affect using the experience sampling method (ESM). A population-based twin sample consisting of 553 women underwent a 5-day baseline ESM protocol assessing subjective sleep and affect together with four follow-up assessments of depression. Sleep was associated with affect during the next day, especially positive affect. Daytime negative affect was not associated with subsequent night-time sleep. Baseline sleep predicted depressive symptoms across the follow-up period. The subtle, repetitive impact of sleep on affect on a daily basis, rather than the subtle repetitive impact of affect on sleep, may be one of the factors on the pathway to depression in women.

  3. PanEurasian Experiment (PEEX): Modelling Platform for Earth System Observations and Forecasting

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; Mahura, Alexander; Penenko, Vladimir; Zilitinkevich, Sergej; Kulmala, Markku

    2014-05-01

    As the part of the PEEX initiative, for the purpose of supporting the PEEX observational system and answering on the PEEX scientific questions, a hierarchy/ framework of modern multi-scale models for different elements of the Earth System integrated with the observation system is needed. One of the acute topics in the international debate on land-atmosphere interactions in relation to global change is the Earth System Modeling (ESM). The question is whether the ESM components actually represent how the Earth is functioning. The ESMs consist of equations describing the processes in the atmosphere, ocean, cryosphere, terrestrial and marine biosphere. ESMs are the best tools for analyzing the effect of different environmental changes on future climate or for studying the role of whole processes in the Earth System. These types of analysis and prediction of the future change are especially important in the Arctic latitudes, where climate change is proceeding fastest and where near-surface warming has been about twice the global average during the recent decades. The processes, and hence parameterization, in ESMs are still based on insufficient knowledge of physical, chemical and biological mechanisms involved in the climate system and the resolution of known processes is insufficient. Global scale modeling of land-atmosphere-ocean interactions using ESMs provides a way to explore the influence of spatial and temporal variation in the activities of land system and on climate. There is a lack, however, ways to forward a necessary process understanding effectively to ESMs and to link all this to the decision-making process. Arctic-boreal geographical domain plays significant role in terms of green-house gases and anthropogenic emissions and as an aerosol source area in the Earth System. The PEEX Modelling Platform (PEEX-MP) is characterized by: • An ensemble approach with the integration of modelling results from different models/ countries etc.; • A hierarchy of models, analysing scenarios, inverse modelling, modelling based on measurement needs and processes; • Model validation by remote sensing data and assimilation of satellite observations to constrain models to better understand processes, e.g., emissions and fluxes with top-down modelling; • Geophysical/ chemical model validation with experiments at various spatial and temporal scales. Added value of the comprehensive multi-platform observations and modeling; network of monitoring stations with the capacity to quantify those interactions between neighboring areas ranging from the Arctic and the Mediterranean to the Chinese industrial areas and the Asian steppes is needed. For example, apart from development of Russian stations in the PEEX area a strong co-operation with surrounding research infrastructures in the model of ACTRIS network needs to be established in order to obtain a global perspective of the emissions transport, transformation and ageing of pollutants incoming and exiting the PEEX area. The PEEX-MP aims to simulate and predict the physical aspects of the Earth system and to improve understanding of the bio-geochemical cycles in the PEEX domain, and beyond. The environmental change in this region implies that, from the point-of-view of atmospheric flow, the lower boundary conditions are changing. This is important for applications with immediate relevance for society, such as numerical weather prediction. The PEEX infrastructure will provide a unique view to the physical properties of the Earth surface, which can be used to improve assessment and prediction models. This will directly benefit citizens of the North in terms of better early warning of hazardous events, for instance. On longer time-scales, models of the bio-geochemical cycles in the PEEX domain absolutely need support from the new monitoring infra-structure to better measure and quantify soil and vegetation properties. In the most basic setup, the atmospheric and oceanic Global Circulation Models (GCMs) are connected to each other, sharing e.g. fluxes of momentum, water vapour and CO2. Traditionally, the land compartment has been an integral part of the atmospheric model, but in most modern ESMs the land model has been clearly separated. In most cases, the GCMs are complemented by other additional sub models covering, for example, atmospheric chemistry and aerosols, biogeochemistry or dynamic vegetation. Although the models can communicate also directly with each other, usually a separate coupler is used as an interface between different sub models. One of the main PEEX modelling activities is to evaluate process-models of chemistry-biota-atmosphere interactions in Pan Eurasian region and to improve GCM parameterizations. PEEX scientific plan is designed to serve a research chain that aims to advance our understanding of climate and air quality through a series of connected activities beginning at the molecular scale and extending to the regional and global scales. Past variations in climate in Pan Eurasian regions and corresponding forcing agents would be revealed by analysis of firn and ice cores in glaciers and ice sheets. A combination of direct and inverse modelling will be applied to diagnosing, designing, monitoring, and forecasting of air pollution in Siberia and Eurasia. Regional models coupled with the global one by means of orthogonal decomposition methods allow one to correctly introduce data about the global processes onto the regional level where environmental quality control strategies are typically implemented. Proceeding from the above mentioned limitations, a new concept and methodology considering the concept of 'one-atmosphere' as two-way interacted meteorological and chemical processes is suggested. The atmospheric chemistry transport models should include not only health-effecting pollutants (air quality components), but also green-house gases and aerosols effecting climate, meteorological processes, etc. Such concept requests a strategy of new generation integrated chemistry-climate modelling systems for predicting atmospheric composition, meteorology and climate change. The on-line integration of meteorological/ climate models and atmospheric aerosol and chemical transport models gives a possibility to utilise all meteorological 3D fields at each time step and to consider feedbacks of air pollution (e.g. aerosols) on meteorological processes and climate forcing, and further on the chemical composition (as a chain of dependent processes). This promising way for future atmospheric simulation systems (as a part of and a step to ESMs) will be considered in PEEX. It will lead to a new generation of models for climatic, meteorological, environmental and chemical weather forecasting.

  4. Assessment of the water and energy budget simulation of three land surface models: CLM4.5, CoLM2014, and CoLM2005

    NASA Astrophysics Data System (ADS)

    Li, C.; Lu, H.; Wen, X.

    2015-12-01

    Land surface model (LSM), which simulates energy, water and momentum exchanges between land and atmosphere, is an important component of Earth System Models (ESM). As shown in CMIP5, different ESMs usually use different LSMs and represent various land surface status. In order to select a land surface model which could be embedded into the ESM developed in Tsinghua University, we firstly evaluate the performance of three LSMs: Community Land Model (CLM4.5) and two different versions of Common Land Model (CoLM2005 and CoLM2014). All of three models were driven by CRUNCEP data and simulation results from 1980 to 2010 were used in this study. Diagnostic data provided by NCAR, global latent and sensible heat flux map estimated by Jung, net radiation from SRB, and in situ observation collected from FluxNet were used as reference data. Two variables, surface runoff and snow depth, were used for evaluating the model performance in water budget simulation, while three variables including net radiation, sensible heat, and latent heat were used for assessing energy budget simulation. For 30 years averaged runoff, global average value of Colm2014 is 0.44mm/day and close to the diagnostic value of 0.75 mm/day, while that of Colm2005 is 0.44mm/day and that of CLM is 0.20mm/day. For snow depth simulation, three models all have overestimation in the Northern Hemisphere and underestimation in the Southern Hemisphere compare to diagnostic data. For 30 years energy budget simulation, at global scale, CoLM2005 performs best in latent heat estimation, CoLM2014 performs best in sensible heat simulation, and CoLM2005 and CoLM2014 make similar performance in net radiation estimation but is still better than CLM. At regional and local scale, comparing to the four years average of flux tower observation, RMSE of CoLM2005 is the smallest for latent heat (9.717 W/m2) , and for sensible heat simulation, RMSE of CoLM2005 (13.048 W/m2) is slightly greater than CLM(10.767 W/m2) but still better than CoLM2014(30.085 W/m2). Our analysis shows that both CoLM 2005 and CoLM 2014 are able to reproduce comparable land surface water and energy fluxes. It implies that the ESM developed in Tsinghua University may use CoLM, a LSM developed and maintained in China, as the land surface component. .

  5. MiKlip-PRODEF: Probabilistic Decadal Forecast for Central and Western Europe

    NASA Astrophysics Data System (ADS)

    Reyers, Mark; Haas, Rabea; Ludwig, Patrick; Pinto, Joaquim

    2013-04-01

    The demand for skilful climate predictions on time-scales of several years to decades has increased in recent years, in particular for economic, societal and political terms. Within the BMBF MiKlip consortium, a decadal prediction system on the global to local scale is currently being developed. The subproject PRODEF is part of the MiKlip-Module C, which aims at the regionalisation of decadal predictability for Central and Western Europe. In PRODEF, a combined statistical-dynamical downscaling (SDD) and a probabilistic forecast tool are developed and applied to the new Earth system model of the Max-Planck Institute Hamburg (MPI-ESM), which is part of the CMIP5 experiment. Focus is given on the decadal predictability of windstorms, related wind gusts as well as wind energy potentials. SDD combines the benefits of both high resolution dynamical downscaling and purely statistical downscaling of GCM output. Hence, the SDD approach is used to obtain a very large ensemble of highly resolved decadal forecasts. With respect to the focal points of PRODEF, a clustering of temporal evolving atmospheric fields, a circulation weather type (CWT) analysis, and a storm damage indices analysis is applied to the full ensemble of the decadal hindcast experiments of the MPI-ESM in its lower resolution (MPI-ESM-LR). The ensemble consists of up to ten realisations per yearly initialised decadal hindcast experiments for the period 1960-2010 (altogether 287 realisations). Representatives of CWTs / clusters and single storm episodes are dynamical downscaled with the regional climate model COSMO-CLM with a horizontal resolution of 0.22°. For each model grid point, the distributions of the local climate parameters (e.g. surface wind gusts) are determined for different periods (e.g. each decades) by recombining dynamical downscaled episodes weighted with the respective weather type frequencies. The applicability of the SDD approach is illustrated with examples of decadal forecasts of the MPI-ESM. We are able to perform a bias correction of the frequencies of large scale weather types and to quantify the uncertainties of decadal predictability on large and local scale arising from different initial conditions. Further, probability density functions of local parameters like e.g. wind gusts for different periods and decades derived from the SDD approach is compared to observations and reanalysis data. Skill scores are used to quantify the decadal predictability for different leading time periods and to analyse whether the SDD approach shows systematic errors for some regions.

  6. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    NASA Astrophysics Data System (ADS)

    Mishra, U.; Riley, W. J.

    2015-01-01

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing heterogeneity of terrestrial hydrological and biogeochemical processes in earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a dataset with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, 500 m, 1, 2, 5, 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83-0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98% of variability in the variance of SOC stocks. We found moderately-accurate linear relationships between mean and higher-order moments of predicted SOC stocks (R2 ~ 0.55-0.63). Current ESMs operate at coarse spatial scales (50-100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks can improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.

  7. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    NASA Astrophysics Data System (ADS)

    Mishra, U.; Riley, W. J.

    2015-07-01

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data set with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83-0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98 % of variability in the variance of SOC stocks. We found moderately accurate linear relationships between mean and higher-order moments of predicted SOC stocks (R2 ∼ 0.55-0.63). Current ESMs operate at coarse spatial scales (50-100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks could improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.

  8. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    DOE PAGES

    Mishra, U.; Riley, W. J.

    2015-07-02

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data setmore » with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales ( s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions ( R 2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98 % of variability in the variance of SOC stocks. We found moderately accurate linear relationships between mean and higher-order moments of predicted SOC stocks ( R 2 ∼ 0.55–0.63). Current ESMs operate at coarse spatial scales (50–100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks could improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.« less

  9. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    DOE PAGES

    Mishra, U.; Riley, W. J.

    2015-01-01

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing heterogeneity of terrestrial hydrological and biogeochemical processes in earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a dataset with reasonablemore » fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales ( s = 100, 200, 500 m, 1, 2, 5, 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions ( R 2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98% of variability in the variance of SOC stocks. We found moderately-accurate linear relationships between mean and higher-order moments of predicted SOC stocks ( R 2 ~ 0.55–0.63). Current ESMs operate at coarse spatial scales (50–100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks can improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, U.; Riley, W. J.

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data setmore » with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales ( s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions ( R 2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98 % of variability in the variance of SOC stocks. We found moderately accurate linear relationships between mean and higher-order moments of predicted SOC stocks ( R 2 ∼ 0.55–0.63). Current ESMs operate at coarse spatial scales (50–100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks could improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.« less

  11. Selective Absorption Mechanism for the Maintenance of Blocking

    NASA Astrophysics Data System (ADS)

    Yamazaki, Akira; Itoh, Hisanori

    2010-05-01

    Atmospheric blocking is one of the most influential phenomena in global atmospheric environments. The understanding of its dynamical processes is important to clarify weather extremes and the stratosphere-troposphere coupling and to extend forecast periods. In the dynamics of blocking, especially, its maintenance mechanism has been a stimulating topic for many meteorologists. About the maintenance mechanism of blocking, Shutts (1983) evaluated the effect of synoptic eddies in his numerical model and proposed the Eddy Straining Mechanism (hereafter, referred to as ESM). Using simple numerical models, he demonstrated that synoptic eddies strained in the north-south direction by blocking provide negative/positive vorticity to a blocking high/low and this vorticity forcing, i.e., the second-order flow maintains the blocking dipole structure against dissipation. Some pieces of evidence, however have shown that the ESM does not work well in several real cases of the block maintenance. For example, Arai and Mukougawa (2002) performed a similar experiment to Shutts (1983) and indicated the strong sensitivity of the ESM against a small meridional shift of the stormtrack (strictly speaking, wavemaker), or a small change of the size of high-frequency eddies. This is a very adverse constraint in the real atmosphere because the relative positions of blocking to the stormtrack tend to fluctuate from case to case so that they do not necessarily exist in the same latitude band. Thus, we propose a more realistic mechanism of the block maintenance named as the Selective Absorption Mechanism (hereafter referred to as SAM), in which a blocking anticyclone selectively and exclusively absorbs synoptic anticyclones. This mechanism is essentially the same mechanism as the Fujiwhara effect, which qualitatively explains that binary eddies with the same polarity merge and eddies with the opposite polarity separate. In this study, we verify the effectiveness of the SAM by observational analyses and simple numerical experiments. Ten episodes of blocking that occurred in the mid-North Pacific and the eastern North Atlantic between 1990 and 2005 are investigated. Trajectories of synoptic anticyclones and cyclones during blocking persistent periods are analyzed and show the selective absorption of anticyclonic eddies by the blocking highs. We also perform numerical experiments using the nonlinear barotropic vorticity equation on a beta-plane channel. The maintenance rate of blocking is quantitatively evaluated by using an areal averaged method. The result supports the block maintenance by the SAM. From the above two results, we can conclude that the SAM is more adaptive as the block maintenance mechanism than the ESM, because the essence of the SAM is absorption of eddies, not but eddy straining.

  12. Quantifying and Comparing Effects of Climate Engineering Methods on the Earth System

    NASA Astrophysics Data System (ADS)

    Sonntag, Sebastian; Ferrer González, Miriam; Ilyina, Tatiana; Kracher, Daniela; Nabel, Julia E. M. S.; Niemeier, Ulrike; Pongratz, Julia; Reick, Christian H.; Schmidt, Hauke

    2018-02-01

    To contribute to a quantitative comparison of climate engineering (CE) methods, we assess atmosphere-, ocean-, and land-based CE measures with respect to Earth system effects consistently within one comprehensive model. We use the Max Planck Institute Earth System Model (MPI-ESM) with prognostic carbon cycle to compare solar radiation management (SRM) by stratospheric sulfur injection and two carbon dioxide removal methods: afforestation and ocean alkalinization. The CE model experiments are designed to offset the effect of fossil-fuel burning on global mean surface air temperature under the RCP8.5 scenario to follow or get closer to the RCP4.5 scenario. Our results show the importance of feedbacks in the CE effects. For example, as a response to SRM the land carbon uptake is enhanced by 92 Gt by the year 2100 compared to the reference RCP8.5 scenario due to reduced soil respiration thus reducing atmospheric CO2. Furthermore, we show that normalizations allow for a better comparability of different CE methods. For example, we find that due to compensating processes such as biogeophysical effects of afforestation more carbon needs to be removed from the atmosphere by afforestation than by alkalinization to reach the same global warming reduction. Overall, we illustrate how different CE methods affect the components of the Earth system; we identify challenges arising in a CE comparison, and thereby contribute to developing a framework for a comparative assessment of CE.

  13. Regional Climate Simulations with COSMO-CLM for West Africa using three different soil-vegetation-atmosphere-transfer (SVAT) module

    NASA Astrophysics Data System (ADS)

    Breil, Marcus; Panitz, Hans-Jürgen

    2014-05-01

    Climate predictions on decadal timescales constitute a new field of research, closing the gap between short-term and seasonal weather predictions and long-term climate projections. Therefore, the Federal Ministry of Education and Research in Germany (BMBF) has recently funded the research program MiKlip (Mittelfristige Klimaprognosen), which aims to create a model system that can provide reliable decadal climate forecasts. Recent studies have suggested that one region with high potential decadal predictability is West Africa. Therefore, the project DEPARTURE (DEcadal Prediction of African Rainfall and ATlantic HURricanE Activity) was established within the MiKlip program to assess the feasibility and the potential added value of regional decadal climate predictions for West Africa. To quantify the potential decadal climate predictability, a multi-model approach with the three different regional climate models REMO, WRF and COSMO-CLM (CCLM) will be realized. The presented research will contribute to DEPARTURE by performing hindcast ensemble simulations with CCLM, driven by global decadal MPI-ESM-LR simulations. Thereby, one focus is on the dynamic soil-vegetation-climate interaction on decadal timescales. Recent studies indicate that there are significant feedbacks between the land-surface and the atmosphere, which might influence the decadal climate variability substantially. To investigate this connection, two different SVATs (Community Land Model (CLM), and VEG3D) will be coupled with the CCLM, replacing TERRA_ML, the standard SVAT implemented in CCLM. Thus, sensitive model parameters shall be identified, whereby the understanding of important processes might be improved. As a first step, TERRA_ML is substituted by VEG3D, a SVAT developed at the IMK-TRO, Karlsruhe, Germany. Compared to TERRA_ML, VEG3D includes an explicit vegetation layer by using a big leaf approach, inducing higher correlations with observations as it has been shown in previous studies. The coupling of VEG3D with CCLM is performed by using the OASIS3-MCT coupling software, developed by CERFACS, Toulouse, France. Results of CCLM simulations using both SVATs are analysed and compared for the DEPARTURE model domain. Thereby ERA-Interim driven CCLM simulations with VEG3D showed better agreement with observational data than simulations with TERRA_ML, especially for dense vegetaded areas. This will be demonstrated exemplarily. Additionally, results for MPI-ESM-LR driven decadal hindcast simulations (1966 - 1975) are analysed and presented.

  14. Harmonization of global land-use scenarios for the period 850-2100

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Chini, L. P.; Sahajpal, R.; Frolking, S. E.; Fisk, J.; Bodirsky, B.; Calvin, K. V.; Fujimori, S.; Goldewijk, K.; Hasegawa, T.; Havlik, P.; Heinimann, A.; Humpenöder, F.; Kaplan, J. O.; Krisztin, T.; Lawrence, D. M.; Lawrence, P.; Mertz, O.; Popp, A.; Riahi, K.; Stehfest, E.; van Vuuren, D.; de Waal, L.; Zhang, X.

    2016-12-01

    Human land-use activities have resulted in large changes to the biogeochemical and biophysical properties of the Earth surface, with resulting implications for climate. In the future, land-use activities are likely to expand and/or intensify further to meet growing demands for food, fiber, and energy. As part of the World Climate Research Program Coupled Model Intercomparison Project (CMIP6), the international community is developing the next generation of advanced Earth System Models (ESM) able to estimate the combined effects of human activities (e.g. land use and fossil fuel emissions) on the carbon-climate system. In addition, a new set of historical data based on HYDE, and multiple alternative scenarios of the future (2015-2100) from Integrated Assessment Model (IAM) teams, are being developed as input for these models. Here we present results from the Land-use Harmonization 2 (LUH2) project, with the goal to smoothly connect updated historical reconstructions of land-use with new future projections in the format required for ESMs. The harmonization strategy estimates the fractional land-use patterns, underlying land-use transitions, and key agricultural management information, and resulting secondary lands annually while minimizing the differences between the end of the historical reconstruction and IAM initial conditions, and working to preserve changes depicted by the IAMs in the future. The new approach builds off the approach from CMIP5, and is provided at higher resolution (0.25x0.25 degree), over longer time domain (850-2100), with more detail (including multiple crop and pasture types and associated management), using more inputs (including Landsat data), updated algorithms (wood harvest and shifting cultivation), and is assessed via a new diagnostic package. The new LUH2 products contain >50 times the information content of the datasets used in CMIP5, and are designed to enable new and improved estimates of the combined effects of land-use on the global carbon-climate system.

  15. Projections for Changes in Natural and Technical Snow Reliability of a Major Turkish Ski Resort by Using RegCM4.3.5

    NASA Astrophysics Data System (ADS)

    Ozturk, Tugba; Cenk Demiroglu, O.; Tufan Turp, M.; Türkeş, Murat; Kurnaz, M. Levent

    2014-05-01

    Climate change has been and increasingly will be a major threat to the ski tourism industry whose survival is highly dependent on existence of snow cover of sufficient depth and duration. The common knowledge requires that in order for a ski resort to be viable, it has to perform operations for at least 100 days in seven out of ten winters. For this matter, it is now even more usual for the ski resorts to adapt to this issue by technical snowmaking. In this study, projected future changes for the period of 2010-2040, 2040-2070, and 2070-2100 in air temperature, relative humidity, and snow depth climatology and variability with respect to the control period of 1970-2000 were assessed for the domain of a major ski resort in Turkey. Regional Climate Model (RegCM4.3.5) of ICTP (International Centre for Theoretical Physics) was used for projections of future and present climate conditions. HadGEM2 global climate model of the Met Office Hadley Centre, MPI-ESM-MR of the Max Planck Institute for Meteorology, GFDL-ESM2M of the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory were downscaled to 10 km for the resort and its surrounding region. Both the projections and the downscaling were realized according to the RCP4.5 and the RCP8.5 emission scenarios of the IPCC. The outputs on snow depth were used for a count of the changes on snow cover duration sufficient for skiing actitivies, signaling natural snow-reliability, whereas the outputs on air temperature and relative humidity were utilized for determination of wet-bulb temperatures. The latter measure was used to interpret the changes in the snowmaking capacity, in other words; technical snow-reliability, of the resort. This work was supported by the BU Reasearch Fund under the project number 7362. One of the authors (MLK) was partially supported by Mercator-IPC Fellowship Program.

  16. Detecting the subtle shape differences in hemodynamic responses at the group level

    PubMed Central

    Chen, Gang; Saad, Ziad S.; Adleman, Nancy E.; Leibenluft, Ellen; Cox, Robert W.

    2015-01-01

    The nature of the hemodynamic response (HDR) is still not fully understood due to the multifaceted processes involved. Aside from the overall amplitude, the response may vary across cognitive states, tasks, brain regions, and subjects with respect to characteristics such as rise and fall speed, peak duration, undershoot shape, and overall duration. Here we demonstrate that the fixed-shape (FSM) or adjusted-shape (ASM) methods may fail to detect some shape subtleties (e.g., speed of rise or recovery, or undershoot). In contrast, the estimated-shape method (ESM) through multiple basis functions can provide the opportunity to identify some subtle shape differences and achieve higher statistical power at both individual and group levels. Previously, some dimension reduction approaches focused on the peak magnitude, or made inferences based on the area under the curve (AUC) or interaction, which can lead to potential misidentifications. By adopting a generic framework of multivariate modeling (MVM), we showcase a hybrid approach that is validated by simulations and real data. With the whole HDR shape integrity maintained as input at the group level, the approach allows the investigator to substantiate these more nuanced effects through the unique HDR shape features. Unlike the few analyses that were limited to main effect, two- or three-way interactions, we extend the modeling approach to an inclusive platform that is more adaptable than the conventional GLM. With multiple effect estimates from ESM for each condition, linear mixed-effects (LME) modeling should be used at the group level when there is only one group of subjects without any other explanatory variables. Under other situations, an approximate approach through dimension reduction within the MVM framework can be adopted to achieve a practical equipoise among representation, false positive control, statistical power, and modeling flexibility. The associated program 3dMVM is publicly available as part of the AFNI suite. PMID:26578853

  17. Characteristics, Similarities, and Differences among Four-Year Cooperative Engineering Programs in the United States

    ERIC Educational Resources Information Center

    Egbert, Robert I.; Stone, Lorene H.; Adams, David L.

    2011-01-01

    Four-year cooperative engineering programs are becoming more common in the United States. Cooperative engineering programs typically involve a "parent" institution with an established engineering program and one or more "satellite" institutions which typically have few or no engineering programs and are located in an area where…

  18. Data Visualization for ESM and ELINT: Visualizing 3D and Hyper Dimensional Data

    DTIC Science & Technology

    2011-06-01

    technique to present multiple 2D views was devised by D. Asimov . He assembled multiple two dimensional scatter plot views of the hyper dimensional...Viewing Multidimensional Data”, D. Asimov , DIAM Journal on Scientific and Statistical Computing, vol.61, pp.128-143, 1985. [2] “High-Dimensional

  19. Network Monitoring and Diagnosis Based on Available Bandwidth Measurement

    DTIC Science & Technology

    2006-05-01

    Ganjam for helping me integrating the TAMI system with the ESM system, which becomes an important application of TAMI. I want to thank Ming Zhang, now...network monitoring. In Proc. ACM SIGCOMM, August 2004. [35] Yanghua Chu, Aditya Ganjam , T. S. Eugene Ng, Sanjay G. Rao, Kunwadee Sri- panidkulchai

  20. Lunar Outpost Technologies Breakeven Study

    NASA Technical Reports Server (NTRS)

    Perka, Alan

    2008-01-01

    This viewgraph presentation compares several Lunar Outpost (LO) life support technology combinations, evaluates the combinations for two clothing options, (i.e., Disposable clothing, and using Laundry to clean the soiled clothing) and evaluates the use of the Advanced Life Support Sizing and Analysis Tool (ALSSAT) to estimate Equivalent System Mass (ESM)

  1. Academic Life: Monitoring Work Patterns and Daily Activities

    ERIC Educational Resources Information Center

    Forgasz, Helen J.; Leder, Gilah C.

    2006-01-01

    Academics are reported to be working longer hours and have less time for research because of increasing administrative and teaching demands. The traditional pattern of the academic enterprise appears to have changed. To explore whether this is indeed the case, the Experience Sampling Method [ESM], a research technique devised by Mihaly…

  2. Bunch Splitting Simulations for the JLEIC Ion Collider Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satogata, Todd J.; Gamage, Randika

    2016-05-01

    We describe the bunch splitting strategies for the proposed JLEIC ion collider ring at Jefferson Lab. This complex requires an unprecedented 9:6832 bunch splitting, performed in several stages. We outline the problem and current results, optimized with ESME including general parameterization of 1:2 bunch splitting for JLEIC parameters.

  3. Engineering Graphics in Education: Programming and Ready Programs.

    ERIC Educational Resources Information Center

    Audi, M. S.

    1987-01-01

    Suggests a method of integrating teaching microcomputer graphics in engineering curricula without encroaching on the fundamental engineering courses. Includes examples of engineering graphics produced by commercial programs and others produced by high-level language programing in a limited credit hour segment of an educational program. (CW)

  4. Program (systems) engineering

    NASA Technical Reports Server (NTRS)

    Baroff, Lynn E.; Easter, Robert W.; Pomphrey, Richard B.

    2004-01-01

    Program Systems Engineering applies the principles of Systems Engineering at the program level. Space programs are composed of interrelated elements which can include collections of projects, advanced technologies, information systems, etc. Some program elements are outside traditional engineering's physical systems, such as education and public outreach, public relations, resource flow, and interactions within the political environments.

  5. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  6. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  7. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  8. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  9. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  10. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  11. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  12. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  13. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  14. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  15. Trends in Environmental Health Engineering

    ERIC Educational Resources Information Center

    Rowe, D. R.

    1972-01-01

    Reviews the trends in environmental health engineering and describes programs in environmental engineering technology and the associated environmental engineering courses at Western Kentucky University (four-year program), Wytheville Community College (two-year program), and Rensselaer Polytechnic Institute (four-year program). (PR)

  16. Disadvantaged Youth Report Less Negative Emotion to Minor Stressors When with Peers: An Experience Sampling Study

    ERIC Educational Resources Information Center

    Uink, Bep Norma; Modecki, Kathryn Lynn; Barber, Bonnie L.

    2017-01-01

    Previous Experience Sampling Method (ESM) studies demonstrate that adolescents' daily emotional states are heavily influenced by their immediate social context. However, despite adolescence being a risk period for exposure to daily stressors, research has yet to examine the influence of peers on adolescents' emotional responses to stressors…

  17. Educating Esme: Diary of a Teacher's First Year.

    ERIC Educational Resources Information Center

    Codell, Esme Raji

    This book presents the uncensored diary of a young, beginning elementary school teacher. She started teaching in an inner-city, Chicago public school, where gangs attacked her class and her own students stabbed a substitute with a pencil. The most trying challenges she faced were from administrators who questioned her unconventional techniques…

  18. Enhancing Combat Survivability of Existing Unmanned Aircraft Systems

    DTIC Science & Technology

    2008-12-01

    EL/K-1861 ...........................................................30 Figure 15. RQ-4 Global Hawk Communications Architecture Showing Various...ELINT Electronic Intelligence ESM Electronic Support Measures EW Electronic Warfare EO Electro-Optics FLIR Forward Looking Infrared GPS Global ...system performance (speed, altitude, maneuverability, and agility) reduces susceptibility through system design. The RQ-4 Global Hawk is designed to fly

  19. How are interannual modes of variability IOD, ENSO, SAM, AMO excited by natural and anthropogenic forcing?

    NASA Astrophysics Data System (ADS)

    Maher, Nicola; Marotzke, Jochem

    2017-04-01

    Natural climate variability is found in observations, paleo-proxies, and climate models. Such climate variability can be intrinsic internal variability or externally forced, for example by changes in greenhouse gases or large volcanic eruptions. There are still questions concerning how external forcing, both natural (e.g., volcanic eruptions and solar variability) and anthropogenic (e.g., greenhouse gases and ozone) may excite both interannual modes of variability in the climate system. This project aims to address some of these problems, utilising the large ensemble of the MPI-ESM-LR climate model. In this study we investigate the statistics of four modes of interannual variability, namely the North Atlantic Oscillation (NAO), the Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM) and the El Niño Southern Oscillation (ENSO). Using the 100-member ensemble of MPI-ESM-LR the statistical properties of these modes (amplitude and standard deviation) can be assessed over time. Here we compare the properties in the pre-industrial control run, historical run and future scenarios (RCP4.5, RCP2.6) and present preliminary results.

  20. "Facebook depression?" social networking site use and depression in older adolescents.

    PubMed

    Jelenchick, Lauren A; Eickhoff, Jens C; Moreno, Megan A

    2013-01-01

    To evaluate the association between social networking site (SNS) use and depression in older adolescents using an experience sample method (ESM) approach. Older adolescent university students completed an online survey containing the Patient Health Questionnaire-9 depression screen (PHQ) and a week-long ESM data collection period to assess SNS use. Participants (N = 190) included in the study were 58% female and 91% Caucasian. The mean age was 18.9 years (standard deviation = .8). Most used SNSs for either <30 minutes (n = 100, 53%) or between 30 minutes and 2 hours (n = 74, 39%); a minority of participants reported daily use of SNS >2 hours (n = 16, 8%). The mean PHQ score was 5.4 (standard deviation = 4.2). No associations were seen between SNS use and either any depression (p = .519) or moderate to severe depression (p = .470). We did not find evidence supporting a relationship between SNS use and clinical depression. Counseling patients or parents regarding the risk of "Facebook Depression" may be premature. Copyright © 2013 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  1. Design of Enzymatically Cleavable Prodrugs of a Potent Platinum-Containing Anticancer Agent

    PubMed Central

    Ding, Song; Pickard, Amanda J.; Kucera, Gregory L.

    2014-01-01

    Using a versatile synthetic approach, a new class of potential ester prodrugs of highly potent, but systemically too toxic, platinum–acridine anticancer agents was generated. The new hybrids contain a hydroxyl group, which has been masked with a cleavable lipophilic acyl moiety. Both butanoic (butyric) and bulkier 2-propanepentanoic (valproic) esters were introduced. The goals of this design were to improve the drug-like properties (e.g., logD) and to reduce the systemic toxicity of the pharmacophore. Two distinct pathways by which the target compounds undergo effective ester hydrolysis, the proposed activating step, have been confirmed: platinum-assisted, self-immolative ester cleavage in a low-chloride environment (LC-ESMS, NMR spectroscopy) and enzymatic cleavage by human carboxylesterase-2 (hCES-2) (LC-ESMS). The valproic acid ester derivatives are the first example of a metal-containing agent cleavable by the pro-drug-converting enzyme. They show excellent chemical stability and reduced systemic toxicity. Preliminary results from screening in lung adenocarcinoma cell lines (A549, NCI-H1435) suggest that the mechanism of the valproic esters may involve intracellular deesterification. PMID:25303639

  2. Dynamic mechanical control of local vacancies in NiO thin films

    NASA Astrophysics Data System (ADS)

    Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V.; Kim, Yunseok

    2018-07-01

    The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.

  3. Emerging climate change signals in the interior ocean oxygen content

    NASA Astrophysics Data System (ADS)

    Tjiputra, Jerry; Goris, Nadine; Schwinger, Jörg; Lauvset, Siv

    2017-04-01

    Earth System Models (ESMs) indicate that human-induced climate change will introduce spatially heterogeneous modifications of dissolved oxygen in the North Atlantic. In the upper ocean, an increase (decrease) is predicted at low (high) latitude. Oxygen increase is driven by a reduction of the oxygen consumption for biological remineralization while warming-induced reduction in air-sea fluxes and increase in remineralization due to weaker overturning circulation lead to the projected decrease. In the interior ocean, modifications in the apparent oxygen utilization (AOU) dominate the overall oxygen changes. Moreover, for the southern subpolar gyre, both observations and model hindcast indicate a close relationship between interior ocean oxygen and the subpolar gyre index. Over the 21st century, all ESMs consistently project a steady weakening of this index and consequently the oxygen. Our finding shows that climate change-induced oxygen depletion in the interior has likely occurred and can already be detected. Nevertheless, considering the observational uncertainties, we show that in the proximity of southern subpolar gyre the projected interior trend is sufficiently large enough for early detection.

  4. Impacts of future radiation management scenarios on terrestrial carbon dynamics simulated with fully coupled NorESM

    NASA Astrophysics Data System (ADS)

    Ekici, Altug; Tjiputra, Jerry; Grini, Alf; Muri, Helene

    2017-04-01

    We have simulated 3 different radiation management geoengineering methods (CCT - cirrus cloud thinning; SAI - stratospheric aerosol injection; MSB - marine sky brightening) on top of future RCP8.5 scenario with the fully coupled Norwegian Earth System Model (NorESM). A globally consistent cooling in both atmosphere and soil is observed with all methods. However, precipitation patterns are dependent on the used method. Globally CCT and MSB methods do not affect the vegetation carbon budget, while SAI leads to a loss compared to RCP8.5 simulations. Spatially the most sensitive region is the tropics. Here, the changes in vegetation carbon content are related to the precipitation changes. Increase in soil carbon is projected in all three methods, the biggest change seen in SAI method. Simulations with CCT method leads to twice as much soil carbon retention in the tropics compared to the MSB method. Our findings show that there are unforeseen regional consequences of such geoengineering methods in the biogeochemical cycles and they should be considered with care in future climate policies.

  5. Harmane and harmalan are bioactive components of classical clonidine-displacing substance.

    PubMed

    Parker, Christine A; Anderson, Neil J; Robinson, Emma S J; Price, Rhiannon; Tyacke, Robin J; Husbands, Stephen M; Dillon, Michael P; Eglen, Richard M; Hudson, Alan L; Nutt, David J; Crump, Matthew P; Crosby, John

    2004-12-28

    Elucidation of the structure of the endogenous ligand(s) for imidazoline binding sites, clonidine-displacing substance (CDS), has been a major goal for many years. Crude CDS from bovine lung was purified by reverse-phase high-pressure liquid chromatography. Electrospray mass spectrometry (ESMS) and nuclear magnetic resonance ((1)H NMR) analysis revealed the presence of L-tryptophan and 1-carboxy-1-methyltetrahydro-beta-carboline in the active CDS extract. Competition radioligand binding studies, however, failed to show displacement of specific [(3)H]clonidine binding to rat brain membranes for either compound. Further purification of the bovine lung extract allowed the isolation of the beta-carbolines harmane and harmalan as confirmed by ESMS, (1)H NMR, and comparison with synthetic standards. Both compounds exhibited a high (nanomolar) affinity for both type 1 and type 2 imidazoline binding sites, and the synthetic standards were shown to coelute with the active classical CDS extracts. We therefore propose that the beta-carbolines harmane and harmalan represent active components of classical CDS. The identification of these compounds will allow us to establish clear physiological roles for CDS.

  6. [Risk epidemiology and child protection statistics in early childhood – a pilot study in southern Germany].

    PubMed

    Thurn, Leonore; Besier, Tanja; Ziegenhain, Ute; Jud, Andreas; Kindler, Heinz; Fischer, Dieter; Fegert, Jörg M; Künster, Anne Katrin

    2017-07-01

    In contrast to many other countries in Europe, Germany lacks sufficient empirical data on the incidence/prevalence of child maltreatment and its risk factors. This pilot study generated systematic data on the prevalence of child abuse and neglect and its risk factors in Germany. Using a newly developed questionnaire (ESM1 and ESM2) on child abuse and neglect as well as indicators for risk factors, we conducted a survey on 35 child daycare centers in a county in southern Germany, the goal being to generate reliable data. The questionnaire and the Strength and Difficulties Questionnaire (SDQ) was completed by daycare professionals for every child between 4 and under 7 years who was attending the participating daycare center (1,122 children). Child maltreatment was reported in 13.2 % of the cases, and risk factors for future child maltreatment were detected in 38.4 % cases. This study demonstrates that systematic data collection concerning child protection is feasible in child daycare centers. In the future, we recommend that local child protection networks be modified on the basis of reliable empirical data.

  7. Dynamic mechanical control of local vacancies in NiO thin films.

    PubMed

    Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V; Kim, Yunseok

    2018-07-06

    The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.

  8. Predicting flow at work: investigating the activities and job characteristics that predict flow states at work.

    PubMed

    Nielsen, Karina; Cleal, Bryan

    2010-04-01

    Flow (a state of consciousness where people become totally immersed in an activity and enjoy it intensely) has been identified as a desirable state with positive effects for employee well-being and innovation at work. Flow has been studied using both questionnaires and Experience Sampling Method (ESM). In this study, we used a newly developed 9-item flow scale in an ESM study combined with a questionnaire to examine the predictors of flow at two levels: the activities (brainstorming, planning, problem solving and evaluation) associated with transient flow states and the more stable job characteristics (role clarity, influence and cognitive demands). Participants were 58 line managers from two companies in Denmark; a private accountancy firm and a public elder care organization. We found that line managers in elder care experienced flow more often than accountancy line managers, and activities such as planning, problem solving, and evaluation predicted transient flow states. The more stable job characteristics included in this study were not, however, found to predict flow at work. Copyright 2010 APA, all rights reserved.

  9. Effect of Doping on Surface Reactivity and Conduction Mechanism in Sm-doped CeO2 Thin Films

    DOE PAGES

    Yang, Nan; Belianinov, Alex; Strelcov, Evgheni; ...

    2014-11-21

    Scanning probe microscopy measurements show irreversible surface electrochemistry in Sm-doped CeO2 thin films, which depends on humidity, temperature and doping concentration. A systematic study by electrochemical strain microscopy (ESM) in samples with two different Sm content and in several working conditions allows disclosing the microscopic mechanism underlying the difference in water adsorption and splitting with subsequent proton liberation. We measure the behavior of the hysteresis loops by changing temperature and humidity, both in standard ESM configuration and using the first order reversal curve (FORC) method. Complementing our study with spectroscopic measurements by hard x-ray photoemission spectroscopy we find that watermore » incorporation is favored until the doping with Sm is too high to allow the presence of Ce3+. The influence of doping on the surface reactivity and conduction mechanism clearly emerges from all of our experimental results. We find that at lower Sm concentration proton conduction is prevalent, featured by lower activation energy and higher mobility. Defect concentrations determine the type of the prevalent charge carrier in a doping dependent manner.« less

  10. Spatial sound field synthesis and upmixing based on the equivalent source method.

    PubMed

    Bai, Mingsian R; Hsu, Hoshen; Wen, Jheng-Ciang

    2014-01-01

    Given scarce number of recorded signals, spatial sound field synthesis with an extended sweet spot is a challenging problem in acoustic array signal processing. To address the problem, a synthesis and upmixing approach inspired by the equivalent source method (ESM) is proposed. The synthesis procedure is based on the pressure signals recorded by a microphone array and requires no source model. The array geometry can also be arbitrary. Four upmixing strategies are adopted to enhance the resolution of the reproduced sound field when there are more channels of loudspeakers than the microphones. Multi-channel inverse filtering with regularization is exploited to deal with the ill-posedness in the reconstruction process. The distance between the microphone and loudspeaker arrays is optimized to achieve the best synthesis quality. To validate the proposed system, numerical simulations and subjective listening experiments are performed. The results demonstrated that all upmixing methods improved the quality of reproduced target sound field over the original reproduction. In particular, the underdetermined ESM interpolation method yielded the best spatial sound field synthesis in terms of the reproduction error, timbral quality, and spatial quality.

  11. Advancing Systems Engineering Excellence: The Marshall Systems Engineering Leadership Development Program

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Whitfield, Susan

    2011-01-01

    As NASA undertakes increasingly complex projects, the need for expert systems engineers and leaders in systems engineering is becoming more pronounced. As a result of this issue, the Agency has undertaken an initiative to develop more systems engineering leaders through its Systems Engineering Leadership Development Program; however, the NASA Office of the Chief Engineer has also called on the field Centers to develop mechanisms to strengthen their expertise in systems engineering locally. In response to this call, Marshall Space Flight Center (MSFC) has developed a comprehensive development program for aspiring systems engineers and systems engineering leaders. This presentation will summarize the two-level program, which consists of a combination of training courses and on-the-job, developmental training assignments at the Center to help develop stronger expertise in systems engineering and technical leadership. In addition, it will focus on the success the program has had in its pilot year. The program hosted a formal kickoff event for Level I on October 13, 2009. The first class includes 42 participants from across MSFC and Michoud Assembly Facility (MAF). A formal call for Level II is forthcoming. With the new Agency focus on research and development of new technologies, having a strong pool of well-trained systems engineers is becoming increasingly more critical. Programs such as the Marshall Systems Engineering Leadership Development Program, as well as those developed at other Centers, help ensure that there is an upcoming generation of trained systems engineers and systems engineering leaders to meet future design challenges.

  12. Computer program for a four-cylinder-Stirling-engine controls simulation

    NASA Technical Reports Server (NTRS)

    Daniels, C. J.; Lorenzo, C. F.

    1982-01-01

    A four cylinder Stirling engine, transient engine simulation computer program is presented. The program is intended for controls analysis. The associated engine model was simplified to shorten computer calculation time. The model includes engine mechanical drive dynamics and vehicle load effects. The computer program also includes subroutines that allow: (1) acceleration of the engine by addition of hydrogen to the system, and (2) braking of the engine by short circuiting of the working spaces. Subroutines to calculate degraded engine performance (e.g., due to piston ring and piston rod leakage) are provided. Input data required to run the program are described and flow charts are provided. The program is modular to allow easy modification of individual routines. Examples of steady state and transient results are presented.

  13. Engineering success: Undergraduate Latina women's persistence in an undergradute engineering program

    NASA Astrophysics Data System (ADS)

    Rosbottom, Steven R.

    The purpose and focus of this narrative inquiry case study were to explore the personal stories of four undergraduate Latina students who persist in their engineering programs. This study was guided by two overarching research questions: a) What are the lived experiences of undergraduate Latina engineering students? b) What are the contributing factors that influence undergraduate Latina students to persist in an undergraduate engineering program? Yosso's (2005) community cultural wealth was used to the analyze data. Findings suggest through Yosso's (2005) aspirational capital, familial capital, social capital, navigational capital, and resistant capital the Latina student persisted in their engineering programs. These contributing factors brought to light five themes that emerged, the discovery of academic passions, guidance and support of family and teachers, preparation for and commitment to persistence, the power of community and collective engagement, and commitment to helping others. The themes supported their persistence in their engineering programs. Thus, this study informs policies, practices, and programs that support undergraduate Latina engineering student's persistence in engineering programs.

  14. Evaluation of Brine Processing Technologies for Spacecraft Wastewater

    NASA Technical Reports Server (NTRS)

    Shaw, Hali L.; Flynn, Michael; Wisniewski, Richard; Lee, Jeffery; Jones, Harry; Delzeit, Lance; Shull, Sarah; Sargusingh, Miriam; Beeler, David; Howard, Jeanie; hide

    2015-01-01

    Brine drying systems may be used in spaceflight. There are several advantages to using brine processing technologies for long-duration human missions including a reduction in resupply requirements and achieving high water recovery ratios. The objective of this project was to evaluate four technologies for the drying of spacecraft water recycling system brine byproducts. The technologies tested were NASA's Forward Osmosis Brine Drying (FOBD), Paragon's Ionomer Water Processor (IWP), NASA's Brine Evaporation Bag (BEB) System, and UMPQUA's Ultrasonic Brine Dewatering System (UBDS). The purpose of this work was to evaluate the hardware using feed streams composed of brines similar to those generated on board the International Space Station (ISS) and future exploration missions. The brine formulations used for testing were the ISS Alternate Pretreatment and Solution 2 (Alt Pretreat). The brines were generated using the Wiped-film Rotating-disk (WFRD) evaporator, which is a vapor compression distillation system that is used to simulate the function of the ISS Urine Processor Assembly (UPA). Each system was evaluated based on the results from testing and Equivalent System Mass (ESM) calculations. A Quality Function Deployment (QFD) matrix was also developed as a method to compare the different technologies based on customer and engineering requirements.

  15. [Forest fire risk assessment for China under different climate scenarios.

    PubMed

    Tian, Xiao Rui; Dai, Xuan; Wang, Ming Yu; Zhao, Feng Jun; Shu, Li Fu

    2016-03-01

    Forest fire risk depends on the hazard factors, affected body, and hazard prevention and reduction ability. The integrated risk assessment is the foundation for developing scientific fire mana-gement policies and carrying out the forest fire prevention measures. A forest fire risk assessment model and index system were established based on the classic natural disaster risk model and available data, and the model was used to assess the forest fire risks in past and future. The future climate scenario data included outputs from five global climate models (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM and NorESM1-M) for RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5, respectively. Each component index of Fire Weather Index (FWI) system was calculated daily for each grid in 1987-2050 for the historical observations and future climate scenarios according to the maximum temperature, minimum relative humidity, wind speed and daily precipitation. The results showed that areas with high and very high fire danger ratings in 1987-2010 accounted for 21.2% and 6.2%, respectively, which were distributed in Greater Xing'an Mountains and the Changbai Mountain area, most parts of Yunnan, and many fragment areas in southern China. The areas with high and very high burn possibilities were mainly distributed in the northeast and southwest region, accounting for 13.1% and 4.0%, respectively. Compared with the observation period, the areas with high and very high fire danger ratings in 2021-2050 would increase by 0.6%, 5.5%, 2.3%, and 3.5% under RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 respectively, and North China would show significant increase. The regions with high-risk forest fires would also increase due to climate change, with the most significant increase under RCP 8.5 scenario (+1.6%).

  16. Changes in interannual climate sensitivities of terrestrial carbon fluxes during the 21st century predicted by CMIP5 Earth System Models

    NASA Astrophysics Data System (ADS)

    Liu, Yongwen; Wang, Tao; Huang, Mengtian; Yao, Yitong; Ciais, Philippe; Piao, Shilong

    2016-03-01

    Terrestrial carbon fluxes are sensitive to climate change, but the interannual climate sensitivity of the land carbon cycle can also change with time. We analyzed the changes in responses of net biome production (NBP), net primary production (NPP), and heterotrophic respiration (Rh) to interannual climate variations over the 21st century in the Earth System Models (ESMs) from the Coupled Model Intercomparison Project 5. Under Representative Concentration Pathway (RCP) 4.5, interannual temperature sensitivities of NBP (γTempNBP), NPP (γTempNPP), and Rh (γTempRh) remain relatively stable at global scale, yet with large differences among ESMs and spatial heterogeneity. Modeled γTempNPP and γTempRh appear to increase in parallel in boreal regions, resulting in unchanged γTempNBP. Tropical γTempNBP decreases in most models, due to decreasing γTempNPP and relatively stable γTempRh. Across models, the changes in γTempNBP can be mainly explained by changes in γTempNPP rather than changes in γTempRh, at both global and regional scales. Interannual precipitation sensitivities of global NBP (γPrecNBP), NPP (γPrecNPP), and Rh (γPrecRh) are predicted not to change significantly, with large differences among ESMs. Across models, the changes in γPrecNBP can be mainly explained by changes in γPrecNPP rather than changes in γPrecRh in temperate regions, but not in other regions. Changes in the interannual climate sensitivities of carbon fluxes are consistent across RCPs 4.5, 6.0, and 8.5 but larger in more intensive scenarios. More effort should be considered to improve terrestrial carbon flux responses to interannual climate variability, e.g., incorporating biogeochemical processes of nutrient limitation, permafrost dynamics, and microbial decomposition.

  17. Assimilating soil moisture into an Earth System Model

    NASA Astrophysics Data System (ADS)

    Stacke, Tobias; Hagemann, Stefan

    2017-04-01

    Several modelling studies reported potential impacts of soil moisture anomalies on regional climate. In particular for short prediction periods, perturbations of the soil moisture state may result in significant alteration of surface temperature in the following season. However, it is not clear yet whether or not soil moisture anomalies affect climate also on larger temporal and spatial scales. In an earlier study, we showed that soil moisture anomalies can persist for several seasons in the deeper soil layers of a land surface model. Additionally, those anomalies can influence root zone moisture, in particular during explicitly dry or wet periods. Thus, one prerequisite for predictability, namely the existence of long term memory, is evident for simulated soil moisture and might be exploited to improve climate predictions. The second prerequisite is the sensitivity of the climate system to soil moisture. In order to investigate this sensitivity for decadal simulations, we implemented a soil moisture assimilation scheme into the Max-Planck Institute for Meteorology's Earth System Model (MPI-ESM). The assimilation scheme is based on a simple nudging algorithm and updates the surface soil moisture state once per day. In our experiments, the MPI-ESM is used which includes model components for the interactive simulation of atmosphere, land and ocean. Artificial assimilation data is created from a control simulation to nudge the MPI-ESM towards predominantly dry and wet states. First analyses are focused on the impact of the assimilation on land surface variables and reveal distinct differences in the long-term mean values between wet and dry state simulations. Precipitation, evapotranspiration and runoff are larger in the wet state compared to the dry state, resulting in an increased moisture transport from the land to atmosphere and ocean. Consequently, surface temperatures are lower in the wet state simulations by more than one Kelvin. In terms of spatial pattern, the largest differences between both simulations are seen for continental areas, while regions with a maritime climate are least sensitive to soil moisture assimilation.

  18. Age of language acquisition and cortical language organization in multilingual patients undergoing awake brain mapping.

    PubMed

    Fernández-Coello, Alejandro; Havas, Viktória; Juncadella, Montserrat; Sierpowska, Joanna; Rodríguez-Fornells, Antoni; Gabarrós, Andreu

    2017-06-01

    OBJECTIVE Most knowledge regarding the anatomical organization of multilingualism is based on aphasiology and functional imaging studies. However, the results have still to be validated by the gold standard approach, namely electrical stimulation mapping (ESM) during awake neurosurgical procedures. In this ESM study the authors describe language representation in a highly specific group of 13 multilingual individuals, focusing on how age of acquisition may influence the cortical organization of language. METHODS Thirteen patients who had a high degree of proficiency in multiple languages and were harboring lesions within the dominant, left hemisphere underwent ESM while being operated on under awake conditions. Demographic and language data were recorded in relation to age of language acquisition (for native languages and early- and late-acquired languages), neuropsychological pre- and postoperative language testing, the number and location of language sites, and overlapping distribution in terms of language acquisition time. Lesion growth patterns and histopathological characteristics, location, and size were also recorded. The distribution of language sites was analyzed with respect to age of acquisition and overlap. RESULTS The functional language-related sites were distributed in the frontal (55%), temporal (29%), and parietal lobes (16%). The total number of native language sites was 47. Early-acquired languages (including native languages) were represented in 97 sites (55 overlapped) and late-acquired languages in 70 sites (45 overlapped). The overlapping distribution was 20% for early-early, 71% for early-late, and 9% for late-late. The average lesion size (maximum diameter) was 3.3 cm. There were 5 fast-growing and 7 slow-growing lesions. CONCLUSIONS Cortical language distribution in multilingual patients is not homogeneous, and it is influenced by age of acquisition. Early-acquired languages have a greater cortical representation than languages acquired later. The prevalent native and early-acquired languages are largely represented within the perisylvian left hemisphere frontoparietotemporal areas, and the less prevalent late-acquired languages are mostly overlapped with them.

  19. Snow Climatology of Arctic Sea Ice: Comparison of Reanalysis and Climate Model Data with In Situ Measurements

    NASA Astrophysics Data System (ADS)

    Chevooruvalappil Chandran, B.; Pittana, M.; Haas, C.

    2015-12-01

    Snow on sea ice is a critical and complex factor influencing sea ice processes. Deep snow with a high albedo and low thermal conductivity inhibits ice growth in winter and minimizes ice loss in summer. Very shallow or absent snow promotes ice growth in winter and ice loss in summer. The timing of snow ablation critically impacts summer sea ice mass balance. Here we assess the accuracy of various snow on sea ice data products from reanalysis and modeling comparing them with in situ measurements. The latter are based on the Warren et al. (1999) monthly climatology derived from snow ruler measurements between 1954-1991, and on daily snow depth retrievals from few drifting ice mass balance buoys (IMB) with sufficiently long observations spanning the summer season. These were compared with snow depth data from the National Center for Environmental Prediction Department of Energy Reanalysis 2 (NCEP), the Community Climate System Model 4 (CCSM4), and the Canadian Earth System Model 2 (CanESM2). Results are quite variable in different years and regions. However, there is often good agreement between CanESM2 and IMB snow depth during the winter accumulation and spring melt periods. Regional analyses show that over the western Arctic covered primarily with multiyear ice NCEP snow depths are in good agreement with the Warren climatology while CCSM4 overestimates snow depth. However, in the Eastern Arctic which is dominated by first-year ice the opposite behavior is observed. Compared to the Warren climatology CanESM2 underestimates snow depth in all regions. Differences between different snow depth products are as large as 10 to 20 cm, with large consequences for the sea ice mass balance. However, it is also very difficult to evaluate the accuracy of reanalysis and model snow depths due to a lack of extensive, continuous in situ measurements.

  20. How to measure ecosystem stability? An evaluation of the reliability of stability metrics based on remote sensing time series across the major global ecosystems.

    PubMed

    De Keersmaecker, Wanda; Lhermitte, Stef; Honnay, Olivier; Farifteh, Jamshid; Somers, Ben; Coppin, Pol

    2014-07-01

    Increasing frequency of extreme climate events is likely to impose increased stress on ecosystems and to jeopardize the services that ecosystems provide. Therefore, it is of major importance to assess the effects of extreme climate events on the temporal stability (i.e., the resistance, the resilience, and the variance) of ecosystem properties. Most time series of ecosystem properties are, however, affected by varying data characteristics, uncertainties, and noise, which complicate the comparison of ecosystem stability metrics (ESMs) between locations. Therefore, there is a strong need for a more comprehensive understanding regarding the reliability of stability metrics and how they can be used to compare ecosystem stability globally. The objective of this study was to evaluate the performance of temporal ESMs based on time series of the Moderate Resolution Imaging Spectroradiometer derived Normalized Difference Vegetation Index of 15 global land-cover types. We provide a framework (i) to assess the reliability of ESMs in function of data characteristics, uncertainties and noise and (ii) to integrate reliability estimates in future global ecosystem stability studies against climate disturbances. The performance of our framework was tested through (i) a global ecosystem comparison and (ii) an comparison of ecosystem stability in response to the 2003 drought. The results show the influence of data quality on the accuracy of ecosystem stability. White noise, biased noise, and trends have a stronger effect on the accuracy of stability metrics than the length of the time series, temporal resolution, or amount of missing values. Moreover, we demonstrate the importance of integrating reliability estimates to interpret stability metrics within confidence limits. Based on these confidence limits, other studies dealing with specific ecosystem types or locations can be put into context, and a more reliable assessment of ecosystem stability against environmental disturbances can be obtained. © 2013 John Wiley & Sons Ltd.

  1. Data quality and feasibility of the Experience Sampling Method across the spectrum of severe psychiatric disorders: a protocol for a systematic review and meta-analysis.

    PubMed

    Vachon, Hugo; Rintala, Aki; Viechtbauer, Wolfgang; Myin-Germeys, Inez

    2018-01-18

    Due to a number of methodological advantages and theoretical considerations, more and more studies in clinical psychology research employ the Experience Sampling Method (ESM) as a data collection technique. Despite this growing interest, the absence of methodological guidelines related to the use of ESM has resulted in a large heterogeneity of designs while the potential effects of the design itself on the response behavior of the participants remain unknown. The objectives of this systematic review are to investigate the associations between the design characteristics and the data quality and feasibility of studies relying on ESM in severe psychiatric disorders. We will search for all published studies using ambulatory assessment with patients suffering from major depressive disorder, bipolar disorder, and psychotic disorder or individuals at high risk for these disorders. Electronic database searches will be performed in PubMed and Web of Science with no restriction on the publication date. Two reviewers will independently screen original studies in a title/abstract phase and a full-text phase based on the inclusion criteria. The information related to the design and sample characteristics, data quality, and feasibility will be extracted. We will provide results in terms of a descriptive synthesis, and when applicable, a meta-analysis of the findings will be conducted. Our results will attempt to highlight how the feasibility and data quality of ambulatory assessment might be related to the methodological characteristics of the study designs in severe psychiatric disorders. We will discuss these associations in different subsamples if sufficient data are available and will examine limitations in the reporting of the methods of ambulatory studies in the current literature. The protocol for this systematic review was registered on PROSPERO (PROSPERO 2017: CRD42017060322 ) and is available in full on the University of York website ( http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42017060322 ).

  2. Towards a Better Understanding of Water Stores and Fluxes: Model Observation Synthesis in a Snowmelt Dominated Research Watershed

    NASA Astrophysics Data System (ADS)

    Ryken, A.; Gochis, D.; Carroll, R. W. H.; Bearup, L. A.; Williams, K. H.; Maxwell, R. M.

    2017-12-01

    The hydrology of high-elevation, mountainous regions is poorly represented in Earth Systems Models (ESMs). In addition to regulating downstream water delivery, these ecosystems play an important role in the storage and land-atmosphere exchange of carbon and water. Water balances are sensitive to the amount of water stored in the snowpack (SWE) and the amount of water leaving the system in the form of evapotranspiration—two pieces of the hydrologic cycle that are difficult to observe and model in heterogeneous mountainous regions due to spatially variant weather patterns. In an effort to resolve this hydrologic gap in ESMs, this study seeks to better understand the interactions between groundwater, carbon flux, and the lower atmosphere in these high-altitude environments through integration of field observations and model simulations. We compare model simulations to field observations to elucidate process performance combined with a sensitivity analysis to better understand parameter uncertainty. Observations from a meteorological station in the East River Basin are used to force an integrated single-column hydrologic model, ParFlow-CLM. This met station is co-located with an eddy covariance tower, which, along with snow surveys, is used to better constrain the water, carbon, and energy fluxes in the coupled land-atmosphere model to increase our understanding of high-altitude headwaters. Preliminary results suggest the model compares well to the eddy covariance tower and field observations, shown through both correct magnitude and timing of peak SWE along with similar magnitudes and diurnal patterns of heat and water fluxes. Initial sensitivity analysis results show that an increase in temperature leads to a decrease in peak SWE as well as an increase in latent heat revealing a sensitivity of the model to air temperature. Further sensitivity analysis will help us understand more parameter uncertainty. Through obtaining more accurate and higher resolution meteorological data and applying it to a coupled hydrologic model, this study can lead to better representation of mountainous environments in all ESMs.

  3. iMarNet: an ocean biogeochemistry model inter-comparison project within a common physical ocean modelling framework

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, L.; Yool, A.; Allen, J. I.; Anderson, T. R.; Barciela, R.; Buitenhuis, E. T.; Butenschön, M.; Enright, C.; Halloran, P. R.; Le Quéré, C.; de Mora, L.; Racault, M.-F.; Sinha, B.; Totterdell, I. J.; Cox, P. M.

    2014-07-01

    Ocean biogeochemistry (OBGC) models span a wide range of complexities from highly simplified, nutrient-restoring schemes, through nutrient-phytoplankton-zooplankton-detritus (NPZD) models that crudely represent the marine biota, through to models that represent a broader trophic structure by grouping organisms as plankton functional types (PFT) based on their biogeochemical role (Dynamic Green Ocean Models; DGOM) and ecosystem models which group organisms by ecological function and trait. OBGC models are now integral components of Earth System Models (ESMs), but they compete for computing resources with higher resolution dynamical setups and with other components such as atmospheric chemistry and terrestrial vegetation schemes. As such, the choice of OBGC in ESMs needs to balance model complexity and realism alongside relative computing cost. Here, we present an inter-comparison of six OBGC models that were candidates for implementation within the next UK Earth System Model (UKESM1). The models cover a large range of biological complexity (from 7 to 57 tracers) but all include representations of at least the nitrogen, carbon, alkalinity and oxygen cycles. Each OBGC model was coupled to the Nucleus for the European Modelling of the Ocean (NEMO) ocean general circulation model (GCM), and results from physically identical hindcast simulations were compared. Model skill was evaluated for biogeochemical metrics of global-scale bulk properties using conventional statistical techniques. The computing cost of each model was also measured in standardised tests run at two resource levels. No model is shown to consistently outperform or underperform all other models across all metrics. Nonetheless, the simpler models that are easier to tune are broadly closer to observations across a number of fields, and thus offer a high-efficiency option for ESMs that prioritise high resolution climate dynamics. However, simpler models provide limited insight into more complex marine biogeochemical processes and ecosystem pathways, and a parallel approach of low resolution climate dynamics and high complexity biogeochemistry is desirable in order to provide additional insights into biogeochemistry-climate interactions.

  4. iMarNet: an ocean biogeochemistry model intercomparison project within a common physical ocean modelling framework

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, L.; Yool, A.; Allen, J. I.; Anderson, T. R.; Barciela, R.; Buitenhuis, E. T.; Butenschön, M.; Enright, C.; Halloran, P. R.; Le Quéré, C.; de Mora, L.; Racault, M.-F.; Sinha, B.; Totterdell, I. J.; Cox, P. M.

    2014-12-01

    Ocean biogeochemistry (OBGC) models span a wide variety of complexities, including highly simplified nutrient-restoring schemes, nutrient-phytoplankton-zooplankton-detritus (NPZD) models that crudely represent the marine biota, models that represent a broader trophic structure by grouping organisms as plankton functional types (PFTs) based on their biogeochemical role (dynamic green ocean models) and ecosystem models that group organisms by ecological function and trait. OBGC models are now integral components of Earth system models (ESMs), but they compete for computing resources with higher resolution dynamical setups and with other components such as atmospheric chemistry and terrestrial vegetation schemes. As such, the choice of OBGC in ESMs needs to balance model complexity and realism alongside relative computing cost. Here we present an intercomparison of six OBGC models that were candidates for implementation within the next UK Earth system model (UKESM1). The models cover a large range of biological complexity (from 7 to 57 tracers) but all include representations of at least the nitrogen, carbon, alkalinity and oxygen cycles. Each OBGC model was coupled to the ocean general circulation model Nucleus for European Modelling of the Ocean (NEMO) and results from physically identical hindcast simulations were compared. Model skill was evaluated for biogeochemical metrics of global-scale bulk properties using conventional statistical techniques. The computing cost of each model was also measured in standardised tests run at two resource levels. No model is shown to consistently outperform all other models across all metrics. Nonetheless, the simpler models are broadly closer to observations across a number of fields and thus offer a high-efficiency option for ESMs that prioritise high-resolution climate dynamics. However, simpler models provide limited insight into more complex marine biogeochemical processes and ecosystem pathways, and a parallel approach of low-resolution climate dynamics and high-complexity biogeochemistry is desirable in order to provide additional insights into biogeochemistry-climate interactions.

  5. A Validation Argument for a Simulation-Based Training Course Centered on Assessment, Recognition, and Early Management of Pediatric Sepsis.

    PubMed

    Geis, Gary L; Wheeler, Derek S; Bunger, Amy; Militello, Laura G; Taylor, Regina G; Bauer, Jerome P; Byczkowski, Terri L; Kerrey, Benjamin T; Patterson, Mary D

    2018-02-01

    Early recognition of sepsis remains one of the greatest challenges in medicine. Novice clinicians are often responsible for the recognition of sepsis and the initiation of urgent management. The aim of this study was to create a validity argument for the use of a simulation-based training course centered on assessment, recognition, and early management of sepsis in a laboratory-based setting. Five unique simulation scenarios were developed integrating critical sepsis cues identified through qualitative interviewing. Scenarios were piloted with groups of novice, intermediate, and expert pediatric physicians. The primary outcome was physician recognition of sepsis, measured with an adapted situation awareness global assessment tool. Secondary outcomes were physician compliance with pediatric advanced life support (PALS) guidelines and early sepsis management (ESM) recommendations, measured by two internally derived tools. Analysis compared recognition of sepsis by levels of expertise and measured association of sepsis recognition with the secondary outcomes. Eighteen physicians were recruited, six per study group. Each physician completed three sepsis simulations. Sepsis was recognized in 19 (35%) of 54 simulations. The odds that experts recognized sepsis was 2.6 [95% confidence interval (CI) = 0.5-13.8] times greater than novices. Adjusted for severity, for every point increase in the PALS global performance score, the odds that sepsis was recognized increased by 11.3 (95% CI = 3.1-41.4). Similarly, the odds ratio for the PALS checklist score was 1.5 (95% CI = 0.8-2.6). Adjusted for severity and level of expertise, the odds of recognizing sepsis was associated with an increase in the ESM checklist score of 1.8 (95% CI = 0.9-3.6) and an increase in ESM global performance score of 4.1 (95% CI = 1.7-10.0). Although incomplete, evidence from initial testing suggests that the simulations of pediatric sepsis were sufficiently valid to justify their use in training novice pediatric physicians in the assessment, recognition, and management of pediatric sepsis.

  6. Climatic effects of large-scale deforestation in Earth System Models

    NASA Astrophysics Data System (ADS)

    Brovkin, V.; Boysen, L.; Pongratz, J.

    2017-12-01

    Processes in terrestrial ecosystems, to a large extent, are controlled by climate and CO2 concentration. In turn, geographical distribution of vegetation cover strongly affects heat, moisture, and momentum fluxes between land surface and atmosphere (biogeophysical effects). Anthropogenic land use and land cover changes (LULCC) are now included into Earth System Models (ESMs) in the form of historical and hypothetical future scenarios as a forcing in the Coupled Model Intercomparison project, phase 6 (CMIP6). A propagation of climatic effects from land to the ocean in ESMs allows to investigate a global climate response to LULCC in addition to analysis of local effects over deforested land. One complication in the analysis of global climatic effects of historical and future LULCC scenarios is their relatively small amplitude. To increase the signal-to-noise ratio, the Land Use Model Intercomparison Project (LUMIP) suggested an idealized deforestation simulation following a prototype of 1%-CO2 increase experiment commonly used in CMIPs. The idealized experiment allows to investigate - in a harmonized way across models - a response of land surface biophysics and climate to a large-scale deforestation of 20 million km2 distributed over the most forested parts of globe. The forest is removed linearly over a period of 50 years, with an additional 30 years with no specified change in forest cover. Boundary conditions such as CO2 concentration and other forcings are kept at the pre-industrial level. We will present results of idealized deforestation experiments and other sensitivity runs with the CMIP6-version of MPI-ESM, which will be part of the later multi-model comparison. A special focus will be put on less well investigated aspects of LULCC that the idealized setup is particularly well suited for studying, such as non-linearities of the model response to the deforestation forcing and detectability of the signal over time.

  7. Characterization of heterotrophic nitrifying bacteria with respiratory ammonification and denitrification activity--description of Paenibacillus uliginis sp. nov., an inhabitant of fen peat soil and Paenibacillus purispatii sp. nov., isolated from a spacecraft assembly clean room.

    PubMed

    Behrendt, Undine; Schumann, Peter; Stieglmeier, Michaela; Pukall, Rüdiger; Augustin, Jürgen; Spröer, Cathrin; Schwendner, Petra; Moissl-Eichinger, Christine; Ulrich, Andreas

    2010-10-01

    In the course of studying the influence of N-fertilization on N(2) and N(2)O flux rates in relation to soil bacterial community composition of a long-term fertilization experiment in fen peat grassland, a strain group was isolated that was related to a strain isolated from a spacecraft assembly clean room during diversity studies of microorganisms, which withstood cleaning and bioburden reduction strategies. Both the fen soil isolates and the clean room strain revealed versatile physiological capacities in N-transformation processes by performing heterotrophic nitrification, respiratory ammonification and denitrification activity. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that the investigated isolates belonged to the genus Paenibacillus. Sequence similarities lower than 97% in comparison to established species indicated a separate species position. Except for the peptidoglycan type (A4alpha L-Lys-D-Asp), chemotaxonomic features of the isolates matched the genus description, but differences in several physiological characteristics separated them from related species and supported their novel species status. Despite a high 16S rRNA gene sequence similarity between the clean room isolate ES_MS17(T) and the representative fen soil isolate N3/975(T), DNA-DNA hybridization studies revealed genetic differences at the species level. These differences were substantiated by MALDI-TOF MS analysis, ribotyping and several distinct physiological characteristics. On the basis of these results, it was concluded that the fen soil isolates and the clean room isolate ES_MS17(T) represented two novel species for which the names Paenibacillus uliginis sp. nov. (type strain N3/975(T)=DSM 21861(T)=LMG 24790(T)) and Paenibacillus purispatii sp. nov. (type strain ES_MS17(T)=DSM 22991(T)=CIP 110057(T)) are proposed. Copyright © 2010 Elsevier GmbH. All rights reserved.

  8. The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models

    NASA Astrophysics Data System (ADS)

    Precious Mongwe, N.; Vichi, Marcello; Monteiro, Pedro M. S.

    2018-05-01

    The Southern Ocean forms an important component of the Earth system as a major sink of CO2 and heat. Recent studies based on the Coupled Model Intercomparison Project version 5 (CMIP5) Earth system models (ESMs) show that CMIP5 models disagree on the phasing of the seasonal cycle of the CO2 flux (FCO2) and compare poorly with available observation products for the Southern Ocean. Because the seasonal cycle is the dominant mode of CO2 variability in the Southern Ocean, its simulation is a rigorous test for models and their long-term projections. Here we examine the competing roles of temperature and dissolved inorganic carbon (DIC) as drivers of the seasonal cycle of pCO2 in the Southern Ocean to explain the mechanistic basis for the seasonal biases in CMIP5 models. We find that despite significant differences in the spatial characteristics of the mean annual fluxes, the intra-model homogeneity in the seasonal cycle of FCO2 is greater than observational products. FCO2 biases in CMIP5 models can be grouped into two main categories, i.e., group-SST and group-DIC. Group-SST models show an exaggeration of the seasonal rates of change of sea surface temperature (SST) in autumn and spring during the cooling and warming peaks. These higher-than-observed rates of change of SST tip the control of the seasonal cycle of pCO2 and FCO2 towards SST and result in a divergence between the observed and modeled seasonal cycles, particularly in the Sub-Antarctic Zone. While almost all analyzed models (9 out of 10) show these SST-driven biases, 3 out of 10 (namely NorESM1-ME, HadGEM-ES and MPI-ESM, collectively the group-DIC models) compensate for the solubility bias because of their overly exaggerated primary production, such that biologically driven DIC changes mainly regulate the seasonal cycle of FCO2.

  9. The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) - Part 1: Model description and pre-industrial simulation

    NASA Astrophysics Data System (ADS)

    Law, Rachel M.; Ziehn, Tilo; Matear, Richard J.; Lenton, Andrew; Chamberlain, Matthew A.; Stevens, Lauren E.; Wang, Ying-Ping; Srbinovsky, Jhan; Bi, Daohua; Yan, Hailin; Vohralik, Peter F.

    2017-07-01

    Earth system models (ESMs) that incorporate carbon-climate feedbacks represent the present state of the art in climate modelling. Here, we describe the Australian Community Climate and Earth System Simulator (ACCESS)-ESM1, which comprises atmosphere (UM7.3), land (CABLE), ocean (MOM4p1), and sea-ice (CICE4.1) components with OASIS-MCT coupling, to which ocean and land carbon modules have been added. The land carbon model (as part of CABLE) can optionally include both nitrogen and phosphorous limitation on the land carbon uptake. The ocean carbon model (WOMBAT, added to MOM) simulates the evolution of phosphate, oxygen, dissolved inorganic carbon, alkalinity and iron with one class of phytoplankton and zooplankton. We perform multi-centennial pre-industrial simulations with a fixed atmospheric CO2 concentration and different land carbon model configurations (prescribed or prognostic leaf area index). We evaluate the equilibration of the carbon cycle and present the spatial and temporal variability in key carbon exchanges. Simulating leaf area index results in a slight warming of the atmosphere relative to the prescribed leaf area index case. Seasonal and interannual variations in land carbon exchange are sensitive to whether leaf area index is simulated, with interannual variations driven by variability in precipitation and temperature. We find that the response of the ocean carbon cycle shows reasonable agreement with observations. While our model overestimates surface phosphate values, the global primary productivity agrees well with observations. Our analysis highlights some deficiencies inherent in the carbon models and where the carbon simulation is negatively impacted by known biases in the underlying physical model and consequent limits on the applicability of this model version. We conclude the study with a brief discussion of key developments required to further improve the realism of our model simulation.

  10. Increasing Retention of Women in Engineering at WSU: A Model for a Women's Mentoring Program

    ERIC Educational Resources Information Center

    Poor, Cara J.; Brown, Shane

    2013-01-01

    Concerns with the retention of women in engineering have led to the implementation of numerous programs to improve retention, including mentoring programs. The college of engineering at Washington State University (WSU) started a novel women's mentoring program in 2008, using professional engineers who graduated from WSU as mentors. The program is…

  11. 75 FR 22576 - Minority Science and Engineering Improvement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... DEPARTMENT OF EDUCATION [CFDA No. 84.120A] Minority Science and Engineering Improvement Program... the fiscal year (FY) 2009 grant slate for the Minority Science and Engineering Improvement Program... Engineering Improvement Program (MSEIP), authorized by Title III, Part E of the Higher Education Act of 1965...

  12. Development of GUI Type On-Line Condition Monitoring Program for a Turboprop Engine Using Labview

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Kim, Keonwoo

    2011-12-01

    Recently, an aero gas turbine health monitoring system has been developed for precaution and maintenance action against faults or performance degradations of the advanced propulsion system which occurs in severe environments such as high altitude, foreign object damage particles, hot and heavy rain and snowy atmospheric conditions. However to establish this health monitoring system, the online condition monitoring program is firstly required, and the program must monitor the engine performance trend through comparison between measured engine performance data and base performance results calculated by base engine performance model. This work aims to develop a GUI type on-line condition monitoring program for the PT6A-67 turboprop engine of a high altitude and long endurance operation UAV using LabVIEW. The base engine performance of the on-line condition monitoring program is simulated using component maps inversely generated from the limited performance deck data provided by engine manufacturer. The base engine performance simulation program is evaluated because analysis results by this program agree well with the performance deck data. The proposed on-line condition program can monitor the real engine performance as well as the trend through precise comparison between clean engine performance results calculated by the base performance simulation program and measured engine performance signals. In the development phase of this monitoring system, a signal generation module is proposed to evaluate the proposed online monitoring system. For user friendly purpose, all monitoring program are coded by LabVIEW, and monitoring examples are demonstrated using the proposed GUI type on-condition monitoring program.

  13. Electronic Engineering Technology Program Exit Examination as an ABET and Self-Assessment Tool

    ERIC Educational Resources Information Center

    Thomas, Gary; Darayan, Shahryar

    2018-01-01

    Every engineering, computing, and engineering technology program accredited by the Accreditation Board for Engineering and Technology (ABET) has formulated many and varied self-assessment methods. Methods used to assess a program for ABET accreditation and continuous improvement are for keeping programs current with academic and industrial…

  14. Retaining minorities in engineering: Assessment of a program prototype

    NASA Astrophysics Data System (ADS)

    Good, Jennifer Marie (Phillips)

    Program assessment is an essential part of healthy program development. Assessment should include multiple considerations, dimensions, and outcomes that match the program's objectives. As a newly formed retention program, the Auburn University Minority Engineering Program, designed to help pre-engineering minority students make the transition into their freshman year of university studies, incorporated evaluation and assessment into all three components of the program (the interactive learning laboratory, critical-thinking workshops, and Sunday-evening tutorials) from the program's inception. If students successfully adapted to the university environment and the demands of the pre-engineering course of study, then retention of minority students in the College of Engineering should improve. Data were gathered on the students involved in the various program components. Students who entered the Minority Engineering Program were pre- and posttested on three standardized subtests (critical thinking, mathematics, and science reasoning) of the Collegiate Assessment of Academic Proficiency. The first-quarter grade-point averages of the students were also gathered to compare their grades to freshman students in previous quarters within the College of Engineering. Qualitative data were also gathered on this same group of students. An analysis of the data revealed that student achievement is affected by involvement in the Minority Engineering Program. Specifically, the first quarter grade point averages of students involved in the program exceeded those of their peers in earlier years of study prior to the program's existence. In addition, mathematics and science reasoning scores on standardized tests increased pre- to postintervention. Comments collected in journals and files also demonstrated use of critical-thinking and problem-solving skills employed by the students. Recommendations for alterations of the program were made based on the outcome of the program evaluation. Further suggestions for research in minority engineering program development and evaluation were also discussed.

  15. The Earth System Model

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  16. Further Evidence of an Engagement-Achievement Paradox among U.S. High School Students

    ERIC Educational Resources Information Center

    Shernoff, David J.; Schmidt, Jennifer A.

    2008-01-01

    Achievement, engagement, and students' quality of experience were compared by racial and ethnic group in a sample of students (N = 586) drawn from 13 high schools with diverse ethnic and socioeconomic student populations. Using the Experience Sampling Method (ESM), 3,529 samples of classroom experiences were analyzed along with self-reported…

  17. Relationships between Discretionary Time Activities, Emotional Experiences, Delinquency and Depressive Symptoms among Urban African American Adolescents

    ERIC Educational Resources Information Center

    Bohnert, Amy M.; Richards, Maryse; Kohl, Krista; Randall, Edin

    2009-01-01

    Using the Experience Sampling Method (ESM), this cross-sectional study examined mediated and moderated associations between different types of discretionary time activities and depressive symptoms and delinquency among a sample of 246 (107 boys, 139 girls) fifth through eighth grade urban African American adolescents. More time spent in passive…

  18. Seeing the Spectrum: North American Approaches to Emotional, Social, and Moral Education

    ERIC Educational Resources Information Center

    McKenzie, Marcia

    2004-01-01

    Interest in emotional, social, and moral (ESM) concerns in K-12 education in North America has grown considerably during the past decade. This increased concern is considered a response to the increased prevalence of social problems experienced by children and youth, such as bullying, substance abuse, and depression, and to research indicating…

  19. Direct Effects: A School-Based Intervention for Adolescents Exposed to Educator Sexual Misconduct

    ERIC Educational Resources Information Center

    Oberhand, Erica

    2013-01-01

    Educator sexual misconduct (ESM) against high school students is a significant problem throughout the United States (American Association of University Women, 2001; United States Department of Education [USDE], 2004), and has harmful effects on students and school systems. The maltreatment of a student by an educator undermines the cohesion of the…

  20. The Impact of the Learning Environment on Student Engagement in High School Classrooms

    ERIC Educational Resources Information Center

    Shernoff, David J.; Tonks, Stephen M.; Anderson, Brett

    2014-01-01

    This chapter presents a study that investigated characteristics of the learning environment predicting for student engagement in public high school classrooms. Students in seven high school classrooms in five different subject areas were observed and videoed in order to predict their engagement as measured by the experience sampling method (ESM).…

  1. Engagement with Electronic Screen Media among Students with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Mineo, Beth A.; Ziegler, William; Gill, Susan; Salkin, Donna

    2009-01-01

    This study investigated the relative engagement potential of four types of electronic screen media (ESM): animated video, video of self, video of a familiar person engaged with an immersive virtual reality (VR) game, and immersion of self in the VR game. Forty-two students with autism, varying in age and expressive communication ability, were…

  2. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits

    Treesearch

    Owen K. Atkin; Keith J. Bloomfield; Peter B. Reich; Mark G. Tjoelker; Gregory P. Asner; Damien Bonal; Gerhard Bonisch; Matt G. Bradford; Lucas A. Cernusak; Eric G. Cosio; Danielle Creek; Kristine Y. Crous; Tomas F. Domingues; Jeffrey S. Dukes; John J. G. Egerton; John R. Evans; Graham D. Farquhar; Nikolaos M. Fyllas; Paul P. G. Gauthier; Emanuel Gloor; Teresa E. Gimeno; Kevin L. Griffin; Rossella Guerrieri; Mary A. Heskel; Chris Huntingford; Franc_oise Yoko Ishida; Jens Kattge; Hans Lambers; Michael J. Liddell; Jon Lloyd; Christopher H. Lusk; Roberta E. Martin; Ayal P. Maksimov; Trofim C. Maximov; Yadvinder Malhi; Belinda E. Medlyn; Patrick Meir; Lina M. Mercado; Nicholas Mirotchnick; Desmond Ng; Ulo Niinemets; Odhran S. O’Sullivan; Oliver L. Phillips; Lourens Poorter; Pieter Poot; I. Colin Prentice; Norma Salinas; Lucy M. Rowland; Michael G. Ryan; Stephen Sitch; Martijn Slot; Nicholas G. Smith; Matthew H. Turnbull; Mark C. VanderWel; Fernando Valladares; Erik J. Veneklaas; Lasantha K. Weerasinghe; Christian Wirth; Ian J. Wright; Kirk R. Wythers; Jen Xiang; Shuang Xiang; Joana Zaragoza-Castells

    2015-01-01

    A challenge for the development of terrestrial biosphere models (TBMs) and associated land surface components of Earth system models (ESMs) is improving representation of carbon (C) exchange between terrestrial plants and the atmosphere, and incorporating biological variation arising from diversity in plant functional types (PFTs) and climate (Sitch et al.,...

  3. The Expression of Adult ADHD Symptoms in Daily Life: An Application of Experience Sampling Methodology

    ERIC Educational Resources Information Center

    Knouse, Laura E.; Mitchell, John T.; Brown, Leslie H.; Silvia, Paul J.; Kane, Michael J.; Myin-Germeys, Inez; Kwapil, Thomas R.

    2008-01-01

    Objective: To use experience sampling method (ESM) to examine the impact of inattentive and hyperactive-impulsive ADHD symptoms on emotional well-being, activities and distress, cognitive impairment, and social functioning assessed in the daily lives of young adults. The impact of subjective appraisals on their experiences is also examined.…

  4. Extent Matters: Exposure to Sexual Material among Czech Adolescents

    ERIC Educational Resources Information Center

    Ševcíková, Anna; Šerek, Jan; Machácková, Hana; Šmahel, David

    2013-01-01

    Adolescents use media that exposes them to sexual material. This study focused on adolescents in the Czech Republic, a country with relatively high rates of exposure to sexual material (ESM). A sample of adolescents aged 11 to 15 years ("N" = 495) taken from the project EU Kids Online II was examined for predictors of the following:…

  5. Story Links: Working with Parents of Pupils at Risk of Exclusion

    ERIC Educational Resources Information Center

    Waters, Trisha

    2014-01-01

    This paper presents the results of the evaluation of the 20-month Story Links project delivered by the University of Chichester in collaboration with the Centre for Therapeutic Storywriting and funded by the Esmée Fairbairn Foundation and the Training and Development Agency for Schools (TDA). Story Links is a ten-week intervention that involves…

  6. Sociocultural Perspectives on the Internationalization of Research in Mathematics Education: A Survey Based on "JRME," "ESM," and "MTL"

    ERIC Educational Resources Information Center

    Liu, Po-Hung

    2017-01-01

    The current main research trend in mathematics education is publishing studies by Western scholars pertaining to educational issues of the world in general. but Asia is mostly overlooked. Since international comparisons show Asian students outperform others in mathematics, the imbalance should receive more attention. To gain insight into this…

  7. Documentation of the Benson Diesel Engine Simulation Program

    NASA Technical Reports Server (NTRS)

    Vangerpen, Jon

    1988-01-01

    This report documents the Benson Diesel Engine Simulation Program and explains how it can be used to predict the performance of diesel engines. The program was obtained from the Garrett Turbine Engine Company but has been extensively modified since. The program is a thermodynamic simulation of the diesel engine cycle which uses a single zone combustion model. It can be used to predict the effect of changes in engine design and operating parameters such as valve timing, speed and boost pressure. The most significan change made to this program is the addition of a more detailed heat transfer model to predict metal part temperatures. This report contains a description of the sub-models used in the Benson program, a description of the input parameters and sample program runs.

  8. An Assessment of Research-Doctorate Programs in the United States: Engineering.

    ERIC Educational Resources Information Center

    Jones, Lyle V., Ed.; And Others

    The quality of doctoral-level chemical engineering (N=79), civil engineering (N=74), electrical engineering (N=91), and mechanical engineering (N=82) programs at United States universities was assessed, using 16 measures. These measures focused on variables related to: (1) program size; (2) characteristics of graduates; (3) reputational factors…

  9. An Engineering Research Program for High School Science Teachers: Year Two Changes and Results

    ERIC Educational Resources Information Center

    DeJong, Brian P.; Yelamarthi, Kumar; Kaya, Tolga

    2016-01-01

    The research experiences for teachers program at Central Michigan University was initiated to team in-service and pre-service teachers with undergraduate engineering students and engineering faculty, in an engineering research setting. During the six-week program, teachers learn engineering concepts and develop high-school instructional material…

  10. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  11. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  12. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  13. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  14. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  15. Public health engineering education in India: current scenario, opportunities and challenges.

    PubMed

    Hussain, Mohammad Akhtar; Sharma, Kavya; Zodpey, Sanjay

    2011-01-01

    Public health engineering can play an important and significant role in solving environmental health issues. In order to confront public health challenges emerging out of environmental problems we need adequately trained public health engineers / environmental engineers. Considering the current burden of disease attributable to environmental factors and expansion in scope of applications of public health / environmental engineering science, it is essential to understand the present scenario of teaching, training and capacity building programs in these areas. Against this background the present research was carried out to know the current teaching and training programs in public health engineering and related disciplines in India and to understand the potential opportunities and challenges available. A systematic, predefined approach was used to collect and assemble the data related to various teaching and training programs in public health engineering / environmental engineering in India. Public health engineering / environmental engineering education and training in the country is mainly offered through engineering institutions, as pre-service and in-service training. Pre-service programs include diploma, degree (graduate) and post-graduate courses affiliated to various state technical boards, institutes and universities, whereas in-service training is mainly provided by Government of India recognized engineering and public health training institutes. Though trainees of these programs acquire skills related to engineering sciences, they significantly lack in public health skills. The teaching and training of public health engineering / environmental engineering is limited as a part of public health programs (MD Community Medicine, MPH, DPH) in India. There is need for developing teaching and training of public health engineering or environmental engineering as an interdisciplinary subject. Public health institutes can play an important and significant role in this regard by engaging themselves in initiating specialized programs in this domain.

  16. Change is necessary in a biological engineering curriculum.

    PubMed

    Johnson, Arthur T; Montas, Hubert; Shirmohammadi, Adel; Wheaton, Fredrick W

    2006-01-01

    Success of a Biological Engineering undergraduate educational program can be measured in a number of ways, but however it is measured, a presently successful program can translate into an unsuccessful program if it cannot adjust to different conditions posed by technical advances, student characteristics, and academic pressures. Described in this paper is a Biological Engineering curriculum that has changed significantly since its transformation from Agricultural Engineering in 1993. As a result, student numbers have continued to climb, specific objectives have emerged, and unique courses have been developed. The Biological Resources Engineering program has evolved into a program that emphasizes breadth, fundamentals, communications skills, diversity, and practical engineering judgment.

  17. Evolution of the Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.; Heller, Stuart

    2003-01-01

    The Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center develops systems engineers from existing discipline engineers. The program has evolved significantly since the report to INCOSE in 2003. This paper describes the SEED Program as it is now, outlines the changes over the last year, discusses current status and results, and shows the value of human systems and leadership skills for practicing systems engineers.

  18. Ceramic automotive Stirling engine program

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  19. 77 FR 37022 - Disability and Rehabilitation Research Projects and Centers Program; Rehabilitation Engineering...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ...; Rehabilitation Engineering Research Centers AGENCY: Office of Special Education and Rehabilitative Services... Rehabilitation Research Projects and Centers Program--Rehabilitation Engineering Research Centers (RERC). SUMMARY... amended (Rehabilitation Act). Rehabilitation Engineering Research Centers Program (RERCs) The purpose of...

  20. 76 FR 37085 - Applications for New Awards; Rehabilitation Engineering Research Centers (RERCs)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... DEPARTMENT OF EDUCATION Applications for New Awards; Rehabilitation Engineering Research Centers...)--Disability and Rehabilitation Research Projects and Centers Program--Rehabilitation Engineering Research... (Rehabilitation Act). Rehabilitation Engineering Research Centers Program (RERCs) The purpose of the RERC program...

  1. Project CAD as of July 1978: CAD support project, situation in July 1978

    NASA Technical Reports Server (NTRS)

    Boesch, L.; Lang-Lendorff, G.; Rothenberg, R.; Stelzer, V.

    1979-01-01

    The structure of Computer Aided Design (CAD) and the requirements for program developments in past and future are described. The actual standard and the future aims of CAD programs are presented. The developed programs in: (1) civil engineering; (2) mechanical engineering; (3) chemical engineering/shipbuilding; (4) electrical engineering; and (5) general programs are discussed.

  2. High Schools That Work Presents a Pre-Engineering Program of Study.

    ERIC Educational Resources Information Center

    Southern Regional Education Board, Atlanta, GA.

    The Southern Regional Education Board partnered with the not-for-profit organization Project Lead the Way (PLTW) to develop a program connecting challenging academic courses with a pre-engineering program of study. The programs goal is to increase the number and quality of engineers and engineering technologists by providing the following items:…

  3. Training Program for Practical Engineering Design through the Collaboration with Regional Companies

    NASA Astrophysics Data System (ADS)

    Gofuku, Akio; Tabata, Nobuhisa; Tomita, Eiji; Funabiki, Nobuo

    An education program to bring up engineering design capabilities through long-term internship by the collaboration with regional companies has been put in practice for five years. The program is composed of two types of long-term internships and several lectures for patent systems and engineering ethics. This paper describes the outline of the program, educational effects, and our experiences. The program was improved into two educational programs in 2011. The one is a special course to educate engineers and scientists who can lead the technologies of their domains. The other is a long-term internship program for master students in engineering divisions of graduate school. This paper also describes the current activities of the latter program.

  4. GENENG 2: A program for calculating design and off-design performance of two- and three-spool turbofans with as many as three nozzles

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.; Koenig, R. W.

    1972-01-01

    A computer program which calculates steady-state design and off-design jet engine performance for two- or three-spool turbofans with one, two, or three nozzles is described. Included in the report are complete FORTRAN 4 listings of the program with sample results for nine basic turbofan engines that can be calculated: (1) three-spool, three-stream engine; (2) two-spool, three-stream, boosted-fan engine; (3) two-spool, three-stream, supercharged-compressor engine; (4) three-spool, two-stream engine; (5) two-spool, two-stream engine; (6) three-spool, three-stream, aft-fan engine; (7) two-spool, three-stream, aft-fan engine; (8) two-spool, two-stream, aft-engine; and (9) three-spool, two-stream, aft-fan engine. The simulation of other engines by using logical variables built into the program is also described.

  5. General aviation internal-combustion engine research programs at NASA-Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Willis, E. A.

    1978-01-01

    An update is presented of non-turbine general aviation engine programs. The program encompasses conventional, lightweight diesel and rotary engines. It's three major thrusts are: (1) reduced SFC's; (2) improved fuels tolerance; and (3) reduced emissions. Current and planned future programs in such areas as lean operation, improved fuel management, advanced cooling techniques and advanced engine concepts, are described. These are expected to lay the technology base, by the mid to latter 1980's, for engines whose life cycle fuel costs are 30 to 50% lower than today's conventional engines.

  6. Application experience of grade 10Kh9MFB chromium steel for steam shutoff and control valve bodies

    NASA Astrophysics Data System (ADS)

    Skorobogatykh, V. N.; Schenkova, I. A.; Danyushevskiy, I. A.; Grin', E. A.; Levkov, L. Ya.; Prudnikov, D. A.; Zhuravlev, D. N.; Bazhenov, A. M.

    2017-04-01

    In 2014-2015, the engineers of JSC "NPO "TsNIITMash", in cooperation with JSC "Energomash (Chekhov)—ChZEM", developed a technology for manufacturing D u = 250 mm valve bodies from 10Kh9MFB chromium steel by electroslag melting (ESM) and produced their pilot copies within the frame of import substitution program. This article provides results of research into determining the design values of metal characteristics, including short-term mechanical properties at working temperatures and impact and long-term strength. The test specimens have been sampled from the following four zones: bottom, central, branch-pipe, and head. Tensile short-term rupture testing has been performed at temperatures of 350, 450, 500, 550, 600, and 650°C. Testing for long-term strength has been carried out at temperatures of 550, 575, 600, and 625°C and stresses of 156.8, 137.2, 117.6, and 98 MPa. To estimate brittle fracture resistance, impact-strength tests have been run at temperatures of-20 and-10°C; 20 and 50°C. The specimens have been sampled from the middle of the blank section. All short-term mechanical properties and impact strength are in agreement with the requirements imposed on the metal of hot-deformed steam piping made of 10Kh9MFB steel as per TU (Technical Conditions) 14-3R-55-2001. The absence of microliquation of alloying elements and the high homogeneity of chemical composition (as demonstrated with nine specimens) have also been experimentally confirmed. Metallographic analysis has shown that the structure of the tested metal is that of tempered martensite with local areas of tempered bainite. Overall, the microscopic structure of metal is practically the same in all the studied zones. Service-life calculation of pilot valve bodies has proved conformity with the safety-margin regulations. Such properties of electroslag melting blank as long-term strength and allowable stress correspond to the level of deformed metal and to regulations.

  7. Analysis of Engineering Content within Technology Education Programs

    ERIC Educational Resources Information Center

    Fantz, Todd D.; Katsioloudis, Petros J.

    2011-01-01

    In order to effectively teach engineering, technology teachers need to be taught engineering content, concepts, and related pedagogy. Some researchers posit that technology education programs may not have enough content to prepare technology teachers to teach engineering design. Certain technology teacher education programs have responded by…

  8. Systems Engineering Leadership Development: Advancing Systems Engineering Excellence

    NASA Technical Reports Server (NTRS)

    Hall, Phil; Whitfield, Susan

    2011-01-01

    This slide presentation reviews the Systems Engineering Leadership Development Program, with particular emphasis on the work being done in the development of systems engineers at Marshall Space Flight Center. There exists a lack of individuals with systems engineering expertise, in particular those with strong leadership capabilities, to meet the needs of the Agency's exploration agenda. Therefore there is a emphasis on developing these programs to identify and train systems engineers. The presentation reviews the proposed MSFC program that includes course work, and developmental assignments. The formal developmental programs at the other centers are briefly reviewed, including the Point of Contact (POC)

  9. Bringing Engineering Research Coupled With Art Into The K-12 Classroom

    NASA Astrophysics Data System (ADS)

    Cola, J.

    2016-12-01

    The Partnerships for Research, Innovation and Multi-Scale Engineering Program, a Research Experiences for K-12 Teachers at Georgia Institute of Technology demonstrates a successful program that blends the fine arts with engineering research. Teachers selected for the program improve their science and engineering content knowledge, as well as their understanding of how to use STEAM to increase student comprehension and engagement. Participants in the program designed Science, Technology, Engineering, Art, and Mathematics (STEAM)- based lessons based on faculty engineering research. Examples of some STEAM lessons created will be discussed along with lessons learned.

  10. Reading in Class & out of Class: An Experience Sampling Method Study

    ERIC Educational Resources Information Center

    Shumow, Lee; Schmidt, Jennifer A.; Kackar, Hayal

    2008-01-01

    This study described and compared the reading of sixth and eighth grade students both in and out of school using a unique data set collected with the Experience Sampling Method (ESM). On average, students read forty minutes a day out of class and seventeen minutes a day in class indicating that reading is a common leisure practice for…

  11. A Critical Evaluation of the Literature of the Troubles Project: Philosophy, Methodology, Findings/Outcomes

    ERIC Educational Resources Information Center

    Hanratty, Brian Robert

    2013-01-01

    The paper presents a critical evaluation of the Literature of the Troubles Project which was aimed at using literature in an educational context to help cement the process of peace and reconciliation between Northern Ireland's divided communities. The Project, funded by the Esmée Fairbairn Foundation, ran from September 2007 to August 2009. Its…

  12. Exposure to Community Violence and Protective and Risky Contexts among Low Income Urban African American Adolescents: A Prospective Study

    ERIC Educational Resources Information Center

    Goldner, Jonathan; Peters, Tracy L.; Richards, Maryse H.; Pearce, Steven

    2011-01-01

    This study examined protective and risky companionship and locations for exposure to community violence among African American young adolescents living in high crime, urban areas. The Experience Sampling Method (ESM), an in vivo data collection method, was employed to gather information from 233 students (62% female) over 3 years, beginning in the…

  13. What spatial scales are believable for climate model projections of sea surface temperature?

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Lester; Halloran, Paul R.; Mumby, Peter J.; Stephenson, David B.

    2014-09-01

    Earth system models (ESMs) provide high resolution simulations of variables such as sea surface temperature (SST) that are often used in off-line biological impact models. Coral reef modellers have used such model outputs extensively to project both regional and global changes to coral growth and bleaching frequency. We assess model skill at capturing sub-regional climatologies and patterns of historical warming. This study uses an established wavelet-based spatial comparison technique to assess the skill of the coupled model intercomparison project phase 5 models to capture spatial SST patterns in coral regions. We show that models typically have medium to high skill at capturing climatological spatial patterns of SSTs within key coral regions, with model skill typically improving at larger spatial scales (≥4°). However models have much lower skill at modelling historical warming patters and are shown to often perform no better than chance at regional scales (e.g. Southeast Asian) and worse than chance at finer scales (<8°). Our findings suggest that output from current generation ESMs is not yet suitable for making sub-regional projections of change in coral bleaching frequency and other marine processes linked to SST warming.

  14. Does Climate Care about Land?

    NASA Astrophysics Data System (ADS)

    Dawson, E.; Lague, M. M.; Swann, A. L. S.

    2017-12-01

    Everyone knows that plants are influenced by the climate they live in. However, the reverse is also true: plants can influence climate both locally and globally by changing atmospheric circulation. Uncovering the role that plants play in climate has been challenging—the interactions are complex and vary greatly in different regions of the world. We lack a systematic understanding of the role of vegetation in the climate system. Using a new simplified land model coupled to a modern Earth System Model (ESM), we are able to separate the individual influences of the land system in the context of modern ESMs. For example, with our model we are able to test how the capacity of the land to hold water influences the atmosphere. If less water is able to evaporate, this could lead to substantial warming, and could even influence clouds. Understanding specifically where and how the atmosphere is influenced by the land surface improves our understanding of how future changes in the land surface will in turn feedback on climate, and how that will impact people. This improved understanding also advances our knowledge of the key role biology plays in driving the global climate system.

  15. Vegetation Demographics in Earth System Models: a review of progress and priorities

    DOE PAGES

    Fisher, Rosie A.; Koven, Charles D.; Anderegg, William R. L.; ...

    2017-09-18

    Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). Furthermore, these developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. We review the developments that permit the representation of plant demographics in ESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections butmore » also allow models to be applied to new processes and questions concerning the dynamics of real-world ecosystems. We also argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first-generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter-disciplinary communication.« less

  16. Reciprocal Markov Modeling of Feedback Mechanisms Between Emotion and Dietary Choice Using Experience-Sampling Data.

    PubMed

    Lu, Ji; Pan, Junhao; Zhang, Qiang; Dubé, Laurette; Ip, Edward H

    2015-01-01

    With intensively collected longitudinal data, recent advances in the experience-sampling method (ESM) benefit social science empirical research, but also pose important methodological challenges. As traditional statistical models are not generally well equipped to analyze a system of variables that contain feedback loops, this paper proposes the utility of an extended hidden Markov model to model reciprocal the relationship between momentary emotion and eating behavior. This paper revisited an ESM data set (Lu, Huet, & Dube, 2011) that observed 160 participants' food consumption and momentary emotions 6 times per day in 10 days. Focusing on the analyses on feedback loop between mood and meal-healthiness decision, the proposed reciprocal Markov model (RMM) can accommodate both hidden ("general" emotional states: positive vs. negative state) and observed states (meal: healthier, same or less healthy than usual) without presuming independence between observations and smooth trajectories of mood or behavior changes. The results of RMM analyses illustrated the reciprocal chains of meal consumption and mood as well as the effect of contextual factors that moderate the interrelationship between eating and emotion. A simulation experiment that generated data consistent with the empirical study further demonstrated that the procedure is promising in terms of recovering the parameters.

  17. Vegetation Demographics in Earth System Models: a review of progress and priorities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Rosie A.; Koven, Charles D.; Anderegg, William R. L.

    Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). Furthermore, these developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. We review the developments that permit the representation of plant demographics in ESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections butmore » also allow models to be applied to new processes and questions concerning the dynamics of real-world ecosystems. We also argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first-generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter-disciplinary communication.« less

  18. Overall cortisol, diurnal slope, and stress reactivity in psychosis: An experience sampling approach.

    PubMed

    Vaessen, Thomas; Kasanova, Zuzana; Hernaus, Dennis; Lataster, Johan; Collip, Dina; van Nierop, Martine; Myin-Germeys, Inez

    2018-06-07

    Results from experimental studies suggest that psychosis and psychosis liability are associated with increased cortisol levels and blunted cortisol reactivity, and that use of antipsychotics may reduce these aberrations. Here, we report on overall cortisol, diurnal slope, and cortisol stress reactivity in everyday life in psychosis and psychosis liability using the experience sampling method (ESM). Our sample consisted of individuals diagnosed with psychotic disorder currently on (MPD; n = 53) or off antipsychotic medication (NMPD; n = 20), first-degree relatives of psychotic patients (REL; n = 47), and healthy volunteers (HV; n = 67). Saliva samples were collected throughout the day on six consecutive days and analyzed for cortisol levels. Simultaneously, stressfulness of the current activity was assessed with ESM questionnaires. We found no group differences in overall cortisol level between groups, but REL had a steeper diurnal slope than HV; in MPD a trend was found in the same direction. Regarding reactivity to stressful activities, results indicated attenuation of the cortisol response in both patient groups compared to HV. These results do not confirm reports of increased cortisol levels in psychosis, but provide evidence of stress-related cortisol alterations in everyday life. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Connecting Atlantic temperature variability and biological cycling in two earth system models

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, Anand; Dunne, John P.; Msadek, Rym

    2014-05-01

    Connections between the interdecadal variability in North Atlantic temperatures and biological cycling have been widely hypothesized. However, it is unclear whether such connections are due to small changes in basin-averaged temperatures indicated by the Atlantic Multidecadal Oscillation (AMO) Index, or whether both biological cycling and the AMO index are causally linked to changes in the Atlantic Meridional Overturning Circulation (AMOC). We examine interdecadal variability in the annual and month-by-month diatom biomass in two Earth System Models with the same formulations of atmospheric, land, sea ice and ocean biogeochemical dynamics but different formulations of ocean physics and thus different AMOC structures and variability. In the isopycnal-layered ESM2G, strong interdecadal changes in surface salinity associated with changes in AMOC produce spatially heterogeneous variability in convection, nutrient supply and thus diatom biomass. These changes also produce changes in ice cover, shortwave absorption and temperature and hence the AMO Index. Off West Greenland, these changes are consistent with observed changes in fisheries and support climate as a causal driver. In the level-coordinate ESM2M, nutrient supply is much higher and interdecadal changes in diatom biomass are much smaller in amplitude and not strongly linked to the AMO index.

  20. Target-type probability combining algorithms for multisensor tracking

    NASA Astrophysics Data System (ADS)

    Wigren, Torbjorn

    2001-08-01

    Algorithms for the handing of target type information in an operational multi-sensor tracking system are presented. The paper discusses recursive target type estimation, computation of crosses from passive data (strobe track triangulation), as well as the computation of the quality of the crosses for deghosting purposes. The focus is on Bayesian algorithms that operate in the discrete target type probability space, and on the approximations introduced for computational complexity reduction. The centralized algorithms are able to fuse discrete data from a variety of sensors and information sources, including IFF equipment, ESM's, IRST's as well as flight envelopes estimated from track data. All algorithms are asynchronous and can be tuned to handle clutter, erroneous associations as well as missed and erroneous detections. A key to obtain this ability is the inclusion of data forgetting by a procedure for propagation of target type probability states between measurement time instances. Other important properties of the algorithms are their abilities to handle ambiguous data and scenarios. The above aspects are illustrated in a simulations study. The simulation setup includes 46 air targets of 6 different types that are tracked by 5 airborne sensor platforms using ESM's and IRST's as data sources.

  1. The Lifestyle Carbon Dividend: Assessment of the Carbon Sequestration Potential of Grasslands and Pasturelands Reverted to Native Forests

    NASA Astrophysics Data System (ADS)

    Rao, S.; Jain, A. K.; Shu, S.

    2015-12-01

    What is the potential of a global transition to a vegan lifestyle to sequester carbon and mitigate climate change? To answer this question, we use an Earth System Model (ESM), the Integrated Science Assessment Model (ISAM). ISAM is a fully coupled biogeochemistry (carbon and nitrogen cycles) and biogeophysics (hydrology and thermal energy) ESM, which calculates carbon sources and sinks due to land cover and land use change activities, such as reforestation and afforestation. We calculate the carbon sequestration potential of grasslands and pasturelands that can be reverted to native forests as 265 GtC on 1.96E+7 km2 of land area, just 41% of the total area of such lands on Earth. The grasslands and pasturelands are assumed to revert back to native forests which existed prior to any human intervention and these include tropical, temperate and boreal forests. The results are validated with above ground regrowth measurements. Since this carbon sequestration potential is greater than the 240 GtC of that has been added to the atmosphere since the industrial era began, it shows that such global lifestyle transitions have tremendous potential to mitigate and even reverse climate change.

  2. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6

    NASA Astrophysics Data System (ADS)

    Graven, Heather; Allison, Colin E.; Etheridge, David M.; Hammer, Samuel; Keeling, Ralph F.; Levin, Ingeborg; Meijer, Harro A. J.; Rubino, Mauro; Tans, Pieter P.; Trudinger, Cathy M.; Vaughn, Bruce H.; White, James W. C.

    2017-12-01

    The isotopic composition of carbon (Δ14C and δ13C) in atmospheric CO2 and in oceanic and terrestrial carbon reservoirs is influenced by anthropogenic emissions and by natural carbon exchanges, which can respond to and drive changes in climate. Simulations of 14C and 13C in the ocean and terrestrial components of Earth system models (ESMs) present opportunities for model evaluation and for investigation of carbon cycling, including anthropogenic CO2 emissions and uptake. The use of carbon isotopes in novel evaluation of the ESMs' component ocean and terrestrial biosphere models and in new analyses of historical changes may improve predictions of future changes in the carbon cycle and climate system. We compile existing data to produce records of Δ14C and δ13C in atmospheric CO2 for the historical period 1850-2015. The primary motivation for this compilation is to provide the atmospheric boundary condition for historical simulations in the Coupled Model Intercomparison Project 6 (CMIP6) for models simulating carbon isotopes in the ocean or terrestrial biosphere. The data may also be useful for other carbon cycle modelling activities.

  3. Low rank approach to computing first and higher order derivatives using automatic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, J. A.; Abdel-Khalik, H. S.; Utke, J.

    2012-07-01

    This manuscript outlines a new approach for increasing the efficiency of applying automatic differentiation (AD) to large scale computational models. By using the principles of the Efficient Subspace Method (ESM), low rank approximations of the derivatives for first and higher orders can be calculated using minimized computational resources. The output obtained from nuclear reactor calculations typically has a much smaller numerical rank compared to the number of inputs and outputs. This rank deficiency can be exploited to reduce the number of derivatives that need to be calculated using AD. The effective rank can be determined according to ESM by computingmore » derivatives with AD at random inputs. Reduced or pseudo variables are then defined and new derivatives are calculated with respect to the pseudo variables. Two different AD packages are used: OpenAD and Rapsodia. OpenAD is used to determine the effective rank and the subspace that contains the derivatives. Rapsodia is then used to calculate derivatives with respect to the pseudo variables for the desired order. The overall approach is applied to two simple problems and to MATWS, a safety code for sodium cooled reactors. (authors)« less

  4. Simulating Snow in Canadian Boreal Environments with CLASS for ESM-SnowMIP

    NASA Astrophysics Data System (ADS)

    Wang, L.; Bartlett, P. A.; Derksen, C.; Ireson, A. M.; Essery, R.

    2017-12-01

    The ability of land surface schemes to provide realistic simulations of snow cover is necessary for accurate representation of energy and water balances in climate models. Historically, this has been particularly challenging in boreal forests, where poor treatment of both snow masking by forests and vegetation-snow interaction has resulted in biases in simulated albedo and snowpack properties, with subsequent effects on both regional temperatures and the snow albedo feedback in coupled simulations. The SnowMIP (Snow Model Intercomparison Project) series of experiments or `MIPs' was initiated in order to provide assessments of the performance of various snow- and land-surface-models at selected locations, in order to understand the primary factors affecting model performance. Here we present preliminary results of simulations conducted for the third such MIP, ESM-SnowMIP (Earth System Model - Snow Model Intercomparison Project), using the Canadian Land Surface Scheme (CLASS) at boreal forest sites in central Saskatchewan. We assess the ability of our latest model version (CLASS 3.6.2) to simulate observed snowpack properties (snow water equivalent, density and depth) and above-canopy albedo over 13 winters. We also examine the sensitivity of these simulations to climate forcing at local and regional scales.

  5. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Allen, M. (Editor)

    1980-01-01

    Progress is reported in the following: the Stirling reference engine system design; components and subsystems; F-40 baseline Stirling engine installation and test; the first automotive engine to be built on the program; computer development activities; and technical assistance to the Government. The overall program philosophy is outlined, and data and results are given.

  6. A Rational Method for Ranking Engineering Programs.

    ERIC Educational Resources Information Center

    Glower, Donald D.

    1980-01-01

    Compares two methods for ranking academic programs, the opinion poll v examination of career successes of the program's alumni. For the latter, "Who's Who in Engineering" and levels of research funding provided data. Tables display resulting data and compare rankings by the two methods for chemical engineering and civil engineering. (CS)

  7. Pre-Engineering Program. Introduction to Engineering. Advanced Engineering.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum and Resource Center.

    This guide contains information and hands-on activities to guide students through the problem-solving process needed in engineering (problem solving, presentation, and impact analysis) and information to help the instructor manage the program or courses in Virginia. Following an introduction, the guide contains a program description that supplies…

  8. Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-03-01

    A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.

  9. Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.

  10. Test Planning Approach and Lessons

    NASA Technical Reports Server (NTRS)

    Parkinson, Douglas A.; Brown, Kendall K.

    2004-01-01

    As NASA began technology risk reduction activities and planning for the next generation launch vehicle under the Space Launch Initiative (SLI), now the Next Generation Launch Technology (NGLT) Program, a review of past large liquid rocket engine development programs was performed. The intent of the review was to identify any significant lessons from the development testing programs that could be applied to current and future engine development programs. Because the primary prototype engine in design at the time of this study was the Boeing-Rocketdyne RS-84, the study was slightly biased towards LOX/RP-1 liquid propellant engines. However, the significant lessons identified are universal. It is anticipated that these lessons will serve as a reference for test planning in the Engine Systems Group at Marshall Space Flight Center (MSFC). Towards the end of F-1 and J-2 engine development testing, NASA/MSFC asked Rocketdyne to review those test programs. The result was a document titled, Study to Accelerate Development by Test of a Rocket Engine (R-8099). The "intent (of this study) is to apply this thinking and learning to more efficiently develop rocket engines to high reliability with improved cost effectivenes" Additionally, several other engine programs were reviewed - such as SSME, NSTS, STME, MC-1, and RS-83- to support or refute the R-8099. R-8099 revealed two primary lessons for test planning, which were supported by the other engine development programs. First, engine development programs can benefit from arranging the test program for engine system testing as early as feasible. The best test for determining environments is at the system level, the closest to the operational flight environment. Secondly, the component testing, which tends to be elaborate, should instead be geared towards reducing risk to enable system test. Technical risk can be reduced at the component level, but the design can only be truly verified and validated after engine system testing.

  11. Nuclear Engine System Simulation (NESS) version 2.0

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.

  12. Engaging Community College Students Using an Engineering Learning Community

    NASA Astrophysics Data System (ADS)

    Maccariella, James, Jr.

    The study investigated whether community college engineering student success was tied to a learning community. Three separate data collection sources were utilized: surveys, interviews, and existing student records. Mann-Whitney tests were used to assess survey data, independent t-tests were used to examine pre-test data, and independent t-tests, analyses of covariance (ANCOVA), chi-square tests, and logistic regression were used to examine post-test data. The study found students that participated in the Engineering TLC program experienced a significant improvement in grade point values for one of the three post-test courses studied. In addition, the analysis revealed the odds of fall-to-spring retention were 5.02 times higher for students that participated in the Engineering TLC program, and the odds of graduating or transferring were 4.9 times higher for students that participated in the Engineering TLC program. However, when confounding variables were considered in the study (engineering major, age, Pell Grant participation, gender, ethnicity, and full-time/part-time status), the analyses revealed no significant relationship between participation in the Engineering TLC program and course success, fall-to-spring retention, and graduation/transfer. Thus, the confounding variables provided alternative explanations for results. The Engineering TLC program was also found to be effective in providing mentoring opportunities, engagement and motivation opportunities, improved self confidence, and a sense of community. It is believed the Engineering TLC program can serve as a model for other community college engineering programs, by striving to build a supportive environment, and provide guidance and encouragement throughout an engineering student's program of study.

  13. Simulation of a combined-cycle engine

    NASA Technical Reports Server (NTRS)

    Vangerpen, Jon

    1991-01-01

    A FORTRAN computer program was developed to simulate the performance of combined-cycle engines. These engines combine features of both gas turbines and reciprocating engines. The computer program can simulate both design point and off-design operation. Widely varying engine configurations can be evaluated for their power, performance, and efficiency as well as the influence of altitude and air speed. Although the program was developed to simulate aircraft engines, it can be used with equal success for stationary and automative applications.

  14. Ceramic applications in turbine engines

    NASA Technical Reports Server (NTRS)

    Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.

    1984-01-01

    The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.

  15. Space civil engineering - A new discipline

    NASA Technical Reports Server (NTRS)

    Sadeh, Willy Z.; Criswell, Marvin E.

    1991-01-01

    Space Civil Engineering is an emerging engineering discipline that focuses on extending and expanding the Civil Engineering know-how and practice to the development and maintenance of infrastructure on celestial bodies. Space Civil Engineering is presently being developed as a new discipline within the Department of Civil Engineering at Colorado State University under a recently established NASA Space Grant College Program. Academic programs geared toward creating Space Civil Engineering Options at both undergraduate and graduate levels are being formulated. Basic ideas and concepts of the curriculum in the Space Civil Engineering Option at both undergraduate and graduate levels are presented. The role of Space Civil Engineering in the Space Program is discussed.

  16. NASA/GE quiet engine C acoustic test results

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Pass, J. E.

    1974-01-01

    The acoustic investigation and evaluation of the C propulsion turbofan engine are discussed. The engine was built as a part of the Quiet Engine Program. The objectives of the program are as follows: (1) to determine the noise levels produced turbofan bypass engines, (2) to demonstrate the technology and innovations which will reduce the production and radiation of noise in turbofan engines, and (3) to acquire experimental acoustic and aerodynamic data for high bypass turbofan engines to provide a better understanding of noise production mechanisms. The goals of the program called for a turbofan engine 15 to 20 PNdB quieter than currently available engines in the same thrust class.

  17. Gasoline Engine Mechanics. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This vocational program guide is intended to assist in the organization, operation, and evaluation of a program in gasoline engine mechanics in school districts, area vocational centers, and community colleges. The following topics are covered: job duties of small-engine mechanics; program content (curriculum framework and student performance…

  18. Education and Experience in Engineering, the E3 Program: Program Details.

    ERIC Educational Resources Information Center

    Illinois Inst. of Tech., Chicago.

    Presented is a description of the Education and Experience in Engineering (E3) Program at the Illinois Institute of Technology. Included are the objectives, how the program works, faculty, dissemination of E3 information, integration of science and technology into the E3 program, and the integration of liberal arts and engineering. A chapter is…

  19. Enhancing the Programming Experience for First-Year Engineering Students through Hands-On Integrated Computer Experiences

    ERIC Educational Resources Information Center

    Canfield, Stephen L.; Ghafoor, Sheikh; Abdelrahman, Mohamed

    2012-01-01

    This paper describes the redesign and implementation of the course, "Introduction to Programming for Engineers" using microcontroller (MCU) hardware as the programming target. The objective of this effort is to improve the programming competency for engineering students by more closely relating the initial programming experience to the student's…

  20. Applying Hillslope Hydrology to Bridge between Ecosystem and Grid-Scale Processes within an Earth System Model

    NASA Astrophysics Data System (ADS)

    Subin, Z. M.; Sulman, B. N.; Malyshev, S.; Shevliakova, E.

    2013-12-01

    Soil moisture is a crucial control on surface energy fluxes, vegetation properties, and soil carbon cycling. Its interactions with ecosystem processes are highly nonlinear across a large range, as both drought stress and anoxia can impede vegetation and microbial growth. Earth System Models (ESMs) generally only represent an average soil-moisture state in grid cells at scales of 50-200 km, and as a result are not able to adequately represent the effects of subgrid heterogeneity in soil moisture, especially in regions with large wetland areas. We addressed this deficiency by developing the first ESM-coupled subgrid hillslope-hydrological model, TiHy (Tiled-hillslope Hydrology), embedded within the Geophysical Fluid Dynamics Laboratory (GFDL) land model. In each grid cell, one or more representative hillslope geometries are discretized into land model tiles along an upland-to-lowland gradient. These geometries represent ~1 km hillslope-scale hydrological features and allow for flexible representation of hillslope profile and plan shapes, in addition to variation of subsurface properties among or within hillslopes. Each tile (which may represent ~100 m along the hillslope) has its own surface fluxes, vegetation state, and vertically-resolved state variables for soil physics and biogeochemistry. Resolution of water state in deep layers (~200 m) down to bedrock allows for physical integration of groundwater transport with unsaturated overlying dynamics. Multiple tiles can also co-exist at the same vertical position along the hillslope, allowing the simulation of ecosystem heterogeneity due to disturbance. The hydrological model is coupled to the vertically-resolved Carbon, Organisms, Respiration, and Protection in the Soil Environment (CORPSE) model, which captures non-linearity resulting from interactions between vertically-heterogeneous soil carbon and water profiles. We present comparisons of simulated water table depth to observations. We examine sensitivities to alternative parameterizations of hillslope geometry, macroporosity, and surface runoff / inundation, and to the choice of global topographic dataset and groundwater hydraulic conductivity distribution. Simulated groundwater dynamics among hillslopes tend to cluster into three regimes of wet and well-drained, wet but poorly-drained, and dry. In the base model configuration, near-surface gridcell-mean water tables exist in an excessively large area compared to observations, including large areas of the Eastern U.S. and Northern Europe. However, in better-drained areas, the decrease in water table depth along the hillslope gradient allows for realistic increases in ecosystem water availability and soil carbon downslope. The inclusion of subgrid hydrology can increase the equilibrium 0-2 m global soil carbon stock by a large factor, due to the nonlinear effect of anoxia. We conclude that this innovative modeling framework allows for the inclusion of hillslope-scale processes and the potential for wetland dynamics in an ESM without need for a high-resolution 3-dimensional groundwater model. Future work will include investigating the potential for future changes in land carbon fluxes caused by the effects of changing hydrological regime, particularly in peatland-rich areas poorly treated by current ESMs.

  1. Reversing the Trend of Engineering Enrollment Declines with Innovative Outreach, Recruiting, and Retention Programs

    ERIC Educational Resources Information Center

    Davis, C. E.; Yeary, M. B.; Sluss, J. J., Jr.

    2012-01-01

    This paper discusses an all-encompassing approach to increase the number of students in engineering through innovative outreach, recruiting, and retention programs. Prior to adopting these programs, the School of Electrical and Computer Engineering (ECE) at the University of Oklahoma (OU), Norman, experienced a reduction in engineering enrollment…

  2. 40 CFR 86.1905 - How does this program work?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1905 How does this program work? (a) You must test in-use engines from the families we select. We may select the following number of engine...

  3. 40 CFR 86.1905 - How does this program work?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1905 How does this program work? (a) You must test in-use engines from the families we select. We may select the following number of engine families for...

  4. 40 CFR 86.1905 - How does this program work?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1905 How does this program work? (a) You must test in-use engines from the families we select. We may select the following number of engine...

  5. General aviation internal combustion engine research programs at NASA-Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Willis, E. A.

    1978-01-01

    An update is presented of non-turbine general aviation engine programs underway at the NASA-Lewis Research Center in Cleveland, Ohio. The program encompasses conventional, lightweight diesel and rotary engines. Its three major thrusts are: (a) reduced SFC's; (b) improved fuels tolerance; and (c) reducing emissions. Current and planned future programs in such areas as lean operation, improved fuel management, advanced cooling techniques and advanced engine concepts, are described. These are expected to lay the technology base, by the mid to late 1980's, for engines whose life cycle fuel costs are 30 to 50% lower than today's conventional engines.

  6. Systems Engineering in NASA's R&TD Programs

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is largely the analysis and planning that support the design, development, and operation of systems. The most common application of systems engineering is in guiding systems development projects that use a phased process of requirements, specifications, design, and development. This paper investigates how systems engineering techniques should be applied in research and technology development programs for advanced space systems. These programs should include anticipatory engineering of future space flight systems and a project portfolio selection process, as well as systems engineering for multiple development projects.

  7. Variable Cycle Engine Technology Program Planning and Definition Study

    NASA Technical Reports Server (NTRS)

    Westmoreland, J. S.; Stern, A. M.

    1978-01-01

    The variable stream control engine, VSCE-502B, was selected as the base engine, with the inverted flow engine concept selected as a backup. Critical component technologies were identified, and technology programs were formulated. Several engine configurations were defined on a preliminary basis to serve as demonstration vehicles for the various technologies. The different configurations present compromises in cost, technical risk, and technology return. Plans for possible variably cycle engine technology programs were formulated by synthesizing the technology requirements with the different demonstrator configurations.

  8. Effects of unique biomedical education programs for engineers: REDEEM and ESTEEM projects.

    PubMed

    Matsuki, Noriaki; Takeda, Motohiro; Yamano, Masahiro; Imai, Yohsuke; Ishikawa, Takuji; Yamaguchi, Takami

    2009-06-01

    Current engineering applications in the medical arena are extremely progressive. However, it is rather difficult for medical doctors and engineers to discuss issues because they do not always understand one another's jargon or ways of thinking. Ideally, medical engineers should become acquainted with medicine, and engineers should be able to understand how medical doctors think. Tohoku University in Japan has managed a number of unique reeducation programs for working engineers. Recurrent Education for the Development of Engineering Enhanced Medicine has been offered as a basic learning course since 2004, and Education through Synergetic Training for Engineering Enhanced Medicine has been offered as an advanced learning course since 2006. These programs, which were developed especially for engineers, consist of interactive, modular, and disease-based lectures (case studies) and substantial laboratory work. As a result of taking these courses, all students obtained better objective outcomes, on tests, and subjective outcomes, through student satisfaction. In this article, we report on our unique biomedical education programs for engineers and their effects on working engineers.

  9. 75 FR 14128 - Center for Nanoscale Science and Technology Postdoctoral Researcher and Visiting Fellow...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... Measurement Science and Engineering Program; Availability of Funds AGENCY: National Institute of Standards and... Measurement Science and Engineering Program. This program is intended to promote research, training, and... Visiting Fellow Measurement Science and Engineering Program are as follows: 1. To advance, through...

  10. Pre-Engineering Program: Science, Technology, Engineering and Mathematics (STEM)

    DTIC Science & Technology

    2013-08-29

    educators in the Urbana-Champaign area. 15. SUBJECT TERMS STEM: science, technology , engineering, mathematics 16. SECURITY CLASSIFICATION OF: 19a. NAME...9132T-13-1-0002 4. TITLE AND SUBTITLE Pre-Engineering Program: Science, Technology , Engineering and Mathematics (STEM) 5c. PROGRAM ELEMENT NUMBER N...project was focused on underserved children in grades 1-6 who need, but have limited access to, out-of-school time STEM (science, technology

  11. Technology for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  12. Quiet engine program flight engine design study

    NASA Technical Reports Server (NTRS)

    Klapproth, J. F.; Neitzel, R. E.; Seeley, C. T.

    1974-01-01

    The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included.

  13. Data systems and computer science: Software Engineering Program

    NASA Technical Reports Server (NTRS)

    Zygielbaum, Arthur I.

    1991-01-01

    An external review of the Integrated Technology Plan for the Civil Space Program is presented. This review is specifically concerned with the Software Engineering Program. The goals of the Software Engineering Program are as follows: (1) improve NASA's ability to manage development, operation, and maintenance of complex software systems; (2) decrease NASA's cost and risk in engineering complex software systems; and (3) provide technology to assure safety and reliability of software in mission critical applications.

  14. Supplemental Instruction (SI) at the Faculty of Engineering (LTH), Lund University, Sweden. An Evaluation of the SI-Program at Five LTH Engineering Programs Autumn 2008

    ERIC Educational Resources Information Center

    Malm, Joakim; Bryngfors, Leif E.; Mörner, Lise-Lotte

    2010-01-01

    The study presents an evaluation of the SI program in five engineering programs within the Faculty of Engineering (LTH) based on data from questionnaires to SI participants and SI-Leaders, credits taken by the students during the first year, and average grade data from high school for the first year students. The results show that participation in…

  15. The ACCEND program: a combined BS and MS program in environmental engineering that includes co-operative work experience.

    PubMed

    Bishop, P L; Keener, T C; Kukreti, A R; Kowel, S T

    2004-01-01

    Environmental engineering education has rapidly expanded in recent years and new teaching methods are needed. Many professionals and educators believe that a MS degree in environmental engineering should be the minimum in order to practice the profession, along with practical training. This paper describes an innovative program being offered at the University of Cincinnati that combines an integrated BS in civil engineering and an MS in environmental engineering with extensive practical co-operative education (co-op) experience, all within a five-year period. The program includes distance learning opportunities during the co-op periods. The result is a well-trained graduate who will receive higher pay and more challenging career opportunities, and who will have developed professionalism and maturity beyond that from traditional engineering programs.

  16. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Rohdenburg, C.; Antonelli, M. (Editor)

    1983-01-01

    Program status and plans are discussed for component and technology development; reference engine system design, the upgraded Mod 1 engine; industry test and evaluation; and product assurance. Four current Mod 1 engines reached a total of 2523 operational hours, while two upgraded engines accumulated 166 hours.

  17. Interactive-graphic flowpath plotting for turbine engines

    NASA Technical Reports Server (NTRS)

    Corban, R. R.

    1981-01-01

    An engine cycle program capable of simulating the design and off-design performance of arbitrary turbine engines, and a computer code which, when used in conjunction with the cycle code, can predict the weight of the engines are described. A graphics subroutine was added to the code to enable the engineer to visualize the designed engine with more clarity by producing an overall view of the designed engine for output on a graphics device using IBM-370 graphics subroutines. In addition, with the engine drawn on a graphics screen, the program allows for the interactive user to make changes to the inputs to the code for the engine to be redrawn and reweighed. These improvements allow better use of the code in conjunction with the engine program.

  18. Brief 74 Nuclear Engineering Enrollments and Degrees Survey, 2014 Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2015-03-15

    The 2014 survey includes degrees granted between September 1, 2013 and August 31, 2014, and enrollments for fall 2014. There are three academic programs new to this year's survey. Thirty-five academic programs reported having nuclear engineering programs during 2014, and data were provided by all thirty-five. The enrollments and degrees data include students majoring in nuclear engineering or in an option program equivalent to a major. Two nuclear engineering programs have indicated that health physics option enrollments and degrees are also reported in the health physics enrollments and degrees survey.

  19. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 3

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications.

  20. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 2

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit a design of a multicylinder engine for eventual flight applications.

Top