Science.gov

Sample records for england complex systems

  1. International Instructional Systems: How England Measures Up

    ERIC Educational Resources Information Center

    Creese, Brian; Isaacs, Tina

    2016-01-01

    Although England was not included in the International Instructional Systems Study because it was not a high-performing jurisdiction by the Study's definition, contributors largely were England-based. Analysing the Study's nine overall aspects of instructional systems, this paper finds that England is out of step with many of the high-performing…

  2. Environment Agency England flood warning systems

    NASA Astrophysics Data System (ADS)

    Strong, Chris; Walters, Mark; Haynes, Elizabeth; Dobson, Peter

    2015-04-01

    Context In England around 5 million homes are at risk of flooding. We invest significantly in flood prevention and management schemes but we can never prevent all flooding. Early alerting systems are fundamental to helping us reduce the impacts of flooding. The Environment Agency has had the responsibility for flood warning since 1996. In 2006 we invested in a new dissemination system that would send direct messages to pre-identified recipients via a range of channels. Since then we have continuously improved the system and service we offer. In 2010 we introduced an 'opt-out' service where we pre-registered landline numbers in flood risk areas, significantly increasing the customer base. The service has performed exceptionally well under intense flood conditions. Over a period of 3 days in December 2013, when England was experiencing an east coast storm surge, the system sent nearly 350,000 telephone messages, 85,000 emails and 70,000 text messages, with a peak call rate of around 37,000 per hour and 100% availability. The Floodline Warnings Direct (FWD) System FWD provides warnings in advance of flooding so that people at risk and responders can take action to minimise the impact of the flood. Warnings are sent via telephone, fax, text message, pager or e-mail to over 1.1 million properties located within flood risk areas in England. Triggers for issuing alerts and warnings include attained and forecast river levels and rainfall in some rapidly responding locations. There are three levels of warning: Flood Alert, Flood Warning and Severe Flood Warning, and a stand down message. The warnings can be updated to include relevant information to help inform those at risk. Working with our current provider Fujitsu, the system is under a programme of continuous improvement including expanding the 'opt-out' service to mobile phone numbers registered to at risk addresses, allowing mobile registration to the system for people 'on the move' and providing access to

  3. United Kingdom (England): Health system review.

    PubMed

    Boyle, Seán

    2011-01-01

    The Health Systems in Transition (HiT) profiles are country-based reports that provide a detailed description of a health system and of policy initiatives in progress or under development. HiTs examine different approaches to the organization, financing and delivery of health services and the role of the main actors in health systems; describe the institutional framework, process, content and implementation of health and health care policies; and highlight challenges and areas that require more in-depth analysis. Various indicators show that the health of the population has improved over the last few decades. However, inequalities in health across socioeconomic groups have been increasing since the 1970s. The main diseases affecting the population are circulatory diseases, cancer, diseases of the respiratory system and diseases of the digestive system. Risk factors such as the steadily rising levels of alcohol consumption, the sharp increases in adult and child obesity and prevailing smoking levels are among the most pressing public health concerns, particularly as they reflect the growing health inequalities among different socioeconomic groups. Health services in England are largely free at the point of use. The NHS provides preventive medicine, primary care and hospital services to all those ordinarily resident. Over 12% of the population is covered by voluntary health insurance schemes, known in the United Kingdom as private medical insurance (PMI), which mainly provides access to acute elective care in the private sector. Responsibility for publicly funded health care rests with the Secretary of State for Health, supported by the Department of Health. The Department operates at a regional level through 10 strategic health authorities (SHAs), which are responsible for ensuring the quality and performance of local health services within their geographic area. Responsibility for commissioning health services at the local level lies with 151 primary care

  4. Complex Systems

    PubMed Central

    Goldberger, Ary L.

    2006-01-01

    Physiologic systems in health and disease display an extraordinary range of temporal behaviors and structural patterns that defy understanding based on linear constructs, reductionist strategies, and classical homeostasis. Application of concepts and computational tools derived from the contemporary study of complex systems, including nonlinear dynamics, fractals and “chaos theory,” is having an increasing impact on biology and medicine. This presentation provides a brief overview of an emerging area of biomedical research, including recent applications to cardiopulmonary medicine and chronic obstructive lung disease. PMID:16921107

  5. The dark figure of infanticide in England and Wales: complexities of diagnosis.

    PubMed

    Brookman, Fiona; Nolan, Jane

    2006-07-01

    Infants aged younger than 12 months have the highest homicide victimization rate of any single age group in England and Wales. In addition, there are good grounds for believing that the official homicide statistics for this particular age group are an underestimate and subject to distortion. At the same time there is evidence mounting in the United Kingdom that some parents have been incorrectly convicted of infanticide. This article first explores all recorded cases of infanticide in England and Wales for the period 1995-2002 (298 cases in total). Characteristics of the offenders, victims, offense, and court outcomes are examined. The second part of the article takes a critical gaze at the complexities involved in distinguishing infanticide from sudden infant death syndrome (SIDS) and other sudden unexplained deaths in infancy (SUDI). The article ends by considering in what ways infant deaths might be more effectively investigated.

  6. Racialised Norms in Apprenticeship Systems in England and Germany

    ERIC Educational Resources Information Center

    Chadderton, Charlotte; Wischmann, Anke

    2014-01-01

    In this paper, we consider the issue of the under-representation of young people from minority ethnic/migrant backgrounds in apprenticeships in England and Germany. Whilst there are many studies on apprenticeships in England and Germany, few focus on under-representation or discrimination, even fewer on ethnic under-representation, and there are…

  7. Complexity in the new NHS: longitudinal case studies of CCGs in England

    PubMed Central

    Checkland, Katherine; Coleman, Anna; Perkins, Neil

    2016-01-01

    Objective The reform in the English National Health Services (NHS) under the Health and Social Care Act 2012 is unlike previous NHS reorganisations. The establishment of clinical commissioning groups (CCGs) was intended to be ‘bottom up’ with no central blueprint. This paper sets out to offer evidence about how this process has played out in practice and examines the implications of the complexity and variation which emerged. Design Detailed case studies in CCGs across England, using interviews, observation and documentary analysis. Using realist framework, we unpacked the complexity of CCG structures. Setting/participants In phase 1 of the study (January 2011 to September 2012), we conducted 96 interviews, 439 h of observation in a wide variety of meetings, 2 online surveys and 38 follow-up telephone interviews. In phase 2 (April 2013 to March 2015), we conducted 42 interviews with general practitioners (GPs) and managers and observation of 48 different types of meetings. Results Our study has highlighted the complexity inherent in CCGs, arising out of the relatively permissive environment in which they developed. Not only are they very different from one another in size, but also in structure, functions between different bodies and the roles played by GPs. Conclusions The complexity and lack of uniformity of CCGs is important as it makes it difficult for those who must engage with CCGs to know who to approach at what level. This is of increasing importance as CCGs are moving towards greater integration across health and social care. Our study also suggests that there is little consensus as to what being a ‘membership’ organisation means and how it should operate. The lack of uniformity in CCG structure and lack of clarity over the meaning of ‘membership’ raises questions over accountability, which becomes of greater importance as CCG is taking over responsibility for primary care co-commissioning. PMID:26743708

  8. Complexation of Optoelectronic Systems

    NASA Astrophysics Data System (ADS)

    Boreisho, A. S.; Il‧in, M. Yu.; Konyaev, M. A.; Mikhailenko, A. S.; Morozov, A. V.; Strakhov, S. Yu.

    2016-05-01

    Problems of increasing the efficiency and the functionality of complex optoelectronic systems for monitoring real atmospheric conditions and of their use are discussed. It is shown by the example of a meteorological complex comprising an infrared wind-sensing lidar and an X-range Doppler radar that the complexation of probing systems working in different electromagnetic-radiation ranges opens up new opportunities for determining the meteorological parameters of a turbulent atmosphere and investigating the interaction of radiation with it.

  9. Transpressive duplex and flower structure: Dent Fault System, NW England

    NASA Astrophysics Data System (ADS)

    Woodcock, Nigel H.; Rickards, Barrie

    2003-12-01

    Revised mapping along the Dent Fault (northwest England) has improved the resolution of folds and faults formed during Variscan (late Carboniferous) sinistral transpression. A NNE-trending east-down monocline, comprising the Fell End Syncline and Taythes Anticline, was forced in Carboniferous cover above a reactivated precursor to the Dent Fault within the Lower Palaeozoic basement. The Taythes Anticline is periclinal due to interference with earlier Acadian folds. The steep limb of the monocline was eventually cut by the west-dipping Dent Fault. The hangingwall of the Dent Fault was dissected by sub-vertical or east dipping faults, together forming a positive flower structure in cross-section and a contractional duplex in plan view. The footwall to the Dent Fault preserves evidence of mostly dip-slip displacements, whereas strike-slip was preferentially partitioned into the hangingwall faults. This pattern of displacement partitioning may be typical of transpressive structures in general. The faults of the Taythes duplex formed in a restraining overlap zone between the Dent Fault and the Rawthey Fault to the west. The orientations of the duplex faults were a response to kinematic boundary conditions rather than to the regional stress field directly. Kinematic constraints provided by the Dent and neighbouring Variscan faults yield a NNW-SSE regional shortening direction in this part of the Variscan foreland.

  10. The Dark Figure of Infanticide in England and Wales: Complexities of Diagnosis

    ERIC Educational Resources Information Center

    Brookman, Fiona; Nolan, Jane

    2006-01-01

    Infants aged younger than 12 months have the highest homicide victimization rate of any single age group in England and Wales. In addition, there are good grounds for believing that the official homicide statistics for this particular age group are an underestimate and subject to distortion. At the same time there is evidence mounting in the…

  11. The Complex Determinants of School Intake Characteristics and Segregation, England 1989 to 2014

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2016-01-01

    The extent of between-school segregation, or clustering of disadvantaged students within schools, in England varies depending on the indicator of interest. For example, the trend over time for segregation by student poverty differs from those for ethnicity or special educational need. Additionally the causes of the level of segregation for any…

  12. COMPLEXITY IN ECOLOGICAL SYSTEMS

    EPA Science Inventory

    The enormous complexity of ecosystems is generally obvious under even the most cursory examination. In the modern world, this complexity is further augmented by the linkage of ecosystems to economic and social systems through the human use of the environment for technological pu...

  13. Product Diversity and Spectrum of Choice in Hospital ePrescribing Systems in England

    PubMed Central

    Mozaffar, Hajar; Williams, Robin; Cresswell, Kathrin; Morison, Zoe; Slee, Ann; Team, Aziz Sheikh; Coleman, Jamie; Bates, David W.; Robertson, Ann; Avery, Tony; Blake, Laurence; Chuter, Antony; Slight, Sarah P.; Girling, Alan; Lee, Lisa; Lilford, Richard; McCloughan, Lucy; Schofield, Jill

    2014-01-01

    Background ePrescribing systems have considerable potential for improving healthcare quality and safety. With growing expectations about the benefits of such systems, there is evidence of widespread plans to implement these systems in hospitals in England where hitherto they have had a low uptake. Given the international drive away from developing home-grown to systems to procuring commercial applications, we aimed to identify available ePrescribing systems in England and to use the findings to develop a taxonomy of the systems offered by suppliers. Methods and Findings We undertook a scoping review of the published and grey literature, and conducted expert interviews with vendors, healthcare organisations and national ePrescribing experts in order to identify the spectrum of available systems, identify and map their key features, and then iteratively develop and validate a taxonomy of commercial ePrescribing systems available to English hospitals. There is a wide range of available systems including 13 hospital-wide applications and a range of specialty systems. These commercial applications can be grouped into four sub-categories: standalone systems, modules within integrated systems, functionalities spread over several modules, and specialty systems. The findings also reveal that apart from four packaged applications (two of which are specialty systems), all other systems have none or less than two live implementations across England. Conclusions The wide range of products developed in the last few years by different national and international suppliers, and the low uptake of these products by English hospitals indicate that the English ePrescribing market is still in its infancy. This market is undergoing rapid cycles of change, both with respect to the number of suppliers and their diversity of offerings. Constant renewal of knowledge is needed on the status of this evolving market, encompassing the products development and adoption, to assist implementation

  14. Optical Complex Systems 2008

    NASA Astrophysics Data System (ADS)

    Brun, Guillaume

    The Optical Complex Systems are more and more in the heart of various systems that industrial applications bring to everyday life. From environment up to spatial applications, OCS is also relevant in monitoring, transportation, robotics, life sciences, sub-marine, and even for agricultural purposes.

  15. User's Manual for the New England Water-Use Data System (NEWUDS)

    USGS Publications Warehouse

    Horn, Marilee A.

    2003-01-01

    Water is used in a variety of ways that need to be understood for effective management of water resources. Water-use activities need to be categorized and included in a database management system to understand current water uses and to provide information to water-resource management policy decisionmakers. The New England Water-Use Data System (NEWUDS) is a complex database developed to store water-use information that allows water to be tracked from a point of water-use activity (called a 'Site'), such as withdrawal from a resource (reservoir or aquifer), to a second Site, such as distribution to a user (business or irrigator). NEWUDS conceptual model consists of 10 core entities: system, owner, address, location, site, data source, resource, conveyance, transaction/rate, and alias, with tables available to store user-defined details. Three components--site (with both a From Site and a To Site), a conveyance that connects them, and a transaction/rate associated with the movement of water over a specific time interval form the core of the basic NEWUDS network model. The most important step in correctly translating real-world water-use activities into a storable format in NEWUDS depends on choosing the appropriate sites and linking them correctly in a network to model the flow of water from the initial From Site to the final To Site. Ten water-use networks representing real-world activities are described--three withdrawal networks, three return networks, two user networks, two complex community-system networks. Ten case studies of water use, one for each network, also are included in this manual to illustrate how to compile, store, and retrieve the appropriate data. The sequence of data entry into tables is critical because there are many foreign keys. The recommended core entity sequence is (1) system, (2) owner, (3) address, (4) location, (5) site, (6) data source, (7) resource, (8) conveyance, (9) transaction, and (10) rate; with (11) alias and (12) user

  16. Complexity in Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Moore, Cristopher David

    The study of chaos has shown us that deterministic systems can have a kind of unpredictability, based on a limited knowledge of their initial conditions; after a finite time, the motion appears essentially random. This observation has inspired a general interest in the subject of unpredictability, and more generally, complexity; how can we characterize how "complex" a dynamical system is?. In this thesis, we attempt to answer this question with a paradigm of complexity that comes from computer science, we extract sets of symbol sequences, or languages, from a dynamical system using standard methods of symbolic dynamics; we then ask what kinds of grammars or automata are needed a generate these languages. This places them in the Chomsky heirarchy, which in turn tells us something about how subtle and complex the dynamical system's behavior is. This gives us insight into the question of unpredictability, since these automata can also be thought of as computers attempting to predict the system. In the culmination of the thesis, we find a class of smooth, two-dimensional maps which are equivalent to the highest class in the Chomsky heirarchy, the turning machine; they are capable of universal computation. Therefore, these systems possess a kind of unpredictability qualitatively different from the usual "chaos": even if the initial conditions are known exactly, questions about the system's long-term dynamics are undecidable. No algorithm exists to answer them. Although this kind of unpredictability has been discussed in the context of distributed, many-degree-of -freedom systems (for instance, cellular automata) we believe this is the first example of such phenomena in a smooth, finite-degree-of-freedom system.

  17. Observability of complex systems

    PubMed Central

    Liu, Yang-Yu; Slotine, Jean-Jacques; Barabási, Albert-László

    2013-01-01

    A quantitative description of a complex system is inherently limited by our ability to estimate the system’s internal state from experimentally accessible outputs. Although the simultaneous measurement of all internal variables, like all metabolite concentrations in a cell, offers a complete description of a system’s state, in practice experimental access is limited to only a subset of variables, or sensors. A system is called observable if we can reconstruct the system’s complete internal state from its outputs. Here, we adopt a graphical approach derived from the dynamical laws that govern a system to determine the sensors that are necessary to reconstruct the full internal state of a complex system. We apply this approach to biochemical reaction systems, finding that the identified sensors are not only necessary but also sufficient for observability. The developed approach can also identify the optimal sensors for target or partial observability, helping us reconstruct selected state variables from appropriately chosen outputs, a prerequisite for optimal biomarker design. Given the fundamental role observability plays in complex systems, these results offer avenues to systematically explore the dynamics of a wide range of natural, technological and socioeconomic systems. PMID:23359701

  18. Towards a Totalitarian Education System in England: Looking at the Academy Question in a Longer Policy Context

    ERIC Educational Resources Information Center

    Newsam, Peter

    2013-01-01

    In this opinion piece, the author writes that England is now well on the way to having the most totalitarian as well as one of the most inefficiently managed schools system in Europe. He states that in the much maligned 1960s, people came from all over the world to learn from what was being achieved in the best of England's publicly-funded,…

  19. Managing Complex Dynamical Systems

    ERIC Educational Resources Information Center

    Cox, John C.; Webster, Robert L.; Curry, Jeanie A.; Hammond, Kevin L.

    2011-01-01

    Management commonly engages in a variety of research designed to provide insight into the motivation and relationships of individuals, departments, organizations, etc. This paper demonstrates how the application of concepts associated with the analysis of complex systems applied to such data sets can yield enhanced insights for managerial action.

  20. National Case-Studies. England.

    ERIC Educational Resources Information Center

    McClelland, Vincent Alan

    1993-01-01

    Presents a discussion of the role of educational research in teacher education in England, looking at its recent history, examining the effects of England's new national curriculum, and discussing the politics of change in the English educational system. (SM)

  1. Six Questions on Complex Systems

    NASA Astrophysics Data System (ADS)

    Symons, John F.; Sanayei, Ali

    2011-09-01

    This paper includes an interview with John F. Symons regarding some important questions in "complex systems" and "complexity". In addition, he has stated some important open problems concerning complex systems in his research area from a philosophical point of view.

  2. Education in a Multicultural Environment: Equity Issues in Teaching and Learning in the School System in England

    ERIC Educational Resources Information Center

    Boyle, Bill; Charles, Marie

    2011-01-01

    The paper focuses on the auditing and accountancy paradigm that has dominated educational measurement of pupil performance for the last 20 years in England. The advocates of this minimum competency paradigm do not take account of the results of its dominance. These results include ignoring the heterogeneous complexity of groups within societies…

  3. Visualizing complex systems

    SciTech Connect

    Douglas, J.

    1994-12-01

    The complexity of modern power systems has necessitated an increasing degree of computer assistance to ensure efficient and dependable operation. But while the machines are able to process and deliver more data more quickly than ever, the sheer bulk of numerical detail can be overwhelming for an operator trying to make the best decisions in a timely manner. Visualization techniques that help people see patterns and deviations can enable operators to grasp the big picture more intuitively and get to the nub of a problem quickly. 8 figs.

  4. Mesozoic igneous intrusions in New England and Quebec: Implications from lead (Pb) isotopes on petrogenesis and mantle sources (Ascutney Mountain, Vermont; Mont Saint Hilaire, Quebec; Pliny Complex, New Hampshire)

    SciTech Connect

    Schucker, D.E.

    1992-01-01

    Lead isotopes are used to study Mesozoic intrusions from New England and Quebec, specifically the igneous complexes of Ascutney Mountain (Vermont), Mont Saint Hilaire (Quebec), and Pliny (New Hampshire). The main objectives are to address the: (1) petrogenesis of specific complexes using Pb isotopes along with previous results; and (2) sources of parental magmas in the context of a possible plume source for the Cretaceous intrusions and New England Seamounts. Analytical procedures for Pb and U are also described in detail. For each of the three complexes, significant variation in apparent initial [sup 208]Pb/[sup 204]Pb, [sup 207]Pb/[sup 204]Pb, and [sup 206]Pb/[sup 204]Pb ratios are observed. These variations reflect crustal contamination and local country rocks are isotopically suitable contaminants. Contamination lowers the Pb isotopic ratios of the modified magmas. The Pb ratios of the parental magmas are constrained by defining trends resulting from crustal contamination. At the Ascutney complex, granites appear to be uniform at the time of formation based on feldspar results. Granite whole rocks exhibit open system U-Pb behavior which is attributed to significant recent U loss (of up to 38%). Both local schists and gneisses are important contaminants with generally <25% contamination. Significant isotopic variations are apparent at Mont Saint Hilaire where rock-feldspar variations are apparently not in isotopic equilibrium. Feldspars reflect magmatic values and indicate crustal contamination of a parental magma for the Hilaire complex. A limited data set for the Pliny complex suggests a parental magma. The Pb results support a common mantle source for the Cretaceous continental intrusions (Ascutney and Mont Saint Hilaire) and the New England Seamounts. They imply magma from a sublithospheric mantle-plume, and that magmas ascended with little or no lithospheric interaction. The magma source for the Jurassic Pliny complex appears to be different.

  5. Forecasting in Complex Systems

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.

    2014-12-01

    Complex nonlinear systems are typically characterized by many degrees of freedom, as well as interactions between the elements. Interesting examples can be found in the areas of earthquakes and finance. In these two systems, fat tails play an important role in the statistical dynamics. For earthquake systems, the Gutenberg-Richter magnitude-frequency is applicable, whereas for daily returns for the securities in the financial markets are known to be characterized by leptokurtotic statistics in which the tails are power law. Very large fluctuations are present in both systems. In earthquake systems, one has the example of great earthquakes such as the M9.1, March 11, 2011 Tohoku event. In financial systems, one has the example of the market crash of October 19, 1987. Both were largely unexpected events that severely impacted the earth and financial systems systemically. Other examples include the M9.3 Andaman earthquake of December 26, 2004, and the Great Recession which began with the fall of Lehman Brothers investment bank on September 12, 2013. Forecasting the occurrence of these damaging events has great societal importance. In recent years, national funding agencies in a variety of countries have emphasized the importance of societal relevance in research, and in particular, the goal of improved forecasting technology. Previous work has shown that both earthquakes and financial crashes can be described by a common Landau-Ginzburg-type free energy model. These metastable systems are characterized by fat tail statistics near the classical spinodal. Correlations in these systems can grow and recede, but do not imply causation, a common source of misunderstanding. In both systems, a common set of techniques can be used to compute the probabilities of future earthquakes or crashes. In this talk, we describe the basic phenomenology of these systems and emphasize their similarities and differences. We also consider the problem of forecast validation and verification

  6. Taxonomic review of the Ornithocheirus complex (Pterosauria) from the Cretaceous of England.

    PubMed

    Rodrigues, Taissa; Kellner, Alexander Wilhelm Armin

    2013-01-01

    Over a decade after the last major review of the Cambridge Greensand pterosaurs, their systematics remains one of the most disputed points in pterosaur taxonomy. Ornithocheiridae is still a wastebasket for fragmentary taxa, and some nomenclatural issues are still a problem. Here, the species from the Cretaceous of England that, at some point, were referred in Ornithocheirus, are reviewed. Investigation of the primary literature confirmed that Criorhynchus should be considered an objective junior synonym of Ornithocheirus. Taxonomic review of more than 30 species known from fragmentary remains showed that 16 of them are undiagnosable (nomina dubia): Palaeornis cliftii, Cimoliornis diomedeus, Pterodactylus compressirostris, Pterodactylus fittoni, Pterodactylus woodwardi, Ornithocheirus brachyrhinus, Ornithocheirus carteri, Ornithocheirus crassidens, Ornithocheirus dentatus, Ornithocheirus enchorhynchus, Ornithocheirus eurygnathus, Ornithocheirus oxyrhinus, Ornithocheirus scaphorhynchus, Ornithocheirus tenuirostris, Ornithocheirus xyphorhynchus, and Pterodactylus sagittirostris. Fourteen species are considered valid, and diagnoses are provided to all of them: Ornithocheirus simus, Lonchodraco giganteus comb. n., Lonchodraco machaerorhynchus comb. n., Lonchodraco(?) microdon comb. n., Coloborhynchus clavirostris, 'Ornithocheirus' capito, Camposipterus nasutus comb. n., Camposipterus(?) sedgwickii comb. n., Camposipterus(?) colorhinus comb. n., Cimoliopterus cuvieri comb. n., 'Ornithocheirus' polyodon, 'Ornithocheirus' platystomus, 'Pterodactylus' daviesii, and 'Ornithocheirus' denticulatus. These species are referred in the genera Ornithocheirus, Lonchodraco gen. n., Coloborhynchus, Cimoliopterus gen. n., and Camposipterus gen. n., but additional genera are probably present, as indicated by the use of single quotation marks throughout the text. A cladistic analysis demonstrates that Anhangueridae lies within a newly recognized clade, here named Anhangueria, which also

  7. Taxonomic review of the Ornithocheirus complex (Pterosauria) from the Cretaceous of England

    PubMed Central

    Rodrigues, Taissa; Kellner, Alexander Wilhelm Armin

    2013-01-01

    Abstract Over a decade after the last major review of the Cambridge Greensand pterosaurs, their systematics remains one of the most disputed points in pterosaur taxonomy. Ornithocheiridae is still a wastebasket for fragmentary taxa, and some nomenclatural issues are still a problem. Here, the species from the Cretaceous of England that, at some point, were referred in Ornithocheirus, are reviewed. Investigation of the primary literature confirmed that Criorhynchus should be considered an objective junior synonym of Ornithocheirus. Taxonomic review of more than 30 species known from fragmentary remains showed that 16 of them are undiagnosable (nomina dubia): Palaeornis cliftii, Cimoliornis diomedeus, Pterodactylus compressirostris, Pterodactylus fittoni, Pterodactylus woodwardi, Ornithocheirus brachyrhinus, Ornithocheirus carteri, Ornithocheirus crassidens, Ornithocheirus dentatus, Ornithocheirus enchorhynchus, Ornithocheirus eurygnathus, Ornithocheirus oxyrhinus, Ornithocheirus scaphorhynchus, Ornithocheirus tenuirostris, Ornithocheirus xyphorhynchus, and Pterodactylus sagittirostris. Fourteen species are considered valid, and diagnoses are provided to all of them: Ornithocheirus simus, Lonchodraco giganteus comb. n., Lonchodraco machaerorhynchus comb. n., Lonchodraco(?) microdon comb. n., Coloborhynchus clavirostris, ‘Ornithocheirus’ capito, Camposipterus nasutus comb. n., Camposipterus(?) sedgwickii comb. n., Camposipterus(?) colorhinus comb. n., Cimoliopterus cuvieri comb. n., ‘Ornithocheirus’ polyodon, ‘Ornithocheirus’ platystomus, ‘Pterodactylus’ daviesii, and ‘Ornithocheirus’ denticulatus. These species are referred in the genera Ornithocheirus, Lonchodraco gen. n., Coloborhynchus, Cimoliopterus gen. n., and Camposipterus gen. n., but additional genera are probably present, as indicated by the use of single quotation marks throughout the text. A cladistic analysis demonstrates that Anhangueridae lies within a newly recognized clade, here

  8. Trajectories of Higher Education System Differentiation: Structural Policy-Making and the Impact of Tuition Fees in England and Australia

    ERIC Educational Resources Information Center

    McCaig, Colin

    2011-01-01

    This article explores the impact of student self-financing systems on inequalities of access to higher education (HE) through comparative analysis of two national systems, those of England and Australia. The analysis of the historical development of HE in each nation identifies a set of comparative global themes: the expansion of HE in response to…

  9. Ethnic Inequality in Choice-Driven Education Systems: A Longitudinal Study of Performance and Choice in England and Sweden

    ERIC Educational Resources Information Center

    Jackson, Michelle; Jonsson, Jan O.; Rudolphi, Frida

    2012-01-01

    The authors ask whether choice-driven education systems, with comprehensive schools and mass education at the secondary and tertiary level, represented in this article by England and Sweden, provide educational opportunities for ethnic minorities. In studying educational attainment, the authors make a theoretical distinction between mechanisms…

  10. Strengths, weaknesses, opportunities and threats of the pig health monitoring systems used in England.

    PubMed

    Stärk, K D C; Nevel, A

    2009-10-17

    Several systems are being used in England to record information about the health of pigs. The British Pig Health Scheme (BPHS), the National Animal Disease Information System (NADIS), the Zoonoses Action Plan (ZAP) for Salmonella and the Veterinary Investigation Diagnosis Analysis (VIDA) system have been assessed to make recommendations for their future separate or joint development. The structure, organisation, processes, data quality, dissemination, utilisation and acceptance of each system have been assessed. Information was extracted from documents and websites, and informal interviews were conducted with technical experts and stakeholders. The systems covered a broad range of objectives, used variable approaches and operated at very different scales and budgets. There was a high level of awareness and involvement by the industry. Common weaknesses of the systems were the lack of in-depth quantitative analysis of the data, the lack of assessment of each system's impact, and the unknown level of bias as a result of the voluntary or selective participation in them. PMID:19850852

  11. Planned implementations of ePrescribing systems in NHS hospitals in England: a questionnaire study

    PubMed Central

    Crowe, Sarah; Cresswell, Kathrin; Avery, Anthony J; Slee, Ann; Coleman, Jamie J; Sheikh, Aziz

    2010-01-01

    Objectives To describe the plans of English NHS hospitals to implement ePrescribing systems. Design and setting Questionnaire-based survey of attendees of the National ePrescribing Forum. Participants A piloted questionnaire was distributed to all NHS and non-NHS hospital-based attendees. The questionnaire enquired about any completed or planned implementation of ePrescribing systems, the specific systems of interest, and functionality they offered. Main outcome measures Estimate of the number of NHS Trusts planning to implement ePrescribing systems. Results Ninety-one of the 166 questionnaires distributed to NHS hospital-based staff were completed and returned. Of those, six were incomplete, resulting in a total usable response rate of 51% (n = 85). Eighty-two percent (n = 46) of the 56 Trusts represented at the Forum were either ‘thinking of implementing’ or ‘currently implementing’ an ePrescribing system, such as Ascribe (13%, n = 7) and JAC (20%, n = 11). Forty percent (n = 22) of respondents specified other systems, including those procured by NHS Connecting for Health e.g. RiO, Lorenzo and Cerner. Knowledge support, decision support and computerized links to other elements of patients’ individual care records were the functionalities of greatest interest. Conclusion There is considerable reported interest and activity in implementing ePrescribing systems in hospitals across England. Whether such developments have the desired impact on improving the safety of prescribing is however, yet to be determined. PMID:21103125

  12. Lessons for major system change: centralization of stroke services in two metropolitan areas of England

    PubMed Central

    Ramsay, Angus; Perry, Catherine; Boaden, Ruth; McKevitt, Christopher; Morris, Stephen; Pursani, Nanik; Rudd, Anthony; Tyrrell, Pippa; Wolfe, Charles; Fulop, Naomi

    2016-01-01

    Objectives Our aim was to identify the factors influencing the selection of a model of acute stroke service centralization to create fewer high-volume specialist units in two metropolitan areas of England (London and Greater Manchester). It considers the reasons why services were more fully centralized in London than in Greater Manchester. Methods In both areas, we analysed 316 documents and conducted 45 interviews with people leading transformation, service user organizations, providers and commissioners. Inductive and deductive analyses were used to compare the processes underpinning change in each area, with reference to propositions for achieving major system change taken from a realist review of the existing literature (the Best framework), which we critique and develop further. Results In London, system leadership was used to overcome resistance to centralization and align stakeholders to implement a centralized service model. In Greater Manchester, programme leaders relied on achieving change by consensus and, lacking decision-making authority over providers, accommodated rather than challenged resistance by implementing a less radical transformation of services. Conclusions A combination of system (top-down) and distributed (bottom-up) leadership is important in enabling change. System leadership provides the political authority required to coordinate stakeholders and to capitalize on clinical leadership by aligning it with transformation goals. Policy makers should examine how the structures of system authority, with performance management and financial levers, can be employed to coordinate transformation by aligning the disparate interests of providers and commissioners. PMID:26811375

  13. Managing complexity of aerospace systems

    NASA Astrophysics Data System (ADS)

    Tamaskar, Shashank

    Growing complexity of modern aerospace systems has exposed the limits of conventional systems engineering tools and challenged our ability to design them in a timely and cost effective manner. According to the US Government Accountability Office (GAO), in 2009 nearly half of the defense acquisition programs are expecting 25% or more increase in unit acquisition cost. Increase in technical complexity has been identified as one of the primary drivers behind cost-schedule overruns. Thus to assure the affordability of future aerospace systems, it is increasingly important to develop tools and capabilities for managing their complexity. We propose an approach for managing the complexity of aerospace systems to address this pertinent problem. To this end, we develop a measure that improves upon the state-of-the-art metrics and incorporates key aspects of system complexity. We address the problem of system decomposition by presenting an algorithm for module identification that generates modules to minimize integration complexity. We demonstrate the framework on diverse spacecraft and show the impact of design decisions on integration cost. The measure and the algorithm together help the designer track and manage complexity in different phases of system design. We next investigate how complexity can be used as a decision metric in the model-based design (MBD) paradigm. We propose a framework for complexity enabled design space exploration that introduces the idea of using complexity as a non-traditional design objective. We also incorporate complexity with the component based design paradigm (a sub-field of MBD) and demonstrate it on several case studies. The approach for managing complexity is a small but significant contribution to the vast field of complexity management. We envision our approach being used in concert with a suite of complexity metrics to provide an ability to measure and track complexity through different stages of design and development. This will not

  14. Complex Digital Visual Systems

    ERIC Educational Resources Information Center

    Sweeny, Robert W.

    2013-01-01

    This article identifies possibilities for data visualization as art educational research practice. The author presents an analysis of the relationship between works of art and digital visual culture, employing aspects of network analysis drawn from the work of Barabási, Newman, and Watts (2006) and Castells (1994). Describing complex network…

  15. A national syndromic surveillance system for England and Wales using calls to a telephone helpline.

    PubMed

    Smith, G E; Cooper, D L; Loveridge, P; Chinemana, F; Gerard, E; Verlander, N

    2006-01-01

    Routine primary care data provide the means to monitor a variety of syndromes which could give early warning of health protection issues. In the United Kingdom, a national syndromic surveillance system, operated jointly by the UK Health Protection Agency (HPA) and NHS Direct (a national telephone health helpline), examines symptoms reported to NHS Direct. The aim of the system is to identify an increase in syndromes indicative of common infections and diseases, or the early stages of illness caused by the deliberate release of a biological or chemical agent. Data relating to 11 key symptoms/syndromes are received electronically from all 22 NHS Direct call centres covering England and Wales and analysed by the HPA on a daily basis. Statistically significant excesses in calls are automatically highlighted and assessed by a multi-disciplinary team. Although the surveillance system has characterised many sudden rises in syndromes reported to NHS Direct, no evidence of a biological or chemical attack has been detected. Benefits of this work, however, are early warning and tracking of rises in community morbidity (e.g. influenza-like illness, heatstroke); providing reassurance during times of perceived high risk (e.g. after the 7 July 2005 London bombs and December 2005 Buncefield oil depot fire); and timely surveillance data for influenza pandemic planning and epidemic modeling. PMID:17370968

  16. SO{sub 2} and NO{sub x} compliance at New England Electric System

    SciTech Connect

    Stowe, H.C.

    1996-12-31

    New England Electric System (NEES) has brought six coal units, one gas/oil unit and one oil unit at two fossil generating stations into SO{sub 2} and NO{sub x} compliance in 1995. This paper outlines both State and Federal regulations which required SO{sub 2} and NO{sub x} Emission Reductions by 1995, discusses the planning and strategic decisions, reviews the multi-functional team approach, the installation process and reviews the operational results of the Compliance Program. Under this Program, fossil plant environmental enhancements included Pulverizer Replacements, Full Gas Conversion, Gas Co-Firing, Low NO{sub x} Burners (LNB) with and without Overfire Air, Selective Non-Catalytic Reduction (SNCR) Controls, Combustion Control Replacements, Flue Gas conditioning Systems (both conventional and EPRICON), and Precipitator improvements. These compliance efforts have resulted in 1995 emission reductions for both SO{sub 2} and NO{sub x} of grater than 50% from the 1990 baseline levels.

  17. Fluvial system response to Late Devensian (Weichselian) aridity, Baston, Lincolnshire, England

    NASA Astrophysics Data System (ADS)

    Briant, Rebecca M.; Coope, G. Russell; Preece, Richard C.; Keen, David H.; Boreham, Steve; Griffiths, Huw I.; Seddon, Mary B.; Gibbard, Philip L.

    2004-07-01

    Little is known about the impact of Late Devensian (Weichselian) aridity on lowland British landscapes, largely because they lack the widespread coversand deposits of the adjacent continent. The concentration of large interformational ice-wedge casts in the upper part of many Devensian fluvial sequences suggests that fluvial activity may have decreased considerably during this time. The development of optically stimulated luminescence (OSL) dating enables this period of ice-wedge cast formation to be constrained for the first time in eastern England, where a marked horizon of ice-wedge casts is found between two distinctive dateable facies associations. Contrasts between this horizon and adjacent sediments show clear changes in environment and fluvial system behaviour in response to changing water supply, in line with palaeontological evidence. In addition to providing chronological control on the period of ice-wedge formation, the study shows good agreement of the radiocarbon and OSL dating techniques during the Middle and Late Devensian, with direct comparison of these techniques beyond 15 000 yr for the first time in Britain. It is suggested that aridity during the Late Devensian forced a significant decrease in fluvial activity compared with preceding and following periods, initiating a system with low peak flows and widespread permafrost development. Copyright

  18. Researching and Developing Music Provision in Special Schools in England for Children and Young People with Complex Needs

    ERIC Educational Resources Information Center

    Cheng, Evangeline; Ockelford, Adam; Welch, Graham

    2009-01-01

    The House of Commons Select Committee on Education (2006) estimated that around 18% of all pupils in England were categorised as having Special Educational Needs (SEN). "Around 3% of all children (250,000) had a statement of SEN and around 1% of all children were in special schools (90,000) which represent approximately one third of children with…

  19. Up or Down and Out? A Systemic Analysis of Young People's Educational Pathways in the Youth Justice System in England and Wales

    ERIC Educational Resources Information Center

    Lanskey, Caroline

    2015-01-01

    Many young people in the youth justice system in England and Wales are educationally marginalised and systemic barriers to their engagement with education persist. This article presents an analytical framework for understanding how education and youth justice practices shape young people's educational pathways during their time in the youth…

  20. Complex System Ensemble Analysis

    NASA Astrophysics Data System (ADS)

    Pearson, Carl A.

    A new measure for interaction network ensembles and their dynamics is presented: the ensemble transition matrix, T, the proportions of networks in an ensemble that support particular transitions. That presentation begins with generation of the ensemble and application of constraint perturbations to compute T, including estimating alternatives to accommodate cases where the problem size becomes computationally intractable. Then, T is used to predict ensemble dynamics properties in expected-value like calculations. Finally, analyses from the two complementary assumptions about T - that it represents uncertainty about a unique system or that it represents stochasticity around a unique constraint - are presented: entropy-based experiment selection and generalized potentials/heat dissipation of the system, respectively. Extension of these techniques to more general graph models is described, but not demonstrated. Future directions for research using T are proposed in the summary chapter. Throughout this work, the presentation of various calculations involving T are motivated by the Budding Yeast Cell Cycle example, with argument for the generality of the approaches presented by the results of their application to a database of pseudo-randomly generated dynamic constraints.

  1. The complexity of anatomical systems

    PubMed Central

    Grizzi, Fabio; Chiriva-Internati, Maurizio

    2005-01-01

    Background The conception of anatomical entities as a hierarchy of infinitely graduated forms and the increase in the number of observed anatomical sub-entities and structural variables has generated a growing complexity, thus highlighting new properties of organised biological matter. Results (1) Complexity is so pervasive in the anatomical world that it has come to be considered as a primary characteristic of anatomical systems. (2) Anatomical entities, when viewed at microscopic as well as macroscopic level of observation, show a different degree of complexity. (3) Complexity can reside in the structure of the anatomical system (having many diverse parts with varying interactions or an intricate architecture) or in its behaviour. Often complexity in structure and behaviour go together. (4) Complex systems admit many descriptions (ways of looking at the system) each of which is only partially true. Each way of looking at a complex system requires its own description, its own mode of analysis and its own breaking down of the system in different parts; (5) Almost all the anatomical entities display hierarchical forms: their component structures at different spatial scales or their process at different time scales are related to each other. Conclusion The need to find a new way of observing and measuring anatomical entities, and objectively quantifying their different structural changes, prompted us to investigate the non-Euclidean geometries and the theories of complexity, and to apply their concepts to human anatomy. This attempt has led us to reflect upon the complex significance of the shape of an observed anatomical entity. Its changes have been defined in relation to variations in its status: from a normal (i.e. natural) to a pathological or altered state introducing the concepts of kinematics and dynamics of anatomical forms, speed of their changes, and that of scale of their observation. PMID:16029490

  2. Downstream change in river bank erosion rates in the Swale-Ouse system, northern England

    NASA Astrophysics Data System (ADS)

    Lawler, D. M.; Grove, J. R.; Couperthwaite, J. S.; Leeks, G. J. L.

    1999-05-01

    Few studies have considered downstream changes in bank erosion rates and variability along single river systems. This paper reports some preliminary results of an intensive and direct field monitoring exercise of bank erosion rates on 11 sites along 130 km of the 3315 km2 Swale-Ouse river system in northern England over a 14·5 month period. Data were collected at active sites using grid networks of erosion pins read at c. 18-30 day intervals and bank-line resurveys. Erosion rates were relatively high for a river of this scale: spatially averaged bank erosion magnitudes over the 14·5 months varied from 82·7 mm to 440·1 mm, although at one highly mobile reach retreat of 1760 mm was recorded over 4 months. Bank erosion rates tended to peak in mid-basin, possibly because of an optimum combination there of high stream powers and erodible bank materials, as predicted theoretically by Lawler (1992, 1995). The piedmont (upland-lowland transition) zone was especially active. Graphical erosion representations for specific periods, however, showed that bank retreat was often highly localized within individual sites. Strong seasonal variations in erosion rate were also observed with a significant winter (December-March) peak. A novel finding, however, was the apparent downstream increase in the length of the erosion season, with measurable retreat occurring at the lower sites from September to July. This is interpreted as a reflection of a richer mix of bank erosion processes at the downstream sites, where mass failure, fluid entrainment and weathering processes are all active, with each process group having its own, but overlapping, temporal (seasonal) domain.

  3. Paleozoic orogens in New England, USA

    USGS Publications Warehouse

    Robinson, P.; Tucker, R.D.; Bradley, D.; Berry, H.N.; Osberg, P.H.

    1998-01-01

    Stratigraphy and isotope geochronology in the crystalline core of the Appalachians suggest revised interpretations of the extent, nature and timing of Paleozoic orogens in New England. Five major episodes of magmatism, deformation, and high-grade regional metamorphism are recognized: Taconian (455-442 Ma), Acadian (423-385 Ma), Neo-Acadian (366-350 Ma), Late Pennsylvanian (300-290 Ma) and Alleghanian (280-260 Ma). In the Taconian, the passive margin of Laurentia was subducted below a complex magmatic arc lasting from 480 to 442 Ma, founded in part on continental crust of a Medial New England terrane with possible affinities with Amazonia. Questions about Medial New England involve its coherence as a single plate, and the nature of its underlying crust. The Acadian began in Late Silurian as a collision between the amalgamated Laurentia-Medial New England and outer belts of Composite Avalon along a cryptic suture in coastal Maine, and progressed northwestward to the Connecticut Valley basin by mid-Devonian. Tonalitic-granitic magmatism and up to granulite-facies metamorphism culminated in Early Devonian, possibly tied to lithospheric detachment below the subducting northwestern plate and consequent asthenosphere upwelling. Newly discovered Neo-Acadian Late Devonian to Early Mississippian tonalitic-granitic magmatism, up to granulite-facies metamorphism, and severe deformation in central Massachusetts took place in a plate context poorly understood. Late Pennsylvanian effects include magmatism, metamorphism, and deformation near south New England gneiss domes and the Sebago batholith, and development of the right-lateral Norumbega fault system. Permian Alleghanian effects include penetrative deformation, granitic intrusions and up to sillimanite-grade metamorphism of Pennsylvanian beds in southeastern New England. These last two episodes relate to the arrival of Africa.

  4. Language Networks as Complex Systems

    ERIC Educational Resources Information Center

    Lee, Max Kueiming; Ou, Sheue-Jen

    2008-01-01

    Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…

  5. Data model and relational database design for the New England Water-Use Data System (NEWUDS)

    USGS Publications Warehouse

    Tessler, Steven

    2001-01-01

    The New England Water-Use Data System (NEWUDS) is a database for the storage and retrieval of water-use data. NEWUDS can handle data covering many facets of water use, including (1) tracking various types of water-use activities (withdrawals, returns, transfers, distributions, consumptive-use, wastewater collection, and treatment); (2) the description, classification and location of places and organizations involved in water-use activities; (3) details about measured or estimated volumes of water associated with water-use activities; and (4) information about data sources and water resources associated with water use. In NEWUDS, each water transaction occurs unidirectionally between two site objects, and the sites and conveyances form a water network. The core entities in the NEWUDS model are site, conveyance, transaction/rate, location, and owner. Other important entities include water resources (used for withdrawals and returns), data sources, and aliases. Multiple water-exchange estimates can be stored for individual transactions based on different methods or data sources. Storage of user-defined details is accommodated for several of the main entities. Numerous tables containing classification terms facilitate detailed descriptions of data items and can be used for routine or custom data summarization. NEWUDS handles single-user and aggregate-user water-use data, can be used for large or small water-network projects, and is available as a stand-alone Microsoft? Access database structure. Users can customize and extend the database, link it to other databases, or implement the design in other relational database applications.

  6. New England

    Atmospheric Science Data Center

    2014-05-15

    article title:  Summer Turns to Autumn in New England     View Larger Image The green hues of summer give way to the reds and browns of autumn in this pair of Multi-angle ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  7. Monopolising the Examining Board System in England: A Theoretical Perspective in Support of Reform

    ERIC Educational Resources Information Center

    Kelly, Anthony

    2014-01-01

    The fiascoes that seem to accompany the annual publication of examination results in England, the subsequent inquiries instituted to ensure they "never happen again" and the Secretary of State's decision, reversed six months later because of fears about possible EU legal challenges, to "end competition between exam boards"…

  8. Control principles of complex systems

    NASA Astrophysics Data System (ADS)

    Liu, Yang-Yu; Barabási, Albert-László

    2016-07-01

    A reflection of our ultimate understanding of a complex system is our ability to control its behavior. Typically, control has multiple prerequisites: it requires an accurate map of the network that governs the interactions between the system's components, a quantitative description of the dynamical laws that govern the temporal behavior of each component, and an ability to influence the state and temporal behavior of a selected subset of the components. With deep roots in dynamical systems and control theory, notions of control and controllability have taken a new life recently in the study of complex networks, inspiring several fundamental questions: What are the control principles of complex systems? How do networks organize themselves to balance control with functionality? To address these questions here recent advances on the controllability and the control of complex networks are reviewed, exploring the intricate interplay between the network topology and dynamical laws. The pertinent mathematical results are matched with empirical findings and applications. Uncovering the control principles of complex systems can help us explore and ultimately understand the fundamental laws that govern their behavior.

  9. Cost effectiveness of nitrate leaching mitigation measures for grassland livestock systems at locations in England and Wales.

    PubMed

    Cardenas, L M; Cuttle, S P; Crabtree, B; Hopkins, A; Shepherd, A; Scholefield, D; del Prado, A

    2011-02-15

    As much as 60% of the nitrate in water in England is thought to derive from agriculture. Legislation aims to improve water quality by limiting nitrate concentration in surface and groundwaters to 50 mg l(-1). The UK Government responded to the requirements of the EC Nitrate Directive by delineating Nitrate Vulnerable Zones (NVZs) to cover 55% of England in 2002 and increased it to 70% in 2009. In this study we assessed the cost-effectiveness of measures for implementation in livestock systems to mitigate nitrate leaching in the UK. These estimates were prepared for a range of hypothetical farms representative of typical dairy, beef and sheep farms at different locations in England and Wales and for a list of mitigation measures identified to reduce leaching. The NGAUGE and NFixCycle models were used to estimate leaching from these systems. The costs of implementation of the mitigation measures were also assessed in order to evaluate the cost-effectiveness of these measures. In general, the most effective measures to reduce leaching for all systems were the ones that involved a reduction in stocking rates and grazing time, followed by those involving improvements in fertiliser and crop management. Only in the case of the dairy system was effectiveness affected by location of the farm. The costs for implementation in the sheep system were relatively low compared with beef and dairy systems. Implementation of some of the measures with high cost-effectiveness would need to be incentivised financially or with legislation due to the high costs involved.

  10. Cost effectiveness of nitrate leaching mitigation measures for grassland livestock systems at locations in England and Wales.

    PubMed

    Cardenas, L M; Cuttle, S P; Crabtree, B; Hopkins, A; Shepherd, A; Scholefield, D; del Prado, A

    2011-02-15

    As much as 60% of the nitrate in water in England is thought to derive from agriculture. Legislation aims to improve water quality by limiting nitrate concentration in surface and groundwaters to 50 mg l(-1). The UK Government responded to the requirements of the EC Nitrate Directive by delineating Nitrate Vulnerable Zones (NVZs) to cover 55% of England in 2002 and increased it to 70% in 2009. In this study we assessed the cost-effectiveness of measures for implementation in livestock systems to mitigate nitrate leaching in the UK. These estimates were prepared for a range of hypothetical farms representative of typical dairy, beef and sheep farms at different locations in England and Wales and for a list of mitigation measures identified to reduce leaching. The NGAUGE and NFixCycle models were used to estimate leaching from these systems. The costs of implementation of the mitigation measures were also assessed in order to evaluate the cost-effectiveness of these measures. In general, the most effective measures to reduce leaching for all systems were the ones that involved a reduction in stocking rates and grazing time, followed by those involving improvements in fertiliser and crop management. Only in the case of the dairy system was effectiveness affected by location of the farm. The costs for implementation in the sheep system were relatively low compared with beef and dairy systems. Implementation of some of the measures with high cost-effectiveness would need to be incentivised financially or with legislation due to the high costs involved. PMID:21211821

  11. 1998 Complex Systems Summer School

    SciTech Connect

    1998-12-15

    For the past eleven years a group of institutes, centers, and universities throughout the country have sponsored a summer school in Santa Fe, New Mexico as part of an interdisciplinary effort to promote the understanding of complex systems. The goal of these summer schools is to provide graduate students, postdoctoral fellows and active research scientists with an introduction to the study of complex behavior in mathematical, physical, and living systems. The Center for Nonlinear Studies supported the eleventh in this series of highly successful schools in Santa Fe in June, 1998.

  12. Mineralogical Evidence for the Palaeohydrogeological Stability of a Deep Groundwater System in Fractured Rock, in West Cumbria, Northwest England

    NASA Astrophysics Data System (ADS)

    Milodowski, A. E.; Gillespie, M. R.; Chenery, S. R. N.; Naden, J.; Shaw, R. P.

    2014-12-01

    An important requirement of the safety assessment for a geological disposal facility (GDF) for radioactive waste is to be able to demonstrate the long-term chemical stability of the groundwater system at repository depth over the long period of time during which the waste will be a hazard, typically up to one million years. Of particular concern in the UK is the potential for oxidising groundwater to penetrate to repository depth during periods of glaciation, thereby increasing the mobility of some transuranic radionuclides.Between 1990 and 1998, United Kingdom Nirex Limited carried out geological investigations into the suitability of a potential site in the Sellafield area of NW England, for a GDF for L/ILW. As part of these investigations, detailed petrological analysis of fracture mineralisation in 23 deep boreholes identified a complex sequence of mineralisation events referred to as ME1-ME9. The distribution of the ME9 calcite mineralisation correlates closely with present-day groundwater flows. The ME9 calcite has been studied in more detail to understand the evolution of the deep groundwater system. The morphology and growth zoning characteristics of the calcites reflects the groundwater chemistry. Freshwater calcites display c-axis flattened to equant crystals, and are non-ferroan and strongly zoned with Mn-rich and Mn-free bands. Deeper saline-zone calcites display c-axis elongated crystals, with high Mn:Fe and low Mn:Fe growth zones. Calcite in the transition zone between the saline and fresh groundwater display saline-type cores overgrown by freshwater-type calcite, indicating a small depression of the position of the transition zone during the growth of the calcites. Sr isotope ratios and fluid inclusion chemistry confirm a link between ME9 calcite and the present regional groundwater system. Modelling of the oxygen isotope data indicates that some growth zones in the ME9 calcite precipitated from groundwater potentially containing a significant

  13. Physical approach to complex systems

    NASA Astrophysics Data System (ADS)

    Kwapień, Jarosław; Drożdż, Stanisław

    2012-06-01

    Typically, complex systems are natural or social systems which consist of a large number of nonlinearly interacting elements. These systems are open, they interchange information or mass with environment and constantly modify their internal structure and patterns of activity in the process of self-organization. As a result, they are flexible and easily adapt to variable external conditions. However, the most striking property of such systems is the existence of emergent phenomena which cannot be simply derived or predicted solely from the knowledge of the systems’ structure and the interactions among their individual elements. This property points to the holistic approaches which require giving parallel descriptions of the same system on different levels of its organization. There is strong evidence-consolidated also in the present review-that different, even apparently disparate complex systems can have astonishingly similar characteristics both in their structure and in their behaviour. One can thus expect the existence of some common, universal laws that govern their properties. Physics methodology proves helpful in addressing many of the related issues. In this review, we advocate some of the computational methods which in our opinion are especially fruitful in extracting information on selected-but at the same time most representative-complex systems like human brain, financial markets and natural language, from the time series representing the observables associated with these systems. The properties we focus on comprise the collective effects and their coexistence with noise, long-range interactions, the interplay between determinism and flexibility in evolution, scale invariance, criticality, multifractality and hierarchical structure. The methods described either originate from “hard” physics-like the random matrix theory-and then were transmitted to other fields of science via the field of complex systems research, or they originated elsewhere but

  14. BOOK REVIEW: Modeling Complex Systems

    NASA Astrophysics Data System (ADS)

    Schreckenberg, M.

    2004-10-01

    This book by Nino Boccara presents a compilation of model systems commonly termed as `complex'. It starts with a definition of the systems under consideration and how to build up a model to describe the complex dynamics. The subsequent chapters are devoted to various categories of mean-field type models (differential and recurrence equations, chaos) and of agent-based models (cellular automata, networks and power-law distributions). Each chapter is supplemented by a number of exercises and their solutions. The table of contents looks a little arbitrary but the author took the most prominent model systems investigated over the years (and up until now there has been no unified theory covering the various aspects of complex dynamics). The model systems are explained by looking at a number of applications in various fields. The book is written as a textbook for interested students as well as serving as a compehensive reference for experts. It is an ideal source for topics to be presented in a lecture on dynamics of complex systems. This is the first book on this `wide' topic and I have long awaited such a book (in fact I planned to write it myself but this is much better than I could ever have written it!). Only section 6 on cellular automata is a little too limited to the author's point of view and one would have expected more about the famous Domany--Kinzel model (and more accurate citation!). In my opinion this is one of the best textbooks published during the last decade and even experts can learn a lot from it. Hopefully there will be an actualization after, say, five years since this field is growing so quickly. The price is too high for students but this, unfortunately, is the normal case today. Nevertheless I think it will be a great success!

  15. Electricity Market Complex Adaptive System

    2004-10-14

    EMCAS is a model developed for the simulation and analysis of electricity markets. As power markets are relatively new and still continue to evolve, there is a growing need for advanced modeling approaches that simulate the behavior of electricity markets over time and how market participants may act and react to the changing economic, financial, and regulatory environments in which they operate. A new and rather promising approach applied in the EMCAS software is tomore » model the electricity market as a complex adaptive system using an agent-based modeling and simulation scheme. With its unique combination of various novel approaches, the Agent Based Modeling System (ABMS) provides the ability to capture and investigate the complex interactions between the physical infrastructures (generation, transmission, and distribution) and the economic behavior of market participants that are a trademark of the newly emerging markets.« less

  16. A real time data acquisition system by satellite relay. [hydrology and flood measurement in New England

    NASA Technical Reports Server (NTRS)

    Cooper, S.

    1974-01-01

    The overall aim was to evaluate the future usefulness of satellites in the performance of coordination and management functions related to the operation of flood control and other multipurpose projects in New England. Results on the data collection portion of the work are presented. The principal task was to develop statistics that demonstrate the relationship between conventional means of acquiring hydrologic data and the contribution made by using the satellite and its data collection platforms. Main interest was in determining the availability, reliability and usability of the data. Significant results on DCS show that the DCP's are reliable and useful and satellite data collection appears feasible on a nationwide basis.

  17. Modeling Power Systems as Complex Adaptive Systems

    SciTech Connect

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  18. Pressure ulcer and wounds reporting in NHS hospitals in England part 2: Survey of monitoring systems.

    PubMed

    Coleman, Susanne; Smith, Isabelle L; Nixon, Jane; Wilson, Lyn; Brown, Sarah

    2016-02-01

    This is the second of a two related papers describing work undertaken to compare and contrast Pressure Ulcer (PU) monitoring systems across NHS in-patient facilities in England. The work comprised 1) a PU/Wound Audit (PUWA) and 2) a survey of PU monitoring systems. This second paper focusses on the survey which explores differences in the implementation of PU adverse event monitoring systems in 24 NHS hospital Trusts in England. The survey questionnaire comprised 41 items incorporating single and multiple response options and free-text items and was completed by the PUWA Trust lead in liaison with key people in the organisation. All 24 (100%) Trusts returned the questionnaire, with high levels of data completeness (99.1%). The questionnaire results showed variation between Trusts in relation to the recording of PUs and their reporting as part of NHS prevalence and incident monitoring systems and to Trust boards and healthcare commissioners including the inclusion (or not) of device ulcers, unstageable ulcers, Deep Tissue Injury, combined PUs/Incontinence Associated Dermatitis, category ≥ 1 ulcers or category ≥ 2 ulcers, inherited ulcers, acquired ulcers, avoidable and unavoidable ulcers and the definition of Present On Admission. These fundamental differences in reporting preclude Trust to Trust comparisons of PU prevalence and incident reporting and monitoring systems due to variation in local application and data collection methods. The results of this work and the PUWA led to the development of recommendations for PU monitoring practice, many of which are internationally relevant. PMID:26774821

  19. Pressure ulcer and wounds reporting in NHS hospitals in England part 2: Survey of monitoring systems.

    PubMed

    Coleman, Susanne; Smith, Isabelle L; Nixon, Jane; Wilson, Lyn; Brown, Sarah

    2016-02-01

    This is the second of a two related papers describing work undertaken to compare and contrast Pressure Ulcer (PU) monitoring systems across NHS in-patient facilities in England. The work comprised 1) a PU/Wound Audit (PUWA) and 2) a survey of PU monitoring systems. This second paper focusses on the survey which explores differences in the implementation of PU adverse event monitoring systems in 24 NHS hospital Trusts in England. The survey questionnaire comprised 41 items incorporating single and multiple response options and free-text items and was completed by the PUWA Trust lead in liaison with key people in the organisation. All 24 (100%) Trusts returned the questionnaire, with high levels of data completeness (99.1%). The questionnaire results showed variation between Trusts in relation to the recording of PUs and their reporting as part of NHS prevalence and incident monitoring systems and to Trust boards and healthcare commissioners including the inclusion (or not) of device ulcers, unstageable ulcers, Deep Tissue Injury, combined PUs/Incontinence Associated Dermatitis, category ≥ 1 ulcers or category ≥ 2 ulcers, inherited ulcers, acquired ulcers, avoidable and unavoidable ulcers and the definition of Present On Admission. These fundamental differences in reporting preclude Trust to Trust comparisons of PU prevalence and incident reporting and monitoring systems due to variation in local application and data collection methods. The results of this work and the PUWA led to the development of recommendations for PU monitoring practice, many of which are internationally relevant.

  20. Sustainability, Complexity and Learning: Insights from Complex Systems Approaches

    ERIC Educational Resources Information Center

    Espinosa, A.; Porter, T.

    2011-01-01

    Purpose: The purpose of this research is to explore core contributions from two different approaches to complexity management in organisations aiming to improve their sustainability,: the Viable Systems Model (VSM), and the Complex Adaptive Systems (CAS). It is proposed to perform this by summarising the main insights each approach offers to…

  1. Multilevel Complex Networks and Systems

    NASA Astrophysics Data System (ADS)

    Caldarelli, Guido

    2014-03-01

    Network theory has been a powerful tool to model isolated complex systems. However, the classical approach does not take into account the interactions often present among different systems. Hence, the scientific community is nowadays concentrating the efforts on the foundations of new mathematical tools for understanding what happens when multiple networks interact. The case of economic and financial networks represents a paramount example of multilevel networks. In the case of trade, trade among countries the different levels can be described by the different granularity of the trading relations. Indeed, we have now data from the scale of consumers to that of the country level. In the case of financial institutions, we have a variety of levels at the same scale. For example one bank can appear in the interbank networks, ownership network and cds networks in which the same institution can take place. In both cases the systemically important vertices need to be determined by different procedures of centrality definition and community detection. In this talk I will present some specific cases of study related to these topics and present the regularities found. Acknowledged support from EU FET Project ``Multiplex'' 317532.

  2. Complexity and synchronization in stochastic chaotic systems

    NASA Astrophysics Data System (ADS)

    Son Dang, Thai; Palit, Sanjay Kumar; Mukherjee, Sayan; Hoang, Thang Manh; Banerjee, Santo

    2016-02-01

    We investigate the complexity of a hyperchaotic dynamical system perturbed by noise and various nonlinear speech and music signals. The complexity is measured by the weighted recurrence entropy of the hyperchaotic and stochastic systems. The synchronization phenomenon between two stochastic systems with complex coupling is also investigated. These criteria are tested on chaotic and perturbed systems by mean conditional recurrence and normalized synchronization error. Numerical results including surface plots, normalized synchronization errors, complexity variations etc show the effectiveness of the proposed analysis.

  3. Collaboration in Complex Medical Systems

    NASA Technical Reports Server (NTRS)

    Xiao, Yan; Mankenzie, Colin F.

    1998-01-01

    Improving our understanding of collaborative work in complex environments has the potential for developing effective supporting technologies, personnel training paradigms, and design principles for multi-crew workplaces. USing a sophisticated audio-video-data acquisition system and a corresponding analysis system, the researchers at University of Maryland have been able to study in detail team performance during real trauma patient resuscitation. The first study reported here was on coordination mechanisms and on characteristics of coordination breakdowns. One of the key findings was that implicit communications were an important coordination mechanism (e.g. through the use of shared workspace and event space). The second study was on the sources of uncertainty during resuscitation. Although incoming trauma patients' status is inherently uncertain, the findings suggest that much of the uncertainty felt by care providers was related to communication and coordination. These two studies demonstrate the value of and need for creating a real-life laboratory for studying team performance with the use of comprehensive and integrated data acquisition and analysis tools.

  4. Volumetric analysis of a New England barrier system using ground-penetrating-radar and coring techniques

    USGS Publications Warehouse

    Van Heteren, S.; FitzGerald, D.M.; Barber, D.C.; Kelley, J.T.; Belknap, D.F.

    1996-01-01

    Ground-penetrating-radar (GPR) profiles calibrated with core data allow accurate assessments of coastal barrier volumes. We applied this procedure successfully to the barrier system along Saco Bay, Maine (USA), as part of a sediment-budget study that focused on present-day sand volumes in various coastal, shoreface, and inner-shelf lith-osomes, and on sand fluxes that have affected the volume or distribution of sand in these sediment bodies through time. On GPR profiles, the components of the barrier lithosome are readily differentiated from other facies, except where the radar signal is attenuated by brackish or salty groundwater. Significant differences between dielectric properties of the barrier lithosome and other units commonly result in strong boundary reflectors. The mostly sandy barrier sediments allow deep penetration of GPR waves, in contrast to finer-grained strata and till-covered bedrock. Within the Saco Bay barrier system, 22 ??3 x 106 m3 of sediment are unevenly distributed. Two-thirds of the total barrier volume is contained within the northern and southern ends of the study area, in the Pine Point spit and the Ferry Beach/Goosefare complex, respectively. The central area around Old Orchard Beach is locally covered by only a thin veneer of barrier sand, averaging <3 m, that unconformably overlies shallow pre-Holocene facies. The prominence of barrier-spit facies and the distribution pattern of back-barrier sediments indicate that a high degree of segmentation, governed by antecedent topography, has affected the development of the Saco Bay barrier system. The present-day configuration of the barrier and back-barrier region along Saco Bay, however, conceals much of its early compartmentalized character.

  5. Reduction of Subjective and Objective System Complexity

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.

    2015-01-01

    Occam's razor is often used in science to define the minimum criteria to establish a physical or philosophical idea or relationship. Albert Einstein is attributed the saying "everything should be made as simple as possible, but not simpler". These heuristic ideas are based on a belief that there is a minimum state or set of states for a given system or phenomena. In looking at system complexity, these heuristics point us to an idea that complexity can be reduced to a minimum. How then, do we approach a reduction in complexity? Complexity has been described as a subjective concept and an objective measure of a system. Subjective complexity is based on human cognitive comprehension of the functions and inter relationships of a system. Subjective complexity is defined by the ability to fully comprehend the system. Simplifying complexity, in a subjective sense, is thus gaining a deeper understanding of the system. As Apple's Jonathon Ive has stated," It's not just minimalism or the absence of clutter. It involves digging through the depth of complexity. To be truly simple, you have to go really deep". Simplicity is not the absence of complexity but a deeper understanding of complexity. Subjective complexity, based on this human comprehension, cannot then be discerned from the sociological concept of ignorance. The inability to comprehend a system can be either a lack of knowledge, an inability to understand the intricacies of a system, or both. Reduction in this sense is based purely on a cognitive ability to understand the system and no system then may be truly complex. From this view, education and experience seem to be the keys to reduction or eliminating complexity. Objective complexity, is the measure of the systems functions and interrelationships which exist independent of human comprehension. Jonathon Ive's statement does not say that complexity is removed, only that the complexity is understood. From this standpoint, reduction of complexity can be approached

  6. Innovations in major system reconfiguration in England: a study of the effectiveness, acceptability and processes of implementation of two models of stroke care

    PubMed Central

    2013-01-01

    Background Significant changes in provision of clinical care within the English National Health Service (NHS) have been discussed in recent years, with proposals to concentrate specialist services in fewer centres. Stroke is a major public health issue, accounting for over 10% of deaths in England and Wales, and much disability among survivors. Variations have been highlighted in stroke care, with many patients not receiving evidence-based care. To address these concerns, stroke services in London and Greater Manchester were reorganised, although different models were implemented. This study will analyse processes involved in making significant changes to stroke care services over a short time period, and the factors influencing these processes. We will examine whether the changes have delivered improvements in quality of care and patient outcomes; and, in light of this, whether the significant extra financial investment represented good value for money. Methods/design This study brings together quantitative data on ‘what works and at what cost?’ with qualitative data on ‘understanding implementation and sustainability’ to understand major system change in two large conurbations in England. Data on processes of care and their outcomes (e.g. morbidity, mortality, and cost) will be analysed to evidence services’ performance before and after reconfiguration. The evaluation draws on theories related to the dissemination and sustainability of innovations and the ‘social matrix’ underlying processes of innovation. We will conduct a series of case studies based on stakeholder interviews and documentary analysis. These will identify drivers for change, how the reconfigurations were governed, developed, and implemented, and how they influenced service quality. Discussion The research faces challenges due to: the different timings of the reconfigurations; the retrospective nature of the evaluation; and the current organisational turbulence in the English NHS

  7. Complex systems in metabolic engineering.

    PubMed

    Winkler, James D; Erickson, Keesha; Choudhury, Alaksh; Halweg-Edwards, Andrea L; Gill, Ryan T

    2015-12-01

    Metabolic engineers manipulate intricate biological networks to build efficient biological machines. The inherent complexity of this task, derived from the extensive and often unknown interconnectivity between and within these networks, often prevents researchers from achieving desired performance. Other fields have developed methods to tackle the issue of complexity for their unique subset of engineering problems, but to date, there has not been extensive and comprehensive examination of how metabolic engineers use existing tools to ameliorate this effect on their own research projects. In this review, we examine how complexity affects engineering at the protein, pathway, and genome levels within an organism, and the tools for handling these issues to achieve high-performing strain designs. Quantitative complexity metrics and their applications to metabolic engineering versus traditional engineering fields are also discussed. We conclude by predicting how metabolic engineering practices may advance in light of an explicit consideration of design complexity.

  8. Monitoring the future behaviour of urban drainage system under climate change: a case study from north-western England

    NASA Astrophysics Data System (ADS)

    Osman, Yassin Z.

    2014-11-01

    Catchments hydrological conditions and responses are anticipated to be affected by the changes in weather patterns, increasing in climate variability and extreme rainfall. Thus, engineers have no choice but to consider climate change in their practices in order to adapt and serve the public interests. This paper is an exploration of the impacts of climate change on the hydrology that underlies the hydraulic design of urban drainage system. Future rainfall has been downscaled from the Global Climate Model (GCM) employing a hybrid Generalised Linear Model (GLM) and Artificial Neural Network (ANN) downscaling techniques under different greenhouse emission scenarios. The output from this model is applied to a combined sewer system of an urban drainage catchment in the Northwest of England during the 21st Century to monitor its future behaviour in winter and summer seasons. Potential future changes in rainfall intensity are expected to alter the level of service of the system, causing more challenges in terms of surface flooding and increase in surcharge level in sewers. The results obtained demonstrate that there is a real chance for these effects to take place and therefore would require more attention from designers and catchment managers.

  9. Scale effect in nutrient transport along a rural river system: the River Eden, Cumbria, northwest, England

    NASA Astrophysics Data System (ADS)

    Oladapo Tijani, Fatai; Bathurst, James; Quinn, Paul

    2015-04-01

    Only a limited amount of information derived from studies conducted at small catchment scales can be transferred to large scales because of the non-linear scale effects, thus necessitating studies (including nutrient concentrations and yields) across a range of scales. Here we present results from an investigation of spatial scale pattern and temporal variability of nutrient concentration in the River Eden in northwest England, a nested catchment stretching from Gais Gill (1.1 km2) to Great Corby (1373 km2). The monitoring involved seasonal campaigns and spot sampling of river water quality, using two United Kingdom national catchment study platforms. These are the Catchment Hydrology And Sustainable Management (CHASM) project, that provides a large spatial scale study platform along the Eden, and the Demonstration Test Catchment (DTC) project that provides high resolution data for contrasting land uses that could help to explain, in detail, the mechanisms for transport of nutrients to the river. Nitrate concentration shows a clear increasing trend with the catchment area and there is highly significant difference (P<0.001) among the catchments. Compared with the headwater areas, phosphorus (P) and suspended sediment (SS) concentrations are significantly higher (P<0.05) downstream but do not show a very clear spatial pattern. An alternative explanation was therefore sought for their distribution along the river. Generally, intensity of agricultural activities appears to influence the concentrations of these water quality parameters. The field data show that the amount of nutrients and suspended sediment is higher in catchments with higher farming activities. This underscores the importance of the distribution of agricultural land use as a driving force in nutrient transport in River Eden. Agricultural production generally increases downstream and may therefore appear to support a spatial scale dependency in nutrient yield. Higher nitrate concentration is associated

  10. Scale Effect in Nutrient Transport along a Rural River System: THE River Eden, Cumbria, Northwest, England

    NASA Astrophysics Data System (ADS)

    Tijani, F. O.; Bathurst, J. C.; Quinn, P. F.

    2014-12-01

    Only a limited amount of information derived from studies conducted at small catchment scales can be transferred to large scales because of the non-linear scale effects, thus necessitating studies (including nutrient concentrations and yields) across a range of scales. Here we present results from an investigation of spatial scale pattern and temporal variability of nutrient concentration in the River Eden in northwest England, a nested catchment stretching from Gais Gill (1.1 km2) to Great Corby (1373 km2). The monitoring involved seasonal campaigns and spot sampling of river water quality, using two United Kingdom national catchment study platforms. Nitrate concentration shows a clear increasing trend with the catchment area and there is highly significant difference (P<0.001) among the catchments. Compared with the headwater areas, phosphorus (P) and suspended sediment (SS) concentrations are significantly higher (P<0.05) downstream but do not show a very clear spatial pattern. An alternative explanation was therefore sought for their distribution along the river. Generally, intensity of agricultural activities appears to influence the concentrations of these water quality parameters. The field data show that the amount of nutrients and suspended sediment is higher in catchments with higher farming activities and this increase downstream. This underscores the importance of the distribution of agricultural land use as a driving force in nutrient transport in River Eden. Higher nitrate concentration is associated with the period of low flow (strongest negative relationship, R2 = 0.97, was recorded in autumn sampling campaign at a gauging station). In contrast, phosphorus and suspended sediment are positively associated with discharge (strongest relationship (R2= 0.97) for total P were recorded in spring campaign at a gauging station). Similarly the dryness or wetness of a season affects the nutrient concentrations. Thus, it appears that hydrology and land use

  11. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    NASA Astrophysics Data System (ADS)

    Williams, Rube B.

    2004-02-01

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  12. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    SciTech Connect

    Williams, Rube B.

    2004-02-04

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  13. Social networks as embedded complex adaptive systems.

    PubMed

    Benham-Hutchins, Marge; Clancy, Thomas R

    2010-09-01

    As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 15th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, the authors discuss healthcare social networks as a hierarchy of embedded complex adaptive systems. The authors further examine the use of social network analysis tools as a means to understand complex communication patterns and reduce medical errors.

  14. Why Do Complex Systems Age?

    NASA Astrophysics Data System (ADS)

    Vural, Dervis; Morrison, Gregory; Mahadevan, L.

    2012-02-01

    Aging can be defined as the increase in probability of death with time. The observation that organisms, colonies, ecosystems, as well as larger social structures age and die in very similar ways suggest that the reasons underlying aging does not depend sensitively on molecular or cellular details. In this work we argue that aging is an inevitable outcome of the neutral co-evolution of non-aging components which with time become increasingly interdependent. Starting from this hypothesis, we construct generic dependency networks and obtain mortality rate as a function of time, as well as mean life expectancy as a function of organism size, complexity and metabolic rate.

  15. A new laboratory-based surveillance system (Respiratory DataMart System) for influenza and other respiratory viruses in England: results and experience from 2009 to 2012.

    PubMed

    Zhao, H; Green, H; Lackenby, A; Donati, M; Ellis, J; Thompson, C; Bermingham, A; Field, J; Sebastianpillai, P; Zambon, M; Watson, Jm; Pebody, R

    2014-01-01

    During the 2009 influenza A(H1N1) pandemic, a new laboratory-based virological sentinel surveillance system, the Respiratory DataMart System (RDMS), was established in a network of 14 Health Protection Agency (now Public Health England (PHE)) and National Health Service (NHS) laboratories in England. Laboratory results (both positive and negative) were systematically collected from all routinely tested clinical respiratory samples for a range of respiratory viruses including influenza, respiratory syncytial virus (RSV), rhinovirus, parainfluenza virus, adenovirus and human metapneumovirus (hMPV). The RDMS also monitored the occurrence of antiviral resistance of influenza viruses. Data from the RDMS for the 2009–2012 period showed that the 2009 pandemic influenza virus caused three waves of activity with different intensities during the pandemic and post pandemic periods. Peaks in influenza A(H1N1)pdm09 positivity (defined as number of positive samples per total number of samples tested) were seen in summer and autumn in 2009, with slightly higher peak positivity observed in the first post-pandemic season in 2010/2011. The influenza A(H1N1)pdm09 virus strain almost completely disappeared in the second postpandemic season in 2011/2012. The RDMS findings are consistent with other existing community-based virological and clinical surveillance systems. With a large sample size, this new system provides a robust supplementary mechanism, through the collection of routinely available laboratory data at minimum extra cost, to monitor influenza as well as other respiratory virus activity. A near real-time, daily reporting mechanism in the RDMS was established during the London 2012 Olympic and Paralympic Games. Furthermore, this system can be quickly adapted and used to monitor future influenza pandemics and other major outbreaks of respiratory infectious disease, including novel pathogens. PMID:24480060

  16. A new laboratory-based surveillance system (Respiratory DataMart System) for influenza and other respiratory viruses in England: results and experience from 2009 to 2012.

    PubMed

    Zhao, H; Green, H; Lackenby, A; Donati, M; Ellis, J; Thompson, C; Bermingham, A; Field, J; Sebastianpillai, P; Zambon, M; Watson, Jm; Pebody, R

    2014-01-23

    During the 2009 influenza A(H1N1) pandemic, a new laboratory-based virological sentinel surveillance system, the Respiratory DataMart System (RDMS), was established in a network of 14 Health Protection Agency (now Public Health England (PHE)) and National Health Service (NHS) laboratories in England. Laboratory results (both positive and negative) were systematically collected from all routinely tested clinical respiratory samples for a range of respiratory viruses including influenza, respiratory syncytial virus (RSV), rhinovirus, parainfluenza virus, adenovirus and human metapneumovirus (hMPV). The RDMS also monitored the occurrence of antiviral resistance of influenza viruses. Data from the RDMS for the 2009–2012 period showed that the 2009 pandemic influenza virus caused three waves of activity with different intensities during the pandemic and post pandemic periods. Peaks in influenza A(H1N1)pdm09 positivity (defined as number of positive samples per total number of samples tested) were seen in summer and autumn in 2009, with slightly higher peak positivity observed in the first post-pandemic season in 2010/2011. The influenza A(H1N1)pdm09 virus strain almost completely disappeared in the second postpandemic season in 2011/2012. The RDMS findings are consistent with other existing community-based virological and clinical surveillance systems. With a large sample size, this new system provides a robust supplementary mechanism, through the collection of routinely available laboratory data at minimum extra cost, to monitor influenza as well as other respiratory virus activity. A near real-time, daily reporting mechanism in the RDMS was established during the London 2012 Olympic and Paralympic Games. Furthermore, this system can be quickly adapted and used to monitor future influenza pandemics and other major outbreaks of respiratory infectious disease, including novel pathogens.

  17. A national incident reporting and learning system in England and Wales, but at what cost?

    PubMed

    Carter, Alexander W; Mossialos, Elias; Darzi, Ara

    2015-06-01

    Recent high-profile failures in healthcare highlight the ongoing need for improvements in patient safety. Moreover, the fiscal challenge facing many health systems has brought the costs and economic efficiencies associated with improving quality (and safety) to bear. Currently, there is a lack of economic evidence underpinning resource allocation decisions in patient safety. Incident reporting systems are considered an important means of addressing these challenges by monitoring incident rates over time, identifying new threats to patient care and ultimately preventing repetition of costly adverse events. Uniquely, for more than a decade, the UK has been developing a National Reporting and Learning System to provide these functions for the English and Welsh health system(s), in addition to pre-existing local systems. The need to evaluate the impact of national incident reporting, and learning systems in terms of effectiveness and efficiency is argued and the methodological challenges that must be considered in an economic analysis are outlined. PMID:25834922

  18. A national incident reporting and learning system in England and Wales, but at what cost?

    PubMed

    Carter, Alexander W; Mossialos, Elias; Darzi, Ara

    2015-06-01

    Recent high-profile failures in healthcare highlight the ongoing need for improvements in patient safety. Moreover, the fiscal challenge facing many health systems has brought the costs and economic efficiencies associated with improving quality (and safety) to bear. Currently, there is a lack of economic evidence underpinning resource allocation decisions in patient safety. Incident reporting systems are considered an important means of addressing these challenges by monitoring incident rates over time, identifying new threats to patient care and ultimately preventing repetition of costly adverse events. Uniquely, for more than a decade, the UK has been developing a National Reporting and Learning System to provide these functions for the English and Welsh health system(s), in addition to pre-existing local systems. The need to evaluate the impact of national incident reporting, and learning systems in terms of effectiveness and efficiency is argued and the methodological challenges that must be considered in an economic analysis are outlined.

  19. Nervous System Complexity Baffles Scientists.

    ERIC Educational Resources Information Center

    Fox, Jeffrey L.

    1982-01-01

    New research findings about how nerve cells transmit signals are forcing researchers to overhaul their simplistic ideas about the nervous system. Topics highlighted include the multiple role of peptides in the nervous system, receptor molecules, and molecules that form ion channels within membranes. (Author/JN)

  20. Local Authorities and the Education of Young People with Sickle Cell Disorders in England

    ERIC Educational Resources Information Center

    Dyson, S. M.; Abuateya, H.; Atkin, K.; Culley, L. A.; Dyson, S. E.; Rowley, D. T.

    2008-01-01

    The successful inclusion of minority ethnic pupils with sickle cell disorders (SCD) raises a number of challenges for educational systems. In England, local education authorities were important drivers for innovative responses to complex needs and the former Inner London Education Authority produced guidance in 1989 on SCD in schools. Local…

  1. Monitoring Performance of Complex Systems

    NASA Technical Reports Server (NTRS)

    Thomas, W. F.

    1985-01-01

    33-page report describes use of computers in automatic on-line monitoring of Centaur rocket prior to launch. Computers analyze measurements and verify events and commands. System uses adaptive software so only real problems are detected and brought to attention of engineers. Software techniques transferable to such industrial uses as batch process control and production line automation.

  2. Simple molecules as complex systems.

    PubMed

    Furtenbacher, Tibor; Arendás, Péter; Mellau, Georg; Császár, Attila G

    2014-01-01

    For individual molecules quantum mechanics (QM) offers a simple, natural and elegant way to build large-scale complex networks: quantized energy levels are the nodes, allowed transitions among the levels are the links, and transition intensities supply the weights. QM networks are intrinsic properties of molecules and they are characterized experimentally via spectroscopy; thus, realizations of QM networks are called spectroscopic networks (SN). As demonstrated for the rovibrational states of H2(16)O, the molecule governing the greenhouse effect on earth through hundreds of millions of its spectroscopic transitions (links), both the measured and first-principles computed one-photon absorption SNs containing experimentally accessible transitions appear to have heavy-tailed degree distributions. The proposed novel view of high-resolution spectroscopy and the observed degree distributions have important implications: appearance of a core of highly interconnected hubs among the nodes, a generally disassortative connection preference, considerable robustness and error tolerance, and an "ultra-small-world" property. The network-theoretical view of spectroscopy offers a data reduction facility via a minimum-weight spanning tree approach, which can assist high-resolution spectroscopists to improve the efficiency of the assignment of their measured spectra.

  3. Simple molecules as complex systems

    PubMed Central

    Furtenbacher, Tibor; Árendás, Péter; Mellau, Georg; Császár, Attila G.

    2014-01-01

    For individual molecules quantum mechanics (QM) offers a simple, natural and elegant way to build large-scale complex networks: quantized energy levels are the nodes, allowed transitions among the levels are the links, and transition intensities supply the weights. QM networks are intrinsic properties of molecules and they are characterized experimentally via spectroscopy; thus, realizations of QM networks are called spectroscopic networks (SN). As demonstrated for the rovibrational states of H216O, the molecule governing the greenhouse effect on earth through hundreds of millions of its spectroscopic transitions (links), both the measured and first-principles computed one-photon absorption SNs containing experimentally accessible transitions appear to have heavy-tailed degree distributions. The proposed novel view of high-resolution spectroscopy and the observed degree distributions have important implications: appearance of a core of highly interconnected hubs among the nodes, a generally disassortative connection preference, considerable robustness and error tolerance, and an “ultra-small-world” property. The network-theoretical view of spectroscopy offers a data reduction facility via a minimum-weight spanning tree approach, which can assist high-resolution spectroscopists to improve the efficiency of the assignment of their measured spectra. PMID:24722221

  4. Dynamics of complex multibody systems

    NASA Astrophysics Data System (ADS)

    Schiehlen, W. O.

    The analysis of multibody-system (MBS) dynamics is discussed and demonstrated in a review of recent work. The early history of MBS studies is traced; the kinematic equations are derived for free, holonomic, and nonholonomic systems in both inertial and moving reference frames; the Newton-Euler equations are obtained by replacing the rigid bearings and supports by constraint forces and torques; equations of motion are found by means of D'Alembert's and Jourdain's principles; and generalized constraint forces and bearing and support clearances are considered. The computer derivation of equations of motion is demonstrated on a four-body moving-vehicle problem. The approach described is shown to use less computation time and memory space than techniques based on the Lagrange or Gibbs-Appell equations, while permitting the inclusion of contact and friction forces.

  5. Networking Hospital ePrescribing: A Systemic View of Digitalization of Medicines' Use in England.

    PubMed

    Lichtner, Valentina; Hibberd, Ralph; Cornford, Tony

    2016-01-01

    Medicine management is at the core of hospital care and digitalization of prescribing and administration of medicines is often the focus of attention of health IT programs. This may be conveyed to the public in terms of the elimination of paper-based drug charts and increased readability of doctors' prescriptions. Based on analysis of documents about hospital medicines supply and use (including systems' implementation) in the UK, in this conceptual paper electronic prescribing and administration are repositioned as only one aspect of an important wider transformation in medicine management in hospital settings, involving, for example, procurement, dispensing, auditing, waste management, research and safety vigilance. Approaching digitalization from a systemic perspective has the potential to uncover the wider implications of this transformation for patients, the organization and the wider health care system. PMID:27332165

  6. Quantum mechanics in complex systems

    NASA Astrophysics Data System (ADS)

    Hoehn, Ross Douglas

    This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown

  7. Rebels against the System: Leadership Agency and Curriculum Innovation in the Context of School Autonomy and Accountability in England

    ERIC Educational Resources Information Center

    Greany, Toby; Waterhouse, Joanne

    2016-01-01

    Purpose: The purpose of this paper is to describe and analyse the development of school autonomy, school leadership and curriculum innovation in England over the past 40 years. It provides a baseline picture for the wider international study on school autonomy and curriculum innovation. Design/methodology/approach: An initial literature review was…

  8. The Environmental Belief Systems of Organic and Conventional Farmers: Evidence from Central-Southern England

    ERIC Educational Resources Information Center

    Kings, David; Ilbery, Brian

    2010-01-01

    Little comparative work has been conducted on the environmental belief systems and behaviours of conventional and organic farmers, especially in relation to farming culture, the environment and lowland farmland avifauna. Adopting a modified behavioural approach, this paper analyses the ways in which the environmental attitudes and understandings…

  9. Geospatial assessments of cropping systems and farmland assemblages in New England

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detailed assessments of the current state of crop production systems are essential to modeling potential productivity and evaluating core issues of sustainability for local to regional food supply studies. The main objective of this regionally-based geospatial investigation was to evaluate the most ...

  10. Active impedance matching of complex structural systems

    NASA Technical Reports Server (NTRS)

    Macmartin, Douglas G.; Miller, David W.; Hall, Steven R.

    1991-01-01

    Viewgraphs on active impedance matching of complex structural systems are presented. Topics covered include: traveling wave model; dereverberated mobility model; computation of dereverberated mobility; control problem: optimal impedance matching; H2 optimal solution; statistical energy analysis (SEA) solution; experimental transfer functions; interferometer actuator and sensor locations; active strut configurations; power dual variables; dereverberation of complex structure; dereverberated transfer function; compensators; and relative power flow.

  11. Prediction and characterization of complex systems

    SciTech Connect

    Mainieri, R.; Baer, M.; Brand, H.

    1996-10-01

    Complex systems are difficult to characterize and to simulate. By considering a series of explicit systems, through experiments and analysis, this project has shown that dynamical systems can be used to model complex systems. A complex dynamical system requires an exponential amount of computer work to simulate accurately. Direct methods are not practical and it is only by an hierarchical approach that one can gain control over the exponential behavior. This allows the development of efficient methods to study fluid flow and to simulate biological systems. There are two steps in the hierarchical approach. First, one must characterize the complex system as a collection of large domains or objects that have their own forms of interactions. This is done by considering coherent structures, such as solitons, spirals, and propagating fronts and determining their interactions. Second, one must be able to predict the properties of the resulting low-dimensional dynamical system.This is accomplished by an understanding of the topology of the orbits of the dynamical system. The coherent structure description was carried out in fluid and reaction diffusion systems. It was shown that very simple models from statistical mechanics could characterize a rotating Rayleigh-Benard system and that patters in reaction-diffusion systems are well described by soliton-like solutions. The studies of dynamical systems showed that simple characterizations of the phase space can be used to determine long time bounds. Also, that periodic orbit theory can be used to demonstrate that Monte Carlo simulations will converge to incorrect results.

  12. Quantum mechanics in complex systems

    NASA Astrophysics Data System (ADS)

    Hoehn, Ross Douglas

    This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown

  13. Nanoscale science: Complex rules for soft systems

    NASA Astrophysics Data System (ADS)

    Glotzer, Sharon C.

    2003-11-01

    The nanometre scale is a brave new world for scientists - mixing materials at such small dimensions can cause all sorts of surprising effects. New studies of experimental systems on the nanoscale further our understanding of these complex phenomena.

  14. Topics in complex nonlinear systems

    NASA Astrophysics Data System (ADS)

    Ying, Linghang

    In the dissertation, I include two topics of my research in nonlinear dynamic systems. In the first topic, we use numerical optimization techniques to investigate the behavior of the success rates for two- and three-qubit entangling gates, first for perfect fidelity, and then extended to imperfect gates. We find that as the perfect fidelity condition is relaxed, the maximum attainable success rates increase in a predictable fashion depending on the size of the system, and we compare that rate of increase for several gates. Finally, we propose an experiment to test our imperfect LOQC gates using number-resolving photon detectors. We suggest a relatively simple physical apparatus capable of producing CZ gates with controllable fidelity less than 1 and success rates higher than the current theoretical maximum (S=2/27) for perfect fidelity. These experimental setups are within the reach of many experimental groups and would provide an interesting experiment in photonic quantum computing. In the second topic, we quantitatively study nonlinear effects on the evolution of surface gravity waves on the ocean, to explore systematically the effects of various input parameters on the probability of rogue wave formation. The fourth-order current-modified nonlinear Schrodinger equation (CNLS4) is employed to describe the wave evolution. First, we show that when the average wave steepness is small and nonlinear wave effects are subleading, the wave height distribution is well explained by a single "freak index" parameter, which describes the strength of (linear) wave scattering by random currents relative to the angular spread of the incoming random sea. When the average steepness is large, the wave height distribution takes a very similar functional form, but the key variables determining the probability distribution are the steepness, and the angular and frequency spread of the incoming waves. Then, we obtain quantitative predictions for the wave height distribution as a

  15. What Is a Complex Innovation System?

    PubMed Central

    Katz, J. Sylvan

    2016-01-01

    Innovation systems are sometimes referred to as complex systems, something that is intuitively understood but poorly defined. A complex system dynamically evolves in non-linear ways giving it unique properties that distinguish it from other systems. In particular, a common signature of complex systems is scale-invariant emergent properties. A scale-invariant property can be identified because it is solely described by a power law function, f(x) = kxα, where the exponent, α, is a measure of scale-invariance. The focus of this paper is to describe and illustrate that innovation systems have properties of a complex adaptive system. In particular scale-invariant emergent properties indicative of their complex nature that can be quantified and used to inform public policy. The global research system is an example of an innovation system. Peer-reviewed publications containing knowledge are a characteristic output. Citations or references to these articles are an indirect measure of the impact the knowledge has on the research community. Peer-reviewed papers indexed in Scopus and in the Web of Science were used as data sources to produce measures of sizes and impact. These measures are used to illustrate how scale-invariant properties can be identified and quantified. It is demonstrated that the distribution of impact has a reasonable likelihood of being scale-invariant with scaling exponents that tended toward a value of less than 3.0 with the passage of time and decreasing group sizes. Scale-invariant correlations are shown between the evolution of impact and size with time and between field impact and sizes at points in time. The recursive or self-similar nature of scale-invariance suggests that any smaller innovation system within the global research system is likely to be complex with scale-invariant properties too. PMID:27258040

  16. What Is a Complex Innovation System?

    PubMed

    Katz, J Sylvan

    2016-01-01

    Innovation systems are sometimes referred to as complex systems, something that is intuitively understood but poorly defined. A complex system dynamically evolves in non-linear ways giving it unique properties that distinguish it from other systems. In particular, a common signature of complex systems is scale-invariant emergent properties. A scale-invariant property can be identified because it is solely described by a power law function, f(x) = kxα, where the exponent, α, is a measure of scale-invariance. The focus of this paper is to describe and illustrate that innovation systems have properties of a complex adaptive system. In particular scale-invariant emergent properties indicative of their complex nature that can be quantified and used to inform public policy. The global research system is an example of an innovation system. Peer-reviewed publications containing knowledge are a characteristic output. Citations or references to these articles are an indirect measure of the impact the knowledge has on the research community. Peer-reviewed papers indexed in Scopus and in the Web of Science were used as data sources to produce measures of sizes and impact. These measures are used to illustrate how scale-invariant properties can be identified and quantified. It is demonstrated that the distribution of impact has a reasonable likelihood of being scale-invariant with scaling exponents that tended toward a value of less than 3.0 with the passage of time and decreasing group sizes. Scale-invariant correlations are shown between the evolution of impact and size with time and between field impact and sizes at points in time. The recursive or self-similar nature of scale-invariance suggests that any smaller innovation system within the global research system is likely to be complex with scale-invariant properties too.

  17. London, England

    NASA Technical Reports Server (NTRS)

    2003-01-01

    For almost 2,000 years, the River Thames has served as the life force of London, capital of the United Kingdom and one of the world's most famous cities. In AD 43 the Romans established the trading settlement of Londinium at a favorable crossing point on the river. The Romans remained until the 5th century, when the city came under Saxon control. The early 17th century saw enormous growth, but the deadly plague of 1664 and 1665 ravaged the population, and in the following year the Great Fire, which burned for four days, destroyed most of the city. A public transportation system and other city services in the early 19th century eased many of the increasing urban problems of the burgeoning capital of the wealthy British Empire. After coping with the devastating effects of bombing during World War II and the gradual dismantling of the empire, London today thrives as a vital modern metropolis. London is one of 100 cities being studied using ASTER data to map and monitor urban use patterns and growth.

    This image was acquired on October 12, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats

  18. In Defense of Simulating Complex and Tragic Historical Episodes: A Measured Response to the Outcry over a New England Slavery Simulation

    ERIC Educational Resources Information Center

    Wright-Maley, Cory

    2014-01-01

    A slavery simulation that took place as part of a field trip for students of a Hartford junior high academy led a father to file a human rights suit against the school district, and for one official to comment that simulations of complex and tragic human phenomena have "no place in an educational system." In light of these conclusions,…

  19. System Complexity Reduction via Feature Selection

    ERIC Educational Resources Information Center

    Deng, Houtao

    2011-01-01

    This dissertation transforms a set of system complexity reduction problems to feature selection problems. Three systems are considered: classification based on association rules, network structure learning, and time series classification. Furthermore, two variable importance measures are proposed to reduce the feature selection bias in tree…

  20. Vacuum Ultraviolet Photoionization of Complex Chemical Systems

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-01

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

  1. Vacuum Ultraviolet Photoionization of Complex Chemical Systems.

    PubMed

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-27

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed. PMID:26980311

  2. Vacuum Ultraviolet Photoionization of Complex Chemical Systems.

    PubMed

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-27

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

  3. Design tools for complex dynamic security systems.

    SciTech Connect

    Byrne, Raymond Harry; Rigdon, James Brian; Rohrer, Brandon Robinson; Laguna, Glenn A.; Robinett, Rush D. III; Groom, Kenneth Neal; Wilson, David Gerald; Bickerstaff, Robert J.; Harrington, John J.

    2007-01-01

    The development of tools for complex dynamic security systems is not a straight forward engineering task but, rather, a scientific task where discovery of new scientific principles and math is necessary. For years, scientists have observed complex behavior but have had difficulty understanding it. Prominent examples include: insect colony organization, the stock market, molecular interactions, fractals, and emergent behavior. Engineering such systems will be an even greater challenge. This report explores four tools for engineered complex dynamic security systems: Partially Observable Markov Decision Process, Percolation Theory, Graph Theory, and Exergy/Entropy Theory. Additionally, enabling hardware technology for next generation security systems are described: a 100 node wireless sensor network, unmanned ground vehicle and unmanned aerial vehicle.

  4. Particlelike wave packets in complex scattering systems

    NASA Astrophysics Data System (ADS)

    Gérardin, Benoît; Laurent, Jérôme; Ambichl, Philipp; Prada, Claire; Rotter, Stefan; Aubry, Alexandre

    2016-07-01

    A wave packet undergoes a strong spatial and temporal dispersion while propagating through a complex medium. This wave scattering is often seen as a nightmare in wave physics whether it be for focusing, imaging, or communication purposes. Controlling wave propagation through complex systems is thus of fundamental interest in many areas, ranging from optics or acoustics to medical imaging or telecommunications. Here, we study the propagation of elastic waves in a cavity and a disordered waveguide by means of laser interferometry. From the direct experimental access to the time-delay matrix of these systems, we demonstrate the existence of particlelike wave packets that remain focused in time and space throughout their complex trajectory. Due to their limited dispersion, their selective excitation will be crucially relevant for all applications involving selective wave focusing and efficient information transfer through complex media.

  5. Complexity and Stability in Biological Systems

    NASA Astrophysics Data System (ADS)

    Demongeot, Jacques; Demetrius, Lloyd A.

    2015-06-01

    The hypothesis that a positive correlation exists between the complexity of a biological system, as described by its connectance, and its stability, as measured by its ability to recover from disturbance, derives from the investigations of the physiologists, Bernard and Cannon, and the ecologist Elton. Studies based on the ergodic theory of dynamical systems and the theory of large deviations have furnished an analytic support for this hypothesis. Complexity in this context is described by the mathematical object evolutionary entropy, stability is characterized by the rate at which the system returns to its stable conditions (steady state or periodic attractor) after a random perturbation of its robustness. This article reviews the analytical basis of the entropy — robustness theorem — and invokes studies of genetic regulatory networks to provide empirical support for the correlation between complexity and stability. Earlier investigations based on numerical studies of random matrix models and the notion of local stability have led to the claim that complex ecosystems tend to be more dynamically fragile. This article elucidates the basis for this claim which is largely inconsistent with the empirical observations of Bernard, Cannon and Elton. Our analysis thus resolves a long standing controversy regarding the relation between complex biological systems and their capacity to recover from perturbations. The entropy-robustness principle is a mathematical proposition with implications for understanding the basis for the large variations in stability observed in biological systems having evolved under different environmental conditions.

  6. A new decision sciences for complex systems

    PubMed Central

    Lempert, Robert J.

    2002-01-01

    Models of complex systems can capture much useful information but can be difficult to apply to real-world decision-making because the type of information they contain is often inconsistent with that required for traditional decision analysis. New approaches, which use inductive reasoning over large ensembles of computational experiments, now make possible systematic comparison of alternative policy options using models of complex systems. This article describes Computer-Assisted Reasoning, an approach to decision-making under conditions of deep uncertainty that is ideally suited to applying complex systems to policy analysis. The article demonstrates the approach on the policy problem of global climate change, with a particular focus on the role of technology policies in a robust, adaptive strategy for greenhouse gas abatement. PMID:12011411

  7. Complex Adaptive Systems of Systems (CASOS) engineering environment.

    SciTech Connect

    Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

    2012-02-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.

  8. Toolsets Maintain Health of Complex Systems

    NASA Technical Reports Server (NTRS)

    2010-01-01

    First featured in Spinoff 2001, Qualtech Systems Inc. (QSI), of Wethersfield, Connecticut, adapted its Testability, Engineering, and Maintenance System (TEAMS) toolset under Small Business Innovation Research (SBIR) contracts from Ames Research Center to strengthen NASA's systems health management approach for its large, complex, and interconnected systems. Today, six NASA field centers utilize the TEAMS toolset, including TEAMS-Designer, TEAMS-RT, TEAMATE, and TEAMS-RDS. TEAMS is also being used on industrial systems that generate power, carry data, refine chemicals, perform medical functions, and produce semiconductor wafers. QSI finds TEAMS can lower costs by decreasing problems requiring service by 30 to 50 percent.

  9. Trends in modeling Biomedical Complex Systems

    PubMed Central

    Milanesi, Luciano; Romano, Paolo; Castellani, Gastone; Remondini, Daniel; Liò, Petro

    2009-01-01

    In this paper we provide an introduction to the techniques for multi-scale complex biological systems, from the single bio-molecule to the cell, combining theoretical modeling, experiments, informatics tools and technologies suitable for biological and biomedical research, which are becoming increasingly multidisciplinary, multidimensional and information-driven. The most important concepts on mathematical modeling methodologies and statistical inference, bioinformatics and standards tools to investigate complex biomedical systems are discussed and the prominent literature useful to both the practitioner and the theoretician are presented. PMID:19828068

  10. The Physics of Complex Systems in Cuba

    NASA Astrophysics Data System (ADS)

    Sotolongo-Costa, Oscar

    In relating the circumstances that led to the birth and development of the physics of complex systems in Cuba, it is difficult to avoid being anecdotal—particularly because of the difficult times during which this research started. Cuban eclecticism, whose spectrum extends from religious syncretism to world-class medicine, seems quite coherent with the field of complex systems, characterized by the synergy of diverse fields. Such a combination, however, in the beginning seemed to be quite removed from the physicists' standard research dogmas.

  11. Complexity in electronic negotiation support systems.

    PubMed

    Griessmair, Michele; Strunk, Guido; Vetschera, Rudolf; Koeszegi, Sabine T

    2011-10-01

    It is generally acknowledged that the medium influences the way we communicate and negotiation research directs considerable attention to the impact of different electronic communication modes on the negotiation process and outcomes. Complexity theories offer models and methods that allow the investigation of how pattern and temporal sequences unfold over time in negotiation interactions. By focusing on the dynamic and interactive quality of negotiations as well as the information, choice, and uncertainty contained in the negotiation process, the complexity perspective addresses several issues of central interest in classical negotiation research. In the present study we compare the complexity of the negotiation communication process among synchronous and asynchronous negotiations (IM vs. e-mail) as well as an electronic negotiation support system including a decision support system (DSS). For this purpose, transcripts of 145 negotiations have been coded and analyzed with the Shannon entropy and the grammar complexity. Our results show that negotiating asynchronically via e-mail as well as including a DSS significantly reduces the complexity of the negotiation process. Furthermore, a reduction of the complexity increases the probability of reaching an agreement.

  12. Mapping complex traits as a dynamic system

    NASA Astrophysics Data System (ADS)

    Sun, Lidan; Wu, Rongling

    2015-06-01

    Despite increasing emphasis on the genetic study of quantitative traits, we are still far from being able to chart a clear picture of their genetic architecture, given an inherent complexity involved in trait formation. A competing theory for studying such complex traits has emerged by viewing their phenotypic formation as a "system" in which a high-dimensional group of interconnected components act and interact across different levels of biological organization from molecules through cells to whole organisms. This system is initiated by a machinery of DNA sequences that regulate a cascade of biochemical pathways to synthesize endophenotypes and further assemble these endophenotypes toward the end-point phenotype in virtue of various developmental changes. This review focuses on a conceptual framework for genetic mapping of complex traits by which to delineate the underlying components, interactions and mechanisms that govern the system according to biological principles and understand how these components function synergistically under the control of quantitative trait loci (QTLs) to comprise a unified whole. This framework is built by a system of differential equations that quantifies how alterations of different components lead to the global change of trait development and function, and provides a quantitative and testable platform for assessing the multiscale interplay between QTLs and development. The method will enable geneticists to shed light on the genetic complexity of any biological system and predict, alter or engineer its physiological and pathological states.

  13. Energy Consumption Monitoring System for Large Complexes

    NASA Astrophysics Data System (ADS)

    Jorge, André; Guerreiro, João; Pereira, Pedro; Martins, João; Gomes, Luís

    This paper describes the development of an open source system for monitoring and data acquisition of several energy analyzers. The developed system is based on a computer with Internet/Intranet connection by means of RS485 using Modbus RTU as communication protocol. The monitoring/metering system was developed for large building complexes and was validated in the Faculdade de Ciências e Tecnologia University campus. The system considers two distinct applications. The first one allows the user to verify, in real time, the energy consumption of any department in the complex, produce load diagrams, tables and print, email or save all available data. The second application keeps records of active/reactive energy consumption in order to verify the existence of some anomalous situation, and also monthly charge energy consumption to each corresponding department.

  14. Lasercom system architecture with reduced complexity

    NASA Technical Reports Server (NTRS)

    Lesh, James R. (Inventor); Chen, Chien-Chung (Inventor); Ansari, Homayoon (Inventor)

    1994-01-01

    Spatial acquisition and precision beam pointing functions are critical to spaceborne laser communication systems. In the present invention, a single high bandwidth CCD detector is used to perform both spatial acquisition and tracking functions. Compared to previous lasercom hardware design, the array tracking concept offers reduced system complexity by reducing the number of optical elements in the design. Specifically, the design requires only one detector and one beam steering mechanism. It also provides the means to optically close the point-ahead control loop. The technology required for high bandwidth array tracking was examined and shown to be consistent with current state of the art. The single detector design can lead to a significantly reduced system complexity and a lower system cost.

  15. Managing interoperability and complexity in health systems.

    PubMed

    Bouamrane, M-M; Tao, C; Sarkar, I N

    2015-01-01

    In recent years, we have witnessed substantial progress in the use of clinical informatics systems to support clinicians during episodes of care, manage specialised domain knowledge, perform complex clinical data analysis and improve the management of health organisations' resources. However, the vision of fully integrated health information eco-systems, which provide relevant information and useful knowledge at the point-of-care, remains elusive. This journal Focus Theme reviews some of the enduring challenges of interoperability and complexity in clinical informatics systems. Furthermore, a range of approaches are proposed in order to address, harness and resolve some of the many remaining issues towards a greater integration of health information systems and extraction of useful or new knowledge from heterogeneous electronic data repositories.

  16. Constructing minimal models for complex system dynamics

    NASA Astrophysics Data System (ADS)

    Barzel, Baruch; Liu, Yang-Yu; Barabási, Albert-László

    2015-05-01

    One of the strengths of statistical physics is the ability to reduce macroscopic observations into microscopic models, offering a mechanistic description of a system's dynamics. This paradigm, rooted in Boltzmann's gas theory, has found applications from magnetic phenomena to subcellular processes and epidemic spreading. Yet, each of these advances were the result of decades of meticulous model building and validation, which are impossible to replicate in most complex biological, social or technological systems that lack accurate microscopic models. Here we develop a method to infer the microscopic dynamics of a complex system from observations of its response to external perturbations, allowing us to construct the most general class of nonlinear pairwise dynamics that are guaranteed to recover the observed behaviour. The result, which we test against both numerical and empirical data, is an effective dynamic model that can predict the system's behaviour and provide crucial insights into its inner workings.

  17. Resource Letter CS-1: Complex Systems

    NASA Astrophysics Data System (ADS)

    Newman, M. E. J.

    2011-08-01

    A complex system is a system composed of many interacting parts, often called agents, which displays collective behavior that does not follow trivially from the behaviors of the individual parts. Examples include condensed-matter systems, ecosystems, stock markets and economies, biological evolution, and indeed the whole of human society. Substantial progress has been made in the quantitative understanding of complex systems, particularly since the 1980s, using a combination of basic theory, much of it derived from physics, and computer simulation. The subject is a broad one, drawing on techniques and ideas from a wide range of areas. Here, I give a selection of introductory resources, ranging from classic papers to recent books and reviews.

  18. Promoting Transfer by Grounding Complex Systems Principles

    ERIC Educational Resources Information Center

    Goldstone, Robert L.; Wilensky, Uri

    2008-01-01

    Understanding scientific phenomena in terms of complex systems principles is both scientifically and pedagogically important. Situations from different disciplines of science are often governed by the same principle, and so promoting knowledge transfer across disciplines makes valuable cross-fertilization and scientific unification possible.…

  19. Engineering Education as a Complex System

    ERIC Educational Resources Information Center

    Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

    2011-01-01

    This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating…

  20. Designing To Learn about Complex Systems.

    ERIC Educational Resources Information Center

    Hmelo, Cindy E.; Holton, Douglas L.; Kolodner, Janet L.

    2000-01-01

    Indicates the presence of complex structural, behavioral, and functional relations to understanding. Reports on a design experiment in which 6th grade children learned about the human respiratory system by designing artificial lungs and building partial working models. Makes suggestions for successful learning from design activities. (Contains 44…

  1. Gaia as a complex adaptive system.

    PubMed

    Lenton, Timothy M; van Oijen, Marcel

    2002-05-29

    We define the Gaia system of life and its environment on Earth, review the status of the Gaia theory, introduce potentially relevant concepts from complexity theory, then try to apply them to Gaia. We consider whether Gaia is a complex adaptive system (CAS) in terms of its behaviour and suggest that the system is self-organizing but does not reside in a critical state. Gaia has supported abundant life for most of the last 3.8 Gyr. Large perturbations have occasionally suppressed life but the system has always recovered without losing the capacity for large-scale free energy capture and recycling of essential elements. To illustrate how complexity theory can help us understand the emergence of planetary-scale order, we present a simple cellular automata (CA) model of the imaginary planet Daisyworld. This exhibits emergent self-regulation as a consequence of feedback coupling between life and its environment. Local spatial interaction, which was absent from the original model, can destabilize the system by generating bifurcation regimes. Variation and natural selection tend to remove this instability. With mutation in the model system, it exhibits self-organizing adaptive behaviour in its response to forcing. We close by suggesting how artificial life ('Alife') techniques may enable more comprehensive feasibility tests of Gaia. PMID:12079529

  2. Gaia as a complex adaptive system.

    PubMed

    Lenton, Timothy M; van Oijen, Marcel

    2002-05-29

    We define the Gaia system of life and its environment on Earth, review the status of the Gaia theory, introduce potentially relevant concepts from complexity theory, then try to apply them to Gaia. We consider whether Gaia is a complex adaptive system (CAS) in terms of its behaviour and suggest that the system is self-organizing but does not reside in a critical state. Gaia has supported abundant life for most of the last 3.8 Gyr. Large perturbations have occasionally suppressed life but the system has always recovered without losing the capacity for large-scale free energy capture and recycling of essential elements. To illustrate how complexity theory can help us understand the emergence of planetary-scale order, we present a simple cellular automata (CA) model of the imaginary planet Daisyworld. This exhibits emergent self-regulation as a consequence of feedback coupling between life and its environment. Local spatial interaction, which was absent from the original model, can destabilize the system by generating bifurcation regimes. Variation and natural selection tend to remove this instability. With mutation in the model system, it exhibits self-organizing adaptive behaviour in its response to forcing. We close by suggesting how artificial life ('Alife') techniques may enable more comprehensive feasibility tests of Gaia.

  3. Gaia as a complex adaptive system.

    PubMed Central

    Lenton, Timothy M; van Oijen, Marcel

    2002-01-01

    We define the Gaia system of life and its environment on Earth, review the status of the Gaia theory, introduce potentially relevant concepts from complexity theory, then try to apply them to Gaia. We consider whether Gaia is a complex adaptive system (CAS) in terms of its behaviour and suggest that the system is self-organizing but does not reside in a critical state. Gaia has supported abundant life for most of the last 3.8 Gyr. Large perturbations have occasionally suppressed life but the system has always recovered without losing the capacity for large-scale free energy capture and recycling of essential elements. To illustrate how complexity theory can help us understand the emergence of planetary-scale order, we present a simple cellular automata (CA) model of the imaginary planet Daisyworld. This exhibits emergent self-regulation as a consequence of feedback coupling between life and its environment. Local spatial interaction, which was absent from the original model, can destabilize the system by generating bifurcation regimes. Variation and natural selection tend to remove this instability. With mutation in the model system, it exhibits self-organizing adaptive behaviour in its response to forcing. We close by suggesting how artificial life ('Alife') techniques may enable more comprehensive feasibility tests of Gaia. PMID:12079529

  4. Dependency visualization for complex system understanding

    SciTech Connect

    Smart, J.A.C.

    1994-09-01

    With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impaired as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new orgnizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.

  5. Membrane Tethering Complexes in the Endosomal System

    PubMed Central

    Spang, Anne

    2016-01-01

    Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the class C core vacuole/endosome tethering (CORVET) complex, while fusion of late endosomes with lysosomes depends on the homotypic fusion and vacuole protein sorting (HOPS) complex. Recycling through the trans-Golgi network (TGN) and to the plasma membrane is facilitated by the Golgi associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, proteins that may be part of novel tethering complexes have been recently identified. Thus, it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic. PMID:27243003

  6. Membrane Tethering Complexes in the Endosomal System.

    PubMed

    Spang, Anne

    2016-01-01

    Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the class C core vacuole/endosome tethering (CORVET) complex, while fusion of late endosomes with lysosomes depends on the homotypic fusion and vacuole protein sorting (HOPS) complex. Recycling through the trans-Golgi network (TGN) and to the plasma membrane is facilitated by the Golgi associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, proteins that may be part of novel tethering complexes have been recently identified. Thus, it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic. PMID:27243003

  7. New England: Hudson River

    Atmospheric Science Data Center

    2014-05-15

    article title:  New York and Southern New England     View Larger Image ... Imaging SpectroRadiometer (MISR) nadir-camera image includes New York City, site of the Yankees and the National League's Mets. The Yankees ...

  8. Causes of catastrophic failure in complex systems

    NASA Astrophysics Data System (ADS)

    Thomas, David A.

    2010-08-01

    Root causes of mission critical failures and major cost and schedule overruns in complex systems and programs are studied through the post-mortem analyses compiled for several examples, including the Hubble Space Telescope, the Challenger and Columbia Shuttle accidents, and the Three Mile Island nuclear power plant accident. The roles of organizational complexity, cognitive biases in decision making, the display of quantitative data, and cost and schedule pressure are all considered. Recommendations for mitigating the risk of similar failures in future programs are also provided.

  9. A Multifaceted Mathematical Approach for Complex Systems

    SciTech Connect

    Alexander, F.; Anitescu, M.; Bell, J.; Brown, D.; Ferris, M.; Luskin, M.; Mehrotra, S.; Moser, B.; Pinar, A.; Tartakovsky, A.; Willcox, K.; Wright, S.; Zavala, V.

    2012-03-07

    Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significant impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.

  10. Network representations of immune system complexity.

    PubMed

    Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A; Germain, Ronald N; Dutta, Bhaskar

    2015-01-01

    The mammalian immune system is a dynamic multiscale system composed of a hierarchically organized set of molecular, cellular, and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single-cell responses to increasingly complex networks of in vivo cellular interaction, positioning, and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather nonlinear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multiscale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels, while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating 'omics' and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular- and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks.

  11. Stability threshold approach for complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Klinshov, Vladimir V.; Nekorkin, Vladimir I.; Kurths, Jürgen

    2016-01-01

    A new measure to characterize the stability of complex dynamical systems against large perturbations is suggested, the stability threshold (ST). It quantifies the magnitude of the weakest perturbation capable of disrupting the system and switch it to an undesired dynamical regime. In the phase space, the ST corresponds to the ‘thinnest site’ of the attraction basin and therefore indicates the most ‘dangerous’ direction of perturbations. We introduce a computational algorithm for quantification of the ST and demonstrate that the suggested approach is effective and provides important insights. The generality of the obtained results defines their vast potential for application in such fields as engineering, neuroscience, power grids, Earth science and many others where the robustness of complex systems is studied.

  12. Systems genetics approaches to understand complex traits

    PubMed Central

    Civelek, Mete; Lusis, Aldons J.

    2014-01-01

    Systems genetics is an approach to understand the flow of biological information that underlies complex traits. It uses a range of experimental and statistical methods to quantitate and integrate intermediate phenotypes, such as transcript, protein or metabolite levels, in populations that vary for traits of interest. Systems genetics studies have provided the first global view of the molecular architecture of complex traits and are useful for the identification of genes, pathways and networks that underlie common human diseases. Given the urgent need to understand how the thousands of loci that have been identified in genome-wide association studies contribute to disease susceptibility, systems genetics is likely to become an increasingly important approach to understanding both biology and disease. PMID:24296534

  13. Automated Design of Complex Dynamic Systems

    PubMed Central

    Hermans, Michiel; Schrauwen, Benjamin; Bienstman, Peter; Dambre, Joni

    2014-01-01

    Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems. PMID:24497969

  14. [Complex systems variability analysis using approximate entropy].

    PubMed

    Cuestas, Eduardo

    2010-01-01

    Biological systems are highly complex systems, both spatially and temporally. They are rooted in an interdependent, redundant and pleiotropic interconnected dynamic network. The properties of a system are different from those of their parts, and they depend on the integrity of the whole. The systemic properties vanish when the system breaks down, while the properties of its components are maintained. The disease can be understood as a systemic functional alteration of the human body, which present with a varying severity, stability and durability. Biological systems are characterized by measurable complex rhythms, abnormal rhythms are associated with disease and may be involved in its pathogenesis, they are been termed "dynamic disease." Physicians have long time recognized that alterations of physiological rhythms are associated with disease. Measuring absolute values of clinical parameters yields highly significant, clinically useful information, however evaluating clinical parameters the variability provides additionally useful clinical information. The aim of this review was to study one of the most recent advances in the measurement and characterization of biological variability made possible by the development of mathematical models based on chaos theory and nonlinear dynamics, as approximate entropy, has provided us with greater ability to discern meaningful distinctions between biological signals from clinically distinct groups of patients.

  15. [Complex systems variability analysis using approximate entropy].

    PubMed

    Cuestas, Eduardo

    2010-01-01

    Biological systems are highly complex systems, both spatially and temporally. They are rooted in an interdependent, redundant and pleiotropic interconnected dynamic network. The properties of a system are different from those of their parts, and they depend on the integrity of the whole. The systemic properties vanish when the system breaks down, while the properties of its components are maintained. The disease can be understood as a systemic functional alteration of the human body, which present with a varying severity, stability and durability. Biological systems are characterized by measurable complex rhythms, abnormal rhythms are associated with disease and may be involved in its pathogenesis, they are been termed "dynamic disease." Physicians have long time recognized that alterations of physiological rhythms are associated with disease. Measuring absolute values of clinical parameters yields highly significant, clinically useful information, however evaluating clinical parameters the variability provides additionally useful clinical information. The aim of this review was to study one of the most recent advances in the measurement and characterization of biological variability made possible by the development of mathematical models based on chaos theory and nonlinear dynamics, as approximate entropy, has provided us with greater ability to discern meaningful distinctions between biological signals from clinically distinct groups of patients. PMID:21450141

  16. Complex competitive systems and competitive thermodynamics.

    PubMed

    Klimenko, A Y

    2013-01-13

    This publication reviews the framework of abstract competition, which is aimed at studying complex systems with competition in their generic form. Although the concept of abstract competition has been derived from a specific field--modelling of mixing in turbulent reacting flows--this concept is, generally, not attached to a specific phenomenon or application. Two classes of competition rules, transitive and intransitive, need to be distinguished. Transitive competitions are shown to be consistent (at least qualitatively) with thermodynamic principles, which allows for introduction of special competitive thermodynamics. Competitive systems can thus be characterized by thermodynamic quantities (such as competitive entropy and competitive potential), which determine that the predominant direction of evolution of the system is directed towards higher competitiveness. There is, however, an important difference: while conventional thermodynamics is constrained by its zeroth law and is fundamentally transitive, the transitivity of competitive thermodynamics depends on the transitivity of the competition rules. The analogy with conventional thermodynamics weakens as competitive systems become more intransitive, while strongly intransitive competitions can display types of behaviour associated with complexity: competitive cooperation and leaping cycles. Results of simulations demonstrating complex behaviour in abstract competitions are presented in the electronic supplementary material.

  17. Multifractal Resilience Metrics for Complex Systems?

    NASA Astrophysics Data System (ADS)

    Schertzer, D. J.; Tchiguirinskaia, I.; Lovejoy, S.

    2011-12-01

    The term resilience has become extremely fashionable, especially for complex systems, whereas corresponding operational definitions have remained rather elusive (Carpenter et al. 2001). More precisely, the resilience assessment of man-made systems (from nuclear plants to cities) to geophysical extremes require mathematically defined resilience metrics based on some conceptual definition, e.g. the often cited definition of "ecological resilience" (Hollings 1973): "the capacity of a system to absorb disturbance and reorganize while undergoing change so as to still retain essentially the same function, structure, identity, and feedbacks". Surprisingly, whereas it was acknowledged by Folke et al. (2010) that "multiscale resilience is fundamental for understanding the interplay between persistence and change, adaptability and transformability", the relation between resilience and scaling has not been so much questioned, see however Peterson (2000). We argue that is rather indispensable to go well beyond the attractor approach (Pimm and Lawton 1977; Collings and Wollkind 1990;), as well as extensions (Martin et al., 2011) into the framework of the viability theory (Aubin 1991; Aubin et al. 2011). Indeed, both are rather limited to systems that are complex only in time. Scale symmetries are indeed indispensable to reduce the space-time complexity by defining scale independent observables, which are the singularities of the original, scale dependent fields. These singularities enable to define across-scale resilience, instead of resilience at a given scale.

  18. Cluster size diversity, percolation, and complex systems.

    PubMed

    Tsang, I R; Tsang, I J

    1999-09-01

    Diversity of cluster size has been used as a measurement of complexity in several systems that generate a statistical distribution of clusters. Using Monte Carlo simulations, we present a statistical analysis of the cluster size diversity and the number of clusters generated on randomly occupied lattices for the Euclidean dimensions 1 to 6. A tuning effect for diversity of cluster size and critical probabilities associated with the maximum diversity and the maximum number of clusters are reported. The probability of maximum diversity is related to the percolation threshold and several scaling relations between the variables measured are reported. The statistics of cluster size diversity has important consequences in the statistical description of the Universe as a complex system. PMID:11970070

  19. Thermal performance of complex fenestration systems

    SciTech Connect

    Carpenter, S.C.; Elmahdy, A.H.

    1994-12-31

    The thermal performance (i.e., U-factor) of four complex fenestration systems is examined using computer simulation tools and guarded hot box testing. The systems include a flat glazed skylight, a domed or bubble skylight, a greenhouse window, and a curtain wall. The extra care required in performing simulation and testing of these complex products is described. There was good agreement (within 10%) between test and simulation for two of the four products. The agreement was slightly poorer (maximum difference of 16%) for the two high-heat-transfer products: the domed skylight and the greenhouse window. Possible causes for the larger discrepancy in these projecting window products are uncertainties in the inside and outside film coefficients and lower warm-side air temperatures because of stagnant airflow.

  20. Efficiently evaluate complex pressure relief systems

    SciTech Connect

    Wright, R.K.; Walker, A.G.

    1997-01-01

    This article will present the steps necessary to perform a comprehensive analysis of complex pressure relief systems. The goal is not to discuss detailed calculations for proper valve sizing and selection, but rather to analyze and verify existing system configurations. Sizing and selection have been covered in detail by the American Petroleum Institute (API) RP 520, API RP 521, various AIChE Design Institute for Emergency Relief Systems (DIERS) publications, and other sources. In their work with industry, the authors have noticed a tendency for some engineers to proceed with detailed calculations without first preparing an overall strategy and implementation plan to make sure that the calculations yield the desired results. They have seen detailed pressure relief system analyses costing hundreds of thousands of dollars which, for any number of reasons, are incorrect. The old adage GIGO (garbage in/garbage out) certainly applies to pressure relief system analysis. They will address the thought processes and actions necessary to correctly and efficiently evaluate complex pressure relief systems.

  1. Analysis of complex systems using neural networks

    SciTech Connect

    Uhrig, R.E. . Dept. of Nuclear Engineering Oak Ridge National Lab., TN )

    1992-01-01

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms), to some of the problems of complex engineering systems has the potential to enhance the safety, reliability, and operability of these systems. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network (e.g., a fast Fourier transformation of the time-series data to produce a spectral plot of the data). Specific applications described include: (1) Diagnostics: State of the Plant (2) Hybrid System for Transient Identification, (3) Sensor Validation, (4) Plant-Wide Monitoring, (5) Monitoring of Performance and Efficiency, and (6) Analysis of Vibrations. Although specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems.

  2. Analysis of complex systems using neural networks

    SciTech Connect

    Uhrig, R.E. |

    1992-12-31

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms), to some of the problems of complex engineering systems has the potential to enhance the safety, reliability, and operability of these systems. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network (e.g., a fast Fourier transformation of the time-series data to produce a spectral plot of the data). Specific applications described include: (1) Diagnostics: State of the Plant (2) Hybrid System for Transient Identification, (3) Sensor Validation, (4) Plant-Wide Monitoring, (5) Monitoring of Performance and Efficiency, and (6) Analysis of Vibrations. Although specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems.

  3. Synchronization in node of complex networks consist of complex chaotic system

    SciTech Connect

    Wei, Qiang; Xie, Cheng-jun; Liu, Hong-jun; Li, Yan-hui

    2014-07-15

    A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

  4. Endogenous Biologically Inspired Art of Complex Systems.

    PubMed

    Ji, Haru; Wakefield, Graham

    2016-01-01

    Since 2007, Graham Wakefield and Haru Ji have looked to nature for inspiration as they have created a series of "artificial natures," or interactive visualizations of biologically inspired complex systems that can evoke nature-like aesthetic experiences within mixed-reality art installations. This article describes how they have applied visualization, sonification, and interaction design in their work with artificial ecosystems and organisms using specific examples from their exhibited installations.

  5. Complex Engineered Systems: A New Paradigm

    NASA Astrophysics Data System (ADS)

    Mina, Ali A.; Braha, Dan; Bar-Yam, Yaneer

    Human history is often seen as an inexorable march towards greater complexity — in ideas, artifacts, social, political and economic systems, technology, and in the structure of life itself. While we do not have detailed knowledge of ancient times, it is reasonable to conclude that the average resident of New York City today faces a world of much greater complexity than the average denizen of Carthage or Tikal. A careful consideration of this change, however, suggests that most of it has occurred recently, and has been driven primarily by the emergence of technology as a force in human life. In the 4000 years separating the Indus Valley Civilization from 18th century Europe, human transportation evolved from the bullock cart to the hansom, and the methods of communication used by George Washington did not differ significantly from those used by Alexander or Rameses. The world has moved radically towards greater complexity in the last two centuries. We have moved from buggies and letter couriers to airplanes and the Internet — an increase in capacity, and through its diversity also in complexity, orders of magnitude greater than that accumulated through the rest of human history. In addition to creating iconic artifacts — the airplane, the car, the computer, the television, etc. — this change has had a profound effect on the scope of experience by creating massive, connected and multiultra- level systems — traffic networks, power grids, markets, multinational corporations — that defy analytical understanding and seem to have a life of their own. This is where complexity truly enters our lives.

  6. Circulation system complex networks and teleconnections

    NASA Astrophysics Data System (ADS)

    Gong, Zhi-Qiang; Wang, Xiao-Juan; Zhi, Rong; Feng, Ai-Xia

    2011-07-01

    In terms of the characteristic topology parameters of climate complex networks, the spatial connection structural complexity of the circulation system and the influence of four teleconnection patterns are quantitatively described. Results of node degrees for the Northern Hemisphere (NH) mid-high latitude (30° N-90° N) circulation system (NHS) networks with and without the Arctic Oscillations (AO), the North Atlantic Oscillations (NAO) and the Pacific—North American pattern (PNA) demonstrate that the teleconnections greatly shorten the mean shortest path length of the networks, thus being advantageous to the rapid transfer of local fluctuation information over the network and to the stability of the NHS. The impact of the AO on the NHS connection structure is most important and the impact of the NAO is the next important. The PNA is a relatively independent teleconnection, and its role in the NHS is mainly manifested in the connection between the NHS and the tropical circulation system (TRS). As to the Southern Hemisphere mid-high latitude (30° S-90° S) circulation system (SHS), the impact of the Antarctic Arctic Oscillations (AAO) on the structural stability of the system is most important. In addition, there might be a stable correlation dipole (AACD) in the SHS, which also has important influence on the structure of the SHS networks.

  7. Complexity for Survival of Living Systems

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2009-01-01

    A logical connection between the survivability of living systems and the complexity of their behavior (equivalently, mental complexity) has been established. This connection is an important intermediate result of continuing research on mathematical models that could constitute a unified representation of the evolution of both living and non-living systems. Earlier results of this research were reported in several prior NASA Tech Briefs articles, the two most relevant being Characteristics of Dynamics of Intelligent Systems (NPO- 21037), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 48; and Self-Supervised Dynamical Systems (NPO- 30634) NASA Tech Briefs, Vol. 27, No. 3 (March 2003), page 72. As used here, living systems is synonymous with active systems and intelligent systems. The quoted terms can signify artificial agents (e.g., suitably programmed computers) or natural biological systems ranging from single-cell organisms at one extreme to the whole of human society at the other extreme. One of the requirements that must be satisfied in mathematical modeling of living systems is reconciliation of evolution of life with the second law of thermodynamics. In the approach followed in this research, this reconciliation is effected by means of a model, inspired partly by quantum mechanics, in which the quantum potential is replaced with an information potential. The model captures the most fundamental property of life - the ability to evolve from disorder to order without any external interference. The model incorporates the equations of classical dynamics, including Newton s equations of motion and equations for random components caused by uncertainties in initial conditions and by Langevin forces. The equations of classical dynamics are coupled with corresponding Liouville or Fokker-Planck equations that describe the evolutions of probability densities that represent the uncertainties. The coupling is effected by fictitious information-based forces that are

  8. Network representations of immune system complexity

    PubMed Central

    Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A.; Germain, Ronald N.; Dutta, Bhaskar

    2015-01-01

    The mammalian immune system is a dynamic multi-scale system composed of a hierarchically organized set of molecular, cellular and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single cell responses to increasingly complex networks of in vivo cellular interaction, positioning and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather non-linear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multi-scale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853

  9. Network representations of immune system complexity.

    PubMed

    Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A; Germain, Ronald N; Dutta, Bhaskar

    2015-01-01

    The mammalian immune system is a dynamic multiscale system composed of a hierarchically organized set of molecular, cellular, and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single-cell responses to increasingly complex networks of in vivo cellular interaction, positioning, and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather nonlinear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multiscale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels, while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating 'omics' and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular- and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853

  10. Development of risk-based trading farm scoring system to assist with the control of bovine tuberculosis in cattle in England and Wales.

    PubMed

    Adkin, A; Brouwer, A; Simons, R R L; Smith, R P; Arnold, M E; Broughan, J; Kosmider, R; Downs, S H

    2016-01-01

    Identifying and ranking cattle herds with a higher risk of being or becoming infected on known risk factors can help target farm biosecurity, surveillance schemes and reduce spread through animal trading. This paper describes a quantitative approach to develop risk scores, based on the probability of infection in a herd with bovine tuberculosis (bTB), to be used in a risk-based trading (RBT) scheme in England and Wales. To produce a practical scoring system the risk factors included need to be simple and quick to understand, sufficiently informative and derived from centralised national databases to enable verification and assess compliance. A logistic regression identified herd history of bTB, local bTB prevalence, herd size and movements of animals onto farms in batches from high risk areas as being significantly associated with the probability of bTB infection on farm. Risk factors were assigned points using the estimated odds ratios to weight them. The farm risk score was defined as the sum of these individual points yielding a range from 1 to 5 and was calculated for each cattle farm that was trading animals in England and Wales at the start of a year. Within 12 months, of those farms tested, 30.3% of score 5 farms had a breakdown (sensitivity). Of farms scoring 1-4 only 5.4% incurred a breakdown (1-specificity). The use of this risk scoring system within RBT has the potential to reduce infected cattle movements; however, there are cost implications in ensuring that the information underpinning any system is accurate and up to date.

  11. Complex Generalized Synchronization and Parameter Identification of Nonidentical Nonlinear Complex Systems.

    PubMed

    Wang, Shibing; Wang, Xingyuan; Han, Bo

    2016-01-01

    In this paper, generalized synchronization (GS) is extended from real space to complex space, resulting in a new synchronization scheme, complex generalized synchronization (CGS). Based on Lyapunov stability theory, an adaptive controller and parameter update laws are designed to realize CGS and parameter identification of two nonidentical chaotic (hyperchaotic) complex systems with respect to a given complex map vector. This scheme is applied to synchronize a memristor-based hyperchaotic complexsystem and a memristor-based chaotic complex Lorenz system, a chaotic complex Chen system and a memristor-based chaotic complex Lorenz system, as well as a memristor-based hyperchaotic complexsystem and a chaotic complexsystem with fully unknown parameters. The corresponding numerical simulations illustrate the feasibility and effectiveness of the proposed scheme. PMID:27014879

  12. Complex Generalized Synchronization and Parameter Identification of Nonidentical Nonlinear Complex Systems

    PubMed Central

    Wang, Shibing; Wang, Xingyuan; Han, Bo

    2016-01-01

    In this paper, generalized synchronization (GS) is extended from real space to complex space, resulting in a new synchronization scheme, complex generalized synchronization (CGS). Based on Lyapunov stability theory, an adaptive controller and parameter update laws are designed to realize CGS and parameter identification of two nonidentical chaotic (hyperchaotic) complex systems with respect to a given complex map vector. This scheme is applied to synchronize a memristor-based hyperchaotic complexsystem and a memristor-based chaotic complex Lorenz system, a chaotic complex Chen system and a memristor-based chaotic complex Lorenz system, as well as a memristor-based hyperchaotic complexsystem and a chaotic complexsystem with fully unknown parameters. The corresponding numerical simulations illustrate the feasibility and effectiveness of the proposed scheme. PMID:27014879

  13. Simulating Complex Window Systems using BSDF Data

    SciTech Connect

    Konstantoglou, Maria; Jonsson, Jacob; Lee, Eleanor

    2009-06-22

    Nowadays, virtual models are commonly used to evaluate the performance of conventional window systems. Complex fenestration systems can be difficult to simulate accurately not only because of their geometry but also because of their optical properties that scatter light in an unpredictable manner. Bi-directional Scattering Distribution Functions (BSDF) have recently been developed based on a mixture of measurements and modelling to characterize the optics of such systems. This paper describes the workflow needed to create then use these BSDF datasets in the Radiance lighting simulation software. Limited comparisons are made between visualizations produced using the standard ray-tracing method, the BSDF method, and that taken in a full-scale outdoor mockup.

  14. Modular interdependency in complex dynamical systems.

    PubMed

    Watson, Richard A; Pollack, Jordan B

    2005-01-01

    Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability. PMID:16197673

  15. Addressing the Complexity of the Earth System

    SciTech Connect

    Nobre, Carlos; Brasseur, Guy P.; Shapiro, Melvyn; Lahsen, Myanna; Brunet, Gilbert; Busalacchi, Antonio; Hibbard, Kathleen A.; Seitzinger, Sybil; Noone, Kevin; Ometto, Jean P.

    2010-10-01

    This paper highlights the role of the Earth-system biosphere and illustrates the complex: biosphere-atmosphere interactions in the Amazon Basin, changes in nitrogen cycling, ocean chemistry, and land use. It introduces three important requirements for accelerating the development and use of Earth system information. The first requirement is to develop Earth system analysis and prediction models that account for multi-scale physical, chemical and biological processes, including their interactions in the coupled atmosphere-ocean-land-ice system. The development of these models requires partnerships between academia, national research centers, and operational prediction facilities, and builds upon accomplishments in weather and climate predictions. They will highlight the regional aspects of global change, and include modules for water system, agriculture, forestry, energy, air quality, health, etc. The second requirement is to model the interactions between humans and the weather-climate-biogeochemical system. The third requirement is to introduce novel methodologies to account for societal drivers, impacts and feedbacks. This is a challenging endeavor requiring creative solutions and some compromising because human behavior cannot be fully represented within the framework of present-day physical prediction systems.

  16. Automated Diagnosis and Control of Complex Systems

    NASA Technical Reports Server (NTRS)

    Kurien, James; Plaunt, Christian; Cannon, Howard; Shirley, Mark; Taylor, Will; Nayak, P.; Hudson, Benoit; Bachmann, Andrew; Brownston, Lee; Hayden, Sandra; Wragg, Steve; Millar, William; Pepke, Shirley; Christa, Scott; Garcia, Ray

    2007-01-01

    Livingstone2 is a reusable, artificial intelligence (AI) software system designed to assist spacecraft, life support systems, chemical plants, or other complex systems by operating with minimal human supervision, even in the face of hardware failures or unexpected events. The software diagnoses the current state of the spacecraft or other system, and recommends commands or repair actions that will allow the system to continue operation. Livingstone2 is an enhancement of the Livingstone diagnosis system that was flight-tested onboard the Deep Space One spacecraft in 1999. This version tracks multiple diagnostic hypotheses, rather than just a single hypothesis as in the previous version. It is also able to revise diagnostic decisions made in the past when additional observations become available. In such cases, Livingstone might arrive at an incorrect hypothesis. Re-architecting and re-implementing the system in C++ has increased performance. Usability has been improved by creating a set of development tools that is closely integrated with the Livingstone2 engine. In addition to the core diagnosis engine, Livingstone2 includes a compiler that translates diagnostic models written in a Java-like language into Livingstone2's language, and a broad set of graphical tools for model development.

  17. Nonlinear Dynamics, Chaotic and Complex Systems

    NASA Astrophysics Data System (ADS)

    Infeld, E.; Zelazny, R.; Galkowski, A.

    2011-04-01

    Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet

  18. Factors Affecting Completion of Apprenticeship Training in England

    ERIC Educational Resources Information Center

    Gambin, Lynn; Hogarth, Terence

    2016-01-01

    This paper examines factors that are associated with the probability of completion of apprenticeship programmes by individual learners in England. Data are from the 2008/2009 academic year Individualised Learner Record--the administrative database containing information on all learners in the Further Education system in England. The analysis…

  19. Educational Reform and Curriculum Implementation in England: An Historical Perspective.

    ERIC Educational Resources Information Center

    Aldrich, Richard

    This paper provides a historical perspective on the implementation of educational reform by the Thatcher government in England. Since 1979, and particularly since the Education Reform Act of 1988, the state educational system in England has undergone massive reform in the form of a national curriculum, increased school-based management, and the…

  20. Confusion in the Ranks: How Good Are England's Schools?

    ERIC Educational Resources Information Center

    Smithers, Alan

    2013-01-01

    Understanding how well English education performs compared with other countries is a valuable exercise, particularly because the information can help England and other countries learn from successful systems. The most recent international league tables of pupil performance differ considerably. England languishes well down the list in PISA 2009,…

  1. Complex system analysis using CI methods

    NASA Astrophysics Data System (ADS)

    Fathi, Madjid; Hildebrand, Lars

    1999-03-01

    Modern technical tasks often need the use of complex system models. In many complex cases the model parameters can be gained using neural networks, but these systems allow only a one-way simulation from the input values to the learned output values. If evaluation in the other direction is needed, these model allow no direct evaluation. This task can be solved using evolutionary algorithms, which are part of the computational intelligence. The term computational intelligence covers three special fields of the artificial intelligence, fuzzy logic, artificial neural networks and evolutionary algorithms. We will focus only on the topic of evolutionary algorithms and fuzzy logic. Evolutionary algorithms covers the fields of genetic algorithms, evolution strategies and evolutionary programming. These methods can be used to optimize technical problems. Evolutionary algorithms have certain advantages, if these problems have no mathematical properties, like steadiness or the possibility to obtain the derivatives. Fuzzy logic systems normally lack these properties. The use of a combination of evolutionary algorithms and fuzzy logic allow an evaluation of the learned simulation models in the direction form output to the input values. An example can be given from the field of screw rotor design.

  2. The Neo-Liberalisation Policy Agenda and Its Consequences for Education in England: A Focus on Resistance Now and Possibilities for the Future

    ERIC Educational Resources Information Center

    Maisuria, Alpesh

    2014-01-01

    In this article, the author explores the way that neo-liberalism is becoming more entrenched in the fabric of the education system in England. The article begins by setting out a very brief historical trajectory of neo-liberalism to provide a working definition of a complex and disarticulated socio-political and economic system. In part two, this…

  3. Economics and resourcing of complex healthcare systems.

    PubMed

    Baghbanian, Abdolvahab; Torkfar, Ghazal

    2012-11-01

    With rapid increases in healthcare spending over recent years, health economic evaluation might be thought to be increasing in importance to decision-makers. Such evaluations are designed to inform the efficient management of healthcare resources. However, research into health policy decisions often report, at best, moderate use of economic evaluation information, especially at the local level of administration. Little attention seems to have been given to the question of why economic evaluations have been underused and why they may yield different results in different contexts. There are many barriers to applying economic evaluations in situations which combine complexity with uncertainty. These barriers call for innovative and creative responses to economic evaluation of healthcare interventions. One response is to view economic evaluations in the context of complex adaptive systems theory. Such theory offers a conceptual framework that takes into account contextual factors, multiple input and output, multiple perspectives and uncertainty involved in healthcare interventions. This article illustrates how complexity theory can enrich and broaden policy-makers' understanding of why economic evaluations have not always been as successful as health economists would have hoped. It argues for health economists to emphasise contextual knowledge and relativist understanding of decision contexts rather than seeking more technically sound evidence-based reviews including economic evaluations.

  4. Modernising the Schools Infrastructure in England.

    ERIC Educational Resources Information Center

    Beeton, Ken

    This keynote speech addresses how to modernize school infrastructure for the delivery of 21st century education in England, including the background of the English education system and the current state of the English school estate and maintenance backlog. It discusses the government's role for improving the education system and raising standards,…

  5. Assessment Environment for Complex Systems Software Guide

    NASA Technical Reports Server (NTRS)

    2013-01-01

    This Software Guide (SG) describes the software developed to test the Assessment Environment for Complex Systems (AECS) by the West Virginia High Technology Consortium (WVHTC) Foundation's Mission Systems Group (MSG) for the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD). This software is referred to as the AECS Test Project throughout the remainder of this document. AECS provides a framework for developing, simulating, testing, and analyzing modern avionics systems within an Integrated Modular Avionics (IMA) architecture. The purpose of the AECS Test Project is twofold. First, it provides a means to test the AECS hardware and system developed by MSG. Second, it provides an example project upon which future AECS research may be based. This Software Guide fully describes building, installing, and executing the AECS Test Project as well as its architecture and design. The design of the AECS hardware is described in the AECS Hardware Guide. Instructions on how to configure, build and use the AECS are described in the User's Guide. Sample AECS software, developed by the WVHTC Foundation, is presented in the AECS Software Guide. The AECS Hardware Guide, AECS User's Guide, and AECS Software Guide are authored by MSG. The requirements set forth for AECS are presented in the Statement of Work for the Assessment Environment for Complex Systems authored by NASA Dryden Flight Research Center (DFRC). The intended audience for this document includes software engineers, hardware engineers, project managers, and quality assurance personnel from WVHTC Foundation (the suppliers of the software), NASA (the customer), and future researchers (users of the software). Readers are assumed to have general knowledge in the field of real-time, embedded computer software development.

  6. Characterization of fHbp, nhba (gna2132), nadA, porA, sequence type (ST), and genomic presence of IS1301 in group B meningococcal ST269 clonal complex isolates from England and Wales.

    PubMed

    Lucidarme, Jay; Comanducci, Maurizio; Findlow, Jamie; Gray, Stephen J; Kaczmarski, Edward B; Guiver, Malcolm; Kugelberg, Elisabeth; Vallely, Pamela J; Oster, Philipp; Pizza, Mariagrazia; Bambini, Stefania; Muzzi, Alessandro; Tang, Christoph M; Borrow, Ray

    2009-11-01

    Highly effective glycoconjugate vaccines exist against four of the five major pathogenic groups of meningococci: A, C, W-135, and Y. An equivalent vaccine against group B meningococci (menB) has remained elusive due to the poorly immunogenic capsular polysaccharide. A promising alternative, the investigational recombinant menB (rMenB)- outer membrane vesicle (OMV) vaccine, contains fHBP, NHBA (previously GNA2132), NadA, and outer membrane vesicles (OMVs) from the New Zealand MeNZB vaccine. MenB currently accounts for 90% of meningococcal disease in England and Wales, where the multilocus sequence type (ST) 269 (ST269) clonal complex (cc269) has recently expanded to account for a third of menB cases. To assess the potential cc269 coverage of the rMenB-OMV vaccine, English and Welsh cc269 isolates from the past decade were genetically characterized with respect to fHBP, NHBA, and NadA. All of the isolates harbored fHbp and nhba alleles, while 98% of the cc269 isolates were devoid of nadA. Subvariant profiling of fHbp, nhba, and porA against STs revealed the presence of two broadly distinct and well-defined clusters of isolates, centered around ST269 and ST275, respectively. An additional molecular marker, insertion sequence IS1301, was found to be present in 100% and <2% of isolates of the respective clusters. On the basis of the genetic data, the potential rMenB-OMV coverage of cc269 in England and Wales is high (up to 100%) within both clusters. Expression studies and serum bactericidal antibody assays will serve to enhance predictions of coverage and will augment ongoing studies regarding the significance of IS1301 within the ST269 cluster.

  7. Innovative Design of Complex Engineering Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2004-01-01

    The document contains the proceedings of the training workshop on Innovative Design of Complex Engineering Systems. The workshop was held at the Peninsula Higher Education Center, Hampton, Virginia, March 23 and 24, 2004. The workshop was jointly sponsored by Old Dominion University and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to a) provide broad overviews of the diverse activities related to innovative design of high-tech engineering systems; and b) identify training needs for future aerospace work force development in the design area. The format of the workshop included fifteen, half-hour overview-type presentations, a panel discussion on how to teach and train engineers in innovative design, and three exhibits by commercial vendors.

  8. Contrarian behavior in a complex adaptive system

    NASA Astrophysics Data System (ADS)

    Liang, Y.; An, K. N.; Yang, G.; Huang, J. P.

    2013-01-01

    Contrarian behavior is a kind of self-organization in complex adaptive systems (CASs). Here we report the existence of a transition point in a model resource-allocation CAS with contrarian behavior by using human experiments, computer simulations, and theoretical analysis. The resource ratio and system predictability serve as the tuning parameter and order parameter, respectively. The transition point helps to reveal the positive or negative role of contrarian behavior. This finding is in contrast to the common belief that contrarian behavior always has a positive role in resource allocation, say, stabilizing resource allocation by shrinking the redundancy or the lack of resources. It is further shown that resource allocation can be optimized at the transition point by adding an appropriate size of contrarians. This work is also expected to be of value to some other fields ranging from management and social science to ecology and evolution.

  9. Topological analysis of complexity in multiagent systems

    NASA Astrophysics Data System (ADS)

    Abaid, Nicole; Bollt, Erik; Porfiri, Maurizio

    2012-04-01

    Social organisms at every level of evolutionary complexity live in groups, such as fish schools, locust swarms, and bird flocks. The complex exchange of multifaceted information across group members may result in a spectrum of salient spatiotemporal patterns characterizing collective behaviors. While instances of collective behavior in animal groups are readily identifiable by trained and untrained observers, a working definition to distinguish these patterns from raw data is not yet established. In this work, we define collective behavior as a manifestation of low-dimensional manifolds in the group motion and we quantify the complexity of such behaviors through the dimensionality of these structures. We demonstrate this definition using the ISOMAP algorithm, a data-driven machine learning algorithm for dimensionality reduction originally formulated in the context of image processing. We apply the ISOMAP algorithm to data from an interacting self-propelled particle model with additive noise, whose parameters are selected to exhibit different behavioral modalities, and from a video of a live fish school. Based on simulations of such model, we find that increasing noise in the system of particles corresponds to increasing the dimensionality of the structures underlying their motion. These low-dimensional structures are absent in simulations where particles do not interact. Applying the ISOMAP algorithm to fish school data, we identify similar low-dimensional structures, which may act as quantitative evidence for order inherent in collective behavior of animal groups. These results offer an unambiguous method for measuring order in data from large-scale biological systems and confirm the emergence of collective behavior in an applicable mathematical model, thus demonstrating that such models are capable of capturing phenomena observed in animal groups.

  10. Alarm system for a nuclear control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  11. Electromagnetic driving units for complex microrobotic systems

    NASA Astrophysics Data System (ADS)

    Michel, Frank; Ehrfeld, Wolfgang; Berg, Udo; Degen, Reinhard; Schmitz, Felix

    1998-10-01

    Electromagnetic actuators play an important role in macroscopic robotic systems. In combination with motion transformers, like reducing gear units, angular gears or spindle-screw drives, electromagnetic motors in large product lines ensure the rotational or linear motion of robot driving units and grippers while electromagnets drive valves or part conveyors. In this paper micro actuators and miniaturized motion transformers are introduced which allow a similar development in microrobotics. An electromagnetic motor and a planetary gear box, both with a diameter of 1.9 mm, are already commercially available from the cooperation partner of IMM, the company Dr. Fritz Faulhaber GmbH in Schonaich, Germany. In addition, a motor with a diameter of 2.4 mm is in development. The motors successfully drive an angular gear and a belt drive. A linear stage with a motion range of 7 mm and an overall size as small as 5 X 3.5 X 24 mm3 has been realized involving the motor, a stationary spur gear with zero backlash and a spindle-screw drive. By the use of these commercially available elements complex microrobots can be built up cost-efficiently and rapidly. Furthermore, a batch process has been developed to produce the coils of micro actuator arrays using lithographic techniques with SU-8 resin. In applying these components, the modular construction of complex microrobotic systems becomes feasible.

  12. Intrinsic Uncertainties in Modeling Complex Systems.

    SciTech Connect

    Cooper, Curtis S; Bramson, Aaron L.; Ames, Arlo L.

    2014-09-01

    Models are built to understand and predict the behaviors of both natural and artificial systems. Because it is always necessary to abstract away aspects of any non-trivial system being modeled, we know models can potentially leave out important, even critical elements. This reality of the modeling enterprise forces us to consider the prospective impacts of those effects completely left out of a model - either intentionally or unconsidered. Insensitivity to new structure is an indication of diminishing returns. In this work, we represent a hypothetical unknown effect on a validated model as a finite perturba- tion whose amplitude is constrained within a control region. We find robustly that without further constraints, no meaningful bounds can be placed on the amplitude of a perturbation outside of the control region. Thus, forecasting into unsampled regions is a very risky proposition. We also present inherent difficulties with proper time discretization of models and representing in- herently discrete quantities. We point out potentially worrisome uncertainties, arising from math- ematical formulation alone, which modelers can inadvertently introduce into models of complex systems. Acknowledgements This work has been funded under early-career LDRD project #170979, entitled "Quantify- ing Confidence in Complex Systems Models Having Structural Uncertainties", which ran from 04/2013 to 09/2014. We wish to express our gratitude to the many researchers at Sandia who con- tributed ideas to this work, as well as feedback on the manuscript. In particular, we would like to mention George Barr, Alexander Outkin, Walt Beyeler, Eric Vugrin, and Laura Swiler for provid- ing invaluable advice and guidance through the course of the project. We would also like to thank Steven Kleban, Amanda Gonzales, Trevor Manzanares, and Sarah Burwell for their assistance in managing project tasks and resources.

  13. Melmark New England

    ERIC Educational Resources Information Center

    Cancro, Lorraine

    2009-01-01

    This article features Melmark New England, a private, nonprofit, community based organization dedicated to serving children and adolescents with autism spectrum disorders, acquired brain injury, neurological diseases and disorders, and severe challenging behaviors. The Melmark parent corporation, a Pennsylvania based provider of services for those…

  14. Optimal control of complex atomic quantum systems

    NASA Astrophysics Data System (ADS)

    van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.

    2016-10-01

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.

  15. Automatic restart of complex irrigation systems

    SciTech Connect

    Werner, H.D.; Alcock, R.; DeBoer, D.W.; Olson, D.I. . Dept. of Agricultural Engineering)

    1992-05-01

    Automatic restart of irrigation systems under load management has the potential to maximize pumping time during off-peak hours. Existing automation technology ranges from time delay relays to more sophisticated control using computers together with weather data to optimize irrigation practices. Centrifugal pumps and water hammer concerns prevent automatic restart of common but often complex irrigation systems in South Dakota. The irrigator must manually prime the pump and control water hammer during pipeline pressurization. Methods to prime centrifugal pumps and control water hammer facilitate automatic restart after load management is released. Seven priming methods and three water hammer control methods were investigated. A sump pump and small vacuum pump were used to test two automatic prime and restart systems in the laboratory. A variable frequency phase converter was also used to automatically control water hammer during pipeline pressurization. Economical methods to safely prime and restart centrifugal pumps were discussed. The water hammer control methods safely pressurize the pipeline but require a higher initial investment. The automatic restart systems can be used to safely restart centrifugal pumps and control water hammer after load management is released. Based upon laboratory research and a technical review of available restart components, a computer software program was developed. The program assists customers in evaluating various restart options for automatic restarting of electric irrigation pumps. For further information on the software program, contact the South Dakota State University, Department of Agricultural Engineering.

  16. Optimal control of complex atomic quantum systems

    PubMed Central

    van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.

    2016-01-01

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations. PMID:27725688

  17. Empirical and theoretical analysis of complex systems

    NASA Astrophysics Data System (ADS)

    Zhao, Guannan

    This thesis is an interdisciplinary work under the heading of complexity science which focuses on an arguably common "hard" problem across physics, finance and biology [1], to quantify and mimic the macroscopic "emergent phenomenon" in large-scale systems consisting of many interacting "particles" governed by microscopic rules. In contrast to traditional statistical physics, we are interested in systems whose dynamics are subject to feedback, evolution, adaption, openness, etc. Global financial markets, like the stock market and currency market, are ideal candidate systems for such a complexity study: there exists a vast amount of accurate data, which is the aggregate output of many autonomous agents continuously competing with each other. We started by examining the ultrafast "mini flash crash (MFC)" events in the US stock market. An abrupt system-wide composition transition from a mixed human machine phase to a new all-machine phase is uncovered, and a novel theory developed to explain this observation. Then in the study of FX market, we found an unexpected variation in the synchronicity of price changes in different market subsections as a function of the overall trading activity. Several survival models have been tested in analyzing the distribution of waiting times to the next price change. In the region of long waiting-times, the distribution for each currency pair exhibits a power law with exponent in the vicinity of 3.5. By contrast, for short waiting times only, the market activity can be mimicked by the fluctuations emerging from a finite resource competition model containing multiple agents with limited rationality (so called El Farol Model). Switching to the biomedical domain, we present a minimal mathematical model built around a co-evolving resource network and cell population, yielding good agreement with primary tumors in mice experiment and with clinical metastasis data. In the quest to understand contagion phenomena in systems where social group

  18. Complex biological and bio-inspired systems

    SciTech Connect

    Ecke, Robert E

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to accurately

  19. Complexity in Strongly Correlated Electronic Systems

    SciTech Connect

    Dagotto, Elbio R

    2005-01-01

    A wide variety of experimental results and theoretical investigations in recent years have convincingly demonstrated that several transition metal oxides and other materials have dominant states that are not spatially homogeneous. This occurs in cases in which several physical interactions - spin, charge, lattice, and/or orbital - are simultaneously active. This phenomenon causes interesting effects, such as colossal magnetoresistance, and it also appears crucial to understand the high-temperature superconductors. The spontaneous emergence of electronic nanometer-scale structures in transition metal oxides, and the existence of many competing states, are properties often associated with complex matter where nonlinearities dominate, such as soft materials and biological systems. This electronic complexity could have potential consequences for applications of correlated electronic materials, because not only charge (semiconducting electronic), or charge and spin (spintronics) are of relevance, but in addition the lattice and orbital degrees of freedom are active, leading to giant responses to small perturbations. Moreover, several metallic and insulating phases compete, increasing the potential for novel behavior.

  20. Origin of Hofmeister Effects for Complex Systems

    PubMed Central

    Tian, Rui; Yang, Gang; Tang, Ying; Liu, Xinmin; Li, Rui; Zhu, Hualing; Li, Hang

    2015-01-01

    Hofmeister effects have been recognized as important as Mendel’s work was to genetics while remain largely controversial, especially for the mechanistic aspects. Here we demonstrated that complex colloids in electrolyte solutions show resembling aggregation kinetics as model colloid, and then quantitatively evaluated the resulting Hofmeister effects. Mechanism for the aggregation of complex colloids has been proposed that is closely associated with the charges of their constituents; despite that, electrostatic interactions play a minor role while polarization effect is evidenced to be the driving force for the aggregation processes. Polarization effect is further ascribed to arouse the resulting Hofmeister effects, which is supported by the fine correlation of activation energies vs. polarizability data of different alkali ions and the calculations of dipole moments for minerals with different charges and adsorbed alkali ions. Because of neglecting polarization effect, the prevailing DLVO theory is not sufficient to describe Hofmeister effects that are ubiquitous in nature. We speculate that polarization effect should also be responsible for Hofmeister effects of other charged systems such as proteins and membranes. PMID:26200350

  1. Dielectric Relaxation of Water in Complex Systems

    NASA Astrophysics Data System (ADS)

    Feldman, Yuri; Puzenko, Alexander A.; Ishai, Paul Ben; Levy, Evgenya

    Whenever water interacts with another dipolar or charged entity, a broadening of the dielectric relaxation peak occurs. This broadening can often be described by the phenomenological Cole-Cole (CC) spectral function. A new approach (Puzenko AA, Ben Ishai P, and Feldman Y, Phys Rev Lett 105:037601, 2010) based on the fractal nature of the time set of the interaction of the relaxing water dipoles with its encompassing matrix has been recently presented showing a fundamental connection between the relaxation time, τ, the broadening parameter, α, and the Kirkwood-Fröhlich correlation function B. Parameters B, τ and α where chosen as the coordinates of a new 3D space. The evolution of the relaxation process due to the variation of external macroscopic parameters (temperature, pressure etc.) represents the trajectory in 3D space. This trajectory demonstrates the connection between the kinetic and structural properties of the water in complex system. It is also shown how the model describes the state of water in two porous silica glasses and in two different types of aqueous solutions: ionic, and non-ionic. The complex dielectric spectra of a series of solutions of sodium chloride and potassium chloride in water have been measured and have been carefully analyzed along with previously measured spectra for aqueous solutions of D-glucose and D-fructose.

  2. A comparison of ventilator-associated pneumonia rates determined by different scoring systems in four intensive care units in the North West of England.

    PubMed

    Wallace, F A; Alexander, P D G; Spencer, C; Naisbitt, J; Moore, J A; McGrath, B A

    2015-11-01

    Ventilator-associated pneumonia is a common healthcare-associated infection with significant mortality, morbidity and healthcare cost, and rates have been proposed as a potential quality indicator. We examined ventilator-associated pneumonia rates as determined by different diagnostic scoring systems across four adult intensive care units in the North West of England. We also collected clinical opinions as to whether patients had ventilator-associated pneumonia, and whether patients were receiving antibiotics as treatment. Pooled ventilator-associated pneumonia rates were 36.3, 22.2, 15.2 and 1.1 per 1000 ventilator-bed days depending on the scoring system used. There was significant within-unit heterogeneity for ventilator-associated pneumonia rates calculated by the various scoring systems (all p < 0.001). Clinical opinion and antibiotic use did not correlate well with the scoring systems (k = 0.23 and k = 0.17, respectively). We therefore question whether the ventilator-associated pneumonia rate as measured by existing tools is either useful or desirable as a quality indicator.

  3. Modeling complex systems in the geosciences

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-03-01

    Many geophysical phenomena can be described as complex systems, involving phenomena such as extreme or "wild" events that often do not follow the Gaussian distribution that would be expected if the events were simply random and uncorrelated. For instance, some geophysical phenomena like earthquakes show a much higher occurrence of relatively large values than would a Gaussian distribution and so are examples of the "Noah effect" (named by Benoit Mandelbrot for the exceptionally heavy rain in the biblical flood). Other geophysical phenomena are examples of the "Joseph effect," in which a state is especially persistent, such as a spell of multiple consecutive hot days (heat waves) or several dry summers in a row. The Joseph effect was named after the biblical story in which Joseph's dream of seven fat cows and seven thin ones predicted 7 years of plenty followed by 7 years of drought.

  4. Evolutionary resilience and complex lagoon systems.

    PubMed

    Davoudi, Simin; Zaucha, Jacek; Brooks, Elizabeth

    2016-10-01

    The present study applies an evolutionary resilience framework to complex socioecological systems in the coastal regions in Europe with a particular focus on lagoons. Despite their variations, lagoons share common challenges in achieving effective and sustainable ways of governing and managing economic, social, and environmental uncertainties. Our aim is to demonstrate that building resilience involves planning not only for recovery from shocks but also for cultivating preparedness and seeking potential transformative opportunities that emerge from change. The framework consists of 4 dimensions: persistence, adaptability, transformability, and preparedness. To illustrate how this 4-dimensional framework can be applied to the specific context of lagoons, we draw on examples of good and poor practices from the 10 lagoons studied as part of the ARCH project. Integr Environ Assess Manag 2016;12:711-718. © 2016 SETAC. PMID:27427389

  5. Evolutionary resilience and complex lagoon systems.

    PubMed

    Davoudi, Simin; Zaucha, Jacek; Brooks, Elizabeth

    2016-10-01

    The present study applies an evolutionary resilience framework to complex socioecological systems in the coastal regions in Europe with a particular focus on lagoons. Despite their variations, lagoons share common challenges in achieving effective and sustainable ways of governing and managing economic, social, and environmental uncertainties. Our aim is to demonstrate that building resilience involves planning not only for recovery from shocks but also for cultivating preparedness and seeking potential transformative opportunities that emerge from change. The framework consists of 4 dimensions: persistence, adaptability, transformability, and preparedness. To illustrate how this 4-dimensional framework can be applied to the specific context of lagoons, we draw on examples of good and poor practices from the 10 lagoons studied as part of the ARCH project. Integr Environ Assess Manag 2016;12:711-718. © 2016 SETAC.

  6. Using SysML to model complex systems for security.

    SciTech Connect

    Cano, Lester Arturo

    2010-08-01

    As security systems integrate more Information Technology the design of these systems has tended to become more complex. Some of the most difficult issues in designing Complex Security Systems (CSS) are: Capturing Requirements: Defining Hardware Interfaces: Defining Software Interfaces: Integrating Technologies: Radio Systems: Voice Over IP Systems: Situational Awareness Systems.

  7. Geomorphology of New England

    USGS Publications Warehouse

    Denny, C.S.

    1982-01-01

    Widely scattered terrestrial deposits of Cretaceous or Tertiary age and extensive nearshore and fluvial Coastal Plain deposits now largely beneath the sea indicate that the New England region has been above sea level during and since the Late Cretaceous. Estimates of rates of erosion based on sediment load in rivers and on volume of sediments in the Coastal Plain suggest that if the New England highlands had not been uplifted in the Miocene, the area would now be largely a lowland. If the estimated rates of erosion and uplift are of the right order of magnitude, then it is extremely unlikely that any part of the present landscape dates back before Miocene time. The only exception would be lowlands eroded in the early Mesozoic, later buried beneath Mesozoic and Cenozoic deposits, and exhumed by stream and glacial erosion during the later Cenozoic. Many of the rocks in the New England highlands are similar to those that underlie the Piedmont province in the central and southern Appalachians, where the relief over large areas is much less than in the highlands of New England. These comparisons suggest that the New England highlands have been upwarped in late Cenozoic time. The uplift took place in the Miocene and may have continued into the Quaternary. The New England landscape is primarily controlled by the underlying bedrock. Erosion and deposition during the Quaternary, related in large part to glaciation, have produced only minor changes in drainage and in topography. Shale and graywacke of Ordovician, Cambrian, and Proterozoic age forming the Taconic highlands, and akalic plutonic rocks of Mesozoic age are all highland makers. Sandstone and shale of Jurassic and Triassic age, similar rocks of Carboniferous age, and dolomite, limestone, and shale of Ordovician and Cambrian age commonly underlie lowlands. High-grade metapelites are more resistant than similar schists of low metamorphic grade and form the highest mountains in New England. Feldspathic rocks tend to

  8. Polish Complementary Schools in Iceland and England

    ERIC Educational Resources Information Center

    Zielinska, Malgorzata; Kowzan, Piotr; Ragnarsdóttir, Hanna

    2014-01-01

    Since 2004, the opening of labour markets has spurred a considerable number of Poles to emigrate e.g. to Iceland and England. Families with school age children have had the challenge of adapting to foreign environments and school systems. Polish complementary schools have played an important, albeit ambivalent, role in this process. Through focus…

  9. Adaptive generalized combination complex synchronization of uncertain real and complex nonlinear systems

    NASA Astrophysics Data System (ADS)

    Wang, Shi-bing; Wang, Xing-yuan; Wang, Xiu-you; Zhou, Yu-fei

    2016-04-01

    With comprehensive consideration of generalized synchronization, combination synchronization and adaptive control, this paper investigates a novel adaptive generalized combination complex synchronization (AGCCS) scheme for different real and complex nonlinear systems with unknown parameters. On the basis of Lyapunov stability theory and adaptive control, an AGCCS controller and parameter update laws are derived to achieve synchronization and parameter identification of two real drive systems and a complex response system, as well as two complex drive systems and a real response system. Two simulation examples, namely, ACGCS for chaotic real Lorenz and Chen systems driving a hyperchaotic complexsystem, and hyperchaotic complex Lorenz and Chen systems driving a real chaotic Lü system, are presented to verify the feasibility and effectiveness of the proposed scheme.

  10. Understanding Complex Adaptive Systems by Playing Games

    ERIC Educational Resources Information Center

    van Bilsen, Arthur; Bekebrede, Geertje; Mayer, Igor

    2010-01-01

    While educators teach their students about decision making in complex environments, managers have to deal with the complexity of large projects on a daily basis. To make better decisions it is assumed, that the latter would benefit from better understanding of complex phenomena, as do students as the professionals of the future. The goal of this…

  11. Procedures in complex systems: the airline cockpit.

    PubMed

    Degani, A; Wiener, E L

    1997-05-01

    In complex human-machine systems, successful operations depend on an elaborate set of procedures which are specified by the operational management of the organization. These procedures indicate to the human operator (in this case the pilot) the manner in which operational management intends to have various tasks done. The intent is to provide guidance to the pilots and to ensure a safe, logical, efficient, and predictable (standardized) means of carrying out the objectives of the job. However, procedures can become a hodge-podge. Inconsistent or illogical procedures may lead to noncompliance by operators. Based on a field study with three major airlines, the authors propose a model for procedure development called the "Four P's": philosophy, policies, procedures, and practices. Using this model as a framework, the authors discuss the intricate issue of designing flight-deck procedures, and propose a conceptual approach for designing any set of procedures. The various factors, both external and internal to the cockpit, that must be considered for procedure design are presented. In particular, the paper addresses the development of procedures for automated cockpits--a decade-long, and highly controversial issue in commercial aviation. Although this paper is based on airline operations, we assume that the principles discussed here are also applicable to other high-risk supervisory control systems, such as space flight, manufacturing process control, nuclear power production, and military operations. PMID:11541101

  12. A complex systems approach to bibliometrics

    NASA Astrophysics Data System (ADS)

    Stringer, Michael J.

    Enabled by technological change, we are in the midst of a fundamental shift in how scientific information is produced and communicated. Electronic publishing, preprint archives, blogs, and wikis are emerging as possible viable alternatives to the current journal publishing and peer review system. However, these new technologies flood the environment with information, making it increasingly difficult to find the highest quality and most relevant papers. Additionally, accreditation and quality assessment of published material becomes nearly impossible for agencies interested in funding the research and development that is most likely to succeed. Recently, bibliometric tools have emerged as an effective means for the filtering, accreditation, and assessment of scholarly information. In this thesis, we approach bibliometrics from a complex systems perspective. A unique characteristic of the work presented in this thesis is that we perform empirical validation of bibliometric models using the most comprehensive bibliographic database available. Using these methods, we quantify the dynamics of citations to scientific journals, and investigate the relationship between social network position and research performance.

  13. Rupture Synchronicity in Complex Fault Systems

    NASA Astrophysics Data System (ADS)

    Milner, K. R.; Jordan, T. H.

    2013-12-01

    While most investigators would agree that the timing of large earthquakes within a fault system depends on stress-mediated interactions among its elements, much of the debate relevant to time-dependent forecasting has been centered on single-fault concepts, such as characteristic earthquake behavior. We propose to broaden this discussion by quantifying the multi-fault concept of rupture synchronicity. We consider a finite set of small, fault-spanning volumes {Vk} within a fault system of arbitrary (fractal) complexity. We let Ck be the catalog of length tmax comprising Nk discrete times {ti(k)} that mark when the kth volume participates in a rupture of magnitude > M. The main object of our analysis is the complete set of event time differences {τij(kk') = ti(k) - tj(k')}, which we take to be a random process with an expected density function ρkk'(t). When k = k', we call this function the auto-catalog density function (ACDF); when k ≠ k', we call it the cross-catalog density function (CCDF). The roles of the ACDF and CCDF in synchronicity theory are similar to those of autocorrelation and cross-correlation functions in time-series analysis. For a renewal process, the ACDF can be written in terms of convolutions of the interevent-time distribution, and many of its properties (e.g., large-t asymptote) can be derived analytically. The interesting information in the CCDF, like that in the ACDF, is concentrated near t = 0. If two catalogs are completely asynchronous, the CCDF collapses to an asymptote given by the harmonic mean of the ACDF asymptotes. Synchronicity can therefore be characterized by the variability of the CCDF about this asymptote. The brevity of instrumental catalogs makes the identification of synchronicity at large M difficult, but we will illustrate potentially interesting behaviors through the analysis of a million-year California catalog generated by the earthquake simulator, RSQSim (Deiterich & Richards-Dinger, 2010), which we sampled at a

  14. Decoupling, complexity and importance in the design and analysis of complex transport systems

    NASA Astrophysics Data System (ADS)

    Gamble, Robert Edward

    Complex transport systems are important in many industries. These systems are typically characterized by the transient evolution of mass, energy and momentum flows involving many different phenomena, which occur over a wide range of spatial and temporal scales. Gaining clear understanding of these complex transport systems can be a daunting task. The wide-ranging spatial and temporal scales can make analyses and testing uncertain, complicated and expensive. Extensive effort has been made in the nuclear industry to simplify understanding of nuclear power plants, which fall into the category of complex transport systems. In this work new tools to aid in the understanding of these systems are developed. Specifically tools that aid in the identification of system complexity and facilitate decoupling of the system into smaller subsystems for analyses and testing are developed and demonstrated using the ESBWR light water reactor as an example. Existing tools used to identify important processes in complex systems are extended to include the concepts of complexity and decoupling. Characteristic times, spatial orientation and phenomena magnitudes are used to identify when systems may have complex behavior and at what locations decoupling is appropriate. Complexity can lead to large uncertainties in modeling and difficulty in properly scaling test facilities, therefore the identification of sources of complexity, and if possible their avoidance, is important. Identifying appropriate decoupling boundaries provides justification for experimental and analytical studies of subsets of a complex system rather than the entire system. This leads to the ability to better satisfy difficult requirements for proper simulation in reduced scale experimental facilities and to model subsystem phenomena with lower uncertainty. Additionally, experimental studies of subregions of a complex system can be better-instrumented and done at full scale when appropriate within economic constraints

  15. Management Strategies for Complex Adaptive Systems: Sensemaking, Learning, and Improvisation

    ERIC Educational Resources Information Center

    McDaniel, Reuben R., Jr.

    2007-01-01

    Misspecification of the nature of organizations may be a major reason for difficulty in achieving performance improvement. Organizations are often viewed as machine-like, but complexity science suggests that organizations should be viewed as complex adaptive systems. I identify the characteristics of complex adaptive systems and give examples of…

  16. Inference, simulation, modeling, and analysis of complex networks, with special emphasis on complex networks in systems biology

    NASA Astrophysics Data System (ADS)

    Christensen, Claire Petra

    Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components. These systems exist at many scales of size and complexity, and it is becoming ever-more apparent that they are, in fact, universal, arising in every field of study. Moreover, they share fundamental properties---chief among these, that the individual interactions of their constituent parts may be well-understood, but the characteristic behaviour produced by the confluence of these interactions---by these complex networks---is unpredictable; in a nutshell, the whole is more than the sum of its parts. There is, perhaps, no better illustration of this concept than the discoveries being made regarding complex networks in the biological sciences. In particular, though the sequencing of the human genome in 2003 was a remarkable feat, scientists understand that the "cellular-level blueprints" for the human being are cellular-level parts lists, but they say nothing (explicitly) about cellular-level processes. The challenge of modern molecular biology is to understand these processes in terms of the networks of parts---in terms of the interactions among proteins, enzymes, genes, and metabolites---as it is these processes that ultimately differentiate animate from inanimate, giving rise to life! It is the goal of systems biology---an umbrella field encapsulating everything from molecular biology to epidemiology in social systems---to understand processes in terms of fundamental networks of core biological parts, be they proteins or people. By virtue of the fact that there are literally countless complex systems, not to mention tools and techniques used to infer, simulate, analyze, and model these systems, it is impossible to give a truly comprehensive account of the history and study of complex systems. The author

  17. Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems

    PubMed Central

    Saberi Nik, Hassan; Rebelo, Paulo

    2014-01-01

    We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM) is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results. PMID:25386624

  18. Tethering Complexes in the Arabidopsis Endomembrane System

    PubMed Central

    Vukašinović, Nemanja; Žárský, Viktor

    2016-01-01

    Targeting of endomembrane transport containers is of the utmost importance for proper land plant growth and development. Given the immobility of plant cells, localized membrane vesicle secretion and recycling are amongst the main processes guiding proper cell, tissue and whole plant morphogenesis. Cell wall biogenesis and modification are dependent on vectorial membrane traffic, not only during normal development, but also in stress responses and in plant defense against pathogens and/or symbiosis. It is surprising how little we know about these processes in plants, from small GTPase regulation to the tethering complexes that act as their effectors. Tethering factors are single proteins or protein complexes mediating first contact between the target membrane and arriving membrane vesicles. In this review we focus on the tethering complexes of the best-studied plant model—Arabidopsis thaliana. Genome-based predictions indicate the presence of all major tethering complexes in plants that are known from a hypothetical last eukaryotic common ancestor (LECA). The evolutionary multiplication of paralogs of plant tethering complex subunits has produced the massively expanded EXO70 family, indicating a subfunctionalization of the terminal exocytosis machinery in land plants. Interpretation of loss of function (LOF) mutant phenotypes has to consider that related, yet clearly functionally-specific complexes often share some common core subunits. It is therefore impossible to conclude with clarity which version of the complex is responsible for the phenotypic deviations observed. Experimental interest in the analysis of plant tethering complexes is growing and we hope to contribute with this review by attracting even more attention to this fascinating field of plant cell biology. PMID:27243010

  19. Tethering Complexes in the Arabidopsis Endomembrane System.

    PubMed

    Vukašinović, Nemanja; Žárský, Viktor

    2016-01-01

    Targeting of endomembrane transport containers is of the utmost importance for proper land plant growth and development. Given the immobility of plant cells, localized membrane vesicle secretion and recycling are amongst the main processes guiding proper cell, tissue and whole plant morphogenesis. Cell wall biogenesis and modification are dependent on vectorial membrane traffic, not only during normal development, but also in stress responses and in plant defense against pathogens and/or symbiosis. It is surprising how little we know about these processes in plants, from small GTPase regulation to the tethering complexes that act as their effectors. Tethering factors are single proteins or protein complexes mediating first contact between the target membrane and arriving membrane vesicles. In this review we focus on the tethering complexes of the best-studied plant model-Arabidopsis thaliana. Genome-based predictions indicate the presence of all major tethering complexes in plants that are known from a hypothetical last eukaryotic common ancestor (LECA). The evolutionary multiplication of paralogs of plant tethering complex subunits has produced the massively expanded EXO70 family, indicating a subfunctionalization of the terminal exocytosis machinery in land plants. Interpretation of loss of function (LOF) mutant phenotypes has to consider that related, yet clearly functionally-specific complexes often share some common core subunits. It is therefore impossible to conclude with clarity which version of the complex is responsible for the phenotypic deviations observed. Experimental interest in the analysis of plant tethering complexes is growing and we hope to contribute with this review by attracting even more attention to this fascinating field of plant cell biology. PMID:27243010

  20. Earthquakes in New England

    USGS Publications Warehouse

    Fratto, E. S.; Ebel, J.E.; Kadinsky-Cade, K.

    1990-01-01

    New England has a long history of earthquakes. Some of the first explorers were startled when they experienced strong shaking and rumbling of the earth below their feet. they soon learned from the Indians that this was not an uncommon occurrence in the New World. the Plymouth Pilgrims felt their first earthquake in 1638. that first shock rattled dishes, doors, and buildings. The shaking so frightened those working in the fields that they threw down their tools and ran panic-stricken through the countryside. 

  1. Understanding Equilibrium: The Study of Complex Systems. Final Project Report.

    ERIC Educational Resources Information Center

    Duckworth, Eleanor; And Others

    The Educational Technology Center (ETC) Complex Systems Project was initiated to explore ways of using computers to help students understand systems which have often proven too complex for most high school students to understand. Preliminary work concentrated on the cognitive processes involved in modeling simple systems. This paper describes an…

  2. Complex network synchronization of chaotic systems with delay coupling

    SciTech Connect

    Theesar, S. Jeeva Sathya Ratnavelu, K.

    2014-03-05

    The study of complex networks enables us to understand the collective behavior of the interconnected elements and provides vast real time applications from biology to laser dynamics. In this paper, synchronization of complex network of chaotic systems has been studied. Every identical node in the complex network is assumed to be in Lur’e system form. In particular, delayed coupling has been assumed along with identical sector bounded nonlinear systems which are interconnected over network topology.

  3. Complexity Thinking in PE: Game-Centred Approaches, Games as Complex Adaptive Systems, and Ecological Values

    ERIC Educational Resources Information Center

    Storey, Brian; Butler, Joy

    2013-01-01

    Background: This article draws on the literature relating to game-centred approaches (GCAs), such as Teaching Games for Understanding, and dynamical systems views of motor learning to demonstrate a convergence of ideas around games as complex adaptive learning systems. This convergence is organized under the title "complexity thinking"…

  4. Improving the health forecasting alert system for cold weather and heat-waves in England: a case-study approach using temperature-mortality relationships

    NASA Astrophysics Data System (ADS)

    Masato, Giacomo; Cavany, Sean; Charlton-Perez, Andrew; Dacre, Helen; Bone, Angie; Carmicheal, Katie; Murray, Virginia; Danker, Rutger; Neal, Rob; Sarran, Christophe

    2015-04-01

    The health forecasting alert system for cold weather and heatwaves currently in use in the Cold Weather and Heatwave plans for England is based on 5 alert levels, with levels 2 and 3 dependent on a forecast or actual single temperature action trigger. Epidemiological evidence indicates that for both heat and cold, the impact on human health is gradual, with worsening impact for more extreme temperatures. The 60% risk of heat and cold forecasts used by the alerts is a rather crude probabilistic measure, which could be substantially improved thanks to the state-of-the-art forecast techniques. In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office's (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. The prototype health forecasting alert system introduces an "impact vs likelihood matrix" for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. The prototype shows some clear improvements over the current alert system. It allows for a much greater

  5. Network quotients: Structural skeletons of complex systems

    NASA Astrophysics Data System (ADS)

    Xiao, Yanghua; MacArthur, Ben D.; Wang, Hui; Xiong, Momiao; Wang, Wei

    2008-10-01

    A defining feature of many large empirical networks is their intrinsic complexity. However, many networks also contain a large degree of structural repetition. An immediate question then arises: can we characterize essential network complexity while excluding structural redundancy? In this article we utilize inherent network symmetry to collapse all redundant information from a network, resulting in a coarse graining which we show to carry the essential structural information of the “parent” network. In the context of algebraic combinatorics, this coarse-graining is known as the “quotient.” We systematically explore the theoretical properties of network quotients and summarize key statistics of a variety of “real-world” quotients with respect to those of their parent networks. In particular, we find that quotients can be substantially smaller than their parent networks yet typically preserve various key functional properties such as complexity (heterogeneity and hub vertices) and communication (diameter and mean geodesic distance), suggesting that quotients constitute the essential structural skeletons of their parent networks. We summarize with a discussion of potential uses of quotients in analysis of biological regulatory networks and ways in which using quotients can reduce the computational complexity of network algorithms.

  6. Genomics and the evolutionary origins of nervous system complexity.

    PubMed

    Oakley, Todd H; Rivera, Ajna S

    2008-12-01

    Advances in genomics are leading to increased understanding of the evolution of complexity, especially by beginning to bridge genotype and phenotype. Here, using examples from nervous system evolution, we define general patterns of increased complexity seen across levels of biological organization. We also explore specific evolutionary mechanisms that increase complexity, namely those that increase the number of biological units (parts) in a system. We provide specific neurobiological examples of increased complexity in genes, gene networks, cell types, and tissues/organs. These examples illustrate that while a variety of different mechanisms increase biological complexity, they can be understood in a generalized comparative framework. PMID:19152785

  7. We are bitter, but we are better off: case study of the implementation of an electronic health record system into a mental health hospital in England

    PubMed Central

    2012-01-01

    Background In contrast to the acute hospital sector, there have been relatively few implementations of integrated electronic health record (EHR) systems into specialist mental health settings. The National Programme for Information Technology (NPfIT) in England was the most expensive IT-based transformation of public services ever undertaken, which aimed amongst other things, to implement integrated EHR systems into mental health hospitals. This paper describes the arrival, the process of implementation, stakeholders’ experiences and the local consequences of the implementation of an EHR system into a mental health hospital. Methods Longitudinal, real-time, case study-based evaluation of the implementation and adoption of an EHR software (RiO) into an English mental health hospital known here as Beta. We conducted 48 in-depth interviews with a wide range of internal and external stakeholders, undertook 26 hours of on-site observations, and obtained 65 sets of relevant documents from various types relating to Beta. Analysis was both inductive and deductive, the latter being informed by the ‘sociotechnical changing’ theoretical framework. Results Many interviewees perceived the implementation of the EHR system as challenging and cumbersome. During the early stages of the implementation, some clinicians felt that using the software was time-consuming leading to the conclusion that the EHR was not fit for purpose. Most interviewees considered the chain of deployment of the EHR–which was imposed by NPfIT–as bureaucratic and obstructive, which restricted customization and as a result limited adoption and use. The low IT literacy among users at Beta was a further barrier to the implementation of the EHR. This along with inadequate training in using the EHR software led to resistance to the significant cultural and work environment changes initiated by EHR. Despite the many challenges, Beta achieved some early positive results. These included: the ability to

  8. Developing resilience to England's future droughts: time for cap and trade?

    PubMed

    Mitchell, Gordon; McDonald, Adrian

    2015-02-01

    Much of England is seriously water stressed and future droughts will present major challenges to the water industry if socially and economically damaging supply restrictions are to be avoided. Demand management is seen as a key mechanism for alleviating water stress, yet there are no truly effective incentives to encourage widespread adoption of the behavioural and technological demand management practices available. Water pricing could promote conservation, but on its own it is an inefficient tool for dealing with short term restriction in water supply. Raising prices over the short term in response to a drought is likely to be ineffectual in lowering demand sufficiently; conversely, maintaining high prices over the long term implies costs to the consumer which are needlessly high most of the time. We propose a system for developing resilience to drought in highly water stressed areas, based on a cap and trade (C&T) model. The system would represent a significant innovation in England's water market. However, international experience shows that C&T is successful in other sectors, and need not be overly complex. Here, we open the debate on how a C&T system might work in England.

  9. Developing resilience to England's future droughts: time for cap and trade?

    PubMed

    Mitchell, Gordon; McDonald, Adrian

    2015-02-01

    Much of England is seriously water stressed and future droughts will present major challenges to the water industry if socially and economically damaging supply restrictions are to be avoided. Demand management is seen as a key mechanism for alleviating water stress, yet there are no truly effective incentives to encourage widespread adoption of the behavioural and technological demand management practices available. Water pricing could promote conservation, but on its own it is an inefficient tool for dealing with short term restriction in water supply. Raising prices over the short term in response to a drought is likely to be ineffectual in lowering demand sufficiently; conversely, maintaining high prices over the long term implies costs to the consumer which are needlessly high most of the time. We propose a system for developing resilience to drought in highly water stressed areas, based on a cap and trade (C&T) model. The system would represent a significant innovation in England's water market. However, international experience shows that C&T is successful in other sectors, and need not be overly complex. Here, we open the debate on how a C&T system might work in England. PMID:25463575

  10. Statistical Features of Complex Systems ---Toward Establishing Sociological Physics---

    NASA Astrophysics Data System (ADS)

    Kobayashi, Naoki; Kuninaka, Hiroto; Wakita, Jun-ichi; Matsushita, Mitsugu

    2011-07-01

    Complex systems have recently attracted much attention, both in natural sciences and in sociological sciences. Members constituting a complex system evolve through nonlinear interactions among each other. This means that in a complex system the multiplicative experience or, so to speak, the history of each member produces its present characteristics. If attention is paid to any statistical property in any complex system, the lognormal distribution is the most natural and appropriate among the standard or ``normal'' statistics to overview the whole system. In fact, the lognormality emerges rather conspicuously when we examine, as familiar and typical examples of statistical aspects in complex systems, the nursing-care period for the aged, populations of prefectures and municipalities, and our body height and weight. Many other examples are found in nature and society. On the basis of these observations, we discuss the possibility of sociological physics.

  11. Governing Education through Data: Scotland, England and the European Education Policy Space

    ERIC Educational Resources Information Center

    Grek, Sotiria; Ozga, Jenny

    2010-01-01

    This paper draws on interview data from national policy makers in England, Scotland and the European Commission to illustrate differences in the referencing of "Europe" in education policy-making in England and Scotland in order to highlight the emergent complexity of post-devolution policy-making in education through a focus on relations and…

  12. Concentrations of hormones, pharmaceuticals and other micropollutants in groundwater affected by septic systems in New England and New York

    USGS Publications Warehouse

    Phillips, Patrick J.; Schubert, Christopher E.; Argue, Denise M.; Fisher, Irene J.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; Chalmers, Ann T.

    2015-01-01

    The highest micropollutant concentrations for the NY network were present in the shoreline wells and reflect groundwater that is most affected by septic system discharges. One of the shoreline wells had personal care/domestic use, pharmaceutical, and plasticizer concentrations ranging from 0.4 to 5.7 μg/L. Estradiol equivalency quotient concentrations were also highest in a shoreline well sample (3.1 ng/L). Most micropollutant concentrations increase with increasing specific conductance and total nitrogen concentrations for shoreline well samples. These findings suggest that septic systems serving institutional settings and densely populated areas in coastal settings may be locally important sources of micropollutants to adjacent aquifer and marine systems.

  13. Enhancing Teacher Utilization of Complex Instructional Systems.

    ERIC Educational Resources Information Center

    Shore, Ann; Daniel, Dan

    This paper describes a research and development effort by Jostens Learning Corporation that resulted in the Renaissance Information Management System (RIMS), an information-management user interface for an integrated learning system that is designed to overcome two major obstacles to the use of computer systems by classroom teachers--limited…

  14. Confluence and convergence: team effectiveness in complex systems.

    PubMed

    Porter-OʼGrady, Tim

    2015-01-01

    Complex adaptive systems require nursing leadership to rethink organizational work and the viability and effectiveness of teams. Much of emergent thinking about complexity and systems and organizations alter the understanding of the nature and function of teamwork and the configuration and leadership of team effort. Reflecting on basic concepts of complexity and their application to team formation, dynamics, and outcomes lays an important foundation for effectively guiding the strategic activity of systems through the focused tactical action of teams. Basic principles of complexity, their impact on teams, and the fundamental elements of team effectiveness are explored. PMID:25474670

  15. Confluence and convergence: team effectiveness in complex systems.

    PubMed

    Porter-OʼGrady, Tim

    2015-01-01

    Complex adaptive systems require nursing leadership to rethink organizational work and the viability and effectiveness of teams. Much of emergent thinking about complexity and systems and organizations alter the understanding of the nature and function of teamwork and the configuration and leadership of team effort. Reflecting on basic concepts of complexity and their application to team formation, dynamics, and outcomes lays an important foundation for effectively guiding the strategic activity of systems through the focused tactical action of teams. Basic principles of complexity, their impact on teams, and the fundamental elements of team effectiveness are explored.

  16. A novel performance monitoring framework for health research systems: experiences of the National Institute for Health Research in England

    PubMed Central

    2011-01-01

    Background The National Institute for Health Research (NIHR) was established in 2006 with the aim of creating an applied health research system embedded within the English National Health Service (NHS). NIHR sought to implement an approach for monitoring its performance that effectively linked early indicators of performance with longer-term research impacts. We attempted to develop and apply a conceptual framework for defining appropriate key performance indicators for NIHR. Method Following a review of relevant literature, a conceptual framework for defining performance indicators for NIHR was developed, based on a hybridisation of the logic model and balanced scorecard approaches. This framework was validated through interviews with key NIHR stakeholders and a pilot in one division of NIHR, before being refined and applied more widely. Indicators were then selected and aggregated to create a basket of indicators aligned to NIHR's strategic goals, which could be reported to NIHR's leadership team on a quarterly basis via an oversight dashboard. Results Senior health research system managers and practitioners endorsed the conceptual framework developed and reported satisfaction with the breadth and balance of indicators selected for reporting. Conclusions The use of the hybrid conceptual framework provides a pragmatic approach to defining performance indicators that are aligned to the strategic aims of a health research system. The particular strength of this framework is its capacity to provide an empirical link, over time, between upstream activities of a health research system and its long-term strategic objectives. PMID:21435265

  17. Discovering independent parameters in complex dynamical systems

    PubMed Central

    Lainscsek, Claudia; Weyhenmeyer, Jonathan; Sejnowski, Terrence J.; Letellier, Christophe

    2015-01-01

    The transformation of a nonlinear dynamical system into a standard form by using one of its variables and its successive derivatives can be used to identify the relationships that may exist between the parameters of the original system such as the subset of the parameter space over which the dynamics is left invariant. We show how the size of the attractor or the time scale (the pseudo-period) can be varied without affecting the underlying dynamics. This is demonstrated for the Rössler and the Lorenz systems. We also consider the case when two Rössler systems are unidirectionally coupled and when a Lorenz system is driven by a Rössler system. In both cases, the dynamics of the coupled system is affected. PMID:25983399

  18. Complex, Dynamic Systems: A New Transdisciplinary Theme for Applied Linguistics?

    ERIC Educational Resources Information Center

    Larsen-Freeman, Diane

    2012-01-01

    In this plenary address, I suggest that Complexity Theory has the potential to contribute a transdisciplinary theme to applied linguistics. Transdisciplinary themes supersede disciplines and spur new kinds of creative activity (Halliday 2001 [1990]). Investigating complex systems requires researchers to pay attention to system dynamics. Since…

  19. Designing Better Scaffolding in Teaching Complex Systems with Graphical Simulations

    ERIC Educational Resources Information Center

    Li, Na

    2013-01-01

    Complex systems are an important topic in science education today, but they are usually difficult for secondary-level students to learn. Although graphic simulations have many advantages in teaching complex systems, scaffolding is a critical factor for effective learning. This dissertation study was conducted around two complementary research…

  20. Complex Systems: Science for the 21st Century

    SciTech Connect

    Shank, Charles V.; Awschalom, David; Bawendi, Moungi; Frechet, Jean; Murphy, Donald; Stupp, Sam; Wolynes, Peter

    1999-03-06

    The workshop was designed to help define new scientific directions related to complex systems in order to create new understanding about the nano world and complicated, multicomponent structures. Five emerging themes regarding complexity were covered: Collective Phenomena; Materials by Design; Functional Systems; Nature's Mastery; and New Tools.

  1. Size and complexity in model financial systems.

    PubMed

    Arinaminpathy, Nimalan; Kapadia, Sujit; May, Robert M

    2012-11-01

    The global financial crisis has precipitated an increasing appreciation of the need for a systemic perspective toward financial stability. For example: What role do large banks play in systemic risk? How should capital adequacy standards recognize this role? How is stability shaped by concentration and diversification in the financial system? We explore these questions using a deliberately simplified, dynamic model of a banking system that combines three different channels for direct transmission of contagion from one bank to another: liquidity hoarding, asset price contagion, and the propagation of defaults via counterparty credit risk. Importantly, we also introduce a mechanism for capturing how swings in "confidence" in the system may contribute to instability. Our results highlight that the importance of relatively large, well-connected banks in system stability scales more than proportionately with their size: the impact of their collapse arises not only from their connectivity, but also from their effect on confidence in the system. Imposing tougher capital requirements on larger banks than smaller ones can thus enhance the resilience of the system. Moreover, these effects are more pronounced in more concentrated systems, and continue to apply, even when allowing for potential diversification benefits that may be realized by larger banks. We discuss some tentative implications for policy, as well as conceptual analogies in ecosystem stability and in the control of infectious diseases.

  2. Size and complexity in model financial systems

    PubMed Central

    Arinaminpathy, Nimalan; Kapadia, Sujit; May, Robert M.

    2012-01-01

    The global financial crisis has precipitated an increasing appreciation of the need for a systemic perspective toward financial stability. For example: What role do large banks play in systemic risk? How should capital adequacy standards recognize this role? How is stability shaped by concentration and diversification in the financial system? We explore these questions using a deliberately simplified, dynamic model of a banking system that combines three different channels for direct transmission of contagion from one bank to another: liquidity hoarding, asset price contagion, and the propagation of defaults via counterparty credit risk. Importantly, we also introduce a mechanism for capturing how swings in “confidence” in the system may contribute to instability. Our results highlight that the importance of relatively large, well-connected banks in system stability scales more than proportionately with their size: the impact of their collapse arises not only from their connectivity, but also from their effect on confidence in the system. Imposing tougher capital requirements on larger banks than smaller ones can thus enhance the resilience of the system. Moreover, these effects are more pronounced in more concentrated systems, and continue to apply, even when allowing for potential diversification benefits that may be realized by larger banks. We discuss some tentative implications for policy, as well as conceptual analogies in ecosystem stability and in the control of infectious diseases. PMID:23091020

  3. Evaluation in the Design of Complex Systems

    ERIC Educational Resources Information Center

    Ho, Li-An; Schwen, Thomas M.

    2006-01-01

    We identify literature that argues the process of creating knowledge-based system is often imbalanced. In most knowledge-based systems, development is often technology-driven instead of requirement-driven. Therefore, we argue designers must recognize that evaluation is a critical link in the application of requirement-driven development models…

  4. Dispersion Modeling in Complex Urban Systems

    EPA Science Inventory

    Models are used to represent real systems in an understandable way. They take many forms. A conceptual model explains the way a system works. In environmental studies, for example, a conceptual model may delineate all the factors and parameters for determining how a particle move...

  5. Complex Communication System and Social Change.

    ERIC Educational Resources Information Center

    Chang, Won H.

    The basic question under examination is the underlying force that brings forth changes in cultural and social organizations. By employing general system theory and communication systemic analysis, the author concludes that communication, especially human communication, is the main vehicle of change. Human interchange, it is suggested, is constant…

  6. Organizational models of emerging academic health science centers in England.

    PubMed

    Ovseiko, Pavel V; Davies, Stephen M; Buchan, Alastair M

    2010-08-01

    Recent government policy initiatives to foster medical innovation and high-quality care in England have prompted academic and clinical leaders to develop new organizational models to support the tripartite Flexnerian mission of academic medicine. Medical schools and health care providers have responded by aligning their missions and creating integrated governance structures that strengthen their partnerships. In March 2009, the government officially designated five academic-clinical partnerships as England's first academic health science centers (AHSCs). As academic-clinical integration is likely to continue, future AHSC leaders could benefit from an analysis of models for organizing medical school-clinical enterprise relationships in England's emerging AHSCs. In addition, as the United States ponders health systems reform and universal coverage, U.S. medical leaders may benefit from insight into the workings of academic medicine in England's universal health system. In this article, the authors briefly characterize the organization and financing of the National Health Service and how it supports academic medicine. They review the policy behind the designation of AHSCs. Then, the authors describe contrasting organizational models adopted in two of the newly designated AHSCs and analyze these models using a framework derived from U.S. literature. The authors conclude by outlining the major challenges facing academic medicine in England and offer suggestions for future research collaborations between leaders of AHSCs in the United States and England.

  7. CONFERENCE ANNOUNCEMENT: European Conference on Complex Systems 2009 European Conference on Complex Systems 2009

    NASA Astrophysics Data System (ADS)

    2009-05-01

    The 2009 European Conference on Complex Systems will take place 21-25 September 2009 at the University of Warwick in the UK. Local Organising Committee Markus Kirkilionis (Warwick, Chair), Francois Kepes (Genopole, Programme Chair), Robert MacKay (Warwick), Robin Ball (Warwick), Jeff Johnson (Open University). International Steering Committee Markus Kirkilionis (Warwick; Chair 2008-10), Fatihcan Atay (Leipzig), Jürgen Jost (Leipzig), Scott Kirkpatrick (Jerusalem), David Lane (University of Modena and Reggio Emillia), Andreas Lorincz (Hungarian Academy of Sciences), Denise Pumain (Sorbonne), Felix Reed-Tsochas (Oxford), Eörs Szathmáry (Collegium Budapest, Hungary), Stephan Thurner (Wien), Paul Verschure (Barcelona), Alessandro Vespignani (Indiana, ISI), Riccardo Zecchina (Torino). Main tracks and Organisers Policy, Planning & Infrastructure: Jeff Johnson (Open University, Chair), Arnaud Banos (Strasbourg) Collective Human Behaviour and Society: Felix Reed-Tsochas (Oxford, Chair), Frances Griffiths (Warwick), Edmund Chattoe-Brown (Leicester) Interacting Populations and Environment: TBA Complexity and Computer Science: András Lörincz (Eötvös Loránd University), Paul Verschure (Zürich) From Molecules to Living Systems: Mark Chaplain (Dundee, Chair), Wolfgang Marwan (Magdeburg) Mathematics and Simulation: Holger Kantz (Dresden, Chair), Fatihcan Atay (Leipzig), Matteo Marsili (Trieste). Deadlines Paper submission: 31 March 2009 with decisions 15 May 2009. Paper submission deadline likely to be extended. See http://www.eccs09.info for more information. Meeting registration: early registration July 2009; last assured chance 1 Sept. Further information For contacts and the most up-to-date information visit http://www.eccs09.info.

  8. The Fallacy of Univariate Solutions to Complex Systems Problems.

    PubMed

    Lessov-Schlaggar, Christina N; Rubin, Joshua B; Schlaggar, Bradley L

    2016-01-01

    Complex biological systems, by definition, are composed of multiple components that interact non-linearly. The human brain constitutes, arguably, the most complex biological system known. Yet most investigation of the brain and its function is carried out using assumptions appropriate for simple systems-univariate design and linear statistical approaches. This heuristic must change before we can hope to discover and test interventions to improve the lives of individuals with complex disorders of brain development and function. Indeed, a movement away from simplistic models of biological systems will benefit essentially all domains of biology and medicine. The present brief essay lays the foundation for this argument. PMID:27375425

  9. Performance and diagnostic evaluation of ozone predictions by the Eta-Community Multiscale Air Quality Forecast System during the 2002 New England Air Quality Study.

    PubMed

    Yu, Shaocai; Mathur, Rohit; Kang, Daiwen; Schere, Kenneth; Eder, Brian; Pleim, Jonathan

    2006-10-01

    A real-time air quality forecasting system (Eta-Community Multiscale Air Quality [CMAQ] model suite) has been developed by linking the National Centers for Environmental Estimation Eta model to the U.S. Environmental Protection Agency (EPA) CMAQ model. This work presents results from the application of the Eta-CMAQ modeling system for forecasting ozone (O3) over the Northeastern United States during the 2002 New England Air Quality Study (NEAQS). Spatial and temporal performance of the Eta-CMAQ model for O3 was evaluated by comparison with observations from the EPA Air Quality System (AQS) network. This study also examines the ability of the model to simulate the processes governing the distributions of tropospheric O3 on the basis of the intensive datasets obtained at the four Atmospheric Investigation, Regional Modeling, Analysis, and Estimation (AIRMAP) and Harvard Forest (HF) surface sites. The episode analysis reveals that the model captured the buildup of O3 concentrations over the northeastern domain from August 11 and reproduced the spatial distributions of observed O3 very well for the daytime (8:00 p.m.) of both August 8 and 12 with most of normalized mean bias (NMB) within +/- 20%. The model reproduced 53.3% of the observed hourly O3 within a factor of 1.5 with NMB of 29.7% and normalized mean error of 46.9% at the 342 AQS sites. The comparison of modeled and observed lidar O3 vertical profiles shows that whereas the model reproduced the observed vertical structure, it tended to overestimate at higher altitude. The model reproduced 64-77% of observed NO2 photolysis rate values within a factor of 1.5 at the AIRMAP sites. At the HF site, comparison of modeled and observed O3/nitrogen oxide (NOx) ratios suggests that the site is mainly under strongly NOx-sensitive conditions (>53%). It was found that the modeled lower limits of the O3 production efficiency values (inferred from O3-CO correlation) are close to the observations.

  10. Performance and diagnostic evaluation of ozone predictions by the Eta-Community Multiscale Air Quality Forecast System during the 2002 New England Air Quality Study.

    PubMed

    Yu, Shaocai; Mathur, Rohit; Kang, Daiwen; Schere, Kenneth; Eder, Brian; Pleim, Jonathan

    2006-10-01

    A real-time air quality forecasting system (Eta-Community Multiscale Air Quality [CMAQ] model suite) has been developed by linking the National Centers for Environmental Estimation Eta model to the U.S. Environmental Protection Agency (EPA) CMAQ model. This work presents results from the application of the Eta-CMAQ modeling system for forecasting ozone (O3) over the Northeastern United States during the 2002 New England Air Quality Study (NEAQS). Spatial and temporal performance of the Eta-CMAQ model for O3 was evaluated by comparison with observations from the EPA Air Quality System (AQS) network. This study also examines the ability of the model to simulate the processes governing the distributions of tropospheric O3 on the basis of the intensive datasets obtained at the four Atmospheric Investigation, Regional Modeling, Analysis, and Estimation (AIRMAP) and Harvard Forest (HF) surface sites. The episode analysis reveals that the model captured the buildup of O3 concentrations over the northeastern domain from August 11 and reproduced the spatial distributions of observed O3 very well for the daytime (8:00 p.m.) of both August 8 and 12 with most of normalized mean bias (NMB) within +/- 20%. The model reproduced 53.3% of the observed hourly O3 within a factor of 1.5 with NMB of 29.7% and normalized mean error of 46.9% at the 342 AQS sites. The comparison of modeled and observed lidar O3 vertical profiles shows that whereas the model reproduced the observed vertical structure, it tended to overestimate at higher altitude. The model reproduced 64-77% of observed NO2 photolysis rate values within a factor of 1.5 at the AIRMAP sites. At the HF site, comparison of modeled and observed O3/nitrogen oxide (NOx) ratios suggests that the site is mainly under strongly NOx-sensitive conditions (>53%). It was found that the modeled lower limits of the O3 production efficiency values (inferred from O3-CO correlation) are close to the observations. PMID:17063868

  11. Forewarning of Failure in Complex Systems

    SciTech Connect

    Abercrombie, Robert K; Hively, Lee M; Prowell, Stacy J; Schlicher, Bob G; Sheldon, Frederick T

    2011-01-01

    As the critical infrastructures of the United States have become more and more dependent on public and private networks, the potential for widespread national impact resulting from disruption or failure of these networks has also increased. Securing the nation s critical infrastructures requires protecting not only their physical systems but, just as important, the cyber portions of the systems on which they rely. A failure is inclusive of random events, design flaws, and instabilities caused by cyber (and/or physical) attack. One such domain is failure in critical equipment. A second is aging bridges. We discuss the workings of such a system in the context of the necessary sensors, command and control and data collection as well as the cyber security efforts that would support this system. Their application and the implications of this computing architecture are also discussed, with respect to our nation s aging infrastructure.

  12. Design ATE systems for complex assemblies

    NASA Astrophysics Data System (ADS)

    Napier, R. S.; Flammer, G. H.; Moser, S. A.

    1983-06-01

    The use of ATE systems in radio specification testing can reduce the test time by approximately 90 to 95 percent. What is more, the test station does not require a highly trained operator. Since the system controller has full power over all the measurements, human errors are not introduced into the readings. The controller is immune to any need to increase output by allowing marginal units to pass through the system. In addition, the software compensates for predictable, repeatable system errors, for example, cabling losses, which are an inherent part of the test setup. With no variation in test procedures from unit to unit, there is a constant repeatability factor. Preparing the software, however, usually entails considerable expense. It is pointed out that many of the problems associated with ATE system software can be avoided with the use of a software-intensive, or computer-intensive, system organization. Its goal is to minimize the user's need for software development, thereby saving time and money.

  13. Software Analyzes Complex Systems in Real Time

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Expert system software programs, also known as knowledge-based systems, are computer programs that emulate the knowledge and analytical skills of one or more human experts, related to a specific subject. SHINE (Spacecraft Health Inference Engine) is one such program, a software inference engine (expert system) designed by NASA for the purpose of monitoring, analyzing, and diagnosing both real-time and non-real-time systems. It was developed to meet many of the Agency s demanding and rigorous artificial intelligence goals for current and future needs. NASA developed the sophisticated and reusable software based on the experience and requirements of its Jet Propulsion Laboratory s (JPL) Artificial Intelligence Research Group in developing expert systems for space flight operations specifically, the diagnosis of spacecraft health. It was designed to be efficient enough to operate in demanding real time and in limited hardware environments, and to be utilized by non-expert systems applications written in conventional programming languages. The technology is currently used in several ongoing NASA applications, including the Mars Exploration Rovers and the Spacecraft Health Automatic Reasoning Pilot (SHARP) program for the diagnosis of telecommunication anomalies during the Neptune Voyager Encounter. It is also finding applications outside of the Space Agency.

  14. Decision-making in healthcare as a complex adaptive system.

    PubMed

    Kuziemsky, Craig

    2016-01-01

    Healthcare transformation requires a change in how the business of healthcare is done. Traditional decision-making approaches based on stable and predictable systems are inappropriate in healthcare because of the complex nature of healthcare delivery. This article reviews challenges to using traditional decision-making approaches in healthcare and how insight from Complex Adaptive Systems (CAS) could support healthcare management. The article also provides a system model to guide decision-making in healthcare as a CAS.

  15. Nervous System and Intracranial Tumour Incidence by Ethnicity in England, 2001–2007: A Descriptive Epidemiological Study

    PubMed Central

    Maile, Edward J.; Barnes, Isobel; Finlayson, Alexander E.; Sayeed, Shameq; Ali, Raghib

    2016-01-01

    Background There is substantial variation in nervous system and intracranial tumour incidence worldwide. UK incidence data have limited utility because they group these diverse tumours together and do not provide data for individual ethnic groups within Blacks and South Asians. Our objective was to determine the incidence of individual tumour types for seven individual ethnic groups. Methods We used data from the National Cancer Intelligence Network on tumour site, age, sex and deprivation to identify 42,207 tumour cases. Self-reported ethnicity was obtained from the Hospital Episode Statistics database. We used mid-year population estimates from the Office for National Statistics. We analysed tumours by site using Poisson regression to estimate incidence rate ratios comparing non-White ethnicities to Whites after adjustment for sex, age and deprivation. Results Our study showed differences in tumour incidence by ethnicity for gliomas, meningiomas, pituitary tumours and cranial and paraspinal nerve tumours. Relative to Whites; South Asians, Blacks and Chinese have a lower incidence of gliomas (p<0.01), with respective incidence rate ratios of 0.68 (confidence interval: 0.60–0.77), 0.62 (0.52–0.73) and 0.58 (0.41–0.83). Blacks have a higher incidence of meningioma (p<0.01) with an incidence rate ratio of 1.29 (1.05–1.59) and there is heterogeneity in meningioma incidence between individual South Asian ethnicities. Blacks have a higher incidence of pituitary tumours relative to Whites (p<0.01) with an incidence rate ratio of 2.95 (2.37–3.67). There is heterogeneity in pituitary tumour incidence between individual South Asian ethnicities. Conclusions We present incidence data of individual tumour types for seven ethnic groups. Current understanding of the aetiology of these tumours cannot explain our results. These findings suggest avenues for further work. PMID:27135830

  16. Multiscale Computational Models of Complex Biological Systems

    PubMed Central

    Walpole, Joseph; Papin, Jason A.; Peirce, Shayn M.

    2014-01-01

    Integration of data across spatial, temporal, and functional scales is a primary focus of biomedical engineering efforts. The advent of powerful computing platforms, coupled with quantitative data from high-throughput experimental platforms, has allowed multiscale modeling to expand as a means to more comprehensively investigate biological phenomena in experimentally relevant ways. This review aims to highlight recently published multiscale models of biological systems while using their successes to propose the best practices for future model development. We demonstrate that coupling continuous and discrete systems best captures biological information across spatial scales by selecting modeling techniques that are suited to the task. Further, we suggest how to best leverage these multiscale models to gain insight into biological systems using quantitative, biomedical engineering methods to analyze data in non-intuitive ways. These topics are discussed with a focus on the future of the field, the current challenges encountered, and opportunities yet to be realized. PMID:23642247

  17. Tailoring Enterprise Systems Engineering Policy for Project Scale and Complexity

    NASA Technical Reports Server (NTRS)

    Cox, Renee I.; Thomas, L. Dale

    2014-01-01

    Space systems are characterized by varying degrees of scale and complexity. Accordingly, cost-effective implementation of systems engineering also varies depending on scale and complexity. Recognizing that systems engineering and integration happen everywhere and at all levels of a given system and that the life cycle is an integrated process necessary to mature a design, the National Aeronautic and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) has developed a suite of customized implementation approaches based on project scale and complexity. While it may be argued that a top-level system engineering process is common to and indeed desirable across an enterprise for all space systems, implementation of that top-level process and the associated products developed as a result differ from system to system. The implementation approaches used for developing a scientific instrument necessarily differ from those used for a space station. .

  18. Second Language Learning of Complex Inflectional Systems

    ERIC Educational Resources Information Center

    Kempe, Vera; Brooks, Patricia J.

    2008-01-01

    This study explored learning and generalization of parts of the Russian case-marking paradigm, an inflecting-fusional system in which affixes simultaneously mark several grammatical features (case, gender, number, animacy). In Experiment 1, adult English speakers (N = 43) were exposed to nouns with transparent gender marking in the nominative case…

  19. Ice Storage System for School Complex.

    ERIC Educational Resources Information Center

    Montgomery, Ross D.

    1998-01-01

    Describes a project at the Manatee Education Center in Naples, Florida, which won an ASHRAE award. Project involved the implementation of ice-storage technology in 19 schools. Compares the performance of ice-storage systems with traditional chiller designs in two other schools. Tables illustrate costs for the campuses. Addresses the maintenance…

  20. Studying protein complexes by the yeast two-hybrid system.

    PubMed

    Rajagopala, Seesandra V; Sikorski, Patricia; Caufield, J Harry; Tovchigrechko, Andrey; Uetz, Peter

    2012-12-01

    Protein complexes are typically analyzed by affinity purification and subsequent mass spectrometric analysis. However, in most cases the structure and topology of the complexes remains elusive from such studies. Here we investigate how the yeast two-hybrid system can be used to analyze direct interactions among proteins in a complex. First we tested all pairwise interactions among the seven proteins of Escherichia coli DNA polymerase III as well as an uncharacterized complex that includes MntR and PerR. Four and seven interactions were identified in these two complexes, respectively. In addition, we review Y2H data for three other complexes of known structure which serve as "gold-standards", namely Varicella Zoster Virus (VZV) ribonucleotide reductase (RNR), the yeast proteasome, and bacteriophage lambda. Finally, we review an Y2H analysis of the human spliceosome which may serve as an example for a dynamic mega-complex.

  1. Engineering Complex Systems: Multiscale Analysis and Evolutionary Engineering

    NASA Astrophysics Data System (ADS)

    Bar-Yam, Yaneer

    We describe an analytic approach, multiscale analysis, that can demonstrate the fundamental limitations of decomposition based engineering for the development of highly complex systems. The interdependence of components and communication between design teams limits any planning based process. Recognizing this limitation, we found that a new strategy for constructing many highly complex systems should be modeled after biological evolution, or market economies, where multiple design efforts compete in parallel for adoption through testing in actual use. Evolution is the only process that is known to create highly complex systems.

  2. The Fallacy of Univariate Solutions to Complex Systems Problems

    PubMed Central

    Lessov-Schlaggar, Christina N.; Rubin, Joshua B.; Schlaggar, Bradley L.

    2016-01-01

    Complex biological systems, by definition, are composed of multiple components that interact non-linearly. The human brain constitutes, arguably, the most complex biological system known. Yet most investigation of the brain and its function is carried out using assumptions appropriate for simple systems—univariate design and linear statistical approaches. This heuristic must change before we can hope to discover and test interventions to improve the lives of individuals with complex disorders of brain development and function. Indeed, a movement away from simplistic models of biological systems will benefit essentially all domains of biology and medicine. The present brief essay lays the foundation for this argument. PMID:27375425

  3. Integrated Modeling of Complex Optomechanical Systems

    NASA Astrophysics Data System (ADS)

    Andersen, Torben; Enmark, Anita

    2011-09-01

    Mathematical modeling and performance simulation are playing an increasing role in large, high-technology projects. There are two reasons; first, projects are now larger than they were before, and the high cost calls for detailed performance prediction before construction. Second, in particular for space-related designs, it is often difficult to test systems under realistic conditions beforehand, and mathematical modeling is then needed to verify in advance that a system will work as planned. Computers have become much more powerful, permitting calculations that were not possible before. At the same time mathematical tools have been further developed and found acceptance in the community. Particular progress has been made in the fields of structural mechanics, optics and control engineering, where new methods have gained importance over the last few decades. Also, methods for combining optical, structural and control system models into global models have found widespread use. Such combined models are usually called integrated models and were the subject of this symposium. The objective was to bring together people working in the fields of groundbased optical telescopes, ground-based radio telescopes, and space telescopes. We succeeded in doing so and had 39 interesting presentations and many fruitful discussions during coffee and lunch breaks and social arrangements. We are grateful that so many top ranked specialists found their way to Kiruna and we believe that these proceedings will prove valuable during much future work.

  4. Vertical leadership in highly complex and unpredictable health systems.

    PubMed

    Till, Alex; Dutta, Nina; McKimm, Judy

    2016-08-01

    This article explores how the concept of vertical leadership development might help health organizations cope with and thrive within highly complex and unpredictable health systems, looking at concepts of VUCA (volatility, uncertainty, complexity and ambiguity) and RUPT (rapid, unpredictable, paradoxical and tangled).

  5. Classrooms as Complex Adaptive Systems: A Relational Model

    ERIC Educational Resources Information Center

    Burns, Anne; Knox, John S.

    2011-01-01

    In this article, we describe and model the language classroom as a complex adaptive system (see Logan & Schumann, 2005). We argue that linear, categorical descriptions of classroom processes and interactions do not sufficiently explain the complex nature of classrooms, and cannot account for how classroom change occurs (or does not occur), over…

  6. Research Methodology on Language Development from a Complex Systems Perspective

    ERIC Educational Resources Information Center

    Larsen-Freeman, Diane; Cameron, Lynne

    2008-01-01

    Changes to research methodology motivated by the adoption of a complexity theory perspective on language development are considered. The dynamic, nonlinear, and open nature of complex systems, together with their tendency toward self-organization and interaction across levels and timescales, requires changes in traditional views of the functions…

  7. Understanding Learner Agency as a Complex Dynamic System

    ERIC Educational Resources Information Center

    Mercer, Sarah

    2011-01-01

    This paper attempts to contribute to a fuller understanding of the nature of language learner agency by considering it as a complex dynamic system. The purpose of the study was to explore detailed situated data to examine to what extent it is feasible to view learner agency through the lens of complexity theory. Data were generated through a…

  8. Complex Synchronization Phenomena in Ecological Systems

    NASA Astrophysics Data System (ADS)

    Stone, Lewi; Olinky, Ronen; Blasius, Bernd; Huppert, Amit; Cazelles, Bernard

    2002-07-01

    Ecological and biological systems provide us with many striking examples of synchronization phenomena. Here we discuss a number of intriguing cases and attempt to explain them taking advantage of a modelling framework. One main focus will concern synchronized ecological end epidemiological cycles which have Uniform Phase growth associated with their regular recurrence, and Chaotic Amplitudes - a feature we term UPCA. Examples come from different areas and include decadal cycles of small mammals, recurrent viral epidemics such as childhood infections (eg., measles), and seasonally driven phytoplankton blooms observed in lakes and the oceans. A more detailed theoretical analysis of seasonally synchronized chaotic population cycles is presented.

  9. The Social Organisation of Education Research in England

    ERIC Educational Resources Information Center

    Lawn, Martin; Furlong, John

    2007-01-01

    The field of education research has grown enormously in England over the last 25 years--in size, complexity, forms of production and purpose. It has been shaped by governmental, market and production changes, and it appears to be moving outside the university sector as well. The British Educational Research Association is trying to map the field…

  10. Changing Landscapes in Safeguarding Babies and Young Children in England

    ERIC Educational Resources Information Center

    Lumsden, Eunice

    2014-01-01

    The importance of safeguarding children from violence is internationally recognised. However, detecting, intervening and protecting children from abuse both within the family and in institutions is complex. This paper specifically focuses on safeguarding in England and how workforce reform in the early years offers the opportunity to forge new…

  11. Multigroup Complex Geometry Neutron Diffusion Code System.

    2002-12-18

    Version 01 SNAP-3D is based on SNAP2 and is a one- two- or three-dimensional multigroup diffusion code system. It is primarily intended for neutron diffusion calculations, but it can also carry out gamma-ray calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP-3D can solve the multi-group neutron diffusion equations using finite difference methods in (x,y,z), (r,theta,z), (TRI,z), (HEX,z) or (spherical) coordinates.more » The one-dimensional slab and cylindrical geometries and the two-dimensional (x,y), (r,z), (r,theta), (HEX) and (TRI) are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. The problem classes are: 1) eigenvalue search for critical k-effective, 2) eigenvalue search for critical buckling, 3) eigenvalue search for critical time-constant, 4) fixed source problems in which the sources are functions of regions, 5) fixed source problems in which the sources are provided, on disc, for every mesh point and group.« less

  12. Multigroup Complex Geometry Neutron Diffusion Code System.

    SciTech Connect

    MCCALLIEN, C. W.J.

    2002-12-18

    Version 01 SNAP-3D is based on SNAP2 and is a one- two- or three-dimensional multigroup diffusion code system. It is primarily intended for neutron diffusion calculations, but it can also carry out gamma-ray calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP-3D can solve the multi-group neutron diffusion equations using finite difference methods in (x,y,z), (r,theta,z), (TRI,z), (HEX,z) or (spherical) coordinates. The one-dimensional slab and cylindrical geometries and the two-dimensional (x,y), (r,z), (r,theta), (HEX) and (TRI) are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. The problem classes are: 1) eigenvalue search for critical k-effective, 2) eigenvalue search for critical buckling, 3) eigenvalue search for critical time-constant, 4) fixed source problems in which the sources are functions of regions, 5) fixed source problems in which the sources are provided, on disc, for every mesh point and group.

  13. Traditional Knowledge of Western Herbal Medicine and Complex Systems Science

    PubMed Central

    Niemeyer, Kathryn; Bell, Iris R.; Koithan, Mary

    2013-01-01

    Traditional knowledge of Western herbal medicine (WHM) supports experiential approaches to healing that have evolved over time. This is evident in the use of polyherb formulations comprised of crude plant parts, individually tailored to treat the cause of dysfunction and imbalance by addressing the whole person holistically. The challenge for WHM is to integrate science with traditional knowledge that is a foundation of the practice of WHM. The purpose of this paper is to provide a plausible theoretical hypothesis by applying complex systems science to WHM, illustrating how medicinal plants are complex, adaptive, environmentally interactive systems exhibiting synergy and nonlinear healing causality. This paper explores the conceptual congruence between medicinal plants and humans as complex systems coherently coupled through recurrent interaction. Complex systems science provides the theoretical tenets that explain traditional knowledge of medicinal plants while supporting clinical practice and expanding research and documentation of WHM. PMID:24058898

  14. Traditional Knowledge of Western Herbal Medicine and Complex Systems Science.

    PubMed

    Niemeyer, Kathryn; Bell, Iris R; Koithan, Mary

    2013-09-01

    Traditional knowledge of Western herbal medicine (WHM) supports experiential approaches to healing that have evolved over time. This is evident in the use of polyherb formulations comprised of crude plant parts, individually tailored to treat the cause of dysfunction and imbalance by addressing the whole person holistically. The challenge for WHM is to integrate science with traditional knowledge that is a foundation of the practice of WHM. The purpose of this paper is to provide a plausible theoretical hypothesis by applying complex systems science to WHM, illustrating how medicinal plants are complex, adaptive, environmentally interactive systems exhibiting synergy and nonlinear healing causality. This paper explores the conceptual congruence between medicinal plants and humans as complex systems coherently coupled through recurrent interaction. Complex systems science provides the theoretical tenets that explain traditional knowledge of medicinal plants while supporting clinical practice and expanding research and documentation of WHM.

  15. Structural visualization of complex software systems

    SciTech Connect

    Vemuri, V.; Smart, J.C. |

    1991-08-01

    The design outline of an automatic, computer-based Abstract Visualization Utility (A-Vu) is presented. Although A-Vu is a general purpose tool, emphasis here is on its ability to visualize structural aspects of software design. Starting from a system definition, an Ada program library, or a directed graph definition, A-Vu proceeds to develop a variety of ``nice`` linear graphs, revealing different visual representations of the design. Formally, given a linear graph G=(V,E), A-Vu searches for a configuration C such that a suitably defined ``energy`` function J(C) is minimized. The definition of the energy function includes software engineering considerations such as layering, modularity as well as aesthetic considerations like visual appeal, cognitive correctness, and so on. Simulated annealing techniques are applied to linear graph representations of software structures to obtain the ``minimum energy`` configurations.

  16. Structural visualization of complex software systems

    SciTech Connect

    Vemuri, V.; Smart, J.C. . Dept. of Applied Science Lawrence Livermore National Lab., CA )

    1991-08-01

    The design outline of an automatic, computer-based Abstract Visualization Utility (A-Vu) is presented. Although A-Vu is a general purpose tool, emphasis here is on its ability to visualize structural aspects of software design. Starting from a system definition, an Ada program library, or a directed graph definition, A-Vu proceeds to develop a variety of nice'' linear graphs, revealing different visual representations of the design. Formally, given a linear graph G=(V,E), A-Vu searches for a configuration C such that a suitably defined energy'' function J(C) is minimized. The definition of the energy function includes software engineering considerations such as layering, modularity as well as aesthetic considerations like visual appeal, cognitive correctness, and so on. Simulated annealing techniques are applied to linear graph representations of software structures to obtain the minimum energy'' configurations.

  17. Correcting Aberrations in Complex Magnet Systems for Muon Cooling Channels

    SciTech Connect

    J.A. Maloney, B. Erdelyi, A. Afanaciev, R.P. Johnson, Y.S. Derbenev, V.S. Morozov

    2011-03-01

    Designing and simulating complex magnet systems needed for cooling channels in both neutrino factories and muon colliders requires innovative techniques to correct for both chromatic and spherical aberrations. Optimizing complex systems, such as helical magnets for example, is also difficult but essential. By using COSY INFINITY, a differential algebra based code, the transfer and aberration maps can be examined to discover what critical terms have the greatest influence on these aberrations.

  18. A functional approach to geometry optimization of complex systems

    NASA Astrophysics Data System (ADS)

    Maslen, P. E.

    A quadratically convergent procedure is presented for the geometry optimization of complex systems, such as biomolecules and molecular complexes. The costly evaluation of the exact Hessian is avoided by expanding the density functional to second order in both nuclear and electronic variables, and then searching for the minimum of the quadratic functional. The dependence of the functional on the choice of nuclear coordinate system is described, and illustrative geometry optimizations using Cartesian and internal coordinates are presented for Taxol™.

  19. Recording information on protein complexes in an information management system.

    PubMed

    Savitsky, Marc; Diprose, Jonathan M; Morris, Chris; Griffiths, Susanne L; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S; Blake, Richard; Stuart, David I; Esnouf, Robert M

    2011-08-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein-protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described. PMID:21605682

  20. Recording information on protein complexes in an information management system.

    PubMed

    Savitsky, Marc; Diprose, Jonathan M; Morris, Chris; Griffiths, Susanne L; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S; Blake, Richard; Stuart, David I; Esnouf, Robert M

    2011-08-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein-protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described.

  1. Recording information on protein complexes in an information management system

    PubMed Central

    Savitsky, Marc; Diprose, Jonathan M.; Morris, Chris; Griffiths, Susanne L.; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S.; Blake, Richard; Stuart, David I.; Esnouf, Robert M.

    2011-01-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein–protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described. PMID:21605682

  2. An ensemble approach to the evolution of complex systems.

    PubMed

    Arpağ, Göker; Erzan, Ayşe

    2014-04-01

    Adaptive systems frequently incorporate complex structures which can arise spontaneously and which may be nonadaptive in the evolutionary sense. We give examples from phase transition and fractal growth to develop the themes of cooperative phenomena and pattern formation. We discuss RNA interference and transcriptional gene regulation networks, where a major part of the topological properties can be accounted for by mere combinatorics. A discussion of ensemble approaches to biological systems and measures of complexity is presented, and a connection is established between complexity and fitness.

  3. An ensemble approach to the evolution of complex systems.

    PubMed

    Arpağ, Göker; Erzan, Ayşe

    2014-04-01

    Adaptive systems frequently incorporate complex structures which can arise spontaneously and which may be nonadaptive in the evolutionary sense. We give examples from phase transition and fractal growth to develop the themes of cooperative phenomena and pattern formation. We discuss RNA interference and transcriptional gene regulation networks, where a major part of the topological properties can be accounted for by mere combinatorics. A discussion of ensemble approaches to biological systems and measures of complexity is presented, and a connection is established between complexity and fitness. PMID:24736159

  4. Green photonics realized by optical complex systems

    NASA Astrophysics Data System (ADS)

    Nanri, Hiroto; Sasaki, Wakao

    2013-12-01

    We have experimentally demonstrated a new smart grid model which can control DC electric power flow autonomously among individual homes, by using an optical self-organized node with optical non-linear characteristics, and these homes are assumed to be installed by distributed power supplies, and electric power storage devices, and also supposed to be supplied partly by the commercial electric power grid utilities. An electric power network is composed of nodes and devises called Power Gate Unit (PGU). The nodes have optical nonlinearity for self-organizing informations about surplus or shortage of electric power as to individual homes. The PGU is a distributing unit of actual electric power based on above informations of power surplus or shortage at each home. The PGU at each home is electrically connected to both the onsite power supplies and household load such as a solar panel, a DC motor, and a storage battery as well as the commercial electric power grid utilities. In this work, we composed our experimental self-organized DC power grid with above components and supposed the supplied maximum power from the commercial electric power grid utilities to be limited to 5V-0.5A. In this network, information about surplus or shortage of electric power will propagate through the nodes. In the experiments, surplus electric current 0.4A at a particular node was distributed toward a PGU of another node suffering from shortage of electric current. We also confirmed in the experiments and simulations that even when signal propagation path was disconnected accidentally the network could recover an optimized path. The present smart grid system we have attained may be applied by optical fiber link in the near future because our essential components controlling PGU, i.e. the nodes are electro-optical hybrid which are easily applicable to fiber optical link so as to control electric power transmission line.

  5. Leadership and transitions: maintaining the science in complexity and complex systems.

    PubMed

    Sturmberg, Joachim P; Martin, Carmel M

    2012-02-01

    It is the 'moral compass', however subtle, that underpins leadership. Leadership, meaning showing the way, demands as much conviction as gentile diplomacy in the discourse with supporters and detractors. In particular, leadership defends the goal by safeguarding its principles from its detractors. The authors writing in the Forum on Complexity in Medicine and Healthcare since its inception are leaders in an intellectual transition to complex systems thinking in medicine and health. PMID:22221419

  6. Leadership and transitions: maintaining the science in complexity and complex systems.

    PubMed

    Sturmberg, Joachim P; Martin, Carmel M

    2012-02-01

    It is the 'moral compass', however subtle, that underpins leadership. Leadership, meaning showing the way, demands as much conviction as gentile diplomacy in the discourse with supporters and detractors. In particular, leadership defends the goal by safeguarding its principles from its detractors. The authors writing in the Forum on Complexity in Medicine and Healthcare since its inception are leaders in an intellectual transition to complex systems thinking in medicine and health.

  7. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000.

    PubMed

    Pall, Pardeep; Aina, Tolu; Stone, Dáithí A; Stott, Peter A; Nozawa, Toru; Hilberts, Arno G J; Lohmann, Dag; Allen, Myles R

    2011-02-17

    Interest in attributing the risk of damaging weather-related events to anthropogenic climate change is increasing. Yet climate models used to study the attribution problem typically do not resolve the weather systems associated with damaging events such as the UK floods of October and November 2000. Occurring during the wettest autumn in England and Wales since records began in 1766, these floods damaged nearly 10,000 properties across that region, disrupted services severely, and caused insured losses estimated at £1.3 billion (refs 5, 6). Although the flooding was deemed a 'wake-up call' to the impacts of climate change at the time, such claims are typically supported only by general thermodynamic arguments that suggest increased extreme precipitation under global warming, but fail to account fully for the complex hydrometeorology associated with flooding. Here we present a multi-step, physically based 'probabilistic event attribution' framework showing that it is very likely that global anthropogenic greenhouse gas emissions substantially increased the risk of flood occurrence in England and Wales in autumn 2000. Using publicly volunteered distributed computing, we generate several thousand seasonal-forecast-resolution climate model simulations of autumn 2000 weather, both under realistic conditions, and under conditions as they might have been had these greenhouse gas emissions and the resulting large-scale warming never occurred. Results are fed into a precipitation-runoff model that is used to simulate severe daily river runoff events in England and Wales (proxy indicators of flood events). The precise magnitude of the anthropogenic contribution remains uncertain, but in nine out of ten cases our model results indicate that twentieth-century anthropogenic greenhouse gas emissions increased the risk of floods occurring in England and Wales in autumn 2000 by more than 20%, and in two out of three cases by more than 90%.

  8. Complex vibration ultrasonic welding systems with large area welding tips.

    PubMed

    Tsujino, Jiromaru; Sano, Tsutomu; Ogata, Hayato; Tanaka, Soichi; Harada, Yoshiki

    2002-05-01

    Vibration and welding characteristics of complex vibration ultrasonic welding systems of 27 and 40 kHz were studied. Complex vibration systems, which have elliptical to circular or rectangular to square locus, are effective for ultrasonic welding of various specimens including the same and different metal specimens, and for direct welding of semiconductor tips and packaging of various electronic devices without solder. The complex vibration systems consist of a one-dimensional longitudinal-torsional vibration converter with slitted part, a stepped horn and a longitudinal vibration transducer as a driving source. The complex vibration welding tips of 27 and 40 kHz have enough area of 6-8 mm square for various welding specimens. Aluminum plate specimens of 0.3-1.0 mm thickness were successfully joined with weld strengths almost equal to aluminum specimen strength, and independent to the specimen direction. Required vibration amplitude of 40 kHz is smaller than that of 27 kHz.

  9. Method and system for producing complex-shape objects

    DOEpatents

    Jeantette, Francisco P.; Keicher, David M.; Romero, Joseph A.; Schanwald, Lee P.

    2000-01-01

    A method and system are provided for producing complex, three-dimensional, net shape objects from a variety of powdered materials. The system includes unique components to ensure a uniform and continuous flow of powdered materials as well as to focus and locate the flow of powdered materials with respect to a laser beam which results in the melting of the powdered material. The system also includes a controller so that the flow of molten powdered materials can map out and form complex, three-dimensional, net-shape objects by layering the molten powdered material. Advantageously, such complex, three-dimensional net-shape objects can be produced having material densities varying from 90% of theoretical to fully dense, as well as a variety of controlled physical properties. Additionally, such complex, three-dimensional objects can be produced from two or more different materials so that the composition of the object can be transitioned from one material to another.

  10. Configuration complexity assessment of convergent supply chain systems

    NASA Astrophysics Data System (ADS)

    Modrak, Vladimir; Marton, David

    2014-07-01

    System designers usually generate alternative configurations of supply chains (SCs) by varying especially fixed assets to satisfy a desired production scope and rate. Such alternatives often vary in associated costs and other facets including degrees of complexity. Hence, a measure of configuration complexity can be a tool for comparison and decision-making. This paper presents three approaches to assessment of configuration complexity and their applications to designing convergent SC systems. Presented approaches are conceptually distinct ways of measuring structural complexity parameters based on different preconditions and circumstances of assembly systems which are typical representatives of convergent SCs. There are applied two similar approaches based on different preconditions that are related to demand shares. Third approach does not consider any special condition relating to character of final product demand. Subsequently, we propose a framework for modeling of assembly SC models, which are dividing to classes.

  11. Symmetric and Asymmetric Tendencies in Stable Complex Systems

    PubMed Central

    Tan, James P. L.

    2016-01-01

    A commonly used approach to study stability in a complex system is by analyzing the Jacobian matrix at an equilibrium point of a dynamical system. The equilibrium point is stable if all eigenvalues have negative real parts. Here, by obtaining eigenvalue bounds of the Jacobian, we show that stable complex systems will favor mutualistic and competitive relationships that are asymmetrical (non-reciprocative) and trophic relationships that are symmetrical (reciprocative). Additionally, we define a measure called the interdependence diversity that quantifies how distributed the dependencies are between the dynamical variables in the system. We find that increasing interdependence diversity has a destabilizing effect on the equilibrium point, and the effect is greater for trophic relationships than for mutualistic and competitive relationships. These predictions are consistent with empirical observations in ecology. More importantly, our findings suggest stabilization algorithms that can apply very generally to a variety of complex systems. PMID:27545722

  12. Universality of flux-fluctuation law in complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Zhou, Zhao; Huang, Zi-Gang; Huang, Liang; Lai, Ying-Cheng; Yang, Lei; Xue, De-Sheng

    2013-01-01

    Recent work has revealed a law governing flux fluctuation and the average flux in complex dynamical systems. We establish the universality of this flux-fluctuation law through the following steps: (i) We derive the law in a more general setting, showing that it depends on a single parameter characterizing the external driving; (ii) we conduct extensive numerical computations using distinct external driving, different network topologies, and multiple traffic routing strategies; and (iii) we analyze data from an actual vehicle traffic system in a major city in China to lend more credence to the universality of the flux-fluctuation law. Additional factors considered include flux fluctuation on links, window size effect, and hidden topological structures such as nodal degree correlation. Besides its fundamental importance in complex systems, the flux-fluctuation law can be used to infer certain intrinsic property of the system for potential applications such as control of complex systems for improved performance.

  13. Active control technique of fractional-order chaotic complex systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Gamal M.; Ahmed, Mansour E.; Abed-Elhameed, Tarek M.

    2016-06-01

    Several kinds of synchronization of fractional-order chaotic complex systems are challenging research topics of current interest since they appear in many applications in applied sciences. Our main goal in this paper is to introduce the definition of modified projective combination-combination synchronization (MPCCS) of some fractional-order chaotic complex systems. We show that our systems are chaotic by calculating their Lyapunov exponents. The fractional Lyapunov dimension of the chaotic solutions of these systems is computed. A scheme is introduced to calculate MPCCS of four different (or identical) chaotic complex systems using the active control technique. Special cases of this type, which are projective and anti C-C synchronization, are discussed. Some figures are plotted to show that MPCCS is achieved and its errors approach zero.

  14. Symmetric and Asymmetric Tendencies in Stable Complex Systems

    NASA Astrophysics Data System (ADS)

    Tan, James P. L.

    2016-08-01

    A commonly used approach to study stability in a complex system is by analyzing the Jacobian matrix at an equilibrium point of a dynamical system. The equilibrium point is stable if all eigenvalues have negative real parts. Here, by obtaining eigenvalue bounds of the Jacobian, we show that stable complex systems will favor mutualistic and competitive relationships that are asymmetrical (non-reciprocative) and trophic relationships that are symmetrical (reciprocative). Additionally, we define a measure called the interdependence diversity that quantifies how distributed the dependencies are between the dynamical variables in the system. We find that increasing interdependence diversity has a destabilizing effect on the equilibrium point, and the effect is greater for trophic relationships than for mutualistic and competitive relationships. These predictions are consistent with empirical observations in ecology. More importantly, our findings suggest stabilization algorithms that can apply very generally to a variety of complex systems.

  15. Cx-02 Program, workshop on modeling complex systems

    USGS Publications Warehouse

    Mossotti, Victor G.; Barragan, Jo Ann; Westergard, Todd D.

    2003-01-01

    This publication contains the abstracts and program for the workshop on complex systems that was held on November 19-21, 2002, in Reno, Nevada. Complex systems are ubiquitous within the realm of the earth sciences. Geological systems consist of a multiplicity of linked components with nested feedback loops; the dynamics of these systems are non-linear, iterative, multi-scale, and operate far from equilibrium. That notwithstanding, It appears that, with the exception of papers on seismic studies, geology and geophysics work has been disproportionally underrepresented at regional and national meetings on complex systems relative to papers in the life sciences. This is somewhat puzzling because geologists and geophysicists are, in many ways, preadapted to thinking of complex system mechanisms. Geologists and geophysicists think about processes involving large volumes of rock below the sunlit surface of Earth, the accumulated consequence of processes extending hundreds of millions of years in the past. Not only do geologists think in the abstract by virtue of the vast time spans, most of the evidence is out-of-sight. A primary goal of this workshop is to begin to bridge the gap between the Earth sciences and life sciences through demonstration of the universality of complex systems science, both philosophically and in model structures.

  16. Application of Complex Systems Research To Efforts of International Development

    NASA Astrophysics Data System (ADS)

    Brunner, Hans-Peter

    Fundamental research on complex systems has shown relevance to efforts of international development. This paper canvasses some practitioner friendly approaches to international development. Development is about interventions in a highly complex system, the society. Complex systems research tells us that development interventions should not be overly planned, rather the fundamental uncertainty of a changing social system requires a diversity of interventions, and rapid learning from development success and failure. Developing economies are functioning at a low level of effectiveness and resource use. Complex systems are change resistant, and intervention requires understanding the autocatalytic nature of a process of change. International development is about the stimulation of a society's innate autocatalytic / self-organizing processes through interventions that stimulate enough to overcome change resistance, but which do not overwhelm the system. Since the size of financial interventions may in some cases be a substantial fraction of the existing economic activity, disruption is a likely outcome. Crucially, one must avoid having the socio-economic activity organized around the intervention itself, since then an undesirable dependency of the economy on the intervention arises. Stimulation of the innate modes of activity results in the development of socio-economic organization around energy, material and financial flows. The primary generator of effectiveness is an appropriate network structure of interactions and relationships. This paper summarizes traditional development efforts and their outcomes as well as a plausible description of the process of complex systems motivated interventions. Examples are given of recent approaches which aim to appropriately stimulate international development.

  17. Developing Students' Understanding of Complex Systems in the Geosciences (Invited)

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Mogk, D. W.; Bice, D. M.; Pyle, E.; Slotta, J.

    2010-12-01

    Developing a systems perspective is a commonly cited goal for geosciences courses and programs. This perspective is a powerful tool for critical thinking, problem solving and integrative thinking across and beyond the sciences. In April 2010, a NSF funded ‘On the Cutting Edge’ workshop brought together 45 geoscience faculty, education and cognitive science researchers, and faculty from other STEM and social science disciplines that make use of a complex systems approach. The workshop participants focused on understanding the challenges inherent in developing an understanding of complex systems and the teaching strategies currently in use across the disciplines. These include using models and visualizations to allow students to experiment with complex systems, using projects and problems to give students experience with data and observations derived from a complex system, and using illustrated lectures and discussions and analogies to illuminate the salient aspects of complex systems. The workshop website contains a collection of teaching activities, instructional resources and courses that demonstrate these approaches. The workshop participants concluded that research leading to a clear articulation of what constitutes understanding complex system behavior is needed, as are instruments and performance measures that could be used to assess this understanding. Developing the ability to recognize complex systems and understand their behavior is a significant learning task that cannot be achieved in a single course. Rather it is a type of literacy that should be taught in a progression extending from elementary school to college and across the disciplines. Research defining this progression and its endpoints is needed. Full information about the workshop, its discussions, and resulting collections of courses, activities, references and ideas are available on the workshop website.

  18. Complexity and Control: Towards a Rigorous Behavioral Theory of Complex Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    We introduce our motive for writing this book on complexity and control with a popular "complexity myth," which seems to be quite wide spread among chaos and complexity theory fashionistas: Low-dimensional systems usually exhibit complex behaviours (which we know fromMay's studies of the Logisticmap), while high-dimensional systems usually exhibit simple behaviours (which we know from synchronisation studies of the Kuramoto model)... We admit that this naive view on complex (e.g., human) systems versus simple (e.g., physical) systems might seem compelling to various technocratic managers and politicians; indeed, the idea makes for appealing sound-bites. However, it is enough to see both in the equations and computer simulations of pendula of various degree - (i) a single pendulum, (ii) a double pendulum, and (iii) a triple pendulum - that this popular myth is plain nonsense. The only thing that we can learn from it is what every tyrant already knows: by using force as a strong means of control, it is possible to effectively synchronise even hundreds of millions of people, at least for a while.

  19. Solving complex-valued linear systems via equivalent real formulations

    SciTech Connect

    DAY,DAVID M.; HEROUX,MICHAEL A.

    2000-05-22

    Most algorithms used in preconditioned iterative methods are generally applicable to complex valued linear systems, with real valued linear systems simply being a special case. However, most iterative solver packages available today focus exclusively on real valued systems, or deal with complex valued systems as an afterthought. One obvious approach to addressing this problem is to recast the complex problem into one of a several equivalent real forms and then use a real valued solver to solve the related system. However, well-known theoretical results showing unfavorable spectral properties for the equivalent real forms have diminished enthusiasm for this approach. At the same time, experience has shown that there are situations where using an equivalent real form can be very effective. In this paper, the authors explore this approach, giving both theoretical and experimental evidence that an equivalent real form can be useful for a number of practical situations. Furthermore, they show that by making good use of some of the advance features of modem solver packages, they can easily generate equivalent real form preconditioners that are computationally efficient and mathematically identical to their complex counterparts. Using their techniques, they are able to solve very ill-conditioned complex valued linear systems for a variety of large scale applications. However, more importantly, they shed more light on the effectiveness of equivalent real forms and more clearly delineate how and when they should be used.

  20. A duality framework for stochastic optimal control of complex systems

    SciTech Connect

    Malikopoulos, Andreas A.

    2016-01-01

    In this study, we address the problem of minimizing the long-run expected average cost of a complex system consisting of interactive subsystems. We formulate a multiobjective optimization problem of the one-stage expected costs of the subsystems and provide a duality framework to prove that the control policy yielding the Pareto optimal solution minimizes the average cost criterion of the system. We provide the conditions of existence and a geometric interpretation of the solution. For practical situations having constraints consistent with those studied here, our results imply that the Pareto control policy may be of value when we seek to derive online the optimal control policy in complex systems.

  1. From globally coupled maps to complex-systems biology.

    PubMed

    Kaneko, Kunihiko

    2015-09-01

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  2. From globally coupled maps to complex-systems biology

    NASA Astrophysics Data System (ADS)

    Kaneko, Kunihiko

    2015-09-01

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  3. From globally coupled maps to complex-systems biology

    SciTech Connect

    Kaneko, Kunihiko

    2015-09-15

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  4. A Multiobjective Optimization Framework for Stochastic Control of Complex Systems

    SciTech Connect

    Malikopoulos, Andreas; Maroulas, Vasileios; Xiong, Professor Jie

    2015-01-01

    This paper addresses the problem of minimizing the long-run expected average cost of a complex system consisting of subsystems that interact with each other and the environment. We treat the stochastic control problem as a multiobjective optimization problem of the one-stage expected costs of the subsystems, and we show that the control policy yielding the Pareto optimal solution is an optimal control policy that minimizes the average cost criterion for the entire system. For practical situations with constraints consistent to those we study here, our results imply that the Pareto control policy may be of value in deriving online an optimal control policy in complex systems.

  5. Complex Systems and Educational Change: Towards a New Research Agenda

    ERIC Educational Resources Information Center

    Lemke, Jay L.; Sabelli, Nora H.

    2008-01-01

    How might we usefully apply concepts and procedures derived from the study of other complex dynamical systems to analyzing systemic change in education? In this article, we begin to define possible agendas for research toward developing systematic frameworks and shared terminology for such a project. We illustrate the plausibility of defining such…

  6. Integrability of Lotka-Volterra Planar Complex Cubic Systems

    NASA Astrophysics Data System (ADS)

    Dukarić, Maša; Giné, Jaume

    In this paper, we study the Lotka-Volterra complex cubic systems. We obtain necessary conditions of integrability for these systems with some restriction on the parameters. The sufficiency is proved for all conditions, except one which remains open, using different methods.

  7. Can Models Capture the Complexity of the Systems Engineering Process?

    NASA Astrophysics Data System (ADS)

    Boppana, Krishna; Chow, Sam; de Weck, Olivier L.; Lafon, Christian; Lekkakos, Spyridon D.; Lyneis, James; Rinaldi, Matthew; Wang, Zhiyong; Wheeler, Paul; Zborovskiy, Marat; Wojcik, Leonard A.

    Many large-scale, complex systems engineering (SE) programs have been problematic; a few examples are listed below (Bar-Yam, 2003 and Cullen, 2004), and many others have been late, well over budget, or have failed: Hilton/Marriott/American Airlines system for hotel reservations and flights; 1988-1992; 125 million; "scrapped"

  8. Complex Moving Parts: Assessment Systems and Electronic Portfolios

    ERIC Educational Resources Information Center

    Larkin, Martha J.; Robertson, Royce L.

    2013-01-01

    The largest college within an online university of over 50,000 students invested significant resources in translating a complex assessment system focused on continuous improvement and national accreditation into an effective and efficient electronic portfolio (ePortfolio). The team building the system needed a model to address problems met…

  9. Managing the Complexity of E-Learning Systems.

    ERIC Educational Resources Information Center

    Trentin, Guglielmo

    2003-01-01

    Discussion of the use of information and communication technologies to support educational processes focuses on electronic learning systems and problems related to the management of the complexity of these systems. Presents electronic learning models and discusses the need for specific research about their organizational development. (Author/LRW)

  10. Dual-phase evolution in complex adaptive systems

    PubMed Central

    Paperin, Greg; Green, David G.; Sadedin, Suzanne

    2011-01-01

    Understanding the origins of complexity is a key challenge in many sciences. Although networks are known to underlie most systems, showing how they contribute to well-known phenomena remains an issue. Here, we show that recurrent phase transitions in network connectivity underlie emergent phenomena in many systems. We identify properties that are typical of systems in different connectivity phases, as well as characteristics commonly associated with the phase transitions. We synthesize these common features into a common framework, which we term dual-phase evolution (DPE). Using this framework, we review the literature from several disciplines to show that recurrent connectivity phase transitions underlie the complex properties of many biological, physical and human systems. We argue that the DPE framework helps to explain many complex phenomena, including perpetual novelty, modularity, scale-free networks and criticality. Our review concludes with a discussion of the way DPE relates to other frameworks, in particular, self-organized criticality and the adaptive cycle. PMID:21247947

  11. Complex Homology and the Evolution of Nervous Systems

    PubMed Central

    Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.; Hofmann, Hans A.

    2016-01-01

    We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. PMID:26746806

  12. The Quaternary uplift history of central southern England: evidence from the terraces of the Solent River system and nearby raised beaches

    NASA Astrophysics Data System (ADS)

    Westaway, Rob; Bridgland, David; White, Mark

    2006-09-01

    We have used fluvial (Solent River system) and marine terraces to reconstruct the uplift history of central southern England. In the case of the former, we make the assumption that fluvial incision has been a direct response to surface uplift, with its precise timing controlled by climatic forcing of fluvial activity, such that height of terrace gravel above modern river is a consequence of uplift since deposition. In the case of the marine sequence, we take the height of interglacial raised beaches above a calculated contemporaneous sea-level as a measure of uplift, the calculation involving an adjustment from modern sea-level using the deep oceanic oxygen isotope signal as an indication of global ice volume at the time of deposition. This exercise requires some degree of dating constraint, which is problematic for both environments. The Solent terraces have yielded little biostratigraphical evidence, whereas the south coast raised beaches have either been poorly exposed in recent years or their ages have been controversial because of disputes between biostratigraphy and geochronological data. We have supplemented the evidence available from these sources by using key aspects of the archaeological record as dating constraints, in particular the first appearances of Levallois technique (a marker for MIS 9-8) and of bout coupé handaxes (MIS 3). The first of these has been particularly useful in modelling of the Middle Pleistocene parts of the river terrace staircases of the Solent system. In undertaking this reappraisal, we have noted several inconsistencies and disagreements between past correlation schemes for the terraces of the Solent and its various tributaries. We find that versions involving shallower downstream gradients in the main Solent River are most likely to be correct and that revisions on this basis solve a number of problems in interpretation encountered previously. Our results show that most of this region has uplifted by ˜70 m since the late

  13. Data driven uncertainty evaluation for complex engineered system design

    NASA Astrophysics Data System (ADS)

    Liu, Boyuan; Huang, Shuangxi; Fan, Wenhui; Xiao, Tianyuan; Humann, James; Lai, Yuyang; Jin, Yan

    2016-05-01

    Complex engineered systems are often difficult to analyze and design due to the tangled interdependencies among their subsystems and components. Conventional design methods often need exact modeling or accurate structure decomposition, which limits their practical application. The rapid expansion of data makes utilizing data to guide and improve system design indispensable in practical engineering. In this paper, a data driven uncertainty evaluation approach is proposed to support the design of complex engineered systems. The core of the approach is a data-mining based uncertainty evaluation method that predicts the uncertainty level of a specific system design by means of analyzing association relations along different system attributes and synthesizing the information entropy of the covered attribute areas, and a quantitative measure of system uncertainty can be obtained accordingly. Monte Carlo simulation is introduced to get the uncertainty extrema, and the possible data distributions under different situations is discussed in detail. The uncertainty values can be normalized using the simulation results and the values can be used to evaluate different system designs. A prototype system is established, and two case studies have been carried out. The case of an inverted pendulum system validates the effectiveness of the proposed method, and the case of an oil sump design shows the practicability when two or more design plans need to be compared. This research can be used to evaluate the uncertainty of complex engineered systems completely relying on data, and is ideally suited for plan selection and performance analysis in system design.

  14. A Statistical Physics Characterization of the Complex Systems Dynamics: Quantifying Complexity from Spatio-Temporal Interactions

    NASA Astrophysics Data System (ADS)

    Koorehdavoudi, Hana; Bogdan, Paul

    2016-06-01

    Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity.

  15. A Statistical Physics Characterization of the Complex Systems Dynamics: Quantifying Complexity from Spatio-Temporal Interactions

    PubMed Central

    Koorehdavoudi, Hana; Bogdan, Paul

    2016-01-01

    Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity. PMID:27297496

  16. Please Come to New England: Slow Growth Spells Trouble for Local Schools

    ERIC Educational Resources Information Center

    Francese, Peter

    2002-01-01

    New England may be the wealthiest region in the United States, but it is also the oldest and slowest-growing, and among the least diverse. These peculiar demographic characteristics combined with New England's history of heavy reliance on local governments suggest future problems for the region's educational systems. Since most public schools in…

  17. Education Reform in England: Quality and Equity in the Performative School

    ERIC Educational Resources Information Center

    Wilkins, Chris

    2015-01-01

    This article argues that contradictory forces affect teachers' work in the neo-liberal school system in England, with a diversity of governance models alongside increasingly dominant orthodoxies of what constitutes 'effective practice and leadership'. School reforms in England have focused on increasing overall attainment and on closing the…

  18. Market-Oriented School Reform in England and Finland: School Choice, Finance and Governance

    ERIC Educational Resources Information Center

    West, Anne; Ylonen, Annamari

    2010-01-01

    This paper explores the introduction of market-oriented reforms into school-based education in England and Finland. The contexts into which reforms were introduced differed, with a fully comprehensive system being in place in Finland but not in England; the motives were also different; and different trajectories have since been followed. Whilst…

  19. Automated Derivation of Complex System Constraints from User Requirements

    NASA Technical Reports Server (NTRS)

    Muery, Kim; Foshee, Mark; Marsh, Angela

    2006-01-01

    International Space Station (ISS) payload developers submit their payload science requirements for the development of on-board execution timelines. The ISS systems required to execute the payload science operations must be represented as constraints for the execution timeline. Payload developers use a software application, User Requirements Collection (URC), to submit their requirements by selecting a simplified representation of ISS system constraints. To fully represent the complex ISS systems, the constraints require a level of detail that is beyond the insight of the payload developer. To provide the complex representation of the ISS system constraints, HOSC operations personnel, specifically the Payload Activity Requirements Coordinators (PARC), manually translate the payload developers simplified constraints into detailed ISS system constraints used for scheduling the payload activities in the Consolidated Planning System (CPS). This paper describes the implementation for a software application, User Requirements Integration (URI), developed to automate the manual ISS constraint translation process.

  20. Novel measures based on the Kolmogorov complexity for use in complex system behavior studies and time series analysis

    NASA Astrophysics Data System (ADS)

    Mihailović, Dragutin T.; Mimić, Gordan; Nikolić-Djorić, Emilija; Arsenić, Ilija

    2015-01-01

    We propose novel metrics based on the Kolmogorov complexity for use in complex system behavior studies and time series analysis. We consider the origins of the Kolmogorov complexity and discuss its physical meaning. To get better insights into the nature of complex systems and time series analysis we introduce three novel measures based on the Kolmogorov complexity: (i) the Kolmogorov complexity spectrum, (ii) the Kolmogorov complexity spectrum highest value and (iii) the overall Kolmogorov complexity. The characteristics of these measures have been tested using a generalized logistic equation. Finally, the proposed measures have been applied to different time series originating from: a model output (the biochemical substance exchange in a multi-cell system), four different geophysical phenomena (dynamics of: river flow, long term precipitation, indoor 222Rn concentration and UV radiation dose) and the economy (stock price dynamics). The results obtained offer deeper insights into the complexity of system dynamics and time series analysis with the proposed complexity measures.

  1. Stephen Jay Kline on systems, or physics, complex systems, and the gap between.

    SciTech Connect

    Campbell, Philip LaRoche

    2011-06-01

    At the end of his life, Stephen Jay Kline, longtime professor of mechanical engineering at Stanford University, completed a book on how to address complex systems. The title of the book is 'Conceptual Foundations of Multi-Disciplinary Thinking' (1995), but the topic of the book is systems. Kline first establishes certain limits that are characteristic of our conscious minds. Kline then establishes a complexity measure for systems and uses that complexity measure to develop a hierarchy of systems. Kline then argues that our minds, due to their characteristic limitations, are unable to model the complex systems in that hierarchy. Computers are of no help to us here. Our attempts at modeling these complex systems are based on the way we successfully model some simple systems, in particular, 'inert, naturally-occurring' objects and processes, such as what is the focus of physics. But complex systems overwhelm such attempts. As a result, the best we can do in working with these complex systems is to use a heuristic, what Kline calls the 'Guideline for Complex Systems.' Kline documents the problems that have developed due to 'oversimple' system models and from the inappropriate application of a system model from one domain to another. One prominent such problem is the Procrustean attempt to make the disciplines that deal with complex systems be 'physics-like.' Physics deals with simple systems, not complex ones, using Kline's complexity measure. The models that physics has developed are inappropriate for complex systems. Kline documents a number of the wasteful and dangerous fallacies of this type.

  2. [Cellular immunotherapy: complexity of immune system and industrial development].

    PubMed

    Abastado, J-P

    2003-01-01

    Cell immunotherapy aims at treating patients by stimulating their own immune system using appropriate cells. This approach is one of the most promising therapeutic strategy against cancer. The use of cells, the mobilization of a system, the targeting of interactions between the immune system and the tumor constitute the hallmarks of complexity, an area of intense academic and industrial research during the past twenty years. The present article reviews some unique characteristics of the industrial development of these cell drugs.

  3. Exploiting sparsity and equation-free architectures in complex systems

    NASA Astrophysics Data System (ADS)

    Proctor, J. L.; Brunton, S. L.; Brunton, B. W.; Kutz, J. N.

    2014-12-01

    Complex systems exhibit dynamics that typically evolve on low-dimensional attractors and may have sparse representation in some optimal basis. Recently developed compressive sensing techniques exploit this sparsity for state reconstruction and/or categorical identification from limited measurements. We argue that data-driven dimensionality reduction methods integrate naturally with sparse sensing in the context of complex systems. This framework works equally well with a physical model or in an equation-free context, where data is available but the governing equations may be unknown. We demonstrate the advantages of combining these methods on three prototypical examples: classification of dynamical regimes, optimal sensor placement, and equation-free dynamic model reduction. These examples motivate the potentially transformative role that state-of-the-art data methods and machine learning can play in the analysis of complex systems.

  4. State analysis requirements database for engineering complex embedded systems

    NASA Technical Reports Server (NTRS)

    Bennett, Matthew B.; Rasmussen, Robert D.; Ingham, Michel D.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer's intent, potentially leading to software errors. This problem is addressed by a systems engineering tool called the State Analysis Database, which provides a tool for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using the State Analysis Database.

  5. Complex systems dynamics in aging: new evidence, continuing questions.

    PubMed

    Cohen, Alan A

    2016-02-01

    There have long been suggestions that aging is tightly linked to the complex dynamics of the physiological systems that maintain homeostasis, and in particular to dysregulation of regulatory networks of molecules. This review synthesizes recent work that is starting to provide evidence for the importance of such complex systems dynamics in aging. There is now clear evidence that physiological dysregulation--the gradual breakdown in the capacity of complex regulatory networks to maintain homeostasis--is an emergent property of these regulatory networks, and that it plays an important role in aging. It can be measured simply using small numbers of biomarkers. Additionally, there are indications of the importance during aging of emergent physiological processes, functional processes that cannot be easily understood through clear metabolic pathways, but can nonetheless be precisely quantified and studied. The overall role of such complex systems dynamics in aging remains an important open question, and to understand it future studies will need to distinguish and integrate related aspects of aging research, including multi-factorial theories of aging, systems biology, bioinformatics, network approaches, robustness, and loss of complexity.

  6. Emergent “quantum” theory in complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Minic, Djordje; Pajevic, Sinisa

    2016-03-01

    Motivated by the question of stability, in this paper we argue that an effective quantum-like theory can emerge in complex adaptive systems. In the concrete example of stochastic Lotka-Volterra dynamics, the relevant effective “Planck constant” associated with such emergent “quantum” theory has the dimensions of the square of the unit of time. Such an emergent quantum-like theory has inherently nonclassical stability as well as coherent properties that are not, in principle, endangered by thermal fluctuations and therefore might be of crucial importance in complex adaptive systems.

  7. Agent Technology, Complex Adaptive Systems, and Autonomic Systems: Their Relationships

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Rash, James; Rouff, Chistopher; Hincheny, Mike

    2004-01-01

    To reduce the cost of future spaceflight missions and to perform new science, NASA has been investigating autonomous ground and space flight systems. These goals of cost reduction have been further complicated by nanosatellites for future science data-gathering which will have large communications delays and at times be out of contact with ground control for extended periods of time. This paper describes two prototype agent-based systems, the Lights-out Ground Operations System (LOGOS) and the Agent Concept Testbed (ACT), and their autonomic properties that were developed at NASA Goddard Space Flight Center (GSFC) to demonstrate autonomous operations of future space flight missions. The paper discusses the architecture of the two agent-based systems, operational scenarios of both, and the two systems autonomic properties.

  8. Balancing Management and Leadership in Complex Health Systems

    PubMed Central

    Kwamie, Aku

    2015-01-01

    Health systems, particularly those in low- and middle-income countries (LMICs), need stronger management and leadership capacities. Management and leadership are not synonymous, yet should be considered together as there can be too much of one and not enough of the other. In complex adaptive health systems, the multiple interactions and relationships between people and elements of the system mean that management and leadership, so often treated as domains of the individual, are additionally systemic phenomena, emerging from these relational interactions. This brief commentary notes some significant implications for how we can support capacity strengthening interventions for complex management and leadership. These would necessarily move away from competency-based models focused on training for individuals, and would rather encompass longer-term initiatives explicitly focused on systemic goals of accountability, innovation, and learning. PMID:26673472

  9. A comparative study of actinide complexation in three ligand systems with increasing complexity

    NASA Astrophysics Data System (ADS)

    Jeanson, A.; Dahou, S.; Guillaumont, D.; Moisy, P.; Den Auwer, C.; Scheinost, A.; Hennig, C.; Vidaud, C.; Subra, G.; Solari, P. L.

    2009-11-01

    The complexation of thorium, neptunium and plutonium at oxidation state +IV with three ligands of increasing complexity has been investigated. These ligands are relevant for bio inorganic systems. The first ligand is the small nitrilotriacetic acid that often play the role of protecting ligands against hydrolysis. EXAFS results for the Th to Pu series have been correlated to quantum chemical calculations and show an homogeneous behavior of the actinide at oxidation state +IV. For larger ligands, steric effects may become significant and one can ask how the ligand may accommodate the large actinide cation coordination sphere. Model pentapeptides have been synthesized and tested as complexing agents. Comparison with NTA shows that the molecular arrangements are radically different. The third ligand system is transferrin, a diferric metalloptrotein that is well known to coordinate a large variety of cations from transition metals of f-elements. Metalloproteins bear primary, secondary and tertiary structures that all play a crucial role in bonding. At a given oxidation state (+IV), but for various atomic numbers (Th, Np, Pu) EXAFS data at the cation LIII edge exhibit significant coordination discrepancies that are related to a changes in protein geometry. In that sense, the metalloprotein may be viewed as a complex system.

  10. Managing Programmatic Risk for Complex Space System Developments

    NASA Technical Reports Server (NTRS)

    Panetta, Peter V.; Hastings, Daniel; Brumfield, Mark (Technical Monitor)

    2001-01-01

    Risk management strategies have become a recent important research topic to many aerospace organizations as they prepare to develop the revolutionary complex space systems of the future. Future multi-disciplinary complex space systems will make it absolutely essential for organizations to practice a rigorous, comprehensive risk management process, emphasizing thorough systems engineering principles to succeed. Project managers must possess strong leadership skills to direct high quality, cross-disciplinary teams for successfully developing revolutionary space systems that are ever increasing in complexity. Proactive efforts to reduce or eliminate risk throughout a project's lifecycle ideally must be practiced by all technical members in the organization. This paper discusses some of the risk management perspectives that were collected from senior managers and project managers of aerospace and aeronautical organizations by the use of interviews and surveys. Some of the programmatic risks which drive the success or failure of projects are revealed. Key findings lead to a number of insights for organizations to consider for proactively approaching the risks which face current and future complex space systems projects.

  11. Economic Decision Making: Application of the Theory of Complex Systems

    NASA Astrophysics Data System (ADS)

    Kitt, Robert

    In this chapter the complex systems are discussed in the context of economic and business policy and decision making. It will be showed and motivated that social systems are typically chaotic, non-linear and/or non-equilibrium and therefore complex systems. It is discussed that the rapid change in global consumer behaviour is underway, that further increases the complexity in business and management. For policy making under complexity, following principles are offered: openness and international competition, tolerance and variety of ideas, self-reliability and low dependence on external help. The chapter contains four applications that build on the theoretical motivation of complexity in social systems. The first application demonstrates that small economies have good prospects to gain from the global processes underway, if they can demonstrate production flexibility, reliable business ethics and good risk management. The second application elaborates on and discusses the opportunities and challenges in decision making under complexity from macro and micro economic perspective. In this environment, the challenges for corporate management are being also permanently changed: the balance between short term noise and long term chaos whose attractor includes customers, shareholders and employees must be found. The emergence of chaos in economic relationships is demonstrated by a simple system of differential equations that relate the stakeholders described above. The chapter concludes with two financial applications: about debt and risk management. The non-equilibrium economic establishment leads to additional problems by using excessive borrowing; unexpected downturns in economy can more easily kill companies. Finally, the demand for quantitative improvements in risk management is postulated. Development of the financial markets has triggered non-linearity to spike in prices of various production articles such as agricultural and other commodities that has added market

  12. Refined scale-dependent permutation entropy to analyze systems complexity

    NASA Astrophysics Data System (ADS)

    Wu, Shuen-De; Wu, Chiu-Wen; Humeau-Heurtier, Anne

    2016-05-01

    Multiscale entropy (MSE) has become a prevailing method to quantify the complexity of systems. Unfortunately, MSE has a temporal complexity in O(N2) , which is unrealistic for long time series. Moreover, MSE relies on the sample entropy computation which is length-dependent and which leads to large variance and possible undefined entropy values for short time series. Here, we propose and introduce a new multiscale complexity measure, the refined scale-dependent permutation entropy (RSDPE). Through the processing of different kinds of synthetic data and real signals, we show that RSDPE has a behavior close to the one of MSE. Furthermore, RSDPE has a temporal complexity in O(N) . Finally, RSDPE has the advantage of being much less length-dependent than MSE. From all this, we conclude that RSDPE over-performs MSE in terms of computational cost and computational accuracy.

  13. Non-metallocene organometallic complexes and related methods and systems

    DOEpatents

    Agapie, Theodor; Golisz, Suzanne Rose; Tofan, Daniel; Bercaw, John E.

    2010-12-07

    A non-metallocene organometallic complex comprising a tridentate ligand and a metal bonded to a tridentate ligand, wherein two substituted aryl groups in the tridentate ligand are connected to a cyclic group at the ortho position via semi-rigid ring-ring linkages, and selected so to provide the resulting non-metallocene organometallic complex with a C.sub.S geometry, a C.sub.1 geometry, a C.sub.2 geometry or a C.sub.2v geometry. Method for performing olefin polymerization with a non-metallocene organometallic complex as a catalyst, related catalytic systems, tridentate ligand and method for providing a non-metallocene organometallic complex.

  14. Understanding global health governance as a complex adaptive system.

    PubMed

    Hill, Peter S

    2011-01-01

    The transition from international to global health reflects the rapid growth in the numbers and nature of stakeholders in health, as well as the constant change embodied in the process of globalisation itself. This paper argues that global health governance shares the characteristics of complex adaptive systems, with its multiple and diverse players, and their polyvalent and constantly evolving relationships, and rich and dynamic interactions. The sheer quantum of initiatives, the multiple networks through which stakeholders (re)configure their influence, the range of contexts in which development for health is played out - all compound the complexity of this system. This paper maps out the characteristics of complex adaptive systems as they apply to global health governance, linking them to developments in the past two decades, and the multiple responses to these changes. Examining global health governance through the frame of complexity theory offers insight into the current dynamics of governance, and while providing a framework for making meaning of the whole, opens up ways of accessing this complexity through local points of engagement.

  15. Apprenticeships in England: What Next?

    ERIC Educational Resources Information Center

    Hogarth, Terence; Gambin, Lynn; Hasluck, Chris

    2012-01-01

    This paper examines recent development in Apprenticeship training in England. Since the introduction of Modern Apprenticeships in the mid-1990s this form of training has been subject to much analysis and reform. This paper summarises the current situation and highlights some of the challenges and opportunities which face Apprenticeship over the…

  16. Mapping School Types in England

    ERIC Educational Resources Information Center

    Courtney, Steven J.

    2015-01-01

    The number and range of school types in England is increasing rapidly in response to a neoliberal policy agenda aiming to expand choice of provision as a mechanism for raising educational standards. In this paper, I seek to undertake a mapping of these school types in order to describe and explain what is happening. I capture this busy terrain…

  17. Deinstitutionalisation in England. Data Brief

    ERIC Educational Resources Information Center

    Emerson, Eric

    2004-01-01

    The implementation of policies associated with deinstitutionalisation has dominated the development of services for people with intellectual disabilities in most, although not all, of the world's richer countries (Braddock, Emerson, Felce & Stancliffe, 2001; Hatton, Emerson & Kiernan, 1995). In England, traditional large-scale institutional care…

  18. New England After 3 PM

    ERIC Educational Resources Information Center

    Afterschool Alliance, 2007

    2007-01-01

    Some 20 percent of children in New England have no safe, supervised activities after the school day ends each afternoon. These children are in self-care, missing out on opportunities to learn and explore new interests, and at risk for any number of risky behaviors including substance abuse, crime and teen pregnancy. Policy makers, parents and many…

  19. Complexity VIII. Ontology of closure in complex systems: The C* hypothesis and the O° notation

    NASA Astrophysics Data System (ADS)

    Chandler, Jerry LR

    1999-03-01

    Closure is a common characteristic of mathematical, natural and socio-cultural systems. Whether one is describing a graph, a molecule, a cell, a human, or a nation state, closure is implicitly understood. An objective of this paper is to continue a construction of a systematic framework for closure which is sufficient for future quantitative transdisciplinary investigations. A further objective is to extend the Birkhoff-von Neumann criterion for quantum systems to complex natural objects. The C* hypothesis is being constructed to be consistent with algebraic category theory (Ehresmann and Vanbremeersch, 1987, 1997, Chandler, 1990, 1991, Chandler, Ehresmann and Vanbremeersch, 1996). Five aspects of closure will be used to construct a framework for categories of complex systems: 1. Truth functions in mathematics and the natural sciences 2. Systematic descriptions in the mks and O° notations 3. Organizational structures in hierarchical scientific languages 4. Transitive organizational pathways in the causal structures of complex behaviors 5. Composing additive, multiplicative and exponential operations in complex systems Truth functions can be formal or objective or subjective, depending on the complexity of the system and on our capability to represent the fine structure of the system symbolically, observationally or descriptively. "Complete" material representations of the fine structure of a system may allow truth functions to be created over sets of one to one correspondences. Less complete descriptions can support less stringent truth functions based on coherence or subjective judgments. The role of human values in creating and perpetuating truth functions can be placed in context of the degree of fine structure in the system's description. The organization of complex systems are hypothesized to be categorizable into degrees relative to one another, thereby creating an ordering relationship. This ordering relationship is denoted by the symbols: O°1, O°2,O°3

  20. [The dimension of the paradigm of complexity in health systems].

    PubMed

    Fajardo-Ortiz, Guillermo; Fernández-Ortega, Miguel Ángel; Ortiz-Montalvo, Armando; Olivares-Santos, Roberto Antonio

    2015-01-01

    This article presents elements to better understand health systems from the complety paradigm, innovative perspective that offers other ways in the conception of the scientific knowledge prevalent away from linear, characterized by the arise of emerging dissociative and behaviors, based on the intra and trans-disciplinarity concepts such knowledges explain and understand in a different way what happens in the health systems with a view to efficiency and effectiveness. The complexity paradigm means another way of conceptualizing the knowledge, is different from the prevalent epistemology, is still under construction does not separate, not isolated, is not reductionist, or fixed, does not solve the problems, but gives other bases to know them and study them, is a different strategy, a perspective that has basis in the systems theory, informatics and cybernetics beyond traditional knowledge, the positive logics, the newtonian physics and symmetric mathematics, in which everything is centered and balanced, joint the "soft sciences and hard sciences", it has present the Social Determinants of Health and organizational culture. Under the complexity paradigm the health systems are identified with the following concepts: entropy, neguentropy, the thermodynamic second law, attractors, chaos theory, fractals, selfmanagement and self-organization, emerging behaviors, percolation, uncertainty, networks and robusteness; such expressions open new possibilities to improve the management and better understanding of the health systems, giving rise to consider health systems as complex adaptive systems. PMID:25982615

  1. [The dimension of the paradigm of complexity in health systems].

    PubMed

    Fajardo-Ortiz, Guillermo; Fernández-Ortega, Miguel Ángel; Ortiz-Montalvo, Armando; Olivares-Santos, Roberto Antonio

    2015-01-01

    This article presents elements to better understand health systems from the complety paradigm, innovative perspective that offers other ways in the conception of the scientific knowledge prevalent away from linear, characterized by the arise of emerging dissociative and behaviors, based on the intra and trans-disciplinarity concepts such knowledges explain and understand in a different way what happens in the health systems with a view to efficiency and effectiveness. The complexity paradigm means another way of conceptualizing the knowledge, is different from the prevalent epistemology, is still under construction does not separate, not isolated, is not reductionist, or fixed, does not solve the problems, but gives other bases to know them and study them, is a different strategy, a perspective that has basis in the systems theory, informatics and cybernetics beyond traditional knowledge, the positive logics, the newtonian physics and symmetric mathematics, in which everything is centered and balanced, joint the "soft sciences and hard sciences", it has present the Social Determinants of Health and organizational culture. Under the complexity paradigm the health systems are identified with the following concepts: entropy, neguentropy, the thermodynamic second law, attractors, chaos theory, fractals, selfmanagement and self-organization, emerging behaviors, percolation, uncertainty, networks and robusteness; such expressions open new possibilities to improve the management and better understanding of the health systems, giving rise to consider health systems as complex adaptive systems.

  2. The semiotics of control and modeling relations in complex systems.

    PubMed

    Joslyn, C

    2001-01-01

    We provide a conceptual analysis of ideas and principles from the systems theory discourse which underlie Pattee's semantic or semiotic closure, which is itself foundational for a school of theoretical biology derived from systems theory and cybernetics, and is now being related to biological semiotics and explicated in the relational biological school of Rashevsky and Rosen. Atomic control systems and models are described as the canonical forms of semiotic organization, sharing measurement relations, but differing topologically in that control systems are circularly and models linearly related to their environments. Computation in control systems is introduced, motivating hierarchical decomposition, hybrid modeling and control systems, and anticipatory or model-based control. The semiotic relations in complex control systems are described in terms of relational constraints, and rules and laws are distinguished as contingent and necessary functional entailments, respectively. Finally, selection as a meta-level of constraint is introduced as the necessary condition for semantic relations in control systems and models.

  3. Applications of fidelity measures to complex quantum systems.

    PubMed

    Wimberger, Sandro

    2016-06-13

    We revisit fidelity as a measure for the stability and the complexity of the quantum motion of single-and many-body systems. Within the context of cold atoms, we present an overview of applications of two fidelities, which we call static and dynamical fidelity, respectively. The static fidelity applies to quantum problems which can be diagonalized since it is defined via the eigenfunctions. In particular, we show that the static fidelity is a highly effective practical detector of avoided crossings characterizing the complexity of the systems and their evolutions. The dynamical fidelity is defined via the time-dependent wave functions. Focusing on the quantum kicked rotor system, we highlight a few practical applications of fidelity measurements in order to better understand the large variety of dynamical regimes of this paradigm of a low-dimensional system with mixed regular-chaotic phase space. PMID:27140967

  4. LaserCom System Architecture With Reduced Complexity

    NASA Technical Reports Server (NTRS)

    Lesh, James R. (Inventor); Chen, Chien-Chung (Inventor); Ansari, Homa-Yoon (Inventor)

    1996-01-01

    Spatial acquisition and precision beam pointing functions are critical to spaceborne laser communication systems. In the present invention a single high bandwidth CCD detector is used to perform both spatial acquisition and tracking functions. Compared to previous lasercom hardware design, the array tracking concept offers reduced system complexity by reducing the number of optical elements in the design. Specifically, the design requires only one detector and one beam steering mechanism. It also provides means to optically close the point-ahead control loop. The technology required for high bandwidth array tracking was examined and shown to be consistent with current state of the art. The single detector design can lead to a significantly reduced system complexity and a lower system cost.

  5. Complex-compound low-temperature TES system

    SciTech Connect

    Rockenfeller, U.

    1989-03-01

    Development of a complex-compound low-temperature TES system is described herein from basic chemical principles through current bench scale system development. Important application engineering issues and an economic outlook are addressed as well. The system described uses adsorption reactions between solid metal inorganic salts and ammonia refrigerant. It is the coordinative nature of these reactions that allows for storage of ammonia refrigerant within the solid salt crystals that function as a chemical compressor during on peak periods (substituting the mechanical compressor) and release ammonia during off peak periods while a mechanical vapor compression system provides the necessary reactor pressure and heat.

  6. Computer modeling of properties of complex molecular systems

    SciTech Connect

    Kulkova, E.Yu.; Khrenova, M.G.; Polyakov, I.V.

    2015-03-10

    Large molecular aggregates present important examples of strongly nonhomogeneous systems. We apply combined quantum mechanics / molecular mechanics approaches that assume treatment of a part of the system by quantum-based methods and the rest of the system with conventional force fields. Herein we illustrate these computational approaches by two different examples: (1) large-scale molecular systems mimicking natural photosynthetic centers, and (2) components of prospective solar cells containing titan dioxide and organic dye molecules. We demonstrate that modern computational tools are capable to predict structures and spectra of such complex molecular aggregates.

  7. Mathematical approaches for complexity/predictivity trade-offs in complex system models : LDRD final report.

    SciTech Connect

    Goldsby, Michael E.; Mayo, Jackson R.; Bhattacharyya, Arnab; Armstrong, Robert C.; Vanderveen, Keith

    2008-09-01

    The goal of this research was to examine foundational methods, both computational and theoretical, that can improve the veracity of entity-based complex system models and increase confidence in their predictions for emergent behavior. The strategy was to seek insight and guidance from simplified yet realistic models, such as cellular automata and Boolean networks, whose properties can be generalized to production entity-based simulations. We have explored the usefulness of renormalization-group methods for finding reduced models of such idealized complex systems. We have prototyped representative models that are both tractable and relevant to Sandia mission applications, and quantified the effect of computational renormalization on the predictive accuracy of these models, finding good predictivity from renormalized versions of cellular automata and Boolean networks. Furthermore, we have theoretically analyzed the robustness properties of certain Boolean networks, relevant for characterizing organic behavior, and obtained precise mathematical constraints on systems that are robust to failures. In combination, our results provide important guidance for more rigorous construction of entity-based models, which currently are often devised in an ad-hoc manner. Our results can also help in designing complex systems with the goal of predictable behavior, e.g., for cybersecurity.

  8. Risk-return relationship in a complex adaptive system.

    PubMed

    Song, Kunyu; An, Kenan; Yang, Guang; Huang, Jiping

    2012-01-01

    For survival and development, autonomous agents in complex adaptive systems involving the human society must compete against or collaborate with others for sharing limited resources or wealth, by using different methods. One method is to invest, in order to obtain payoffs with risk. It is a common belief that investments with a positive risk-return relationship (namely, high risk high return and vice versa) are dominant over those with a negative risk-return relationship (i.e., high risk low return and vice versa) in the human society; the belief has a notable impact on daily investing activities of investors. Here we investigate the risk-return relationship in a model complex adaptive system, in order to study the effect of both market efficiency and closeness that exist in the human society and play an important role in helping to establish traditional finance/economics theories. We conduct a series of computer-aided human experiments, and also perform agent-based simulations and theoretical analysis to confirm the experimental observations and reveal the underlying mechanism. We report that investments with a negative risk-return relationship have dominance over those with a positive risk-return relationship instead in such a complex adaptive systems. We formulate the dynamical process for the system's evolution, which helps to discover the different role of identical and heterogeneous preferences. This work might be valuable not only to complexity science, but also to finance and economics, to management and social science, and to physics. PMID:22479416

  9. Risk-return relationship in a complex adaptive system.

    PubMed

    Song, Kunyu; An, Kenan; Yang, Guang; Huang, Jiping

    2012-01-01

    For survival and development, autonomous agents in complex adaptive systems involving the human society must compete against or collaborate with others for sharing limited resources or wealth, by using different methods. One method is to invest, in order to obtain payoffs with risk. It is a common belief that investments with a positive risk-return relationship (namely, high risk high return and vice versa) are dominant over those with a negative risk-return relationship (i.e., high risk low return and vice versa) in the human society; the belief has a notable impact on daily investing activities of investors. Here we investigate the risk-return relationship in a model complex adaptive system, in order to study the effect of both market efficiency and closeness that exist in the human society and play an important role in helping to establish traditional finance/economics theories. We conduct a series of computer-aided human experiments, and also perform agent-based simulations and theoretical analysis to confirm the experimental observations and reveal the underlying mechanism. We report that investments with a negative risk-return relationship have dominance over those with a positive risk-return relationship instead in such a complex adaptive systems. We formulate the dynamical process for the system's evolution, which helps to discover the different role of identical and heterogeneous preferences. This work might be valuable not only to complexity science, but also to finance and economics, to management and social science, and to physics.

  10. Complex Adaptive Systems as Metaphors for Organizational Management

    ERIC Educational Resources Information Center

    Palmberg, Klara

    2009-01-01

    Purpose: The purpose of this paper is to explore the concept of complex adaptive systems (CAS) from the perspective of managing organizations, to describe and explore the management principles in a case study of an organization with unconventional ways of management and to present a tentative model for managing organizations as CAS--system…

  11. Complex Teacher Evaluation Systems Can Produce Negative Perceptions

    ERIC Educational Resources Information Center

    Schumacher, Gary

    2010-01-01

    The purpose of this study was to determine teacher perceptions of the impact on instructional practice when using a complex, standards-based performance evaluation system. The study used expectancy theory to investigate teacher expectancy (did they believe they could enhance their practice to the identified program standards?), instrumentality…

  12. EVALUATING DISCONTINUITIES IN COMPLEX SYSTEMS: TOWARD QUANTITATIVE MEASURE OF RESILIENCE

    EPA Science Inventory

    The textural discontinuity hypothesis (TDH) is based on the observation that animal body mass distributions exhibit discontinuities that may reflect the texture of the landscape available for exploitation. This idea has been extended to other complex systems, hinting that the ide...

  13. Mining Students' Inquiry Actions for Understanding of Complex Systems

    ERIC Educational Resources Information Center

    Levy, Sharona T.; Wilensky, Uri

    2011-01-01

    This study lies at an intersection between advancing educational data mining methods for detecting students' knowledge-in-action and the broader question of how conceptual and mathematical forms of knowing interact in exploring complex chemical systems. More specifically, it investigates students' inquiry actions in three computer-based models of…

  14. Architectural Analysis of Complex Evolving Systems of Systems

    NASA Technical Reports Server (NTRS)

    Lindvall, Mikael; Stratton, William C.; Sibol, Deane E.; Ray, Arnab; Ackemann, Chris; Yonkwa, Lyly; Ganesan, Dharma

    2009-01-01

    The goal of this collaborative project between FC-MD, APL, and GSFC and supported by NASA IV&V Software Assurance Research Program (SARP), was to develop a tool, Dynamic SAVE, or Dyn-SAVE for short, for analyzing architectures of systems of systems. The project team was comprised of the principal investigator (PI) from FC-MD and four other FC-MD scientists (part time) and several FC-MD students (full time), as well as, two APL software architects (part time), and one NASA POC (part time). The PI and FC-MD scientists together with APL architects were responsible for requirements analysis, and for applying and evaluating the Dyn-SAVE tool and method. The PI and a group of FC-MD scientists were responsible for improving the method and conducting outreach activities, while another group of FC-MD scientists were responsible for development and improvement of the tool. Oversight and reporting was conducted by the PI and NASA POC. The project team produced many results including several prototypes of the Dyn-SAVE tool and method, several case studies documenting how the tool and method was applied to APL s software systems, and several published papers in highly respected conferences and journals. Dyn-SAVE as developed and enhanced throughout this research period, is a software tool intended for software developers and architects, software integration testers, and persons who need to analyze software systems from the point of view of how it communicates with other systems. Using the tool, the user specifies the planned communication behavior of the system modeled as a sequence diagram. The user then captures and imports the actual communication behavior of the system, which is then converted and visualized as a sequence diagram by Dyn-SAVE. After mapping the planned to the actual and specifying parameter and timing constraints, Dyn-SAVE detects and highlights deviations between the planned and the actual behavior. Requirements based on the need to analyze two inter-system

  15. A formulation of metamodel implementation processes for complex systems design

    NASA Astrophysics Data System (ADS)

    Daberkow, Debora Daniela

    Complex systems design poses an interesting as well as demanding information management problem for system level integration and design. The high interconnectivity of disciplines combined with the specific knowledge and expertise in each of these calls for a system level view that is broad, as in spanning across all disciplines, while at the same time detailed enough to do the disciplinary knowledge justice. The treatment of this requires highly evolved information management and decision approaches, which result in design methodologies that can handle this high degree of complexity. The solution is to create models within the design process, which predict meaningful metrics representative of the various disciplinary analyses that can be quickly evaluated and thus serve in system level decision making and optimization. Such models approximate the physics-based analysis codes used in each of the disciplines and are called metamodels since effectively, they model the (physics-based) models on which the disciplinary analysis codes are based. The thesis formulates a new metamodel implementation process to be used in complex systems design, utilizing a Gaussian Process prediction method. It is based on a Bayesian probability and inference approach and as such returns a variance prediction along with the most likely value, thus giving an estimate also for the confidence in the prediction. Within this thesis, the applicability and appropriateness at the theoretical as well as practical level are investigated, and proof-of-concept implementations at the disciplinary and system levels are provided.

  16. Statistical tools for prognostics and health management of complex systems

    SciTech Connect

    Collins, David H; Huzurbazar, Aparna V; Anderson - Cook, Christine M

    2010-01-01

    Prognostics and Health Management (PHM) is increasingly important for understanding and managing today's complex systems. These systems are typically mission- or safety-critical, expensive to replace, and operate in environments where reliability and cost-effectiveness are a priority. We present background on PHM and a suite of applicable statistical tools and methods. Our primary focus is on predicting future states of the system (e.g., the probability of being operational at a future time, or the expected remaining system life) using heterogeneous data from a variety of sources. We discuss component reliability models incorporating physical understanding, condition measurements from sensors, and environmental covariates; system reliability models that allow prediction of system failure time distributions from component failure models; and the use of Bayesian techniques to incorporate expert judgments into component and system models.

  17. Cognitive robotic system for learning of complex visual stimuli

    NASA Astrophysics Data System (ADS)

    Potapov, A. S.; Rozhkov, A. S.

    2013-05-01

    The problem of learning of complex visual stimuli in cognitive robotics is considered. These stimuli should be selected on the base of rules supporting arbitrary comparisons of stimulus features with features of other salient objects (context). New perceptual knowledge representation based on the predicate logic is implemented to express such rules. Computable predicates are provided by low-level vision system. The rules are constructed using genetic algorithms on the base of a set of examples obtained by a robot during consequent trials. Dependence between the number of necessary trials and rule complexity is studied.

  18. Complex systems and the technology of variability analysis

    PubMed Central

    Seely, Andrew JE; Macklem, Peter T

    2004-01-01

    Characteristic patterns of variation over time, namely rhythms, represent a defining feature of complex systems, one that is synonymous with life. Despite the intrinsic dynamic, interdependent and nonlinear relationships of their parts, complex biological systems exhibit robust systemic stability. Applied to critical care, it is the systemic properties of the host response to a physiological insult that manifest as health or illness and determine outcome in our patients. Variability analysis provides a novel technology with which to evaluate the overall properties of a complex system. This review highlights the means by which we scientifically measure variation, including analyses of overall variation (time domain analysis, frequency distribution, spectral power), frequency contribution (spectral analysis), scale invariant (fractal) behaviour (detrended fluctuation and power law analysis) and regularity (approximate and multiscale entropy). Each technique is presented with a definition, interpretation, clinical application, advantages, limitations and summary of its calculation. The ubiquitous association between altered variability and illness is highlighted, followed by an analysis of how variability analysis may significantly improve prognostication of severity of illness and guide therapeutic intervention in critically ill patients. PMID:15566580

  19. Looking the World from Inside:. Intrinsic Geometry of Complex Systems

    NASA Astrophysics Data System (ADS)

    Boi, L.

    2012-12-01

    In this paper we shall address some meeting points between geometry and biology, in order to show that geometrical things and transformations take part intrinsically in the living systems. We focus on some features of macromolecular structures like DNA-proteins complexes. All things we speak about take place in the 3-dimensional space of a living cell and particularly in its nucleus, which of course interacts in many ways and at different levels with the whole cell, its cytoplasm and the organelles. Ideally, we think we should rather consider, instead of a 3-dimensional space, a configuration space characterized by all its phase spaces, since a living being is a very complex dynamical system, but this would be a too difficult, impossible task. This is of course a very partial view, an oversimplification, of what really happen in our organisms. Nevertheless, We believe that in biology we are today facing the following problem: how small or local changes in a living system do affect the global behaviour and response of the whole organisms? We search for an answer by arguing that mostly overall features of living systems are emergent properties of organization and regulation defined at the macroscopic level of their morphology and physiological behaviours, and also by showing that in complex living systems self-organization ensures robustness without loss of plasticity, in the sense that perturbations in the interactions properties of its single parts generally do not have damaging consequences on the living form as a whole.

  20. Complex systems and the technology of variability analysis.

    PubMed

    Seely, Andrew J E; Macklem, Peter T

    2004-12-01

    Characteristic patterns of variation over time, namely rhythms, represent a defining feature of complex systems, one that is synonymous with life. Despite the intrinsic dynamic, interdependent and nonlinear relationships of their parts, complex biological systems exhibit robust systemic stability. Applied to critical care, it is the systemic properties of the host response to a physiological insult that manifest as health or illness and determine outcome in our patients. Variability analysis provides a novel technology with which to evaluate the overall properties of a complex system. This review highlights the means by which we scientifically measure variation, including analyses of overall variation (time domain analysis, frequency distribution, spectral power), frequency contribution (spectral analysis), scale invariant (fractal) behaviour (detrended fluctuation and power law analysis) and regularity (approximate and multiscale entropy). Each technique is presented with a definition, interpretation, clinical application, advantages, limitations and summary of its calculation. The ubiquitous association between altered variability and illness is highlighted, followed by an analysis of how variability analysis may significantly improve prognostication of severity of illness and guide therapeutic intervention in critically ill patients. PMID:15566580

  1. Topics in Complexity: From Physical to Life Science Systems

    NASA Astrophysics Data System (ADS)

    Charry, Pedro David Manrique

    Complexity seeks to unwrap the mechanisms responsible for collective phenomena across the physical, biological, chemical, economic and social sciences. This thesis investigates real-world complex dynamical systems ranging from the quantum/natural domain to the social domain. The following novel understandings are developed concerning these systems' out-of-equilibrium and nonlinear behavior. Standard quantum techniques show divergent outcomes when a quantum system comprising more than one subunit is far from thermodynamic equilibrium. Abnormal photon inter-arrival times help fulfill the metabolic needs of a terrestrial photosynthetic bacterium. Spatial correlations within incident light can act as a driving mechanism for an organism's adaptation toward more ordered structures. The group dynamics of non-identical objects, whose assembly rules depend on mutual heterogeneity, yield rich transition dynamics between isolation and cohesion, with the cohesion regime reproducing a particular universal pattern commonly found in many real-world systems. Analyses of covert networks reveal collective gender superiority in the connectivity that provides benefits for system robustness and survival. Nodal migration in a network generates complex contagion profiles that lie beyond traditional approaches and yet resemble many modern-day outbreaks.

  2. Formal Requirements-Based Programming for Complex Systems

    NASA Technical Reports Server (NTRS)

    Rash, James L.; Hinchey, Michael G.; Rouff, Christopher A.; Gracanin, Denis

    2005-01-01

    Computer science as a field has not yet produced a general method to mechanically transform complex computer system requirements into a provably equivalent implementation. Such a method would be one major step towards dealing with complexity in computing, yet it remains the elusive holy grail of system development. Currently available tools and methods that start with a formal model of a system and mechanically produce a provably equivalent implementation are valuable but not sufficient. The gap that such tools and methods leave unfilled is that the formal models cannot be proven to be equivalent to the system requirements as originated by the customer For the classes of complex systems whose behavior can be described as a finite (but significant) set of scenarios, we offer a method for mechanically transforming requirements (expressed in restricted natural language, or appropriate graphical notations) into a provably equivalent formal model that can be used as the basis for code generation and other transformations. While other techniques are available, this method is unique in offering full mathematical tractability while using notations and techniques that are well known and well trusted. We illustrate the application of the method to an example procedure from the Hubble Robotic Servicing Mission currently under study and preliminary formulation at NASA Goddard Space Flight Center.

  3. A duality framework for stochastic optimal control of complex systems

    DOE PAGES

    Malikopoulos, Andreas A.

    2016-01-01

    In this study, we address the problem of minimizing the long-run expected average cost of a complex system consisting of interactive subsystems. We formulate a multiobjective optimization problem of the one-stage expected costs of the subsystems and provide a duality framework to prove that the control policy yielding the Pareto optimal solution minimizes the average cost criterion of the system. We provide the conditions of existence and a geometric interpretation of the solution. For practical situations having constraints consistent with those studied here, our results imply that the Pareto control policy may be of value when we seek to derivemore » online the optimal control policy in complex systems.« less

  4. Quantum-information processing in disordered and complex quantum systems

    SciTech Connect

    Sen, Aditi; Sen, Ujjwal; Ahufinger, Veronica; Briegel, Hans J.; Sanpera, Anna; Lewenstein, Maciej

    2006-12-15

    We study quantum information processing in complex disordered many body systems that can be implemented by using lattices of ultracold atomic gases and trapped ions. We demonstrate, first in the short range case, the generation of entanglement and the local realization of quantum gates in a disordered magnetic model describing a quantum spin glass. We show that in this case it is possible to achieve fidelities of quantum gates higher than in the classical case. Complex systems with long range interactions, such as ions chains or dipolar atomic gases, can be used to model neural network Hamiltonians. For such systems, where both long range interactions and disorder appear, it is possible to generate long range bipartite entanglement. We provide an efficient analytical method to calculate the time evolution of a given initial state, which in turn allows us to calculate its quantum correlations.

  5. Structural limits for evolutive capacities in complex molecular systems.

    PubMed

    Bergareche, A M; Ostolaza, J F

    1990-01-01

    The possibilities of evolution for a system with and without a code of translation from nucleic acids into proteins are evaluated. Our interest is mainly centred on the enzymatic RNA case since this molecule has, at the same time, reproductive and functional properties. After scanning the evolutive capacities of the enzymatic RNAs, including the possibility to play the role of "synthetase" which would match nucleic acids with amino acids as a transition step towards a code, we will try to show that due to their own functional limitative factors, the matching system (code) is necessary. This would be the only way to transform the formal complexity--complexity which has not entered into action before the translation process--into functional information to drive the instructive self-reproductive process. Once this stage is reached, the system could evolve without a limit.

  6. Systems Engineering Metrics: Organizational Complexity and Product Quality Modeling

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.

    1997-01-01

    Innovative organizational complexity and product quality models applicable to performance metrics for NASA-MSFC's Systems Analysis and Integration Laboratory (SAIL) missions and objectives are presented. An intensive research effort focuses on the synergistic combination of stochastic process modeling, nodal and spatial decomposition techniques, organizational and computational complexity, systems science and metrics, chaos, and proprietary statistical tools for accelerated risk assessment. This is followed by the development of a preliminary model, which is uniquely applicable and robust for quantitative purposes. Exercise of the preliminary model using a generic system hierarchy and the AXAF-I architectural hierarchy is provided. The Kendall test for positive dependence provides an initial verification and validation of the model. Finally, the research and development of the innovation is revisited, prior to peer review. This research and development effort results in near-term, measurable SAIL organizational and product quality methodologies, enhanced organizational risk assessment and evolutionary modeling results, and 91 improved statistical quantification of SAIL productivity interests.

  7. Computer models of complex multiloop branched pipeline systems

    NASA Astrophysics Data System (ADS)

    Kudinov, I. V.; Kolesnikov, S. V.; Eremin, A. V.; Branfileva, A. N.

    2013-11-01

    This paper describes the principal theoretical concepts of the method used for constructing computer models of complex multiloop branched pipeline networks, and this method is based on the theory of graphs and two Kirchhoff's laws applied to electrical circuits. The models make it possible to calculate velocities, flow rates, and pressures of a fluid medium in any section of pipeline networks, when the latter are considered as single hydraulic systems. On the basis of multivariant calculations the reasons for existing problems can be identified, the least costly methods of their elimination can be proposed, and recommendations for planning the modernization of pipeline systems and construction of their new sections can be made. The results obtained can be applied to complex pipeline systems intended for various purposes (water pipelines, petroleum pipelines, etc.). The operability of the model has been verified on an example of designing a unified computer model of the heat network for centralized heat supply of the city of Samara.

  8. Intensity approximation of random fluctuation in complex systems

    NASA Astrophysics Data System (ADS)

    Yulmetyev, R. M.; Gafarov, F. M.; Yulmetyeva, D. G.; Emeljanova, N. A.

    2002-01-01

    The Markov and non-Markov processes in complex systems are examined with the help of dynamical information Shannon entropy method. Here we consider the essential role of two mutually independent channels of entropy involving creation of correlation and annihilation of correlation. The developed method has been used to analyze the intensity fluctuation of the complex systems of various nature: in psychology (to analyze numerical and pattern short-time human memory, to study the effect of stress on the parameters of the dynamical taping-test) and in cardiology (to analyze the random dynamics of RR-intervals in human ECG's and to diagnose various diseases of human cardiovascular systems). The received results show that the application of intensity approximation allows to improve essentially the diagnostics of parameters in the evolution of human dynamic states.

  9. Control of complex dynamics and chaos in distributed parameter systems

    SciTech Connect

    Chakravarti, S.; Marek, M.; Ray, W.H.

    1995-12-31

    This paper discusses a methodology for controlling complex dynamics and chaos in distributed parameter systems. The reaction-diffusion system with Brusselator kinetics, where the torus-doubling or quasi-periodic (two characteristic incommensurate frequencies) route to chaos exists in a defined range of parameter values, is used as an example. Poincare maps are used for characterization of quasi-periodic and chaotic attractors. The dominant modes or topos, which are inherent properties of the system, are identified by means of the Singular Value Decomposition. Tested modal feedback control schemas based on identified dominant spatial modes confirm the possibility of stabilization of simple quasi-periodic trajectories in the complex quasi-periodic or chaotic spatiotemporal patterns.

  10. STS 51-F Mission Specialist Anthony England trains on RMS

    NASA Technical Reports Server (NTRS)

    1985-01-01

    STS 51-F Mission Specialist Anthony England trains on remote manipulator system (RMS) in the Shuttle mockup and integration laboratory in bldg 9A. He is using the closed circuit television monitors on his right to view the operations he is performing with the RMS.

  11. Demographic Demise: The Declining Young Adult Population in New England

    ERIC Educational Resources Information Center

    Gittell, Ross

    2007-01-01

    Young adult workers provide businesses with the dynamic labor force and fresh ideas they need to innovate and grow. With their contributions to cultural, intellectual and social life, young adults also make New England a vibrant and interesting place to live. Young families support local schools and demand a strong educational system. Yet New…

  12. The Uncertain Future of Comprehensive Schooling in England

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This is an article about secondary schools in England, and what type of school is fair and efficient for a national education system. It discusses what "fair" could mean in this context, summarises some key policy revisions since 1944 in this light, and reminds readers of the damage caused by unfairness within education. Most notably it…

  13. Fatal Child Maltreatment in England, 2005-2009

    ERIC Educational Resources Information Center

    Sidebotham, Peter; Bailey, Sue; Belderson, Pippa; Brandon, Marian

    2011-01-01

    Objective: This paper presents comprehensive and up-to-date data covering 4 years of Serious Case Reviews into fatal child maltreatment in England. Methods: Information on all notified cases of fatal maltreatment between April 2005 and March 2009 was examined to obtain case characteristics related to a systemic classification of 5 broad groups of…

  14. Policy Perspective: School Turnaround in England. Utilizing the Private Sector

    ERIC Educational Resources Information Center

    Corbett, Julie

    2014-01-01

    This paper, written by strategic partner of the Center on School Turnaround (CST), Julie Corbett, provides research and examples on England's approach to turning around its lowest performing schools. The English education system utilizes private vendors to support chronically low-performing schools and districts. The introduction is followed by…

  15. Youth Justice in England and Wales: A Risky Business

    ERIC Educational Resources Information Center

    Paylor, Ian

    2011-01-01

    Risk factor research dominates explanatory models of youth offending and "evidence-based" policy and practice with young people in the youth justice system in England and Wales. Asset is the product of these actuarial ideas and has put the risk factor prevention paradigm into practice. This article evaluates the impact that an actuarial approach…

  16. Spotlight of a Century of Educational Reform in England.

    ERIC Educational Resources Information Center

    Henry, Thomas B.

    During the past 100 years, there has been an evolution in publicly funded education in England. This report provides a historical perspective for recent reforms and spotlights three related areas. The first section describes the early 19th-century Newcastle Commission's efforts to design a system of sound and cheap elementary education for…

  17. Primary Teacher Education in England: 40 Years On

    ERIC Educational Resources Information Center

    Murray, Jean; Passy, Rowena

    2014-01-01

    This article examines the relationship between pre-service teacher education (ITE) for primary schooling and primary teaching in England between 1974 and 2014, and explores the "fitness of purpose" of the current system of preparing teachers for the classrooms of the twenty-first century. Our historical analysis suggests that, despite 40…

  18. A Complex Systems Model Approach to Quantified Mineral Resource Appraisal

    USGS Publications Warehouse

    Gettings, M.E.; Bultman, M.W.; Fisher, F.S.

    2004-01-01

    For federal and state land management agencies, mineral resource appraisal has evolved from value-based to outcome-based procedures wherein the consequences of resource development are compared with those of other management options. Complex systems modeling is proposed as a general framework in which to build models that can evaluate outcomes. Three frequently used methods of mineral resource appraisal (subjective probabilistic estimates, weights of evidence modeling, and fuzzy logic modeling) are discussed to obtain insight into methods of incorporating complexity into mineral resource appraisal models. Fuzzy logic and weights of evidence are most easily utilized in complex systems models. A fundamental product of new appraisals is the production of reusable, accessible databases and methodologies so that appraisals can easily be repeated with new or refined data. The data are representations of complex systems and must be so regarded if all of their information content is to be utilized. The proposed generalized model framework is applicable to mineral assessment and other geoscience problems. We begin with a (fuzzy) cognitive map using (+1,0,-1) values for the links and evaluate the map for various scenarios to obtain a ranking of the importance of various links. Fieldwork and modeling studies identify important links and help identify unanticipated links. Next, the links are given membership functions in accordance with the data. Finally, processes are associated with the links; ideally, the controlling physical and chemical events and equations are found for each link. After calibration and testing, this complex systems model is used for predictions under various scenarios.

  19. The Complex Economic System of Supply Chain Financing

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Yan, Guangle

    Supply Chain Financing (SCF) refers to a series of innovative and complicated financial services based on supply chain. The SCF set-up is a complex system, where the supply chain management and Small and Medium Enterprises (SMEs) financing services interpenetrate systematically. This paper establishes the organization structure of SCF System, and presents two financing models respectively, with or without the participation of the third-party logistic provider (3PL). Using Information Economics and Game Theory, the interrelationship among diverse economic sectors is analyzed, and the economic mechanism of development and existent for SCF system is demonstrated. New thoughts and approaches to solve SMEs financing problem are given.

  20. 2. View, structures in Systems Integration Laboratory complex, looking north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View, structures in Systems Integration Laboratory complex, looking north. The Components Test Laboratory (T-27) is located in the immediate foreground. Immediately uphill to the left of T-27 is the Boiler Chiller Plant (T-28H). To the left of T-28H is the Oxidizer Conditioning Structure (T-28D). Behind the T-28D is the Long-Term Oxidizer Silo (T-28B). The twin gantry structure at the left is the Systems Integration Laboratory (T-28). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  1. 1. View, structures in Systems Integration Laboratory complex, looking northwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View, structures in Systems Integration Laboratory complex, looking northwest. The twin gantry structure in the center is the Systems Integration Laboratory (T-28). To its immediate left in the foreground is a truck well, concrete retaining wall, piping, and stack associated with the oxidizer vault storage area. To the immediate right of T-28 is the concrete Signal Transfer Building (T-28A). At the extreme right is the Long-Term Hydrazine Silo (T-28E). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  2. Complex Morphological Variability in Complex Evaporitic Systems: Thermal Spring Snails from the Chihuahuan Desert, Mexico

    NASA Astrophysics Data System (ADS)

    Tang, Carol M.; Roopnarine, Peter D.

    2003-11-01

    Thermal springs in evaporitic environments provide a unique biological laboratory in which to study natural selection and evolutionary diversification. These isolated systems may be an analogue for conditions in early Earth or Mars history. One modern example of such a system can be found in the Chihuahuan Desert of north-central Mexico. The Cuatro Cienegas basin hosts a series of thermal springs that form a complex of aquatic ecosystems under a range of environmental conditions. Using landmark-based morphometric techniques, we have quantified an unusually high level of morphological variability in the endemic gastropod Mexipyrgus from Cuatro Cienegas. The differentiation is seen both within and between hydrological systems. Our results suggest that this type of environmental system is capable of producing and maintaining a high level of morphological diversity on small spatial scales, and thus should be a target for future astrobiological research.

  3. Representing the Complexity of Engineering Systems: A Multidisciplinary Perceptual Approach

    NASA Astrophysics Data System (ADS)

    Motyka, Matt; Maier, Jonathan R. A.; Fadel, Georges M.

    The natural evolution of design leads to the creation of devices that are increasingly complex. From the invention of the wheel to the use of the wheel in the landing gear of a spacecraft, new technology often builds upon or further develops existing products. As devices become more complex, so does the process of designing them. In order to meet consumer demands, design requires the integration of technology from multiple disciplines. This can lead to the formation of intricate interdependencies between components and systems within the device. These interdependencies may include material, geometric, dynamic, pneumatic, vibration, acoustical, thermal, electrical, and chemical considerations. Because of their complex nature, the interdependencies within a device are not always apparent, and may easily be overlooked by inexperienced designers.

  4. Decision support systems and methods for complex networks

    DOEpatents

    Huang, Zhenyu; Wong, Pak Chung; Ma, Jian; Mackey, Patrick S; Chen, Yousu; Schneider, Kevin P

    2012-02-28

    Methods and systems for automated decision support in analyzing operation data from a complex network. Embodiments of the present invention utilize these algorithms and techniques not only to characterize the past and present condition of a complex network, but also to predict future conditions to help operators anticipate deteriorating and/or problem situations. In particular, embodiments of the present invention characterize network conditions from operation data using a state estimator. Contingency scenarios can then be generated based on those network conditions. For at least a portion of all of the contingency scenarios, risk indices are determined that describe the potential impact of each of those scenarios. Contingency scenarios with risk indices are presented visually as graphical representations in the context of a visual representation of the complex network. Analysis of the historical risk indices based on the graphical representations can then provide trends that allow for prediction of future network conditions.

  5. From precision polymers to complex materials and systems

    NASA Astrophysics Data System (ADS)

    Lutz, Jean-François; Lehn, Jean-Marie; Meijer, E. W.; Matyjaszewski, Krzysztof

    2016-05-01

    Complex chemical systems, such as living biological matter, are highly organized structures based on discrete molecules in constant dynamic interactions. These natural materials can evolve and adapt to their environment. By contrast, man-made materials exhibit simpler properties. In this Review, we highlight that most of the necessary elements for the development of more complex synthetic matter are available today. Using modern strategies, such as controlled radical polymerizations, supramolecular polymerizations or stepwise synthesis, polymers with precisely controlled molecular structures can be synthesized. Moreover, such tailored polymers can be folded or self-assembled into defined nanoscale morphologies. These self-organized macromolecular objects can be at thermal equilibrium or can be driven out of equilibrium. Recently, in the latter case, interesting dynamic materials have been developed. However, this is just a start, and more complex adaptive materials are anticipated.

  6. High Dynamic Range Complex Impedance Measurement System for Petrophysical Usage

    NASA Astrophysics Data System (ADS)

    Chen, R.; He, X.; Yao, H.; Tan, S.; Shi, H.; Shen, R.; Yan, C.; Zeng, P.; He, L.; Qiao, N.; Xi, F.; Zhang, H.; Xie, J.

    2015-12-01

    Spectral induced polarization method (SIP) or complex resistivity method is increasing its application in metalliferous ore exploration, hydrocarbon exploration, underground water exploration, monitoring of environment pollution, and the evaluation of environment remediation. And the measurement of complex resistivity or complex impedance of rock/ore sample and polluted water plays a fundamental role in improving the application effect of SIP and the application scope of SIP. However, current instruments can't guaranty the accuracy of measurement when the resistance of sample is less than 10Ω or great than 100kΩ. A lot of samples, such as liquid, polluted sea water, igneous rock, limestone, and sandstone, can't be measured with reliable complex resistivity result. Therefore, this problem projects a shadow in the basic research and application research of SIP. We design a high precision measurement system from the study of measurement principle, sample holder, and measurement instrument. We design input buffers in a single board. We adopt operation amplifier AD549 in this system because of its ultra-high input impedance and ultra-low current noise. This buffer is good in acquiring potential signal across high impedance sample. By analyzing the sources of measurement error and errors generated by the measurement system, we propose a correction method to remove the error in order to achieve high quality complex impedance measurement for rock and ore samples. This measurement system can improve the measurement range of the complex impedance to 0.1 Ω ~ 10 GΩ with amplitude error less than 0.1% and phase error less than 0.1mrad when frequency ranges as 0.01 Hz ~ 1 kHz. We tested our system on resistors with resistance as 0.1Ω ~ 10 GΩ in frequency range as 1 Hz ~ 1000 Hz, and the measurement error is less than 0.1 mrad. We also compared the result with LCR bridge and SCIP, we can find that the bridge's measuring range only reaches 100 MΩ, SCIP's measuring range

  7. Complexity Analysis and Parameter Estimation of Dynamic Metabolic Systems

    PubMed Central

    Tian, Li-Ping; Shi, Zhong-Ke; Wu, Fang-Xiang

    2013-01-01

    A metabolic system consists of a number of reactions transforming molecules of one kind into another to provide the energy that living cells need. Based on the biochemical reaction principles, dynamic metabolic systems can be modeled by a group of coupled differential equations which consists of parameters, states (concentration of molecules involved), and reaction rates. Reaction rates are typically either polynomials or rational functions in states and constant parameters. As a result, dynamic metabolic systems are a group of differential equations nonlinear and coupled in both parameters and states. Therefore, it is challenging to estimate parameters in complex dynamic metabolic systems. In this paper, we propose a method to analyze the complexity of dynamic metabolic systems for parameter estimation. As a result, the estimation of parameters in dynamic metabolic systems is reduced to the estimation of parameters in a group of decoupled rational functions plus polynomials (which we call improper rational functions) or in polynomials. Furthermore, by taking its special structure of improper rational functions, we develop an efficient algorithm to estimate parameters in improper rational functions. The proposed method is applied to the estimation of parameters in a dynamic metabolic system. The simulation results show the superior performance of the proposed method. PMID:24233242

  8. Enduring the shipboard stressor complex: a systems approach.

    PubMed

    Comperatore, Carlos A; Rivera, Pik Kwan; Kingsley, Leonard

    2005-06-01

    A high incidence of physiological and psychological stressors characterizes the maritime work environment in many segments of the commercial maritime industry and in the military. Traditionally, crewmembers work embedded in a complex of stressors. Stressors rarely act independently because most occur concurrently, simultaneously taxing physical and mental resources. Stressors such as extreme environmental temperatures, long work hours, heavy mental and physical workload, authoritative leadership, isolation from family and loved ones, lack of exercise, and unhealthy diets often combine to degrade crewmember health and performance, particularly on long voyages. This complex system of interacting stressors affects the ability of maritime crewmembers to maintain adequate levels of alertness and performance. An analytical systems approach methodology is described here as a viable method to identify workplace stressors and track their systemic interactions. A systems-based program for managing the stressor complex is then offered, together with the empirical research supporting its efficacy. Included is an example implementation of a stressor-control program aboard a U.S. Coast Guard cutter.

  9. Enduring the shipboard stressor complex: a systems approach.

    PubMed

    Comperatore, Carlos A; Rivera, Pik Kwan; Kingsley, Leonard

    2005-06-01

    A high incidence of physiological and psychological stressors characterizes the maritime work environment in many segments of the commercial maritime industry and in the military. Traditionally, crewmembers work embedded in a complex of stressors. Stressors rarely act independently because most occur concurrently, simultaneously taxing physical and mental resources. Stressors such as extreme environmental temperatures, long work hours, heavy mental and physical workload, authoritative leadership, isolation from family and loved ones, lack of exercise, and unhealthy diets often combine to degrade crewmember health and performance, particularly on long voyages. This complex system of interacting stressors affects the ability of maritime crewmembers to maintain adequate levels of alertness and performance. An analytical systems approach methodology is described here as a viable method to identify workplace stressors and track their systemic interactions. A systems-based program for managing the stressor complex is then offered, together with the empirical research supporting its efficacy. Included is an example implementation of a stressor-control program aboard a U.S. Coast Guard cutter. PMID:15943203

  10. Complex organics in space from Solar System to distant galaxies

    NASA Astrophysics Data System (ADS)

    Kwok, Sun

    2016-02-01

    Recent observational and experimental evidence for the presence of complex organics in space is reviewed. Remote astronomical observations have detected ˜ 200 gas-phased molecules through their rotational and vibrational transitions. Many classes of organic molecules are represented in this list, including some precursors to biological molecules. A number of unidentified spectral phenomena observed in the interstellar medium are likely to have originated from complex organics. The observations of these features in distant galaxies suggests that organic synthesis had already taken place during the early epochs of the Universe. In the Solar System, almost all biologically relevant molecules can be found in the soluble component of carbonaceous meteorites. Complex organics of mixed aromatic and aliphatic structures are present in the insoluble component of meteorites. Hydrocarbons cover much of the surface of the planetary satellite Titan and complex organics are found in comets and interplanetary dust particles. The possibility that the early Solar System, or even the early Earth, have been enriched by interstellar organics is discussed.

  11. Toward the quality evaluation of complex information systems

    NASA Astrophysics Data System (ADS)

    Todoran, Ion-George; Lecornu, Laurent; Khenchaf, Ali; Le Caillec, Jean-Marc

    2014-06-01

    Recent technological evolutions and developments allow gathering huge amounts of data stemmed from different types of sensors, social networks, intelligence reports, distributed databases, etc. Data quantity and heterogeneity imposed the evolution necessity of the information systems. Nowadays the information systems are based on complex information processing techniques at multiple processing stages. Unfortunately, possessing large quantities of data and being able to implement complex algorithms do not guarantee that the extracted information will be of good quality. The decision-makers need good quality information in the process of decision-making. We insist that for a decision-maker the information and the information quality, viewed as a meta-information, are of great importance. A system not proposing to its user the information quality is in danger of not being correctly used or in more dramatic cases not to be used at all. In literature, especially in organizations management and in information retrieval, can be found some information quality evaluation methodologies. But none of these do not allow the information quality evaluation in complex and changing environments. We propose a new information quality methodology capable of estimating the information quality dynamically with data changes and/or with the information system inner changes. Our methodology is able to instantaneously update the system's output quality. For capturing the information quality changes through the system, we introduce the notion of quality transfer function. It is equivalent to the signal processing transfer function but working on the quality level. The quality transfer function describes the influence of a processing module over the information quality. We also present two different views over the notion of information quality: a global one, characterizing the entire system and a local one, for each processing module.

  12. "Health for All" in England and Brazil?

    PubMed

    Duncan, Peter; Bertolozzi, Maria Rita; Cowley, Sarah; Egry, Emiko Yoshikawa; Chiesa, Anna Maria; de Siqueira França, Francisco Oscar

    2015-01-01

    This article discusses the achievements and challenges that England and Brazil face in relation to their capacity to address inequalities in health through health promotion and public health policies. Using secondary data (policy texts and related documents), this article contextualizes, explains, and critically appraises health promotion and public health efforts for the reduction of inequalities in health in the 2 countries. A historic documentary analysis was undertaken, with hermeneutics as the methodological framework. The global economic crisis has prompted the so-called developed economies of Europe to reconsider their economic and social priorities. England represents a state facing this kind of challenge. Equally, Brazil is assuming new positions not only on the world stage but also in terms of the relationship it has with its citizens and the priorities it has for state welfare. The United Kingdom continues to finance a health care system allowing universal access in the form of the National Health Service, and state concern about the public health task of reducing inequalities has recently been underlined in policy. For Brazil, although there have been recent achievements related to population access to healthcare, challenges continue, especially with regard to the quality of care. PMID:26077860

  13. "Health for All" in England and Brazil?

    PubMed

    Duncan, Peter; Bertolozzi, Maria Rita; Cowley, Sarah; Egry, Emiko Yoshikawa; Chiesa, Anna Maria; de Siqueira França, Francisco Oscar

    2015-01-01

    This article discusses the achievements and challenges that England and Brazil face in relation to their capacity to address inequalities in health through health promotion and public health policies. Using secondary data (policy texts and related documents), this article contextualizes, explains, and critically appraises health promotion and public health efforts for the reduction of inequalities in health in the 2 countries. A historic documentary analysis was undertaken, with hermeneutics as the methodological framework. The global economic crisis has prompted the so-called developed economies of Europe to reconsider their economic and social priorities. England represents a state facing this kind of challenge. Equally, Brazil is assuming new positions not only on the world stage but also in terms of the relationship it has with its citizens and the priorities it has for state welfare. The United Kingdom continues to finance a health care system allowing universal access in the form of the National Health Service, and state concern about the public health task of reducing inequalities has recently been underlined in policy. For Brazil, although there have been recent achievements related to population access to healthcare, challenges continue, especially with regard to the quality of care.

  14. New England Compounding Center Indictment.

    PubMed

    Cabaleiro, Joe

    2015-01-01

    This article is a review of the lapses in compliance with United States Pharmacopeia standards and pharmacy law as alleged by the New England Compounding Center indictment. This indictment was a result of an outbreak of fungal meningitis traced to fungal contamination of compounded methylprednisolone suspension for epidural steroid injections. This article is also intended as a gap analysis for compounders to review compliance at their own facility, and, if necessary, take the appropriate steps to implement best practices. PMID:26685489

  15. Carbohydrase Systems of Saccharophagus degradans Degrading Marine Complex Polysaccharides

    PubMed Central

    Hutcheson, Steven W.; Zhang, Haitao; Suvorov, Maxim

    2011-01-01

    Saccharophagus degradans 2–40 is a γ-subgroup proteobacterium capable of using many of the complex polysaccharides found in the marine environment for growth. To utilize these complex polysaccharides, this bacterium produces a plethora of carbohydrases dedicated to the processing of a carbohydrate class. Aiding in the identification of the contributing genes and enzymes is the known genome sequence for this bacterium. This review catalogs the genes and enzymes of the S. degradans genome that are likely to function in the systems for the utilization of agar, alginate, α- and β-glucans, chitin, mannans, pectins, and xylans and discusses the cell biology and genetics of each system as it functions to transfer carbon back to the bacterium. PMID:21731555

  16. Complex adaptive systems and game theory: An unlikely union

    USGS Publications Warehouse

    Hadzikadic, M.; Carmichael, T.; Curtin, C.

    2010-01-01

    A Complex Adaptive System is a collection of autonomous, heterogeneous agents, whose behavior is defined with a limited number of rules. A Game Theory is a mathematical construct that assumes a small number of rational players who have a limited number of actions or strategies available to them. The CAS method has the potential to alleviate some of the shortcomings of GT. On the other hand, CAS researchers are always looking for a realistic way to define interactions among agents. GT offers an attractive option for defining the rules of such interactions in a way that is both potentially consistent with observed real-world behavior and subject to mathematical interpretation. This article reports on the results of an effort to build a CAS system that utilizes GT for determining the actions of individual agents. ?? 2009 Wiley Periodicals, Inc. Complexity, 16,24-42, 2010.

  17. Entropy-complexity analysis in some globally-coupled systems

    NASA Astrophysics Data System (ADS)

    Chrisment, Antoine M.; Firpo, Marie-Christine

    2016-10-01

    Globally-coupled N-body systems are well known to possess an intricate dynamics. When N is large, collective effects may drastically lower the effective dimension of the dynamics breaking the conditions on ergodicity necessary for the applicability of statistical mechanics. These problems are here illustrated and discussed through an entropy-complexity analysis of the repulsive Hamiltonian mean-field model. Using a Poincaré section of the mean-field time series provides a natural sampling time in the entropy-complexity treatment. This approach is shown to single-out the out-of-equilibrium dynamical features and to uncover a transition of the system dynamics from low-energy non-Boltzmann quasi-stationary states to high-energy stochastic-like behavior.

  18. Loschmidt echo and time reversal in complex systems.

    PubMed

    Goussev, Arseni; Jalabert, Rodolfo A; Pastawski, Horacio M; Wisniacki, Diego A

    2016-06-13

    Echoes are ubiquitous phenomena in several branches of physics, ranging from acoustics, optics, condensed matter and cold atoms to geophysics. They are at the base of a number of very useful experimental techniques, such as nuclear magnetic resonance, photon echo and time-reversal mirrors. Particularly interesting physical effects are obtained when the echo studies are performed on complex systems, either classically chaotic, disordered or many-body. Consequently, the term Loschmidt echo has been coined to designate and quantify the revival occurring when an imperfect time-reversal procedure is applied to a complex quantum system, or equivalently to characterize the stability of quantum evolution in the presence of perturbations. Here, we present the articles which discuss the work that has shaped the field in the past few years. PMID:27140977

  19. Loschmidt echo and time reversal in complex systems.

    PubMed

    Goussev, Arseni; Jalabert, Rodolfo A; Pastawski, Horacio M; Wisniacki, Diego A

    2016-06-13

    Echoes are ubiquitous phenomena in several branches of physics, ranging from acoustics, optics, condensed matter and cold atoms to geophysics. They are at the base of a number of very useful experimental techniques, such as nuclear magnetic resonance, photon echo and time-reversal mirrors. Particularly interesting physical effects are obtained when the echo studies are performed on complex systems, either classically chaotic, disordered or many-body. Consequently, the term Loschmidt echo has been coined to designate and quantify the revival occurring when an imperfect time-reversal procedure is applied to a complex quantum system, or equivalently to characterize the stability of quantum evolution in the presence of perturbations. Here, we present the articles which discuss the work that has shaped the field in the past few years.

  20. Loschmidt echo and time reversal in complex systems

    PubMed Central

    Goussev, Arseni; Jalabert, Rodolfo A.; Pastawski, Horacio M.; Wisniacki, Diego A.

    2016-01-01

    Echoes are ubiquitous phenomena in several branches of physics, ranging from acoustics, optics, condensed matter and cold atoms to geophysics. They are at the base of a number of very useful experimental techniques, such as nuclear magnetic resonance, photon echo and time-reversal mirrors. Particularly interesting physical effects are obtained when the echo studies are performed on complex systems, either classically chaotic, disordered or many-body. Consequently, the term Loschmidt echo has been coined to designate and quantify the revival occurring when an imperfect time-reversal procedure is applied to a complex quantum system, or equivalently to characterize the stability of quantum evolution in the presence of perturbations. Here, we present the articles which discuss the work that has shaped the field in the past few years. PMID:27140977

  1. Unraveling the New England orocline, east Gondwana accretionary margin

    NASA Astrophysics Data System (ADS)

    Cawood, P. A.; Pisarevsky, S. A.; Leitch, E. C.

    2011-10-01

    The New England orocline lies within the Eastern Australian segment of the Terra Australis accretionary orogen and developed during the late Paleozoic to early Mesozoic Gondwanide Orogeny (310-230 Ma) that extended along the Pacific margin of the Gondwana supercontinent. The orocline deformed a pre-Permian arc assemblage consisting of a western magmatic arc, an adjoining forearc basin and an eastern subduction complex. The orocline is doubly vergent with the southern and northern segments displaying counter-clockwise and clockwise rotation, respectively, and this has led to contrasting models of formation. We resolve these conflicting models with one that involves buckling of the arc system about a vertical axis during progressive northward translation of the southern segment of the arc system against the northern segment, which is pinned relative to cratonic Gondwana. Paleomagnetic data are consistent with this model and show that an alternative model involving southward motion of the northern segment relative to the southern segment and cratonic Gondwana is not permissible. The timing of the final stage of orocline formation (˜270-265 Ma) overlaps with a major gap in magmatic activity along this segment of the Gondwana margin, suggesting that northward motion and orocline formation were driven by a change from orthogonal to oblique convergence and coupling between the Gondwana and Pacific plates.

  2. A Complex Systems Approach to Causal Discovery in Psychiatry

    PubMed Central

    Saxe, Glenn N.; Statnikov, Alexander; Fenyo, David; Ren, Jiwen; Li, Zhiguo; Prasad, Meera; Wall, Dennis; Bergman, Nora; Briggs, Ernestine C.; Aliferis, Constantin

    2016-01-01

    Conventional research methodologies and data analytic approaches in psychiatric research are unable to reliably infer causal relations without experimental designs, or to make inferences about the functional properties of the complex systems in which psychiatric disorders are embedded. This article describes a series of studies to validate a novel hybrid computational approach–the Complex Systems-Causal Network (CS-CN) method–designed to integrate causal discovery within a complex systems framework for psychiatric research. The CS-CN method was first applied to an existing dataset on psychopathology in 163 children hospitalized with injuries (validation study). Next, it was applied to a much larger dataset of traumatized children (replication study). Finally, the CS-CN method was applied in a controlled experiment using a ‘gold standard’ dataset for causal discovery and compared with other methods for accurately detecting causal variables (resimulation controlled experiment). The CS-CN method successfully detected a causal network of 111 variables and 167 bivariate relations in the initial validation study. This causal network had well-defined adaptive properties and a set of variables was found that disproportionally contributed to these properties. Modeling the removal of these variables resulted in significant loss of adaptive properties. The CS-CN method was successfully applied in the replication study and performed better than traditional statistical methods, and similarly to state-of-the-art causal discovery algorithms in the causal detection experiment. The CS-CN method was validated, replicated, and yielded both novel and previously validated findings related to risk factors and potential treatments of psychiatric disorders. The novel approach yields both fine-grain (micro) and high-level (macro) insights and thus represents a promising approach for complex systems-oriented research in psychiatry. PMID:27028297

  3. Coordinated aggregation in complex systems:. an interdisciplinary approach

    NASA Astrophysics Data System (ADS)

    Basios, V.; Nicolis, S. C.; Deneubourg, J. L.

    2016-09-01

    The study of the topic of guided aggregation in biology brings together decision making, collective motion and the dynamical interplay between individuals and groups. At the same time it meets statistical mechanics and the physics of complex systems in a new paradigmatic thinking. We propose a research platform for implementation and for undertaking systematic studies of coordinated aggregation, in a truly multi- and inter-disciplinary fashion.

  4. Complex gas/lift gathering system project in Nigeria

    SciTech Connect

    Not Available

    1981-08-01

    A new gas lift and gathering system is located in the Makaraba oil field, Nigeria. It connects 12 wellheads to a flow station by a series of 6-in. pipelines and one 16-in. trunk-line. The complexity of the project was due to the swampy site conditions which necessitated all work being conducted with floating plant, including a specially made laybarge and amphibious swamp buggies.

  5. Synchronization in human musical rhythms and mutually interacting complex systems

    PubMed Central

    Hennig, Holger

    2014-01-01

    Though the music produced by an ensemble is influenced by multiple factors, including musical genre, musician skill, and individual interpretation, rhythmic synchronization is at the foundation of musical interaction. Here, we study the statistical nature of the mutual interaction between two humans synchronizing rhythms. We find that the interbeat intervals of both laypeople and professional musicians exhibit scale-free (power law) cross-correlations. Surprisingly, the next beat to be played by one person is dependent on the entire history of the other person’s interbeat intervals on timescales up to several minutes. To understand this finding, we propose a general stochastic model for mutually interacting complex systems, which suggests a physiologically motivated explanation for the occurrence of scale-free cross-correlations. We show that the observed long-term memory phenomenon in rhythmic synchronization can be imitated by fractal coupling of separately recorded or synthesized audio tracks and thus applied in electronic music. Though this study provides an understanding of fundamental characteristics of timing and synchronization at the interbrain level, the mutually interacting complex systems model may also be applied to study the dynamics of other complex systems where scale-free cross-correlations have been observed, including econophysics, physiological time series, and collective behavior of animal flocks. PMID:25114228

  6. Mitotic Exit Control as an Evolved Complex System

    SciTech Connect

    Bosl, W; Li, R

    2005-04-25

    The exit from mitosis is the last critical decision a cell has to make during a division cycle. A complex regulatory system has evolved to evaluate the success of mitotic events and control this decision. Whereas outstanding genetic work in yeast has led to rapid discovery of a large number of interacting genes involved in the control of mitotic exit, it has also become increasingly difficult to comprehend the logic and mechanistic features embedded in the complex molecular network. Our view is that this difficulty stems in part from the attempt to explain mitotic exit control using concepts from traditional top-down engineering design, and that exciting new results from evolutionary engineering design applied to networks and electronic circuits may lend better insights. We focus on four particularly intriguing features of the mitotic exit control system: the two-stepped release of Cdc14; the self-activating nature of Tem1 GTPase; the spatial sensor associated with the spindle pole body; and the extensive redundancy in the mitotic exit network. We attempt to examine these design features from the perspective of evolutionary design and complex system engineering.

  7. From structure to function via complex supramolecular dendrimer systems.

    PubMed

    Sun, Hao-Jan; Zhang, Shaodong; Percec, Virgil

    2015-06-21

    This tutorial review summarizes strategies elaborated for the discovery and prediction of programmed primary structures derived from quasi-equivalent constitutional isomeric libraries of self-assembling dendrons, dendrimers and dendronized polymers. These libraries demonstrate an 82% predictability, defined as the percentage of similar primary structures resulting in at least one conserved supramolecular shape with internal order. A combination of structural and retrostructural analysis that employs methodologies transplanted from structural biology, adapted to giant supramolecular assemblies was used for this process. A periodic table database of programmed primary structures was elaborated and used to facilitate the emergence of a diversity of functions in complex dendrimer systems via first principles. Assemblies generated by supramolecular and covalent polymer backbones were critically compared. Although by definition complex functional systems cannot be designed, this tutorial hints to a methodology based on database analysis principles to facilitate design principles that may help to mediate an accelerated emergence of chemical, physical and most probably also societal, political and economic complex systems on a shorter time scale and lower cost than by the current methods. This tutorial review is limited to the simplest, synthetically most accessible self-assembling minidendrons, minidendrimers and polymers dendronized with minidendrons that are best analyzed and elucidated at molecular, supramolecular and theoretical levels, and most used in other laboratories. These structures are all interrelated, and their principles expand in a simple way to their higher generations. PMID:25325787

  8. Complex Systems: From Nuclear Physics to Financial Markets

    NASA Astrophysics Data System (ADS)

    Speth, Josef

    2003-04-01

    Complexity is an interdisciplinary concept which first of all addresses the question of how order emerges out of randomness. We discuss two natural complex systems, the nuclear many-body systems and the financial markets. In the nuclear physics case we investigate the chaos-driven decay of giant resonances, where collective states are embedded in complex spectra. In the case of financial markets we discuss the dynamics and correlations of stock and bond indices. The first important observation here is that such indices, e.g. DOW or S, like nuclei, have a finite number of constituents, and therefore one may ask similar questions and apply the same methods to these indices as to finite nuclei. A second, more speculative observation is that financial crashes may be the analogue of critical points in statistical mechanics. Criticality implies a scale invariance that can mathematically defined as: F(λ x) = γ F(x). The general solution of this equation accounts for continuous as well as discrete scale invariance, the latter giving rise to log-periodic modulations correcting the structureless pure power-law behavior. The existence of log-periodic oscillations has been observed in many different systems.We have identified such oscillations in financial markets at very different time scales and indices. This observation seems to have some predictive power.

  9. Automated Derivation of Complex System Constraints from User Requirements

    NASA Technical Reports Server (NTRS)

    Foshee, Mark; Murey, Kim; Marsh, Angela

    2010-01-01

    The Payload Operations Integration Center (POIC) located at the Marshall Space Flight Center has the responsibility of integrating US payload science requirements for the International Space Station (ISS). All payload operations must request ISS system resources so that the resource usage will be included in the ISS on-board execution timelines. The scheduling of resources and building of the timeline is performed using the Consolidated Planning System (CPS). The ISS resources are quite complex due to the large number of components that must be accounted for. The planners at the POIC simplify the process for Payload Developers (PD) by providing the PDs with a application that has the basic functionality PDs need as well as list of simplified resources in the User Requirements Collection (URC) application. The planners maintained a mapping of the URC resources to the CPS resources. The process of manually converting PD's science requirements from a simplified representation to a more complex CPS representation is a time-consuming and tedious process. The goal is to provide a software solution to allow the planners to build a mapping of the complex CPS constraints to the basic URC constraints and automatically convert the PD's requirements into systems requirements during export to CPS.

  10. Modeling high-resolution broadband discourse in complex adaptive systems.

    PubMed

    Dooley, Kevin J; Corman, Steven R; McPhee, Robert D; Kuhn, Timothy

    2003-01-01

    Numerous researchers and practitioners have turned to complexity science to better understand human systems. Simulation can be used to observe how the microlevel actions of many human agents create emergent structures and novel behavior in complex adaptive systems. In such simulations, communication between human agents is often modeled simply as message passing, where a message or text may transfer data, trigger action, or inform context. Human communication involves more than the transmission of texts and messages, however. Such a perspective is likely to limit the effectiveness and insight that we can gain from simulations, and complexity science itself. In this paper, we propose a model of how close analysis of discursive processes between individuals (high-resolution), which occur simultaneously across a human system (broadband), dynamically evolve. We propose six different processes that describe how evolutionary variation can occur in texts-recontextualization, pruning, chunking, merging, appropriation, and mutation. These process models can facilitate the simulation of high-resolution, broadband discourse processes, and can aid in the analysis of data from such processes. Examples are used to illustrate each process. We make the tentative suggestion that discourse may evolve to the "edge of chaos." We conclude with a discussion concerning how high-resolution, broadband discourse data could actually be collected. PMID:12876447

  11. Statistical physics of networks, information and complex systems

    SciTech Connect

    Ecke, Robert E

    2009-01-01

    In this project we explore the mathematical methods and concepts of statistical physics that are fmding abundant applications across the scientific and technological spectrum from soft condensed matter systems and bio-infonnatics to economic and social systems. Our approach exploits the considerable similarity of concepts between statistical physics and computer science, allowing for a powerful multi-disciplinary approach that draws its strength from cross-fertilization and mUltiple interactions of researchers with different backgrounds. The work on this project takes advantage of the newly appreciated connection between computer science and statistics and addresses important problems in data storage, decoding, optimization, the infonnation processing properties of the brain, the interface between quantum and classical infonnation science, the verification of large software programs, modeling of complex systems including disease epidemiology, resource distribution issues, and the nature of highly fluctuating complex systems. Common themes that the project has been emphasizing are (i) neural computation, (ii) network theory and its applications, and (iii) a statistical physics approach to infonnation theory. The project's efforts focus on the general problem of optimization and variational techniques, algorithm development and infonnation theoretic approaches to quantum systems. These efforts are responsible for fruitful collaborations and the nucleation of science efforts that span multiple divisions such as EES, CCS, 0 , T, ISR and P. This project supports the DOE mission in Energy Security and Nuclear Non-Proliferation by developing novel infonnation science tools for communication, sensing, and interacting complex networks such as the internet or energy distribution system. The work also supports programs in Threat Reduction and Homeland Security.

  12. Trust, Nostalgia and Narrative Accounts of Blood Banking in England in the 21st Century

    PubMed Central

    Busby, Helen Wynne

    2010-01-01

    Historically, cultural accounts and descriptions of blood banking in Britain have been associated with notions of altruism, national solidarity and imagined community. While these ideals have continued to be influential, the business of procuring and supplying blood has become increasingly complex. Drawing on interview data with donors in one blood centre in England, this article reports that these donors tend not to acknowledge the complex dynamics of production and exchange in modern blood systems. This, it is argued, is congruent with nostalgic narratives in both popular and official accounts of blood services, which tend to bracket these important changes. A shift to a more open institutional narrative about modern blood services is advocated, as blood services face current and future challenges. PMID:20603307

  13. 75 FR 16096 - New England Power Generators Association Inc., Complainant v. ISO New England Inc., Respondent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission New England Power Generators Association Inc., Complainant v. ISO New... Generators Association Inc. (Complainant) filed a formal complaint against ISO New England Inc....

  14. Discovering Recurring Anomalies in Text Reports Regarding Complex Space Systems

    NASA Technical Reports Server (NTRS)

    Zane-Ulman, Brett; Srivastava, Ashok N.

    2005-01-01

    Many existing complex space systems have a significant amount of historical maintenance and problem data bases that are stored in unstructured text forms. For some platforms, these reports may be encoded as scanned images rather than even searchable text. The problem that we address in this paper is the discovery of recurring anomalies and relationships between different problem reports that may indicate larger systemic problems. We will illustrate our techniques on data from discrepancy reports regarding software anomalies in the Space Shuttle. These free text reports are written by a number of different penp!e, thus the emphasis and wording varies considerably.

  15. The model Lysozyme-PSSNa system for electrostatic complexation: Similarities and differences with complex coacervation.

    PubMed

    Cousin, F; Gummel, J; Combet, S; Boué, F

    2011-09-14

    We review, based on structural information, the mechanisms involved when putting in contact two nano-objects of opposite electrical charge, in the case of one negatively charged polyion, and a compact charged one. The central case is mixtures of PSS, a strong flexible polyanion (the salt of a strong acid, and with high linear charge density), and Lysozyme, a globular protein with a global positive charge. A wide accurate and consistent set of information in different situations is available on the structure at local scales (5-1000Å), due to the possibility of matching, the reproducibility of the system, its well-defined electrostatics features, and the well-defined structures obtained. We have related these structures to the observations at macroscopic scale of the phase behavior, and to the expected mechanisms of coacervation. On the one hand, PSS/Lysozyme mixtures show accurately many of what is expected in PEL/protein complexation, and phase separation, as reviewed by de Kruif: under certain conditions some well-defined complexes are formed before any phase separation, they are close to neutral; even in excess of one species, complexes are only modestly charged (surface charges in PEL excess). Neutral cores are attracting each other, to form larger objects responsible for large turbidity. They should lead the system to phase separation; this is observed in the more dilute samples, while in more concentrated ones the lack of separation in turbid samples is explained by locking effects between fractal aggregates. On the other hand, although some of the features just listed are the same required for coacervation, this phase transition is not really obtained. The phase separation has all the macroscopic aspects of a fluid (undifferentiated liquid/gas phase) - solid transition, not of a fluid-fluid (liquid-liquid) one, which would correspond to real coacervation). The origin of this can be found in the interaction potential between primary complexes formed (globules

  16. Informational analysis involving application of complex information system

    NASA Astrophysics Data System (ADS)

    Ciupak, Clébia; Vanti, Adolfo Alberto; Balloni, Antonio José; Espin, Rafael

    The aim of the present research is performing an informal analysis for internal audit involving the application of complex information system based on fuzzy logic. The same has been applied in internal audit involving the integration of the accounting field into the information systems field. The technological advancements can provide improvements to the work performed by the internal audit. Thus we aim to find, in the complex information systems, priorities for the work of internal audit of a high importance Private Institution of Higher Education. The applied method is quali-quantitative, as from the definition of strategic linguistic variables it was possible to transform them into quantitative with the matrix intersection. By means of a case study, where data were collected via interview with the Administrative Pro-Rector, who takes part at the elaboration of the strategic planning of the institution, it was possible to infer analysis concerning points which must be prioritized at the internal audit work. We emphasize that the priorities were identified when processed in a system (of academic use). From the study we can conclude that, starting from these information systems, audit can identify priorities on its work program. Along with plans and strategic objectives of the enterprise, the internal auditor can define operational procedures to work in favor of the attainment of the objectives of the organization.

  17. Bridging Mechanistic and Phenomenological Models of Complex Biological Systems

    PubMed Central

    Transtrum, Mark K.; Qiu, Peng

    2016-01-01

    The inherent complexity of biological systems gives rise to complicated mechanistic models with a large number of parameters. On the other hand, the collective behavior of these systems can often be characterized by a relatively small number of phenomenological parameters. We use the Manifold Boundary Approximation Method (MBAM) as a tool for deriving simple phenomenological models from complicated mechanistic models. The resulting models are not black boxes, but remain expressed in terms of the microscopic parameters. In this way, we explicitly connect the macroscopic and microscopic descriptions, characterize the equivalence class of distinct systems exhibiting the same range of collective behavior, and identify the combinations of components that function as tunable control knobs for the behavior. We demonstrate the procedure for adaptation behavior exhibited by the EGFR pathway. From a 48 parameter mechanistic model, the system can be effectively described by a single adaptation parameter τ characterizing the ratio of time scales for the initial response and recovery time of the system which can in turn be expressed as a combination of microscopic reaction rates, Michaelis-Menten constants, and biochemical concentrations. The situation is not unlike modeling in physics in which microscopically complex processes can often be renormalized into simple phenomenological models with only a few effective parameters. The proposed method additionally provides a mechanistic explanation for non-universal features of the behavior. PMID:27187545

  18. Complexity and the reductionism-holism debate in systems biology.

    PubMed

    Mazzocchi, Fulvio

    2012-01-01

    Reductionism has largely influenced the development of science, culminating in its application to molecular biology. An increasing number of novel research findings have, however, shattered this view, showing how the molecular-reductionist approach cannot entirely handle the complexity of biological systems. Within this framework, the advent of systems biology as a new and more integrative field of research is described, along with the form which has taken on the debate of reductionism versus holism. Such an issue occupies a central position in systems biology, and nonetheless it is not always clearly delineated. This partly occurs because different dimensions (ontological, epistemological, methodological) are involved, and yet the concerned ones often remain unspecified. Besides, within systems biology different streams can be distinguished depending on the degree of commitment to embrace genuine systemic principles. Some useful insights into the future development of this discipline might be gained from the tradition of complexity and self-organization. This is especially true with regards the idea of self-reference, which incorporated into the organizational scheme is able to generate autonomy as an emergent property of the biological whole. PMID:22761024

  19. A complex biological system: the fly's visual module.

    PubMed

    Baptista, Murilo S; de Almeida, Lirio O B; Slaets, Jan F W; Köberle, Roland; Grebogi, Celso

    2008-02-13

    Is the characterization of biological systems as complex systems in the mathematical sense a fruitful assertion? In this paper we argue in the affirmative, although obviously we do not attempt to confront all the issues raised by this question. We use the fly's visual system as an example and analyse our experimental results of one particular neuron in the fly's visual system from this point of view. We find that the motion-sensitive 'H1' neuron, which converts incoming signals into a sequence of identical pulses or 'spikes', encodes the information contained in the stimulus into an alphabet composed of a few letters. This encoding occurs on multilayered sets, one of the features attributed to complex systems. The conversion of intervals between consecutive occurrences of spikes into an alphabet requires us to construct a generating partition. This entails a one-to-one correspondence between sequences of spike intervals and words written in the alphabet. The alphabet dynamics is multifractal both with and without stimulus, though the multifractality increases with the stimulus entropy. This is in sharp contrast to models generating independent spike intervals, such as models using Poisson statistics, whose dynamics is monofractal. We embed the support of the probability measure, which describes the distribution of words written in this alphabet, in a two-dimensional space, whose topology can be reproduced by an M-shaped map. This map has positive Lyapunov exponents, indicating a chaotic-like encoding. PMID:17673416

  20. Panpsychic organicism: Sewall Wright's philosophy for understanding complex genetic systems.

    PubMed

    Steffes, David M

    2007-01-01

    Sewall Wright first encountered the complex systems characteristic of gene combinations while a graduate student at Harvard's Bussey Institute from 1912 to 1915. In Mendelian breeding experiments, Wright observed a hierarchical dependence of the organism's phenotype on dynamic networks of genetic interaction and organization. An animal's physical traits, and thus its autonomy from surrounding environmental constraints, depended greatly on how genes behaved in certain combinations. Wright recognized that while genes are the material determinants of the animal phenotype, operating with great regularity, the special nature of genetic systems contributes to the animal phenotype a degree of spontaneity and novelty, creating unpredictable trait variations by virtue of gene interactions. As a result of his experimentation, as well as his keen interest in the philosophical literature of his day, Wright was inspired to see genetic systems as conscious, living organisms in their own right. Moreover, he decided that since genetic systems maintain ordered stability and cause unpredictable novelty in their organic wholes (the animal phenotype), it would be necessary for biologists to integrate techniques for studying causally ordered phenomena (experimental method) and chance phenomena (correlation method). From 1914 to 1921 Wright developed his "method of path coefficient" (or "path analysis"), a new procedure drawing from both laboratory experimentation and statistical correlation in order to analyze the relative influence of specific genetic interactions on phenotype variation. In this paper I aim to show how Wright's philosophy for understanding complex genetic systems (panpsychic organicism) logically motivated his 1914-1921 design of path analysis.

  1. Risk assessment and life prediction of complex engineering systems

    SciTech Connect

    Garcia, M.D.; Varma, R.; Heger, A.S.

    1996-03-01

    Many complex engineering systems will exceed their design life expectancy within the next 10 to 15 years. It is also expected that these systems must be maintained and operated beyond their design life. This paper presents a integrated approach for managing the risks associated with aging effects and predicting the residually expectancy these systems, The approach unifies risk assessment, enhanced surveillance and testing, and robust computational models to assess the risk, predict age, and develop a life-extension management procedure. It also relies on the state of the art in life-extension and risk assessment methods from the nuclear power industry. Borrowing from the developments in decision analysis, this approach should systematically identify the options available for managing the existing aging systems beyond their intended design life.

  2. The engineering design integration (EDIN) system. [digital computer program complex

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Reiners, S. J.

    1974-01-01

    A digital computer program complex for the evaluation of aerospace vehicle preliminary designs is described. The system consists of a Univac 1100 series computer and peripherals using the Exec 8 operating system, a set of demand access terminals of the alphanumeric and graphics types, and a library of independent computer programs. Modification of the partial run streams, data base maintenance and construction, and control of program sequencing are provided by a data manipulation program called the DLG processor. The executive control of library program execution is performed by the Univac Exec 8 operating system through a user established run stream. A combination of demand and batch operations is employed in the evaluation of preliminary designs. Applications accomplished with the EDIN system are described.

  3. Character change of New England snow

    USGS Publications Warehouse

    Huntington, T.G.; Hodgkins, G.A.; Keim, B.D.; Dudley, R.W.

    2004-01-01

    The annual ratio of snow to total precipitation (S/P) for 11 out of 21 US Historical Climatology Network (USHCN) sites in New England decreased significantly from 1949 through 2000. One possible explanation for the observed decrease in S/P ratio is that their temperature increased in New England during the 20th century. The results are consistent with published reports indicating lengthening of the growing season in New England.

  4. Complex membrane transport systems. A non-Markovian approach.

    PubMed

    Stephan, W

    1985-01-01

    This paper suggests a method of how to deal with complex membrane transport systems such as ion channels or ion pumps formed by proteins. The complexity of these systems results from the fact that proteins may undergo an internal dynamics of conformational changes and may thereby affect the transmembrane transport. Usually, complex transport systems are mapped into multi-state graphs and couched in terms of Markovian master equations. It is shown in this paper how the dimensionality of such multi-state systems can be reduced. The resulting description may be expressed in the form of a generalized master equation with a memory function as integral kernel. The memory function reflects the protein's own dynamics and its overall effect on the transport. This formalism, non-Markovian in nature, is applied to describe the time-dependent action of ion pumps. A general model is constructed on the basis of the rate theory which contains all the essential parts of ion pumps such as a catalytic unit and a channel-like conduit for ion translocation and which is still analytically tractable. The short-time behaviour of the pumping process turns out to be of particular interest, since it reveals the dynamics of the catalytic unit itself. A strong correlation of the particle's motion over times less than a certain correlation time has been found. This result is compared with experimental findings on the proton pump of Halobacterium halobium. It is concluded that such a perfect short-time memory could be a generic property of active transport systems.

  5. Exsolution as an Example of Complex-System Behavior

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Dutrow, B. L.

    2010-12-01

    Exsolution in minerals is an important process that occurs in a wide range of mineral groups (e.g. alkali feldspars, pyroxenes, amphiboles, carbonates, oxides, sulfides) in response to changing physical conditions. Exsolution describes a physical process in which a mineral with an initially homogeneous solid solution separates into at least two distinct derivative minerals of disparate composition and is typically interpreted as the product of unmixing in response to lattice strain during slow cooling. Such a process is typically taught in introductory mineralogy and petrology courses, in part because exsolution textures can be readily observed in hand sample or thin section. Exsolution is typically represented on equilibrium binary phase diagrams (T-X), and compositions of the unmixed products can be used in geothermobarometry to calculate temperatures and pressures of initial equilibration or compositions of the unmixed products. Although central to course content, traditional approaches to teaching exsolution are largely descriptive, and do not address the underlying principles that drive this phenomenon: that is, dissipation of energy results in segregating and self-organizing behavior of the system. This process exemplifies complex-system behavior. We use perthite formation (i.e. exsolution in the alkali feldspar system) in a series of scaffolded exercises to teach and more completely demonstrate complex-system behavior. These exercises include the use of: 1) hand samples and a series of optical and TEM photomicrographs to display the scale invariance of perthite textures; 2) a puzzle activity in which a chessboard is used as an analog model of atomic positions and nickels and pennies are used to represent individual atoms (Na and K respectively); sequential moves to optimize contacts with similar coins approximates minimization of lattice energies and reveals a power-law relationship as the system becomes increasingly segregated as a function of time to

  6. Decoding transcriptional repressor complexes in the adult central nervous system.

    PubMed

    Adachi, Megumi; Monteggia, Lisa M

    2014-05-01

    Cells maintain precise gene expression by balancing transcriptional activation and repression. While much work has focused on elucidating transcriptional activation in the central nervous system (CNS), little is known about transcriptional repression. One means to repress gene expression is to initiate binding of transcription factors to DNA, which then recruit co-repressors as well as other accessory proteins, forming a multi-protein repressor complex. These multi-protein repressor complexes include histone modifying enzymes that trigger processes such as histone acetylation, methylation, and ubiquitylation, altering chromatin structures to impact gene expression. Within these complexes transcriptional repressor proteins per se do not exhibit enzymatic reactions to remodel chromatin structure, whereas histone modifying enzymes lack intrinsic DNA binding activity but have an ability to process post-translational modifications on histones. Thus, the mutual association between transcriptional repressors and histone modifying enzymes is essential to sculpt chromatin to favor transcriptional repression and down regulate gene expression. Additionally, co-repressors are integral components in the context of gene repression as they bridge the association of transcriptional repressors and histone modifying enzymes. In this review, we will discuss the roles of some of the major components of these repressor complex in the CNS as well as their cellular functions that may underlie fundamental behavior in animals.

  7. Complexity in cancer biology: is systems biology the answer?

    PubMed Central

    Koutsogiannouli, Evangelia; Papavassiliou, Athanasios G; Papanikolaou, Nikolaos A

    2013-01-01

    Complex phenotypes emerge from the interactions of thousands of macromolecules that are organized in multimolecular complexes and interacting functional modules. In turn, modules form functional networks in health and disease. Omics approaches collect data on changes for all genes and proteins and statistical analysis attempts to uncover the functional modules that perform the functions that characterize higher levels of biological organization. Systems biology attempts to transcend the study of individual genes/proteins and to integrate them into higher order information. Cancer cells exhibit defective genetic and epigenetic networks formed by altered complexes and network modules arising in different parts of tumor tissues that sustain autonomous cell behavior which ultimately lead tumor growth. We suggest that an understanding of tumor behavior must address not only molecular but also, and more importantly, tumor cell heterogeneity, by considering cancer tissue genetic and epigenetic networks, by characterizing changes in the types, composition, and interactions of complexes and networks in the different parts of tumor tissues, and by identifying critical hubs that connect them in time and space. PMID:23634284

  8. 78 FR 32384 - New England Power Generators Association v. ISO New England Inc.; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission New England Power Generators Association v. ISO New England Inc.; Notice of... Federal Power Act (FPA), 16 U.S.C. 824(e), the New England Power Generators Association...

  9. Probing Potential Energy Surface Exploration Strategies for Complex Systems.

    PubMed

    N'Tsouaglo, Gawonou Kokou; Béland, Laurent Karim; Joly, Jean-François; Brommer, Peter; Mousseau, Normand; Pochet, Pascal

    2015-04-14

    The efficiency of minimum-energy configuration searching algorithms is closely linked to the energy landscape structure of complex systems, yet these algorithms often include a number of steps of which the effect is not always clear. Decoupling these steps and their impacts can allow us to better understand both their role and the nature of complex energy landscape. Here, we consider a family of minimum-energy algorithms based, directly or indirectly, on the well-known Bell-Evans-Polanyi (BEP) principle. Comparing trajectories generated with BEP-based algorithms to kinetically correct off-lattice kinetic Monte Carlo schemes allow us to confirm that the BEP principle does not hold for complex systems since forward and reverse energy barriers are completely uncorrelated. As would be expected, following the lowest available energy barrier leads to rapid trapping. This is why BEP-based methods require also a direct handling of visited basins or barriers. Comparing the efficiency of these methods with a thermodynamical handling of low-energy barriers, we show that most of the efficiency of the BEP-like methods lie first and foremost in the basin management rather than in the BEP-like step. PMID:26574398

  10. Young Children's Knowledge About the Moon: A Complex Dynamic System

    NASA Astrophysics Data System (ADS)

    Venville, Grady J.; Louisell, Robert D.; Wilhelm, Jennifer A.

    2012-08-01

    The purpose of this research was to use a multidimensional theoretical framework to examine young children's knowledge about the Moon. The research was conducted in the interpretive paradigm and the design was a multiple case study of ten children between the ages of three and eight from the USA and Australia. A detailed, semi-structured interview was conducted with each child. In addition, each child's parents were interviewed to determine possible social and cultural influences on the child's knowledge. We sought evidence about how the social and cultural experiences of the children might have influenced the development of their ideas. From a cognitive perspective we were interested in whether the children's ideas were constructed in a theory like form or whether the knowledge was the result of gradual accumulation of fragments of isolated cultural information. Findings reflected the strong and complex relationship between individual children, their social and cultural milieu, and the way they construct ideas about the Moon and astronomy. Findings are presented around four themes including ontology, creatures and artefacts, animism, and permanence. The findings support a complex dynamic system view of students' knowledge that integrates the framework theory perspective and the knowledge in fragments perspective. An initial model of a complex dynamic system of young children's knowledge about the Moon is presented.

  11. Probing Potential Energy Surface Exploration Strategies for Complex Systems.

    PubMed

    N'Tsouaglo, Gawonou Kokou; Béland, Laurent Karim; Joly, Jean-François; Brommer, Peter; Mousseau, Normand; Pochet, Pascal

    2015-04-14

    The efficiency of minimum-energy configuration searching algorithms is closely linked to the energy landscape structure of complex systems, yet these algorithms often include a number of steps of which the effect is not always clear. Decoupling these steps and their impacts can allow us to better understand both their role and the nature of complex energy landscape. Here, we consider a family of minimum-energy algorithms based, directly or indirectly, on the well-known Bell-Evans-Polanyi (BEP) principle. Comparing trajectories generated with BEP-based algorithms to kinetically correct off-lattice kinetic Monte Carlo schemes allow us to confirm that the BEP principle does not hold for complex systems since forward and reverse energy barriers are completely uncorrelated. As would be expected, following the lowest available energy barrier leads to rapid trapping. This is why BEP-based methods require also a direct handling of visited basins or barriers. Comparing the efficiency of these methods with a thermodynamical handling of low-energy barriers, we show that most of the efficiency of the BEP-like methods lie first and foremost in the basin management rather than in the BEP-like step.

  12. Probing Interactions in Complex Molecular Systems through Ordered Assembly

    SciTech Connect

    De Yoreo, J J; Bartelt, M C; Orme, C A; Villacampa, A; Weeks, B L; Miller, A E

    2002-01-31

    Emerging from the machinery of epitaxial science and chemical synthesis, is a growing emphasis on development of self-organized systems of complex molecular species. The nature of self-organization in these systems spans the continuum from simple crystallization of large molecules such as dendrimers and proteins, to assembly into large organized networks of nanometer-scale structures such as quantum dots or nanoparticles. In truth, self-organization in complex molecular systems has always been a central feature of many scientific disciplines including fields as diverse as structural biology, polymer science and geochemistry. But over the past decade, changes in those fields have often been marked by the degree to which researchers are using molecular-scale approaches to understand the hierarchy of structures and processes driven by this ordered assembly. At the same time, physical scientists have begun to use their knowledge of simple atomic and molecular systems to fabricate synthetic self-organized systems. This increasing activity in the field of self-organization is testament to the success of the physical and chemical sciences in building a detailed understanding of crystallization and epitaxy in simple atomic and molecular systems, one that is soundly rooted in thermodynamics and chemical kinetics. One of the fundamental challenges of chemistry and materials science in the coming decades is to develop a similarly well-founded physical understanding of assembly processes in complex molecular systems. Over the past five years, we have successfully used in situ atomic force microscopy (AFM) to investigate the physical controls on single crystal epitaxy from solutions for a wide range of molecular species. More recently, we have combined this method with grazing incidence X-ray diffraction and kinetic Monte Carlo modeling in order to relate morphology to surface atomic structure and processes. The purpose of this proposal was to extend this approach to assemblies

  13. Wavelet-Based Real-Time Diagnosis of Complex Systems

    NASA Technical Reports Server (NTRS)

    Gulati, Sandeep; Mackey, Ryan

    2003-01-01

    A new method of robust, autonomous real-time diagnosis of a time-varying complex system (e.g., a spacecraft, an advanced aircraft, or a process-control system) is presented here. It is based upon the characterization and comparison of (1) the execution of software, as reported by discrete data, and (2) data from sensors that monitor the physical state of the system, such as performance sensors or similar quantitative time-varying measurements. By taking account of the relationship between execution of, and the responses to, software commands, this method satisfies a key requirement for robust autonomous diagnosis, namely, ensuring that control is maintained and followed. Such monitoring of control software requires that estimates of the state of the system, as represented within the control software itself, are representative of the physical behavior of the system. In this method, data from sensors and discrete command data are analyzed simultaneously and compared to determine their correlation. If the sensed physical state of the system differs from the software estimate (see figure) or if the system fails to perform a transition as commanded by software, or such a transition occurs without the associated command, the system has experienced a control fault. This method provides a means of detecting such divergent behavior and automatically generating an appropriate warning.

  14. Monitoring and analysis of data from complex systems

    NASA Technical Reports Server (NTRS)

    Dollman, Thomas; Webster, Kenneth

    1991-01-01

    Some of the methods, systems, and prototypes that have been tested for monitoring and analyzing the data from several spacecraft and vehicles at the Marshall Space Flight Center are introduced. For the Huntsville Operations Support Center (HOSC) infrastructure, the Marshall Integrated Support System (MISS) provides a migration path to the state-of-the-art workstation environment. Its modular design makes it possible to implement the system in stages on multiple platforms without the need for all components to be in place at once. The MISS provides a flexible, user-friendly environment for monitoring and controlling orbital payloads. In addition, new capabilities and technology may be incorporated into MISS with greater ease. The use of information systems technology in advanced prototype phases, as adjuncts to mainline activities, is used to evaluate new computational techniques for monitoring and analysis of complex systems. Much of the software described (specially, HSTORESIS (Hubble Space Telescope Operational Readiness Expert Safemode Investigation System), DRS (Device Reasoning Shell), DART (Design Alternatives Rational Tool), elements of the DRA (Document Retrieval Assistant), and software for the PPS (Peripheral Processing System) and the HSPP (High-Speed Peripheral Processor)) is available with supporting documentation, and may be applicable to other system monitoring and analysis applications.

  15. Multimode lasers as analogs of complex biological systems (a survey)

    NASA Astrophysics Data System (ADS)

    Danilov, O. B.; Rosanov, N. N.; Solov'ev, N. A.; Soms, L. N.

    2016-04-01

    Simulating the activity of complex biological systems, in particular, the human brain, is a topical problem the solution of which is necessary both for understanding their functioning and for developing new classes of computational system based on operating principles of the brain. Some features and analogies that can be found in the operation of laser systems and brain and used for developing new generation computational systems are discussed. The appropriateness of such analogies is justified by the fact that both laser systems and the brain are open (interacting with the environment) dissipative spatially distributed nonlinear systems. Therefore, laser optical systems and, in particular, systems with dissipative optical solitons offer an opportunity to experimentally and theoretically model some important cognitive brain functions. One of particularities of the brain operation is the ability to manipulate images. Proceeding from this, in this work, problems related to generation and amplification with laser of spatial structures (images), as well as to amplification of signals coming to it from outside are discussed.

  16. Fractal variability: An emergent property of complex dissipative systems

    NASA Astrophysics Data System (ADS)

    Seely, Andrew J. E.; Macklem, Peter

    2012-03-01

    The patterns of variation of physiologic parameters, such as heart and respiratory rate, and their alteration with age and illness have long been under investigation; however, the origin and significance of scale-invariant fractal temporal structures that characterize healthy biologic variability remain unknown. Quite independently, atmospheric and planetary scientists have led breakthroughs in the science of non-equilibrium thermodynamics. In this paper, we aim to provide two novel hypotheses regarding the origin and etiology of both the degree of variability and its fractal properties. In a complex dissipative system, we hypothesize that the degree of variability reflects the adaptability of the system and is proportional to maximum work output possible divided by resting work output. Reductions in maximal work output (and oxygen consumption) or elevation in resting work output (or oxygen consumption) will thus reduce overall degree of variability. Second, we hypothesize that the fractal nature of variability is a self-organizing emergent property of complex dissipative systems, precisely because it enables the system's ability to optimally dissipate energy gradients and maximize entropy production. In physiologic terms, fractal patterns in space (e.g., fractal vasculature) or time (e.g., cardiopulmonary variability) optimize the ability to deliver oxygen and clear carbon dioxide and waste. Examples of falsifiability are discussed, along with the need to further define necessary boundary conditions. Last, as our focus is bedside utility, potential clinical applications of this understanding are briefly discussed. The hypotheses are clinically relevant and have potential widespread scientific relevance.

  17. Certification of highly complex safety-related systems.

    PubMed

    Reinert, D; Schaefer, M

    1999-01-01

    The BIA has now 15 years of experience with the certification of complex electronic systems for safety-related applications in the machinery sector. Using the example of machining centres this presentation will show the systematic procedure for verifying and validating control systems using Application Specific Integrated Circuits (ASICs) and microcomputers for safety functions. One section will describe the control structure of machining centres with control systems using "integrated safety." A diverse redundant architecture combined with crossmonitoring and forced dynamization is explained. In the main section the steps of the systematic certification procedure are explained showing some results of the certification of drilling machines. Specification reviews, design reviews with test case specification, statistical analysis, and walk-throughs are the analytical measures in the testing process. Systematic tests based on the test case specification, Electro Magnetic Interference (EMI), and environmental testing, and site acceptance tests on the machines are the testing measures for validation. A complex software driven system is always undergoing modification. Most of the changes are not safety-relevant but this has to be proven. A systematic procedure for certifying software modifications is presented in the last section of the paper.

  18. Distributed Cooperation Solution Method of Complex System Based on MAS

    NASA Astrophysics Data System (ADS)

    Weijin, Jiang; Yuhui, Xu

    To adapt the model in reconfiguring fault diagnosing to dynamic environment and the needs of solving the tasks of complex system fully, the paper introduced multi-Agent and related technology to the complicated fault diagnosis, an integrated intelligent control system is studied in this paper. Based on the thought of the structure of diagnostic decision and hierarchy in modeling, based on multi-layer decomposition strategy of diagnosis task, a multi-agent synchronous diagnosis federation integrated different knowledge expression modes and inference mechanisms are presented, the functions of management agent, diagnosis agent and decision agent are analyzed, the organization and evolution of agents in the system are proposed, and the corresponding conflict resolution algorithm in given, Layered structure of abstract agent with public attributes is build. System architecture is realized based on MAS distributed layered blackboard. The real world application shows that the proposed control structure successfully solves the fault diagnose problem of the complex plant, and the special advantage in the distributed domain.

  19. 75 FR 36360 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... National Oceanic and Atmospheric Administration RIN 0648-XX09 New England Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice; public meeting. SUMMARY: The New England Fishery Management.... Howard, Executive Director, New England Fishery Management Council; telephone: (978)...

  20. 78 FR 53729 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... National Oceanic and Atmospheric Administration RIN 0648-XC840 New England Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice; public meeting. SUMMARY: The New England Fishery Management... INFORMATION CONTACT: Thomas A. Nies, Executive Director, New England Fishery Management Council;...

  1. 77 FR 27440 - New England Fishery Management Council; Public Hearings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ... National Oceanic and Atmospheric Administration New England Fishery Management Council; Public Hearings...), Commerce. ACTION: Public Hearing; Request for Comments. SUMMARY: The New England Fishery Management Council..., Executive Director, New England Fishery Management Council, 50 Water Street, Mill 2, Newburyport, MA...

  2. 75 FR 49466 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... National Oceanic and Atmospheric Administration RIN 0648-XY17 New England Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice; public meeting. SUMMARY: The New England Fishery Management... INFORMATION CONTACT: Paul J. Howard, Executive Director, New England Fishery Management Council;...

  3. 77 FR 27440 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ... National Oceanic and Atmospheric Administration New England Fishery Management Council; Public Meeting...), Commerce. ACTION: Notice; public meeting. SUMMARY: The New England Fishery Management Council (Council) is... INFORMATION CONTACT: Paul J. Howard, Executive Director, New England Fishery Management Council;...

  4. 76 FR 43266 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... National Oceanic and Atmospheric Administration RIN 0648-XA582 New England Fishery Management Council... Fisheries Service (NMFS). ACTION: Notice; Public meeting. SUMMARY: The New England Fishery Management.... Howard, Executive Director, New England Fishery Management Council; telephone: (978)...

  5. 77 FR 16810 - New England Fishery Management Council; Public Hearings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... National Oceanic and Atmospheric Administration RIN 0648-XB104 New England Fishery Management Council... to Paul J. Howard, Executive Director, New England Fishery Management Council, 50 Water Street, Mill.... Howard, Executive Director, New England Fishery Management Council; telephone: (978)...

  6. 78 FR 62587 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... National Oceanic and Atmospheric Administration RIN 0648-XC923 New England Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice; public meeting. SUMMARY: The New England Fishery Management...: Thomas A. Nies, Executive Director, New England Fishery Management Council; telephone: (978)...

  7. 75 FR 49466 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... National Oceanic and Atmospheric Administration RIN 0648-XY16 New England Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice; public meeting. SUMMARY: The New England Fishery Management.... Howard, Executive Director, New England Fishery Management Council; telephone:...

  8. 76 FR 30306 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... National Oceanic and Atmospheric Administration RIN 0648-XA454 New England Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice; public meeting. SUMMARY: The New England Fishery Management..., 2011 to consider actions affecting New England fisheries in the exclusive economic zone...

  9. 76 FR 52639 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... National Oceanic and Atmospheric Administration RIN 0648-XA651 New England Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice; public meeting. SUMMARY: The New England Fishery Management... consider actions affecting New England fisheries in the exclusive economic zone (EEZ). Recommendations...

  10. 76 FR 52640 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... National Oceanic and Atmospheric Administration RIN 0648-XA653 New England Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice; public meeting. SUMMARY: The New England Fishery Management... to consider actions affecting New England fisheries in the exclusive economic zone...

  11. 77 FR 53868 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... National Oceanic and Atmospheric Administration RIN 0648-XC212 New England Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice; public meeting. SUMMARY: The New England Fishery Management Council's (Council) Groundfish Committee will meet to consider actions affecting New England fisheries...

  12. 76 FR 64901 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... National Oceanic and Atmospheric Administration RIN 0648-XA770 New England Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice; public meeting. SUMMARY: The New England Fishery Management... actions affecting New England fisheries in the exclusive economic zone (EEZ). Recommendations from...

  13. 77 FR 779 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... National Oceanic and Atmospheric Administration RIN 0648-XA919 New England Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice; public meeting. SUMMARY: The New England Fishery Management... consider actions affecting New England fisheries in the exclusive economic zone (EEZ). Recommendations...

  14. Black-box calibration for complex-system simulation.

    PubMed

    Forrester, Alexander I J

    2010-08-13

    Predicting or measuring the output of complex systems is an important and challenging part of many areas of science. If multiple observations are required for parameter studies and optimization, accurate, computationally intensive predictions or expensive experiments are intractable. This paper looks at the use of Gaussian-process-based correlations to correct simple computer models with sparse data from physical experiments or more complex computer models. In essence, physics-based computer codes and experiments are replaced by fast problem-specific statistics-based codes. Two aerodynamic design examples are presented. First, a cheap two-dimensional potential-flow solver is calibrated to represent the flow over the wing of an unmanned air vehicle. The rear wing of a racing car is then optimized using rear-wing simulations calibrated to include the effects of the flow over the whole car.

  15. Unraveling the mechanistic complexity of Alzheimer's disease through systems biology.

    PubMed

    Rollo, Jennifer L; Banihashemi, Nahid; Vafaee, Fatemeh; Crawford, John W; Kuncic, Zdenka; Holsinger, R M Damian

    2016-06-01

    Alzheimer's disease (AD) is a complex, multifactorial disease that has reached global epidemic proportions. The challenge remains to fully identify its underlying molecular mechanisms that will enable development of accurate diagnostic tools and therapeutics. Conventional experimental approaches that target individual or small sets of genes or proteins may overlook important parts of the regulatory network, which limits the opportunity of identifying multitarget interventions. Our perspective is that a more complete insight into potential treatment options for AD will only be made possible through studying the disease as a system. We propose an integrative systems biology approach that we argue has been largely untapped in AD research. We present key publications to demonstrate the value of this approach and discuss the potential to intensify research efforts in AD through transdisciplinary collaboration. We highlight challenges and opportunities for significant breakthroughs that could be made if a systems biology approach is fully exploited.

  16. Integrated geometry and grid generation system for complex configurations

    NASA Technical Reports Server (NTRS)

    Akdag, Vedat; Wulf, Armin

    1992-01-01

    A grid generation system was developed that enables grid generation for complex configurations. The system called ICEM/CFD is described and its role in computational fluid dynamics (CFD) applications is presented. The capabilities of the system include full computer aided design (CAD), grid generation on the actual CAD geometry definition using robust surface projection algorithms, interfacing easily with known CAD packages through common file formats for geometry transfer, grid quality evaluation of the volume grid, coupling boundary condition set-up for block faces with grid topology generation, multi-block grid generation with or without point continuity and block to block interface requirement, and generating grid files directly compatible with known flow solvers. The interactive and integrated approach to the problem of computational grid generation not only substantially reduces manpower time but also increases the flexibility of later grid modifications and enhancements which is required in an environment where CFD is integrated into a product design cycle.

  17. Ecosystems and the Biosphere as Complex Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Levin, Simon A.

    1998-01-01

    Ecosystems are prototypical examples of complex adaptive systems, in which patterns at higher levels emerge from localized interactions and selection processes acting at lower levels. An essential aspect of such systems is nonlinearity, leading to historical dependency and multiple possible outcomes of dynamics. Given this, it is essential to determine the degree to which system features are determined by environmental conditions, and the degree to which they are the result of self-organization. Furthermore, given the multiple levels at which dynamics become apparent and at which selection can act, central issues relate to how evolution shapes ecosystems properties, and whether ecosystems become buffered to changes (more resilient) over their ecological and evolutionary development or proceed to critical states and the edge of chaos.

  18. Kinetics of the Dynamical Information Shannon Entropy for Complex Systems

    NASA Astrophysics Data System (ADS)

    Yulmetyev, R. M.; Yulmetyeva, D. G.

    1999-08-01

    Kinetic behaviour of dynamical information Shannon entropy is discussed for complex systems: physical systems with non-Markovian property and memory in correlation approximation, and biological and physiological systems with sequences of the Markovian and non-Markovian random noises. For the stochastic processes, a description of the information entropy in terms of normalized time correlation functions is given. The influence and important role of two mutually dependent channels of the entropy change, correlation (creation or generation of correlations) and anti-correlation (decay or annihilation of correlation) is discussed. The method developed here is also used in analysis of the density fluctuations in liquid cesium obtained from slow neutron scattering data, fractal kinetics of the long-range fluctuation in the short-time human memory and chaotic dynamics of R-R intervals of human ECG.

  19. Focus on coherent control of complex quantum systems

    NASA Astrophysics Data System (ADS)

    Whaley, Birgitta; Milburn, Gerard

    2015-10-01

    The rapid growth of quantum information sciences over the past few decades has fueled a corresponding rise in high profile applications in fields such as metrology, sensors, spintronics, and attosecond dynamics, in addition to quantum information processing. Realizing this potential of today’s quantum science and the novel technologies based on this requires a high degree of coherent control of quantum systems. While early efforts in systematizing methods for high fidelity quantum control focused on isolated or closed quantum systems, recent advances in experimental design, measurement and monitoring, have stimulated both need and interest in the control of complex or large scale quantum systems that may also be coupled to an interactive environment or reservoir. This focus issue brings together new theoretical and experimental work addressing the formulation and implementation of quantum control for a broad range of applications in quantum science and technology today.

  20. Modularity and the spread of perturbations in complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Kolchinsky, Artemy; Gates, Alexander J.; Rocha, Luis M.

    2015-12-01

    We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.

  1. Control of Future Air Traffic Systems via Complexity Bound Management

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia

    2013-01-01

    The complexity of the present system for managing air traffic has led to "discreteness" in approaches to creating new concepts: new concepts are created as point designs, based on experience, expertise, and creativity of the proposer. Discrete point designs may be highly successful but they are difficult to substantiate in the face of equally strong substantiation of competing concepts, as well as the state of the art in concept evaluation via simulations. Hybrid concepts may present a compromise - the golden middle. Yet a hybrid of sometimes in principle incompatible concepts forms another point design that faces the challenge of substantiation and validation. We are faced with the need to re-design the air transportation system ab initio. This is a daunting task, especially considering the problem of transitioning from the present system to any fundamentally new system. However, design from scratch is also an opportunity to reconsider approaches to new concept development. In this position paper we propose an approach, Optimized Parametric Functional Design, for systematic development of concepts for management and control of airspace systems, based on optimization formulations in terms of required system functions and states. This reasoning framework, realizable in the context of ab initio system design, offers an approach to deriving substantiated airspace management and control concepts. With growing computational power, we hope that the approach will also yield a methodology for actual dynamic control of airspace

  2. How complexity emerges in urban systems: Theory of urban morphology

    NASA Astrophysics Data System (ADS)

    Goh, Segun; Choi, M. Y.; Lee, Keumsook; Kim, Kyung-min

    2016-05-01

    Human beings develop the land and transform land use patterns, constructing artificial structures. Among them, the city is a representative system and its morphology has attracted much attention. While most existing studies have been devoted to individual dynamics and focused on the proximity of specific areas of a city, we here pay attention to the city as a complex system, where interactions between individuals give rise to emergent properties. Specifically, analyzing the big data on every building in Seoul City, we specify the relevant interactions among constituents and probe the emergence of complex land use patterns. In particular, based on the empirical observations, we illustrate that interactions between land uses are frustrated, which serves as a basic postulate of the theory of urban morphology. We examine this conjecture with the help of a layered Ising-type model and disclose that the actual land use pattern emerges at the criticality of the system in the presence of heterogeneously distributed fields. It is also remarked that our model, allowing quantitative predictions, can easily be applied to other cities around the world.

  3. Complex rostral neurovascular system in a giant pliosaur

    NASA Astrophysics Data System (ADS)

    Foffa, Davide; Sassoon, Judyth; Cuff, Andrew R.; Mavrogordato, Mark N.; Benton, Michael J.

    2014-05-01

    Pliosaurs were a long-lived, ubiquitous group of Mesozoic marine predators attaining large body sizes (up to 12 m). Despite much being known about their ecology and behaviour, the mechanisms they adopted for prey detection have been poorly investigated and represent a mystery to date. Complex neurovascular systems in many vertebrate rostra have evolved for prey detection. However, information on the occurrence of such systems in fossil taxa is extremely limited because of poor preservation potential. The neurovascular complex from the snout of an exceptionally well-preserved pliosaur from the Kimmeridgian (Late Jurassic, c. 170 Myr ago) of Weymouth Bay (Dorset, UK) is described here for the first time. Using computed tomography (CT) scans, the extensive bifurcating neurovascular channels could be traced through the rostrum to both the teeth and the foramina on the dorsal and lateral surface of the snout. The structures on the surface of the skull and the high concentrations of peripheral rami suggest that this could be a sensory system, perhaps similar to crocodile pressure receptors or shark electroreceptors.

  4. GT-CATS: Tracking Operator Activities in Complex Systems

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Mitchell, Christine M.; Palmer, Everett A.

    1999-01-01

    Human operators of complex dynamic systems can experience difficulties supervising advanced control automation. One remedy is to develop intelligent aiding systems that can provide operators with context-sensitive advice and reminders. The research reported herein proposes, implements, and evaluates a methodology for activity tracking, a form of intent inferencing that can supply the knowledge required for an intelligent aid by constructing and maintaining a representation of operator activities in real time. The methodology was implemented in the Georgia Tech Crew Activity Tracking System (GT-CATS), which predicts and interprets the actions performed by Boeing 757/767 pilots navigating using autopilot flight modes. This report first describes research on intent inferencing and complex modes of automation. It then provides a detailed description of the GT-CATS methodology, knowledge structures, and processing scheme. The results of an experimental evaluation using airline pilots are given. The results show that GT-CATS was effective in predicting and interpreting pilot actions in real time.

  5. How complexity emerges in urban systems: Theory of urban morphology.

    PubMed

    Goh, Segun; Choi, M Y; Lee, Keumsook; Kim, Kyung-Min

    2016-05-01

    Human beings develop the land and transform land use patterns, constructing artificial structures. Among them, the city is a representative system and its morphology has attracted much attention. While most existing studies have been devoted to individual dynamics and focused on the proximity of specific areas of a city, we here pay attention to the city as a complex system, where interactions between individuals give rise to emergent properties. Specifically, analyzing the big data on every building in Seoul City, we specify the relevant interactions among constituents and probe the emergence of complex land use patterns. In particular, based on the empirical observations, we illustrate that interactions between land uses are frustrated, which serves as a basic postulate of the theory of urban morphology. We examine this conjecture with the help of a layered Ising-type model and disclose that the actual land use pattern emerges at the criticality of the system in the presence of heterogeneously distributed fields. It is also remarked that our model, allowing quantitative predictions, can easily be applied to other cities around the world. PMID:27300912

  6. Connectivity and complex systems in geomorphology: addressing some key challenges

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald; Turnbull-Lloyd, Laura; Parsons, Anthony; Bracken, Louise; Keesstra, Saskia; Masselink, Rens

    2016-04-01

    "Connectivity thinking" and related concepts have a long history in geomorphology. Since the beginning of the 21st century connectivity research experienced a huge boom in geomorphology as geomorphologists started to develop new concepts on connectivity to better understand the complexity of geomorphic systems and system response to change. However, progress in the field of connectivity in geomorphology has mostly been developing in a parallel manner, resulting in a multiplicity of definitions, concepts and methodological approaches. Nevertheless, a set of common key challenges amongst the different connectivity concepts and approaches used to understand complex geomorphic systems are also evident. In the course of a theory think tank of the COST Action ES1306 (CONNECTEUR - Connecting European Connectivity Research) the following five different key challenges were detected (Turnbull et al., in prep.): (i) defining the fundamental unit, (ii) distinguishing between structural and functional boundaries, (iii) emergent behavior, (iv) memory effects, (v) measuring connectivity. In this presentation we will a) discuss how these key challenges are addressed and approached in connectivity research in geomorphology, b) evaluate ways in which cross-disciplinary advances may be made by exploring potential for a common toolbox approach to the study of connectivity.

  7. Health monitoring display system for a complex plant

    DOEpatents

    Ridolfo, Charles F.; Harmon, Daryl L.; Colin, Dreyfuss

    2006-08-08

    A single page enterprise wide level display provides a comprehensive readily understood representation of the overall health status of a complex plant. Color coded failure domains allow rapid intuitive recognition of component failure status. A three-tier hierarchy of displays provide details on the health status of the components and systems displayed on the enterprise wide level display in a manner that supports a logical drill down to the health status of sub-components on Tier 1 to expected faults of the sub-components on Tier 2 to specific information relative to expected sub-component failures on Tier 3.

  8. A complex systems approach to computational molecular biology

    SciTech Connect

    Lapedes, A. |

    1993-09-01

    We report on the containing research program at Santa Fe Institute that applies complex systems methodology to computational molecular biology. Two aspects are stressed here are the use of co-evolving adaptive neutral networks for determining predictable protein structure classifications, and the use of information theory to elucidate protein structure and function. A ``snapshot`` of the current state of research in these two topics is presented, representing the present state of two major research thrusts in the program of Genetic Data and Sequence Analysis at the Santa Fe Institute.

  9. Designing Better Scaffolding in Teaching Complex Systems with Graphical Simulations

    NASA Astrophysics Data System (ADS)

    Li, Na

    Complex systems are an important topic in science education today, but they are usually difficult for secondary-level students to learn. Although graphic simulations have many advantages in teaching complex systems, scaffolding is a critical factor for effective learning. This dissertation study was conducted around two complementary research questions on scaffolding: (1) How can we chunk and sequence learning activities in teaching complex systems? (2) How can we help students make connections among system levels across learning activities (level bridging)? With a sample of 123 seventh-graders, this study employed a 3x2 experimental design that factored sequencing methods (independent variable 1; three levels) with level-bridging scaffolding (independent variable 2; two levels) and compared the effectiveness of each combination. The study measured two dependent variables: (1) knowledge integration (i.e., integrating and connecting content-specific normative concepts and providing coherent scientific explanations); (2) understanding of the deep causal structure (i.e., being able to grasp and transfer the causal knowledge of a complex system). The study used a computer-based simulation environment as the research platform to teach the ideal gas law as a system. The ideal gas law is an emergent chemical system that has three levels: (1) experiential macro level (EM) (e.g., an aerosol can explodes when it is thrown into the fire); (2) abstract macro level (AM) (i.e., the relationships among temperature, pressure and volume); (3) micro level (Mi) (i.e., molecular activity). The sequencing methods of these levels were manipulated by changing the order in which they were delivered with three possibilities: (1) EM-AM-Mi; (2) Mi-AM-EM; (3) AM-Mi-EM. The level-bridging scaffolding variable was manipulated on two aspects: (1) inserting inter-level questions among learning activities; (2) two simulations dynamically linked in the final learning activity. Addressing the first

  10. Integrated modeling tool for performance engineering of complex computer systems

    NASA Technical Reports Server (NTRS)

    Wright, Gary; Ball, Duane; Hoyt, Susan; Steele, Oscar

    1989-01-01

    This report summarizes Advanced System Technologies' accomplishments on the Phase 2 SBIR contract NAS7-995. The technical objectives of the report are: (1) to develop an evaluation version of a graphical, integrated modeling language according to the specification resulting from the Phase 2 research; and (2) to determine the degree to which the language meets its objectives by evaluating ease of use, utility of two sets of performance predictions, and the power of the language constructs. The technical approach followed to meet these objectives was to design, develop, and test an evaluation prototype of a graphical, performance prediction tool. The utility of the prototype was then evaluated by applying it to a variety of test cases found in the literature and in AST case histories. Numerous models were constructed and successfully tested. The major conclusion of this Phase 2 SBIR research and development effort is that complex, real-time computer systems can be specified in a non-procedural manner using combinations of icons, windows, menus, and dialogs. Such a specification technique provides an interface that system designers and architects find natural and easy to use. In addition, PEDESTAL's multiview approach provides system engineers with the capability to perform the trade-offs necessary to produce a design that meets timing performance requirements. Sample system designs analyzed during the development effort showed that models could be constructed in a fraction of the time required by non-visual system design capture tools.

  11. Drought mitigation using operative indicators in complex water systems

    NASA Astrophysics Data System (ADS)

    Sechi, G. M.; Sulis, A.

    The definition of an effective link between drought indicators and drought mitigation measures in a regional water supply systems is a complex problem involving environmental, social and economical factors. The gap between research and practice in this field still limits the application of mathematical modelling tools more than institutional or technological features. In this paper, a methodology is developed to support the decision making process of water authorities facing droughts in complex water systems. The methodology is based on a full integration of optimization and simulation tools. The exploratory power of the optimization allows the rapid estimation of subsets of flow variables related to forecasted demands supplies and shortages that are used as operative indicators of the drought risk in future hydrological scenarios. The simulation model uses these indicators as triggers of mitigation measures in a proactive approach to drought. In the case of an overly optimistic forecast of the hydrological scenario, the proactive approach does not completely eliminate the risk of shortages. In this case, further measures have to be implemented in the water system simulation in a reactive approach to drought. These can include more expensive and higher impact measures to be taken later, after the severity of the drought event has been highlighted. In collaboration with the regional water authorities in southern Italy, the proposed methodology is currently being tested in the Agri-Sinni water system. Early applications to the Agri-Sinni water system are presented in the paper, showing the usefulness of the proposed methodology in mitigating the impacts of drought and selecting an economically efficient combination of proactive and reactive measures.

  12. Nonlinear Dynamics of Complex Coevolutionary Systems in Historical Times

    NASA Astrophysics Data System (ADS)

    Perdigão, Rui A. P.

    2016-04-01

    A new theoretical paradigm for statistical-dynamical modeling of complex coevolutionary systems is introduced, with the aim to provide historical geoscientists with a practical tool to analyse historical data and its underlying phenomenology. Historical data is assumed to represent the history of dynamical processes of physical and socio-economic nature. If processes and their governing laws are well understood, they are often treated with traditional dynamical equations: deterministic approach. If the governing laws are unknown or impracticable, the process is often treated as if being random (even if it is not): statistical approach. Although single eventful details - such as the exact spatiotemporal structure of a particular hydro-meteorological incident - may often be elusive to a detailed analysis, the overall dynamics exhibit group properties summarized by a simple set of categories or dynamical regimes at multiple scales - from local short-lived convection patterns to large-scale hydro-climatic regimes. The overwhelming microscale complexity is thus conveniently wrapped into a manageable group entity, such as a statistical distribution. In a stationary setting whereby the distribution is assumed to be invariant, alternating regimes are approachable as dynamical intermittence. For instance, in the context of bimodal climatic oscillations such as NAO and ENSO, each mode corresponds to a dynamical regime or phase. However, given external forcings or longer-term internal variability and multiscale coevolution, the structural properties of the system may change. These changes in the dynamical structure bring about a new distribution and associated regimes. The modes of yesteryear may no longer exist as such in the new structural order of the system. In this context, aside from regime intermittence, the system exhibits structural regime change. New oscillations may emerge whilst others fade into the annals of history, e.g. particular climate fluctuations during

  13. New England Takes Stock of Midterm Elections

    ERIC Educational Resources Information Center

    Harney, John O.; Morwick, Carolyn

    2014-01-01

    The recent midterm elections brought New England two new governors. Rhode Island elected its first woman chief executive in Gina Raimondo (D). Massachusetts elected Charlie Baker (R), a former Harvard Pilgrim CEO and official in the Weld and Cellucci administrations. Otherwise, the New England corner offices cautiously welcomed back incumbents:…

  14. Political Literacy in Japan and England

    ERIC Educational Resources Information Center

    Davies, Ian; Mizuyama, Mitsuharu; Ikeno, Norio; Parmenter, Lynne; Mori, Chiho

    2013-01-01

    The authors discuss findings from the project "Political Literacy in Japan and England". They do so to follow up on work published in this journal in 2011. The now completed project involved two schools in England and three schools in Japan, and had the aim of exploring what teachers would do in each country when asked to use the same…

  15. New England's Vital Resource: The Labor Force.

    ERIC Educational Resources Information Center

    Hoy, John C., Ed.; Bernstein, Melvin H., Ed.

    A collection of analyses and projections is presented that explores the challenges posed by a rapidly evolving economy and the critical issue of manpower policy facing New England and the nation. New England was able to move from traditional industry to high technology because its colleges and universities supplied basic research and trained…

  16. A perspective on modeling and simulation of complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Åström, K. J.

    2011-09-01

    There has been an amazing development of modeling and simulation from its beginning in the 1920s, when the technology was available only at a handful of University groups who had access to a mechanical differential analyzer. Today, tools for modeling and simulation are available for every student and engineer. This paper gives a perspective on the development with particular emphasis on technology and paradigm shifts. Modeling is increasingly important for design and operation of complex natural and man-made systems. Because of the increased use of model based control such as Kalman filters and model predictive control, models are also appearing as components of feedback systems. Modeling and simulation are multidisciplinary, it is used in a wide variety of fields and their development have been strongly influenced by mathematics, numerics, computer science and computer technology.

  17. Programming the emergence in morphogenetically architected complex systems.

    PubMed

    Varenne, Franck; Chaigneau, Pierre; Petitot, Jean; Doursat, René

    2015-09-01

    Large sets of elements interacting locally and producing specific architectures reliably form a category that transcends the usual dividing line between biological and engineered systems. We propose to call them morphogenetically architected complex systems (MACS). While taking the emergence of properties seriously, the notion of MACS enables at the same time the design (or "meta-design") of operational means that allow controlling and even, paradoxically, programming this emergence. To demonstrate our claim, we first show that among all the self-organized systems studied in the field of Artificial Life, the specificity of MACS essentially lies in the close relation between their emergent properties and functional properties. Second, we argue that to be a MACS a system does not need to display more than weak emergent properties. Third, since the notion of weak emergence is based on the possibility of simulation, whether computational or mechanistic via machines, we see MACS as good candidates to help design artificial self-architected systems (such as robotic swarms) but also harness and redesign living ones (such as synthetic bacterial films). PMID:26024971

  18. Indicator system for a process plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  19. Indicator system for advanced nuclear plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  20. Specificity and complexity in bacterial quorum-sensing systems

    PubMed Central

    Hawver, Lisa A.; Jung, Sarah A.; Ng, Wai-Leung

    2016-01-01

    Quorum sensing (QS) is a microbial cell-to-cell communication process that relies on the production and detection of chemical signals called autoinducers (AIs) to monitor cell density and species complexity in the population. QS allows bacteria to behave as a cohesive group and coordinate collective behaviors. While most QS receptors display high specificity to their AI ligands, others are quite promiscuous in signal detection. How do specific QS receptors respond to their cognate signals with high fidelity? Why do some receptors maintain low signal recognition specificity? In addition, many QS systems are composed of multiple intersecting signaling pathways: what are the benefits of preserving such a complex signaling network when a simple linear ‘one-to-one’ regulatory pathway seems sufficient to monitor cell density? Here, we will discuss different molecular mechanisms employed by various QS systems that ensure productive and specific QS responses. Moreover, the network architectures of some well-characterized QS circuits will be reviewed to understand how the wiring of different regulatory components achieves different biological goals. PMID:27354348

  1. Hidden in plain view: degeneracy in complex systems.

    PubMed

    Mason, P H; Domínguez D, J F; Winter, B; Grignolio, A

    2015-02-01

    Degeneracy is a word with two meanings. The popular usage of the word denotes deviance and decay. In scientific discourse, degeneracy refers to the idea that different pathways can lead to the same output. In the biological sciences, the concept of degeneracy has been ignored for a few key reasons. Firstly, the word "degenerate" in popular culture has negative, emotionally powerful associations that do not inspire scientists to consider its technical meaning. Secondly, the tendency of searching for single causes of natural and social phenomena means that scientists can overlook the multi-stranded relationships between cause and effect. Thirdly, degeneracy and redundancy are often confused with each other. Degeneracy refers to dissimilar structures that are functionally similar while redundancy refers to identical structures. Degeneracy can give rise to novelty in ways that redundancy cannot. From genetic codes to immunology, vaccinology and brain development, degeneracy is a crucial part of how complex systems maintain their functional integrity. This review article discusses how the scientific concept of degeneracy was imported into genetics from physics and was later introduced to immunology and neuroscience. Using examples of degeneracy in immunology, neuroscience and linguistics, we demonstrate that degeneracy is a useful way of understanding how complex systems function. Reviewing the history and theoretical scope of degeneracy allows its usefulness to be better appreciated, its coherency to be further developed, and its application to be more quickly realized. PMID:25543071

  2. Poverty, disease, and the ecology of complex systems.

    PubMed

    Ngonghala, Calistus N; Pluciński, Mateusz M; Murray, Megan B; Farmer, Paul E; Barrett, Christopher B; Keenan, Donald C; Bonds, Matthew H

    2014-04-01

    Understanding why some human populations remain persistently poor remains a significant challenge for both the social and natural sciences. The extremely poor are generally reliant on their immediate natural resource base for subsistence and suffer high rates of mortality due to parasitic and infectious diseases. Economists have developed a range of models to explain persistent poverty, often characterized as poverty traps, but these rarely account for complex biophysical processes. In this Essay, we argue that by coupling insights from ecology and economics, we can begin to model and understand the complex dynamics that underlie the generation and maintenance of poverty traps, which can then be used to inform analyses and possible intervention policies. To illustrate the utility of this approach, we present a simple coupled model of infectious diseases and economic growth, where poverty traps emerge from nonlinear relationships determined by the number of pathogens in the system. These nonlinearities are comparable to those often incorporated into poverty trap models in the economics literature, but, importantly, here the mechanism is anchored in core ecological principles. Coupled models of this sort could be usefully developed in many economically important biophysical systems--such as agriculture, fisheries, nutrition, and land use change--to serve as foundations for deeper explorations of how fundamental ecological processes influence structural poverty and economic development.

  3. Etoile Project : Social Intelligent ICT-System for very large scale education in complex systems

    NASA Astrophysics Data System (ADS)

    Bourgine, P.; Johnson, J.

    2009-04-01

    The project will devise new theory and implement new ICT-based methods of delivering high-quality low-cost postgraduate education to many thousands of people in a scalable way, with the cost of each extra student being negligible (< a few Euros). The research will create an in vivo laboratory of one to ten thousand postgraduate students studying courses in complex systems. This community is chosen because it is large and interdisciplinary and there is a known requirement for courses for thousand of students across Europe. The project involves every aspect of course production and delivery. Within this the research focused on the creation of a Socially Intelligent Resource Mining system to gather large volumes of high quality educational resources from the internet; new methods to deconstruct these to produce a semantically tagged Learning Object Database; a Living Course Ecology to support the creation and maintenance of evolving course materials; systems to deliver courses; and a ‘socially intelligent assessment system'. The system will be tested on one to ten thousand postgraduate students in Europe working towards the Complex System Society's title of European PhD in Complex Systems. Étoile will have a very high impact both scientifically and socially by (i) the provision of new scalable ICT-based methods for providing very low cost scientific education, (ii) the creation of new mathematical and statistical theory for the multiscale dynamics of complex systems, (iii) the provision of a working example of adaptation and emergence in complex socio-technical systems, and (iv) making a major educational contribution to European complex systems science and its applications.

  4. Health economic evaluation in England.

    PubMed

    Raftery, James

    2014-01-01

    The 2010 National Health Service Constitution for England specified rights and responsibilities, including health economic evaluation for the National Institute for Health and Care Excellence (NICE) and the Joint Committee on Vaccinations and Immunisations. The National Screening Committee and the Health Protection Agency also provide advice to the Government based on health economic evaluation. Each agency largely follows the methods specified by NICE. To distinguish the methods from neoclassical economics they have been termed "extra-welfarist". Key differences include measurement and valuation of both benefits (QALYs) and costs (healthcare related). Policy on discounting has also changed over time and by agency. The debate over having NICE's methods align more closely with neoclassical economics has been prominent in the ongoing development of "value based pricing". The political unacceptability of some decisions has led to special funding for technologies not recommended by NICE. These include the 2002 Multiple Sclerosis Risk Sharing Scheme and the 2010 Cancer Drugs Fund as well as special arrangements for technologies linked to the end of life and for innovation. Since 2009 Patient Access Schemes have made price reductions possible which sometimes enables drugs to meet NICE's cost-effectiveness thresholds. As a result, the National Health Service in England has denied few technologies on grounds of cost-effectiveness.

  5. SIM_EXPLORE: Software for Directed Exploration of Complex Systems

    NASA Technical Reports Server (NTRS)

    Burl, Michael; Wang, Esther; Enke, Brian; Merline, William J.

    2013-01-01

    Physics-based numerical simulation codes are widely used in science and engineering to model complex systems that would be infeasible to study otherwise. While such codes may provide the highest- fidelity representation of system behavior, they are often so slow to run that insight into the system is limited. Trying to understand the effects of inputs on outputs by conducting an exhaustive grid-based sweep over the input parameter space is simply too time-consuming. An alternative approach called "directed exploration" has been developed to harvest information from numerical simulators more efficiently. The basic idea is to employ active learning and supervised machine learning to choose cleverly at each step which simulation trials to run next based on the results of previous trials. SIM_EXPLORE is a new computer program that uses directed exploration to explore efficiently complex systems represented by numerical simulations. The software sequentially identifies and runs simulation trials that it believes will be most informative given the results of previous trials. The results of new trials are incorporated into the software's model of the system behavior. The updated model is then used to pick the next round of new trials. This process, implemented as a closed-loop system wrapped around existing simulation code, provides a means to improve the speed and efficiency with which a set of simulations can yield scientifically useful results. The software focuses on the case in which the feedback from the simulation trials is binary-valued, i.e., the learner is only informed of the success or failure of the simulation trial to produce a desired output. The software offers a number of choices for the supervised learning algorithm (the method used to model the system behavior given the results so far) and a number of choices for the active learning strategy (the method used to choose which new simulation trials to run given the current behavior model). The software

  6. Toward a new system approach of complexity in geomorphology

    NASA Astrophysics Data System (ADS)

    Masson, E.

    2012-04-01

    Since three decades the conceptual vision of catchment and fluvial geomorphology is strongly based on the "fluvial system" (S. A. Schumm, 1977) and the "river continuum system" (R. L. Vannote et al., 1980) concepts that can be embedded in a classical physical "four dimensions system" (C. Amoros and G.-E. Petts, 1993). Catchment and network properties, sediment and water budgets and their time-space variations are playing a major role in this geomorpho-ecological approach of hydro-geomorphosystems in which human impacts are often considered as negative externalities. The European Water Framework Directive (i.e. WFD, Directive 2000/60/EC) and its objective of good environmental status is addressing the question of fluvial/catchment/landscape geomorphology and its integration into IWRM in such a sustainable way that deeply brings back society and social sciences into the water system analysis. The DPSIR methodology can be seen as an attempt to cope with the analysis of unsustainable consequences of society's water-sediment-landscape uses, environmental pressures and their consequences on complex fluvial dynamics. Although more and more scientific fields are engaged in this WFD objective there's still a lack of a global theory that could integrate geomorphology into the multi-disciplinary brainstorming discussion about sustainable use of water resources. Our proposition is to promote and discuss a trans-disciplinary approach of catchments and fluvial networks in which concepts can be broadly shared across scientific communities. The objective is to define a framework for thinking and analyzing geomorphological issues within a whole "Environmental and Social System" (i.e. ESS, E. Masson 2010) with a common set of concepts and "meta-concepts" that could be declined and adapted in any scientific field for any purpose connected with geomorphology. We assume that geomorphological research can benefit from a six dynamic dimensions system approach based on structures

  7. Practical reliability and uncertainty quantification in complex systems : final report.

    SciTech Connect

    Grace, Matthew D.; Ringland, James T.; Marzouk, Youssef M.; Boggs, Paul T.; Zurn, Rena M.; Diegert, Kathleen V.; Pebay, Philippe Pierre; Red-Horse, John Robert

    2009-09-01

    The purpose of this project was to investigate the use of Bayesian methods for the estimation of the reliability of complex systems. The goals were to find methods for dealing with continuous data, rather than simple pass/fail data; to avoid assumptions of specific probability distributions, especially Gaussian, or normal, distributions; to compute not only an estimate of the reliability of the system, but also a measure of the confidence in that estimate; to develop procedures to address time-dependent or aging aspects in such systems, and to use these models and results to derive optimal testing strategies. The system is assumed to be a system of systems, i.e., a system with discrete components that are themselves systems. Furthermore, the system is 'engineered' in the sense that each node is designed to do something and that we have a mathematical description of that process. In the time-dependent case, the assumption is that we have a general, nonlinear, time-dependent function describing the process. The major results of the project are described in this report. In summary, we developed a sophisticated mathematical framework based on modern probability theory and Bayesian analysis. This framework encompasses all aspects of epistemic uncertainty and easily incorporates steady-state and time-dependent systems. Based on Markov chain, Monte Carlo methods, we devised a computational strategy for general probability density estimation in the steady-state case. This enabled us to compute a distribution of the reliability from which many questions, including confidence, could be addressed. We then extended this to the time domain and implemented procedures to estimate the reliability over time, including the use of the method to predict the reliability at a future time. Finally, we used certain aspects of Bayesian decision analysis to create a novel method for determining an optimal testing strategy, e.g., we can estimate the 'best' location to take the next test to

  8. Multi-Element Unstructured Analyses of Complex Valve Systems

    NASA Technical Reports Server (NTRS)

    Sulyma, Peter (Technical Monitor); Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy

    2004-01-01

    The safe and reliable operation of high pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we will present a series of high fidelity computational analyses of systems ranging from cryogenic control valves and pressure regulator systems to cavitating venturis that are used to support rocket engine and component testing at NASA Stennis Space Center. A generalized multi-element framework with sub-models for grid adaption, grid movement and multi-phase flow dynamics has been used to carry out the simulations. Such a framework provides the flexibility of resolving the structural and functional complexities that are typically associated with valve-based high pressure feed systems and have been difficult to deal with traditional CFD methods. Our simulations revealed a rich variety of flow phenomena such as secondary flow patterns, hydrodynamic instabilities, fluctuating vapor pockets etc. In the paper, we will discuss performance losses related to cryogenic control valves, and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the choking like behavior in cryogenic control elements. Additionally, we will provide detailed analyses of the modal instability that is observed in the operation of the dome pressure regulator valve. Such instabilities are usually not localized and manifest themselves as a system wide phenomena leading to an undesirable chatter at high flow conditions.

  9. Automatic restart of complex irrigation systems. Final report

    SciTech Connect

    Werner, H.D.; Alcock, R.; DeBoer, D.W.; Olson, D.I.

    1992-05-01

    Automatic restart of irrigation systems under load management has the potential to maximize pumping time during off-peak hours. Existing automation technology ranges from time delay relays to more sophisticated control using computers together with weather data to optimize irrigation practices. Centrifugal pumps and water hammer concerns prevent automatic restart of common but often complex irrigation systems in South Dakota. The irrigator must manually prime the pump and control water hammer during pipeline pressurization. Methods to prime centrifugal pumps and control water hammer facilitate automatic restart after load management is released. Seven priming methods and three water hammer control methods were investigated. A sump pump and small vacuum pump were used to test two automatic prime and restart systems in the laboratory. A variable frequency phase converter was also used to automatically control water hammer during pipeline pressurization. Economical methods to safely prime and restart centrifugal pumps were discussed. The water hammer control methods safely pressurize the pipeline but require a higher initial investment. The automatic restart systems can be used to safely restart centrifugal pumps and control water hammer after load management is released. Based upon laboratory research and a technical review of available restart components, a computer software program was developed. The program assists customers in evaluating various restart options for automatic restarting of electric irrigation pumps. For further information on the software program, contact the South Dakota State University, Department of Agricultural Engineering.

  10. Active Learning for Directed Exploration of Complex Systems

    NASA Technical Reports Server (NTRS)

    Burl, Michael C.; Wang, Esther

    2009-01-01

    Physics-based simulation codes are widely used in science and engineering to model complex systems that would be infeasible to study otherwise. Such codes provide the highest-fidelity representation of system behavior, but are often so slow to run that insight into the system is limited. For example, conducting an exhaustive sweep over a d-dimensional input parameter space with k-steps along each dimension requires k(sup d) simulation trials (translating into k(sup d) CPU-days for one of our current simulations). An alternative is directed exploration in which the next simulation trials are cleverly chosen at each step. Given the results of previous trials, supervised learning techniques (SVM, KDE, GP) are applied to build up simplified predictive models of system behavior. These models are then used within an active learning framework to identify the most valuable trials to run next. Several active learning strategies are examined including a recently-proposed information-theoretic approach. Performance is evaluated on a set of thirteen synthetic oracles, which serve as surrogates for the more expensive simulations and enable the experiments to be replicated by other researchers.

  11. Finger mouse system based on computer vision in complex backgrounds

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zhang, Xiong

    2013-12-01

    This paper presents a human-computer interaction system and realizes a real-time virtual mouse. Our system emulates the dragging and selecting functions of a mouse by recognizing bare hands, hence the control style is simple and intuitive. A single camera is used to capture hand images and a DSP chip is embedded as the image processing platform. To deal with complex backgrounds, particularly where skin-like or moving objects appear, we develop novel hand recognition algorithms. Hand segmentation is achieved by skin color cue and background difference. Each input image is corrected according to the luminance and then skin color is extracted by Gaussian model. We employ a Camshift tracking algorithm which receives feedbacks from the recognition module. In fingertip recognition, a method combining template matching and circle drawing is proposed. Our system has advantages of good real-time performance, easy integration and energy conservation. Experiments show that the system is robust to the scaling and rotation of hands.

  12. Approaching complexity by stochastic methods: From biological systems to turbulence

    NASA Astrophysics Data System (ADS)

    Friedrich, Rudolf; Peinke, Joachim; Sahimi, Muhammad; Reza Rahimi Tabar, M.

    2011-09-01

    This review addresses a central question in the field of complex systems: given a fluctuating (in time or space), sequentially measured set of experimental data, how should one analyze the data, assess their underlying trends, and discover the characteristics of the fluctuations that generate the experimental traces? In recent years, significant progress has been made in addressing this question for a class of stochastic processes that can be modeled by Langevin equations, including additive as well as multiplicative fluctuations or noise. Important results have emerged from the analysis of temporal data for such diverse fields as neuroscience, cardiology, finance, economy, surface science, turbulence, seismic time series and epileptic brain dynamics, to name but a few. Furthermore, it has been recognized that a similar approach can be applied to the data that depend on a length scale, such as velocity increments in fully developed turbulent flow, or height increments that characterize rough surfaces. A basic ingredient of the approach to the analysis of fluctuating data is the presence of a Markovian property, which can be detected in real systems above a certain time or length scale. This scale is referred to as the Markov-Einstein (ME) scale, and has turned out to be a useful characteristic of complex systems. We provide a review of the operational methods that have been developed for analyzing stochastic data in time and scale. We address in detail the following issues: (i) reconstruction of stochastic evolution equations from data in terms of the Langevin equations or the corresponding Fokker-Planck equations and (ii) intermittency, cascades, and multiscale correlation functions.

  13. Mathematical test criteria for filtering complex systems: Plentiful observations

    SciTech Connect

    Castronovo, E.; Harlim, J.; Majda, A.J.

    2008-03-20

    An important emerging scientific issue is the real time filtering through observations of noisy turbulent signals for complex systems as well as the statistical accuracy of spatio-temporal discretizations for such systems. These issues are addressed here in detail for the setting with plentiful observations for a scalar field through explicit mathematical test criteria utilizing a recent theory [A.J. Majda, M.J. Grote, Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems, Proceedings of the National Academy of Sciences 104 (4) (2007) 1124-1129]. For plentiful observations, the number of observations equals the number of mesh points. These test criteria involve much simpler decoupled complex scalar filtering test problems with explicit formulas and elementary numerical experiments which are developed here as guidelines for filter performance. The theory includes information criteria to avoid filter divergence with large model errors, asymptotic Kalman gain, filter stability, and accurate filtering with small ensemble size as well as rigorous results delineating the role of various turbulent spectra for filtering under mesh refinement. These guidelines are also applied to discrete approximations for filtering the stochastically forced dissipative advection equation with very turbulent and noisy signals with either an equipartition of energy or -5/3 turbulent spectrum with infrequent observations as severe test problems. The theory and companion simulations demonstrate accurate statistical filtering in this context with implicit schemes with large time step with very small ensemble sizes and even with unstable explicit schemes under appropriate circumstances provided the filtering strategies are guided by the off-line theoretical criteria. The surprising failure of other strongly stable filtering strategies is also explained through these off-line criteria.

  14. Mathematical test criteria for filtering complex systems: Plentiful observations

    NASA Astrophysics Data System (ADS)

    Castronovo, E.; Harlim, J.; Majda, A. J.

    2008-03-01

    An important emerging scientific issue is the real time filtering through observations of noisy turbulent signals for complex systems as well as the statistical accuracy of spatio-temporal discretizations for such systems. These issues are addressed here in detail for the setting with plentiful observations for a scalar field through explicit mathematical test criteria utilizing a recent theory [A.J. Majda, M.J. Grote, Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems, Proceedings of the National Academy of Sciences 104 (4) (2007) 1124-1129]. For plentiful observations, the number of observations equals the number of mesh points. These test criteria involve much simpler decoupled complex scalar filtering test problems with explicit formulas and elementary numerical experiments which are developed here as guidelines for filter performance. The theory includes information criteria to avoid filter divergence with large model errors, asymptotic Kalman gain, filter stability, and accurate filtering with small ensemble size as well as rigorous results delineating the role of various turbulent spectra for filtering under mesh refinement. These guidelines are also applied to discrete approximations for filtering the stochastically forced dissipative advection equation with very turbulent and noisy signals with either an equipartition of energy or -5/3 turbulent spectrum with infrequent observations as severe test problems. The theory and companion simulations demonstrate accurate statistical filtering in this context with implicit schemes with large time step with very small ensemble sizes and even with unstable explicit schemes under appropriate circumstances provided the filtering strategies are guided by the off-line theoretical criteria. The surprising failure of other strongly stable filtering strategies is also explained through these off-line criteria.

  15. Case for Deploying Complex Systems Utilizing Commodity Components

    NASA Technical Reports Server (NTRS)

    Bryant, Barry S.; Pitts, R. Lee

    2003-01-01

    When the International Space Station (ISS) finally reached an operational state, many of the Payload Operations and Integration Facility (POIF) hardware components were reaching end of life, COTS product costs were soaring, and the ISS budget was becoming severely constrained. However, most requirement development was complete. In addition, the ISS program is a fully functioning program with at least fifteen years of operational life remaining. Therefore it is critical that any upgrades, refurbishments, or enhancements be accomplished in realtime with minimal disruptions to service. For these and other reasons, it was necessary to ensure the viability of the POIF. Due to the to the breadth of capability of the POIF (a NASA ground station), it is believed that the lessons to be learned by other complex systems are applicable and any solutions garnered by the POIF are applicable to other complex systems as well. With that in mind, a number of new approaches have been investigated to increase the portability of the POIF and reduce the cost of refurbishment, operations, and maintenance. These new approaches were directed at the Total Cost of Ownership (TCO); not only the refurbishment but also current operational difficulties, licensing, and anticipation of the next refurbishment. Our basic premise is that technology had evolved dramatically since the concept of the POIF ground system and we should leverage our experience on this new technological landscape. Fortunately, Moore's law and market forces have changed the landscape considerably. These changes are manifest in five (5) ways that are particularly relevant to POIF: 1. Complex Instruction Set Computing (CISC) processors have advanced to unprecedented levels of compute capacity with a dramatic cost break, 2. Linux has become a major operating system supported by most vendors on a broad range of platforms, 3. Windows(TradeMark) based desktops are pervasive in the office environment, 4. Stable and affordable

  16. A system of three-dimensional complex variables

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1986-01-01

    Some results of a new theory of multidimensional complex variables are reported, including analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D complex velocity and 3-D complex potential and the corresponding ordinary complex velocity and complex potential in two dimensions.

  17. The complex planetary synchronization structure of the solar system

    NASA Astrophysics Data System (ADS)

    Scafetta, N.

    2014-01-01

    The complex planetary synchronization structure of the solar system, which since Pythagoras of Samos (ca. 570-495 BC) is known as the music of the spheres, is briefly reviewed from the Renaissance up to contemporary research. Copernicus' heliocentric model from 1543 suggested that the planets of our solar system form a kind of mutually ordered and quasi-synchronized system. From 1596 to 1619 Kepler formulated preliminary mathematical relations of approximate commensurabilities among the planets, which were later reformulated in the Titius-Bode rule (1766-1772), which successfully predicted the orbital position of Ceres and Uranus. Following the discovery of the ~ 11 yr sunspot cycle, in 1859 Wolf suggested that the observed solar variability could be approximately synchronized with the orbital movements of Venus, Earth, Jupiter and Saturn. Modern research has further confirmed that (1) the planetary orbital periods can be approximately deduced from a simple system of resonant frequencies; (2) the solar system oscillates with a specific set of gravitational frequencies, and many of them (e.g., within the range between 3 yr and 100 yr) can be approximately constructed as harmonics of a base period of ~ 178.38 yr; and (3) solar and climate records are also characterized by planetary harmonics from the monthly to the millennial timescales. This short review concludes with an emphasis on the contribution of the author's research on the empirical evidences and physical modeling of both solar and climate variability based on astronomical harmonics. The general conclusion is that the solar system works as a resonator characterized by a specific harmonic planetary structure that also synchronizes the Sun's activity and the Earth's climate. The special issue Pattern in solar variability, their planetary origin and terrestrial impacts (Mörner et al., 2013) further develops the ideas about the planetary-solar-terrestrial interaction with the personal contribution of 10

  18. Power laws of complex systems from extreme physical information

    NASA Astrophysics Data System (ADS)

    Frieden, B. Roy; Gatenby, Robert A.

    2005-09-01

    Many complex systems obey allometric, or power, laws y=Yxa . Here y⩾0 is the measured value of some system attribute a , Y⩾0 is a constant, and x is a stochastic variable. Remarkably, for many living systems the exponent a is limited to values n/4 , n=0,±1,±2,… . Here x is the mass of a randomly selected creature in the population. These quarter-power laws hold for many attributes, such as pulse rate (n=-1) . Allometry has, in the past, been theoretically justified on a case-by-case basis. An ultimate goal is to find a common cause for allometry of all types and for both living and nonliving systems. The principle I-J=extremum of extreme physical information is found to provide such a cause. It describes the flow of Fisher information J→I from an attribute value a on the cell level to its exterior observation y . Data y are formed via a system channel function y≡f(x,a) , with f(x,a) to be found. Extremizing the difference I-J through variation of f(x,a) results in a general allometric law f(x,a)≡y=Yxa . Darwinian evolution is presumed to cause a second extremization of I-J , now with respect to the choice of a . The solution is a=n/4 , n=0,±1,±2… , defining the particular powers of biological allometry. Under special circumstances, the model predicts that such biological systems are controlled by only two distinct intracellular information sources. These sources are conjectured to be cellular DNA and cellular transmembrane ion gradients

  19. Power laws of complex systems from extreme physical information.

    PubMed

    Frieden, B Roy; Gatenby, Robert A

    2005-09-01

    Many complex systems obey allometric, or power, laws y=Y x(a) . Here y > or = 0 is the measured value of some system attribute a , Y> or =0 is a constant, and x is a stochastic variable. Remarkably, for many living systems the exponent a is limited to values n/4 , n=0, +/-1, +/-2.... Here x is the mass of a randomly selected creature in the population. These quarter-power laws hold for many attributes, such as pulse rate (n=-1) . Allometry has, in the past, been theoretically justified on a case-by-case basis. An ultimate goal is to find a common cause for allometry of all types and for both living and nonliving systems. The principle I-J=extremum of extreme physical information is found to provide such a cause. It describes the flow of Fisher information J-->I from an attribute value a on the cell level to its exterior observation y . Data y are formed via a system channel function y identical to f (x,a) , with f (x,a) to be found. Extremizing the difference I-J through variation of f (x,a) results in a general allometric law f (x,a) identical to y=Y x(a) . Darwinian evolution is presumed to cause a second extremization of I-J , now with respect to the choice of a . The solution is a=n/4 , n=0,+/-1,+/-2..., defining the particular powers of biological allometry. Under special circumstances, the model predicts that such biological systems are controlled by only two distinct intracellular information sources. These sources are conjectured to be cellular DNA and cellular transmembrane ion gradients. PMID:16241509

  20. Bioregenerative Life Support Systems Test Complex (Bio-Plex) Food Processing System: A Dual System

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; Vittadini, Elena; Peterson, Laurie J.; Swango, Beverly E.; Toerne, Mary E.; Russo, Dane M. (Technical Monitor)

    2001-01-01

    A Bioregenerative Life Support Test Complex, BIO-Plex, is currently being constructed at the Johnson Space Center (JSC) in Houston, TX. This facility will attempt to answer the questions involved in developing a lunar or planetary base. The Food Processing System (FPS) of the BIO-Plex is responsible for supplying food to the crew in coordination with the chosen mission scenario. Long duration space missions require development of both a Transit Food System and of a Lunar or Planetary Food System. These two systems are intrinsically different since the first one will be utilized in the transit vehicle in microgravity conditions with mostly resupplied foods, while the second will be used in conditions of partial gravity (hypogravity) to process foods from crops grown in the facility. The Transit Food System will consist of prepackaged food of extended shelf life. It will be supplemented with salad crops that will be consumed fresh. Microgravity imposes significant limitation on the ability to handle food and allows only for minimal processing. The challenge is to develop food systems similar to the International Space Station or Shuttle Food Systems but with a shelf life of 3 - 5 years. The Lunar or Planetary Food System will allow for food processing of crops due to the presence of some gravitational force (1/6 to 1/3 that of Earth). Crops such as wheat, soybean, rice, potato, peanut, and salad crops, will be processed to final products to provide a nutritious and acceptable diet for the crew. Not only are constraints imposed on the FPS from the crops (e.g., crop variation, availability, storage and shelf-life) but also significant requirements are present for the crew meals (e.g., RDA, high quality, safety, variety). The FPS becomes a fulcrum creating the right connection from crops to crew meals while dealing with issues of integration within a closed self-regenerative system (e.g., safe processing, waste production, volumes, air contaminations, water usage, etc

  1. Poverty, Disease, and the Ecology of Complex Systems

    PubMed Central

    Pluciński, Mateusz M.; Murray, Megan B.; Farmer, Paul E.; Barrett, Christopher B.; Keenan, Donald C.

    2014-01-01

    Understanding why some human populations remain persistently poor remains a significant challenge for both the social and natural sciences. The extremely poor are generally reliant on their immediate natural resource base for subsistence and suffer high rates of mortality due to parasitic and infectious diseases. Economists have developed a range of models to explain persistent poverty, often characterized as poverty traps, but these rarely account for complex biophysical processes. In this Essay, we argue that by coupling insights from ecology and economics, we can begin to model and understand the complex dynamics that underlie the generation and maintenance of poverty traps, which can then be used to inform analyses and possible intervention policies. To illustrate the utility of this approach, we present a simple coupled model of infectious diseases and economic growth, where poverty traps emerge from nonlinear relationships determined by the number of pathogens in the system. These nonlinearities are comparable to those often incorporated into poverty trap models in the economics literature, but, importantly, here the mechanism is anchored in core ecological principles. Coupled models of this sort could be usefully developed in many economically important biophysical systems—such as agriculture, fisheries, nutrition, and land use change—to serve as foundations for deeper explorations of how fundamental ecological processes influence structural poverty and economic development. PMID:24690902

  2. Engineering Complex Embedded Systems with State Analysis and the Mission Data System

    NASA Technical Reports Server (NTRS)

    Ingham, Michel D.; Rasmussen, Robert D.; Bennett, Matthew B.; Moncada, Alex C.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer s intent, potentially leading to software errors. This problem is addressed by a systems engineering methodology called State Analysis, which provides a process for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using State Analysis and how these requirements inform the design of the system software, using representative spacecraft examples.

  3. Distinguishing signatures of determinism and stochasticity in spiking complex systems

    PubMed Central

    Aragoneses, Andrés; Rubido, Nicolás; Tiana-Alsina, Jordi; Torrent, M. C.; Masoller, Cristina

    2013-01-01

    We describe a method to infer signatures of determinism and stochasticity in the sequence of apparently random intensity dropouts emitted by a semiconductor laser with optical feedback. The method uses ordinal time-series analysis to classify experimental data of inter-dropout-intervals (IDIs) in two categories that display statistically significant different features. Despite the apparent randomness of the dropout events, one IDI category is consistent with waiting times in a resting state until noise triggers a dropout, and the other is consistent with dropouts occurring during the return to the resting state, which have a clear deterministic component. The method we describe can be a powerful tool for inferring signatures of determinism in the dynamics of complex systems in noisy environments, at an event-level description of their dynamics.

  4. Information processing using a single dynamical node as complex system

    PubMed Central

    Appeltant, L.; Soriano, M.C.; Van der Sande, G.; Danckaert, J.; Massar, S.; Dambre, J.; Schrauwen, B.; Mirasso, C.R.; Fischer, I.

    2011-01-01

    Novel methods for information processing are highly desired in our information-driven society. Inspired by the brain's ability to process information, the recently introduced paradigm known as 'reservoir computing' shows that complex networks can efficiently perform computation. Here we introduce a novel architecture that reduces the usually required large number of elements to a single nonlinear node with delayed feedback. Through an electronic implementation, we experimentally and numerically demonstrate excellent performance in a speech recognition benchmark. Complementary numerical studies also show excellent performance for a time series prediction benchmark. These results prove that delay-dynamical systems, even in their simplest manifestation, can perform efficient information processing. This finding paves the way to feasible and resource-efficient technological implementations of reservoir computing. PMID:21915110

  5. Characterizing global evolutions of complex systems via intermediate network representations.

    PubMed

    Iwayama, Koji; Hirata, Yoshito; Takahashi, Kohske; Watanabe, Katsumi; Aihara, Kazuyuki; Suzuki, Hideyuki

    2012-01-01

    Recent developments in measurement techniques have enabled us to observe the time series of many components simultaneously. Thus, it is important to understand not only the dynamics of individual time series but also their interactions. Although there are many methods for analysing the interaction between two or more time series, there are very few methods that describe global changes of the interactions over time. Here, we propose an approach to visualise time evolution for the global changes of the interactions in complex systems. This approach consists of two steps. In the first step, we construct a meta-time series of networks. In the second step, we analyse and visualise this meta-time series by using distance and recurrence plots. Our two-step approach involving intermediate network representations elucidates the half-a-day periodicity of foreign exchange markets and a singular functional network in the brain related to perceptual alternations. PMID:22639731

  6. Ground-based complex for checking the optical system

    NASA Astrophysics Data System (ADS)

    Grebenyuk, V.; Boreiko, V.; Dmitrotsa, A.; Gorbunov, N.; Khrenov, B.; Klimov, P.; Lavrova, M.; Popescu, E. M.; Sabirov, B.; Tkachenko, A.; Tkachev, L.; Volvach, A.; Yashin, I.

    2016-09-01

    The purpose TUS space experiment is to study cosmic rays of ultrahigh energies produced by extensive air showers from space. The concentrator is located on satellite, made in the form of the Fresnel mirror towards the earth's atmosphere, the focus of which is a photodetector. The angle of view of the mirror is ±4.5° that for a given height of the orbit corresponds to the area 80 × 80 km2 on ground. The ground complex consisting of a number of stations, to check the optical system of the experiment is created, (their location and the amount will be determined after the launch of the satellite based on its actual orbit).

  7. Characterizing global evolutions of complex systems via intermediate network representations.

    PubMed

    Iwayama, Koji; Hirata, Yoshito; Takahashi, Kohske; Watanabe, Katsumi; Aihara, Kazuyuki; Suzuki, Hideyuki

    2012-01-01

    Recent developments in measurement techniques have enabled us to observe the time series of many components simultaneously. Thus, it is important to understand not only the dynamics of individual time series but also their interactions. Although there are many methods for analysing the interaction between two or more time series, there are very few methods that describe global changes of the interactions over time. Here, we propose an approach to visualise time evolution for the global changes of the interactions in complex systems. This approach consists of two steps. In the first step, we construct a meta-time series of networks. In the second step, we analyse and visualise this meta-time series by using distance and recurrence plots. Our two-step approach involving intermediate network representations elucidates the half-a-day periodicity of foreign exchange markets and a singular functional network in the brain related to perceptual alternations.

  8. Unraveling reaction pathways and specifying reaction kinetics for complex systems.

    PubMed

    Vinu, R; Broadbelt, Linda J

    2012-01-01

    Many natural and industrial processes involve a complex set of competing reactions that include several different species. Detailed kinetic modeling of such systems can shed light on the important pathways involved in various transformations and therefore can be used to optimize the process conditions for the desired product composition and properties. This review focuses on elucidating the various components involved in modeling the kinetics of pyrolysis and oxidation of polymers. The elementary free radical steps that constitute the chain reaction mechanism of gas-phase/nonpolar liquid-phase processes are outlined. Specification of the rate coefficients of the various reaction families, which is central to the theme of kinetics, is described. Construction of the reaction network on the basis of the types of end groups and reactive moieties in a polymer chain is discussed. Modeling frameworks based on the method of moments and kinetic Monte Carlo are evaluated using illustrations. Finally, the prospects and challenges in modeling biomass conversion are addressed.

  9. Nonlinear problems of complex natural systems: Sun and climate dynamics.

    PubMed

    Bershadskii, A

    2013-01-13

    The universal role of the nonlinear one-third subharmonic resonance mechanism in generation of strong fluctuations in complex natural dynamical systems related to global climate is discussed using wavelet regression detrended data. The role of the oceanic Rossby waves in the year-scale global temperature fluctuations and the nonlinear resonance contribution to the El Niño phenomenon have been discussed in detail. The large fluctuations in the reconstructed temperature on millennial time scales (Antarctic ice core data for the past 400,000 years) are also shown to be dominated by the one-third subharmonic resonance, presumably related to the Earth's precession effect on the energy that the intertropical regions receive from the Sun. The effects of galactic turbulence on the temperature fluctuations are also discussed. PMID:23185052

  10. Encoding techniques for complex information structures in connectionist systems

    NASA Technical Reports Server (NTRS)

    Barnden, John; Srinivas, Kankanahalli

    1990-01-01

    Two general information encoding techniques called relative position encoding and pattern similarity association are presented. They are claimed to be a convenient basis for the connectionist implementation of complex, short term information processing of the sort needed in common sense reasoning, semantic/pragmatic interpretation of natural language utterances, and other types of high level cognitive processing. The relationships of the techniques to other connectionist information-structuring methods, and also to methods used in computers, are discussed in detail. The rich inter-relationships of these other connectionist and computer methods are also clarified. The particular, simple forms are discussed that the relative position encoding and pattern similarity association techniques take in the author's own connectionist system, called Conposit, in order to clarify some issues and to provide evidence that the techniques are indeed useful in practice.

  11. Automatically Finding the Control Variables for Complex System Behavior

    NASA Technical Reports Server (NTRS)

    Gay, Gregory; Menzies, Tim; Davies, Misty; Gundy-Burlet, Karen

    2010-01-01

    Testing large-scale systems is expensive in terms of both time and money. Running simulations early in the process is a proven method of finding the design faults likely to lead to critical system failures, but determining the exact cause of those errors is still time-consuming and requires access to a limited number of domain experts. It is desirable to find an automated method that explores the large number of combinations and is able to isolate likely fault points. Treatment learning is a subset of minimal contrast-set learning that, rather than classifying data into distinct categories, focuses on finding the unique factors that lead to a particular classification. That is, they find the smallest change to the data that causes the largest change in the class distribution. These treatments, when imposed, are able to identify the factors most likely to cause a mission-critical failure. The goal of this research is to comparatively assess treatment learning against state-of-the-art numerical optimization techniques. To achieve this, this paper benchmarks the TAR3 and TAR4.1 treatment learners against optimization techniques across three complex systems, including two projects from the Robust Software Engineering (RSE) group within the National Aeronautics and Space Administration (NASA) Ames Research Center. The results clearly show that treatment learning is both faster and more accurate than traditional optimization methods.

  12. Constrained growth of complex scale-independent systems.

    PubMed

    Hébert-Dufresne, Laurent; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J

    2016-03-01

    Scale independence is a ubiquitous feature of complex systems that implies a highly skewed distribution of resources with no characteristic scale. Research has long focused on why systems as varied as protein networks, evolution, and stock actions all feature scale independence. Assuming that they simply do, we focus here on describing how this behavior emerges, in contrast to more idealized models usually considered. We arrive at the conjecture that a minimal model to explain the growth toward scale independence involves only two coupled dynamical features: the first is the well-known preferential attachment principle, and the second is a general form of delayed temporal scaling. While the first is sufficient, the second is present in all studied data and appears to maximize the speed of convergence to true scale independence. The delay in this temporal scaling acts as a coupling between population growth and individual activity. Together, these two dynamical properties appear to pave a precise evolution path, such that even an instantaneous snapshot of a distribution is enough to reconstruct the past of the system and predict its future. We validate our approach and confirm its usefulness in diverse spheres of human activities, ranging from scientific and artistic productivity to sexual relations and online traffic. PMID:27078363

  13. A measurement system for large, complex software programs

    NASA Technical Reports Server (NTRS)

    Rone, Kyle Y.; Olson, Kitty M.; Davis, Nathan E.

    1994-01-01

    This paper describes measurement systems required to forecast, measure, and control activities for large, complex software development and support programs. Initial software cost and quality analysis provides the foundation for meaningful management decisions as a project evolves. In modeling the cost and quality of software systems, the relationship between the functionality, quality, cost, and schedule of the product must be considered. This explicit relationship is dictated by the criticality of the software being developed. This balance between cost and quality is a viable software engineering trade-off throughout the life cycle. Therefore, the ability to accurately estimate the cost and quality of software systems is essential to providing reliable software on time and within budget. Software cost models relate the product error rate to the percent of the project labor that is required for independent verification and validation. The criticality of the software determines which cost model is used to estimate the labor required to develop the software. Software quality models yield an expected error discovery rate based on the software size, criticality, software development environment, and the level of competence of the project and developers with respect to the processes being employed.

  14. Constrained growth of complex scale-independent systems

    NASA Astrophysics Data System (ADS)

    Hébert-Dufresne, Laurent; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J.

    2016-03-01

    Scale independence is a ubiquitous feature of complex systems that implies a highly skewed distribution of resources with no characteristic scale. Research has long focused on why systems as varied as protein networks, evolution, and stock actions all feature scale independence. Assuming that they simply do, we focus here on describing how this behavior emerges, in contrast to more idealized models usually considered. We arrive at the conjecture that a minimal model to explain the growth toward scale independence involves only two coupled dynamical features: the first is the well-known preferential attachment principle, and the second is a general form of delayed temporal scaling. While the first is sufficient, the second is present in all studied data and appears to maximize the speed of convergence to true scale independence. The delay in this temporal scaling acts as a coupling between population growth and individual activity. Together, these two dynamical properties appear to pave a precise evolution path, such that even an instantaneous snapshot of a distribution is enough to reconstruct the past of the system and predict its future. We validate our approach and confirm its usefulness in diverse spheres of human activities, ranging from scientific and artistic productivity to sexual relations and online traffic.

  15. Modeling of complex systems using nonlinear, flexible multibody dynamics

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jesus Diaz

    Finite element based multibody dynamics formulations extend the applicability of classical finite element methods to the modeling of flexible mechanisms. A general computer code will include rigid and flexible bodies, such as beams, joints, and active elements. These procedures are designed to overcome the modeling limitations of conventional multibody formulations that are often restricted to the analysis of rigid systems or use a modal representation to model the flexibility of elastic components. As multibody formulations become more widely accepted, the need to model a wider array of phenomena increases. The goal of this work is to present a methodology for the analysis of complex systems that may require the modeling of new joints and elements, or include the effects of clearance, freeplay or friction in the joints. Joints are essential components of multibody systems, rigid or flexible. Usually, joints are modeled as perfect components. In actual joints, clearance, freeplay, friction, lubrication and impact forces will can have a significant effect on the dynamic response of the system. Certain systems require the formulation of new joints for their analysis. Among one of them is the curve sliding joint which enforces the sliding of a body on a rigid curve connected to another body. The curve sliding joint is especially useful when modeling a vibration absorber device mounted on the rotor hub of rotorcraft: the bifilar pendulum. The formulation of a new modal based element is also presented. A modal based element is a model of an elastic substructure that includes a modal representation of elastic effects together with large rigid body motions. The proposed approach makes use of a component mode synthesis technique that allows the analyst to choose any type of modal basis and simplifies the connection to other multibody elements. The formulation is independent of the finite element analysis package used to compute the modes of the elastic component.

  16. Autoimmune pancreatitis: a systemic immune complex mediated disease.

    PubMed

    Deshpande, Vikram; Chicano, Sonia; Chiocca, Sonia; Finkelberg, Dmitry; Selig, Martin K; Mino-Kenudson, Mari; Brugge, William R; Colvin, Robert B; Lauwers, Gregory Y

    2006-12-01

    Autoimmune pancreatitis (AIP) is a mass forming inflammatory pancreatobiliary-centric disease. Recent reports of multiorgan inflammatory mass forming lesions with increased numbers of IgG4 positive plasma cells suggest that AIP may have a systemic component. In this study, we explore the systemic nature of AIP, investigate the relevance of subtyping AIP, perform a systematic study of tissue IgG4 immunoperoxidase, and ultrastructurally evaluate the presence of immune complexes. Our study group consisted of 36 patients with AIP, 21 of whom underwent a Whipple procedure. On the basis of the pattern of inflammation, pancreatic involvement was subtyped as ductocentric (AIP-D) or lobulocentric (AIP-L). Extrapancreatic lesions included bile duct (n=3), salivary glands (n=3), lung (n=2), gallbladder (n=11), and kidney (n=4). Clinical and radiologic data was recorded. Immunohistochemistry for IgG4 was performed on both pancreatic and extrapancreatic tissues and the numbers of IgG4 positive plasma cells were semiquantitatively scored. A control cohort composed of pancreatic adenocarcinoma (n=19) and chronic pancreatitis-not otherwise specified (NOS) (n=14) was also evaluated. Eleven pancreatic specimens, including 2 cases of chronic pancreatitis-NOS and 4 kidneys were evaluated ultrastructurally. The pancreas, bile duct, gall bladder, salivary gland, kidney, and lung lesions were characterized by dense lymphoplasmacytic infiltrates with reactive fibroblasts and venulitis. IgG4 positive plasma cells were identified in all pancreatic and extrapancreatic lesions. The AIP cases showed significantly more pancreatic IgG4 positive plasma cells than chronic pancreatitis-NOS or adenocarcinoma (P=0.001). However, IgG4 positive cells were identified in 57.1% of chronic pancreatitis-NOS and 47.4% of ductal adenocarcinoma. Fifteen of 21 resected cases were classified as AIP-D, and 6 as AIP-L, the latter notably showing significantly more IgG4 positive plasma cells than the former (P=0

  17. A complex systems science perspective for whole systems of complementary and alternative medicine research.

    PubMed

    Koithan, Mary; Bell, Iris R; Niemeyer, Kathryn; Pincus, David

    2012-01-01

    Whole systems complementary and alternative medicine (WS-CAM) approaches share a basic worldview that embraces interconnectedness; emergent, non-linear outcomes to treatment that include both local and global changes in the human condition; a contextual view of human beings that are inseparable from and responsive to their environments; and interventions that are complex, synergistic, and interdependent. These fundamental beliefs and principles run counter to the assumptions of reductionism and conventional biomedical research methods that presuppose unidimensional simple causes and thus dismantle and individually test various interventions that comprise only single aspects of the WSCAM system. This paper will demonstrate the superior fit and practical advantages of using complex adaptive systems (CAS) and related modeling approaches to develop the scientific basis for WS-CAM. Furthermore, the details of these CAS models will be used to provide working hypotheses to explain clinical phenomena such as (a) persistence of changes for weeks to months between treatments and/or after cessation of treatment, (b) nonlocal and whole systems changes resulting from therapy, (c) Hering's law, and (d) healing crises. Finally, complex systems science will be used to offer an alternative perspective on cause, beyond the simple reductionism of mainstream mechanistic ontology and more parsimonious than the historical vitalism of WS-CAM. Rather, complex systems science provides a scientifically rigorous, yet essentially holistic ontological perspective with which to conceptualize and empirically explore the development of disease and illness experiences, as well as experiences of healing and wellness. PMID:22327546

  18. New England style passive solar

    SciTech Connect

    Kriescher, P.

    2000-06-01

    There are homeowners throughout New England who planned for and built homes that allow them to avoid the sting of winter's high heating bills. These climate-responsive homes rely on passive solar heating, cooling and lighting. An example of such a climate-responsive/passive solar house is the home that Arthur and Terry Becker build on 6 beautiful acres (2.4 hectares) of rolling farm and woodland southeast of Andover, Connecticut, in 1981. They worked very closely with their designer, Al Eggan of K.T. Lear and Associates, to ensure that they would never have to pay for home heating oil, and that they would enjoy a level of year-round comfort that they had not experienced in conventionally built homes.

  19. Making sense in a complex landscape: how the Cynefin Framework from Complex Adaptive Systems Theory can inform health promotion practice.

    PubMed

    Van Beurden, Eric K; Kia, Annie M; Zask, Avigdor; Dietrich, Uta; Rose, Lauren

    2013-03-01

    Health promotion addresses issues from the simple (with well-known cause/effect links) to the highly complex (webs and loops of cause/effect with unpredictable, emergent properties). Yet there is no conceptual framework within its theory base to help identify approaches appropriate to the level of complexity. The default approach favours reductionism--the assumption that reducing a system to its parts will inform whole system behaviour. Such an approach can yield useful knowledge, yet is inadequate where issues have multiple interacting causes, such as social determinants of health. To address complex issues, there is a need for a conceptual framework that helps choose action that is appropriate to context. This paper presents the Cynefin Framework, informed by complexity science--the study of Complex Adaptive Systems (CAS). It introduces key CAS concepts and reviews the emergence and implications of 'complex' approaches within health promotion. It explains the framework and its use with examples from contemporary practice, and sets it within the context of related bodies of health promotion theory. The Cynefin Framework, especially when used as a sense-making tool, can help practitioners understand the complexity of issues, identify appropriate strategies and avoid the pitfalls of applying reductionist approaches to complex situations. The urgency to address critical issues such as climate change and the social determinants of health calls for us to engage with complexity science. The Cynefin Framework helps practitioners make the shift, and enables those already engaged in complex approaches to communicate the value and meaning of their work in a system that privileges reductionist approaches. PMID:22128193

  20. Making sense in a complex landscape: how the Cynefin Framework from Complex Adaptive Systems Theory can inform health promotion practice.

    PubMed

    Van Beurden, Eric K; Kia, Annie M; Zask, Avigdor; Dietrich, Uta; Rose, Lauren

    2013-03-01

    Health promotion addresses issues from the simple (with well-known cause/effect links) to the highly complex (webs and loops of cause/effect with unpredictable, emergent properties). Yet there is no conceptual framework within its theory base to help identify approaches appropriate to the level of complexity. The default approach favours reductionism--the assumption that reducing a system to its parts will inform whole system behaviour. Such an approach can yield useful knowledge, yet is inadequate where issues have multiple interacting causes, such as social determinants of health. To address complex issues, there is a need for a conceptual framework that helps choose action that is appropriate to context. This paper presents the Cynefin Framework, informed by complexity science--the study of Complex Adaptive Systems (CAS). It introduces key CAS concepts and reviews the emergence and implications of 'complex' approaches within health promotion. It explains the framework and its use with examples from contemporary practice, and sets it within the context of related bodies of health promotion theory. The Cynefin Framework, especially when used as a sense-making tool, can help practitioners understand the complexity of issues, identify appropriate strategies and avoid the pitfalls of applying reductionist approaches to complex situations. The urgency to address critical issues such as climate change and the social determinants of health calls for us to engage with complexity science. The Cynefin Framework helps practitioners make the shift, and enables those already engaged in complex approaches to communicate the value and meaning of their work in a system that privileges reductionist approaches.