Sample records for enhance critical current

  1. Enhancing superconducting critical current by randomness

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Thoutam, L. R.; Xiao, Z. L.; Shen, B.; Pearson, J. E.; Divan, R.; Ocola, L. E.; Crabtree, G. W.; Kwok, W. K.

    2016-01-01

    The key ingredient of high critical currents in a type-II superconductor is defect sites that pin vortices. Contrary to earlier understanding on nanopatterned artificial pinning, here we show unequivocally the advantages of a random pinscape over an ordered array in a wide magnetic field range. We reveal that the better performance of a random pinscape is due to the variation of its local density of pinning sites (LDOPS), which mitigates the motion of vortices. This is confirmed by achieving even higher enhancement of the critical current through a conformally mapped random pinscape, where the distribution of the LDOPS is further enlarged. The demonstrated key role of LDOPS in enhancing superconducting critical currents gets at the heart of random versus commensurate pinning. Our findings highlight the importance of random pinscapes in enhancing the superconducting critical currents of applied superconductors.

  2. Enhancing superconducting critical current by randomness

    DOE PAGES

    Wang, Y. L.; Thoutam, L. R.; Xiao, Z. L.; ...

    2016-01-11

    The key ingredient of high critical currents in a type-II superconductor is defect sites that pin vortices. Here, we demonstrate that a random pinscape, an overlooked pinning system in nanopatterned superconductors, can lead to a substantially larger critical current enhancement at high magnetic fields than an ordered array of vortex pin sites. We reveal that the better performance of a random pinscape is due to the variation of the local density of its pinning sites, which mitigates the motion of vortices. This is confirmed by achieving even higher enhancement of the critical current through a conformally mapped random pinscape, wheremore » the distribution of the local density of pinning sites is further enlarged. Our findings highlight the potential of random pinscapes in enhancing the superconducting critical currents of applied superconductors in which random pin sites of nanoscale defects emerging in the materials synthesis process or through ex-situ irradiation are the only practical choice for large-scale production. Our results may also stimulate research on effects of a random pinscape in other complementary systems such as colloidal crystals, Bose-Einstein condensates, and Luttinger liquids.« less

  3. Enhancing critical current density of cuprate superconductors

    DOEpatents

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  4. Fabrication and Enhancement of Critical Currents of Silver Sheathed

    NASA Astrophysics Data System (ADS)

    Hu, Qingyu

    X-ray diffraction was used to characterise the phase composition and to investigate the formation mechanism of the (Bi,Pb)_2Sr_2Ca_2Cu _3O_{10} phase from the precursor with (Bi,Pb)_2Sr_2CaCu _2O_8 as the main phase. The reaction is found to be a two-dimensional nucleation (random)-growth type, (-(ln(1-F)) ^{1/2} = kt, where F is the conversional fraction of (Bi,Pb) _2Sr_2CaCu_2O_8 phase and t is the sintering time. The two dimensional behaviour of the critical current in (Bi,Pb)_2Sr2Ca_2Cu _3O_{10}/Ag tapes was observed and analysed by introducing an effective grain misalignment angle, varphi_{eff}. This angle was found to be identical to the average crystallographic grain misalignment angle in the superconducting core. Furthermore, after fast neutron irradiation, which is isotropical, the J_{c}'s of the tapes were modified by the introduction of artificial defects, but the varphi_{eff}'s remained the same. The transport critical current of (Bi,Pb) _2Sr_2Ca_2Cu_3O_ {10}/Ag tapes was measured in magnetic fields up to 15 T and at temperatures from of 4.2 to 84 K. At high temperatures, the J_ {c} is strongly anisotropic and the anisotropy increases rapidly with magnetic field, whereas at low temperatures the critical current is less anisotropic and the anisotropy is almost field independent above 1 T. The transport J_{c }'s in (Bi,Pb)_2Sr_2Ca _2Cu_3O_{10}/Ag tapes at 77 K and higher magnetic fields after neutron irradiation are significantly enhanced. This enhancement is attributed to an improvement in the flux pinning capability of this material by the neutron-induced defects. The angular dependence of J_{c} is still consistent with two-dimensionality, i.e. flux pinning of pancake and/or Josephson vortices is directly confirmed by this transport measurement. Short multifilamentary (Bi,Pb)_2Sr_2Ca_2Cu_2O_{10 }/Ag tapes were fabricated. The sintering parameters were optimised to be 832^circ C and 180 h. The multifilamentary tape consists mainly of pure (Bi,Pb)_2Sr_2Ca

  5. Enhanced critical currents in (Gd,Y)Ba2Cu3Ox superconducting tapes with high levels of Zr addition

    NASA Astrophysics Data System (ADS)

    Selvamanickam, V.; Chen, Y.; Shi, T.; Liu, Y.; Khatri, N. D.; Liu, J.; Yao, Y.; Xiong, X.; Lei, C.; Soloveichik, S.; Galstyan, E.; Majkic, G.

    2013-03-01

    The critical current and structural properties of (Gd,Y)BaCuO tapes made by metal organic chemical vapor deposition (MOCVD) with Zr addition levels up to 30 at.% have been investigated. The reduction in critical current beyond the previously optimized Zr addition level of 7.5 at.% was found to be due to structural deterioration of the (Gd,Y)Ba2Cu3Ox film. By a modified MOCVD process, enhanced critical current densities have been achieved with high levels of Zr addition, including 3.83 MA cm-2 in 15 at.% Zr-added 1.1 μm thick film at 77 K in zero magnetic field. Critical currents as high as 1072 A/12 mm have been reached in (Gd,Y)BaCuO tapes with 15 at.% Zr addition at 30 K in a field of 3 T applied perpendicular to the tape, corresponding to a pinning force value of 268 GN m-3. The enhanced critical currents achievable with a high density of nanoscale defects by employing high levels of second-phase additions enable the performance targets needed for the use of HTS tapes in coil applications involving high magnetic fields at temperatures below 50 K to be met.

  6. Enhanced critical current density in the pressure-induced magnetic state of the high-temperature superconductor FeSe

    PubMed Central

    Jung, Soon-Gil; Kang, Ji-Hoon; Park, Eunsung; Lee, Sangyun; Lin, Jiunn-Yuan; Chareev, Dmitriy A.; Vasiliev, Alexander N.; Park, Tuson

    2015-01-01

    We investigate the relation of the critical current density (Jc) and the remarkably increased superconducting transition temperature (Tc) for the FeSe single crystals under pressures up to 2.43 GPa, where the Tc is increased by ~8 K/GPa. The critical current density corresponding to the free flux flow is monotonically enhanced by pressure which is due to the increase in Tc, whereas the depinning critical current density at which the vortex starts to move is more influenced by the pressure-induced magnetic state compared to the increase of Tc. Unlike other high-Tc superconductors, FeSe is not magnetic, but superconducting at ambient pressure. Above a critical pressure where magnetic state is induced and coexists with superconductivity, the depinning Jc abruptly increases even though the increase of the zero-resistivity Tc is negligible, directly indicating that the flux pinning property compared to the Tc enhancement is a more crucial factor for an achievement of a large Jc. In addition, the sharp increase in Jc in the coexisting superconducting phase of FeSe demonstrates that vortices can be effectively trapped by the competing antiferromagnetic order, even though its antagonistic nature against superconductivity is well documented. These results provide new guidance toward technological applications of high-temperature superconductors. PMID:26548444

  7. Learning and Olfaction: Understanding and Enhancing a Critical Information Channel

    DTIC Science & Technology

    2013-05-13

    a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a ...REPORT Learning and Olfaction: Understanding and Enhancing a Critical Information Channel 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: This research...Prescribed by ANSI Std. Z39.18 - 14-Feb-2013 Learning and Olfaction: Understanding and Enhancing a Critical Information Channel Report Title ABSTRACT This

  8. MgB2 wire diameter reduction by hot isostatic pressing—a route for enhanced critical current density

    NASA Astrophysics Data System (ADS)

    Morawski, A.; Cetner, T.; Gajda, D.; Zaleski, A. J.; Häßler, W.; Nenkov, K.; Rindfleisch, M. A.; Tomsic, M.; Przysłupski, P.

    2018-07-01

    The effect of wire diameter reduction on the critical current density of pristine MgB2 wire was studied. Wires were treated by a hot isostatic pressing method at 570 °C and at pressures of up to 1.1 GPa. It was found that the wire diameter reduction induces an increase of up to 70% in the mass density of the superconducting cores. This feature leads to increases in critical current, critical current density, and pinning force density. The magnitude and field dependence of the critical current density are related to both grain connectivity and structural defects, which act as effective pinning centers. High field transport properties were obtained without doping of the MgB2 phase. A critical current density jc of 3500 A mm‑2 was reached at 4 K, 6 T for the best sample, which was a five-fold increase compared to MgB2 samples synthesized at ambient pressure.

  9. Critical current enhancement driven by suppression of superconducting fluctuation in ion-gated ultrathin FeSe

    NASA Astrophysics Data System (ADS)

    Harada, T.; Shiogai, J.; Miyakawa, T.; Nojima, T.; Tsukazaki, A.

    2018-05-01

    The framework of phase transition, such as superconducting transition, occasionally depends on the dimensionality of materials. Superconductivity is often weakened in the experimental conditions of two-dimensional thin films due to the fragile superconducting state against defects and interfacial effects. In contrast to this general trend, superconductivity in the thin limit of FeSe exhibits an opposite trend, such as an increase in critical temperature (T c) and the superconducting gap exceeding the bulk values; however, the dominant mechanism is still under debate. Here, we measured thickness-dependent electrical transport properties of the ion-gated FeSe thin films to evaluate the superconducting critical current (I c) in the ultrathin FeSe. Upon systematically decreasing the FeSe thickness by the electrochemical etching technique in the Hall bar-shaped electric double-layer transistors, we observed a dramatic enhancement of I c reaching about 10 mA and corresponding to about 107 A cm‑2 in the thinnest condition. By analyzing the transition behavior, we clarify that the suppressed superconducting fluctuation is one of the origins of the large I c in the ion-gated ultrathin FeSe films. These results indicate the existence of a robust superconducting state possibly with dense Cooper pairs at the thin limit of FeSe.

  10. Microstructural and crystallographic imperfections of MgB2 superconducting wire and their correlation with the critical current density

    NASA Astrophysics Data System (ADS)

    Shahabuddin, Mohammed; Alzayed, Nasser S.; Oh, Sangjun; Choi, Seyong; Maeda, Minoru; Hata, Satoshi; Shimada, Yusuke; Hossain, Md Shahriar Al; Kim, Jung Ho

    2014-01-01

    A comprehensive study of the effects of structural imperfections in MgB2 superconducting wire has been conducted. As the sintering temperature becomes lower, the structural imperfections of the MgB2 material are increased, as reflected by detailed X-ray refinement and the normal state resistivity. The crystalline imperfections, caused by lattice disorder, directly affect the impurity scattering between the π and σ bands of MgB2, resulting in a larger upper critical field. In addition, low sintering temperature keeps the grain size small, which leads to a strong enhancement of pinning, and thereby, enhanced critical current density. Owing to both the impurity scattering and the grain boundary pinning, the critical current density, irreversibility field, and upper critical field are enhanced. Residual voids or porosities obviously remain in the MgB2, however, even at low sintering temperature, and thus block current transport paths.

  11. Thinking across species--a critical bioethics approach to enhancement.

    PubMed

    Twine, Richard

    2007-01-01

    Drawing upon a concept of 'critical bioethics' [7] this paper takes a species-broad approach to the social and ethical aspects of enhancement. Critical Bioethics aims to foreground interdisciplinarity, socio-political dimensions, as well as reflexivity to what becomes bioethical subject matter. This paper focuses upon the latter component and uses the example of animal enhancement as a way to think about both enhancement generally, and bioethics. It constructs several arguments for including animal enhancement as a part of enhancement debates, and considers some connections between human and animal enhancement. The paper concludes in a plea for an 'enhancement' to our critical abilities to examine some of the underlying social, moral and ethical assumptions bound up in varied anticipated 'enhanced' futures.

  12. Apparatus and method for critical current measurements

    DOEpatents

    Martin, Joe A.; Dye, Robert C.

    1992-01-01

    An apparatus for the measurement of the critical current of a superconductive sample, e.g., a clad superconductive sample, the apparatus including a conductive coil, a means for maintaining the coil in proximity to a superconductive sample, an electrical connection means for passing a low amplitude alternating current through the coil, a cooling means for maintaining the superconductive sample at a preselected temperature, a means for passing a current through the superconductive sample, and, a means for monitoring reactance of the coil, is disclosed, together with a process of measuring the critical current of a superconductive material, e.g., a clad superconductive material, by placing a superconductive material into the vicinity of the conductive coil of such an apparatus, cooling the superconductive material to a preselected temperature, passing a low amplitude alternating current through the coil, the alternating current capable of generating a magnetic field sufficient to penetrate, e.g., any cladding, and to induce eddy currents in the superconductive material, passing a steadily increasing current through the superconductive material, the current characterized as having a different frequency than the alternating current, and, monitoring the reactance of the coil with a phase sensitive detector as the current passed through the superconductive material is steadily increased whereby critical current of the superconductive material can be observed as the point whereat a component of impedance deviates.

  13. A route for a strong increase of critical current in nanostrained iron-based superconductors

    DOE PAGES

    Ozaki, Toshinori; Li, Qiang; Wu, Lijun; ...

    2016-10-06

    The critical temperature T c and the critical current density J c determine the limits to large-scale superconductor applications. Superconductivity emerges at T c. The practical current-carrying capability, measured by J c, is the ability of defects in superconductors to pin the magnetic vortices, and that may reduce T c. Simultaneous increase of T c and J c in superconductors is desirable but very difficult to realize. Here we demonstrate a route to raise both T c and J c together in iron-based superconductors. By using low-energy proton irradiation, we create cascade defects in FeSe 0.5Te 0.5 films. Tc ismore » enhanced due to the nanoscale compressive strain and proximity effect, whereas J c is doubled under zero field at 4.2 K through strong vortex pinning by the cascade defects and surrounding nanoscale strain. At 12 K and above 15 T, one order of magnitude of J c enhancement is achieved in both parallel and perpendicular magnetic fields to the film surface.« less

  14. Enhancing Critical Thinking Skills among Authoritarian Students

    ERIC Educational Resources Information Center

    Henderson Hurley, Martha; Hurley, David

    2013-01-01

    This article focuses on assignments designed to enhance critical thinking skills for authoritarian personality types. This paper seeks to add to the literature by exploring instructional methods to overcome authoritarian traits that could inhibit the development of critical thinking skills. The article presents a strategy which can be employed…

  15. Enhancing Critical Thinking Via a Clinical Scholar Approach.

    PubMed

    Simpson, Vicki; McComb, Sara A; Kirkpatrick, Jane M

    2017-11-01

    Safety, quality improvement, and a systems perspective are vital for nurses to provide quality evidence-based care. Responding to the call to prepare nurses with these perspectives, one school of nursing used a clinical scholar approach, enhanced by systems engineering to more intentionally develop the ability to clinically reason and apply evidence-based practice. A two-group, repeated-measures control trial was used to determine the effects of systems engineering content and support on nursing students' clinical judgment and critical thinking skills. Findings indicated this approach had a positive effects on student's clinical judgment and clinical reasoning skills. This approach helped students view health care issues from a broader perspective and use evidence to guide solution development, enhancing the focus on evidence-based practice, and quality improvement. Intentional integration of an evidence-based, systems perspective by nursing faculty supports development of nurses who can function safely and effectively in the current health care system. [J Nurs Educ. 2017;56(11):679-682.]. Copyright 2017, SLACK Incorporated.

  16. Phenomenological consequences of enhanced bulk viscosity near the QCD critical point

    DOE PAGES

    Monnai, Akihiko; Mukherjee, Swagato; Yin, Yi

    2017-03-06

    In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional to nearly the third power of the critical correlation length, and become significantly enhanced. Here, this work is the first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point. For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant, longitudinally expanding 1 + 1 dimensional causal relativistic hydrodynamical evolution at nonzero baryon density. We demonstrate that the critically enhanced bulk viscosity induces a substantial nonequilibrium pressure, effectively softening themore » equation of state, and leads to sizable effects in the flow velocity and single-particle distributions at the freeze-out. In conclusion, the observable effects that may arise due to the enhanced bulk viscosity in the vicinity of the QCD critical point can be used as complementary information to facilitate searches for the QCD critical point.« less

  17. High critical current superconducting tapes

    DOEpatents

    Holesinger, Terry G [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM

    2003-09-23

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  18. A study of enhancing critical current densities (J(sub c)) and critical temperature (T(sub c)) of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vlasse, Marcus

    1992-01-01

    The development of pure phase 123 and Bi-based 2223 superconductors has been optimized. The pre-heat processing appears to be a very important parameter in achieving optimal physical properties. The synthesis of pure phases in the Bi-based system involves effects due to oxygen partial pressure, time, and temperature. Orientation/melt-sintering effects include the extreme c-axis orientation of Yttrium 123 and Bismuth 2223, 2212, and 2201 phases. This orientation is conductive to increasing critical currents. A procedure was established to substitute Sr for Ba in Y-123 single crystals.

  19. Enhancing undergraduate community placements: a critical review of current literature.

    PubMed

    Dickson, Caroline A W; Morris, Gillian; Gable, Clare

    2015-04-01

    In the face of the UK-wide policy shift to increased home care, inspiring and enabling the next generation of community nurses is more urgent than ever. The quality of the pre-registration practice learning experience is highly influential on career choices at the point of qualification. Given that 50% of learning by pre-registration students takes place in practice, mentors have a crucial role to play in preparing the next generation of nurses to work in the community. This article discusses the findings of a systematic and critical literature review of pre-registration placements that was funded by the Queen's Nursing Institute Scotland. The review found that students' experiences of learning in community settings are variable, and perceptions of students and mentors are misaligned in terms of what a quality placement should look like. Although there is no clear definition of what constitutes a community placement and there is some underuse of learning environments in areas such as general practice nursing, there are also a number of examples of new and imaginative placements. While these innovations provide 'whole experience' placements, they are currently lacking robust evaluation, despite their potential usefulness on a larger scale. Mentors have the opportunity to provide students with a range of learning opportunities that increase preparedness for working in the community, allowing final year students in particular greater influence over their learning experience. Students undertaking community practice learning, where they have a managed level of autonomy, are more likely to feel confident to take on community nursing roles.

  20. Superconducting current injection transistor with very high critical-current-density edge-junctions

    NASA Astrophysics Data System (ADS)

    van Zeghbroeck, B. J.

    1985-03-01

    A Superconducting Current Injection Transistor (Super-CIT) was fabricated with very high critical current-density edge-junctions. The junctions have a niobium base electrode and a lead-alloy counter electrode. The length of the junctions is 30 microns and the critical-current density is 190KA/sq cm. The Super-CIT has a current gain of 2, a large signal transresistance of 100 mV/A, and the turn-on delay, inferred from the junction resonance, is 7ps. The power dissipation is 3.5 microwatts and the power-delay product is 24.5aJ. Gap reduction due to heating was observed, limiting the maximum power dissipation per unit length to 1.1 microwatt/micron. Compared to lead-alloy Super-CITs, the device is five times smaller, three times faster, and has a three times larger output voltage. The damping resistor and the contact junction could also be eliminated.

  1. Improvements of fabrication processes and enhancement of critical current densities in (Ba,K)Fe2As2 HIP wires and tapes

    NASA Astrophysics Data System (ADS)

    Pyon, Sunseng; Suwa, Takahiro; Tamegai, Tsuyoshi; Takano, Katsutoshi; Kajitani, Hideki; Koizumi, Norikiyo; Awaji, Satoshi; Zhou, Nan; Shi, Zhixiang

    2018-05-01

    We fabricated (Ba,K)Fe2As2 superconducting wires and tapes using the powder-in-tube method and hot isostatic pressing (HIP). HIP wires and tapes showed a high value of transport critical current density (J c) exceeding 100 kAcm‑2 at T = 4.2 K and the self-field. Transport J c in the HIP wire reached 38 kAcm‑2 in a high magnetic field of 100 kOe. This value is almost twice larger than the previous highest value of J c among round wires using iron-based superconductors. Enhancement of J c in the wires and tapes was caused by improvement of the drawing process, which caused degradation of the core, formation of microcracks, weak links between grains, and random orientation of grains. Details of the effect of the improved fabrication processes on the J c are discussed.

  2. A statistical study of current-sheet formation above solar active regions based on selforganized criticality

    NASA Astrophysics Data System (ADS)

    Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M.; Anastasiadis, A.; Toutountzi, A.

    2013-09-01

    We treat flaring solar active regions as physical systems having reached the self-organized critical state. Their evolving magnetic configurations in the low corona may satisfy an instability criterion, related to the excession of a specific threshold in the curl of the magnetic field. This imposed instability criterion implies an almost zero resistivity everywhere in the solar corona, except in regions where magnetic-field discontinuities and. hence, local currents, reach the critical value. In these areas, current-driven instabilities enhance the resistivity by many orders of magnitude forming structures which efficiently accelerate charged particles. Simulating the formation of such structures (thought of as current sheets) via a refined SOC cellular-automaton model provides interesting information regarding their statistical properties. It is shown that the current density in such unstable regions follows power-law scaling. Furthermore, the size distribution of the produced current sheets is best fitted by power laws, whereas their formation probability is investigated against the photospheric magnetic configuration (e.g. Polarity Inversion Lines, Plage). The average fractal dimension of the produced current sheets is deduced depending on the selected critical threshold. The above-mentioned statistical description of intermittent electric field structures can be used by collisional relativistic test particle simulations, aiming to interpret particle acceleration in flaring active regions and in strongly turbulent media in astrophysical plasmas. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  3. Critical current studies of a HTS rectangular coil

    NASA Astrophysics Data System (ADS)

    Zhong, Z.; Chudy, M.; Ruiz, H. S.; Zhang, X.; Coombs, T.

    2017-05-01

    Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.

  4. Critical current enhancement in large grains of YBa(2)Cu(3)O(7-delta) through microstructural engineering

    NASA Astrophysics Data System (ADS)

    Chopra, Manoj

    High temperature superconductors (HTS) have many potential applications e.g. magnetically levitated trains, power transmission, mechanical energy storage, dent pullers, Nuclear Magnetic Resonance (N.M.R), magnetic resonance imaging (M.R.I) etc. However, one of the most daunting tasks for the applicability of HTS is the enhancement of critical current density (Jc) and flux-pinning at liquid nitrogen temperatures by microstructure design. The addition of Ysb2BaCuOsb5 (211) particles to large grain melt textured YBasb2Cusb3Osb{7-delta} (Y123) have significantly improved the transport and magnetic properties of this material. Here, a systematic quantitative analysis on the effects of the 211 addition was performed on a microscopic scale with a systematic variation in the initial volume percentage of 211. From the correlation between critical current measurements and quantitative microscopy of both (001) and (110) sections, a maximum value of Jc was observed corresponding to a measured Y123 volume percent of 20% ± 3%. Accounting for the loss of liquid phase for the present processing, the corresponding optimum initial volume of 211 for the highest measured Jc was 40%. Further comparison between the weighted Jc and the true flux pinning force (Fp) also showed a maximum pinning force for an initial 211 addition of 40%. Although, the weighted Jc starts to decrease with an initial 211 volume of above 40%, the pinning efficiency at higher magnetic fields (2-4T) of the superconducting Y123 matrix was actually improved with an increasing 211 addition to at least 50%. Though an increasing addition of 211 was effective in producing efficient flux pinning sites in the Y123 matrix, percolation paths in the Y123 matrix became limited for supercurrent flow. Hence, a measured 211 volume corresponding to 80% 211 was shown to have the best possible critical current density. Furthermore, crack opening and crack spacing of the superficial cracks were found to decrease with an increasing

  5. Isotropic enhancement in the critical current density of YBCO thin films incorporating nanoscale Y2BaCuO5 inclusions

    NASA Astrophysics Data System (ADS)

    Jha, Alok K.; Matsumoto, Kaname; Horide, Tomoya; Saini, Shrikant; Mele, Paolo; Ichinose, Ataru; Yoshida, Yutaka; Awaji, Satoshi

    2017-09-01

    The effect of incorporation of nanoscale Y2BaCuO5 (Y211) inclusions on the vortex pinning properties of YBa2Cu3O7-δ (YBCO or Y123) superconducting thin films is investigated in detail on the basis of variation of critical current density (JC) with applied magnetic field and also with the orientation of the applied magnetic field at two different temperatures: 77 K and 65 K. Surface modified target approach is employed to incorporate nanoscale Y211 inclusions into the superconducting YBCO matrix. The efficiency of Y211 nanoinclusions in reducing the angular anisotropy of critical current density is found to be significant. The observed angular dependence of the critical current density is discussed on the basis of mutually occupied volume by a vortex and spherical and/or planar defect. A dip in JC near the ab-plane is also observed which has been analyzed on the basis of variation of pinning potential corresponding to a spherical (3-D) or planar (2-D) pinning center and has been attributed to a reduced interaction volume of the vortices with a pinning center and competing nature of the potentials due to spherical and planar defects.

  6. Giant increase in critical current density of K xFe 2-ySe₂ single crystals

    DOE PAGES

    Lei, Hechang; Petrovic, C.

    2011-12-28

    The critical current density Jabc of K xFe 2-ySe₂ single crystals can be enhanced by more than one order of magnitude, up to ~2.1×10⁴ A/cm² by the post annealing and quenching technique. A scaling analysis reveals the universal behavior of the normalized pinning force as a function of the reduced field for all temperatures, indicating the presence of a single vortex pinning mechanism. The main pinning sources are three-dimensional (3D) point-like normal cores. The dominant vortex interaction with pinning centers is via spatial variations in critical temperature T c (“δT c pinning”).

  7. Enhancing Critical Thinking: Accounting Students' Perceptions

    ERIC Educational Resources Information Center

    Wilkin, Carla L.

    2017-01-01

    Purpose: The purpose of this paper is to demonstrate how assessment design was used to enhance students' critical thinking in a subject concerned with business enterprise systems. The study shows positive results and favorable perceptions of the merit of the approach. Design/Methodology/Approach: A case study approach was used to examine how the…

  8. Criticality and turbulence in a resistive magnetohydrodynamic current sheet

    NASA Astrophysics Data System (ADS)

    Klimas, Alexander J.; Uritsky, Vadim M.

    2017-02-01

    Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.

  9. Criticality and turbulence in a resistive magnetohydrodynamic current sheet.

    PubMed

    Klimas, Alexander J; Uritsky, Vadim M

    2017-02-01

    Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.

  10. A descriptive inquiry of the definitions of critical thinking and enhancers and barriers reported by nurses working in long-term care facilities.

    PubMed

    Raterink, Ginger

    2008-09-01

    Critical thinking has been an outcome of nursing education since the 1980s. There remains a lack of agreement on definitions, methods of teaching, and methods of evaluation among practicing nurses. This study asked practicing nurses to define critical thinking. It also asked nurses to describe what work-related factors enhanced or posed barriers to the use of critical thinking in practice. Elements of the definitions presented were found to be consistent with current nursing definitions of critical thinking. Enhancers and barriers overlapped and were found to be consistent among the nurses at all facilities studied, with implications for continuing education and staff development.

  11. Nursing care plans versus concept maps in the enhancement of critical thinking skills in nursing students enrolled in a baccalaureate nursing program.

    PubMed

    Sinatra-Wilhelm, Tina

    2012-01-01

    Appropriate and effective critical thinking and problem solving is necessary for all nurses in order to make complex decisions that improve patient outcomes, safety, and quality of nursing care. With the current emphasis on quality improvement, critical thinking ability is a noteworthy concern within the nursing profession. An in-depth review of literature related to critical thinking was performed. The use of nursing care plans and concept mapping to improve critical thinking skills was among the recommendations identified. This study compares the use of nursing care plans and concept mapping as a teaching strategy for the enhancement of critical thinking skills in baccalaureate level nursing students. The California Critical Thinking Skills Test was used as a method of comparison and evaluation. Results indicate that concept mapping enhances critical thinking skills in baccalaureate nursing students.

  12. Apparatus and method for measuring critical current properties of a coated conductor

    DOEpatents

    Mueller, Fred M [Los Alamos, NM; Haenisch, Jens [Dresden, DE

    2012-07-24

    The transverse critical-current uniformity in a superconducting tape was determined using a magnetic knife apparatus. A critical current I.sub.c distribution and transverse critical current density J.sub.c distribution in YBCO coated conductors was measured nondestructively with high resolution using a magnetic knife apparatus. The method utilizes the strong depression of J.sub.c in applied magnetic fields. A narrow region of low, including zero, magnetic field in a surrounding higher field is moved transversely across a sample of coated conductor. This reveals the critical current density distribution. A Fourier series inversion process was used to determine the transverse J.sub.c distribution in the sample.

  13. Doubling of the Critical Current Density of 2G-YBCO Coated Conductors through proton irradiation

    NASA Astrophysics Data System (ADS)

    Welp, Ulrich; Jia, Ying; Kwok, Wai-Kwong; Rupich, Marty; Fleshler, Steven; Kayani, Asfghar

    2013-03-01

    We report on magnetization and transport measurements of the critical current density of commercial 2G YBCO coated conductors before and after proton irradiation. The samples were irradiated along the c-axis with 4 MeV protons to a fluence of 1.5x1016 p/cm2. We find that at temperatures below 50 K, proton irradiation increases Jc by a factor of 2 in low fields and increases up to 2.5 in fields of 7 T. At 77 K, proton irradiation is less effective in enhancing the critical current. Doubling of Jc in fields of several Tesla and at temperatures below 50 K will be highly beneficial for applications of coated conductors in rotating machinery, generators and magnet coils. - Work supported by the US DoE-BES funded Energy Frontier Research Center (YJ), and by Department of Energy, Office of Science, Office of Basic Energy Sciences (UW, WKK), under Contract No. DE-AC02-06CH11357.

  14. Enhancing Neurosurgical Education in Low- and Middle-income Countries: Current Methods and New Advances

    PubMed Central

    LIANG, Kevin E; BERNSTEIN, Ilia; KATO, Yoko; KAWASE, Takeshi; HODAIE, Mojgan

    2016-01-01

    Low- and middle-income countries (LMICs) face a critical shortage of basic surgical services. Adequate neurosurgical services can have a far-reaching positive impact on society’s health care and, consequently, the economic development in LMICs. Yet surgery, and specifically neurosurgery has been a long neglected sector of global health. This article reviews the current efforts to enhance neurosurgery education in LMICs and outlines ongoing approaches for improvement. In addition, we introduce the concept of a sustainable and cost-effective model to enhance neurosurgical resources in LMICs and describe the process and methods of online curriculum development. PMID:27616319

  15. Online discussion: Enhancing students' critical thinking skills

    NASA Astrophysics Data System (ADS)

    Rathakrishnan, Mohan; Ahmad, Rahayu; Suan, Choo Ling

    2017-10-01

    Online discussion has become one of the important strategies for the teacher to teach the students to think critically when conveying their ideas and become more proactive and creative. In this paper, padlet online discussion communication was conducted to examine its effectiveness in enhancing critical thinking. In this study, there are two types of critical thinking: macro and micro critical thinking. A total of 70 Universiti Utara Malaysia Management Foundation Programme students involved in this experimental research design. The students in treatment class are divided to few groups. Every group uses padlet online discussion to discuss the topic given. All the group members discuss and write their ideas in padlet. Ideas that are posted in padlet will be displayed in front of the class so that the entire group in the treatment class could see the given ideas. Paul's (1993) model was used to analyze student's macro and micro critical thinking in padlet online discussion and communication. The finding shows that students who used padlet online discussion backchannel communication have greater macro and micro critical thinking level than students who do not use online discussion.

  16. Critical Current Properties in Longitudinal Magnetic Field of YBCO Superconductor with APC

    NASA Astrophysics Data System (ADS)

    Kido, R.; Kiuchi, M.; Otabe, E. S.; Matsushita, T.; Jha, A. K.; Matsumoto, K.

    The critical current density (Jc) properties of the Artificial Pinning Center (APC) introduced YBa2Cu3O7 (YBCO) films in the longitudinal magnetic field were measured. Y2O3 or Y2BaCuO5 (Y211) was introduced as APCs to YBCO, and YBCO films with APC were fabricated on SrTiO3 single crystal substrate. The sizes of Y2O3 and Y211 were 5-10 nm and 10-20 nm, respectively. As a result, Jc enhancement in the longitudinal magnetic field was observed in Y2O3 introduced YBCO films. However, it was not observed in Y211 introduced YBCO films. Therefore, it was considered that Jc properties in the longitudinal magnetic field were affected by introducing of small size APC, and it was necessary that APC does not disturb the current pathway in the superconductor.

  17. Hydrostatic pressure-induced huge enhancement of critical current density and flux pinning in Fe1-x Co x Se0.5Te0.5 single crystals

    NASA Astrophysics Data System (ADS)

    Sang, Lina; Shabbir, Babar; Maheshwari, Pankaj; Qiu, Wenbin; Ma, Zongqing; Dou, Shixue; Cai, Chuanbing; Awana, V. P. S.; Wang, Xiaolin

    2018-07-01

    We performed a systematic study of the hydrostatic pressure (HP) effect on the supercon-ducting transition temperature (T c), critical current density (J c), irreversibility field (H irr), upper critical field (H c2), and flux pinning mechanism in un-doped and 3 at.% Co-doped FeSe0.5Te0.5 crystals. We found that T c is increased from 11.5 to 17 K as HP increases from 0 to 1.2 GPa. Remarkably, the J c is significantly enhanced by a factor of 3 to 100 for low and high temperature and field, and the H irr line is shifted to higher fields by HP up to 1.2 GPa. Based on the collective pinning model, the δl pinning associated with charge-carrier mean free path fluctuation is responsible for the pinning mechanism of Fe1-x Co x Se0.5Te0.5 samples with or without pressure. A comprehensive vortex phase diagram in the mixed state is constructed and analysed for the 3 at.% Co-doped sample.

  18. Experimental Analysis of Critical Current and Alternating Current Losses of High-Temperature Superconductor Tape with Resin and Gallium-Indium-Tin

    PubMed Central

    Sun, Yajie; Zhang, Huiming; Meng, Yuanzhu

    2018-01-01

    This paper experimentally analyzes the critical current degradation and AC (alternating current) losses of second-generation (2G) high-temperature superconductor (HTS) tape during the impregnation process. Two impregnation materials were utilized: Gallium-Indium-Tin (GaInSn), and an epoxy resin, Araldite. The critical current of the impregnation materials was measured after different thermal cycles and compared with the tape with no impregnation process. The experimental results show that the critical current of Yttrium Barium Copper Oxide (YBCO) short samples varies between differently impregnated materials. The resin, Araldite, degraded the critical current; however, the GaInSn showed no degradation. Two degradation patterns with Araldite were identified due to the impregnation process, and the corresponding causes were analyzed. We further measured the AC losses of tapes impregnated with liquid metal at different frequencies, up to 600 Hz. Based on the experimental results, GaInSn liquid metal should be the most suitable impregnation material in terms of critical current degradation. PMID:29642490

  19. Experimental Analysis of Critical Current and Alternating Current Losses of High-Temperature Superconductor Tape with Resin and Gallium-Indium-Tin.

    PubMed

    Yu, Dongmin; Sun, Yajie; Zhang, Huiming; Meng, Yuanzhu; Liu, Huanan

    2018-04-08

    This paper experimentally analyzes the critical current degradation and AC (alternating current) losses of second-generation (2G) high-temperature superconductor (HTS) tape during the impregnation process. Two impregnation materials were utilized: Gallium-Indium-Tin (GaInSn), and an epoxy resin, Araldite. The critical current of the impregnation materials was measured after different thermal cycles and compared with the tape with no impregnation process. The experimental results show that the critical current of Yttrium Barium Copper Oxide (YBCO) short samples varies between differently impregnated materials. The resin, Araldite, degraded the critical current; however, the GaInSn showed no degradation. Two degradation patterns with Araldite were identified due to the impregnation process, and the corresponding causes were analyzed. We further measured the AC losses of tapes impregnated with liquid metal at different frequencies, up to 600 Hz. Based on the experimental results, GaInSn liquid metal should be the most suitable impregnation material in terms of critical current degradation.

  20. A Critical Test of Self-Enhancement, Exposure, and Self-Categorization Explanations for First- and Third-Person Perceptions

    ERIC Educational Resources Information Center

    Reid, Scott A.; Byrne, Sahara; Brundidge, Jennifer S.; Shoham, Mirit D.; Marlow, Mikaela L.

    2007-01-01

    The third-person perception is the tendency for people to believe that others are more influenced by media content than themselves (W. P. Davison, 1983). The current study provides a critical test of self-enhancement, exposure, and self-categorization explanations for first- (i.e., self more influenced than others) and third-person perceptions.…

  1. Non Pharmacological Cognitive Enhancers - Current Perspectives.

    PubMed

    Sachdeva, Ankur; Kumar, Kuldip; Anand, Kuljeet Singh

    2015-07-01

    Cognition refers to the mental processes involved in thinking, knowing, remembering, judging, and problem solving. Cognitive dysfunctions are an integral part of neuropsychiatric disorders as well as in healthy ageing. Cognitive Enhancers are molecules that help improve aspects of cognition like memory, intelligence, motivation, attention and concentration. Recently, Non Pharmacological Cognitive Enhancers have gained popularity as effective and safe alternative to various established drugs. Many of these Non Pharmacological Cognitive Enhancers seem to be more efficacious compared to currently available Pharmacological Cognitive Enhancers. This review describes and summarizes evidence on various Non Pharmacological Cognitive Enhancers such as physical exercise, sleep, meditation and yoga, spirituality, nutrients, computer training, brain stimulation, and music. We also discuss their role in ageing and different neuro-psychiatric disorders, and current status of Cochrane database recommendations. We searched the Pubmed database for the articles and reviews having the terms 'non pharmacological and cognitive' in the title, published from 2000 till 2014. A total of 11 results displayed, out of which 10 were relevant to the review. These were selected and reviewed. Appropriate cross-references within the articles along with Cochrane reviews were also considered and studied.

  2. Critical currents of Nb sub 3 Sn wires for the US-DPC coil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takayasu, M.; Gung, C.Y.; Steeves, M.M.

    1991-03-01

    This paper evaluates the critical current of titanium-alloyed internal-tin, jelly-roll Nb{sub 3}Sn wire for use in the US-DPC coil. It was confirmed from 14 randomly-selected samples that the critical-current values were uniform and consistent: the non-copper critical-current density was approximately 700 A/mm{sup 2} at 10 T and 4.2 K in agreement with expectations. A 27-strand cable-in-conduit conductor (CICC) using the low-thermal-coefficient-of-expansion superalloy Incoloy 905 yielded a critical current 5--7% below the average value of the single-strand data.

  3. Enhanced critical currents of commercial 2G superconducting coated conductors through proton irradiation

    NASA Astrophysics Data System (ADS)

    Welp, Ulrich; Leroux, M.; Kihlstrom, K. J.; Kwok, W.-K.; Koshelev, A. E.; Miller, D. J.; Rupich, M. W.; Fleshler, S.; Malozemoff, A. P.; Kayani, A.

    2015-03-01

    We report on magnetization and transport measurements of the critical current density, Jc, of commercial 2G YBCO coated conductors before and after proton irradiation. The samples were irradiated along the c-axis with 4 MeV protons. Proton irradiation produces a mixed pinning landscape composed of pre-existing rare earth particles and a uniform distribution of irradiation induced nm-sized defects. This pinning landscape strongly reduces the suppression of Jc in magnetic fields resulting in a doubling of Jc in a field of ~ 4T. The irradiation dose-dependence of Jc is characterized by a temperature and field dependent sweat spot that at 5 K and 6 T occurs around 20x1016 p/cm2. Large-scale time dependent Ginzburg-Landau simulations yield a good description of our results. This work supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. D.O.E., Office of Science, Office of Basic Energy Sciences (KK, ML, AEK) and by the D.O.E, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 (UW, WKK).

  4. Hawking radiation and nonequilibrium quantum critical current noise.

    PubMed

    Sonner, Julian; Green, A G

    2012-08-31

    The dynamical scaling of quantum critical systems in thermal equilibrium may be inherited in the driven steady state, leading to universal out-of-equilibrium behavior. This attractive notion has been demonstrated in just a few cases. We demonstrate how holography-a mapping between the quantum critical system and a gravity dual-provides an illuminating perspective and new results. Nontrivial out-of-equilibrium universality is particularly apparent in current noise, which is dual to Hawking radiation in the gravitational system. We calculate this in a two-dimensional system driven by a strong in-plane electric field and deduce a universal scaling function interpolating between previously established equilibrium and far-from-equilibrium current noise. Since this applies at all fields, out-of-equilibrium experiments no longer require very high fields for comparison with theory.

  5. Enhanced Critical Thinking Skills through Problem-Solving Games in Secondary Schools

    ERIC Educational Resources Information Center

    McDonald, Scott Douglas

    2017-01-01

    Aim/Purpose: Students face many challenges improving their soft skills such as critical thinking. This paper offers one possible solution to this problem. Background: This paper considers one method of enhancing critical thinking through a problem-solving game called the Coffee Shop. Problem-solving is a key component to critical thinking, and…

  6. Enhancing Critical Thinking in High School English and Theatre Arts.

    ERIC Educational Resources Information Center

    Baker, Tonya; Delmonico, Janine

    This report describes a program for enhancing critical thinking skills within the high school English and theatre classrooms. The targeted population consists of high school students in two multicultural middle-class suburbs of Chicago. The lack of critical thinking in the classroom was documented through data garnered from teacher observations,…

  7. Critical current and electric transport properties of superconducting epitaxial Nb(Ti)N submicron structures

    NASA Astrophysics Data System (ADS)

    Klimov, A.; Słysz, W.; Guziewicz, M.; Kolkovsky, V.; Wegrzecki, M.; Bar, J.; Marchewka, M.; Seredyński, B.

    2016-12-01

    Critical current and current-voltage characteristics of epitaxial Nb(Ti)N submicron ultrathin structures were measured as function of temperature. For 700-nm-wide bridge we found current-driven vortex de-pinning at low temperatures and thermally activated flux flow closer to the transition temperature, as the limiting factors for the critical current density. For 100-nm-wide meander we observed combination of phase-slip activation and vortex-anti-vortex pair (VAP) thermal excitation. Our Nb(Ti)N meander structure demonstrates high de-pairing critical current densities 107 A/cm2 at low temperatures, but the critical currents are much smaller due to presence of the local constrictions.

  8. Noncontact Measurement Of Critical Current In Superconductor

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Critical current measured indirectly via flux-compression technique. Magnetic flux compressed into gap between superconductive hollow cylinder and superconductive rod when rod inserted in hole in cylinder. Hall-effect probe measures flux density before and after compression. Method does not involve any electrical contact with superconductor. Therefore, does not cause resistive heating and consequent premature loss of superconductivity.

  9. Crack problem in superconducting cylinder with exponential distribution of critical-current density

    NASA Astrophysics Data System (ADS)

    Zhao, Yufeng; Xu, Chi; Shi, Liang

    2018-04-01

    The general problem of a center crack in a long cylindrical superconductor with inhomogeneous critical-current distribution is studied based on the extended Bean model for zero-field cooling (ZFC) and field cooling (FC) magnetization processes, in which the inhomogeneous parameter η is introduced for characterizing the critical-current density distribution in inhomogeneous superconductor. The effect of the inhomogeneous parameter η on both the magnetic field distribution and the variations of the normalized stress intensity factors is also obtained based on the plane strain approach and J-integral theory. The numerical results indicate that the exponential distribution of critical-current density will lead a larger trapped field inside the inhomogeneous superconductor and cause the center of the cylinder to fracture more easily. In addition, it is worth pointing out that the nonlinear field distribution is unique to the Bean model by comparing the curve shapes of the magnetization loop with homogeneous and inhomogeneous critical-current distribution.

  10. Enhanced low-temperature critical current by reduction of stacking faults in REBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Puichaud, A.-H.; Wimbush, S. C.; Knibbe, R.

    2017-07-01

    The effect of stacking faults (SF) on flux pinning and critical current (I c) in rare earth based coated conductors was investigated. The SF density in YBa2Cu3O7-δ (YBCO) films with and without Dy addition, produced by metal organic deposition, was modified by altering the oxygenation temperature. A detailed microstructural analysis of the coated conductors was performed by x-ray diffraction, scanning and transmission electron microscopy and energy dispersive spectroscopy, and the observed defect population was correlated with both the self-field and in-field I c. We report that the best self-field I c was obtained for samples having a low SF density, in spite of the SF being effective flux pinning defects at 77 K for magnetic fields applied within the ab plane. We also show that the SF have no observable flux pinning effect at low temperatures. This study demonstrates that for devices operated at low temperatures, the elimination of SF in the conductor wires is essential to attain higher I c.

  11. Toward superconducting critical current by design

    DOE PAGES

    Sadovskyy, Ivan A.; Jia, Ying; Leroux, Maxime; ...

    2016-03-31

    The interaction of vortex matter with defects in applied superconductors directly determines their current carrying capacity. Defects range from chemically grown nanostructures and crystalline imperfections to the layered structure of the material itself. The vortex-defect interactions are non-additive in general, leading to complex dynamic behavior that has proven difficult to capture in analytical models. With recent rapid progress in computational powers, a new paradigm has emerged that aims at simulation assisted design of defect structures with predictable ‘critical-current-by-design’: analogous to the materials genome concept of predicting stable materials structures of interest. We demonstrate the feasibility of this paradigm by combiningmore » large-scale time-dependent Ginzburg-Landau numerical simulations with experiments on commercial high temperature superconductor (HTS) containing well-controlled correlated defects.« less

  12. Critical current of SF-NFS Josephson junctions

    NASA Astrophysics Data System (ADS)

    Soloviev, I. I.; Klenov, N. V.; Bakursky, S. V.; Kupriyanov, M. Yu.; Golubov, A. A.

    2015-02-01

    The properties of SF-NFS sandwiches composed of two superconducting (S) electrodes separated by a weak-link region formed by a normal-metal (N) step with the thickness d N situated on the top of a lower S electrode and a ferromagnetic (F) layer with the thickness d F deposited onto the step and the remaining free surface of the lower electrode have been studied theoretically. It has been shown in the approximation of linearized semiclassical Usadel equations that the two-dimensional problem in the weak-link region can be reduced to two one-dimensional problems in its SFS and SNFS segments. The spatial distributions of the critical current density J c in the segments as a function of the layer thickness d F have been calculated. The dependences of the critical current I c of the structure on the magnitude of the magnetization vector M of the ferromagnetic layer have been found for various directions of the magnetization within the junction plane. It has been shown that these dependences are affected considerably by both the orientation of M and the spatial distribution of J c.

  13. Non Pharmacological Cognitive EnhancersCurrent Perspectives

    PubMed Central

    Kumar, Kuldip; Anand, Kuljeet Singh

    2015-01-01

    Cognition refers to the mental processes involved in thinking, knowing, remembering, judging, and problem solving. Cognitive dysfunctions are an integral part of neuropsychiatric disorders as well as in healthy ageing. Cognitive Enhancers are molecules that help improve aspects of cognition like memory, intelligence, motivation, attention and concentration. Recently, Non Pharmacological Cognitive Enhancers have gained popularity as effective and safe alternative to various established drugs. Many of these Non Pharmacological Cognitive Enhancers seem to be more efficacious compared to currently available Pharmacological Cognitive Enhancers. This review describes and summarizes evidence on various Non Pharmacological Cognitive Enhancers such as physical exercise, sleep, meditation and yoga, spirituality, nutrients, computer training, brain stimulation, and music. We also discuss their role in ageing and different neuro-psychiatric disorders, and current status of Cochrane database recommendations. We searched the Pubmed database for the articles and reviews having the terms ‘non pharmacological and cognitive’ in the title, published from 2000 till 2014. A total of 11 results displayed, out of which 10 were relevant to the review. These were selected and reviewed. Appropriate cross-references within the articles along with Cochrane reviews were also considered and studied. PMID:26393186

  14. Effects of the Variable Lorentz Force on the Critical Current in Anisotropic Superconducting Thin Films (Postprint)

    DTIC Science & Technology

    2007-06-01

    Phys. Lett., vol. 87, p. 162505, 2005. [2] J. L. Macmanus-Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M. E. Hawley ...B. Maiorov, L. Civale, Y. Lin, M. E. Hawley , M. P. Maley, and D. E. Peterson, “Systematic enhancement of in-field critical current density with rare...16, p. 162 507–1, 2005. [15] H. Safar, J. Y. Coulter, M. P. Maley, S. R. Foltyn, P. N. Arendt, X. D. Wu, and J. O. Willis , “Anisotropy and Lorentz

  15. Architecture for high critical current superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.

    2002-01-01

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of, e.g., multilayer YBCO structures where individual YBCO layers are separated by a layer of an insulating material such as CeO.sub.2 and the like, a layer of a conducting material such as strontium ruthenium oxide and the like or by a second superconducting material such as SmBCO and the like.

  16. In situ hydrostatic pressure induced improvement of critical current density and suppression of magnetic relaxation in Y(Dy0.5)Ba2Cu3O7‑δ coated conductors

    NASA Astrophysics Data System (ADS)

    Sang, Lina; Gutiérrez, Joffre; Cai, Chuanbing; Dou, Shixue; Wang, Xiaolin

    2018-07-01

    We report on the effect of in situ hydrostatic pressure on the enhancement of the in-magnetic-field critical current density parallel to the crystallographic c-axis and vortex pinning in epitaxial Y(Dy0.5)Ba2Cu3O7‑δ coated conductors prepared by metal organic deposition. Our results show that in situ hydrostatic pressure greatly enhances the critical current density at high fields and high temperatures. At 80 K and 5 T we observe a ten-fold increase in the critical current density under the pressure of 1.2 GPa, and the irreversibility line is shifted to higher fields without changing the critical temperature. The normalized magnetic relaxation rate shows that vortex creep rates are strongly suppressed due to applied pressure, and the pinning energy is significantly increased based on the collective creep theory. After releasing the pressure, we recover the original superconducting properties. Therefore, we speculate that the in situ hydrostatic pressure exerted on the coated conductor enhances the pinning of existing extended defects. This is totally different from what has been observed in REBa2Cu3O7‑δ melt-textured crystals, where the effect of pressure generates point-like defects.

  17. Enhancement of Students' Independent Learning through Their Critical Thinking Skills Development

    ERIC Educational Resources Information Center

    Kopzhassarova, Umit; Akbayeva, Gulden; Eskazinova, Zhanar; Belgibayeva, Gulbarshyn; Tazhikeyeva, Akerke

    2016-01-01

    The article focuses on the problem of developing students' critical thinking skills, which help them become independent learners. Analysis of research works of educators and scholars enable the authors to reveal qualities, necessary for students to enhance their critical thinking skills and become independent learners. Different points of view on…

  18. Magnetic Field Dependence of the Critical Current in S-N Bilayer Thin Films

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.; Lee, Sang-Jun; Smith, Stephen James; Bandler, Simon; Chervenak, James; Kilbourne, Caroline A.; Finkbeiner, Fred M.; Porter, Frederick S.; Kelley, Richard L.; Adams, Joseph S.; hide

    2013-01-01

    Here we investigate the effects a non-uniform applied magnetic field has on superconducting transition-edge sensors (TESs) critical current. This has implications on TES optimization. It has been shown that TESs resistive transition can be altered by magnetic fields. We have observed critical current rectification effects and explained these effects in terms of a magnetic self-field arising from asymmetric current injection into the sensor. Our TES physical model shows that this magnetic self-field can result in significantly degraded or improved TES performance. In order for this magnetically tuned TES strategy to reach its full potential we are investigating the effect a non-uniform applied magnetic field has on the critical current.

  19. Mapping the current–current correlation function near a quantum critical point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodan, Emil, E-mail: prodan@yu.edu; Bellissard, Jean

    2016-05-15

    The current–current correlation function is a useful concept in the theory of electron transport in homogeneous solids. The finite-temperature conductivity tensor as well as Anderson’s localization length can be computed entirely from this correlation function. Based on the critical behavior of these two physical quantities near the plateau–insulator or plateau–plateau transitions in the integer quantum Hall effect, we derive an asymptotic formula for the current–current correlation function, which enables us to make several theoretical predictions about its generic behavior. For the disordered Hofstadter model, we employ numerical simulations to map the current–current correlation function, obtain its asymptotic form near amore » critical point and confirm the theoretical predictions.« less

  20. Implementation and evaluation of critical thinking strategies to enhance critical thinking skills in Middle Eastern nurses.

    PubMed

    Simpson, Elaine; Courtney, Mary

    2008-12-01

    The purpose of this study was to develop, implement and evaluate critical thinking strategies to enhance critical thinking skills in Middle Eastern nurses. Critical thinking strategies such as questioning, debate, role play and small group activity were developed and used in a professional development programme, which was trialled on a sample of Middle Eastern nurses (n = 20), to promote critical thinking skills, encourage problem solving, development of clinical judgment making and care prioritization in order to improve patient care and outcomes. Classroom learning was transformed from memorization to interaction and active participation. The intervention programme was successful in developing critical thinking skills in both the nurse educators and student nurses in this programme. This programme successfully integrated critical thinking strategies into a Middle Eastern nursing curriculum. Recommendations are as follows: (1) utilize evidence-based practice and stem questions to encourage the formulation of critical thinking questions; (2) support the needs of nurse educators for them to effectively implement teaching strategies to foster critical thinking skills; and (3) adopt creative approaches to (i) transform students into interactive participants and (ii) open students' minds and stimulate higher-level thinking and problem-solving abilities.

  1. Enhancing HumanAgent Teaming with Individualized, Adaptive Technologies: A Discussion of Critical Scientific Questions

    DTIC Science & Technology

    2018-05-04

    ARL-TR-8359 ● MAY 2018 US Army Research Laboratory Enhancing Human–Agent Teaming with Individualized, Adaptive Technologies : A...with Individualized, Adaptive Technologies : A Discussion of Critical Scientific Questions by Arwen H DeCostanza, Amar R Marathe, Addison Bohannon...Enhancing Human–Agent Teaming with Individualized, Adaptive Technologies : A Discussion of Critical Scientific Questions 5a. CONTRACT NUMBER 5b

  2. The Use of Argument Mapping to Enhance Critical Thinking Skills in Business Education

    ERIC Educational Resources Information Center

    Kunsch, David W.; Schnarr, Karin; van Tyle, Russell

    2014-01-01

    Complex business problems require enhanced critical thinking skills. In a dedicated, in-person critical thinking class, argument mapping techniques were used in conjunction with business and nonbusiness case studies to build the critical thinking skills of a group of master of business administration students. Results demonstrated that the…

  3. Effects of densification of precursor pellets on microstructures and critical current properties of YBCO melt-textured bulks

    NASA Astrophysics Data System (ADS)

    Setoyama, Yui; Shimoyama, Jun-ichi; Motoki, Takanori; Kishio, Kohji; Awaji, Satoshi; Kon, Koichi; Ichikawa, Naoki; Inamori, Satoshi; Naito, Kyogo

    2016-12-01

    Effects of densification of precursor disks on the density of residual voids and critical current properties for YBCO melt-textured bulk superconductors were systematically investigated. Six YBCO bulks were prepared from precursor pellets with different initial particle sizes of YBa2Cu3Oy (Y123) powder and applied pressures for pelletization. It was revealed that use of finer Y123 powder and consolidation using cold-isostatic-pressing (CIP) with higher pressures result in reduction of residual voids at inner regions of bulks and enhance Jc especially under low fields below the second peak.

  4. Rationing critical care medicine: recent studies and current trends.

    PubMed

    Ward, Nicholas S

    2005-12-01

    This paper reviews the literature on the rationing of critical care resources. Although much has been written about the concept of rationing, there have been few scientific studies as to its prevalence. A recent meta-analysis reviewed all previously published studies on rationing access to intensive care units but little is known about practices within the intensive care unit. Much literature in the past few years has focused on the growing use of critical care resources and projections for the future. Several authors suggest there may be a crisis in financial or personnel resources if some rationing does not take place. Other papers have argued that the methods of rationing critical care previously proposed, such as limiting the care of dying patients or using cost-effectiveness analysis to determine care, may not be effective or viewed as ethical by some. Finally, several recent papers review how critical care is practiced and allocated in India and Asian countries that already practice open rationing in their health care systems. There is currently no published evidence that overt rationing is taking place in critical care medicine. There is growing evidence that in the future, the need for critical care may outstrip financial resources unless some form of rationing takes place. It is also clear from the literature that choosing how to ration critical care will be a difficult task.

  5. Critical current density enhancement by phase decomposition of YBa 2Cu 4O 8 into YBa 2Cu 3O 7-σ and CuO

    NASA Astrophysics Data System (ADS)

    Krelaus, J.; Heinemann, K.; Ullmann, B.; Freyhardt, H. C.

    1995-02-01

    Bulk YBa 2Cu 4O 8 (Y-124) is prepared from YBa 2Cu 3O 7-σ (Y-123) and CuO by a powder-metallurgical method. The superconducting features of the Y-124, in particular critical current densities and activation energies, are measured resistively using a four-probe technique and magnetically using a Faraday magnetometer. In a second step the Y-124 is decomposed at high temperatures. The intragranular critical current density is measured at different annealing times, tA, in order to determine and discuss the characteristics of the jc( tA) curves.

  6. Magnetic field oscillations of the critical current in long ballistic graphene Josephson junctions

    NASA Astrophysics Data System (ADS)

    Rakyta, Péter; Kormányos, Andor; Cserti, József

    2016-06-01

    We study the Josephson current in long ballistic superconductor-monolayer graphene-superconductor junctions. As a first step, we have developed an efficient computational approach to calculate the Josephson current in tight-binding systems. This approach can be particularly useful in the long-junction limit, which has hitherto attracted less theoretical interest but has recently become experimentally relevant. We use this computational approach to study the dependence of the critical current on the junction geometry, doping level, and an applied perpendicular magnetic field B . In zero magnetic field we find a good qualitative agreement with the recent experiment of M. Ben Shalom et al. [Nat. Phys. 12, 318 (2016), 10.1038/nphys3592] for the length dependence of the critical current. For highly doped samples our numerical calculations show a broad agreement with the results of the quasiclassical formalism. In this case the critical current exhibits Fraunhofer-like oscillations as a function of B . However, for lower doping levels, where the cyclotron orbit becomes comparable to the characteristic geometrical length scales of the system, deviations from the results of the quasiclassical formalism appear. We argue that due to the exceptional tunability and long mean free path of graphene systems a new regime can be explored where geometrical and dynamical effects are equally important to understand the magnetic field dependence of the critical current.

  7. Certification Processes for Safety-Critical and Mission-Critical Aerospace Software

    NASA Technical Reports Server (NTRS)

    Nelson, Stacy

    2003-01-01

    This document is a quick reference guide with an overview of the processes required to certify safety-critical and mission-critical flight software at selected NASA centers and the FAA. Researchers and software developers can use this guide to jumpstart their understanding of how to get new or enhanced software onboard an aircraft or spacecraft. The introduction contains aerospace industry definitions of safety and safety-critical software, as well as, the current rationale for certification of safety-critical software. The Standards for Safety-Critical Aerospace Software section lists and describes current standards including NASA standards and RTCA DO-178B. The Mission-Critical versus Safety-Critical software section explains the difference between two important classes of software: safety-critical software involving the potential for loss of life due to software failure and mission-critical software involving the potential for aborting a mission due to software failure. The DO-178B Safety-critical Certification Requirements section describes special processes and methods required to obtain a safety-critical certification for aerospace software flying on vehicles under auspices of the FAA. The final two sections give an overview of the certification process used at Dryden Flight Research Center and the approval process at the Jet Propulsion Lab (JPL).

  8. Study of the inhomogeneity of critical current under in-situ tensile stress for YBCO tape

    NASA Astrophysics Data System (ADS)

    Zhu, Y. P.; Chen, W.; Zhang, H. Y.; Liu, L. Y.; Pan, X. F.; Yang, X. S.; Zhao, Y.

    2018-07-01

    A Hall sensor system was used to measure the local critical current of YBCO tape with high spatial resolution under in-situ tensile stress. The hot spot generation and minimum quench energy of YBCO tape, which depended on the local critical current, was calculated through the thermoelectric coupling model. With the increase in tensile stress, the cracks which have different dimensions and critical current degradation arose more frequently and lowered the thermal stability of the YBCO tape.

  9. Selective mass enhancement close to the quantum critical point in BaFe 2(As 1-xP x) 2

    DOE PAGES

    Grinenko, V.; Iida, K.; Kurth, F.; ...

    2017-07-04

    A quantum critical point (QCP) is currently being conjectured for the BaFe 2(As 1-xP x) 2 system at the critical value x c ≈ 0.3. In the proximity of a QCP, all thermodynamic and transport properties are expected to scale with a single characteristic energy, given by the quantum fluctuations. Such a universal behavior has not, however, been found in the superconducting upper critical field H c2. Here we report H c2 data for epitaxial thin films extracted from the electrical resistance measured in very high magnetic fields up to 67 Tesla. Using a multi-band analysis we find that Hmore » c2 is sensitive to the QCP, implying a significant charge carrier effective mass enhancement at the doping-induced QCP that is essentially band-dependent. Our results point to two qualitatively different groups of electrons in BaFe 2(As 1-xP x) 2. The first one (possibly associated to hot spots or whole Fermi sheets) has a strong mass enhancement at the QCP, and the second one is insensitive to the QCP. The observed duality could also be present in many other quantum critical systems.« less

  10. Enhancing critical thinking with case studies and nursing process.

    PubMed

    Neill, K M; Lachat, M F; Taylor-Panek, S

    1997-01-01

    Challenged to enhance critical thinking concepts in a sophomore nursing process course, faculty expanded the lecture format to include group explorations of patient case studies. The group format facilitated a higher level of analysis of patient cases and more sophisticated applications of nursing process. This teaching strategy was a positive learning experience for students and faculty.

  11. Method for determining transport critical current densities and flux penetration depth in bulk superconductors

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1992-01-01

    A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.

  12. Electromigration kinetics and critical current of Pb-free interconnects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Minhua; Rosenberg, Robert

    2014-04-07

    Electromigration kinetics of Pb-free solder bump interconnects have been studied using a single bump parameter sweep technique. By removing bump to bump variations in structure, texture, and composition, the single bump sweep technique has provided both activation energy and power exponents that reflect atomic migration and interface reactions with fewer samples, shorter stress time, and better statistics than standard failure testing procedures. Contact metallurgies based on Cu and Ni have been studied. Critical current, which corresponds to the Blech limit, was found to exist in the Ni metallurgy, but not in the Cu metallurgy. A temperature dependence of critical currentmore » was also observed.« less

  13. Critical thinking instruction and technology enhanced learning from the student perspective: A mixed methods research study.

    PubMed

    Swart, Ruth

    2017-03-01

    Critical thinking is acclaimed as a valuable asset for graduates from higher education programs. Technology has advanced in quantity and quality; recognized as a requirement of 21st century learners. A mixed methods research study was undertaken, examining undergraduate nursing student engagement with critical thinking instruction, platformed on two technology-enhanced learning environments: a classroom response system face-to-face in-class and an online discussion forum out-of-class. The Community of Inquiry framed the study capturing constructivist collaborative inquiry to support learning, and facilitate critical thinking capability. Inclusion of quantitative and qualitative data sources aimed to gather a comprehensive understanding of students' development of critical thinking and engagement with technology-enhanced learning. The findings from the students' perspectives were positive toward the inclusion of technology-enhanced learning, and use in supporting their development of critical thinking. Students considered the use of two forms of technology beneficial in meeting different needs and preferences, offering varied means to actively participate in learning. They valued critical thinking instruction being intentionally aligned with subject-specific content facilitating understanding, application, and relevance of course material. While the findings are limited to student participants, the instructional strategies and technology-enhanced learning identified as beneficial can inform course design for the development of critical thinking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films

    NASA Astrophysics Data System (ADS)

    Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z.-L.; Kwok, W.-K.; Glatz, A.

    2017-02-01

    Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patterned molybdenum-germanium films, obtaining good agreement. Our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.

  15. Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films

    NASA Astrophysics Data System (ADS)

    Sadovskyy, Ivan; Wang, Yonglei; Xiao, Zhili; Kwok, Wai-Kwong; Glatz, Andreas

    Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers - varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic field dependent critical current. We compare our result directly with available experimental measurements on patterned molybdenum-germanium films, obtaining good agreement. Our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.

  16. Unusually high critical current of clean P-doped BaFe2As2 single crystalline thin film

    NASA Astrophysics Data System (ADS)

    Kurth, F.; Tarantini, C.; Grinenko, V.; Hänisch, J.; Jaroszynski, J.; Reich, E.; Mori, Y.; Sakagami, A.; Kawaguchi, T.; Engelmann, J.; Schultz, L.; Holzapfel, B.; Ikuta, H.; Hühne, R.; Iida, K.

    2015-02-01

    Microstructurally clean, isovalently P-doped BaFe2As2 (Ba-122) single crystalline thin films have been prepared on MgO (001) substrates by molecular beam epitaxy. These films show a superconducting transition temperature (Tc) of over 30 K although P content is around 0.22, which is lower than the optimal one for single crystals (i.e., 0.33). The enhanced Tc at this doping level is attributed to the in-plane tensile strain. The strained film shows high transport self-field critical current densities (Jc) of over 6 MA/cm2 at 4.2 K, which are among the highest for Fe based superconductors (FeSCs). In-field Jc exceeds 0.1 MA/cm2 at μ 0 H = 35 T for H ‖ a b and μ 0 H = 18 T for H ‖ c at 4.2 K, respectively, in spite of moderate upper critical fields compared to other FeSCs with similar Tc. Structural investigations reveal no defects or misoriented grains pointing to strong pinning centers. We relate this unexpected high Jc to a strong enhancement of the vortex core energy at optimal Tc, driven by in-plane strain and doping. These unusually high Jc make P-doped Ba-122 very favorable for high-field magnet applications.

  17. Current Pulses Momentarily Enhance Thermoelectric Cooling

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey; Fleurial, Jean-Pierre; Caillat, Thierry; Chen, Gang; Yang, Rong Gui

    2004-01-01

    The rates of cooling afforded by thermoelectric (Peltier) devices can be increased for short times by applying pulses of electric current greater than the currents that yield maximum steady-state cooling. It has been proposed to utilize such momentary enhancements of cooling in applications in which diode lasers and other semiconductor devices are required to operate for times of the order of milliseconds at temperatures too low to be easily obtainable in the steady state. In a typical contemplated application, a semiconductor device would be in contact with the final (coldest) somewhat taller stage of a multistage thermoelectric cooler. Steady current would be applied to the stages to produce steady cooling. Pulsed current would then be applied, enhancing the cooling of the top stage momentarily. The principles of operation are straightforward: In a thermoelectric device, the cooling occurs only at a junction at one end of the thermoelectric legs, at a rate proportional to the applied current. However, Joule heating occurs throughout the device at a rate proportional to the current squared. Hence, in the steady state, the steady temperature difference that the device can sustain increases with current only to the point beyond which the Joule heating dominates. If a pulse of current greater than the optimum current (the current for maximum steady cooling) is applied, then the junction becomes momentarily cooled below its lowest steady temperature until thermal conduction brings the resulting pulse of Joule heat to the junction and thereby heats the junction above its lowest steady temperature. A theoretical and experimental study of such transient thermoelectric cooling followed by transient Joule heating in response to current pulses has been performed. The figure presents results from one of the experiments. The study established the essential parameters that characterize the pulse cooling effect, including the minimum temperature achieved, the maximum

  18. Apparatus for measurement of critical current in superconductive tapes

    DOEpatents

    Coulter, J. Yates; DePaula, Raymond

    2002-01-01

    A cryogenic linear positioner which is primarily used for characterizing coated conductor critical current homogeneity at 75K is disclosed. Additionally, this tool can be used to measure the positional dependence of the coated conductor resistance at room temperature, and the room temperature resistance of the underlying YBCB coating without the overlaying protective cover of silver.

  19. Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment

    PubMed Central

    2017-01-01

    Pulsed Eddy Current (PEC) sensing is used for Non-Destructive Evaluation (NDE) of the structural integrity of metallic structures in the aircraft, railway, oil and gas sectors. Urban water utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systems made of grey cast iron, ductile cast iron and mild steel. The associated material properties render NDE of these pipes by means of electromagnetic sensing a necessity. In recent years PEC sensing has established itself as a state-of-the-art NDE technique in the critical water pipe sector. This paper presents advancements to PEC inspection in view of the specific information demanded from water utilities along with the challenges encountered in this sector. Operating principles of the sensor architecture suitable for application on critical pipes are presented with the associated sensor design and calibration strategy. A Gaussian process-based approach is applied to model a functional relationship between a PEC signal feature and critical pipe wall thickness. A case study demonstrates the sensor’s behaviour on a grey cast iron pipe and discusses the implications of the observed results and challenges relating to this application. PMID:28954392

  20. Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment.

    PubMed

    Ulapane, Nalika; Alempijevic, Alen; Vidal Calleja, Teresa; Valls Miro, Jaime

    2017-09-26

    Pulsed Eddy Current (PEC) sensing is used for Non-Destructive Evaluation (NDE) of the structural integrity of metallic structures in the aircraft, railway, oil and gas sectors. Urban water utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systems made of grey cast iron, ductile cast iron and mild steel. The associated material properties render NDE of these pipes by means of electromagnetic sensing a necessity. In recent years PEC sensing has established itself as a state-of-the-art NDE technique in the critical water pipe sector. This paper presents advancements to PEC inspection in view of the specific information demanded from water utilities along with the challenges encountered in this sector. Operating principles of the sensor architecture suitable for application on critical pipes are presented with the associated sensor design and calibration strategy. A Gaussian process-based approach is applied to model a functional relationship between a PEC signal feature and critical pipe wall thickness. A case study demonstrates the sensor's behaviour on a grey cast iron pipe and discusses the implications of the observed results and challenges relating to this application.

  1. Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z. -L.

    Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patternedmore » molybdenum-germanium films, obtaining good agreement. In conclusion, our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.« less

  2. Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films

    DOE PAGES

    Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z. -L.; ...

    2017-02-07

    Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patternedmore » molybdenum-germanium films, obtaining good agreement. In conclusion, our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.« less

  3. Critical current density and vortex pinning in tetragonal FeS 1 ₋ x Se x ( x = 0 , 0.06 )

    DOE PAGES

    Wang, Aifeng; Wu, Lijun; Ivanovski, V. N.; ...

    2016-09-07

    Here we report critical current density (J c) in tetragonal FeS single crystals, similar to iron-based superconductors with much higher superconducting critical temperatures (T c). The J c is enhanced three times by 6% Se doping. We observe scaling of the normalized vortex pinning force as a function of reduced field at all temperatures. Vortex pinning in FeS and FeS 0.94Se 0.06 shows contribution of core-normal surfacelike pinning. Lastly, reduced temperature dependence of J c indicates that dominant interaction of vortex cores and pinning centers is via scattering of charge carriers with reduced mean free path (δl), in contrast tomore » K xFe 2₋ySe 2 where spatial variations in T c (δT c) prevails.« less

  4. Space-charge-limited currents for cathodes with electric field enhanced geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu

    This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that themore » space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.« less

  5. Critical current density and mechanism of vortex pinning in K xFe 2-ySe₂ doped with S

    DOE PAGES

    Lei, Hechang; Petrovic, C.

    2011-08-15

    We report the critical current density J c in K xFe 2-ySe 2-zS z crystals. The J c can be enhanced significantly with optimal S doping (z=0.99). For K 0.70(7)Fe 1.55(7)Se 1.01(2)S 0.99(2), the weak fishtail effect is found for H II c. The normalized vortex pinning forces follow the scaling law with a maximum position at 0.41 of the reduced magnetic field. These results demonstrate that the small size normal point defects dominate the vortex pinning mechanism.

  6. Short-Wavelength Light-Emitting Devices With Enhanced Hole Injection Currents

    DTIC Science & Technology

    2005-05-01

    hot-hole injector with appreciably enhancement of the injection current is proposed and developed to be integrated with commonly used vertical...structures of the emitting devices. Second, we develop the alternative design of UV-light sources on the base of lateral p+ - i - n+ superlattice structures...enhancement of the injection current is proposed and developed to be integrated with commonly used vertical structures of the emitting devices. Second

  7. Enhancement in transport critical current density of ex situ PIT Ag/(Ba, K)Fe2As2 tapes achieved by applying a combined process of flat rolling and uniaxial pressing

    NASA Astrophysics Data System (ADS)

    Togano, Kazumasa; Gao, Zhaoshun; Matsumoto, Akiyoshi; Kumakura, Hiroaki

    2013-11-01

    We report that the transport critical current density Jc of ex situ powder-in-tube (PIT) processed (Ba, K)Fe2As2 (Ba-122) tapes can be significantly enhanced by applying uniaxial cold pressing at the final stage of deformation. The tapes were prepared by packing high quality precursor powder into a Ag tube, cycles of rolling and intermediate annealing, and pressing followed by the final heat treatment for sintering. The Jc values in applied magnetic fields were increased by almost one order of magnitude compared to the tapes processed without pressing, exceeding 104 A cm-2 at 4.2 K. We achieved the highest Jc (at 4.2 K and 10 T) of 2.1×104 A cm-2 among PIT-processed Fe-based wires and tapes reported so far. The Jc-H curves measured at higher temperatures maintain small field dependence up to around 20 K, suggesting that these tapes are promising for applications at higher temperatures as well as at liquid helium temperature. The microstructure investigations reveal that there are two possible causes of the large Jc enhancement by pressing: one is densification and the other is the change of crack structure. Optimization of processing parameters such as the reduction ratio of rolling and pressing is expected to yield further Jc enhancement.

  8. The Reduction of the Critical Currents in Nb3Sn Cables under Transverse Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Oort, J.M.; Scanlan, R.M.; Weijers, H.W.

    1992-08-01

    The degradation of the critical current of impregnated Rutherford type Nb{sub 3}Sn cables is investigated as a function of the applied transverse load and magnetic field. The cable is made of TWCA modified jelly-roll type strand material and has a keystone angle of 1.0 degree. The voltage-current characteristics are determined for the magnetic field ranging from 2 to 11 tesla and transverse pressure up to 250 MPa on the cable surface. It is found that the 48-strand cable, made of strands with 6 elements in the matrix, shows a larger critical current degradation than the 26-strand cable with 36 elementsmore » per strand. The global degradation of the 48-strand cable is 63% at 150 MPa, and 40% at 150 MPa for the 26-strand cable. Micro-analysis of the cross-section shows permanent damage to the sharp edge of the cable. The influence of the keystone angle on the critical-current degradation is currently under investigation.« less

  9. Stock markets and criticality in the current economic crisis

    NASA Astrophysics Data System (ADS)

    da Silva, Roberto; Zembrzuski, Marcelo; Correa, Fabio C.; Lamb, Luis C.

    2010-12-01

    We show that the current economic crisis has led the market to exhibit a non-critical behavior. We do so by analyzing the quantitative parameters of time series from the main assets of the Brazilian Stock Market BOVESPA. By monitoring global persistence we show a deviation of power law behavior during the crisis in a strong analogy with spin systems (from where this concept was originally conceived). Such behavior is corroborated by an emergent heavy tail of absolute return distribution and also by the magnitude autocorrelation exponent. Comparisons with universal exponents obtained in the international stock markets are also performed. This suggests how a thorough analysis of suitable exponents can bring a possible way of forecasting market crises characterized by non-criticality.

  10. Engineered pinning landscapes for enhanced 2G coil wire

    DOE PAGES

    Rupich, Martin W.; Sathyamurthy, Srivatsan; Fleshler, Steven; ...

    2016-04-01

    We demonstrate a twofold increase in the in-field critical current of AMSC's standard 2G coil wire by irradiation with 18-MeV Au ions. The optimum pinning enhancement is achieved with a dose of 6 × 10 11 Au ions/cm 2. Although the 77 K, self-field critical current is reduced by about 35%, the in-field critical current (H//c) shows a significant enhancement between 4 and 50 K in fields > 1 T. The process was used for the roll-to-roll irradiation of AMSC's standard 46-mm-wide production coated conductor strips, which were further processed into standard copper laminated coil wire. The long-length wires showmore » the same enhancement as attained with short static irradiated samples. The roll-to-roll irradiation process can be incorporated in the standard 2G wire manufacturing, with no modifications to the current process. In conclusion, the enhanced performance of the wire will benefit rotating machine and magnet applications.« less

  11. Critical current oscillations of elliptical Josephson junctions with single-domain ferromagnetic layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glick, Joseph A.; Khasawneh, Mazin A.; Niedzielski, Bethany M.

    We report that josephson junctions containing ferromagnetic layers are of considerable interest for the development of practical cryogenic memory and superconducting qubits. Such junctions exhibit a ground-state phase shift of π for certain ranges of ferromagnetic layer thicknesses. We present studies of Nb based micron-scale elliptically shaped Josephson junctions containing ferromagnetic barriers of Ni 81Fe 19 or Ni 65Fe 15Co 20. By applying an external magnetic field, the critical current of the junctions is found to follow characteristic Fraunhofer patterns and display sharp switching behavior suggestive of single-domain magnets. The high quality of the Fraunhofer patterns enables us to extractmore » the maximum value of the critical current even when the peak is shifted significantly outside the range of the data due to the magnetic moment of the ferromagnetic layer. The maximum value of the critical current oscillates as a function of the ferromagnetic barrier thickness, indicating transitions in the phase difference across the junction between values of zero and π. Lastly, we compare the data to previous work and to models of the 0-π transitions based on existing theories.« less

  12. Critical current oscillations of elliptical Josephson junctions with single-domain ferromagnetic layers

    DOE PAGES

    Glick, Joseph A.; Khasawneh, Mazin A.; Niedzielski, Bethany M.; ...

    2017-10-06

    We report that josephson junctions containing ferromagnetic layers are of considerable interest for the development of practical cryogenic memory and superconducting qubits. Such junctions exhibit a ground-state phase shift of π for certain ranges of ferromagnetic layer thicknesses. We present studies of Nb based micron-scale elliptically shaped Josephson junctions containing ferromagnetic barriers of Ni 81Fe 19 or Ni 65Fe 15Co 20. By applying an external magnetic field, the critical current of the junctions is found to follow characteristic Fraunhofer patterns and display sharp switching behavior suggestive of single-domain magnets. The high quality of the Fraunhofer patterns enables us to extractmore » the maximum value of the critical current even when the peak is shifted significantly outside the range of the data due to the magnetic moment of the ferromagnetic layer. The maximum value of the critical current oscillates as a function of the ferromagnetic barrier thickness, indicating transitions in the phase difference across the junction between values of zero and π. Lastly, we compare the data to previous work and to models of the 0-π transitions based on existing theories.« less

  13. Transcranial direct current stimulation enhances verbal working memory training performance over time and near transfer outcomes.

    PubMed

    Richmond, Lauren L; Wolk, David; Chein, Jason; Olson, Ingrid R

    2014-11-01

    Studies attempting to increase working memory (WM) capacity show promise in enhancing related cognitive functions but have also raised criticism in the broader scientific community given the inconsistent findings produced by these studies. Transcranial direct current stimulation (tDCS) has been shown to enhance WM performance in a single session [Fregni, F., Boggio, P., Nitsche, M., Bermpohl, F., Anatal, A., Feredoes, E., et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166, 23-30, 2005]; however, the extent to which tDCS might enhance learning on a WM training regime and the extent to which learning gains might transfer outside the training task remains largely unknown. To this end, participants engaged in an adaptive WM training task [previously utilized in Richmond, L., Morrison, A., Chein, J., & Olson, I. Working memory training and transfer in older adults. Psychology & Aging, 26, 813-822, 2011; Chein, J., & Morrison, A. Expanding the mind's workspace: Training and transfer effects with a complex working memory span task. Psychonomic Bulletin & Review, 17, 193-199, 2010] for 10 sessions over 2 weeks, concurrent with either active or sham stimulation of dorsolateral pFC. Before and after training, a battery of tests tapping domains known to relate to WM abilities was administered. Results show that tDCS enhanced learning on the verbal portion of the training task by 3.65 items. Furthermore, tDCS was shown to enhance near transfer to other untrained WM tasks in comparison with a no-contact control group. These results lend support to the idea that tDCS might bolster training and transfer gains in populations with compromised WM abilities.

  14. Structural and critical current properties in Al-doped MgB 2

    NASA Astrophysics Data System (ADS)

    Zheng, D. N.; Xiang, J. Y.; Lang, P. L.; Li, J. Q.; Che, G. C.; Zhao, Z. W.; Wen, H. H.; Tian, H. Y.; Ni, Y. M.; Zhao, Z. X.

    2004-08-01

    A series of Al-doped Mg 1- xAl xB 2 samples have been fabricated and systematic study on structure and superconducting properties have been carried out for the samples. In addition to a structural transition observed by XRD, TEM micrographs showed the existence of a superstructure of double c-axis lattice constant along the direction perpendicular to the boron honeycomb sheet. In order to investigate the effect of Al doping on flux pinning and critical current properties in MgB 2, measurements on the superconducting transition temperature Tc, irreversible field Birr and critical current density Jc were performed too, for the samples with the doping levels lower than 0.15 in particular. These experimental observations were discussed in terms of Al doping induced changes in carrier concentration.

  15. Influence of field dependent critical current density on flux profiles in high Tc superconductors

    NASA Technical Reports Server (NTRS)

    Takacs, S.

    1990-01-01

    The field distribution for superconducting cylinders and slabs with field dependent critical current densities in combined DC and AC magnetic fields and the corresponding magnetic fluxes are calculated. It is shown that all features of experimental magnetic-field profile measurements can be explained in the framework of field dependent critical current density. Even the quantitative agreement between the experimental and theoretical results using Kim's model is very good.

  16. Using Quantitative Literacy to Enhance Critical Thinking Skills in Undergraduate Nursing Students.

    PubMed

    Asknes, Edna

    2017-04-01

    Critical thinking and quantitative literacy (QL) are similarly grounded: both focus on analyzing and evaluating evidence, identifying implications and consequences, drawing inferences, and communicating information. This teaching strategy was based on those commonalities and was designed so that undergraduate nursing students would enhance their critical thinking skills as they used their QL skills. QL skills are most effective when taught, learned, and used to solve significant, pertinent problems. Using the principles of learner-centered, team-based learning, QL was integrated into the curriculum of the Maternal-Newborn Nursing course at an urban community college with a diverse student population. Students were engaged and demonstrated enhanced and ongoing development of their critical thinking and problem-solving skills. They also reported a better understanding of data interpretation and use. The positive outcome of this project revealed further opportunities for incorporating QL into nursing curricula and highlighted the need for research on the use of QL in nursing education. [J Nurs Educ. 2017;56(4):240-242.]. Copyright 2017, SLACK Incorporated.

  17. Potential of Surface Enhanced Raman Spectroscopy (SERS) in Therapeutic Drug Monitoring (TDM). A Critical Review

    PubMed Central

    Jaworska, Aleksandra; Fornasaro, Stefano; Sergo, Valter; Bonifacio, Alois

    2016-01-01

    Surface-Enhanced Raman Spectroscopy (SERS) is a label-free technique that enables quick monitoring of substances at low concentrations in biological matrices. These advantages make it an attractive tool for the development of point-of-care tests suitable for Therapeutic Drug Monitoring (TDM) of drugs with a narrow therapeutic window, such as chemotherapeutic drugs, immunosuppressants, and various anticonvulsants. In this article, the current applications of SERS in the field of TDM for cancer therapy are discussed in detail and illustrated according to the different strategies and substrates. In particular, future perspectives are provided and special concerns regarding the standardization of self-assembly methods and nanofabrication procedures, quality assurance, and technology readiness are critically evaluated. PMID:27657146

  18. Numerical simulation of inductive method for determining spatial distribution of critical current density

    NASA Astrophysics Data System (ADS)

    Kamitani, A.; Takayama, T.; Tanaka, A.; Ikuno, S.

    2010-11-01

    The inductive method for measuring the critical current density jC in a high-temperature superconducting (HTS) thin film has been investigated numerically. In order to simulate the method, a non-axisymmetric numerical code has been developed for analyzing the time evolution of the shielding current density. In the code, the governing equation of the shielding current density is spatially discretized with the finite element method and the resulting first-order ordinary differential system is solved by using the 5th-order Runge-Kutta method with an adaptive step-size control algorithm. By using the code, the threshold current IT is evaluated for various positions of a coil. The results of computations show that, near a film edge, the accuracy of the estimating formula for jC is remarkably degraded. Moreover, even the proportional relationship between jC and IT will be lost there. Hence, the critical current density near a film edge cannot be estimated by using the inductive method.

  19. Cathodic current enhancement via manganese and oxygen related reactions in marine biofilms

    NASA Astrophysics Data System (ADS)

    Strom, Matthew James

    Corrosion is a threat that has economic, and environmental impacts worldwide. Many types of corrosive attack are the subject of ongoing research. One of these areas of research is microbiologically influenced corrosion, which is the enhancement and/or initiation of corrosion events caused by microorganisms. It is well known that colonies of microorganisms can enhance cathodic currents through biofilm formation. The aim of the present work was to elucidate the role of manganese in enhancing cathodic currents in the presence of biofilms. Repeated polarizations conducted in Delaware Bay waters, on biofilm coated Cr identified potentially sustainable reduction reactions. The reduction of MnO2 and the enhancement of the oxygen reduction reaction (ORR) were proven to be factors that influence cathodic current enhancement. The removal of ambient oxygen during polarizations resulted in a shutdown of cathodic current enhancement. These field data led to an exploration of the synergistic relationship between MnO2 and the ORR. Laboratory studies of the catalysis of peroxide disproportionation by MnO2 were monitored using a hanging mercury drop electrode. Experiments were run at an ambient sweater pH of 8 and pH 9, which simulated the near-surface conditions typical of cathodes immersed in seawater. Rapid reoxidation at the more basic pH was shown to allow manganese to behave as a persistent catalyst under the typical electrochemical surface conditions of a cathode. As a result a mechanism for ORR enhancement by manganese was proposed as a unique mechanism for cathodic current enhancement in biofilms. A separate field study of Delaware biofilms on stainless steel coupled to a sacrificial Al anode was carried out to identify the ORR enhancement mechanism and sustainable redox reactions at the cathode. Chemical treatments of glutaraldehyde and formaldoxime were applied to cathodes with biofilms to distinguish between enzymatic and MnO2 related ORR enhancement. The results ruled

  20. Kiloampere, Variable-Temperature, Critical-Current Measurements of High-Field Superconductors

    PubMed Central

    Goodrich, LF; Cheggour, N; Stauffer, TC; Filla, BJ; Lu, XF

    2013-01-01

    We review variable-temperature, transport critical-current (Ic) measurements made on commercial superconductors over a range of critical currents from less than 0.1 A to about 1 kA. We have developed and used a number of systems to make these measurements over the last 15 years. Two exemplary variable-temperature systems with coil sample geometries will be described: a probe that is only variable-temperature and a probe that is variable-temperature and variable-strain. The most significant challenge for these measurements is temperature stability, since large amounts of heat can be generated by the flow of high current through the resistive sample fixture. Therefore, a significant portion of this review is focused on the reduction of temperature errors to less than ±0.05 K in such measurements. A key feature of our system is a pre-regulator that converts a flow of liquid helium to gas and heats the gas to a temperature close to the target sample temperature. The pre-regulator is not in close proximity to the sample and it is controlled independently of the sample temperature. This allows us to independently control the total cooling power, and thereby fine tune the sample cooling power at any sample temperature. The same general temperature-control philosophy is used in all of our variable-temperature systems, but the addition of another variable, such as strain, forces compromises in design and results in some differences in operation and protocol. These aspects are analyzed to assess the extent to which the protocols for our systems might be generalized to other systems at other laboratories. Our approach to variable-temperature measurements is also placed in the general context of measurement-system design, and the perceived advantages and disadvantages of design choices are presented. To verify the accuracy of the variable-temperature measurements, we compared critical-current values obtained on a specimen immersed in liquid helium (“liquid” or Ic liq) at

  1. Effect of fatigue loading on critical current in stainless steel-laminated DI-BSCCO superconducting composite tape

    NASA Astrophysics Data System (ADS)

    Hojo, M.; Osawa, K.; Adachi, T.; Inoue, Y.; Osamura, K.; Ochiai, S.; Ayai, N.; Hayashi, K.

    2010-11-01

    Tensile strain tolerance of the critical current in (Bi,Pb)2Sr2Ca2Cu3Ox (Bi2223) composite superconductor is dramatically improved when the tape is laminated with stainless steel. For practical applications, it is important to understand whether this reinforcement by lamination is effective under fatigue loading. In the present study, we carried out fatigue tests in LN2 and measured the critical current at the specific fatigue cycles to clarify the strain tolerance of the critical current in stainless steel-laminated drastically innovative Bi2223 (DI-BSCCO®) tapes. The fatigue tests were carried out using a computer-controlled 10 kN servo-hydraulic fatigue testing machine with a load cell capacity of 2.5 kN. Tests under static loading showed that the irreversible stress at which the critical current is reduced by 1% from the original value (tensile stress at Ic/Ic0 = 0.99) was 315 MPa when measured at unloading state. The present fatigue tests results indicated that the critical current was maintained at over 98% of the original value at unloading state after stress cycles of 106 when the static irreversible stress was selected as the maximum stress under fatigue loading. Thus, laminated DI-BSCCO tapes showed excellent mechanical properties even under fatigue loading.

  2. Critical current densities in superconducting Y-Ba-Cu-O prepared by chelating method

    NASA Astrophysics Data System (ADS)

    Fujisawa, Tadashi; Okuyama, Katsuro; Ohshima, Shigetoshi; Takagi, Akira

    1990-10-01

    The IDA, NTA, HEDTA, EDTA, TTHA, and DTPA chelating agents have been used to prepare the Y-Ba-Cu-O compounds whose critical current is presently investigated. It is noted that the precursor YBCO prepared from large stability-constant metal complexes (HEDTA, EDTA, DTPA, and TTHA) exhibited very fine and homogeneous particles. The critical current density of a 1 x 4 x 15 mm block of YBCO sintered at 880-910 C for 24 h and subsequently annealed at 500 C in an O2 flow was approximately 500 A/sq cm at 77 K, in zero magnetic field.

  3. Enhancing Critical Thinking, Writing and Disposition Preparedness amongst Four-Year University Teacher Education Students

    ERIC Educational Resources Information Center

    Lane-Patrice, Libra A.

    2013-01-01

    More and more, critical thinking and writing skills are necessary and of prime significance. Stakeholders across the board are concerned that students are deficient in these vital areas. The purpose of this study was to examine how the employment of specific, targeted and explicit critical thinking and writing instruction could enhance the…

  4. A critical review of current nursing faculty practice.

    PubMed

    Sawyer, M J; Alexander, I M; Gordon, L; Juszczak, L J; Gilliss, C

    2000-12-01

    To critically examine the current literature on nursing faculty practice, using the National Organization of Nurse Practitioner Faculties (NONPF) Guidelines for Evaluation of Faculty Practice, and to examine faculty practice models' strengths, weaknesses, and barriers. Thirty-five articles describing models of faculty practice were identified through an exhaustive search on CINAHL and Medline. Two NONPF monographs on nursing faculty practice were used as guidelines for the critical review. Faculty practice has become an integral component of faculty-role expectations at many schools of nursing. Workload, especially without adequate compensation, remains a hindrance to practice. The value of faculty practice time and expertise has not been sufficiently demonstrated. Integration of practitioner, educator and researcher roles remains extremely difficult and sometimes elusive. Faculty practice offers many advantages to schools of nursing, including educational and research opportunities for faculty and students, as well as practice sites and affordable community healthcare. Providing health care in the community presents an opportunity for independent and collaborative practice. To fully utilize the great research opportunities provided by faculty practice, more emphasis must be placed on gathering and analyzing descriptive data.

  5. Evidence from EXAFS for Different Ta/Ti Site Occupancy in High Critical Current Density Nb3Sn Superconductor Wires.

    PubMed

    Heald, Steve M; Tarantini, Chiara; Lee, Peter J; Brown, Michael D; Sung, ZuHawn; Ghosh, Arup K; Larbalestier, David C

    2018-03-19

    To meet critical current density, J c , targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3 Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed Extended X-ray Absorption Fine Structure (EXAFS) to determine the lattice site location of dopants in modern high-performance Nb 3 Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.

  6. Evidence from EXAFS for Different Ta/Ti Site Occupancy in High Critical Current Density Nb 3Sn Superconductor Wires

    DOE PAGES

    Heald, Steve M.; Tarantini, Chiara; Lee, Peter J.; ...

    2018-03-19

    To meet critical current density, Jc, targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed EXAFS to determinemore » the lattice site location of dopants in modern high-performance Nb 3Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.« less

  7. Evidence from EXAFS for Different Ta/Ti Site Occupancy in High Critical Current Density Nb 3Sn Superconductor Wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heald, Steve M.; Tarantini, Chiara; Lee, Peter J.

    To meet critical current density, Jc, targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed EXAFS to determinemore » the lattice site location of dopants in modern high-performance Nb 3Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.« less

  8. Dependence of transition width on current and critical current in transition-edge sensors

    NASA Astrophysics Data System (ADS)

    Morgan, K. M.; Pappas, C. G.; Bennett, D. A.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Swetz, D. S.

    2017-05-01

    In superconducting transition-edge sensor X-ray detectors, we observe that as the thermal conductance (G) to the heat bath increases, the resistive transition broadens. Consequently, the sensitivity of films to deposited energy worsens. Using a two-fluid model for the superconducting-to-normal transition in a thin film, we show that this broadening can be attributed to the larger current (I0) necessary for biasing the film at a given point in the transition for higher-G devices, resulting in a higher Ic0/I0 ratio (Ic0 is the film's critical current at zero temperature). To recover a sharper transition, we fabricated rectangular films with varying numbers of internal normal-metal structures while keeping G constant, allowing the independent variation of both I0 and Ic0. We show that it is possible to manipulate the transition width and G independently, thus enabling fast thermal sensors with an excellent energy resolution.

  9. Using a kinesthetic learning strategy to engage nursing student thinking, enhance retention, and improve critical thinking.

    PubMed

    Wagner, Elissa A

    2014-06-01

    This article reports the outcomes of a kinesthetic learning strategy used during a cardiac lecture to engage students and to improve the use of classroom-acquired knowledge in today's challenging clinical settings. Nurse educators are constantly faced with finding new ways to engage students, stimulate critical thinking, and improve clinical application in a rapidly changing and complex health care system. Educators who deviate from the traditional pedagogy of didactic, content-driven teaching to a concept-based, student-centered approach using active and kinesthetic learning activities can enhance engagement and improve clinical problem solving, communication skills, and critical thinking to provide graduates with the tools necessary to be successful. The goals of this learning activity were to decrease the well-known classroom-clinical gap by enhancing engagement, providing deeper understanding of cardiac function and disorders, enhancing critical thinking, and improving clinical application. Copyright 2014, SLACK Incorporated.

  10. Current anti-doping policy: a critical appraisal

    PubMed Central

    Kayser, Bengt; Mauron, Alexandre; Miah, Andy

    2007-01-01

    Background Current anti-doping in competitive sports is advocated for reasons of fair-play and concern for the athlete's health. With the inception of the World Anti Doping Agency (WADA), anti-doping effort has been considerably intensified. Resources invested in anti-doping are rising steeply and increasingly involve public funding. Most of the effort concerns elite athletes with much less impact on amateur sports and the general public. Discussion We review this recent development of increasingly severe anti-doping control measures and find them based on questionable ethical grounds. The ethical foundation of the war on doping consists of largely unsubstantiated assumptions about fairness in sports and the concept of a "level playing field". Moreover, it relies on dubious claims about the protection of an athlete's health and the value of the essentialist view that sports achievements reflect natural capacities. In addition, costly antidoping efforts in elite competitive sports concern only a small fraction of the population. From a public health perspective this is problematic since the high prevalence of uncontrolled, medically unsupervised doping practiced in amateur sports and doping-like behaviour in the general population (substance use for performance enhancement outside sport) exposes greater numbers of people to potential harm. In addition, anti-doping has pushed doping and doping-like behaviour underground, thus fostering dangerous practices such as sharing needles for injection. Finally, we argue that the involvement of the medical profession in doping and anti-doping challenges the principles of non-maleficience and of privacy protection. As such, current anti-doping measures potentially introduce problems of greater impact than are solved, and place physicians working with athletes or in anti-doping settings in an ethically difficult position. In response, we argue on behalf of enhancement practices in sports within a framework of medical supervision

  11. Enhanced critical-current in P-doped BaFe2As2 thin films on metal substrates arising from poorly aligned grain boundaries.

    PubMed

    Sato, Hikaru; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2016-11-11

    Thin films of the iron-based superconductor BaFe 2 (As 1-x P x ) 2 (Ba122:P) were fabricated on polycrystalline metal-tape substrates with two kinds of in-plane grain boundary alignments (well aligned (4°) and poorly aligned (8°)) by pulsed laser deposition. The poorly aligned substrate is not applicable to cuprate-coated conductors because the in-plane alignment >4° results in exponential decay of the critical current density (J c ). The Ba122:P film exhibited higher J c at 4 K when grown on the poorly aligned substrate than on the well-aligned substrate even though the crystallinity was poorer. It was revealed that the misorientation angles of the poorly aligned samples were less than 6°, which are less than the critical angle of an iron-based superconductor, cobalt-doped BaFe 2 As 2 (~9°), and the observed strong pinning in the Ba122:P is attributed to the high-density grain boundaries with the misorientation angles smaller than the critical angle. This result reveals a distinct advantage over cuprate-coated conductors because well-aligned metal-tape substrates are not necessary for practical applications of the iron-based superconductors.

  12. Effectiveness of past and current critical incident analysis on reflective learning and practice change.

    PubMed

    Vachon, Brigitte; LeBlanc, Jeannette

    2011-09-01

    Critical incident analysis (CIA) is one of the strategies frequently used to facilitate reflective learning. It involves the thorough description and analysis of an authentic and experienced event within its specific context. However, CIA has also been described as having the potential to expose vulnerabilities, threaten learners' coping mechanisms and increase rather than reduce their anxiety levels. The aim of this study was to compare the analysis of current critical incidents with that of past critical incidents, and to further explore why and how the former is more conducive to reflective learning and practice change than the latter. A collaborative research study was conducted. Eight occupational therapists were recruited to participate in a reflective learning group that convened for 12 meetings held over a 15-month period. The group facilitator planned and adapted the learning strategies to be used to promote reflective learning and guided the group process. Critical incident analysis represented the main activity carried out in the group discussions. The data collected were analysed using the grounded theory method. Three phenomena were found to differentiate between the learning contexts created by the analysis of, respectively, past and current critical incidents: attitudinal disposition; legitimacy of purpose, and the availability of opportunities for experimentation. Analysis of current clinical events was found to improve participants' motivation to self-evaluate, to increase their self-efficacy, and to help them transfer learning into action and to progressively self-regulate. The results of this collaborative research study suggest that the analysis of current clinical events in order to promote reflection offers a safer and more constructive learning environment than does the analysis of incidents that have occurred in the past. This learning strategy is directly grounded in health professional practice. The remaining challenge for continuing

  13. Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire

    NASA Astrophysics Data System (ADS)

    Clem, John R.

    2011-06-01

    I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Pérez-Rodríguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting (ρ∥) and flux flow (ρ⊥), and their ratio r=ρ∥/ρ⊥. When r<1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magnetic moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle ϕ. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density Jc(ϕ) that makes the vortex arc unstable.

  14. Critical thinking: Reported enhancers and barriers by nurses in long-term care: implications for staff development.

    PubMed

    Raterink, Ginger

    2011-01-01

    Nursing acknowledges critical thinking as an important guide to clinical decision making. Agreement on how to define, teach, and evaluate this skill is lacking. The purpose of this study was to evaluate critical thinking in practice using a survey that asked nurses to evaluate work-related factors that enhance or pose barriers to the use of critical thinking in practice. Results indicated that enhancers and barriers to practice included teamwork, staffing patterns, and staff and administrator support. A relationship with patients was the most satisfying factor, whereas paperwork was the least. Staff development educators must consider the work environment aspects that affect performance and create the life long learning needed for increased competency in practice.

  15. The transverse stress effect on the critical current of jelly-roll multifilamentary Nb sub 3 Al wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeritis, D.; Iwasa, Y.; Ando, T.

    This paper reports on experiments conducted to determine the effect of transverse compressive stress (TCS) on the critical current of jelly-roll multifilamentary Nb{sub 3}Al wire (0.8-mm dia.) for magnetic flux densities up to 12 T. For comparison, identical experiments were performed for bronze-process Ti-alloyed multifilamentary Nb{sub 3}Sn wire (1.0-mm dia.). Although the unstressed critical current density of Nb{sub 3}Al was inferior to that of (NbTi){sub 3}Sn at high fields, under applied TCS Nb{sub 3}Al exhibited less critical current degradation than (NbTi){sub 3}Sn. For example, at 12 T and 150 MPa, TCS-induced critical current degradation was approximately 20% for Nb{sub 3}Al,more » whereas it was approximately 65% for (NbTi){sub 3}Sn. There is optimism that Nb{sub 3}Al will evolve into a useful superconductor for large-scale, high-field applications.« less

  16. Analysis of critical thinking ability in direct current electrical problems solving

    NASA Astrophysics Data System (ADS)

    Hartono; Sunarno, Widha; Sarwanto; Arya Nugraha, Dewanta

    2017-11-01

    This study concern on analyzing the ability of students in critical thinking skills on the subject matter of direct current electricity. Samples were taken using purposive random sampling consisted of 32 students of grade XI, Multimedia 1, SMK Negeri 3 Surakarta in academic year 2016/2017. This study used descriptive quantitative method. The data were collected using tests and interviews regarding the subject matter of direct current electricity. Based on the results, students are getting some difficulties in solving problem in indicator 4. The average of students’ correct answer is 62.8%.

  17. The influence of winding direction of two-layer HTS DC cable on the critical current

    NASA Astrophysics Data System (ADS)

    Vyatkin, V. S.; Kashiwagi, K.; Ivanov, Y. V.; Otabe, E. S.; Yamaguchi, S.

    2017-09-01

    The design of twist pitch and direction of winding in multilayer HTS coaxial cable is important. For HTS AC transmitting cables, the main condition of twist pitch is the balance of inductances of each layer for providing the current balance between layers. In this work, the finite element method analysis for the coaxial cables with both same and opposite directions winding is used to calculate magnetic field distribution, and critical current of the cable is estimated. It was found that the critical current of the cable with same direction winding is about 10 percent higher than that in the case of the cable with the opposite direction winding.

  18. Enhancing Critical Reflection and Writing Skills in the HBSE Classroom and beyond

    ERIC Educational Resources Information Center

    Wiener, Diane R.

    2012-01-01

    Human Behavior in the Social Environment (HBSE) is an ideal location in which graduate social work students can enhance their critical reflection and writing skills while integrating social work theories with practice, research, and policy. A writing-intensive, learner-centered model using specific strategies is described via a framework of…

  19. Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clem, John R

    2011-02-17

    I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Pérez-Rodríguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting (ρ{sub ∥}) and flux flow (ρ{sub ⊥}), and their ratio r=ρ{sub ∥}/ρ{sub ⊥}. When r<1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magneticmore » moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle Φ. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density J{sub c}(Φ) that makes the vortex arc unstable.« less

  20. Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clem, John R.

    2011-02-17

    I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Perez-Rodriguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting ({rho}{parallel}) and flux flow ({rho}{perpendicular}), and their ratio r = {rho}{parallel}/{rho}{perpendicular}. When r < 1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magneticmore » moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle {phi}. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density J{sub c}({phi}) that makes the vortex arc unstable.« less

  1. Rapid doubling of the critical current of YBa 2Cu 3O 7-δ coated conductors for viable high-speed industrial processing

    DOE PAGES

    Leroux, M.; Kihlstrom, K. J.; Holleis, S.; ...

    2015-11-09

    Here, we demonstrate that 3.5-MeV oxygen irradiation can markedly enhance the in-field critical current of commercial second generation superconducting tapes with an exposure time of just 1 s per 0.8 cm 2. Furthermore we demonstrate how speed is now at the level required for an industrial reel-to-reel post-processing. The irradiation is made on production line samples through the protective silver coating and does not require any modification of the growth process. From TEM imaging, we identify small clusters as the main source of increased vortex pinning.

  2. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montierth, Leland M.

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element designmore » for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.« less

  3. Critical current density in wire drawn and hydrostatically extruded Nb-Ti superconductors

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Woollam, J. A.; Collings, E. W.

    1979-01-01

    Critical current studies have been made on copper-clad Nb-Ti composite wire prepared under area reductions of 100:1 and 10,000:1 by hydrostatic extrusion (HE), wire drawing and HE plus drawing. Comparative evaluation of the thermomechanical processing equivalent of HE was performed.

  4. What happens in Josephson junctions at high critical current densities

    NASA Astrophysics Data System (ADS)

    Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Caruso, R.; Galletti, L.; Montemurro, D.; Jouault, B.; Campagnano, G.; Arani, H. F.; Longobardi, L.; Parlato, L.; Pepe, G. P.; Rotoli, G.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.

    2017-07-01

    The impressive advances in material science and nanotechnology are more and more promoting the use of exotic barriers and/or superconductors, thus paving the way to new families of Josephson junctions. Semiconducting, ferromagnetic, topological insulator and graphene barriers are leading to unconventional and anomalous aspects of the Josephson coupling, which might be useful to respond to some issues on key problems of solid state physics. However, the complexity of the layout and of the competing physical processes occurring in the junctions is posing novel questions on the interpretation of their phenomenology. We classify some significant behaviors of hybrid and unconventional junctions in terms of their first imprinting, i.e., current-voltage curves, and propose a phenomenological approach to describe some features of junctions characterized by relatively high critical current densities Jc. Accurate arguments on the distribution of switching currents will provide quantitative criteria to understand physical processes occurring in high-Jc junctions. These notions are universal and apply to all kinds of junctions.

  5. ['I'm worthless' and other forms of self-criticism: Current knowledge and therapeutic interventions].

    PubMed

    Maillard, Pauline; Kramer, Ueli

    2015-01-01

    Self-criticism is considered as a harsh or punitive evaluation of the self. It is omnipresent in culture, in daily life as well as in psychotherapy. Self-criticism can lead to question oneself but can also open new perspectives and guide us. However, it can become excessive, rigid, and might turn out to be deleterious. This present article focuses on the concept of self-criticism in clinical psychology and psychotherapy and aims to review current knowledge about this topic. First, its definition and the reasons for its development in individuals will be presented. Second, a description of the links between self-criticism and psychopathology will be made, in particular regarding depression. Finally, the third part of this article will be dedicated to the therapeutic interventions that can reduce self-criticism.

  6. Critical consciousness: current status and future directions.

    PubMed

    Watts, Roderick J; Diemer, Matthew A; Voight, Adam M

    2011-01-01

    In this chapter, the authors consider Paulo Freire's construct of critical consciousness (CC) and why it deserves more attention in research and discourse on youth political and civic development. His approach to education and similar ideas by other scholars of liberation aims to foster a critical analysis of society--and one's status within it--using egalitarian, empowering, and interactive methods. The aim is social change as well as learning, which makes these ideas especially relevant to the structural injustice faced by marginalized youth. From their review of these ideas, the authors derive three core CC components: critical reflection, political efficacy, and critical action. They highlight promising research related to these constructs and innovative applied work including youth action-research methodology. Their conclusion offers ideas for closing some of the critical gaps in CC theory and research. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  7. Critical carbon input to maintain current soil organic carbon stocks in global wheat systems

    PubMed Central

    Wang, Guocheng; Luo, Zhongkui; Han, Pengfei; Chen, Huansheng; Xu, Jingjing

    2016-01-01

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1° × 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha−1 yr−1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content. PMID:26759192

  8. Advanced electrical current measurements of microdischarges: evidence of sub-critical pulses and ion currents in barrier discharge in air

    NASA Astrophysics Data System (ADS)

    Synek, Petr; Zemánek, Miroslav; Kudrle, Vít; Hoder, Tomáš

    2018-04-01

    Electrical current measurements in corona or barrier microdischarges are a challenge as they require both high temporal resolution and a large dynamic range of the current probe used. In this article, we apply a simple self-assembled current probe and compare it to commercial ones. An analysis in the time and frequency domain is carried out. Moreover, an improved methodology is presented, enabling both temporal resolution in sub-nanosecond times and current sensitivity in the order of tens of micro-amperes. Combining this methodology with a high-tech oscilloscope and self-developed software, a unique statistical analysis of currents in volume barrier discharge driven in atmospheric-pressure air is made for over 80 consecutive periods of a 15 kHz applied voltage. We reveal the presence of repetitive sub-critical current pulses and conclude that these can be identified with the discharging of surface charge microdomains. Moreover, extremely low, long-lasting microsecond currents were detected which are caused by ion flow, and are analysed in detail. The statistical behaviour presented gives deeper insight into the discharge physics of these usually undetectable current signals.

  9. Comparison between the magnetic and transport critical current densities in high critical current density melt-textured yttrium barium copper-oxide

    NASA Technical Reports Server (NTRS)

    Gao, L.; Meng, R. L.; Xue, Y. Y.; Hor, P. H.; Chu, C. W.

    1991-01-01

    Using a recently developed pulsed critical current density (Jc) measuring system, the Jc of the high-Jc melt-textured YBa2Cu3O(7-delta) (Y123) bulk samples has been determined. I-V curves with a voltage resolution of 0.5 microV were obtained, and transport Jc's along the a-b plane as high as 7.2 x 10 to the 4th A/sq cm were extracted. These results are comparable to the values obtained magnetically. On the other hand, transport Jc along the c axis were found to be two orders of magnitude smaller, even though the magnetic Jc along the c axis is only about five times smaller than Jc along the a-b plane. It is suggested that for the high-temperature superconducting materials which are highly anisotropic, caution should be taken when using the nontransport magnetic methods to determine Jc.

  10. Use of a Post-Asynchronous Online Discussion Assessment to Enhance Student Critical Thinking

    ERIC Educational Resources Information Center

    Klisc, Chris; McGill, Tanya; Hobbs, Valerie

    2017-01-01

    Asynchronous online discussion (AOD) is used in many tertiary education courses, and assessing it has been shown to enhance critical thinking outcomes. There has, however, been debate on what should be assessed and how the assessment should be implemented. The most common form of assessment involves grading the individual discussion contributions,…

  11. Temperature dependence of critical current and transport current losses of 4 mm YBCO coated conductors manufactured using nonmagnetic substrate

    NASA Astrophysics Data System (ADS)

    Kvitkovic, J.; Hatwar, R.; Pamidi, S. V.; Fleshler, S.; Thieme, C.

    2015-12-01

    The temperature dependence of the critical current and AC losses were measured on American Superconductor Corporation's (AMSC) second generation high temperature superconducting (2G HTS) wire produced by Rolling Assisted Biaxially Textured Substrate (RABiTS) and Metal Organic Deposition (MOD) process. Wires manufactured with two types of substrates were characterized. The magnetic substrate with composition Ni5a%W exhibits a magnetic signature and has non-negligible AC losses in AC power applications. A new nonmagnetic substrate with an alloy composition Ni9a%W has been developed by AMSC to address the AC losses in 2G HTS. The data presented show that the performance of the new conductor is identical to the conductor with magnetic substrate in terms of critical current density. The data on AC losses demonstrate the absence of ferromagnetic loss component in the new conductor and significantly reduced AC losses at low to moderate values of I/Ic. The reduced losses will translate into reduced capital costs and lower operating costs of superconducting electrical devices for AC applications.

  12. Developing measurement indices to enhance protection and resilience of critical infrastructure and key resources.

    PubMed

    Fisher, Ronald E; Norman, Michael

    2010-07-01

    The US Department of Homeland Security (DHS) is developing indices to better assist in the risk management of critical infrastructures. The first of these indices is the Protective Measures Index - a quantitative index that measures overall protection across component categories: physical security, security management, security force, information sharing, protective measures and dependencies. The Protective Measures Index, which can also be recalculated as the Vulnerability Index, is a way to compare differing protective measures (eg fence versus security training). The second of these indices is the Resilience Index, which assesses a site's resilience and consists of three primary components: robustness, resourcefulness and recovery. The third index is the Criticality Index, which assesses the importance of a facility. The Criticality Index includes economic, human, governance and mass evacuation impacts. The Protective Measures Index, Resilience Index and Criticality Index are being developed as part of the Enhanced Critical Infrastructure Protection initiative that DHS protective security advisers implement across the nation at critical facilities. This paper describes two core themes: determination of the vulnerability, resilience and criticality of a facility and comparison of the indices at different facilities.

  13. Critical Thinking Skills and Academic Maturity: Emerging Results from a Five-Year Quality Enhancement Plan (QEP) Study

    ERIC Educational Resources Information Center

    Toppin, Ian N.; Chitsonga, Shadreck

    2016-01-01

    The QEP that was implemented in this study focused on enhancing students' critical thinking skills. A pretest/posttest approach was used to assess students' critical thinking progress in freshman level core English and Math courses. An intervention was performed involving intensive instruction and assignments relating to a set of reasoning…

  14. Recalled peer relationship experiences and current levels of self-criticism and self-reassurance.

    PubMed

    Kopala-Sibley, Daniel C; Zuroff, David C; Leybman, Michelle J; Hope, Nora

    2013-03-01

    Numerous studies have shown that personality factors may increase or decrease individuals' vulnerability to depression, but little research has examined the role of peer relationships in the development of these factors. Accordingly, this study examined the role of recalled parenting and peer experiences in the development of self-criticism and self-reassurance. It was hypothesized that, controlling for recalled parenting behaviours, specific recalled experiences of peer relationships would be related to current levels of specific forms of self-criticism and self-reassurance. Hypotheses were tested using a retrospective design in which participants were asked to recall experiences of parenting and peer relationships during early adolescence. This age was chosen as early adolescence has been shown to be a critical time for the development of vulnerability to depression. A total of 103 female and 97 male young adults completed measures of recalled parenting, overt and relational victimization and prosocial behaviour by peers, and current levels of self-criticism and self-reassurance. Hierarchical regression analyses showed that parents and peers independently contributed to the development of self-criticism and self-reassurance. Specifically, controlling for parental care and control, overt victimization predicted self-hating self-criticism, relational victimization predicted inadequacy self-criticism, and prosocial behaviour predicted self-reassurance. As well, prosocial behaviour buffered the effect of overt victimization on self-reassurance. Findings highlight the importance of peers in the development of personality risk and resiliency factors for depression, and suggest avenues for interventions to prevent the development of depressive vulnerabilities in youth. The nature of a patient's personality vulnerability to depression may be better understood through a consideration of the patient's relationships with their peers as well as with parents during

  15. Criticality-Enhanced Magnetocaloric Effect in Quantum Spin Chain Material Copper Nitrate

    PubMed Central

    Xiang, Jun-Sen; Chen, Cong; Li, Wei; Sheng, Xian-Lei; Su, Na; Cheng, Zhao-Hua; Chen, Qiang; Chen, Zi-Yu

    2017-01-01

    In this work, a systematic study of Cu(NO3)2·2.5 H2O (copper nitrate hemipentahydrate, CN), an alternating Heisenberg antiferromagnetic chain model material, is performed with multi-technique approach including thermal tensor network (TTN) simulations, first-principles calculations, as well as magnetization measurements. Employing a cutting-edge TTN method developed in the present work, we verify the couplings J = 5.13 K, α = 0.23(1) and Landé factors g∥= 2.31, g⊥ = 2.14 in CN, with which the magnetothermal properties have been fitted strikingly well. Based on first-principles calculations, we reveal explicitly the spin chain scenario in CN by displaying the calculated electron density distributions, from which the distinct superexchange paths are visualized. On top of that, we investigated the magnetocaloric effect (MCE) in CN by calculating its isentropes and magnetic Grüneisen parameter. Prominent quantum criticality-enhanced MCE was uncovered near both critical fields of intermediate strengths as 2.87 and 4.08 T, respectively. We propose that CN is potentially a very promising quantum critical coolant. PMID:28294147

  16. The reduction of optimal heat treatment temperature and critical current density enhancement of ex situ processed MgB2 tapes using ball milled filling powder

    NASA Astrophysics Data System (ADS)

    Fujii, Hiroki; Iwanade, Akio; Kawada, Satoshi; Kitaguchi, Hitoshi

    2018-01-01

    The optimal heat treatment temperature (Topt) at which best performance in the critical current density (Jc) property at 4.2 K is obtained is influenced by the quality or reactivity of the filling powder in ex situ processed MgB2 tapes. Using a controlled fabrication process, the Topt decreases to 705-735 °C, which is lower than previously reported by more than 50 °C. The Topt decrease is effective to suppress both the decomposition of MgB2 and hence the formation of impurities such as MgB4, and the growth of crystallite size which decreases upper critical filed (Hc2). These bring about the Jc improvement and the Jc value at 4.2 K and 10 T reaches 250 A/mm2. The milling process also decreases the critical temperature (Tc) below 30 K. The milled powder is easily contaminated in air and thus, the Jc property of the contaminated tapes degrades severely. The contamination can raise the Topt by more than 50 °C, which is probably due to the increased sintering temperature required against contaminated surface layer around the grains acting as a barrier.

  17. Temperature Distribution and Critical Current of Long HTS Cables Cooled with Subcooled Liquid Nitrogen

    NASA Astrophysics Data System (ADS)

    Vyatkin, V. S.; Ivanov, Y. V.; Watanabe, H.; Chikumoto, N.; Yamaguchi, S.

    2017-07-01

    Cooling of the long HTS power transmission lines performs by pumping of subcooled liquid nitrogen (LN2) along the cable. The temperature of LN2 along the cable increases due to the heat losses of the cryostat and heat generation in the HTS cable. The experiment using test cable line in Ishikari shows that flow rate of 35 L/min retains increasing of LN2 temperature by 1 K per 1 km of length. The technology when the back flow of LN2 cools the radiation shield surrounding the cable pipe is also applied in Ishikari-2 project. In this case the ambient heat flow into cable pipe is 50 times less than that without radiation shield. Back flow of LN2 removes almost all heat coming from the environment. When transport current is close to the critical value the Joule heat of HTS cable is significant. This heat additionally increases the temperature of LN2 flowing along the HTS cable. Near the outlet the temperature of HTS cable is maximal and the local critical current is minimal. The current matching critical current criterion of average electrical field of E 0 = 10-4 V/m provides the voltage drop and significant Joule heat at the hot end of the cable. It can lead the damage of the cable. The present work contains analysis of temperature distribution along the cable and the way to achieve the fail-safe operation of long HTS cable cooled by subcooled LN2. We also performed extrapolation of obtained results for several times longer cable lines by decreasing the LN2 flow rate.

  18. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    DOE PAGES

    Lemery, F.; Piot, P.

    2015-08-03

    Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less

  19. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, F.; Piot, P.

    Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less

  20. Superconductivity, critical current density, and flux pinning in MgB2-x(SiC)x/2 superconductor after SiC nanoparticle doping

    NASA Astrophysics Data System (ADS)

    Dou, S. X.; Pan, A. V.; Zhou, S.; Ionescu, M.; Wang, X. L.; Horvat, J.; Liu, H. K.; Munroe, P. R.

    2003-08-01

    We investigated the effect of SiC nanoparticle doping on the crystal lattice structure, critical temperature Tc, critical current density Jc, and flux pinning in MgB2 superconductor. A series of MgB2-x(SiC)x/2 samples with x=0-1.0 were fabricated using an in situ reaction process. The contraction of the lattice and depression of Tc with increasing SiC doping level remained rather small most likely due to the counterbalancing effect of Si and C co-doping. The high level Si and C co-doping allowed the creation of intragrain defects and highly dispersed nanoinclusions within the grains which can act as effective pinning centers for vortices, improving Jc behavior as a function of the applied magnetic field. The enhanced pinning is mainly attributable to the substitution-induced defects and local structure fluctuations within grains. A pinning mechanism is proposed to account for different contributions of different defects in MgB2-x(SiC)x/2 superconductors.

  1. Contrast-enhanced endoscopic ultrasonography: advance and current status

    PubMed Central

    2014-01-01

    Endoscopic ultrasonography (EUS) technology has undergone a great deal of progress along with the color and power Doppler imaging, three-dimensional imaging, electronic scanning, tissue harmonic imaging, and elastography, and one of the most important developments is the ability to acquire contrast-enhanced images. The blood flow in small vessels and the parenchymal microvasculature of the target lesion can be observed non-invasively by contrast-enhanced EUS (CE-EUS). Through a hemodynamic analysis, CE-EUS permits the diagnosis of various gastrointestinal diseases and differential diagnoses between benign and malignant tumors. Recently, mechanical innovations and the development of contrast agents have increased the use of CE-EUS in the diagnostic field, as well as for the assessment of the efficacy of therapeutic agents. The advances in and the current status of CE-EUS are discussed in this review. PMID:25038805

  2. Majorana splitting from critical currents in Josephson junctions

    NASA Astrophysics Data System (ADS)

    Cayao, Jorge; San-Jose, Pablo; Black-Schaffer, Annica M.; Aguado, Ramón; Prada, Elsa

    2017-11-01

    A semiconducting nanowire with strong Rashba spin-orbit coupling and coupled to a superconductor can be tuned by an external Zeeman field into a topological phase with Majorana zero modes. Here we theoretically investigate how this exotic topological superconductor phase manifests in Josephson junctions based on such proximitized nanowires. In particular, we focus on critical currents in the short junction limit (LN≪ξ , where LN is the junction length and ξ is the superconducting coherence length) and show that they contain important information about nontrivial topology and Majoranas. This includes signatures of the gap inversion at the topological transition and a unique oscillatory pattern that originates from Majorana interference. Interestingly, this pattern can be modified by tuning the transmission across the junction, thus providing complementary evidence of Majoranas and their energy splittings beyond standard tunnel spectroscopy experiments, while offering further tunability by virtue of the Josephson effect.

  3. Critical current and flux dynamics in Ag-doped FeSe superconductor

    NASA Astrophysics Data System (ADS)

    Galluzzi, A.; Polichetti, M.; Buchkov, K.; Nazarova, E.; Mancusi, D.; Pace, S.

    2017-02-01

    The measurements of DC magnetization as a function of the temperature M(T), magnetic field M(H), and time M(t) have been performed in order to compare the superconducting and pinning properties of an undoped FeSe0.94 sample and a silver doped FeSe0.94 + 6 wt% Ag sample. The M(T) curves indicate an improvement of the superconducting critical temperature and a reduction of the non-superconducting phase Fe7Se8 due to the silver doping. This is confirmed by the field and temperature dependent critical current density Jc(H,T) extracted from the superconducting hysteresis loops at different temperatures within the Bean critical state model. Moreover, the combined analysis of the Jc(T) and of the pinning force Fp(H/Hirr) indicate that the pinning mechanisms in both samples can be described in the framework of the collective pinning theory. The U*(T, J) curves show a pinning crossover from an elastic creep regime of intermediate size flux bundles, for low temperatures, to a plastic creep regime at higher temperatures for both the samples. Finally, the vortex hopping attempt time has been evaluated for both samples and the results are comparable with the values reported in the literature for high Tc materials.

  4. Enactment controversies: a critical review of current debates.

    PubMed

    Ivey, Gavin

    2008-02-01

    This critical review of the current disputes concerning countertransference enactment systematically outlines the various issues and the perspectives adopted by the relevant psychoanalytic authors. In the light of this the 'common ground ' hypothesis concerning the unifying influence of contemporary countertransference theory is challenged. While the existence of enactments, minimally defined as the analyst's inadvertent actualization of the patient's transference fantasies, is widely accepted, controversies regarding the specific scope, nature, prevalence, relationship to countertransference experience, impact on the analytic process, role played by the analyst's subjectivity, and the correct handling of enactments abound. Rather than taking a stand based on ideological allegiance to any particular psychoanalytic school or philosophical position, the author argues that the relative merits of contending perspectives is best evaluated with reference to close process scrutiny of the context, manifestation and impact of specific enactments on patients' intrapsychic functioning and the analytic relationship. A detailed account of an interpretative enactment provides a context for the author's position on these debates.

  5. Critical Consciousness: Current Status and Future Directions

    ERIC Educational Resources Information Center

    Watts, Roderick J.; Diemer, Matthew A.; Voight, Adam M.

    2011-01-01

    In this chapter, the authors consider Paulo Freire's construct of critical consciousness (CC) and why it deserves more attention in research and discourse on youth political and civic development. His approach to education and similar ideas by other scholars of liberation aims to foster a critical analysis of society--and one's status within…

  6. Enhancing students’ critical thinking skills through critical thinking assessment in calculus course

    NASA Astrophysics Data System (ADS)

    Zulfaneti; Edriati, S.; Mukhni

    2018-01-01

    This study aims to determine the development of students’ critical thinking skills through the implementation of critical thinking instruments in Calculus lectures. The instruments consist of observation sheets, critical thinking test, self-assessment, peer assessment and portfolio. The research was a qualitative research; with the participants were 53 first-year students who take Integral Calculus in Mathematics Education Department STKIP PGRI Sumatera Barat representing high-ability students, medium and low. The data in this study were collected by tests, interviews, observations and field notes. Data were analyzed descriptively; data reduction, data presentation, and conclusions. For testing the validity of data, it was used credibility test data by increasing persistence and triangulation. The results showed that in high-level students there is a change of ability from Critical enough to be Very Critical, in the students with moderate and low ability there is a change of ability from Uncritical to Critical. So it can be concluded that the assessment instruments have a good contribution and can improve the ability of critical thinking.

  7. Controlled enhancement of spin-current emission by three-magnon splitting.

    PubMed

    Kurebayashi, Hidekazu; Dzyapko, Oleksandr; Demidov, Vladislav E; Fang, Dong; Ferguson, A J; Demokritov, Sergej O

    2011-07-03

    Spin currents--the flow of angular momentum without the simultaneous transfer of electrical charge--play an enabling role in the field of spintronics. Unlike the charge current, the spin current is not a conservative quantity within the conduction carrier system. This is due to the presence of the spin-orbit interaction that couples the spin of the carriers to angular momentum in the lattice. This spin-lattice coupling acts also as the source of damping in magnetic materials, where the precessing magnetic moment experiences a torque towards its equilibrium orientation; the excess angular momentum in the magnetic subsystem flows into the lattice. Here we show that this flow can be reversed by the three-magnon splitting process and experimentally achieve the enhancement of the spin current emitted by the interacting spin waves. This mechanism triggers angular momentum transfer from the lattice to the magnetic subsystem and modifies the spin-current emission. The finding illustrates the importance of magnon-magnon interactions for developing spin-current based electronics.

  8. Converging technologies: a critical analysis of cognitive enhancement for public policy application.

    PubMed

    Makridis, Christos

    2013-09-01

    This paper investigates cognitive enhancement, specifically biological cognitive enhancement (BCE), as a converging technology, and its implications for public policy. With an increasing rate of technological advancements, the legal, social, and economic frameworks lag behind the scientific advancements that they support. This lag poses significant challenges for policymakers if it is not dealt with sufficiently within the right analytical context. Therefore, the driving question behind this paper is, "What contingencies inform the advancement of biological cognitive enhancement, and what would society look like under this set of assumptions?" The paper is divided into five components: (1) defining the current policy context for BCEs, (2) analyzing the current social and economic outcomes to BCEs, (3) investigating the context of cost-benefit arguments in relation to BCEs, (4) proposing an analytical model for evaluating contingencies for BCE development, and (5) evaluating a simulated policy, social, technological, and economic context given the contingencies. In order to manage the risk and uncertainty inherent in technological change, BCEs' drivers must be scrutinized and evaluated.

  9. Remarkably enhanced current-driven 360° domain wall motion in nanostripe by tuning in-plane biaxial anisotropy.

    PubMed

    Su, Yuanchang; Weng, Lianghao; Dong, Wenjun; Xi, Bin; Xiong, Rui; Hu, Jingguo

    2017-10-17

    By micromagnetic simulations, we study the current-driven 360° domain wall (360DW) motion in ferromagnetic nanostripe with an in-plane biaxial anisotropy. We observe the critical annihilation current of 360° domain wall can be enhanced through such a type of anisotropy, the reason of which is the suppression of out-of-plane magnetic moments generated simultaneously with domain-wall motion. In details, We have found that the domain-wall width is only related to K y  - K x , with K x(y) the anisotropy constant in x(y) direction. Taking domain-wall width into consideration, a prior choice is to keep K y  ≈ K x with large enough K. The mode of domain-wall motion has been investigated as well. The traveling-wave-motion region increases with K, while the average DW velocity is almost unchanged. Another noteworthy feature is that a Walker-breakdown-like motion exists before annihilation. In this region, though domain wall moves with an oscillating behavior, the average velocity does not reduce dramatically, but even rise again for a large K.

  10. Enhanced Laser-Driven Ion Acceleration by Superponderomotive Electrons Generated from Near-Critical-Density Plasma

    NASA Astrophysics Data System (ADS)

    Bin, J. H.; Yeung, M.; Gong, Z.; Wang, H. Y.; Kreuzer, C.; Zhou, M. L.; Streeter, M. J. V.; Foster, P. S.; Cousens, S.; Dromey, B.; Meyer-ter-Vehn, J.; Zepf, M.; Schreiber, J.

    2018-02-01

    We report on the experimental studies of laser driven ion acceleration from a double-layer target where a near-critical density target with a few-micron thickness is coated in front of a nanometer-thin diamondlike carbon foil. A significant enhancement of proton maximum energies from 12 to ˜30 MeV is observed when a relativistic laser pulse impinges on the double-layer target under linear polarization. We attributed the enhanced acceleration to superponderomotive electrons that were simultaneously measured in the experiments with energies far beyond the free-electron ponderomotive limit. Our interpretation is supported by two-dimensional simulation results.

  11. Enhanced magnetocaloric properties and critical behavior of (Fe0.72Cr0.28)3Al alloys for near room temperature cooling

    NASA Astrophysics Data System (ADS)

    Sharma, V.; Maheshwar Repaka, D. V.; Chaudhary, V.; Ramanujan, R. V.

    2017-04-01

    Magnetic cooling is an environmentally friendly, energy efficient, thermal management technology relying on high performance magnetocaloric materials (MCM). Current research has focused on low cost, corrosion resistant, rare earth (RE) free MCMs. We report the structural and magnetocaloric properties of novel, low cost, RE free, iron based (Fe0.72Cr0.28)3Al alloys. The arc melted buttons and melt spun ribbons possessed the L21 crystal structure and B2 crystal structure, respectively. A notable enhancement of 33% in isothermal entropy change (-ΔS m) and 25% increase in relative cooling power (RCP) for the ribbons compared to the buttons can be attributed to higher structural disorder in the Fe-Cr and Fe-Al sub-lattices of the B2 structure. The critical behavior was investigated using modified Arrott plots, the Kouvel-Fisher plot and the critical isotherm technique; the critical exponents were found to correspond to the short-range order 3D Heisenberg model. The field and temperature dependent magnetization curves of (Fe0.72Cr0.28)3Al alloys revealed their soft magnetic nature with negligible hysteresis. Thus, these alloys possess promising performance attributes for near room temperature magnetic cooling applications.

  12. Individual and collective processes in the construction of the self: self-enhancement in the United States and self-criticism in Japan.

    PubMed

    Kitayama, S; Markus, H R; Matsumoto, H; Norasakkunkit, V

    1997-06-01

    A collective constructionist theory of the self proposes that many psychological processes, including enhancement of the self (pervasive in the United States) and criticism and subsequent improvement of the self (widespread in Japan), result from and support the very ways in which social acts and situations are collectively defined and subjectively experienced in the respective cultural contexts. In support of the theory, 2 studies showed, first, that American situations are relatively conducive to self-enhancement and American people are relatively likely to engage in self-enhancement and, second, that Japanese situations are relatively conducive to self-criticism and Japanese people are relatively likely to engage in self-criticism. Implications are discussed for the collective construction of psychological processes implicated in the self and, more generally, for the mutual constitution of culture and the self.

  13. A Teacher Action Research Study: Enhancing Student Critical Thinking Knowledge, Skills, Dispositions, Application and Transfer in a Higher Education Technology Course

    ERIC Educational Resources Information Center

    Phelan, Jack Gordon

    2012-01-01

    This study examined the effects of a critical thinking instructional intervention in a higher education technology course with the purpose of determining the extent to which the intervention enhanced student critical thinking knowledge, skills, dispositions, application and transfer abilities. Historically, critical thinking has been considered…

  14. Low frequency critical current noise and two level system defects in Josephson junctions

    NASA Astrophysics Data System (ADS)

    Nugroho, Christopher Daniel

    The critical current in a Josephson junction is known to exhibit a 1/falpha low frequency noise. Implemented as a superconducting qubit, this low frequency noise can lead to decoherence. While the 1/f noise has been known to arise from an ensemble of two level systems connected to the tunnel barrier, the precise microscopic nature of these TLSs remain a mystery. In this thesis we will present measurements of the 1/f alpha low frequency noise in the critical current and tunneling resistance of Al-AlOx-Al Josephson junctions. Measurements in a wide range of resistively shunted and unshunted junctions confirm the equality of critical current and tunneling resistance noise. That is the critical current fluctuation corresponds to fluctuations of the tunneling resistance. In not too small Al-AlOx-Al junctions we have found that the fractional power spectral density scales linearly with temperature. We confirmed that the 1/falpha power spectrum is the result of a large number of two level systems modulating the tunneling resistance. At small junction areas and low temperatures, the number of thermally active TLSs is insufficient to integrate out a featureless 1/ f spectral shape. By analyzing the spectral variance in small junction areas, we have been able to deduce the TLS defect density, n ≈ 2.53 per micrometer squared per Kelvin spread in the TLS energy per factor e in the TLS lifetimes. This density is consistent with the density of tunneling TLSs found in glassy insulators, as well as the density deduced from coherent TLSs interacting at qubit frequencies. The deduced TLS density combined with the magnitude of the 1/f power spectral density in large area junctions, gives an average TLS effective area, A ˜ 0.3 nanometer squared. In ultra small tunnel junctions, we have studied the time-domain dynamics of isolated TLSs. We have found a TLS whose dynamics is described by the quantum tunneling between the two localized wells, and a one-phonon absorption

  15. Correlations between critical current density, j(sub c), critical temperature, T(sub c),and structural quality of Y1B2Cu3O(7-x) thin superconducting films

    NASA Technical Reports Server (NTRS)

    Chrzanowski, J.; Xing, W. B.; Atlan, D.; Irwin, J. C.; Heinrich, B.; Cragg, R. A.; Zhou, H.; Angus, V.; Habib, F.; Fife, A. A.

    1995-01-01

    Correlations between critical current density (j(sub c)) critical temperature (T(sub c)) and the density of edge dislocations and nonuniform strain have been observed in YBCO thin films deposited by pulsed laser ablation on (001) LaAlO3 single crystals. Distinct maxima in j(sub c) as a function of the linewidths of the (00 l) Bragg reflections and as a function of the mosaic spread have been found in the epitaxial films. These maxima in j(sub c) indicate that the magnetic flux lines, in films of structural quality approachingthat of single crystals, are insufficiently pinned which results in a decreased critical current density. T(sub c) increased monotonically with improving crystalline quality and approached a value characteristic of a pure single crystal. A strong correlation between j(sub c) and the density of edge dislocations ND was found. At the maximum of the critical current density the density of edge dislocations was estimated to be N(sub D) approximately 1-2 x 10(exp 9)/sq cm.

  16. Managing to enhance soil health

    USDA-ARS?s Scientific Manuscript database

    Healthy soils are critical for meeting current and future societal demands. Management strategies that protect the soil against erosion, build soil organic matter and promote nutrient cycling are ways to enhance soil health. Keeping soils covered and judicious use of agrochemicals are akin to us “hu...

  17. Intracardiac Origin of Heart Rate Variability, Pacemaker Funny Current and their Possible Association with Critical Illness

    PubMed Central

    Papaioannou, Vasilios E; Verkerk, Arie O; Amin, Ahmed S; de Bakker, Jaques MT

    2013-01-01

    Heart rate variability (HRV) is an indirect estimator of autonomic modulation of heart rate and is considered a risk marker in critical illness, particularly in heart failure and severe sepsis. A reduced HRV has been found in critically ill patients and has been associated with neuro-autonomic uncoupling or decreased baroreflex sensitivity. However, results from human and animal experimental studies indicate that intracardiac mechanisms might also be responsible for interbeat fluctuations. These studies have demonstrated that different membrane channel proteins and especially the so-called ‘funny’ current (If), an hyperpolarization-activated, inward current that drives diastolic depolarization resulting in spontaneous activity in cardiac pacemaker cells, are altered during critical illness. Furthermore, membrane channels kinetics seem to have significant impact upon HRV, whose early decrease might reflect a cellular metabolic stress. In this review article we present research findings regarding intracardiac origin of HRV, at the cellular level and in both isolated sinoatrial node and whole ex vivo heart preparations. In addition, we will review results from various experimental studies that support the interrelation between If and HRV during endotoxemia. We suggest that reduced HRV during sepsis could also be associated with altered pacemaker cell membrane properties, due to ionic current remodeling. PMID:22920474

  18. An exponential scaling law for the strain dependence of the Nb3Sn critical current density

    NASA Astrophysics Data System (ADS)

    Bordini, B.; Alknes, P.; Bottura, L.; Rossi, L.; Valentinis, D.

    2013-07-01

    The critical current density of the Nb3Sn superconductor is strongly dependent on the strain applied to the material. In order to investigate this dependence, it is a common practice to measure the critical current of Nb3Sn strands for different values of applied axial strain. In the literature, several models have been proposed to describe these experimental data in the reversible strain region. All these models are capable of fitting the measurement results in the strain region where data are collected, but tend to predict unphysical trends outside the range of data, and especially for large strain values. In this paper we present a model of a new strain function, together with the results obtained by applying the new scaling law on relevant datasets. The data analyzed consisted of the critical current measurements at 4.2 K that were carried out under applied axial strain at Durham University and the University of Geneva on different strand types. With respect to the previous models proposed, the new scaling function does not present problems at large strain values, has a lower number of fitting parameters (only two instead of three or four), and is very stable, so that, starting from few experimental points, it can estimate quite accurately the strand behavior in a strain region where there are no data. A relationship is shown between the proposed strain function and the elastic strain energy, and an analogy is drawn with the exponential form of the McMillan equation for the critical temperature.

  19. [Team approaches to critical bleeding (massive bleeding and transfusion) - chairmen's introductory remarks. Questionnaire survey on current status of hospital clinical laboratories evaluating critical hemorrhage].

    PubMed

    Kino, Shuichi; Suwabe, Akira

    2014-12-01

    In 2007, "the Guidelines for Actions against Intraoperative Critical Hemorrhage" were established by the Japanese Society of Anaesthesiologists and the Japanese Society of Blood transfusion and Cell Therapy. The documentation of in-hospital procedures for critical hemorrhage, especially about how to select RBC units, has widely standardized hospital practice. Patients with intraoperative critical hemorrhage sometimes suffer from massive blood loss. In this situation, some patients develop coagulopathy. To treat them, we need to evaluate their coagulation status based on laboratory test results. So, we performed a nationwide questionnaire survey on the current status of hospital clinical laboratories evaluating critical hemorrhage. From the results of this survey, it was recommended that central hospital laboratories should try to reduce the turn-around time required to test for coagulation parameters as much as possible for appropriate substitution therapy. (Review).

  20. Enhanced critical current in superconducting FeSe0.5Te0.5 films at all magnetic field orientations by scalable gold ion irradiation

    NASA Astrophysics Data System (ADS)

    Ozaki, Toshinori; Wu, Lijun; Zhang, Cheng; Si, Weidong; Jie, Qing; Li, Qiang

    2018-07-01

    The loss-less electrical current-carrying capability of type II superconductors, measured by the critical current density J c, can be increased by engineering desirable defects in superconductors to pin the magnetic vortices. Here, we demonstrate that such desirable defects can be created in superconducting FeSe0.5Te0.5 films by 6 MeV Au-ions irradiations that produce cluster-like defects with sizes of 10-15 nm over the entire film. The pristine FeSe0.5Te0.5 film exhibits a low anisotropy in the angular dependence of J c. A clear improvement in the J c is observed upon Au-ion irradiation for all field orientations at 4.2 K. Furthermore, a nearly 70% increase in J c is observed at a magnetic field of 9 T applied parallel to the crystallographic c-axis at 10 K with little reduction of the superconducting transition temperature T c. Our studies show that a dose of 1 × 1012 Au cm-2 irradiation at a few MeV is sufficient in order to provide a strong isotropic pinning defect landscape in iron-based superconducting films.

  1. Enhanced critical current in superconducting FeSe 0.5 Te 0.5 films at all magnetic field orientations by scalable gold ion irradiation

    DOE PAGES

    Ozaki, Toshinori; Wu, Lijun; Zhang, Cheng; ...

    2018-01-17

    The loss-less electrical current-carrying capability of type II superconductors, measured by the critical current density J c, can be increased by engineering desirable defects in superconductors to pin the magnetic vortices. Here, we demonstrate that such desirable defects can be created in superconducting FeSe 0.5Te 0.5 films by 6 MeV Au-ions irradiations that produce cluster-like defects with sizes of 10–15 nm over the entire film. The pristine FeSe 0.5Te 0.5 film exhibits a low anisotropy in the angular dependence of J c. A clear improvement in the J c is observed upon Au-ion irradiation for all field orientations at 4.2more » K. Furthermore, a nearly 70% increase in J c is observed at a magnetic field of 9 T applied parallel to the crystallographic c-axis at 10 K with little reduction of the superconducting transition temperature T c. Our studies show that a dose of 1×10 12 Au cm –2 irradiation at a few MeV is sufficient in order to provide a strong isotropic pinning defect landscape in iron-based superconducting films.« less

  2. Enhanced critical current in superconducting FeSe 0.5 Te 0.5 films at all magnetic field orientations by scalable gold ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozaki, Toshinori; Wu, Lijun; Zhang, Cheng

    The loss-less electrical current-carrying capability of type II superconductors, measured by the critical current density J c, can be increased by engineering desirable defects in superconductors to pin the magnetic vortices. Here, we demonstrate that such desirable defects can be created in superconducting FeSe 0.5Te 0.5 films by 6 MeV Au-ions irradiations that produce cluster-like defects with sizes of 10–15 nm over the entire film. The pristine FeSe 0.5Te 0.5 film exhibits a low anisotropy in the angular dependence of J c. A clear improvement in the J c is observed upon Au-ion irradiation for all field orientations at 4.2more » K. Furthermore, a nearly 70% increase in J c is observed at a magnetic field of 9 T applied parallel to the crystallographic c-axis at 10 K with little reduction of the superconducting transition temperature T c. Our studies show that a dose of 1×10 12 Au cm –2 irradiation at a few MeV is sufficient in order to provide a strong isotropic pinning defect landscape in iron-based superconducting films.« less

  3. Significantly enhanced critical current density in nano-MgB2 grains rapidly formed at low temperature with homogeneous carbon doping

    NASA Astrophysics Data System (ADS)

    Liu, Yongchang; Lan, Feng; Ma, Zongqing; Chen, Ning; Li, Huijun; Barua, Shaon; Patel, Dipak; Shahriar, M.; Hossain, Al; Acar, S.; Kim, Jung Ho; Xue Dou, Shi

    2015-05-01

    High performance MgB2 bulks using carbon-coated amorphous boron as a boron precursor were fabricated by Cu-activated sintering at low temperature (600 °C, below the Mg melting point). Dense nano-MgB2 grains with a high level of homogeneous carbon doping were formed in these MgB2 samples. This type of microstructure can provide a stronger flux pinning force, together with depressed volatility and oxidation of Mg owing to the low-temperature Cu-activated sintering, leading to a significant improvement of critical current density (Jc) in the as-prepared samples. In particular, the value of Jc for the carbon-coated (Mg1.1B2)Cu0.05 sample prepared here is even above 1 × 105 A cm-2 at 20 K, 2 T. The results herein suggest that the combination of low-temperature Cu-activated sintering and employment of carbon-coated amorphous boron as a precursor could be a promising technique for the industrial production of practical MgB2 bulks or wires with excellent Jc, as the carbon-coated amorphous boron powder can be produced commercially at low cost, while the addition of Cu is very convenient and inexpensive.

  4. Technology-enhanced teacher development in rural Bangladesh: A critical realist evaluation of the context.

    PubMed

    Jamil, Md Golam

    2018-08-01

    This study arose in response to the complexity of implementing technology-enhanced learning for teacher development in a developing country. Bangladesh is a country with growing technological capacity including mobile phone network coverage, yet it faces vast challenges of utilising these facilities in the education sector. As educational change and technological innovation do not happen in a vacuum, the researcher used a critical realist approach to understand the layers of the rural Bangladesh context where technology-enhanced learning will take place. Findings have been drawn from survey data (n = 207) and a series of six focus group sessions with the same six stakeholders, informing future technology-enhanced teacher development programmes. The implications of the study are to suggest principles for pedagogical change and a methodological approach which attends to context. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Development of Critical Profilometers to Meet Current and Future NASA Composite Overwrapped Pressure Vessel (COPV) Inspection Needs

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor; Nichols, Charles

    2012-01-01

    This project is part of a multi-center effort to develop and validate critical NDE techniques which can be implemented into current and future NASA spacecraft COPV manufacturing processes. After decades of COPV development, manufacturing variance is still high and has necessitated higher safety factors and additional mass to be flown on spacecraft (reducing overall performance). Additionally, the NASA Engineering and Safety Center (NESC) indicated that nondestructive evaluation (NDE) was not adequately implemented during Shuttle and International Space Station (ISS) COPV manufacturing and provisions were not made for on-going structural integrity and health checks during the various spacecraft programs. This project helps to provide additional data needed to help address these issues. This project seeks to develop and install internal and external laser profilometers at COPV manufacturing facilities to provide data needed to improve COPV quality and consistency. This project also investigates other scanning techniques that will enhance the system to more completely meet manufacturing needs, thus transforming the profilometer into what has been termed the "Universal Manufacturing COPV Scanner".

  6. Method and composition for improving flux pinning and critical current in superconductors

    DOEpatents

    Morris, Donald E.

    1995-01-01

    Superconducting materials and methods of forming superconducting materials are disclosed. Highly oxidized superconductors are heated at a relatively high temperature so as to release oxygen, which migrates out of the material, and form a non-superconducting phase which does not diffuse out of grains of the material. The material is then reoxidized at a lower temperature, leaving the non-superconducting inclusions inside a superconducting phase. The non-superconducting inclusions act as pinning centers in the superconductor, increasing the critical current thereof.

  7. Method and composition for improving flux pinning and critical current in superconductors

    DOEpatents

    Morris, D.E.

    1995-07-04

    Superconducting materials and methods of forming superconducting materials are disclosed. Highly oxidized superconductors are heated at a relatively high temperature so as to release oxygen, which migrates out of the material, and form a non-superconducting phase which does not diffuse out of grains of the material. The material is then reoxidized at a lower temperature, leaving the non-superconducting inclusions inside a superconducting phase. The non-superconducting inclusions act as pinning centers in the superconductor, increasing the critical current thereof. 14 figs.

  8. Enhancing Working Memory Training with Transcranial Direct Current Stimulation.

    PubMed

    Au, Jacky; Katz, Benjamin; Buschkuehl, Martin; Bunarjo, Kimberly; Senger, Thea; Zabel, Chelsea; Jaeggi, Susanne M; Jonides, John

    2016-09-01

    Working memory (WM) is a fundamental cognitive ability that supports complex thought but is limited in capacity. Thus, WM training interventions have become very popular as a means of potentially improving WM-related skills. Another promising intervention that has gained increasing traction in recent years is transcranial direct current stimulation (tDCS), a noninvasive form of brain stimulation that can modulate cortical excitability and temporarily increase brain plasticity. As such, it has the potential to boost learning and enhance performance on cognitive tasks. This study assessed the efficacy of tDCS to supplement WM training. Sixty-two participants were randomized to receive either right prefrontal, left prefrontal, or sham stimulation with concurrent visuospatial WM training over the course of seven training sessions. Results showed that tDCS enhanced training performance, which was strikingly preserved several months after training completion. Furthermore, we observed stronger effects when tDCS was spaced over a weekend break relative to consecutive daily training, and we also demonstrated selective transfer in the right prefrontal group to nontrained tasks of visual and spatial WM. These findings shed light on how tDCS may be leveraged as a tool to enhance performance on WM-intensive learning tasks.

  9. Current clinical nutrition practices in critically ill patients in Latin America: a multinational observational study.

    PubMed

    Vallejo, Karin Papapietro; Martínez, Carolina Méndez; Matos Adames, Alfredo A; Fuchs-Tarlovsky, Vanessa; Nogales, Guillermo Carlos Contreras; Paz, Roger Enrique Riofrio; Perman, Mario Ignacio; Correia, Maria Isabel Toulson Davisson; Waitzberg, Dan Linetzky

    2017-08-25

    Malnutrition in critically ill adults in the intensive care unit (ICU) is associated with a significantly elevated risk of mortality. Adequate nutrition therapy is crucial to optimise outcomes. Currently, there is a paucity of such data in Latin America. Our aims were to characterise current clinical nutrition practices in the ICU setting in Latin America and evaluate whether current practices meet caloric and protein requirements in critically ill patients receiving nutrition therapy. We conducted a cross-sectional, retrospective, observational study in eight Latin American countries (Argentina, Brazil, Chile, Colombia, Ecuador, Mexico, Panama, and Peru). Eligible patients were critically ill adults hospitalised in the ICU and receiving enteral nutrition (EN) and/or parenteral nutrition (PN) on the Screening Day and the previous day (day -1). Caloric and protein balance on day -1, nutritional status, and prescribed nutrition therapy were recorded. Multivariable logistic regression analysis was performed to identify independent predictors of reaching daily caloric and protein targets. The analysis included 1053 patients from 116 hospitals. Evaluation of nutritional status showed that 74.1% of patients had suspected/moderate or severe malnutrition according to the Subjective Global Assessment. Prescribed nutrition therapy included EN alone (79.9%), PN alone (9.4%), and EN + PN (10.7%). Caloric intake met >90% of the daily target in 59.7% of patients on day -1; a caloric deficit was present in 40.3%, with a mean (±SD) daily caloric deficit of -688.8 ± 455.2 kcal. Multivariable logistic regression analysis showed that combined administration of EN + PN was associated with a statistically significant increase in the probability of meeting >90% of daily caloric and protein targets compared with EN alone (odds ratio, 1.56; 95% confidence interval, 1.02-2.39; p = 0.038). In the ICU setting in Latin America, malnutrition was highly prevalent and caloric

  10. Critical current scaling and the pivot-point in Nb3Sn strands

    NASA Astrophysics Data System (ADS)

    Tsui, Y.; Hampshire, D. P.

    2012-05-01

    Detailed measurements are provided of the engineering critical current density (Jc) and the index of transition (n-value) of two different types of advanced ITER Nb3Sn superconducting strand for fusion applications. The samples consist of one internal-tin strand (OST) and two bronze-route strands (BEAS I and BEAS II—reacted using different heat treatments). Tests on different sections of these wires show that prior to applying strain, Jc is homogeneous to better than 2% along the length of each strand. Jc data have been characterized as a function of magnetic field (B ≤ 14.5 T), temperature (4.2 K ≤ T ≤ 12 K) and applied axial strain ( - 1% ≤ ɛA ≤ 0.8%). Strain-cycling tests demonstrate that the variable strain Jc data are reversible to better than 2% when the applied axial strain is in the range of - 1% ≤ ɛA ≤ 0.5%. The wires are damaged when the intrinsic strain (ɛI) is ɛI ≥ 0.55% and ɛI ≥ 0.23% for the OST and BEAS strands, respectively. The strain dependences of the normalized Jc for each type of strand are similar to those of prototype strands of similar design measured in 2005 and 2008 to about 2% which makes them candidate strands for a round-robin interlaboratory comparison. The Jc data are described by Durham, ITER and Josephson-junction parameterizations to an accuracy of about 4%. For all of these scaling laws, the percentage difference between the data and the parameterization is larger when Jc is small, caused by high B, T or |ɛI|. The n-values can be described by a modified power law of the form n=1+r{I}_{{c}}^{s}, where r and s are approximately constant and Ic is the critical current. It has long been known that pivot-points (or cross-overs) in Jc occur at high magnetic field and temperature. Changing the magnetic field or temperature from one side of the pivot-point to the other changes the highest Jc sample to the lowest Jc sample and vice versa. The pivot-point follows the B-T phase boundary associated with the upper

  11. Enhancing Seasonal Water Outlooks: Needs and Opportunities in the Critical Runoff Season

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; Barsugli, J. J.; Yocum, H.; Stokes, M.; Miskus, D.

    2017-12-01

    The runoff season is a critical period for the management of water supply in the western U.S., where in many places over 70% of the annual runoff occurs in the snowmelt period. Managing not only the volume, but the intra-seasonal timing of the runoff is important for optimizing storage, as well as achieving other goals such as mitigating flood risk, and providing peak flows for riparian habitat management, for example, for endangered species. Western river forecast centers produce volume forecasts for western reservoirs that are key input into many water supply decisions, and also short term river forecasts out to 10 days. The early volume forecasts each year typically begin in December, and are updated throughout the winter and into the runoff season (April-July for many areas, but varies). This presentation will discuss opportunities for enhancing this existing suite of RFC water outlooks, including the needs for and potential use for "intraseasonal" products beyond those provided by the Ensemble Streamflow Prediction system and the volume forecasts. While precipitation outlooks have little skill for many areas and seasons, and may not contribute significantly to the outlook, late winter and spring temperature forecasts have meaningful skill in certain areas and sub-seasonal to seasonal time scales. This current skill in CPC temperature outlooks is an opportunity to translate these products into information about the snowpack and potential runoff timing, even where the skill in precipitation is low. Temperature is important for whether precipitation falls as snow or rain, which is critical for streamflow forecasts, especially in the melt season in snowpack-dependent watersheds. There is a need for better outlooks of the evolution of snowpack, conditions influencing the April-July runoff, and the timing of spring peak or shape of the spring hydrograph. The presentation will also discuss a our work with stakeholders of the River Forecast Centers and the NIDIS

  12. Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Yue, HUA; Jian, SONG; Zeyu, HAO; Chunsheng, REN

    2018-06-01

    Experimental results of a direct current enhanced inductively coupled plasma (DCE-ICP) source which consists of a typical cylindrical ICP source and a plate-to-grid DC electrode are reported. With the use of this new source, the plasma characteristic parameters, namely, electron density, electron temperature and plasma uniformity, are measured by Langmuir floating double probe. It is found that DC discharge enhances the electron density and decreases the electron temperature, dramatically. Moreover, the plasma uniformity is obviously improved with the operation of DC and radio frequency (RF) hybrid discharge. Furthermore, the nonlinear enhancement effect of electron density with DC + RF hybrid discharge is confirmed. The presented observation indicates that the DCE-ICP source provides an effective method to obtain high-density uniform plasma, which is desirable for practical industrial applications.

  13. Setting the Mood for Critical Thinking in the Classroom

    ERIC Educational Resources Information Center

    Lewine, Rich; Sommers, Alison; Waford, Rachel; Robertson, Catherine

    2015-01-01

    Most current efforts to enhance critical thinking focus on skills practice and training. The empirical research from the fields of cognition and affect sciences suggest that positive mood, even when transiently induced, can have beneficial effects on cognitive flexibility and problem solving. We undertook this study to test this hypothesis in a…

  14. Critical current density and third-harmonic voltage in superconducting films

    NASA Astrophysics Data System (ADS)

    Mawatari, Yasunori; Yamasaki, Hirofumi; Nakagawa, Yoshihiko

    2002-09-01

    When a sinusoidal drive current I0cos ωt flows in a small coil close to the surface of a superconducting film, third-harmonic voltage V3 cos(3ωt+θ3) is induced in the coil if the film causes a nonlinear response. We have developed an approximate theoretical method yielding the relationships among I0, V3, and θ3, thus providing the scientific basis for a widely used inductive method for measuring the critical current density Jc in large-area superconducting films. Our results show that V3 is near zero when I0 is smaller than a threshold value Ic0∝Jcd, where d is the film thickness. When I0>Ic0, on the other hand, the third-harmonic voltage is expressed as V3 exp(-iθ3)=ωIc0G(I0/Ic0), where G(x) is a scaling function determined by the configuration of the coil. We demonstrate the scaling law of V3/Ic0 vs I0/Ic0 in a YBa2Cu3O7-δ film.

  15. YBCO microbolometer operating below Tc - A modelization based on critical current-temperature dependence

    NASA Astrophysics Data System (ADS)

    Robbes, D.; Langlois, P.; Dolabdjian, C.; Bloyet, D.; Hamet, J. F.; Murray, H.

    1993-03-01

    Using careful measurements of the I-V curve of a YBCO thin-film microbridge under light irradiation at 780 nm and temperature close to 77 K, it is shown that the critical current versus temperature dependence is a good thermometer for estimating bolometric effects in the film. A novel dynamic voltage bias is introduced which directly gives the device current responsitivity and greatly reduces risks of thermal runaway. Detectivity is very low but it is predicted that a noise equivalent temperature of less than 10 exp -7 K/sq rt Hz would be achievable in a wide temperature range (10-80 K), which is an improvement over thermometry at the resistive transition.

  16. Field-dependent critical state of high-Tc superconducting strip simultaneously exposed to transport current and perpendicular magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Cun; He, An; Yong, Huadong

    We present an exact analytical approach for arbitrary field-dependent critical state of high-T{sub c} superconducting strip with transport current. The sheet current and flux-density profiles are derived by solving the integral equations, which agree with experiments quite well. For small transport current, the approximate explicit expressions of sheet current, flux-density and penetration depth for the Kim model are derived based on the mean value theorem for integration. We also extend the results to the field-dependent critical state of superconducting strip in the simultaneous presence of applied field and transport current. The sheet current distributions calculated by the Kim model agreemore » with experiments better than that by the Bean model. Moreover, the lines in the I{sub a}-B{sub a} plane for the Kim model are not monotonic, which is quite different from that the Bean model. The results reveal that the maximum transport current in thin superconducting strip will decrease with increasing applied field which vanishes for the Bean model. The results of this paper are useful to calculate ac susceptibility and ac loss.« less

  17. The critical particle size for enhancing thermal conductivity in metal nanoparticle-polymer composites

    NASA Astrophysics Data System (ADS)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2018-02-01

    Polymers used as thermal interface materials are often filled with high-thermal conductivity particles to enhance the thermal performance. Here, we have combined molecular dynamics and the two-temperature model in 1D to investigate the impact of the metal filler size on the overall thermal conductivity. A critical particle size has been identified above which thermal conductivity enhancement can be achieved, caused by the interplay between high particle thermal conductivity and the added electron-phonon and phonon-phonon thermal boundary resistance brought by the particle fillers. Calculations on the SAM/Au/SAM (self-assembly-monolayer) system show a critical thickness Lc of around 10.8 nm. Based on the results, we define an effective thermal conductivity and propose a new thermal circuit analysis approach for the sandwiched metal layer that can intuitively explain simulation and experimental data. The results show that when the metal layer thickness decreases to be much smaller than the electron-phonon cooling length (or as the "thin limit"), the effective thermal conductivity is just the phonon portion, and electrons do not participate in thermal transport. As the thickness increases to the "thick limit," the effective thermal conductivity recovers the metal bulk value. Several factors that could affect Lc are discussed, and it is discovered that the thermal conductivity, thermal boundary resistance, and the electron-phonon coupling factor are all important in controlling Lc.

  18. Enhancing Educators' Skills for Promoting Critical Thinking in Their Classroom Discourses: A Randomized Control Trial

    ERIC Educational Resources Information Center

    Gul, Raisa B.; Khan, Shehla; Ahmed, Azra; Cassum, Shanaz; Saeed, Tanveer; Parpio, Yasmin; Schopflocher, Donald; Profetto-McGrath, Joanne

    2014-01-01

    The literature reveals that educators find it challenging to foster critical thinking (CT) in their students if they have not learned how to use CT in their educational system or training. This paper reports findings from a national research project that was undertaken to enhance the educators' ability to promote CT in their teaching practices.…

  19. Global trends in critical values practices and their harmonization.

    PubMed

    Kost, Gerald J; Hale, Kristin N

    2011-02-01

    The objectives of this article were 1) to identify current trends in critical values practices in North America, Europe, and other regions; 2) to describe progress toward harmonization of critical limits; and 3) to synthesize strategies that will encourage global consensus. Critical limits are described in national surveys. Critical value practices are guided by federal statutes, The Joint Commission regulations, and accreditation requirements in the US; by provincial healthcare agencies in Canada; by thought leaders and ISO EN 15189:2007 in Europe; and in SE Asia, mostly by ad hoc policies lacking statutory grip. Review of databases, literature, websites, federal statutes, litigation, official policies, current affairs, and accreditation agency requirements. Practical strategies will accelerate harmonization of critical values practices, as follows: a) continue national and international survey comparisons; b) clarify age, ethnic, and subject dependencies; c) standardize qualitative and quantitative decision levels for urgent clinician notification; d) monitor compliance and timeliness for safety; and e) alert high frequencies of critical values related to adverse events. New expectations and communication technologies present opportunities for enhanced performance using wireless closed-loop reporting with recipient acknowledgment to reduce phone calls and improve efficiency. Hospitals worldwide can benefit from developing consensus for critical values practices.

  20. Dominant Majorana bound energy and critical current enhancement in ferromagnetic-superconducting topological insulator

    NASA Astrophysics Data System (ADS)

    Khezerlou, Maryam; Goudarzi, Hadi; Asgarifar, Samin

    2017-03-01

    Among the potential applications of topological insulators, we theoretically study the coexistence of proximity-induced ferromagnetic and superconducting orders in the surface states of a 3-dimensional topological insulator. The superconducting electron-hole excitations can be significantly affected by the magnetic order induced by a ferromagnet. In one hand, the surface state of the topological insulator, protected by the time-reversal symmetry, creates a spin-triplet and, on the other hand, magnetic order causes to renormalize the effective superconducting gap. We find Majorana mode energy along the ferromagnet/superconductor interface to sensitively depend on the magnitude of magnetization m zfs from superconductor region, and its slope around perpendicular incidence is steep with very low dependency on m zfs . The superconducting effective gap is renormalized by a factor η( m zfs ), and Andreev bound state in ferromagnet-superconductor/ferromagnet/ferromagnet-superconductor (FS/F/FS) Josephson junction is more sensitive to the magnitude of magnetizations of FS and F regions. In particular, we show that the presence of m zfs has a noticeable impact on the gap opening in Andreev bound state, which occurs in finite angle of incidence. This directly results in zero-energy Andreev state being dominant. By introducing the proper form of corresponding Dirac spinors for FS electron-hole states, we find that via the inclusion of m zfs , the Josephson supercurrent is enhanced and exhibits almost abrupt crossover curve, featuring the dominant zero-energy Majorana bound states.

  1. Influence of B4C-doping and high-energy ball milling on phase formation and critical current density of (Bi,Pb)-2223 HTS

    NASA Astrophysics Data System (ADS)

    Margiani, N. G.; Mumladze, G. A.; Adamia, Z. A.; Kuzanyan, A. S.; Zhghamadze, V. V.

    2018-05-01

    In this paper, the combined effects of B4C-doping and planetary ball milling on the phase evolution, microstructure and transport properties of Bi1.7Pb0.3Sr2Ca2Cu3Oy(B4C)x HTS with x = 0 ÷ 0.125 were studied through X-ray diffraction (XRD), scanning electron microscopy (SEM), resistivity and critical current density measurements. Obtained results have shown that B4C additive leads to the strong acceleration of high-Tc phase formation and substantial enhancement in Jc. High-energy ball milling seems to produce a more homogeneous distribution of refined doped particles in the (Bi,Pb)-2223 HTS which results in an improved intergranular flux pinning and better self-field Jc performance.

  2. Angular dependence of critical current density and magnetoresistance of sputtered high-T{sub c}-films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geerkens, A.; Frenck, H.J.; Ewert, S.

    1994-12-31

    The angular dependence of the critical current density and the magnetoresistance of high-T{sub c}-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle {Theta} between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the {Theta}-rotation plane is discussed.

  3. Angular dependence of critical current density and magnetoresistance of sputtered high-T(sub c)-films

    NASA Technical Reports Server (NTRS)

    Geerkens, A.; Meven, M.; Frenck, H.-J.; Ewert, S.

    1995-01-01

    The angular dependence of the critical current density and the magnetoresistance of high-T(sub c)-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle Theta between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the Theta-rotation plane is discussed.

  4. Energization of the Ring Current through Convection of Substorm Enhancements of the Plasma Sheet Source.

    NASA Astrophysics Data System (ADS)

    Menz, A.; Kistler, L. M.; Mouikis, C.; Spence, H. E.; Henderson, M. G.; Matsui, H.

    2017-12-01

    It has been shown that electric field strength and night-side plasma sheet density are the two best predictors of the adiabatic energy gain of the ring current during geomagnetic storms (Liemohn and Khazanov, 2005). While H+ dominates the ring current during quiet times, O+ can contribute substantially during geomagnetic storms. Substorm activity provides a mechanism to enhance the energy density of O+ in the plasma sheet during geomagnetic storms, which is then convected adiabatically into the inner-magnetosphere. Using the Van Allen Probes data in the the plasma sheet source region (defined as L>5.5 during storms) and the inner magnetosphere, along with LANL-GEO data to identify substorm injection times, we show that adiabatic convection of O+ enhancements in the source region can explain the observed enhancements in the inner magnetosphere. We use the UNH-IMEF electric field model to calculate drift times from the source region to the inner magnetosphere to test whether enhancements in the inner-magnetosphere can be explained by dipolarization driven enhancements in the plasma sheet source hours before.

  5. Beam current enhancement of microwave plasma ion source utilizing double-port rectangular cavity resonator.

    PubMed

    Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab; Yang, J J; Hwang, Y S

    2012-02-01

    Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profile of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.

  6. Beam current enhancement of microwave plasma ion source utilizing double-port rectangular cavity resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab

    2012-02-15

    Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profilemore » of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.« less

  7. Constructing vulnerabilty and protective measures indices for the enhanced critical infrastructure protection program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, R. E.; Buehring, W. A.; Whitfield, R. G.

    2009-10-14

    The US Department of Homeland Security (DHS) has directed its Protective Security Advisors (PSAs) to form partnerships with the owners and operators of assets most essential to the Nation's well being - a subclass of critical infrastructure and key resources (CIKR) - and to conduct site visits for these and other high-risk assets as part of the Enhanced Critical Infrastructure Protection (ECIP) Program. During each such visit, the PSA documents information about the facility's current CIKR protection posture and overall security awareness. The primary goals for ECIP site visits (DHS 2009) are to: (1) inform facility owners and operators ofmore » the importance of their facilities as an identified high-priority CIKR and the need to be vigilant in light of the ever-present threat of terrorism; (2) identify protective measures currently in place at these facilities, provide comparisons of CIKR protection postures across like assets, and track the implementation of new protective measures; and (3) enhance existing relationships among facility owners and operators; DHS; and various Federal, State, local tribal, and territorial partners. PSAs conduct ECIP visits to assess overall site security; educate facility owners and operators about security; help owners and operators identify gaps and potential improvements; and promote communication and information sharing among facility owners and operators, DHS, State governments, and other security partners. Information collected during ECIP visits is used to develop metrics; conduct sector-by-sector and cross-sector vulnerability comparisons; identify security gaps and trends across CIKR sectors and subsectors; establish sector baseline security survey results; and track progress toward improving CIKR security through activities, programs, outreach, and training (Snyder 2009). The data being collected are used in a framework consistent with the National Infrastructure Protection Plan (NIPP) risk criteria (DHS 2009). The NIPP

  8. General approach for the determination of the magneto-angular dependence of the critical current of YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhong, Z.; Ruiz, H. S.; Geng, J.; Coombs, T. A.

    2017-02-01

    The physical understanding and numerical modelling of superconducting devices which exploit the high performance of second generation high temperature superconducting tapes (2G-HTS), is commonly hindered by the lack of accurate functions which allow the consideration of the in-field dependence of the critical current. This is true regardless of the manufacturer of the superconducting tape. In this paper, we present a general approach for determining a unified function I c(B, θ), ultimately capable of describing the magneto-angular dependence of the in-field critical current of commercial 2G-HTS tapes in the Lorentz configuration. Five widely different superconducting tapes, provided by three different manufacturers, have been tested in a liquid nitrogen bath and external magnetic fields of up to 400 mT. The critical current was recorded at 90 different orientations of the magnetic field ranging from θ = 0°, i.e., with B aligned with the crystallographic ab-planes of the YBCO layer, towards ±90°, i.e., with B perpendicular to the wider surfaces of the 2G-HTS tape. The whole set of experimental data has been analysed using a novel multi-objective model capable of predicting a sole function I c(B, θ). This allows an accurate validation of the experimental data regardless of the fabrication differences and widths of the superconducting tapes. It is shown that, in spite of the wide set of differences between the fabrication and composition of the considered tapes, at liquid nitrogen temperature the magneto-angular dependence of the in-field critical current of YBCO-based 2G-HTS tapes, can be described by a universal function I c(f(B), θ), with a power law field dependence dominated by the Kim’s factor B/B 0, and an angular dependence moderated by the electron mass anisotropy ratio of the YBCO layer.

  9. Measurement of weak electric currents in copper wire phantoms using MRI: influence of susceptibility enhancement.

    PubMed

    Huang, Ruiwang; Posnansky, Oleg; Celik, Abdullah; Oros-Peusquens, Ana-Maria; Ermer, Veronika; Irkens, Marco; Wegener, H-Peter; Shah, N Jon

    2006-08-01

    The use of magnetic resonance imaging (MRI)-based methods for the direct detection of neuronal currents is a topic of intense investigation. Much experimental work has been carried out with the express aim of establishing detection thresholds and sensitivity to flowing currents. However, in most of these experiments, magnetic susceptibility enhancement was ignored. In this work, we present results that show the influence of a susceptibility artefact on the detection threshold and sensitivity. For this purpose, a novel phantom, consisting of a water-filled cylinder with two wires of different materials connected in series, was constructed. Magnitude MR images were acquired from a single slice using a gradient-echo echo planar imaging (EPI) sequence. The data show that the time course of the detected MR signal magnitude correlates very well with the waveform of the input current. The effect of the susceptibility artefacts arising from the two different wires was examined by comparing the magnitudes of the MR signals at different voxel locations. Our results indicate the following: (1) MR signal enhancement arising from the magnetic susceptibility effect influences the detection sensitivity of weak current; (2) the detection threshold and sensitivity are phantom-wire dependent; (3) sub-mu A electric current detection in a phantom is possible on a 1.5-T MR scanner in the presence of susceptibility enhancement.

  10. Enhancing nursing informatics competencies and critical thinking skills using wireless clinical simulation laboratories.

    PubMed

    Cholewka, Patricia A; Mohr, Bernard

    2009-01-01

    Nursing students at New York City College of Technology are assigned client care experiences that focus on common alterations in health status. However, due to the unpredictability of client census within any healthcare facility, it is not possible for all students to have the same opportunity to care for clients with specific medical conditions. But with the use of patient simulators in a dedicated Clinical Simulation Laboratory setting, students can be universally, consistently, and repeatedly exposed to programmed scenarios that connect theory with the clinical environment. Outcomes from using patient simulators include improved nursing knowledge base, enhanced critical thinking, reflective learning, and increased understanding of information technology for using a Personal Digital Assistant and documenting care by means of an electronic Patient Record System. An innovative nursing education model using a wireless, inter-connective data network was developed by this college in response to the need for increasing nursing informatics competencies and critical thinking skills by students in preparation for client care.

  11. Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3.

    PubMed

    Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin

    2017-02-20

    Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO 3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors.

  12. Innovative strategies in critical care education.

    PubMed

    Tainter, Christopher R; Wong, Nelson L; Bittner, Edward A

    2015-06-01

    The cadre of information pertinent to critical care medicine continues to expand at a tremendous pace, and we must adapt our strategies of medical education to keep up with the expansion. Differences in learners' characteristics can contribute to a mismatch with historical teaching strategies. Simulation is increasingly popular, but still far from universal. Emerging technology has the potential to improve our knowledge translation, but there is currently sparse literature describing these resources or their benefits and limitations. Directed strategies of assessment and feedback are often suboptimal. Even strategies of accreditation are evolving. This review attempts to summarize salient concepts, suggest resources, and highlight novel strategies to enhance practice and education in the challenging critical care environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Doubling the critical current density in superconducting FeSe 0.5Te 0.5 thin films by low temperature oxygen annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Cheng; Si, Weidong; Li, Qiang

    Iron chalcogenide superconducting thin films and coated conductors are attractive for potential high field applications at liquid helium temperature for their high critical current densities J c, low anisotropies, and relatively strong grain couplings. Embedding flux pinning defects is a general approach to increase the in-field performance of superconductors. However, many effective pinning defects can adversely affect the zero field or self-field J c, particularly in cuprate high temperature superconductors. Here, we report the doubling of the self-field J c in FeSe 0.5Te 0.5 films by low temperature oxygen annealing, reaching ~3 MA/cm 2. In-field performance is also dramatically enhanced.more » In conclusion, our results demonstrate that low temperature oxygen annealing is a simple and cost-efficient post-treatment technique which can greatly help to accelerate the potential high field applications of the iron-based superconductors.« less

  14. Doubling the critical current density in superconducting FeSe 0.5Te 0.5 thin films by low temperature oxygen annealing

    DOE PAGES

    Zhang, Cheng; Si, Weidong; Li, Qiang

    2016-11-14

    Iron chalcogenide superconducting thin films and coated conductors are attractive for potential high field applications at liquid helium temperature for their high critical current densities J c, low anisotropies, and relatively strong grain couplings. Embedding flux pinning defects is a general approach to increase the in-field performance of superconductors. However, many effective pinning defects can adversely affect the zero field or self-field J c, particularly in cuprate high temperature superconductors. Here, we report the doubling of the self-field J c in FeSe 0.5Te 0.5 films by low temperature oxygen annealing, reaching ~3 MA/cm 2. In-field performance is also dramatically enhanced.more » In conclusion, our results demonstrate that low temperature oxygen annealing is a simple and cost-efficient post-treatment technique which can greatly help to accelerate the potential high field applications of the iron-based superconductors.« less

  15. OxLDL enhances L-type Ca2+ currents via lysophosphatidylcholine-induced mitochondrial reactive oxygen species (ROS) production.

    PubMed

    Fearon, Ian M

    2006-03-01

    To examine the mechanisms underlying oxidised LDL- (oxLDL)-induced alterations in Ca(2+) currents, an effect which underlies altered vascular contractility and cardiac myocyte function. Ca(2+) currents (I(Ca)) were recorded by whole-cell patch-clamp in HEK293 cells expressing L-type Ca(2+) channel alpha(1C) subunits or isolated rat ventricular myocytes. oxLDL (but not native LDL) significantly enhanced recombinant I(Ca), an effect mimicked by 1 microM lysophosphatidylcholine (LPC). LPC failed to enhance I(Ca) either in mitochondrial electron transport chain-depleted rho(0) cells, or in the presence of rotenone (1 microM), or MPP(+) (10 microM). The LPC response was similarly ablated by ascorbate (200 microM) or TROLOX (500 microM) and by the mitochondria-targeted antioxidant, MitoQ (250 nM). In myocytes, enhancement of I(Ca) due to LPC was similarly abrogated with rotenone and MitoQ. These data suggest that LPC enhanced recombinant Ca(2+) currents due to increased mitochondrial ROS production. In support with this, LPC enhanced fluorescence in HEK293 cells and cardiac myocytes loaded with a ROS-sensitive mitochondrial dye, reduced mitotracker red. LPC up-regulates L-type Ca(2+) currents due to altered mitochondrial ROS production, an effect which mediates the response of the native I(Ca) in cardiac myocytes to oxLDL.

  16. A Critical Analysis of Approaches To Targeted PTSD Prevention: Current Status and Theoretically Derived Future Directions

    ERIC Educational Resources Information Center

    Feldner, Matthew T.; Monson, Candice M.; Friedman, Matthew J.

    2007-01-01

    Although efforts to prevent posttraumatic stress disorder (PTSD) have met with relatively limited success, theoretically driven preventive approaches with promising efficacy are emerging. The current article critically reviews investigations of PTSD prevention programs that target persons at risk for being exposed to a traumatic event or who have…

  17. The European cooperative approach to securing critical information infrastructure.

    PubMed

    Purser, Steve

    2011-10-01

    This paper provides an overview of the EU approach to securing critical information infrastructure, as defined in the Action Plan contained in the Commission Communication of March 2009, entitled 'Protecting Europe from large-scale cyber-attacks and disruptions: enhancing preparedness, security and resilience' and further elaborated by the Communication of May 2011 on critical Information infrastructure protection 'Achievements and next steps: towards global cyber-security'. After explaining the need for pan-European cooperation in this area, the CIIP Action Plan is explained in detail. Finally, the current state of progress is summarised together with the proposed next steps.

  18. Vortex lines in layered superconductors. II. Pinning and critical currents in high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Manuel, P.

    1994-02-01

    In this article, a qualitative survey is given on the various phenomena which influence the critical current of high temperature superconductors. Critical current is defined as a property related to a non-zero electric field criterion, the level of which is fixed by experimental considerations, or efficiency requirements of applications. The presentation is restricted to extrinsic intragranular critical current, which depends in a complex way on the interplay between the characteristics of pinning centres and the properties of the vortex lattice. The discussion is focussed on the configuration {B} / / {c}, which contains the main elements of this problem. Differences of behaviour between Y(123) and BSCCO (Bi(2212) or Bi(2223)) are analysed in the context of their respective anisotropy factors. Possible regimes for pinning and creep are discussed in various temperature domains. From critical current results, a strong pinning regime is found to occur in BSCCO, whereas the pinning strength in Y(123) is still an open question. The thermal decrease of critical current allows a collective creep regime to appear in both materials, but at different temperature ranges. The disappearance of correlation effects near the irreversibility line results in a fall of the effective pinning energy. We show that in BSCCO, the effective pinning energy deduced from experimental results is not in agreement with pinning by randomly dispersed oxygen vacancies. Finally, we shortly describe the microstructures which could allow a more efficient pinning in future materials. On effectue une présentation qualitative des divers phénomènes qui contrôlent la valeur du courant critique dans les supraconducteurs à haute température. La notion de courant critique qui est utilisée est reliée à un critère de champ électrique non nul, fixé par des considérations expérimentales ou des exigences de rendement pour les applications. On se restreint au problème des courants critiques

  19. [Current role of albumin in critical care].

    PubMed

    Aguirre Puig, P; Orallo Morán, M A; Pereira Matalobos, D; Prieto Requeijo, P

    2014-11-01

    The use of colloids in fluid therapy has been, and still continues to be a controversial topic, particularly when referring to the critical patient. The choice of the fluid that needs to be administered depends on several factors, many of which are theoretical, and continue being an object of debate. The interest in the clinical use of the albumin has emerged again, immediately after recent publications in the search of the most suitable colloid. It is the most abundant protein in the plasma, being responsible for 80% of the oncotic pressure. It regulates the balance between the intra- and extra-vascular volumes. Recent multicenter studies question the supposed lack of safety that was previously assigned to it. Furthermore, in vitro studies demonstrate other important actions besides oncotic, for example neutralization of free radicals, and exogenous (drugs) and endogenous substances (bile pigments, cholesterol). Being aware of these secondary properties of albumin, and evaluating the pathophysiology of the critical patient (in particular, sepsis), to maintain plasma albumin levels within the normal range, could be of great importance. Based on the most recent publications, the aim of this review is to briefly analyze the pathophysiology of albumin, as well as to discuss its possible indications in the critical patient. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Anomalous enhancement of the lower critical field deep in the superconducting state of LaRu4As12

    NASA Astrophysics Data System (ADS)

    Juraszek, J.; Bochenek, Ł.; Wawryk, R.; Henkie, Z.; Konczykowski, M.; Cichorek, T.

    2018-05-01

    LaRu4As12 with the critical temperature Tc = 10.4 K displays several features which point at a non-singlet superconducting order parameter, although the bcc crystal structure of the filled skutterudites does not favour the emergence of multiple energy gaps. LaRu4As12 displays an unexpected enhancement of the lower critical field deep in superconducting state which can be attributed to the existence of two superconducting gaps. At T = 0.4 K, the local magnetization measurements were performed utilizing miniaturized Hall sensors.

  1. Current-induced SQUID behavior of superconducting Nb nano-rings

    NASA Astrophysics Data System (ADS)

    Sharon, Omri J.; Shaulov, Avner; Berger, Jorge; Sharoni, Amos; Yeshurun, Yosef

    2016-06-01

    The critical temperature in a superconducting ring changes periodically with the magnetic flux threading it, giving rise to the well-known Little-Parks magnetoresistance oscillations. Periodic changes of the critical current in a superconducting quantum interference device (SQUID), consisting of two Josephson junctions in a ring, lead to a different type of magnetoresistance oscillations utilized in detecting extremely small changes in magnetic fields. Here we demonstrate current-induced switching between Little-Parks and SQUID magnetoresistance oscillations in a superconducting nano-ring without Josephson junctions. Our measurements in Nb nano-rings show that as the bias current increases, the parabolic Little-Parks magnetoresistance oscillations become sinusoidal and eventually transform into oscillations typical of a SQUID. We associate this phenomenon with the flux-induced non-uniformity of the order parameter along a superconducting nano-ring, arising from the superconducting leads (‘arms’) attached to it. Current enhanced phase slip rates at the points with minimal order parameter create effective Josephson junctions in the ring, switching it into a SQUID.

  2. Constructing a resilience index for the Enhanced Critical Infrastructure Protection Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, R. E.; Bassett, G. W.; Buehring, W. A.

    2010-10-14

    Following recommendations made in Homeland Security Presidential Directive 7, which established a national policy for the identification and increased protection of critical infrastructure and key resources (CIKR) by Federal departments and agencies, the U.S. Department of Homeland Security (DHS) in 2006 developed the Enhanced Critical Infrastructure Protection (ECIP) program. The ECIP program aimed to provide a closer partnership with state, regional, territorial, local, and tribal authorities in fulfilling the national objective to improve CIKR protection. The program was specifically designed to identify protective measures currently in place in CIKR and to inform facility owners/operators of the benefits of new protectivemore » measures. The ECIP program also sought to enhance existing relationships between DHS and owners/operators of CIKR and to build relationships where none existed (DHS 2008; DHS 2009). In 2009, DHS and its protective security advisors (PSAs) began assessing CIKR assets using the ECIP program and ultimately produced individual protective measure and vulnerability values through the protective measure and vulnerability indices (PMI/VI). The PMI/VI assess the protective measures posture of individual facilities at their 'weakest link,' allowing for a detailed analysis of the most vulnerable aspects of the facilities (Schneier 2003), while maintaining the ability to produce an overall protective measures picture. The PMI has six main components (physical security, security management, security force, information sharing, protective measures assessments, and dependencies) and focuses on actions taken by a facility to prevent or deter the occurrence of an incident (Argonne National Laboratory 2009). As CIKR continue to be assessed using the PMI/VI and owners/operators better understand how they can prevent or deter incidents, academic research, practitioner emphasis, and public policy formation have increasingly focused on resilience as a

  3. Comment on ''Carrier-concentration dependence of critical superconducting current induced by the proximity effect in silicon''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinsasser, A.W.

    1987-06-01

    It is pointed out that effect of an applied gate voltage on the critical current observed in a gate-controlled Si-coupled weak link by Nishino, Yamada, and Kawabe (Phy. Rev. B 33, 2042 (1986)) is much larger than that expected from the small change of carrier density in the link.

  4. Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review

    PubMed Central

    2011-01-01

    Nanofluids (suspensions of nanometer-sized particles in base fluids) have recently been shown to have nucleate boiling critical heat flux (CHF) far superior to that of the pure base fluid. Over the past decade, numerous experimental and analytical studies on the nucleate boiling CHF of nanofluids have been conducted. The purpose of this article is to provide an exhaustive review of these studies. The characteristics of CHF enhancement in nanofluids are systemically presented according to the effects of the primary boiling parameters. Research efforts to identify the effects of nanoparticles underlying irregular enhancement phenomena of CHF in nanofluids are then presented. Also, attempts to explain the physical mechanism based on available CHF theories are described. Finally, future research needs are identified. PMID:21711949

  5. Critical review: medical students' motivation after failure.

    PubMed

    Holland, Chris

    2016-08-01

    About 10 % of students in each years' entrants to medical school will encounter academic failure at some stage in their programme. The usual approach to supporting these students is to offer them short term remedial study programmes that often enhance approaches to study that are orientated towards avoiding failure. In this critical review I will summarise the current theories about student motivation that are most relevant to this group of students and describe how they are enhanced or not by various contextual factors that medical students experience during their programme. I will conclude by suggesting ways in which support programmes for students who have encountered academic failure might be better designed and researched in the future.

  6. Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3

    PubMed Central

    Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin

    2017-01-01

    Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors. PMID:28216672

  7. Pb/InAs nanowire josephson junction with high critical current and magnetic flux focusing.

    PubMed

    Paajaste, J; Amado, M; Roddaro, S; Bergeret, F S; Ercolani, D; Sorba, L; Giazotto, F

    2015-03-11

    We have studied mesoscopic Josephson junctions formed by highly n-doped InAs nanowires and superconducting Ti/Pb source and drain leads. The current-voltage properties of the system are investigated by varying temperature and external out-of-plane magnetic field. Superconductivity in the Pb electrodes persists up to ∼7 K and with magnetic field values up to 0.4 T. Josephson coupling at zero backgate voltage is observed up to 4.5 K and the critical current is measured to be as high as 615 nA. The supercurrent suppression as a function of the magnetic field reveals a diffraction pattern that is explained by a strong magnetic flux focusing provided by the superconducting electrodes forming the junction.

  8. Teaching and evaluating critical thinking in respiratory care.

    PubMed

    Mishoe, Shelley C; Hernlen, Kitty

    2005-09-01

    The capacity to perform critical thinking in respiratory care may be enhanced through awareness and education to improve skills, abilities, and opportunities. The essential skills for critical thinking in respiratory care include prioritizing, anticipating, troubleshooting, communicating, negotiating, decision making, and reflecting. In addition to these skills, critical thinkers exhibit certain characteristics such as critical evaluation, judgment,insight, motivation, and lifelong learning. The teaching of critical thinking may be accomplished though problem-based learning using an evidenced-based approach to solve clinical problems similar to those encountered in professional practice. Other traditional strategies such as discussion, debate, case study, and case presentations can be used. Web-based curriculum and technologic advances have created opportunities such as bulletin boards, real-time chats, and interactive media tools that can incorporate critical thinking. Many concerns and controversies surround the assessment of critical thinking, and individuals who administer critical thinking tests must be aware of the strengths and limitations of these assessment tools, as well as their relevance to the workplace. The foundational works reported in this article summarize the current status of assessment of critical thinking and can stimulate further investigation and application of the skills, characteristics, educational strategies, and measurement of critical thinking in respiratory care.

  9. Superconducting-magnetic heterostructures: a method of decreasing AC losses and improving critical current density in multifilamentary conductors

    NASA Astrophysics Data System (ADS)

    Glowacki, B. A.; Majoros, M.

    2009-06-01

    Magnetic materials can help to improve the performance of practical superconductors on the macroscale/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces AC losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa2Cu3O7 and (Pb,Bi)2Sr2Ca2Cu3O9 conductors, and buffer layers have to be used. In contrast, in MgB2 conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On one hand, magnetic materials reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties.

  10. Enhancing Critical Thinking Skills in First Year Environmental Management Students: A Tale of Curriculum Design, Application and Reflection

    ERIC Educational Resources Information Center

    Whiley, Dona; Witt, Bradd; Colvin, R. M.; Sapiains Arrue, Rodolfo; Kotir, Julius

    2017-01-01

    This paper chronicles the experience of academic staff in developing a course to enhance the critical thinking skills of environmental management undergraduates. We outline our considerations and process for course development, discuss insights from course evaluations, and reflect on the challenges encountered. We believe these perspectives will…

  11. Enhanced superconducting transition temperature in electroplated rhenium

    NASA Astrophysics Data System (ADS)

    Pappas, D. P.; David, D. E.; Lake, R. E.; Bal, M.; Goldfarb, R. B.; Hite, D. A.; Kim, E.; Ku, H.-S.; Long, J. L.; McRae, C. R. H.; Pappas, L. D.; Roshko, A.; Wen, J. G.; Plourde, B. L. T.; Arslan, I.; Wu, X.

    2018-04-01

    We show that electroplated Re films in multilayers with noble metals such as Cu, Au, and Pd have an enhanced superconducting critical temperature relative to previous methods of preparing Re. The dc resistance and magnetic susceptibility indicate a critical temperature of approximately 6 K. The magnetic response as a function of field at 1.8 K demonstrates type-II superconductivity, with an upper critical field on the order of 2.5 T. Critical current densities greater than 107 A/m2 were measured above liquid-helium temperature. Low-loss at radio frequency was obtained below the critical temperature for multilayers deposited onto resonators made with Cu traces on commercial circuit boards. These electroplated superconducting films can be integrated into a wide range of standard components for low-temperature electronics.

  12. Critical current simulation in granular superconductors above the percolation threshold

    NASA Astrophysics Data System (ADS)

    Riedinger, Roland

    1992-02-01

    In the phase-coherent regime without applied external magnetic field, the critical superconducting current is limited by intragranular junctions which behave like Josephson junctions. We study the percolation aspects specific to lattices of such junctions and/or the mixing of superconductor with normal grains by averaging over configurations. We illustrate on 2 and 3 dimensional examples. The power laws valid near the percolation threshold are valid well above it, in two and three dimensions. We discuss the other models limiting the superconducting current, the vortex creep and superconducting order parameter fluctuations. Dans la limite de champ magnétique nul et de cohérence de phase du paramètre d'ordre supraconducteur, le courant supraconducteur maximal dans un réseau est limité par les jonctions intergranulaires qui se comportent comme des jonctions Josephson. Nous analysons les problèmes de percolation spécifiques aux réseaux de jonctions et du mélange de grains normaux et supraconducteurs. Nous donnons des exemples bidimensionnels et tridimensionnels ; après moyenne sur les configurations et analyse en taille finie, nous montrons que les lois de puissance valables au voisinage du seuil de percolation s'étendent sur un grand domaine au-delà du seuil de percolation, à deux et trois dimensions. Nous discutons les autres modèles limitant le courant supraconducteur, ancrage de vortex et fluctuations du paramètre d'ordre.

  13. Critical current and linewidth reduction in spin-torque nano-oscillators by delayed self-injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalsa, Guru, E-mail: guru.khalsa@nist.gov; Stiles, M. D.; Grollier, J.

    2015-06-15

    Based on theoretical models, the dynamics of spin-torque nano-oscillators can be substantially modified by re-injecting the emitted signal to the input of the oscillator after some delay. Numerical simulations for vortex magnetic tunnel junctions show that with reasonable parameters this approach can decrease critical currents as much as 25% and linewidths by a factor of 4. Analytical calculations, which agree well with simulations, demonstrate that these results can be generalized to any kind of spin-torque oscillator.

  14. Treatment of pediculosis capitis: a critical appraisal of the current literature.

    PubMed

    Feldmeier, Hermann

    2014-10-01

    Pediculosis capitis is the most common ectoparasitic disease in children in industrialized countries and extremely common in resource-poor communities of the developing world. The extensive use of pediculicides with a neurotoxic mode of action has led to the development and spread of resistant head lice populations all over the world. This triggered the development of compounds with other modes of action. The current literature on treatment approaches of head lice infestation was searched, and published randomized controlled trials were critically analyzed. The following compounds/family of compounds were identified: spinosad, a novel compound with a new neurotoxic mode of action, isopropyl myristate, 1,2-octanediol, ivermectin, plant-based products, and dimeticones. The efficacy and safety of these compounds are reviewed and recommendations for the treatment of pediculosis capitis in individuals as well as the interruption of ongoing epidemics are provided.

  15. Current-induced nonuniform enhancement of sheet resistance in A r+ -irradiated SrTi O3

    NASA Astrophysics Data System (ADS)

    Roy, Debangsu; Frenkel, Yiftach; Davidovitch, Sagi; Persky, Eylon; Haham, Noam; Gabay, Marc; Kalisky, Beena; Klein, Lior

    2017-06-01

    The sheet resistance Rs of A r+ irradiated SrTi O3 in patterns with a length scale of several microns increases significantly below ˜40 K in connection with driving currents exceeding a certain threshold. The initial lower Rs is recovered upon warming with accelerated recovery around 70 and 160 K. Scanning superconducting quantum interference device microscopy shows local irreversible changes in the spatial distribution of the current with a length scale of several microns. We attribute the observed nonuniform enhancement of Rs to the attraction of the charged single-oxygen and dioxygen vacancies by the crystallographic domain boundaries in SrTi O3 . The boundaries, which are nearly ferroelectric below 40 K, are polarized by the local electrical field associated with the driven current and the clustered vacancies which suppress conductivity in their vicinity and yield a noticeable enhancement in the device resistance when the current path width is on the order of the boundary extension. The temperatures of accelerated conductivity recovery are associated with the energy barriers for the diffusion of the two types of vacancies.

  16. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields.

    PubMed

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (H c2 ) and critical temperature (T c ). The critical current (I c ) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new I c measurement system that can carry out accurate I c measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The I c measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa 2 Cu 3 O 7-x (YBCO) tapes I c determination with different temperatures and magnetic fields.

  17. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields

    NASA Astrophysics Data System (ADS)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (Hc2) and critical temperature (Tc). The critical current (Ic) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new Ic measurement system that can carry out accurate Ic measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The Ic measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa2Cu3O7-x(YBCO) tapes Ic determination with different temperatures and magnetic fields.

  18. Enhanced spin pumping into superconductors provides evidence for superconducting pure spin currents

    NASA Astrophysics Data System (ADS)

    Jeon, Kun-Rok; Ciccarelli, Chiara; Ferguson, Andrew J.; Kurebayashi, Hidekazu; Cohen, Lesley F.; Montiel, Xavier; Eschrig, Matthias; Robinson, Jason W. A.; Blamire, Mark G.

    2018-06-01

    Unlike conventional spin-singlet Cooper pairs, spin-triplet pairs can carry spin1,2. Triplet supercurrents were discovered in Josephson junctions with metallic ferromagnet spacers, where spin transport can occur only within the ferromagnet and in conjunction with a charge current. Ferromagnetic resonance injects a pure spin current from a precessing ferromagnet into adjacent non-magnetic materials3,4. For spin-singlet pairing, the ferromagnetic resonance spin pumping efficiency decreases below the critical temperature (Tc) of a coupled superconductor5,6. Here we present ferromagnetic resonance experiments in which spin sink layers with strong spin-orbit coupling are added to the superconductor. Our results show that the induced spin currents, rather than being suppressed, are substantially larger in the superconducting state compared with the normal state; although further work is required to establish the details of the spin transport process, we show that this cannot be mediated by quasiparticles and is most likely a triplet pure spin supercurrent.

  19. Current practices in the identification of critical habitat for threatened species.

    PubMed

    Camaclang, Abbey E; Maron, Martine; Martin, Tara G; Possingham, Hugh P

    2015-04-01

    The term critical habitat is used to describe the subset of habitat that is essential to the survival and recovery of species. Some countries legally require that critical habitat of listed threatened and endangered species be identified and protected. However, there is little evidence to suggest that the identification of critical habitat has had much impact on species recovery. We hypothesized that this may be due at least partly to a mismatch between the intent of critical habitat identification, which is to protect sufficient habitat for species persistence and recovery, and its practice. We used content analysis to systematically review critical habitat documents from the United States, Canada, and Australia. In particular, we identified the major trends in type of information used to identify critical habitat and in occupancy of habitat identified as critical. Information about population viability was used to identify critical habitat for only 1% of the species reviewed, and for most species, designated critical habitat did not include unoccupied habitat. Without reference to population viability, it is difficult to determine how much of a species' occupied and unoccupied habitat will be required for persistence. We therefore conclude that the identification of critical habitat remains inconsistent with the goal of protecting sufficient habitat to support persistence and recovery of the species. Ensuring that critical habitat identification aligns more closely with its intent will improve the accuracy of the designations and may therefore help improve the benefits to species recovery when combined with adequate implementation and enforcement of legal protections. © 2014 Society for Conservation Biology.

  20. Identifying Critical Thinking Styles to Enhance Volunteer Development

    ERIC Educational Resources Information Center

    Gay, Keegan D.; Terry, Bryan; Lamm, Alexa J.

    2015-01-01

    Diversity in learning options can increase efficacy of volunteer development systems. The University of Florida Critical Thinking Inventory (UFCTI) is designed to explicate an individual's critical thinking style based upon a continuum from Seeking Information to Engagement. Static and interpretive materials are best used with individuals of a…

  1. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOEpatents

    Weiner, Kurt H.

    1998-01-01

    A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.

  2. Intrinsic pinning and the critical current scaling of clean epitaxial Fe(Se,Te) thin films

    NASA Astrophysics Data System (ADS)

    Iida, Kazumasa; Hänisch, Jens; Reich, Elke; Kurth, Fritz; Hühne, Ruben; Schultz, Ludwig; Holzapfel, Bernhard; Ichinose, Ataru; Hanawa, Masafumi; Tsukada, Ichiro; Schulze, Michael; Aswartham, Saicharan; Wurmehl, Sabine; Büchner, Bernd

    2013-03-01

    We report on the transport properties of clean, epitaxial Fe(Se,Te) thin films prepared on Fe-buffered MgO (001) single crystalline substrates by pulsed laser deposition. Near Tc a steep slope of the upper critical field for H||ab was observed (74.1 T/K), leading to a very short out-of-plane coherence length, ξc(0), of 0.2 nm, yielding 2ξc(0)≈0.4nm. This value is shorter than the interlayer distance (0.605 nm) between the Fe-Se(Te) planes, indicative of modulation of the superconducting order parameter along the c axis. An inverse correlation between the power law exponent N of the electric field-current density(E-J) curve and the critical current density Jc has been observed at 4 K, when the orientation of H was close to the ab plane. These results prove the presence of intrinsic pinning in Fe(Se,Te). A successful scaling of the angular dependent Jc and the corresponding exponent N can be realized by the anisotropic Ginzburg Landau approach with appropriate Γ values 2˜3.5. The temperature dependence of Γ behaves almost identically to that of the penetration depth anisotropy.

  3. Critical Education, Critical Pedagogies, Marxist Education in the United States

    ERIC Educational Resources Information Center

    Foley, Jean Ann; Morris, Doug; Gounari, Panayota; Agostinone-Wilson, Faith

    2015-01-01

    As critical pedagogy becomes more mainstream on the educational landscape in the United States, it is important to revisit the original tenets of critical pedagogy and explore their current manifestations. Since the beginning of "criticalism" from the theoretical/foundational work of the Frankfurt School of Critical Social Theory,…

  4. Transcranial direct current stimulation (tDCS) to improve naming ability in post-stroke aphasia: A critical review.

    PubMed

    ALHarbi, Mohammed F; Armijo-Olivo, Susan; Kim, Esther S

    2017-08-14

    Transcranial Direct Current Stimulation (tDCS) is a non-invasive neuromodulation tool that can be used to influence cortical brain activity to induce measurable behavioral changes. Although there is growing evidence that tDCS combined with behavioural language therapy could boost language recovery in patients with post-stroke aphasia, there is great variability in patient characteristics, treatment protocols, and outcome measures in these studies that poses challenges for analyzing the evidence. The purpose of this study is to critically analyze the methodological rigor of the evidence regarding the use of tDCS for post-stroke anomia. This critical review was conducted by searching four databases (MEDLINE, EMBase, PsycINFO, and CINAHL). Nineteen studies fully met the inclusion criteria. Three critical appraisal tools and Robey and Schultz's (1998) five- phase model for conducting clinical outcome research were adopted to evaluate and analyze the current level of evidence. Methodological issues of the studies were also identified. The current level of evidence for using tDCS for anomia is at the pre-efficacy level with emerging evidence at the efficacy level. Lack of proper evaluation of carry-over effects in cross-over studies, lack of or unclear randomization, allocation concealment, and incomplete data handling were the main methodological issues that could threaten the validity of the tDCS for anomia studies. Several methodological issues have been identified in pre-efficacy studies that pose challenges in determining whether tDCS is a beneficial adjunct to behavioral aphasia therapy. Future studies need to improve the quality of the methods used to investigate the effect of tDCS for anomia. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Critical Concentration of Lecithin Enhances the Antimicrobial Activity of Eugenol against Escherichia coli.

    PubMed

    Zhang, Haoshu; Dudley, Edward G; Davidson, P Michael; Harte, Federico

    2017-04-15

    Lecithin is a natural emulsifier used in a wide range of food and nonfood applications to improve physical stability, with no known bioactive effects. In this study, the effect of lecithin on the antimicrobial performance of a constant eugenol concentration was tested against three Escherichia coli strains (C600, 0.1229, and O157:H7 strain ATCC 700728). This is the first study, to our knowledge, focusing on lecithin at concentrations below those commonly used in foods to improve the stability of oil in water emulsions (≤10 mg/100 ml). For all three cultures, significant synergistic antimicrobial effects were observed when E. coli cultures were exposed to a constant eugenol concentration (ranging from 0.043 to 0.050% [wt/wt]) together with critical lecithin concentrations ranging from 0.5 to 1 mg/100 ml. Increasing the concentration of lecithin above 1 mg/100 ml (up to 10 mg/100 ml lecithin) diminished the antibacterial effect to values similar to those with eugenol-only treatments. The formation of aggregates (<100 nm) at the critical lecithin concentration was observed using cryo-transmission electron microscopy (cryo-TEM), together with a reduction in light absorbance at 284 nm. At critically low concentrations of lecithin, the formation of nanoscale aggregates is responsible for improving eugenol antimicrobial effects. IMPORTANCE Essential oils (EOs) are effective natural antimicrobials. However, their hydrophobicity and strong aromatic character limit the use of essential oils in food systems. Emulsifiers (e.g., lecithin) increase the stability of EOs in water-based systems but fail to consistently improve antimicrobial effects. We demonstrate that lecithin, within a narrow critical concentration window, can enhance the antimicrobial properties of eugenol. This study highlights the potential bioactivity of lecithin when utilized to effectively control foodborne pathogens. Copyright © 2017 American Society for Microbiology.

  6. Critical Concentration of Lecithin Enhances the Antimicrobial Activity of Eugenol against Escherichia coli

    PubMed Central

    Zhang, Haoshu; Dudley, Edward G.; Davidson, P. Michael

    2017-01-01

    ABSTRACT Lecithin is a natural emulsifier used in a wide range of food and nonfood applications to improve physical stability, with no known bioactive effects. In this study, the effect of lecithin on the antimicrobial performance of a constant eugenol concentration was tested against three Escherichia coli strains (C600, 0.1229, and O157:H7 strain ATCC 700728). This is the first study, to our knowledge, focusing on lecithin at concentrations below those commonly used in foods to improve the stability of oil in water emulsions (≤10 mg/100 ml). For all three cultures, significant synergistic antimicrobial effects were observed when E. coli cultures were exposed to a constant eugenol concentration (ranging from 0.043 to 0.050% [wt/wt]) together with critical lecithin concentrations ranging from 0.5 to 1 mg/100 ml. Increasing the concentration of lecithin above 1 mg/100 ml (up to 10 mg/100 ml lecithin) diminished the antibacterial effect to values similar to those with eugenol-only treatments. The formation of aggregates (<100 nm) at the critical lecithin concentration was observed using cryo-transmission electron microscopy (cryo-TEM), together with a reduction in light absorbance at 284 nm. At critically low concentrations of lecithin, the formation of nanoscale aggregates is responsible for improving eugenol antimicrobial effects. IMPORTANCE Essential oils (EOs) are effective natural antimicrobials. However, their hydrophobicity and strong aromatic character limit the use of essential oils in food systems. Emulsifiers (e.g., lecithin) increase the stability of EOs in water-based systems but fail to consistently improve antimicrobial effects. We demonstrate that lecithin, within a narrow critical concentration window, can enhance the antimicrobial properties of eugenol. This study highlights the potential bioactivity of lecithin when utilized to effectively control foodborne pathogens. PMID:28213539

  7. Enhancing students' critical thinking in science: A two-year design based exploration in a large undergraduate science course

    NASA Astrophysics Data System (ADS)

    Yoo, Suhyun

    The purpose of this study was to explore how to enhance students' critical thinking in an introductory undergraduate science course. As a design experiment, this study aimed to design, develop, implement, and refine learning activities, and investigate how the learning activities worked in fostering students' critical thinking in a large size classroom context. In this study, critical thinking in science was framed with six categories, 1) identifying decisions, 2) evaluating decisions, 3) providing own decision, 4) argument and justification for own decision, 5) presenting supporting data/evidence, and 6) integrating other perspectives, as the result of literature review. To enhance critical thinking, three design principles, 1) authentic task, 2) question prompts, and 3) peer interaction, were associated with the learning activities for two consecutive years. The research context was within a large general science course and the learning activities for a module were designed, implemented and refined for two years. Specially, changes in design strategies were made in the two design principles, question prompts and peer interaction, after the 1st implementation. With regard to the use of question prompts, the students of the 2nd year were provided with procedural and elaborative question prompts, while those of the 1st year only received procedural question prompts embedded in the Group and Community Discussion Charts. Second, instead of being engaged six times in two types of discussions, group and community discussions, the students of the 2nd year were required to take part in a community discussion twice and to prepare for the discussion by learning about and understanding important aspects of dealing with the hurricane situation. For individual preparation, elaborative question prompts were embedded in the Individual Worksheet. Quantitative and qualitative research methods were taken to investigate how the two different designs of the 1st and 2nd years worked

  8. Management of polycythaemia vera: a critical review of current data.

    PubMed

    McMullin, Mary F; Wilkins, Bridget S; Harrison, Claire N

    2016-02-01

    Polycythaemia vera (PV) is a chronic blood cancer; its clinical features are dominated by myeloproliferation (erythrocytosis, often leucocytosis and/or thrombocytosis) and a tendency for thrombosis and transformation to myelofibrosis or acute myeloid leukaemia. In the past 10 years the pathophysiology of this condition has been defined as JAK/STAT pathway activation, almost always due to mutations in JAK2 exons 12 or 14 (JAK2 V617F). In the same time period our understanding of the optimal management of PV has expanded, most recently culminating in the approval of JAK inhibitors for the treatment of PV patients who are resistant or intolerant to therapy with hydroxycarbamide. It has also been demonstrated that life expectancy for many patients with PV is not normal, nor is their quality of life. We critically explore these findings and discuss their impact. In addition, we highlight persisting gaps in our current management strategy; for example, what is the optimal first line cytoreductive therapy and, indeed, which patients need cytoreductive drugs. © 2015 John Wiley & Sons Ltd.

  9. Defect and field-enhancement characterization through electron-beam-induced current analysis

    NASA Astrophysics Data System (ADS)

    Umezawa, Hitoshi; Gima, Hiroki; Driche, Khaled; Kato, Yukako; Yoshitake, Tsuyoshi; Mokuno, Yoshiaki; Gheeraert, Etienne

    2017-05-01

    To investigate the effects of defects and field enhancement in diamond power devices, a biased Schottky barrier diode was characterized by electron-beam-induced current (EBIC) analysis. The nonuniform distribution of the electrical field was revealed by bright spots on the laterally expanded depletion layer of the EBIC intensity map when the applied electrical field exceeded 0.95 MV/cm. The nonuniformity is partly due to a structural effect: the roughness at the edge of the Schottky electrode, induced by lithography and lift-off processes. A second family of spots was shown to increase the leakage current of the device. The time constant associated with this second spot family was 0.98 ms, which is three orders of magnitude shorter than that for defects previously characterized by deep-level transient spectroscopy.

  10. Transverse enhancement model and MiniBooNE charge current quasi-elastic neutrino scattering data

    NASA Astrophysics Data System (ADS)

    Sobczyk, Jan T.

    2012-01-01

    Recently proposed Transverse Enhancement Model of nuclear effects in Charge Current Quasi-Elastic neutrino scattering (A. Bodek, H.S. Budd, M.E. Christy, Eur. Phys. J. C 71:1726, 2011) is confronted with the MiniBooNE high statistics experimental data.

  11. Promising critical current density characteristics of Ag-sheathed (Sr,Na)Fe2As2 tape

    NASA Astrophysics Data System (ADS)

    Suwa, Takahiro; Pyon, Sunseng; Tamegai, Tsuyoshi; Awaji, Satoshi

    2018-06-01

    We report the fabrication of (Sr,Na)Fe2As2 superconducting tapes by the powder-in-tube technique and their characteristics, including the transport critical current density J c at 4.2 K up to 140 kOe, the magnetic J c estimated from magnetic hysteresis curves, magneto-optical (MO) images, and scanning electron microscopy images. In a tape sintered at 875 °C for 1 h, the transport J c reaches 26 kA/cm2 at 4.2 K and 100 kOe for a field perpendicular to the tape surface. When the field is parallel to the tape surface, the magnetic J c exceeds the practical level of 100 kA/cm2 at 4.2 K below 25 kOe. Analysis of the MO images reveals clear current discontinuity lines in the core, indicating that the current flows homogeneously and the connections between grains are strong in the core.

  12. Correlations between critical current density, j{sub c}, critical temperature, T{sub c}, and structural quality of Y{sub 1}B{sub 2}Cu{sub 3}O{sub 7-x} thin superconducting films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrzanowski, J.; Xing, W.B.; Atlan, D.

    1994-12-31

    Correlations between critical current density (j{sub c}) critical temperature (T{sub c}) and the density of edge dislocations and nonuniform strain have been observed in YBCO thin films deposited by pulsed laser ablation on (001) LaAlO{sub 3} single crystals. Distinct maxima in j{sub c} as a function of the linewidths of the (00{ell}) Bragg reflections and as a function of the mosaic spread have been found in the epitaxial films. These maxima in j{sub c} indicate that the magnetic flux lines, in films of structural quality approaching that of single crystals, are insufficiently pinned which results in a decreased critical currentmore » density. T{sub c} increased monotonically with improving crystalline quality and approached a value characteristic of a pure single crystal. A strong correlation between j{sub c} and the density of edge dislocations N{sub D} was found. At the maximum of the critical current density the density of edge dislocations was estimated to be N{sub D}{approximately}1-2 x 10{sup 9}/cm{sup 2}.« less

  13. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOEpatents

    Weiner, K.H.

    1998-06-30

    A method is disclosed for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates. 1 fig.

  14. Enhancement of multitasking performance and neural oscillations by transcranial alternating current stimulation

    PubMed Central

    Zanto, Theodore P.; van Schouwenburg, Martine R.; Gazzaley, Adam

    2017-01-01

    Multitasking is associated with the generation of stimulus-locked theta (4–7 Hz) oscillations arising from prefrontal cortex (PFC). Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that influences endogenous brain oscillations. Here, we investigate whether applying alternating current stimulation within the theta frequency band would affect multitasking performance, and explore tACS effects on neurophysiological measures. Brief runs of bilateral PFC theta-tACS were applied while participants were engaged in a multitasking paradigm accompanied by electroencephalography (EEG) data collection. Unlike an active control group, a tACS stimulation group showed enhancement of multitasking performance after a 90-minute session (F1,35 = 6.63, p = 0.01, ηp2 = 0.16; effect size = 0.96), coupled with significant modulation of posterior beta (13–30 Hz) activities (F1,32 = 7.66, p = 0.009, ηp2 = 0.19; effect size = 0.96). Across participant regression analyses indicated that those participants with greater increases in frontal theta, alpha and beta oscillations exhibited greater multitasking performance improvements. These results indicate frontal theta-tACS generates benefits on multitasking performance accompanied by widespread neuronal oscillatory changes, and suggests that future tACS studies with extended treatments are worth exploring as promising tools for cognitive enhancement. PMID:28562642

  15. Enhancement of multitasking performance and neural oscillations by transcranial alternating current stimulation.

    PubMed

    Hsu, Wan-Yu; Zanto, Theodore P; van Schouwenburg, Martine R; Gazzaley, Adam

    2017-01-01

    Multitasking is associated with the generation of stimulus-locked theta (4-7 Hz) oscillations arising from prefrontal cortex (PFC). Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that influences endogenous brain oscillations. Here, we investigate whether applying alternating current stimulation within the theta frequency band would affect multitasking performance, and explore tACS effects on neurophysiological measures. Brief runs of bilateral PFC theta-tACS were applied while participants were engaged in a multitasking paradigm accompanied by electroencephalography (EEG) data collection. Unlike an active control group, a tACS stimulation group showed enhancement of multitasking performance after a 90-minute session (F1,35 = 6.63, p = 0.01, ηp2 = 0.16; effect size = 0.96), coupled with significant modulation of posterior beta (13-30 Hz) activities (F1,32 = 7.66, p = 0.009, ηp2 = 0.19; effect size = 0.96). Across participant regression analyses indicated that those participants with greater increases in frontal theta, alpha and beta oscillations exhibited greater multitasking performance improvements. These results indicate frontal theta-tACS generates benefits on multitasking performance accompanied by widespread neuronal oscillatory changes, and suggests that future tACS studies with extended treatments are worth exploring as promising tools for cognitive enhancement.

  16. Microstructure and critical current density in MgB2 bulk made of 4.5 wt% carbon-coated boron

    NASA Astrophysics Data System (ADS)

    Higuchi, M.; Muralidhar, M.; Jirsa, M.; Murakami, M.

    2017-07-01

    Superconducting performance and its uniformity was studied in the single-step sintered MgB2 bulk prepared with 4.5 wt% of carbon in the carbon-encapsulated boron. The 20 mm in diameter MgB2 pellet was cut into several pieces from bottom to top and the microstructure, superconducting transition temperature (Tc onset), and critical current density at 20 K were studied. DC magnetization measurements showed a sharp superconducting transition with onset Tc at around 35.5 K in all positions. SEM analysis indicated a dispersion of grains between 200 and 300 nm in size, as the main pinning medium in this MgB2 superconductors. The critical current density at 20 K was quite uniform, around 330 kA/cm2 and 200 kA/cm2 at self-field and 1 T, respectively, for all measured positions. The results indicate that the carbon-encapsulated boron is very promising for production of high quality bulk MgB2 material for various industrial applications.

  17. Critical current density of TlBa 2Ca 2Cu 3O 9 thin films on MgO (100) in magnetic fields

    NASA Astrophysics Data System (ADS)

    Piehler, A.; Ströbel, J. P.; Reschauer, N.; Löw, R.; Schönberger, R.; Renk, K. F.; Kraus, M.; Daniel, J.; Saemann-Ischenko, G.

    1994-04-01

    We report on the critical current density of TlBa 2Ca 2Cu 3O 9 thin films on (100) MgO substrates in magnetic fields. Single- phase and highly c-axis oriented thin films were prepared by laser ablation in combination with thermal evaporation of Tl 2O 3. Scanning electron microscope investigations indicated a flat plate-like microstructure and DC magnetization measurements showed the onset of superconductivity at ∼ 115 K. The critical current density jc was determined from magnetization cycles. Typical values of jc were 9 × 10 5 A/cm 2 at 6 K and 2.5 × 10 5 A/cm 2 at 77 K. In a magnetic field to 1 T applied parallel to the c-axis the critical current densities were 3 × 10 5 A/cm 2 at 6 K and 3 × 10 3 A/cm 2 at 77 K. The decrease of jc at higher magnetic fields is discussed and attributed to the microstructure of the TlBa 2Ca 2Cu 3O 9 thin films.

  18. Study of tunneling transport in Si-based tunnel field-effect transistors with ON current enhancement utilizing isoelectronic trap

    NASA Astrophysics Data System (ADS)

    Mori, Takahiro; Morita, Yukinori; Miyata, Noriyuki; Migita, Shinji; Fukuda, Koichi; Mizubayashi, Wataru; Masahara, Meishoku; Yasuda, Tetsuji; Ota, Hiroyuki

    2015-02-01

    The temperature dependence of the tunneling transport characteristics of Si diodes with an isoelectronic impurity has been investigated in order to clarify the mechanism of the ON-current enhancement in Si-based tunnel field-effect transistors (TFETs) utilizing an isoelectronic trap (IET). The Al-N complex impurity was utilized for IET formation. We observed three types of tunneling current components in the diodes: indirect band-to-band tunneling (BTBT), trap-assisted tunneling (TAT), and thermally inactive tunneling. The indirect BTBT and TAT current components can be distinguished with the plot described in this paper. The thermally inactive tunneling current probably originated from tunneling consisting of two paths: tunneling between the valence band and the IET trap and tunneling between the IET trap and the conduction band. The probability of thermally inactive tunneling with the Al-N IET state is higher than the others. Utilization of the thermally inactive tunneling current has a significant effect in enhancing the driving current of Si-based TFETs.

  19. Enhancing Critical Thinking through Active Learning

    ERIC Educational Resources Information Center

    Kusumoto, Yoko

    2018-01-01

    Today the Framework for 21st Century Learning developed by the Partnership for 21st Century Learning (P21) is widely recognized and has been used in the U.S., Canada and New Zealand. P21 defines and illustrates the skills and knowledge students need and states that critical thinking is fundamental for twenty-first century success and essential for…

  20. Education on fluid management and encouraging critical thinking skills.

    PubMed

    Dale, Willette

    2012-01-01

    The unit is currently utilizing hematocrit-based blood volume monitoring on each patient, resulting in improved monitoring in patients achieving their target weight. The nurses expressed confidence in their understanding of the use of hematocrit-based blood volume monitoring. This learning experience provided a vivid look at the importance of fluid management in nephrology nursing. This area should always be included in nephrology nurse competencies and represented in a way that it ignites critical thinking within the nursing professional. It is the responsibility of a professional nurse to stay current in evidence-based practice and continuing education. Professional pride stimulates nephrology nurses to seek new learning experiences to enhance their practice.

  1. Quasiparticle mass enhancement close to the quantum critical point in BaFe2(As(1-x)P(x))2.

    PubMed

    Walmsley, P; Putzke, C; Malone, L; Guillamón, I; Vignolles, D; Proust, C; Badoux, S; Coldea, A I; Watson, M D; Kasahara, S; Mizukami, Y; Shibauchi, T; Matsuda, Y; Carrington, A

    2013-06-21

    We report a combined study of the specific heat and de Haas-van Alphen effect in the iron-pnictide superconductor BaFe2(As(1-x)P(x))2. Our data when combined with results for the magnetic penetration depth give compelling evidence for the existence of a quantum critical point close to x=0.30 which affects the majority of the Fermi surface by enhancing the quasiparticle mass. The results show that the sharp peak in the inverse superfluid density seen in this system results from a strong increase in the quasiparticle mass at the quantum critical point.

  2. Effects of bending on the superconducting critical current density of monofilamentary Nb3Sn wires

    NASA Astrophysics Data System (ADS)

    Kaiho, K.; Luhman, T. S.; Suenaga, M.; Sampson, W. B.

    1980-02-01

    Variations in the superconducting current density Jc of the Nb3Sn wires upon bending were measured for a series of monofilamentary wires in which the ratio Rv of the matrix (Cu+Sn) to the core (Nb3Sn,Nb) was changed from 0 to 58. In most cases Jc was found to increase slightly until the bending strain exceeded a value of ɛirrB , beyond which it severely and irreversibly degraded. For wires with intermediate values of Rv (˜2 to 10), ɛirrB , calculated by geometrical considerations, was substantially lower than the measured value of the tensile strain ɛirrT which was required to irreversibly degrade the critical current. The influence of bending strains on Jc can qualitatively be described by considering residual prestrains in the matrix and the core.

  3. The ILLIAC IV memory system: Current status and future possibilities

    NASA Technical Reports Server (NTRS)

    Stevenson, D. K.

    1978-01-01

    The future needs of researchers who will use the Illiac were examined and the requirements they will place on the memory system were evaluated. Various alternatives to replacing critical memory components were considered with regard to cost, risk, system impact, software requirements, and implementation schedules. The current system, its performance and status, and the limitations it places on possible enhancements are discussed as well as the planned enhancements to the Illiac processor. After a brief technology survey, different implementations are presented for each system memory component. Three different memory systems are proposed to meet the identified needs of the Illiac user community. These three alternatives differ considerably with respect to storage capacity and accessing capabilities, but they all offer significant improvements over the current system. The proposed systems and their relative merits are analyzed.

  4. Co-current Doping Effect of Nanoscale Carbon and Aluminum Nitride on Critical Current Density and Flux Pinning Properties of Bulk MgB2 Superconductors

    NASA Astrophysics Data System (ADS)

    Tripathi, D.; Dey, T. K.

    2018-05-01

    The effect of nanoscale aluminum nitride (n-AlN) and carbon (n-C) co-doping on superconducting properties of polycrystalline bulk MgB2 superconductor has been investigated. Polycrystalline pellets of MgB2, MgB2 + 0.5 wt% AlN (nano), MgB_{1.99}C_{0.01} and MgB_{1.99}C_{0.01} + 0.5 wt% AlN (nano) have been synthesized by a solid reaction process under inert atmosphere. The transition temperature (TC) estimated from resistivity measurement indicates only a small decrease for C (nano) and co-doped MgB2 samples. The magnetic field response of investigated samples has been measured at 4, 10, and 20 K in the field range ± 6 T. MgB2 pellets co-doped with 0.5 wt% n-AlN and 1 wt% n-C display appreciable enhancement in critical current density (J_C) of MgB2 in both low (≥ 3 times), as well as, high-field region (≥ 15 times). J_C versus H behavior of both pristine and doped MgB2 pellets is well explained in the light of the collective pinning model. Further, the normalized pinning force density f_p(= F_p/F_{pmax}) displays a fair correspondence with the scaling procedure proposed by Eisterer et al. Moreover, the scaled data of the pinning force density (i.e., f_p{-}h data) of the investigated pellets at different temperature are well interpreted by a modified Dew-Hughes expression reported by Sandu and Chee.

  5. A Critical Evaluation of the Contribution of Trust to Effective Technology Enhanced Learning in the Workplace: A Literature Review

    ERIC Educational Resources Information Center

    Short, Heather

    2014-01-01

    This paper offers a critical review of the literature that explores the building and development of trust in workplace learning, particularly in a virtual context and its implications for Technology Enhanced Learning (TEL) in business. Trust is increasingly recognised as important in both business and education, and is the focus of increasing…

  6. Current trials to reduce surgical intervention in ductal carcinoma in situ of the breast: Critical review.

    PubMed

    Toss, M; Miligy, I; Thompson, A M; Khout, H; Green, A R; Ellis, I O; Rakha, E A

    2017-10-01

    The high proportion of ductal carcinoma in situ (DCIS) presented in mammographic screening and the relatively low risk of progression to invasive disease have raised questions related to overtreatment. Following a review of current DCIS management protocols a more conservative approach has been suggested. Clinical trials have been introduced to evaluate the option of avoiding surgical intervention in a proportion of patients with DCIS defined as "low-risk" using certain clinicopathological criteria. These trials can potentially provide evidence-based models of active surveillance (with or without endocrine therapy) as a future management approach. Despite the undisputable fact of our need to address the obvious overtreatment of screen-detected DCIS, some important questions need to be considered regarding these trials including the eligibility criteria and definition of risk, the proportion of patient eligible for inclusion, and the length of time required for proper analysis of the trials' outcome in view of the long-term natural history of DCIS progression particularly the low-risk group. These factors can potentially affect the practicality and future impact of such trials. This review provides critical analysis of current DCIS management trials and highlights critical issues related to their practicality and the expected outcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Critical current densities of Jelly-Roll and powder metallurgy Nb{sub 3}Al wires as a function of temperature and magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thieme, C.L.H.; Kim, J.B.; Takayasu, M.

    Critical current densities of multi-filamentary Nb{sub 3}Al wire made with the Jelly-Roll process (JR) and mono-core powder metallurgy process (PM) wire were measured as a function of temperature and magnetic field. The temperature dependence of the resistive critical field B{sub c2} was measured in PM wires. There is a significant difference between these resistive B{sub c2} values and the ones determined by Kramer plots. The field dependence of the critical current depends on the manufacturing method. In general, it follows a relationship that falls between pure Kramer and one where the pinning force is inversely proportional with B{sup 2}. Inmore » contrast with Nb{sub 3}Sn no maximum in the bulk pinning force is observed down to 3 T (0.15MxB{sub c2}).« less

  8. Enhancing the sensitivity of mid-IR quantum cascade laser-based cavity-enhanced absorption spectroscopy using RF current perturbation.

    PubMed

    Manfred, Katherine M; Kirkbride, James M R; Ciaffoni, Luca; Peverall, Robert; Ritchie, Grant A D

    2014-12-15

    The sensitivity of mid-IR quantum cascade laser (QCL) off-axis cavity-enhanced absorption spectroscopy (CEAS), often limited by cavity mode structure and diffraction losses, was enhanced by applying a broadband RF noise to the laser current. A pump-probe measurement demonstrated that the addition of bandwidth-limited white noise effectively increased the laser linewidth, thereby reducing mode structure associated with CEAS. The broadband noise source offers a more sensitive, more robust alternative to applying single-frequency noise to the laser. Analysis of CEAS measurements of a CO(2) absorption feature at 1890  cm(-1) averaged over 100 ms yielded a minimum detectable absorption of 5.5×10(-3)  Hz(-1/2) in the presence of broadband RF perturbation, nearly a tenfold improvement over the unperturbed regime. The short acquisition time makes this technique suitable for breath applications requiring breath-by-breath gas concentration information.

  9. Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity.

    PubMed

    Martins, Karen A O; Cooper, Christopher L; Stronsky, Sabrina M; Norris, Sarah L W; Kwilas, Steven A; Steffens, Jesse T; Benko, Jacqueline G; van Tongeren, Sean A; Bavari, Sina

    2016-01-01

    Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP) as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol), MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh) cell frequencies with each adjuvant's impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development.

  10. Drug-induced GABA transporter currents enhance GABA release to induce opioid withdrawal behaviors.

    PubMed

    Bagley, Elena E; Hacker, Jennifer; Chefer, Vladimir I; Mallet, Christophe; McNally, Gavan P; Chieng, Billy C H; Perroud, Julie; Shippenberg, Toni S; Christie, MacDonald J

    2011-10-30

    Neurotransmitter transporters can affect neuronal excitability indirectly via modulation of neurotransmitter concentrations or directly via transporter currents. A physiological or pathophysiological role for transporter currents has not been described. We found that GABA transporter 1 (GAT-1) cation currents directly increased GABAergic neuronal excitability and synaptic GABA release in the periaqueductal gray (PAG) during opioid withdrawal in rodents. In contrast, GAT-1 did not indirectly alter GABA receptor responses via modulation of extracellular GABA concentrations. Notably, we found that GAT-1-induced increases in GABAergic activity contributed to many PAG-mediated signs of opioid withdrawal. Together, these data support the hypothesis that GAT-1 activity directly produces opioid withdrawal signs through direct hyperexcitation of GABAergic PAG neurons and nerve terminals, which presumably enhances GABAergic inhibition of PAG output neurons. These data provide, to the best of our knowledge, the first evidence that dysregulation of a neurotransmitter transporter current is important for the maladaptive plasticity that underlies opiate withdrawal.

  11. Quantitative study of electrophoretic and electroosmotic enhancement during alternating current iontophoresis across synthetic membranes.

    PubMed

    Yan, Guang; Li, S Kevin; Peck, Kendall D; Zhu, Honggang; Higuchi, William I

    2004-12-01

    One of the primary safety and tolerability limitations of direct current iontophoresis is the potential for electrochemical burns associated with the necessary current densities and/or application times required for effective treatment. Alternating current (AC) transdermal iontophoresis has the potential to eliminate electrochemical burns that are frequently observed during direct current transdermal iontophoresis. Although it has been demonstrated that the intrinsic permeability of skin can be increased by applying low-to-moderate AC voltages, transdermal transport phenomena and enhancement under AC conditions have not been systematically studied and are not well understood. The aim of the present work was to study the fundamental transport mechanisms of square-wave AC iontophoresis using a synthetic membrane system. The model synthetic membrane used was a composite Nuclepore membrane. AC frequencies ranging from 20 to 1000 Hz and AC fields ranging from 0.25 to 0.5 V/membrane were investigated. A charged permeant, tetraethyl ammonium, and a neutral permeant, arabinose, were used. The transport studies showed that flux was enhanced by increasing the AC voltage and decreasing AC frequency. Two theoretical transport models were developed: one is a homogeneous membrane model; the other is a heterogeneous membrane model. Experimental transport data were compared with computer simulations based on these models. Excellent agreement between model predictions and experimental data was observed when the data were compared with the simulations from the heterogeneous membrane model. (c) 2004 Wiley-Liss, Inc. and the American Pharmacists Association

  12. Huge critical current density and tailored superconducting anisotropy in SmFeAsO₀.₈F₀.₁₅ by low-density columnar-defect incorporation.

    PubMed

    Fang, L; Jia, Y; Mishra, V; Chaparro, C; Vlasko-Vlasov, V K; Koshelev, A E; Welp, U; Crabtree, G W; Zhu, S; Zhigadlo, N D; Katrych, S; Karpinski, J; Kwok, W K

    2013-01-01

    Iron-based superconductors could be useful for electricity distribution and superconducting magnet applications because of their relatively high critical current densities and upper critical fields. SmFeAsO₀.₈F₀.₁₅ is of particular interest as it has the highest transition temperature among these materials. Here we show that by introducing a low density of correlated nano-scale defects into this material by heavy-ion irradiation, we can increase its critical current density to up to 2 × 10⁷ A cm⁻² at 5 K--the highest ever reported for an iron-based superconductor--without reducing its critical temperature of 50 K. We also observe a notable reduction in the thermodynamic superconducting anisotropy, from 8 to 4 upon irradiation. We develop a model based on anisotropic electron scattering that predicts that the superconducting anisotropy can be tailored via correlated defects in semimetallic, fully gapped type II superconductors.

  13. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    NASA Astrophysics Data System (ADS)

    Fromer, Neil A.; Diallo, Mamadou S.

    2013-11-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies.

  14. Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration

    USGS Publications Warehouse

    Kile, D.E.; Chiou, C.T.

    1989-01-01

    Water solubility enhancements of 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT) and 1,2,3-trichlorobenzene (TCB) by aqueous surfactants below and above their critical micelle concentrations (CMCs) have been studied at room temperature with the following surfactants: Triton X-100, Triton X-114, Triton X-405, Brij 35, sodium dodecyl sulfate, and cetyltrimethylammonium bromide. While the solubilities of DDT and TCB are greatly enhanced by all surfactants above the measured CMC, DDT also exhibits significant solubility enhancements below the CMC of the molecularly nonhomogeneous surfactants (the Triton series and Brij 35). The plot of the apparent DDT solubility against the concentration of Triton and Brij surfactants shows an uprising curve below the nominal CMC, which is attributed to the successive micellization of the heterogeneous monomer species. Above the CMC, the enhancement effect with the nonionic surfactants is closely proportional to the nonpolar chain content of the surfactant, whereas the effect with the ionic surfactants is less accountable in terms of their nonpolar chain contents. The solubilization power of a micelle relative to a bulk solvent is evaluated by a comparison of the observed micelle-water and solvent-water partition coefficients.

  15. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons.

    PubMed

    Angel-Chavez, Luis I; Acosta-Gómez, Eduardo I; Morales-Avalos, Mario; Castro, Elena; Cruzblanca, Humberto

    2015-01-01

    In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.

  16. Characterizing AISI 1045 steel surface duplex-treated by alternating current field enhanced pack aluminizing and nitriding

    NASA Astrophysics Data System (ADS)

    Xie, Fei; Zhang, Ge; Pan, Jianwei

    2018-02-01

    Thin cases and long treating time are shortcomings of conventional duplex treatment of aluminizing followed by nitriding (DTAN). Alternating current field (ACF) enhanced DTAN was carried out on AISI 1045 steel by applying an ACF to treated samples and treating agents with a pair of electrodes for overcoming those shortcomings. By investigating cases' structures, phases, composition and hardness distributions of differently treated samples, preliminary studies were made on characterizations of the ACF enhanced duplex treatment to AISI 1045 steel. The results show that, with the help of the ACF, the surface Al-rich phase Al5Fe2 formed in conventional pack aluminizing can be easily avoided and the aluminizing process is dramatically promoted. The aluminizing case can be nitrided either with conventional pack nitriding or ACF enhanced pack nitriding. By applying ACF to pack nitriding, the diffusion of nitrogen into the aluminizing case is promoted. AlN, Fe2∼3N and solid solution of N in iron are efficiently formed as a result of reactions of N with the aluminizing case. A duplex treated case with an effective thickness of more than 170 μm can be obtained by the alternating current field enhanced 4 h pack aluminizing plus 4 h pack nitriding.

  17. Critical Current Statistics of a Graphene-Based Josephson Junction Infrared Single Photon Detector

    NASA Astrophysics Data System (ADS)

    Walsh, Evan D.; Lee, Gil-Ho; Efetov, Dmitri K.; Heuck, Mikkel; Crossno, Jesse; Taniguchi, Takashi; Watanabe, Kenji; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung

    Graphene is a promising material for single photon detection due to its broadband absorption and exceptionally low specific heat. We present a photon detector using a graphene sheet as the weak link in a Josephson junction (JJ) to form a threshold detector for single infrared photons. Calculations show that such a device could experience temperature changes of a few hundred percent leading to sub-Hz dark count rates and internal efficiencies approaching unity. We have fabricated the graphene-based JJ (gJJ) detector and measure switching events that are consistent with single photon detection under illumination by an attenuated laser. We study the physical mechanism for these events through the critical current behavior of the gJJ as a function of incident photon flux.

  18. Current sheath behavior and its velocity enhancement in a low energy Mather-type plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghamir, F. M.; Behbahani, R. A.

    The dynamics of the plasma sheath layer and its velocity enhancement have been studied in a low energy (4.9 kJ) Mather-type plasma focus device. Experiments were performed to study the effect of the Lorentz force variation on the current sheath expansion and movement, as well as the existence of traction between all parts of the sheath layer. Two different shape of anodes (cylindrical and step) along with an axial magnetic probe were used to investigate the effects of various experimental conditions, namely different charging voltages and gas pressures. In order to explore the upper limit of the current sheath velocity,more » a comparison has been made between the experimental data gathered by the probe and the Lee's computational model. The limitations governing the enhancement of the current sheath velocity that can lead to the deterioration of a good focusing phenomenon were also investigated. The increase of the current sheath velocity due to the usage of the step anode on ion generation and hard x-ray emissions have been demonstrated by means of an ion collector and a hard x-ray detector.« less

  19. Medical Education to Enhance Critical Consciousness: Facilitators' Experiences.

    PubMed

    Zaidi, Zareen; Vyas, Rashmi; Verstegen, Danielle; Morahan, Page; Dornan, Tim

    2017-11-01

    To analyze educators' experiences of facilitating cultural discussions in two global health professions education programs and what these experiences had taught them about critical consciousness. A multicultural research team conducted in-depth interviews with 16 faculty who had extensive experience facilitating cultural discussions. They analyzed transcripts of the interviews thematically, drawing sensitizing insights from Gramsci's theory of cultural hegemony. Collaboration and conversation helped the team self-consciously examine their positions toward the data set and be critically reflexive. Participant faculty used their prior experience facilitating cultural discussions to create a "safe space" in which learners could develop critical consciousness. During multicultural interactions they recognized and explicitly addressed issues related to power differentials, racism, implicit bias, and gender bias. They noted the need to be "facile in attending to pain" as learners brought up traumatic experiences and other sensitive issues including racism and the impact of power dynamics. They built relationships with learners by juxtaposing and exploring the sometimes-conflicting norms of different cultures. Participants were reflective about their own understanding and tendency to be biased. They aimed to break free of such biases while role modeling how to have the courage to speak up. Experience had given facilitators in multicultural programs an understanding of their responsibility to promote critical consciousness and social justice. How faculty without prior experience or expertise could develop those values and skills is a topic for future research.

  20. Effect of the microscopic correlated-pinning landscape on the macroscopic critical current density in YBCO films

    NASA Astrophysics Data System (ADS)

    Ghigo, G.; Chiodoni, A.; Gerbaldo, R.; Gozzelino, L.; Laviano, F.; Mezzetti, E.; Minetti, B.; Camerlingo, C.

    This paper deals with the mechanisms controlling the critical current density vs. field behavior in YBCO films. We base our analysis on a suitable model concerning the existence of a network of intergrain Josephson junctions whose length is modulated by defects. Irradiation with 0.25 GeV Au ions provide a useful tool to check the texture of the sample, in particular to give a gauge length reference to separate “weak” links and high- J c links.

  1. A Review and Discussion of Epistemological Commitments, Metacognition, and Critical Thinking with Suggestions on Their Enhancement in Internet-Assisted Chemistry Classrooms

    NASA Astrophysics Data System (ADS)

    Tsai, Chin-Chung

    2001-07-01

    Recently, educators have focused on students' internal control of learning. Epistemological commitments, metacognition, and critical thinking are relevant considerations when addressing this topic. This paper explores the relationships among these domains as a theoretical framework for enhancing chemistry education. The framework shows that these domains share many commonalities. For example, they all focus on learners' self-reflection and they all are rooted in the constructivist theory. This paper further proposes a role for Internet technology in helping students develop appropriate epistemological commitments, metacognitive skills, and critical thinking.

  2. Scapulothoracic bursitis and snapping scapula syndrome: a critical review of current evidence.

    PubMed

    Warth, Ryan J; Spiegl, Ulrich J; Millett, Peter J

    2015-01-01

    Symptomatic scapulothoracic disorders, such as painful scapular crepitus and/or bursitis, are uncommon; however, they can produce significant pain and disability in many patients. To review the current knowledge pertaining to snapping scapula syndrome and to identify areas of further research that may be helpful to improve clinical outcomes and patient satisfaction. Systematic review. We performed a preliminary search of the PubMed and Embase databases using the search terms "snapping scapula," "scapulothoracic bursitis," "partial scapulectomy," and "superomedial angle resection" in September 2013. All nonreview articles related to the topic of snapping scapula syndrome were included. The search identified a total of 167 unique articles, 81 of which were relevant to the topic of snapping scapula syndrome. There were 36 case series of fewer than 10 patients, 16 technique papers, 11 imaging studies, 9 anatomic studies, and 9 level IV outcomes studies. The level of evidence obtained from this literature search was inadequate to perform a formal systematic review or meta-analysis. Therefore, a critical review of current evidence is presented. Snapping scapula syndrome, a likely underdiagnosed condition, can produce significant shoulder dysfunction in many patients. Because the precise origin is typically unknown, specific treatments that are effective for some patients may not be effective for others. Nevertheless, bursectomy with or without partial scapulectomy is currently the most effective primary method of treatment in patients who fail nonoperative therapy. However, many patients experience continued shoulder disability even after surgical intervention. Future studies should focus on identifying the modifiable factors associated with poor outcomes after operative and nonoperative management for snapping scapula syndrome in an effort to improve clinical outcomes and patient satisfaction. © 2014 The Author(s).

  3. [Indications of dexmedetomidine in the current sedoanalgesia tendencies in critical patients].

    PubMed

    Romera Ortega, M A; Chamorro Jambrina, C; Lipperheide Vallhonrat, I; Fernández Simón, I

    2014-01-01

    Recently, dexmedetomidine has been marketed in Spain and other European countries. The published experience regarding its use has placed dexmedetomidine on current trends in sedo-analgesic strategies in the adult critically ill patient. Dexmedetomidine has sedative and analgesic properties, without respiratory depressant effects, inducing a degree of depth of sedation in which the patient can open its eyes to verbal stimulation, obey simple commands and cooperate in nursing care. It is therefore a very useful drug in patients who can be maintained on mechanical ventilation with these levels of sedation avoiding the deleterious effects of over or infrasedation. Because of its effects on α2-receptors, it's very useful for the control and prevention of tolerance and withdrawal to other sedatives and psychotropic drugs. The use of dexmedetomidine has been associated with lower incidence of delirium when compared with other sedatives. Moreover, it's a potentially useful drug for sedation of patients in non-invasive ventilation. Copyright © 2013 Elsevier España, S.L. y SEMICYUC. All rights reserved.

  4. [Critical evaluation of current diagnostic classification systems in psychiatry: the case of DSM-5].

    PubMed

    Luciano, Mario; Sampogna, Gaia; Del Vecchio, Valeria; De Rosa, Corrado; Albert, Umberto; Carrà, Giuseppe; Dell'Osso, Bernardo; Lorenzo, Giorgio Di; Ferrari, Silvia; Martinotti, Giovanni; Nanni, Maria Giulia; Pinna, Federica; Pompili, Maurizio; Volpe, Umberto; Catapano, Francesco; Fiorillo, Andrea

    2016-01-01

    Since its first edition, the Diagnostic and Statistical manual of Mental disorders (DSM) has had a great impact on the scientific community and the public opinion as well. In 2013, the American Psychiatric Association released the fifth edition of the manual and - as for the previous versions - several criticisms raised. In particular, the persistence of the categorical approach to mental disorders represents one of the main debated topics, as well as the introduction of new diagnostic syndromes, which are not based on an adequate evidences. Moreover, the threshold of diagnostic criteria for many mental disorders has been lowered, with the consequence that the boundaries between "normality" and "pathology" is not so clear. In this paper, we will: 1) report the historical development of the DSM from the publication of its first edition; 2) describe the main changes introduced in the DSM-5; 3) discuss critical elements in the DSM-5. The current debate regarding the validity of diagnostic manuals and its criteria is threatening the psychiatric discipline, but a possible solution should be represented by the integration of diagnostic criteria with the in-depth description of patient's psychopathological experiences.

  5. Self-organised criticality and 1/f noise in single-channel current of voltage-dependent anion channel

    NASA Astrophysics Data System (ADS)

    Banerjee, J.; Verma, M. K.; Manna, S.; Ghosh, S.

    2006-02-01

    Noise profile of Voltage Dependent Anion Channel (VDAC) is investigated in open channel state. Single-channel currents through VDAC from mitochondria of rat brain reconstituted into a planar lipid bilayer are recorded under different voltage clamped conditions across the membrane. Power spectrum analysis of current indicates power law noise of 1/f nature. Moreover, this 1/f nature of the open channel noise is seen throughout the range of applied membrane potential from -30 to +30 mV. It is being proposed that 1/f noise in open ion channel arises out of obstruction in the passage of ions across the membrane. The process is recognised as a phenomenon of self-organized criticality (SOC) like sandpile avalanche and other physical systems. Based on SOC it has been theoretically established that the system of ion channel follows power law noise as observed in our experiments. We also show that the first-time return probability of current fluctuations obeys a power law distribution.

  6. Current hypotheses on how microsatellite instability leads to enhanced survival of Lynch Syndrome patients.

    PubMed

    Drescher, Kristen M; Sharma, Poonam; Lynch, Henry T

    2010-01-01

    High levels of microsatellite instability (MSI-high) are a cardinal feature of colorectal tumors from patients with Lynch Syndrome. Other key characteristics of Lynch Syndrome are that these patients experience fewer metastases and have enhanced survival when compared to patients diagnosed with microsatellite stable (MSS) colorectal cancer. Many of the characteristics associated with Lynch Syndrome including enhanced survival are also observed in patients with sporadic MSI-high colorectal cancer. In this review we will present the current state of knowledge regarding the mechanisms that are utilized by the host to control colorectal cancer in Lynch Syndrome and why these same mechanisms fail in MSS colorectal cancers.

  7. Current Hypotheses on How Microsatellite Instability Leads to Enhanced Survival of Lynch Syndrome Patients

    PubMed Central

    Drescher, Kristen M.; Sharma, Poonam; Lynch, Henry T.

    2010-01-01

    High levels of microsatellite instability (MSI-high) are a cardinal feature of colorectal tumors from patients with Lynch Syndrome. Other key characteristics of Lynch Syndrome are that these patients experience fewer metastases and have enhanced survival when compared to patients diagnosed with microsatellite stable (MSS) colorectal cancer. Many of the characteristics associated with Lynch Syndrome including enhanced survival are also observed in patients with sporadic MSI-high colorectal cancer. In this review we will present the current state of knowledge regarding the mechanisms that are utilized by the host to control colorectal cancer in Lynch Syndrome and why these same mechanisms fail in MSS colorectal cancers. PMID:20631828

  8. Critical current density and microstructure of screen-printed (Bi,Pb)2Sr2Ca2Cu3O(x) thick film sandwiched between Ag substrates

    NASA Astrophysics Data System (ADS)

    Oota, A.; Matsui, H.; Funakura, M.; Iwaya, J.; Maeda, J.

    1993-07-01

    A process of combined rolling and uniaxial pressing with intermediate sintering steps for fabrication of screen-printed (Bi,Pb)2Sr2Ca2Cu3O(x) thick films sandwiched between Ag substrates yields c-axis-oriented microstructures with a high critical current density (Jc) of 1.5 x 10 exp 4 A/sq cm (77 K, 0 T) and 9.0 x 10 exp 4 A/sq cm (23 K, 0 T). The measured Jc anisotropy at 77 K, as a function of the angle Theta between B and c axis, is pronounced. An increase in B sharpens a peak at Theta = 90 deg in the Jc vs Theta curve, together with enhancement of the anisotropy ratio. In high fields above 0.5 T, the half-height angular width of the peak approaches an average misalignment angle between the grains with increasing B.

  9. Accuracy of subcutaneous continuous glucose monitoring in critically ill adults: improved sensor performance with enhanced calibrations.

    PubMed

    Leelarathna, Lalantha; English, Shane W; Thabit, Hood; Caldwell, Karen; Allen, Janet M; Kumareswaran, Kavita; Wilinska, Malgorzata E; Nodale, Marianna; Haidar, Ahmad; Evans, Mark L; Burnstein, Rowan; Hovorka, Roman

    2014-02-01

    Accurate real-time continuous glucose measurements may improve glucose control in the critical care unit. We evaluated the accuracy of the FreeStyle(®) Navigator(®) (Abbott Diabetes Care, Alameda, CA) subcutaneous continuous glucose monitoring (CGM) device in critically ill adults using two methods of calibration. In a randomized trial, paired CGM and reference glucose (hourly arterial blood glucose [ABG]) were collected over a 48-h period from 24 adults with critical illness (mean±SD age, 60±14 years; mean±SD body mass index, 29.6±9.3 kg/m(2); mean±SD Acute Physiology and Chronic Health Evaluation score, 12±4 [range, 6-19]) and hyperglycemia. In 12 subjects, the CGM device was calibrated at variable intervals of 1-6 h using ABG. In the other 12 subjects, the sensor was calibrated according to the manufacturer's instructions (1, 2, 10, and 24 h) using arterial blood and the built-in point-of-care glucometer. In total, 1,060 CGM-ABG pairs were analyzed over the glucose range from 4.3 to 18.8 mmol/L. Using enhanced calibration median (interquartile range) every 169 (122-213) min, the absolute relative deviation was lower (7.0% [3.5, 13.0] vs. 12.8% [6.3, 21.8], P<0.001), and the percentage of points in the Clarke error grid Zone A was higher (87.8% vs. 70.2%). Accuracy of the Navigator CGM device during critical illness was comparable to that observed in non-critical care settings. Further significant improvements in accuracy may be obtained by frequent calibrations with ABG measurements.

  10. A novel photoactive and three-dimensional stainless steel anode dramatically enhances the current density of bioelectrochemical systems.

    PubMed

    Feng, Huajun; Tang, Chenyi; Wang, Qing; Liang, Yuxiang; Shen, Dongsheng; Guo, Kun; He, Qiaoqiao; Jayaprada, Thilini; Zhou, Yuyang; Chen, Ting; Ying, Xianbin; Wang, Meizhen

    2018-04-01

    This study reports a high-performance 3D stainless-steel photoanode (3D SS photoanode) for bioelectrochemical systems (BESs). The 3D SS photoanode consists of 3D carbon-coated SS felt bioactive side and a flat α-Fe 2 O 3 -coated SS plate photoactive side. Without light illumination, the electrode reached a current density of 26.2 ± 1.9 A m -2 , which was already one of the highest current densities reported thus far. Under illumination, the current density of the electrode was further increased to 46.5 ± 2.9 A m -2 . The mechanism of the photo-enhanced current production can be attributed to the reduced charge-transfer resistance between electrode surface and the biofilm with illumination. It was also found that long-term light illumination can enhance the biofilm formation on the 3D SS photoanode. These findings demonstrate that using the synergistic effect of photocatalysis and microbial electrocatalysis is an efficient way to boost the current production of the existing high-performance 3D anodes for BESs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Sources and sinks of Earth's ring current populations

    NASA Astrophysics Data System (ADS)

    Mauk, B.

    2017-12-01

    Processes that modify and transport current-carrying particles into and out of Earth's ring current regions are overviewed and discussed here with a focus on outstanding mysteries and uncertainties. Examples of such mysteries include the following. Some modeling and observational approaches point to a need for storm-time enhancements in the global electric field configuration to help bring magnetotail populations into the inner magnetosphere. And yet, electric field measurements from several missions, most recently the Van Allen Probes, suggest that only highly transient enhancements occur in critical regions that connect the outer and inner regions. Global enhancements appear to be internally generated rather than necessarily being driven from the outside. Another sample mystery involves the processes that give rise to the sometimes initial prompt recovery of the magnetic storm indice DST, given that loss processes traditionally invoked are likely too slow. Wave losses, such as those engendered by Electromagnetic Ion Cyclotron (EMIC) waves, may be responsible, but observational support for such a solution is lacking. These and other uncertainties are discussed with a goal of addressing how they might be addressed with the present great constellation of Earth-orbiting spacecraft, most recently joined by MMS and Arase (ERG).

  12. Longitudinal gradient coils with enhanced radial uniformity in restricted diameter: Single-current and multiple-current approaches.

    PubMed

    Romero, Javier A; Domínguez, Gabriela A; Anoardo, Esteban

    2017-03-01

    An important requirement for a gradient coil is that the uniformity of the generated magnetic field gradient should be maximal within the active volume of the coil. For a cylindrical geometry, the radial uniformity of the gradient turns critic, particularly in cases where the gradient-unit has to be designed to fit into the inner bore of a compact magnet of reduced dimensions, like those typically used in fast-field-cycling NMR. In this paper we present two practical solutions aimed to fulfill this requirement. We propose a matrix-inversion optimization algorithm based on the Biot-Savart law, that using a proper cost function, allows maximizing the uniformity of the gradient and power efficiency. The used methodology and the simulation code were validated in a single-current design, by comparing the computer simulated field map with the experimental data measured in a real prototype. After comparing the obtained results with the target field approach, a multiple-element coil driven by independent current sources is discussed, and a real prototype evaluated. Opposed equispaced independent windings are connected in pairs conforming an arrangement of independent anti-Helmholtz units. This last coil seizes 80% of its radial dimension with a gradient uniformity better than 5%. The design also provides an adaptable region of uniformity along with adjustable coil efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Evaporation enhancement in soils: a critical review

    NASA Astrophysics Data System (ADS)

    Rutten, Martine; van de Giesen, Nick

    2015-04-01

    Temperature gradients in the top layer of the soil are, especially during the daytime, steeper than would be expected if thermal conduction was the primary heat transfer mechanism. Evaporation seems to have significant influence on the soil heat budget. Only part of the surface soil heat flux is conducted downwards, increasing the soil temperatures, and part is used for evaporation, acting as a sink to the soil heat budget. For moist soils, the evaporation is limited by the transport of water molecules to the surface. The classical view is that water vapor is transported from the evaporation front to the surface by diffusion. Diffusion is mixing due to the random movement of molecules resulting in flattening concentration gradients. In soil, the diffusive vapor flux and the resulting latent heat flux are generally small. We found that transport enhancement is necessary in order to sustain vapor fluxes that are large enough to sustain latent heat fluxes, as well as being large enough to explain the observed temperature gradients. Enhancement of vapor diffusion is a known phenomenon, subject to debate on the explanations of underlying mechanism. In an extensive literature review on vapor enhancement in soils, the plausibility of various mechanisms was assessed. We reviewed mechanisms based on (combinations of) diffusive, viscous, buoyant, capillary and external pressure forces including: thermodiffusion, dispersion, Stefan's flow, Knudsen diffusion, liquid island effect, hydraulic lift, free convection, double diffusive convection and forced convection. The analysis of the order of magnitude of the mechanisms based on first principles clearly distinguished between plausible and implausible mechanisms. Thermodiffusion, Stefan's flow, Knudsen effects, liquid islands do not significantly contribute to enhanced evaporation. Double diffusive convection seemed unlikely due to lack of experimental evidence, but could not be completely excluded from the list of potential

  14. Strongly enhanced current densities in Sr0.6K0.4Fe2As2 + Sn superconducting tapes.

    PubMed

    Lin, He; Yao, Chao; Zhang, Xianping; Zhang, Haitao; Wang, Dongliang; Zhang, Qianjun; Ma, Yanwei; Awaji, Satoshi; Watanabe, Kazuo

    2014-03-25

    Improving transport current has been the primary topic for practical application of superconducting wires and tapes. However, the porous nature of powder-in-tube (PIT) processed iron-based tapes is one of the important reasons for low critical current density (Jc) values. In this work, the superconducting core density of ex-situ Sr0.6K0.4Fe2As2 + Sn tapes, prepared from optimized precursors, was significantly improved by employing a simple hot pressing as an alternative route for final sintering. The resulting samples exhibited optimal critical temperature (Tc), sharp resistive transition, small resistivity and high Vickers hardness (Hv) value. Consequently, the transport Jc reached excellent values of 5.1 × 10(4) A/cm(2) in 10 T and 4.3 × 10(4) A/cm(2) in 14 T at 4.2 K, respectively. Our tapes also exhibited high upper critical field Hc2 and almost field-independent Jc. These results clearly demonstrate that PIT pnictide wire conductors are very promising for high-field magnet applications.

  15. Strongly enhanced current densities in Sr0.6K0.4Fe2As2 + Sn superconducting tapes

    PubMed Central

    Lin, He; Yao, Chao; Zhang, Xianping; Zhang, Haitao; Wang, Dongliang; Zhang, Qianjun; Ma, Yanwei; Awaji, Satoshi; Watanabe, Kazuo

    2014-01-01

    Improving transport current has been the primary topic for practical application of superconducting wires and tapes. However, the porous nature of powder-in-tube (PIT) processed iron-based tapes is one of the important reasons for low critical current density (Jc) values. In this work, the superconducting core density of ex-situ Sr0.6K0.4Fe2As2 + Sn tapes, prepared from optimized precursors, was significantly improved by employing a simple hot pressing as an alternative route for final sintering. The resulting samples exhibited optimal critical temperature (Tc), sharp resistive transition, small resistivity and high Vickers hardness (Hv) value. Consequently, the transport Jc reached excellent values of 5.1 × 104 A/cm2 in 10 T and 4.3 × 104 A/cm2 in 14 T at 4.2 K, respectively. Our tapes also exhibited high upper critical field Hc2 and almost field-independent Jc. These results clearly demonstrate that PIT pnictide wire conductors are very promising for high-field magnet applications. PMID:24663054

  16. Strongly enhanced current densities in Sr0.6K0.4Fe2As2 + Sn superconducting tapes

    NASA Astrophysics Data System (ADS)

    Lin, He; Yao, Chao; Zhang, Xianping; Zhang, Haitao; Wang, Dongliang; Zhang, Qianjun; Ma, Yanwei; Awaji, Satoshi; Watanabe, Kazuo

    2014-03-01

    Improving transport current has been the primary topic for practical application of superconducting wires and tapes. However, the porous nature of powder-in-tube (PIT) processed iron-based tapes is one of the important reasons for low critical current density (Jc) values. In this work, the superconducting core density of ex-situ Sr0.6K0.4Fe2As2 + Sn tapes, prepared from optimized precursors, was significantly improved by employing a simple hot pressing as an alternative route for final sintering. The resulting samples exhibited optimal critical temperature (Tc), sharp resistive transition, small resistivity and high Vickers hardness (Hv) value. Consequently, the transport Jc reached excellent values of 5.1 × 104 A/cm2 in 10 T and 4.3 × 104 A/cm2 in 14 T at 4.2 K, respectively. Our tapes also exhibited high upper critical field Hc2 and almost field-independent Jc. These results clearly demonstrate that PIT pnictide wire conductors are very promising for high-field magnet applications.

  17. RAPID COMMUNICATION: Effect of strain, magnetic field and field angle on the critical current density of Y Ba2Cu3O7-δ coated conductors

    NASA Astrophysics Data System (ADS)

    van der Laan, D. C.; Ekin, J. W.; Douglas, J. F.; Clickner, C. C.; Stauffer, T. C.; Goodrich, L. F.

    2010-07-01

    A large, magnetic-field-dependent, reversible reduction in critical current density with axial strain in Y Ba2Cu3O7-δ coated conductors at 75.9 K has been measured. This effect may have important implications for the performance of Y Ba2Cu3O7-δ coated conductors in applications where the conductor experiences large stresses in the presence of a magnetic field. Previous studies have been performed only under tensile strain and could provide only a limited understanding of the in-field strain effect. We now have constructed a device for measuring the critical current density as a function of axial compressive and tensile strain and applied magnetic field as well as magnetic field angle, in order to determine the magnitude of this effect and to create a better understanding of its origin. The reversible reduction in critical current density with strain becomes larger with increasing magnetic field at all field angles. At 76 K the critical current density is reduced by about 30% at - 0.5% strain when a magnetic field of 5 T is applied parallel to the c-axis of the conductor or 8 T is applied in the ab-plane, compared to a reduction of only 13% in self-field. Differences in the strain response of the critical current density at various magnetic field angles indicate that the pinning mechanisms in Y Ba2Cu3O7-δ coated conductors are uniquely affected by strain. Contribution of NIST, not subject to US copyright.

  18. Origin of hydrogen-inclusion-induced critical current deviation in Nb/AlOx/Al/Nb Josephson junctions

    NASA Astrophysics Data System (ADS)

    Hinode, Kenji; Satoh, Tetsuro; Nagasawa, Shuichi; Hidaka, Mutsuo

    2010-04-01

    We investigated the mechanisms that change the critical current density (Jc) of Nb/AlOx/Al/Nb Josephson junctions due to the inclusion of hydrogen in the Nb electrodes. Our investigations were performed according to three aspects: the superconductivity change, the change in thickness of the barrier layer, and the change in the barrier height due to the electronic effect. The results are as follows: (a) the hydrogen-inclusion-accompanied changes in the superconductivity parameters, such as the junction gap voltage, were much less than those of the critical current density, (b) the effect of hydrogen inclusion on Jc varied depending on the electrodes, i.e., the upper electrode above the barrier layer was the most affected, (c) the junctions with increased Ics due to hydrogen exclusion showed the identical amount of decrease in the junction resistance measured at room temperature, and (d) the hydrogen exclusion from the junction electrodes had no influence on the Nb/Al/AlOx/Al/Nb junctions, which had an extra Al layer. Based on these results we conclude that the Jc change is mainly caused by the change in junction resistance. A one order of magnitude smaller effect is caused by the superconductivity change. We believe the Jc change is caused by a Nb work function increase due to the hydrogen inclusion, resulting in an increase in barrier height.

  19. Eddy current compensation for delta relaxation enhanced MR by dynamic reference phase modulation.

    PubMed

    Hoelscher, Uvo Christoph; Jakob, Peter M

    2013-04-01

    Eddy current compensation by dynamic reference phase modulation (eDREAM) is a compensation method for eddy current fields induced by B 0 field-cycling which occur in delta relaxation enhanced MR (dreMR) imaging. The presented method is based on a dynamic frequency adjustment and prevents eddy current related artifacts. It is easy to implement and can be completely realized in software for any imaging sequence. In this paper, the theory of eDREAM is derived and two applications are demonstrated. The theory describes how to model the behavior of the eddy currents and how to implement the compensation. Phantom and in vivo measurements are carried out and demonstrate the benefits of eDREAM. A comparison of images acquired with and without eDREAM shows a significant improvement in dreMR image quality. Images without eDREAM suffer from severe artifacts and do not allow proper interpretation while images with eDREAM are artifact free. In vivo experiments demonstrate that dreMR imaging without eDREAM is not feasible as artifacts completely change the image contrast. eDREAM is a flexible eddy current compensation for dreMR. It is capable of completely removing the influence of eddy currents such that the dreMR images do not suffer from artifacts.

  20. Analytical formulae for computing the critical current of an Nb3Sn strand under bending

    NASA Astrophysics Data System (ADS)

    Ciazynski, D.; Torre, A.

    2010-12-01

    Works on bending strain in Nb3Sn wires were initiated in support of the 'react-and-wind' technique used to manufacture superconducting coils. More recently, the bending strains of Nb3Sn strands in cable-in-conduit conductors (CICC) under high Lorentz forces have been thought to be partly responsible for the degradation of the conductor performance in terms of critical current and n index, particularly for the international thermonuclear experimental reactor (ITER) conductors. This has led to a new wave of experiments and modelling on this subject. The computation of the current transport capability in an Nb3Sn wire under uniform bending used to be carried out through the so-called Ekin's models, and more recently through numerical simulations with electric networks. The flaws of Ekin's models are that they consider only two extreme cases or limits, namely the so-called long twist pitch (LTP) or short twist pitch (STP) cases, and that these models only allow computation of a value for the critical current without reference to the n index of the superconducting filaments (i.e. this index is implicitly assumed to be infinite). Although the numerical models allow a fine description of the wire under operation and can take into account the filament's n index, they need a refined meshing to be accurate enough and their results may be sensitive to boundary conditions (i.e. current injection in the wire), also general intrinsic parameters cannot be easily identified. In this paper, we propose clearly to go further than Ekin's models by developing, from a homogeneous model and Maxwell's equations, an analytical model to establish the general equation governing the evolution of the electric field inside an Nb3Sn strand under uniform bending (with possible longitudinal strain). Within the usual strand fabrication limits, this equation allows the definition of one single parameter to discriminate the STP and LTP cases. It is also shown that whereas Ekin's LTP model corresponds

  1. Connectomes as constitutively epistemic objects: Critical perspectives on modeling in current neuroanatomy.

    PubMed

    Haueis, Philipp; Slaby, Jan

    2017-01-01

    The term "connectome" is commonly taken to describe a complete map of neural connections in a nervous system of a given species. This chapter provides a critical perspective on the role of connectomes in neuroscientific practice and asks how the connectomic approach fits into a larger context in which network thinking permeates technology, infrastructure, social life, and the economy. In the first part of this chapter, we argue that, seen from the perspective of ongoing research, the notion of connectomes as "complete descriptions" is misguided. Our argument combines Rachel Ankeny's analysis of neuroanatomical wiring diagrams as "descriptive models" with Hans-Jörg Rheinberger's notion of "epistemic objects," i.e., targets of research that are still partially unknown. Combining these aspects we conclude that connectomes are constitutively epistemic objects: there just is no way to turn them into permanent and complete technical standards because the possibilities to map connection properties under different modeling assumptions are potentially inexhaustible. In the second part of the chapter, we use this understanding of connectomes as constitutively epistemic objects in order to critically assess the historical and political dimensions of current neuroscientific research. We argue that connectomics shows how the notion of the "brain as a network" has become the dominant metaphor of contemporary brain research. We further point out that this metaphor shares (potentially problematic) affinities to the form of contemporary "network societies." We close by pointing out how the relation between connectomes and networks in society could be used in a more fruitful manner. © 2017 Elsevier B.V. All rights reserved.

  2. Using a Faculty-in-Residence Model to Enhance Curriculae in Computer Science and Social Work with Writing and Critical Thinking

    ERIC Educational Resources Information Center

    Sarnoff, Susan; Welch, Lonnie; Gradin, Sherrie; Sandell, Karin

    2004-01-01

    This paper will discuss the results of a project that enabled three faculty members from disparate disciplines: Social Work, Interpersonal Communication and Software Engineering, to enhance writing and critical thinking in their courses. The paper will address the Faculty-in-Residence project model, the activities taken on as a result of it, the…

  3. Higher Education: A Critical Business.

    ERIC Educational Resources Information Center

    Barnett, Ronald

    Current concepts of critical thinking need to be reconstrued into the much broader concept of "critical being" and applied to higher education. Under this construct, critical persons (students) become more than just critical thinkers; they engage critically with the world and with themselves; they not only reflect critically on…

  4. Forskolin Suppresses Delayed-Rectifier K+ Currents and Enhances Spike Frequency-Dependent Adaptation of Sympathetic Neurons

    PubMed Central

    Castro, Elena; Cruzblanca, Humberto

    2015-01-01

    In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels. PMID:25962132

  5. Early exercise in critically ill patients enhances short-term functional recovery.

    PubMed

    Burtin, Chris; Clerckx, Beatrix; Robbeets, Christophe; Ferdinande, Patrick; Langer, Daniel; Troosters, Thierry; Hermans, Greet; Decramer, Marc; Gosselink, Rik

    2009-09-01

    : To investigate whether a daily exercise session, using a bedside cycle ergometer, is a safe and effective intervention in preventing or attenuating the decrease in functional exercise capacity, functional status, and quadriceps force that is associated with prolonged intensive care unit stay. A prolonged stay in the intensive care unit is associated with muscle dysfunction, which may contribute to an impaired functional status up to 1 yr after hospital discharge. No evidence is available concerning the effectiveness of an early exercise training intervention to prevent these detrimental complications. : Randomized controlled trial. : Medical and surgical intensive care unit at University Hospital Gasthuisberg. : Ninety critically ill patients were included as soon as their cardiorespiratory condition allowed bedside cycling exercise (starting from day 5), given they still had an expected prolonged intensive care unit stay of at least 7 more days. : Both groups received respiratory physiotherapy and a daily standardized passive or active motion session of upper and lower limbs. In addition, the treatment group performed a passive or active exercise training session for 20 mins/day, using a bedside ergometer. : All outcome data are reflective for survivors. Quadriceps force and functional status were assessed at intensive care unit discharge and hospital discharge. Six-minute walking distance was measured at hospital discharge. No adverse events were identified during and immediately after the exercise training. At intensive care unit discharge, quadriceps force and functional status were not different between groups. At hospital discharge, 6-min walking distance, isometric quadriceps force, and the subjective feeling of functional well-being (as measured with "Physical Functioning" item of the Short Form 36 Health Survey questionnaire) were significantly higher in the treatment group (p < .05). : Early exercise training in critically ill intensive care unit

  6. Enhancement of bending strain tolerance and current carrying property of MgB2 based multifilamentary wires

    NASA Astrophysics Data System (ADS)

    Thomas, Syju; Varghese, Neson; Rahul, S.; Devadas, K. M.; Vinod, K.; Syamaprasad, U.

    2012-12-01

    The effect of bending strain on current carrying capacity of MgB2 multifilamentary wires was studied with 4, 8 and 16 multifilamentary wires. The critical current density (JC) of straight wires and bent wires with 5, 10, and 15 cm diameter was measured. Both annealed & bent and bent & annealed wires were used for measurement. The JC of annealed & bent wires were found to decrease with decrease in bent diameter and the rate of degradation of JC decreased with increasing number of filaments, while bent & annealed wires almost retained its JC at all diameters studied.

  7. Daily visual stimulation in the critical period enhances multiple aspects of vision through BDNF-mediated pathways in the mouse retina

    PubMed Central

    Mui, Amanda M.; Yang, Victoria; Aung, Moe H.; Fu, Jieming; Adekunle, Adewumi N.; Prall, Brian C.; Sidhu, Curran S.; Park, Han na; Boatright, Jeffrey H.; Iuvone, P. Michael

    2018-01-01

    Visual experience during the critical period modulates visual development such that deprivation causes visual impairments while stimulation induces enhancements. This study aimed to determine whether visual stimulation in the form of daily optomotor response (OMR) testing during the mouse critical period (1) improves aspects of visual function, (2) involves retinal mechanisms and (3) is mediated by brain derived neurotrophic factor (BDNF) and dopamine (DA) signaling pathways. We tested spatial frequency thresholds in C57BL/6J mice daily from postnatal days 16 to 23 (P16 to P23) using OMR testing. Daily OMR-treated mice were compared to littermate controls that were placed in the OMR chamber without moving gratings. Contrast sensitivity thresholds, electroretinograms (ERGs), visual evoked potentials, and pattern ERGs were acquired at P21. To determine the role of BDNF signaling, a TrkB receptor antagonist (ANA-12) was systemically injected 2 hours prior to OMR testing in another cohort of mice. BDNF immunohistochemistry was performed on retina and brain sections. Retinal DA levels were measured using high-performance liquid chromatography. Daily OMR testing enhanced spatial frequency thresholds and contrast sensitivity compared to controls. OMR-treated mice also had improved rod-driven ERG oscillatory potential response times, greater BDNF immunoreactivity in the retinal ganglion cell layer, and increased retinal DA content compared to controls. VEPs and pattern ERGs were unchanged. Systemic delivery of ANA-12 attenuated OMR-induced visual enhancements. Daily OMR testing during the critical period leads to general visual function improvements accompanied by increased DA and BDNF in the retina, with this process being requisitely mediated by TrkB activation. These results suggest that novel combination therapies involving visual stimulation and using both behavioral and molecular approaches may benefit degenerative retinal diseases or amblyopia. PMID:29408880

  8. Critical current degradation behaviour of GdBCO CC tapes in pure torsion and combined tension-torsion modes

    NASA Astrophysics Data System (ADS)

    Gorospe, Alking; Bautista, Zhierwinjay; Shin, Hyung-Seop

    2016-10-01

    Coated conductor (CC) tapes utilized in high-current-density superconducting cables are commonly subjected to different loading modes, primarily torsion and tension especially in the case of twisted stacked-tape cable. Torsion load can occur due to twisting along the length or when winding the CC tapes around a former, while tension load can occur due to pre-tension when coiled and as a hoop stress when the coil is energized. In this study, electromechanical properties of single CC tapes under torsion load were investigated using a new test apparatus. The results could provide basic information for cable designers to fully characterize stacked cables. Copper-electroplated and brass-laminated CC tapes fabricated with different deposition techniques were subjected to pure torsion and combined tension-torsion loading. The critical current, I c degradation behaviours of CC tapes under torsional deformation were examined. Also, the effect of further external lamination on the I c degradation behaviour of the CC tapes under such loading conditions was investigated. In the case of the combined tension-torsion test, short samples were subjected to twist pitches of 200 mm and 100 mm. Critical parameters including reversible axial stress and strain in such twist pitch conditions were also investigated.

  9. Enhanced model-based design of a high-throughput three dimensional micromixer driven by alternating-current electrothermal flow.

    PubMed

    Wu, Yupan; Ren, Yukun; Jiang, Hongyuan

    2017-01-01

    We propose a 3D microfluidic mixer based on the alternating current electrothermal (ACET) flow. The ACET vortex is produced by 3D electrodes embedded in the sidewall of the microchannel and is used to stir the fluidic sample throughout the entire channel depth. An optimized geometrical structure of the proposed 3D micromixer device is obtained based on the enhanced theoretical model of ACET flow and natural convection. We quantitatively analyze the flow field driven by the ACET, and a pattern of electrothermal microvortex is visualized by the micro-particle imaging velocimetry. Then, the mixing experiment is conducted using dye solutions with varying solution conductivities. Mixing efficiency can exceed 90% for electrolytes with 0.2 S/m (1 S/m) when the flow rate is 0.364 μL/min (0.728 μL/min) and the imposed peak-to-peak voltage is 52.5 V (35 V). A critical analysis of our micromixer in comparison with different mixer designs using a comparative mixing index is also performed. The ACET micromixer embedded with sidewall 3D electrodes can achieve a highly effective mixing performance and can generate high throughput in the continuous-flow condition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Current and Future Critical Issues in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Navaz, Homayun K.; Dix, Jeff C.

    1998-01-01

    The objective of this research was to tackle several problems that are currently of great importance to NASA. In a liquid rocket engine several complex processes take place that are not thoroughly understood. Droplet evaporation, turbulence, finite rate chemistry, instability, and injection/atomization phenomena are some of the critical issues being encountered in a liquid rocket engine environment. Pulse Detonation Engines (PDE) performance, combustion chamber instability analysis, 60K motor flowfield pattern from hydrocarbon fuel combustion, and 3D flowfield analysis for the Combined Cycle engine were of special interest to NASA. During the summer of 1997, we made an attempt to generate computational results for all of the above problems and shed some light on understanding some of the complex physical phenomena. For this purpose, the Liquid Thrust Chamber Performance (LTCP) code, mainly designed for liquid rocket engine applications, was utilized. The following test cases were considered: (1) Characterization of a detonation wave in a Pulse Detonation Tube; (2) 60K Motor wall temperature studies; (3) Propagation of a pressure pulse in a combustion chamber (under single and two-phase flow conditions); (4) Transonic region flowfield analysis affected by viscous effects; (5) Exploring the viscous differences between a smooth and a corrugated wall; and (6) 3D thrust chamber flowfield analysis of the Combined Cycle engine. It was shown that the LTCP-2D and LTCP-3D codes are capable of solving complex and stiff conservation equations for gaseous and droplet phases in a very robust and efficient manner. These codes can be run on a workstation and personal computers (PC's).

  11. Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing.

    PubMed

    Padmaperuma, Gloria; Kapoore, Rahul Vijay; Gilmour, Daniel James; Vaidyanathan, Seetharaman

    2018-08-01

    Monocultures have been the preferred production route in the bio-industry, where contamination has been a major bottleneck. In nature, microorganisms usually exist as part of organized communities and consortia, gaining benefits from co-habitation, keeping invaders at bay. There is increasing interest in the use of co-cultures to tackle contamination issues, and simultaneously increase productivity and product diversity. The feasibility of extending the natural phenomenon of co-habitation to the biomanufacturing industry in the form of co-cultures requires careful and systematic consideration of several aspects. This article will critically examine and review current work on microbial co-cultures, with the intent of examining the concept and proposing a design pipeline that can be developed in a biomanufacturing context.

  12. Accuracy of Subcutaneous Continuous Glucose Monitoring in Critically Ill Adults: Improved Sensor Performance with Enhanced Calibrations

    PubMed Central

    Leelarathna, Lalantha; English, Shane W.; Thabit, Hood; Caldwell, Karen; Allen, Janet M.; Kumareswaran, Kavita; Wilinska, Malgorzata E.; Nodale, Marianna; Haidar, Ahmad; Evans, Mark L.; Burnstein, Rowan

    2014-01-01

    Abstract Objective: Accurate real-time continuous glucose measurements may improve glucose control in the critical care unit. We evaluated the accuracy of the FreeStyle® Navigator® (Abbott Diabetes Care, Alameda, CA) subcutaneous continuous glucose monitoring (CGM) device in critically ill adults using two methods of calibration. Subjects and Methods: In a randomized trial, paired CGM and reference glucose (hourly arterial blood glucose [ABG]) were collected over a 48-h period from 24 adults with critical illness (mean±SD age, 60±14 years; mean±SD body mass index, 29.6±9.3 kg/m2; mean±SD Acute Physiology and Chronic Health Evaluation score, 12±4 [range, 6–19]) and hyperglycemia. In 12 subjects, the CGM device was calibrated at variable intervals of 1–6 h using ABG. In the other 12 subjects, the sensor was calibrated according to the manufacturer's instructions (1, 2, 10, and 24 h) using arterial blood and the built-in point-of-care glucometer. Results: In total, 1,060 CGM–ABG pairs were analyzed over the glucose range from 4.3 to 18.8 mmol/L. Using enhanced calibration median (interquartile range) every 169 (122–213) min, the absolute relative deviation was lower (7.0% [3.5, 13.0] vs. 12.8% [6.3, 21.8], P<0.001), and the percentage of points in the Clarke error grid Zone A was higher (87.8% vs. 70.2%). Conclusions: Accuracy of the Navigator CGM device during critical illness was comparable to that observed in non–critical care settings. Further significant improvements in accuracy may be obtained by frequent calibrations with ABG measurements. PMID:24180327

  13. Enhanced nonlinear current-voltage behavior in Au nanoparticle dispersed CaCu 3 Ti 4 O 12 composite films

    NASA Astrophysics Data System (ADS)

    Chen, Cong; Wang, Can; Ning, Tingyin; Lu, Heng; Zhou, Yueliang; Ming, Hai; Wang, Pei; Zhang, Dongxiang; Yang, Guozhen

    2011-10-01

    An enhanced nonlinear current-voltage behavior has been observed in Au nanoparticle dispersed CaCu 3Ti 4O 12 composite films. The double Schottky barrier model is used to explain the enhanced nonlinearity in I-V curves. According to the energy-band model and fitting result, the nonlinearity in Au: CCTO film is mainly governed by thermionic emission in the reverse-biased Schottky barrier. This result not only supports the mechanism of double Schottky barrier in CCTO, but also indicates that the nonlinearity of current-voltage behavior could be improved in nanometal composite films, which has great significance for the resistance switching devices.

  14. Critical thinking in health professions education: summary and consensus statements of the Millennium Conference 2011.

    PubMed

    Huang, Grace C; Newman, Lori R; Schwartzstein, Richard M

    2014-01-01

    Critical thinking is central to the function of health care professionals. However, this topic is not explicitly taught or assessed within current programs, yet the need is greater than ever, in an era of information explosion, spiraling health care costs, and increased understanding about metacognition. To address the importance of teaching critical thinking in health professions education, the Shapiro Institute for Education and Research and the Josiah Macy Jr. Foundation jointly sponsored the Millennium Conference 2011 on Critical Thinking. Teams of physician and nurse educators were selected through an application process. Attendees proposed strategies for integrating principles of critical thinking more explicitly into health professions curricula. Working in interprofessional, multi-institutional groups, participants tackled questions about teaching, assessment, and faculty development. Deliberations were summarized into consensus statements. Educational leaders participated in a structured dialogue about the enhancement of critical thinking in health professions education and recommend strategies to teach critical thinking.

  15. The role of minimum supply and social vulnerability assessment for governing critical infrastructure failure: current gaps and future agenda

    NASA Astrophysics Data System (ADS)

    Garschagen, Matthias; Sandholz, Simone

    2018-04-01

    Increased attention has lately been given to the resilience of critical infrastructure in the context of natural hazards and disasters. The major focus therein is on the sensitivity of critical infrastructure technologies and their management contingencies. However, strikingly little attention has been given to assessing and mitigating social vulnerabilities towards the failure of critical infrastructure and to the development, design and implementation of minimum supply standards in situations of major infrastructure failure. Addressing this gap and contributing to a more integrative perspective on critical infrastructure resilience is the objective of this paper. It asks which role social vulnerability assessments and minimum supply considerations can, should and do - or do not - play for the management and governance of critical infrastructure failure. In its first part, the paper provides a structured review on achievements and remaining gaps in the management of critical infrastructure and the understanding of social vulnerabilities towards disaster-related infrastructure failures. Special attention is given to the current state of minimum supply concepts with a regional focus on policies in Germany and the EU. In its second part, the paper then responds to the identified gaps by developing a heuristic model on the linkages of critical infrastructure management, social vulnerability and minimum supply. This framework helps to inform a vision of a future research agenda, which is presented in the paper's third part. Overall, the analysis suggests that the assessment of socially differentiated vulnerabilities towards critical infrastructure failure needs to be undertaken more stringently to inform the scientifically and politically difficult debate about minimum supply standards and the shared responsibilities for securing them.

  16. The effect of transcranial direct current stimulation of the prefrontal cortex on implicit self-esteem is mediated by rumination after criticism.

    PubMed

    De Raedt, Rudi; Remue, Jonathan; Loeys, Tom; Hooley, Jill M; Baeken, Chris

    2017-12-01

    It has been proposed that a crucial link between cognitive (i.e., self-schemas) and biological vulnerability is prefrontal control. This is because decreased control leads to impaired ability to inhibit ruminative thinking after the activation of negative self-schemas. However, current evidence is mainly correlational. In the current experimental study we tested whether the effect of neurostimulation of the dorsolateral prefrontal cortex (DLPFC) on self-esteem is mediated by momentary ruminative self-referential thinking (MRST) after the induction of negative self-schemas by criticism. We used a single, sham-controlled crossover session of anodal transcranial Direct Current Stimulation (tDCS) applied to the left DLPFC (cathode over the right supraorbital region) in healthy female individuals. After receiving tDCS/sham stimulation, we measured MRST and exposed the participants to critical audio scripts, followed by another MRST measurement. Subsequently, all participants completed two Implicit Relational Assessment Procedures to implicitly measure actual and ideal self-esteem. Our behavioral data indicated a significant decrease in MRST after real but not sham tDCS. Moreover, although there was no immediate effect of tDCS on implicit self-esteem, an indirect effect was found through double mediation, with the difference in MRST from baseline to after stimulation and from baseline to after criticism as our two mediators. The larger the decrease of criticism induced MRST after real tDCS, the higher the level of actual self-esteem. Our results show that tDCS can influence cognitive processes such as rumination, and subsequently self-esteem, but only after the activation of negative self-schemas. Rumination and negative self-esteem characterize different forms of psychopathology, and these data expand our knowledge of the role of the prefrontal cortex in controlling these self-referential processes, and the mechanisms of action of tDCS. Copyright © 2017 Elsevier Ltd

  17. High critical currents in heavily doped (Gd,Y)Ba 2Cu 3O x superconductor tapes

    DOE PAGES

    Selvamanickam, V.; Gharahcheshmeh, M. Heydari; Xu, A.; ...

    2015-01-20

    REBa 2Cu 3O x superconductor tapes with moderate levels of dopants have been optimized for high critical current density in low magnetic fields at 77 K, but they do not exhibit exemplary performance in conditions of interest for practical applications, i.e., temperatures less than 50 K and fields of 2–30 T. Heavy doping of REBCO tapes has been avoided by researchers thus far due to deterioration in properties. Here, we report achievement of critical current densities (J c) above 20 MA/cm 2 at 30 K, 3 T in heavily doped (25 mol. % Zr-added) (Gd,Y)Ba 2Cu 3O x superconductor tapes,more » which is more than three times higher than the J c typically obtained in moderately doped tapes. Pinning force levels above 1000 GN/m 3 have also been attained at 20 K. A composition map of lift factor in J c (ratio of J c at 30 K, 3 T to the J c at 77 K, 0 T) has been developed which reveals the optimum film composition to obtain lift factors above six, which is thrice the typical value. A highly c-axis aligned BaZrO 3 (BZO) nanocolumn defect density of nearly 7 × 10 11 cm –2 as well as 2–3nm sized particles rich in Cu and Zr have been found in the high J c films.« less

  18. Selenium and glutamine supplements: where are we heading? A critical care perspective.

    PubMed

    Andrews, Peter J D

    2010-03-01

    There is considerable interest in glutamine and selenium in critical care as both offer the potential to enhance host defences, through different but complimentary mechanisms and may reduce subsequent infections and mortality. The SIGNET trial (randomized controlled factorial trial) is the largest, critical care study of both supplements. The data have been presented publicly, but the data are not published or available for review and will therefore not be discussed fully in this update. In the present review I will explore the recently available (past 1-2 years) published literature. The current literature demonstrates that there are currently insufficient data to enable confident recommendations on the optimal route, timing, duration and dosage of each of these nutritional supplements. The pending results of SIGNET, the largest critical care trial of parenteral nutrition supplemented by glutamine and or selenium promises to clarify some of the current ambiguities and inform future practice. To be able to confidently establish or refute the hypothesis that either glutamine or selenium alone or in combination improves outcome in critical care requires a well designed prospective randomized controlled trial. To design such a trial we require the optimal dose and duration of the nutritional supplement (balancing efficacy and toxicity, ease of administration and cost) and then conduct an adequately powered trial. Such a trial is still lacking for these two agents. There are some supportive data for selenium but the case is less strong for parenteral glutamine and weakest for enteral glutamine.

  19. An Evaluation of Argument Mapping as a Method of Enhancing Critical Thinking Performance in E-Learning Environments

    ERIC Educational Resources Information Center

    Dwyer, Christopher P.; Hogan, Michael J.; Stewart, Ian

    2012-01-01

    The current research examined the effects of a critical thinking (CT) e-learning course taught through argument mapping (AM) on measures of CT ability. Seventy-four undergraduate psychology students were allocated to either an AM-infused CT e-learning course or a no instruction control group and were tested both before and after an 8-week…

  20. Critical Thinking Activities and the Enhancement of Ethical Awareness: An Application of a "Rhetoric of Disruption" to the Undergraduate General Education Classroom

    ERIC Educational Resources Information Center

    Murray, Jeffrey W.

    2015-01-01

    This article explores how critical thinking activities and assignments can function to enhance students' ethical awareness and sense of civic responsibility. Employing Levinas's Other-centered theory of ethics, Burke's notion of "the paradox of substance", and Murray's concept of "a rhetoric of disruption", this article…

  1. Transcranial direct current stimulation enhances recovery of stereopsis in adults with amblyopia.

    PubMed

    Spiegel, Daniel P; Li, Jinrong; Hess, Robert F; Byblow, Winston D; Deng, Daming; Yu, Minbin; Thompson, Benjamin

    2013-10-01

    Amblyopia is a neurodevelopmental disorder of vision caused by abnormal visual experience during early childhood that is often considered to be untreatable in adulthood. Recently, it has been shown that a novel dichoptic videogame-based treatment for amblyopia can improve visual function in adult patients, at least in part, by reducing inhibition of inputs from the amblyopic eye to the visual cortex. Non-invasive anodal transcranial direct current stimulation has been shown to reduce the activity of inhibitory cortical interneurons when applied to the primary motor or visual cortex. In this double-blind, sham-controlled cross-over study we tested the hypothesis that anodal transcranial direct current stimulation of the visual cortex would enhance the therapeutic effects of dichoptic videogame-based treatment. A homogeneous group of 16 young adults (mean age 22.1 ± 1.1 years) with amblyopia were studied to compare the effect of dichoptic treatment alone and dichoptic treatment combined with visual cortex direct current stimulation on measures of binocular (stereopsis) and monocular (visual acuity) visual function. The combined treatment led to greater improvements in stereoacuity than dichoptic treatment alone, indicating that direct current stimulation of the visual cortex boosts the efficacy of dichoptic videogame-based treatment. This intervention warrants further evaluation as a novel therapeutic approach for adults with amblyopia.

  2. Calcium Currents Are Enhanced by α2δ-1 Lacking Its Membrane Anchor*

    PubMed Central

    Kadurin, Ivan; Alvarez-Laviada, Anita; Ng, Shu Fun Josephine; Walker-Gray, Ryan; D'Arco, Marianna; Fadel, Michael G.; Pratt, Wendy S.; Dolphin, Annette C.

    2012-01-01

    The accessory α2δ subunits of voltage-gated calcium channels are membrane-anchored proteins, which are highly glycosylated, possess multiple disulfide bonds, and are post-translationally cleaved into α2 and δ. All α2δ subunits have a C-terminal hydrophobic, potentially trans-membrane domain and were described as type I transmembrane proteins, but we found evidence that they can be glycosylphosphatidylinositol-anchored. To probe further the function of membrane anchoring in α2δ subunits, we have now examined the properties of α2δ-1 constructs truncated at their putative glycosylphosphatidylinositol anchor site, located before the C-terminal hydrophobic domain (α2δ-1ΔC-term). We find that the majority of α2δ-1ΔC-term is soluble and secreted into the medium, but unexpectedly, some of the protein remains associated with detergent-resistant membranes, also termed lipid rafts, and is extrinsically bound to the plasma membrane. Furthermore, heterologous co-expression of α2δ-1ΔC-term with CaV2.1/β1b results in a substantial enhancement of the calcium channel currents, albeit less than that produced by wild-type α2δ-1. These results call into question the role of membrane anchoring of α2δ subunits for calcium current enhancement. PMID:22869375

  3. Critical Thinking in Physical Education

    ERIC Educational Resources Information Center

    Humphries, Charlotte

    2014-01-01

    Changes in American education require that teachers are evaluated more often, and expectations increasingly include teaching to develop critical thinking skills. This article uses Bloom's taxonomy in describing ways physical educators can include critical thinking in their lessons, both to enhance their teaching and to meet expectations of…

  4. Deterrence and the United States Coast Guard: Enhancing Current Practice with Performance Measures

    DTIC Science & Technology

    2012-03-01

    Talley,  Jin , Kite Powell,  The US Coast Guard Vessel Inspection Programme (2005)  Deterrence and the United States Coast Guard: Enhancing Current...practical problem-solving, not from theory or strategy. As a result, the activities are fractured and may not even be recognized as related to...of Sun Tzu’s admonition: “Strategy without tactics is the slowest route to victory. Tactics without strategy is the noise before defeat.” The US

  5. A systematic review on critical thinking in medical education.

    PubMed

    Chan, Zenobia C Y

    2016-04-18

    Critical thinking is the ability to raise discriminating questions in an attempt to search for better ideas, a deeper understanding and better solutions relating to a given issue. This systematic review provides a summary of efforts that have been made to enhance and assess critical thinking in medical education. Nine databases [Ovid MEDLINE(R), AMED, Academic Search Premier, ERIC, CINAHL, Web of Science, JSTOR, SCOPUS and PsycINFO] were searched to identify journal articles published from the start of each database to October 2012. A total of 41 articles published from 1981 to 2012 were categorised into two main themes: (i) evaluation of current education on critical thinking and (ii) development of new strategies about critical thinking. Under each theme, the teaching strategies, assessment tools, uses of multimedia and stakeholders were analysed. While a majority of studies developed teaching strategies and multimedia tools, a further examination of their quality and variety could yield some insights. The articles on assessment placed a greater focus on learning outcomes than on learning processes. It is expected that more research will be conducted on teacher development and students' voices.

  6. Recanalization of Chronic Total Occlusion Lesions: A Critical Appraisal of Current Devices and Techniques

    PubMed Central

    2016-01-01

    Chronic Total Occlusion (CTO) has been considered as one of the “final frontier” in interventional cardiology. Until recently, the patients with CTO are often managed surgically or medically due to lack of published evidence of clinical benefits and lower success rate of percutaneous recanalization of CTO. However, the introduction of enhanced guidewires, microcatheters combined with novel specialized devices and techniques reduce the number of unapproachable CTO. In this review article, current techniques and devices of percutaneous recanalization of CTO have been systematically summarized, which may help budding interventional cardiologists to theoretically understand these complex procedures and to deliver safe and effective percutaneous management of CTO to the patients. PMID:27790503

  7. SLO3 auxiliary subunit LRRC52 controls gating of sperm KSPER currents and is critical for normal fertility

    PubMed Central

    Zeng, Xu-Hui; Yang, Chengtao; Xia, Xiao-Ming; Liu, Min; Lingle, Christopher J.

    2015-01-01

    Following entry into the female reproductive tract, mammalian sperm undergo a maturation process termed capacitation that results in competence to fertilize ova. Associated with capacitation is an increase in membrane conductance to both Ca2+ and K+, leading to an elevation in cytosolic Ca2+ critical for activation of hyperactivated swimming motility. In mice, the Ca2+ conductance (alkalization-activated Ca2+-permeable sperm channel, CATSPER) arises from an ensemble of CATSPER subunits, whereas the K+ conductance (sperm pH-regulated K+ current, KSPER) arises from a pore-forming ion channel subunit encoded by the slo3 gene (SLO3) subunit. In the mouse, both CATSPER and KSPER are activated by cytosolic alkalization and a concerted activation of CATSPER and KSPER is likely a common facet of capacitation-associated increases in Ca2+ and K+ conductance among various mammalian species. The properties of heterologously expressed mouse SLO3 channels differ from native mouse KSPER current. Recently, a potential KSPER auxiliary subunit, leucine-rich-repeat-containing protein 52 (LRRC52), was identified in mouse sperm and shown to shift gating of SLO3 to be more equivalent to native KSPER. Here, we show that genetic KO of LRRC52 results in mice with severely impaired fertility. Activation of KSPER current in sperm lacking LRRC52 requires more positive voltages and higher pH than for WT KSPER. These results establish a critical role of LRRC52 in KSPER channels and demonstrate that loss of a non-pore-forming auxiliary subunit results in severe fertility impairment. Furthermore, through analysis of several genotypes that influence KSPER current properties we show that in vitro fertilization competence correlates with the net KSPER conductance available for activation under physiological conditions. PMID:25675513

  8. Transcranial direct current stimulation to enhance cognition in euthymic bipolar disorder.

    PubMed

    Martin, Donel M; Chan, Herng-Nieng; Alonzo, Angelo; Green, Melissa J; Mitchell, Philip B; Loo, Colleen K

    2015-12-01

    To investigate the use of transcranial direct current stimulation (tDCS) for enhancing working memory and sustained attention in euthymic patients with bipolar disorder. Fifteen patients with bipolar disorder received anodal left prefrontal tDCS with an extracephalic cathode (prefrontal condition), anodal left prefrontal and cathodal cerebellar tDCS (fronto-cerebellar condition), and sham tDCS given 'online' during performance on a working memory and sustained attention task in an intra-individual, cross-over, sham-controlled experimental design. Exploratory cluster analyses examined responders and non-responders for the different active tDCS conditions on both tasks. For working memory, approximately one-third of patients in both active tDCS conditions showed performance improvement. For sustained attention, three of 15 patients showed performance improvement with prefrontal tDCS. Responders to active tDCS for working memory performed more poorly on the task during sham tDCS compared to non-responders. A single session of active prefrontal or fronto-cerebellar tDCS failed to improve working memory or sustained attention performance in euthymic patients with bipolar disorder. Several important considerations are discussed in relation to future studies investigating tDCS for enhancing cognition in patients with bipolar disorder. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. The Critical Events Interview Manual.

    ERIC Educational Resources Information Center

    Avery, Donna M.; Taubert, Alexis

    This guide for counselors describes the Critical Events Interview (CEI), a new counseling technique designed to be used with women in transition. The concept of critical events and their influence on adult development is described and the history and current status of the CEI are reviewed, along with current results of CEI evaluations and…

  10. Postgraduate Research Supervision: A Critical Review of Current Practice

    ERIC Educational Resources Information Center

    McCallin, Antoinette; Nayar, Shoba

    2012-01-01

    Changes in the funding and delivery of research programmes at the university level have, in recent years, resulted in significant changes to research supervision. This paper critically reviews key influences effecting postgraduate supervision. Analysis draws on literature spanning 2000-2010 to determine the appropriateness of traditional models of…

  11. Critical Thinking in Wikibook Creation with Enhanced and Minimal Scaffolds

    ERIC Educational Resources Information Center

    Kim, Nari

    2015-01-01

    The purpose of the study was to investigate how to scaffold students' critical thinking skills in the process of co-writing and co-reflection of wikibooks in formal learning contexts. To observe critical thinking skills in wiki collaborations under different levels of instructional guidance, two graduate wikibook projects were selected: an…

  12. Temperature and field dependence of critical currents in V/sub 3/Ga wire produced by the MJR technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francavilla, T.L.; Gubser, D.U.; Pande, C.S.

    1985-03-01

    The temperature dependence of V/sub 3/Ga multifilamentary wire produced by the modified jelly roll technique is reported as a function of applied magnetic field in the range 10K - 14K and 0-13T. Parameters which relate J /SUB c/ to H at 4.2K were found to apply at these temperatures and fields. The form of the temperature dependence of the critical current density is compared with theory.

  13. National survey on current situation of critical value reporting in 973 laboratories in China.

    PubMed

    Fei, Yang; Zhao, Haijian; Wang, Wei; He, Falin; Zhong, Kun; Yuan, Shuai; Wang, Zhiguo

    2017-10-15

    The aim of the study was to investigate the state-of-the-art of the performance of critical value reporting and provide recommendations for laboratories setting critical value reporting time frames. The National Centre for Clinical Laboratories in China initiated a critical value reporting investigation in 2015. A questionnaire related to critical value reporting policy was sent to 1589 clinical laboratories in China online. The questionnaire consisted of a set of questions related to critical value reporting policy and a set of questions related to timeliness of critical value reporting. The survey data were collected between March and April 2015. A total survey response rate was 61.2%. The critical value unreported rate, unreported timely rate, and clinical unacknowledged rate of more than half of participants were all 0.0%. More than 75.0% of participants could report half of critical values to clinicians within 20 minutes and could report 90.0% of critical values to clinicians within 25 minutes (from result validation to result communication to the clinician). The median of target critical value reporting time was 15 minutes. "Reporting omission caused by laboratory staff", "communications equipment failure to connect", and "uncompleted application form without contact information of clinician" were the three major reasons for unreported critical value. The majority of laboratories can report critical values to responsible clinical staff within 25 minutes. Thus, this value could be recommended as suitable critical value reporting time frame for biochemistry laboratories in China. However, careful monitoring of the complete reporting process and improvement of information systems should ensure further improvement of critical value reporting timeliness.

  14. Metallic quantum critical points with finite BCS couplings

    NASA Astrophysics Data System (ADS)

    Raghu, Srinivas

    The problem of superconductivity near quantum critical points (QCPs) remains a central topic of modern condensed matter physics. In such systems, there is a competition between the enhanced pairing tendency due to the presence of long-range attractive interactions near criticality, and the suppression of superconductivity due to the destruction of Landau quasiparticles. I will describe some recent work that addresses these competing effects in the context of a solvable model of a metallic quantum critical point. I will show that the two effects - namely the enhanced pairing and the destruction of Landau quasiparticles - can offset one another, resulting in stable ''naked'' quantum critical points without superconductivity. However, the resulting quantum critical metal exhibits strong superconducting fluctuations on all length scales. Reference: S.R., Gonzalo Torroba, and Huajia Wang, arXiv1507.06652, PRB(2015).

  15. Enhancement of magnetoresistance by hydrogen ion treatment for current-perpendicular-to-plane giant magnetoresistive films with a current-confined-path nano-oxide layer

    NASA Astrophysics Data System (ADS)

    Yuasa, H.; Hara, M.; Murakami, S.; Fuji, Y.; Fukuzawa, H.; Zhang, K.; Li, M.; Schreck, E.; Wang, P.; Chen, M.

    2010-09-01

    We have enhanced magnetoresistance (MR) for current-perpendicular-to-plane giant-magnetoresistive (CPP-GMR) films with a current-confined-path nano-oxide layer (CCP-NOL). In order to realize higher purity in Cu for CCPs, hydrogen ion treatment (HIT) was applied as the CuOx reduction process. By applying the HIT process, an MR ratio was increased to 27.4% even in the case of using conventional FeCo magnetic layer, from 13.0% for a reference without the HIT process. Atom probe tomography data confirmed oxygen reduction by the HIT process in the CCP-NOL. The relationship between oxygen counts and MR ratio indicates that further oxygen reduction would realize an MR ratio greater than 50%.

  16. Enhancing the Communication of Suddenly Speechless Critical Care Patients.

    PubMed

    Rodriguez, Carmen S; Rowe, Meredeth; Thomas, Loris; Shuster, Jonathan; Koeppel, Brent; Cairns, Paula

    2016-05-01

    Sudden speechlessness is common in critically ill patients who are intubated or have had surgery for head and neck cancer. Sudden inability to speak poses challenges for hospitalized patients because strategies to facilitate communication are often limited and unreliable. To determine the impact of a technology-based communication intervention on patients' perception of communication difficulty, satisfaction with communication methods, and frustration with communication. A quasi-experimental, 4-cohort (control and intervention) repeated-measures design was used. Data were collected daily for up to 10 days. Patients in adult critical care units were followed up as they were transferred to other units within the institutions selected for the study. The impact of a technology-based communication system (intervention) was compared with usual care (control). Patients' communication outcomes pertinent to communication with nursing staff that were evaluated included perception of communication ease, satisfaction with methods used for communication, and frustration with communication. Compared with participants in the control group, participants in the intervention group reported lower mean frustration levels (-2.68; SE, 0.17; 95% CI, -3.02 to -2.34; P < .001) and higher mean satisfaction levels (0.59; SE, 0.16; 95% CI, 0.27 to 0.91; P < .001) with use of the communication intervention. Participants in the intervention group reported a consistent increase in perception of communication ease during the hospital stay. The results facilitated evaluation of a bedside technology-based communication intervention tailored to the needs of suddenly speechless critically ill patients. ©2016 American Association of Critical-Care Nurses.

  17. Rethinking Critical Thinking

    ERIC Educational Resources Information Center

    Downs, Christopher J.

    2008-01-01

    Critical thinking is of primary importance in higher education, yet the concept remains slippery and the skill elusive. The author argues that most current critical thinking textbooks are out of line with the seminal work of John Dewey. Rather than logical argument and justification, it is suggested that carefulness, open-mindedness and creativity…

  18. Enhancement of anodic biofilm formation and current output in microbial fuel cells by composite modification of stainless steel electrodes

    NASA Astrophysics Data System (ADS)

    Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Li, Na; Guo, Kun; Zhou, Yuyang; Xu, Jing; Chen, Wei; Jia, Yufeng; Huang, Bin

    2017-02-01

    In this paper, we first systematically investigate the current output performance of stainless steel electrodes (SS) modified by carbon coating (CC), polyaniline coating (PANI), neutral red grafting (NR), surface hydrophilization (SDBS), and heat treatment (HEAT). The maximum current density of 13.0 A m-2 is obtained on CC electrode (3.0 A m-2 of the untreated anode). Such high performance should be attributed to its large effective surface area, which is 2.3 times that of the unmodified electrode. Compared with SS electrode, about 3-fold increase in current output is achieved with PANI. Functionalization with hydrophilic group and electron medium result in the current output rising to 1.5-2 fold, through enhancing bioadhesive and electron transport rate, respectively. CC modification is the best choice of single modification for SS electrode in this study. However, this modification is not perfect because of its poor hydrophilicity. So CC electrode is modified by SDBS for further enhancing the current output to 16 A m-2. These results could provide guidance for the choice of suitable single modification on SS electrodes and a new method for the perfection of electrode performance through composite modification.

  19. Should we treat fever in critically ill patients? A summary of the current evidence from three randomized controlled trials

    PubMed Central

    Serpa, Ary; Pereira, Victor Galvão Moura; Colombo, Giancarlo; Scarin, Farah Christina de la Cruz; Pessoa, Camila Menezes Souza; Rocha, Leonardo Lima

    2014-01-01

    Fever is a nonspecific response to various types of infectious or non-infectious insult and its significance in disease remains an enigma. Our aim was to summarize the current evidence for the use of antipyretic therapy in critically ill patients. We performed systematic review and meta-analysis of publications from 1966 to 2013. The MEDLINE and CENTRAL databases were searched for studies on antipyresis in critically ill patients. The meta-analysis was limited to: randomized controlled trials; adult human critically ill patients; treatment with antipyretics in one arm versus placebo or non-treatment in another arm; and report of mortality data. The outcomes assessed were overall intensive care unit mortality, changes in temperature, intensive care unit length of stay, and hospital length of stay. Three randomized controlled trials, covering 320 participants, were included. Patients treated with antipyretic agents showed similar intensive care unit mortality (risk ratio 0.91, with 95% confidence interval 0.65-1.28) when compared with controls. The only difference observed was a greater decrease in temperature after 24 hours in patients treated with antipyretics (-1.70±0.40 versus - 0.56±0.25ºC; p=0.014). There is no difference in treating or not the fever in critically ill patients. PMID:25628209

  20. Enhanced functional expression of transient outward current in hypertrophied feline myocytes.

    PubMed

    Ten Eick, R E; Zhang, K; Harvey, R D; Bassett, A L

    1993-08-01

    Cardiac hypertrophy can decrease myocardial contractility and alter the electrophysiological activity of the heart. It is well documented that action potentials recorded from hypertrophied feline ventricular cells can exhibit depressed plateau voltages and prolonged durations. Similar findings have been made by others in rabbit, rat, guinea pig, and human heart. Whole-cell patch voltage-clamp studies designed to explain these changes in the action potential suggest that the only component of the membrane current recorded from feline right ventricular (RV) myocytes found to be substantially different from normal is the 4-amino-pyridine-sensitive transient outward current (I(to)). However, it was not clear if the change in I(to) could explain the changes in the action potential of hypertrophied cardiocytes, nor was it clear if these changes reflect an alteration in the electrophysiological character of the channels underlying I(to). A kinetic comparison of I(to) elicited by hypertrophied RV myocytes with that elicited by comparable normal RV myocytes previously revealed no differences, suggesting that the increased magnitude of the peak I(to) recorded from hypertrophied myocytes arises because the current density increases and not because of any alteration in the kinetic parameters governing the current. This finding suggests that in hypertrophy additional normal channels are expressed rather than a kinetically different channel subtype emerging. Investigations designed to determine if enhancement of I(to) could explain the hypertrophy-induced changes in plateau voltage and action potential duration suggest that a change in I(to) density can indeed explain the entire effect of hypertrophy on RV action potentials. If this notion is correct, the likelihood of "sudden death" in patients with myocardial hypertrophy might be decreased by a blocker selective for cardiac I(to).

  1. Oxygen in the critically ill: friend or foe?

    PubMed

    Damiani, Elisa; Donati, Abele; Girardis, Massimo

    2018-04-01

    To examine the potential harmful effects of hyperoxia and summarize the results of most recent clinical studies evaluating oxygen therapy in critically ill patients. Excessive oxygen supplementation may have detrimental pulmonary and systemic effects because of enhanced oxidative stress and inflammation. Hyperoxia-induced lung injury includes altered surfactant protein composition, reduced mucociliary clearance and histological damage, resulting in atelectasis, reduced lung compliance and increased risk of infections. Hyperoxemia causes vasoconstriction, reduction in coronary blood flow and cardiac output and may alter microvascular perfusion. Observational studies showed a close relationship between hyperoxemia and increased mortality in several subsets of critically ill patients. In absence of hypoxemia, the routine use of oxygen therapy in patients with myocardial infarction, stroke, traumatic brain injury, cardiac arrest and sepsis, showed no benefit but rather it seems to be harmful. In patients admitted to intensive care unit, a conservative oxygen therapy aimed to maintain arterial oxygenation within physiological range has been proved to be well tolerated and may improve outcome. Liberal O2 use and unnecessary hyperoxia may be detrimental in critically ill patients. The current evidence supports the use of a conservative strategy in O2 therapy to avoid patient exposure to unnecessary hyperoxemia.

  2. Venous thromboembolism prophylaxis in the critically ill: a point prevalence survey of current practice in Australian and New Zealand intensive care units.

    PubMed

    Robertson, Megan S; Nichol, Alistair D; Higgins, Alisa M; Bailey, Michael J; Presneill, Jeffrey J; Cooper, D James; Webb, Steven A; McArthur, Colin; MacIsaac, Christopher M

    2010-03-01

    Critically ill patients are at high risk of morbidity and mortality caused by venous thromboembolism (VTE). In addition to premorbid predisposing conditions, critically ill patients may be exposed to prolonged immobility, invasive intravascular catheters and frequent operative procedures, and further may have contraindications to pharmaceutical prophylactic measures designed to attenuate VTE risk. There are limited data describing current VTE prophylaxis regimens in Australia and New Zealand. To document current Australian and New Zealand management of VTE prophylaxis in a large mixed cohort of critically ill patients. Prospective, multicentre point prevalence survey endorsed by the Australian and New Zealand Intensive Care Society Clinical Trials Group (ANZICS CTG). 30 public hospital ICUs in Australia and New Zealand surveyed on Wednesday 9 May 2007. For all patients in each ICU on the study day, demographic data, admission diagnosis and information on VTE prophylaxis were prospectively collected. 502 patients were included in the survey, and 431 of these (86%) received VTE prophylaxis. Of these, 64% (276/431) received pharmacological prophylaxis and 80% (345/431) received mechanical prophylaxis, with 44% (190/431) receiving both. Of those receiving pharmacological prophylaxis, unfractionated heparin was used in 74%, and enoxaparin (low molecular weight heparin) in 23%. Contraindications to pharmacological prophylaxis were reported in 122 patients. Overall, pharmacological prophylaxis was administered to 87% of potentially suitable patients. We observed a high prevalence of VTE prophylaxis, with many critically ill patients receiving two or more modalities of prophylaxis. These results show that the potential risk of VTE in critically ill patients is recognised in Australia and New Zealand, and strategies to mitigate this serious complication are widely implemented.

  3. Transcranial direct current stimulation can enhance working memory in Huntington's disease.

    PubMed

    Eddy, Clare M; Shapiro, Kimron; Clouter, Andrew; Hansen, Peter C; Rickards, Hugh E

    2017-07-03

    Transcranial direct current stimulation (tDCS) combined with a cognitive task can enhance targeted aspects of cognitive functioning in clinical populations. The movement disorder Huntington's disease (HD) is associated with progressive cognitive impairment. Deficits in working memory (WM) can be apparent early in the disease and impact functional capacity. We investigated whether tDCS combined with cognitive training could improve WM in patients with HD, and if baseline clinical or cognitive measures may predict efficacy. Twenty participants with HD completed this crossover trial, undergoing 1.5mA anodal tDCS over left dorsolateral prefrontal cortex and sham stimulation on separate visits. Participants and assessor were blinded to condition order, which was randomised across participants. All participants completed baseline clinical and cognitive assessments. Pre- and post-stimulation tasks included digit reordering, computerised n-back tests and a Stroop task. During 15min of tDCS/sham stimulation, participants practiced 1- and 2-back WM tasks. Participants exhibited an increase in WM span on the digit re-ordering span task from pre- to post-stimulation after tDCS, but not after sham stimulation. Gains in WM were positively related to motor symptom ratings and negatively associated with verbal fluency scores. Patients with more severe motor symptoms showed greatest improvement, suggesting that motor symptom ratings may help identify patients who are most likely to benefit from tDCS. Dorsolateral prefrontal tDCS appears well tolerated in HD and enhances WM span compared to sham stimulation. Our findings strongly encourage further investigation of the extent to which tDCS combined with cognitive training could enhance everyday function in HD. ClinicalTrials.gov; NCT02216474 Brain stimulation in Movement Disorders; https://clinicaltrials.gov/ct2/show/NCT02216474. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. InN/InGaN complementary heterojunction-enhanced tunneling field-effect transistor with enhanced subthreshold swing and tunneling current

    NASA Astrophysics Data System (ADS)

    Peng, Yue; Han, Genquan; Wang, Hongjuan; Zhang, Chunfu; Liu, Yan; Wang, Yibo; Zhao, Shenglei; Zhang, Jincheng; Hao, Yue

    2016-05-01

    InN/In0.75Ga0.25N complementary heterojunction-enhanced tunneling field-effect transistors (HE-TFETs) were characterized using the numerical simulation. InN/In0.75Ga0.25N HE-TFET has an InN/In0.75Ga0.25N heterojunction located in the channel region with a distance of LT-H from the source/channel tunneling junction. We demonstrate that, for both n- and p-channel devices, HE-TFETs have a delay of onset voltage VONSET, a steeper subthreshold swing (SS), and an enhanced on-state current ION in comparison with the homo-TFETs. InN/In0.75Ga0.25N n- and p-channel HE-TFETs with a gate length LG of 25 nm and a LT-H of 5 nm achieve a 7 and 9 times ION improvement in comparison with the homo devices, respectively, at a supply voltage of 0.3 V. The performance enhancement in HE-TFETs is attributed to the modulating effect of heterojunction on band-to-band tunneling (BTBT). Because InN/In0.75Ga0.25N heterointerface shows the similar band offsets at conduction and valence bands, the InN/In0.75Ga0.25N heterojunction exhibits the improved effect on BTBT for both n- and p-channel devices. This makes InN/In0.75Ga0.25N heterojunction a promising structure for high performance complementary TFETs.

  5. Critical Thinking in Nurse Anesthesia Education: A Pilot Study

    ERIC Educational Resources Information Center

    Burns, Shari; Mendel, Shaun; Fisher, Rodney; Cooper, Kimball; Fisher, Michael

    2013-01-01

    Critical thinking is pivotal for student success in health professions education. Knowing the critical thinking ability of the learner helps educators tailor curriculum to enhance critical thinking. A quantitative comparative pilot study assessed critical thinking ability for students at two distinct points in a nurse anesthesia program…

  6. Does technology really enhance nurse education?

    PubMed

    Goodchild, Tim

    2018-07-01

    Technology has clearly impacted upon our working lives, and the purpose of this paper is to offer a critical insight into the ubiquitous presence of technology in nurse education. This paper argues that technology enhanced learning is predicated on the promise of potential and purported transformation of teaching and learning. It suggests that there is a lack of critical engagement in the academic field of technology enhanced learning, and adds a critical voice to some of the emerging arguments in this area. There is also a lack of systematic evidence supporting the enhancement offered by technology, and yet the technology enhanced project continues to persist. The discourse surrounding technology enhanced learning has become so dominant, so pervasive, that those of us within it can no longer see alternatives. But there are alternatives, and this paper argues that we need to challenge the dominance of technology enhanced learning, and become aware of its contingent nature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Carbon Nanomaterials in Agriculture: A Critical Review

    PubMed Central

    Mukherjee, Arnab; Majumdar, Sanghamitra; Servin, Alia D.; Pagano, Luca; Dhankher, Om Parkash; White, Jason C.

    2016-01-01

    There has been great interest in the use of carbon nano-materials (CNMs) in agriculture. However, the existing literature reveals mixed effects from CNM exposure on plants, ranging from enhanced crop yield to acute cytotoxicity and genetic alteration. These seemingly inconsistent research-outcomes, taken with the current technological limitations for in situ CNM detection, present significant hurdles to the wide scale use of CNMs in agriculture. The objective of this review is to evaluate the current literature, including studies with both positive and negative effects of different CNMs (e.g., carbon nano-tubes, fullerenes, carbon nanoparticles, and carbon nano-horns, among others) on terrestrial plants and associated soil-dwelling microbes. The effects of CNMs on the uptake of various co-contaminants will also be discussed. Last, we highlight critical knowledge gaps, including the need for more soil-based investigations under environmentally relevant conditions. In addition, efforts need to be focused on better understanding of the underlying mechanism of CNM-plant interactions. PMID:26941751

  8. Review of the critical current densities and magnetic irreversibilities in high T_c superconductors

    NASA Astrophysics Data System (ADS)

    Senoussi, S.

    1992-07-01

    This review article is concerned with critical current density (J) and magnetic irreversibilities in high-T_c superconductors (HTSC). The apparent J derived from different experimental techniques (transport, hysteresis cycle, ac-susceptibility) are compared. The influence of time (relaxation effects) as well as the macroscopic size of the sample on the criteria defining J are discussed. The dependences of the critical current on grain boundaries (“weaks-links”), texturing and other physical and chemical defects are examined in detail. The role of self fields is clarified. The critical current is strongly influenced by the anisotropy of the layered structure practically whatever the experimental conditions. Intrinsic pinning is lowered by defects. Demagnetizing effects and surface pinnings are reviewed. The usual critical state and flux creep models are recalled emphasizing the physical aspects most specific to HTSC. A theoretical model which takes into account the equilibrium magnetization and sample granularity is developed. It reproduces most of the characteristic features of both the hysteresis cycle and ac-susceptibility. A number of new formulae are introduced. They generalize the Bean model and show how to correct for the dimensions of the grains (granular materials), the macroscopic radius of the sample, anisotropy and demagnetization effects in certain situations. Several limits beyond which the usual critical state breaks down are discussed: (1) the quasi elastic limit where the variable field is too weak to depin the vortices, (2) H≈ H_C1 so that the interaction between vortex lines is exponentially weak and (3) T and H close to the “irreversibility line” where the influence of viscous forces are strong. (4) Hgg H_C1 so that J is governed by collective pinning. Ce papier de revue est consacré aux courant critiques (J) et aux irréversibilités magnétiques dans les nouveaux matériaux supraconducteurs (HTSC). Nous y comparons les densités des

  9. Crosswords to computers: a critical review of popular approaches to cognitive enhancement.

    PubMed

    Jak, Amy J; Seelye, Adriana M; Jurick, Sarah M

    2013-03-01

    Cognitive enhancement strategies have gained recent popularity and have the potential to benefit clinical and non-clinical populations. As technology advances and the number of cognitively healthy adults seeking methods of improving or preserving cognitive functioning grows, the role of electronic (e.g., computer and video game based) cognitive training becomes more relevant and warrants greater scientific scrutiny. This paper serves as a critical review of empirical evaluations of publically available electronic cognitive training programs. Many studies have found that electronic training approaches result in significant improvements in trained cognitive tasks. Fewer studies have demonstrated improvements in untrained tasks within the trained cognitive domain, non-trained cognitive domains, or on measures of everyday function. Successful cognitive training programs will elicit effects that generalize to untrained, practical tasks for extended periods of time. Unfortunately, many studies of electronic cognitive training programs are hindered by methodological limitations such as lack of an adequate control group, long-term follow-up and ecologically valid outcome measures. Despite these limitations, evidence suggests that computerized cognitive training has the potential to positively impact one's sense of social connectivity and self-efficacy.

  10. Critical experiments at Sandia National Laboratories : technical meeting on low-power critical facilities and small reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harms, Gary A.; Ford, John T.; Barber, Allison Delo

    2010-11-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-IIImore » is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide

  11. Stable superconducting magnet. [high current levels below critical temperature

    NASA Technical Reports Server (NTRS)

    Boom, R. W. (Inventor)

    1967-01-01

    Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.

  12. The Current Status of e-Learning and Strategies to Enhance Educational Competitiveness in Korean Higher Education

    ERIC Educational Resources Information Center

    Leem, Junghoon; Lim, Byungro

    2007-01-01

    The purpose of this study was to examine the current status of e-Learning in Korean higher education and find ways to encourage the further use and development of e-Learning systems that aim to enhance Korea's academic competitiveness. A total of 201 universities in Korea (27 national and public, 163 private, and 11 national universities of…

  13. [The risk of direct current countershock].

    PubMed

    Gajek, J; Zyśko, D

    2001-07-01

    Direct current cardioversion (DCC) is a procedure commonly used to restore the sinus rhythm in patients with supraventricular and ventricular arrhythmias. Its safety, regarding the use of electric current, is still a matter of controversy and debate. The patients with atrial fibrillation/flutter, supraventricular or ventricular tachycardia represent a broad spectrum of clinical conditions and it is difficult to draw the conclusions. The high success rate of DCC in restoring the sinus rhythm, may be partly responsible for enhancing and revealing proarrhythmic properties of antiarrhythmic drugs. The deaths described as a complications of DCC were mainly due to the proarrhythmia and less common to the progression of the pathologic process. The embolic, arrhythmic and anesthetic complications of DCC can be prevented if the known recommendations of performing the DCC are followed. The authors review critically the literature data about the complications of the procedure and come to the conclusion of safety of DCC.

  14. TCIA Secure Cyber Critical Infrastructure Modernization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keliiaa, Curtis M.

    The Sandia National Laboratories (Sandia Labs) tribal cyber infrastructure assurance initiative was developed in response to growing national cybersecurity concerns in the the sixteen Department of Homeland Security (DHS) defined critical infrastructure sectors1. Technical assistance is provided for the secure modernization of critical infrastructure and key resources from a cyber-ecosystem perspective with an emphasis on enhanced security, resilience, and protection. Our purpose is to address national critical infrastructure challenges as a shared responsibility.

  15. Scripting to Enhance University Students' Critical Thinking in Flipped Learning: Implications of the Delayed Effect on Science Reading Literacy

    ERIC Educational Resources Information Center

    Lee, Yuan-Hsuan

    2018-01-01

    Premised on Web 2.0 technology, the current study investigated the effect of facilitating critical thinking using the Collaborative Questioning, Reading, Answering, and Checking (C-QRAC) collaboration script on university students' science reading literacy in flipped learning conditions. Participants were 85 Taiwanese university students recruited…

  16. A 1 kA-class cryogen-free critical current characterization system for superconducting coated conductors.

    PubMed

    Strickland, N M; Hoffmann, C; Wimbush, S C

    2014-11-01

    A cryogenic electrical transport measurement system is described that is particularly designed to meet the requirements for routine and effective characterization of commercial second generation high-temperature superconducting (HTS) wires in the form of coated conductors based on YBa2Cu3O7. Specific design parameters include a base temperature of 20 K, an applied magnetic field capability of 8 T (provided by a HTS split-coil magnet), and a measurement current capacity approaching 1 kA. The system accommodates samples up to 12 mm in width (the widest conductor size presently commercially available) and 40 mm long, although this is not a limiting size. The sample is able to be rotated freely with respect to the magnetic field direction about an axis parallel to the current flow, producing field angle variations in the standard maximum Lorentz force configuration. The system is completely free of liquid cryogens for both sample cooling and magnet cool-down and operation. Software enables the system to conduct a full characterization of the temperature, magnetic field, and field angle dependence of the critical current of a sample without any user interaction. The system has successfully been used to measure a wide range of experimental and commercially-available superconducting wire samples sourced from different manufacturers across the full range of operating conditions. The system encapsulates significant advances in HTS magnet design and efficient cryogen-free cooling technologies together with the capability for routine and automated high-current electrical transport measurements at cryogenic temperatures. It will be of interest to both research scientists investigating superconductor behavior and commercial wire manufacturers seeking to accurately characterize the performance of their product under all desired operating conditions.

  17. Implementing a Grant Proposal Writing Exercise in Undergraduate Science Courses to Incorporate Real-World Applications and Critical Analysis of Current Literature

    ERIC Educational Resources Information Center

    Cole, Kathryn E.; Inada, Maki; Smith, Andrew M.; Haaf, Michael P.

    2013-01-01

    Writing is an essential part of a successful career in science. As such, many undergraduate science courses have begun to implement writing assignments that reflect "real-world" applications and focus on a critical analysis of current literature; these assignments are often in the form of a review or a research proposal. The…

  18. Quantitative correlation between the void morphology of niobium-tin wires and their irreversible critical current degradation upon mechanical loading

    DOE PAGES

    Barth, Christian; Seeber, B.; Rack, A.; ...

    2018-04-26

    Understanding the critical current performance variation of Nb 3Sn superconducting wires under mechanical loading is a crucial issue for the design of next generation accelerator and fusion magnets. In these applications, the mechanical properties of the conductors may become a limiting factor due to the strong electro-magnetic forces resulting from the combination of large magnets and intense magnetic fields. In particular, the presence of voids in the superconducting filament structure, which are formed during the fabrication and the reaction heat treatment, determines localized stress concentrations and possibly the formation of cracks. In this work, we demonstrate a quantitative correlation betweenmore » the void morphology and the electro-mechanical limits measured on different Bronze route Nb 3Sn wires. Hot Isostatic Pressing (HIP) prior to the reaction heat treatment is utilized to partially eliminate the voids. The wires’ void distributions - with and without HIP treatment - are detected and statistically analyzed using high energy X-ray micro tomography. The stress concentration due to the shape and distribution of the voids as well as their impact on the electro-mechanical properties are determined through finite element method modeling. Lastly, the results are quantitatively correlated with the experimentally determined limits of the irreversible critical current degradation upon mechanical loading.« less

  19. Quantitative correlation between the void morphology of niobium-tin wires and their irreversible critical current degradation upon mechanical loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, Christian; Seeber, B.; Rack, A.

    Understanding the critical current performance variation of Nb 3Sn superconducting wires under mechanical loading is a crucial issue for the design of next generation accelerator and fusion magnets. In these applications, the mechanical properties of the conductors may become a limiting factor due to the strong electro-magnetic forces resulting from the combination of large magnets and intense magnetic fields. In particular, the presence of voids in the superconducting filament structure, which are formed during the fabrication and the reaction heat treatment, determines localized stress concentrations and possibly the formation of cracks. In this work, we demonstrate a quantitative correlation betweenmore » the void morphology and the electro-mechanical limits measured on different Bronze route Nb 3Sn wires. Hot Isostatic Pressing (HIP) prior to the reaction heat treatment is utilized to partially eliminate the voids. The wires’ void distributions - with and without HIP treatment - are detected and statistically analyzed using high energy X-ray micro tomography. The stress concentration due to the shape and distribution of the voids as well as their impact on the electro-mechanical properties are determined through finite element method modeling. Lastly, the results are quantitatively correlated with the experimentally determined limits of the irreversible critical current degradation upon mechanical loading.« less

  20. Quantitative correlation between the void morphology of niobium-tin wires and their irreversible critical current degradation upon mechanical loading.

    PubMed

    Barth, C; Seeber, B; Rack, A; Calzolaio, C; Zhai, Y; Matera, D; Senatore, C

    2018-04-26

    Understanding the critical current performance variation of Nb 3 Sn superconducting wires under mechanical loading is a crucial issue for the design of next generation accelerator and fusion magnets. In these applications, the mechanical properties of the conductors may become a limiting factor due to the strong electro-magnetic forces resulting from the combination of large magnets and intense magnetic fields. In particular, the presence of voids in the superconducting filament structure, which are formed during the fabrication and the reaction heat treatment, determines localized stress concentrations and possibly the formation of cracks. In this work, we demonstrate a quantitative correlation between the void morphology and the electro-mechanical limits measured on different Bronze route Nb 3 Sn wires. Hot Isostatic Pressing (HIP) prior to the reaction heat treatment is utilized to partially eliminate the voids. The wires' void distributions - with and without HIP treatment - are detected and statistically analyzed using high energy X-ray micro tomography. The stress concentration due to the shape and distribution of the voids as well as their impact on the electro-mechanical properties are determined through finite element method modeling. Finally, the results are quantitatively correlated with the experimentally determined limits of the irreversible critical current degradation upon mechanical loading.

  1. Enhancing communication in oncology outpatient consultations: critical reflections from doctors

    PubMed Central

    Murphy, Roger; Cox, Karen; Steward, William

    2011-01-01

    Objectives The experiences of patients diagnosed with advanced incurable cancer and the doctors who conducted their medical consultations were studied in order to improve the understanding of what happens in consultations, when bad news is disclosed. The major objective of the study was to critically reflect upon doctor-patient communication, in such situations, with a view to considering future strategies for doctors’ continuing professional development. Methods Sixteen patients and sixteen Oncologists, from a cancer centre in the UK were recruited into this ethnographic study. One hundred and fifteen episodes of data were collected from audio recorded consultations; interviews with doctors and patients and their relatives and observations of consultations. These data were analysed using a constant comparison method. Results Interactions between doctors and patients are complex and consultations can be challenging for both of them. Some doctors spoke openly about their need for additional support to enhance their communication related competencies within Oncology consultations. These doctors wanted to observe their peers conducting consultations. They also wanted to receive feedback about their own clinical practices. These doctors stated that they wanted an open culture whereby they could talk freely about difficult and emotionally challenging consultations without fear of being considered incompetent by their Consultants, who act in a clinical supervisory role. Conclusions To help practitioners consolidate their practice in such settings it is necessary to develop better collaborations among practitioners within clinical practice. Providing individual supervisory sessions or group workshops can facilitate reflective learning and provide an open and supportive learning culture.

  2. Current-limiting challenges for all-spin logic devices

    PubMed Central

    Su, Li; Zhang, Youguang; Klein, Jacques-Olivier; Zhang, Yue; Bournel, Arnaud; Fert, Albert; Zhao, Weisheng

    2015-01-01

    All-spin logic device (ASLD) has attracted increasing interests as one of the most promising post-CMOS device candidates, thanks to its low power, non-volatility and logic-in-memory structure. Here we investigate the key current-limiting factors and develop a physics-based model of ASLD through nano-magnet switching, the spin transport properties and the breakdown characteristic of channel. First, ASLD with perpendicular magnetic anisotropy (PMA) nano-magnet is proposed to reduce the critical current (Ic0). Most important, the spin transport efficiency can be enhanced by analyzing the device structure, dimension, contact resistance as well as material parameters. Furthermore, breakdown current density (JBR) of spin channel is studied for the upper current limitation. As a result, we can deduce current-limiting conditions and estimate energy dissipation. Based on the model, we demonstrate ASLD with different structures and channel materials (graphene and copper). Asymmetric structure is found to be the optimal option for current limitations. Copper channel outperforms graphene in term of energy but seriously suffers from breakdown current limit. By exploring the current limit and performance tradeoffs, the optimization of ASLD is also discussed. This benchmarking model of ASLD opens up new prospects for design and implementation of future spintronics applications. PMID:26449410

  3. Setting the vision: applied patient-reported outcomes and smart, connected digital healthcare systems to improve patient-centered outcomes prediction in critical illness.

    PubMed

    Wysham, Nicholas G; Abernethy, Amy P; Cox, Christopher E

    2014-10-01

    Prediction models in critical illness are generally limited to short-term mortality and uncommonly include patient-centered outcomes. Current outcome prediction tools are also insensitive to individual context or evolution in healthcare practice, potentially limiting their value over time. Improved prognostication of patient-centered outcomes in critical illness could enhance decision-making quality in the ICU. Patient-reported outcomes have emerged as precise methodological measures of patient-centered variables and have been successfully employed using diverse platforms and technologies, enhancing the value of research in critical illness survivorship and in direct patient care. The learning health system is an emerging ideal characterized by integration of multiple data sources into a smart and interconnected health information technology infrastructure with the goal of rapidly optimizing patient care. We propose a vision of a smart, interconnected learning health system with integrated electronic patient-reported outcomes to optimize patient-centered care, including critical care outcome prediction. A learning health system infrastructure integrating electronic patient-reported outcomes may aid in the management of critical illness-associated conditions and yield tools to improve prognostication of patient-centered outcomes in critical illness.

  4. Current maternal depression moderates the relation between critical expressed emotion in mothers and depressive symptoms in their adolescent daughters.

    PubMed

    Mellick, William; Kalpakci, Allison; Sharp, Carla

    2015-06-30

    Prior studies have examined critical expressed emotion (EE-Crit) in mothers in the intergenerational transmission of depression. However, the potential moderating effect of maternal depression diagnostic status in relation to EE-Crit and youth depressive symptoms has yet to be determined. A total of N=121 biological mother/daughter dyads that differed in maternal depression diagnostic status were recruited for the present study: (1) currently depressed mothers (current depression, n=29); (2) formerly depressed mothers (past depression, n=39); and (3) mothers free from any psychiatric history (healthy controls, n=53). Mothers were administered structured clinical interviews and completed self-report measures of EE-Crit and psychopathology, and daughters self-reported depressive symptoms. Results indicated no significant group differences in EE-Crit; however, current maternal depression status moderated EE-Crit such that the magnitude of the relation between EE-Crit and adolescent depressive symptoms was significantly greater in daughters of currently depressed mothers. These findings highlight the importance of considering current maternal depression, rather than a history of maternal depression, in relation to EE-Crit and adolescent depressive symptoms, providing impetus for future investigations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Critical Thinking: Attitudes, Skills, and Ambiguity.

    ERIC Educational Resources Information Center

    Shaughnessy, Michael F.

    This paper provides an overview of the realm of critical thinking. The document explores the development of a critical thinking attitude and specific skills relative to logic, rationality, and reasoning that must be fostered to facilitate and enhance future learning. The issue of ambiguity also is addressed as a central construct of the critical…

  6. Enhanced pinning in superconducting thin films with graded pinning landscapes

    NASA Astrophysics Data System (ADS)

    Motta, M.; Colauto, F.; Ortiz, W. A.; Fritzsche, J.; Cuppens, J.; Gillijns, W.; Moshchalkov, V. V.; Johansen, T. H.; Sanchez, A.; Silhanek, A. V.

    2013-05-01

    A graded distribution of antidots in superconducting a-Mo79Ge21 thin films has been investigated by magnetization and magneto-optical imaging measurements. The pinning landscape has maximum density at the sample border, decreasing linearly towards the center. Its overall performance is noticeably superior than that for a sample with uniformly distributed antidots: For high temperatures and low fields, the critical current is enhanced, whereas the region of thermomagnetic instabilities in the field-temperature diagram is significantly suppressed. These findings confirm the relevance of graded landscapes on the enhancement of pinning efficiency, as recently predicted by Misko and Nori [Phys. Rev. B 85, 184506 (2012)].

  7. A critical role of T follicular helper cells in human mucosal anti-influenza response that can be enhanced by immunological adjuvant CpG-DNA.

    PubMed

    Aljurayyan, A N; Sharma, R; Upile, N; Beer, H; Vaughan, C; Xie, C; Achar, P; Ahmed, M S; McNamara, P S; Gordon, S B; Zhang, Q

    2016-08-01

    T Follicular helper cells (TFH) are considered critical for B cell antibody response, and recent efforts have focused on promoting TFH in order to enhance vaccine efficacy. We studied the frequency and function of TFH in nasopharynx-associated lymphoid tissues (NALT) from children and adults, and its role in anti-influenza antibody response following stimulation by a live-attenuated influenza vaccine (LAIV) or an inactivated seasonal virus antigen (sH1N1). We further studied whether CpG-DNA promotes TFH and by which enhances anti-influenza response. We showed NALT from children aged 1.5-10 years contained abundant TFH, suggesting efficient priming of TFH during early childhood. Stimulation by LAIV induced a marked increase in TFH that correlated with a strong production of anti-hemagglutinin (HA) IgA/IgG/IgM antibodies in tonsillar cells. Stimulation by the inactivated sH1N1 antigen induced a small increase in TFH which was markedly enhanced by CpG-DNA, accompanied by enhanced anti-HA antibody responses. In B cell co-culture experiment, anti-HA responses were only seen in the presence of TFH, and addition of plasmacytoid dendritic cell to TFH-B cell co-culture enhanced the TFH-mediated antibody production following CpG-DNA and sH1N1 antigen stimulation. Induction of TFH differentiation from naïve T cells was also shown following the stimulation. Our results support a critical role of TFH in human mucosal anti-influenza antibody response. Use of an adjuvant such as CpG-DNA that has the capacity to promote TFH by which to enhance antigen-induced antibody responses in NALT tissue may have important implications for future vaccination strategies against respiratory pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Feminist Literary Criticism; Explorations in Theory.

    ERIC Educational Resources Information Center

    Donovan, Josephine, Ed.

    A collection of five essays (plus preface and afterword) by noted feminist critics, this book provides an overview of the existing body of feminist literary criticism in order to promote an understanding of the issues feminist critics are currently discussing among themselves and with other critics. A theoretical framework for understanding this…

  9. Critical thinking as an educational outcome: an evaluation of current tools of measurement.

    PubMed

    Adams, M H; Whitlow, J F; Stover, L M; Johnson, K W

    1996-01-01

    Critical thinking, an outcome criterion of the National League for Nursing and the Council of Baccalaureate and Higher Degree Programs, is an abstract skill difficult to measure. The authors provide a comprehensive review of four instruments designed to measure critical thinking and summarize research in which the tools were used. Analysis of this information will empower nursing faculty members to select a critical-thinking instrument that is individualized to the needs of their respective nursing programs.

  10. Critical Current Test of Liquid Hydrogen Cooled HTC Superconductors under External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Shirai, Yasuyuki; Shiotsu, Masahiro; Tatsumoto, Hideki; Kobayashi, Hiroaki; Naruo, Yoshihiro; Nonaka, Satoshi; Inatani, Yoshifumi

    High-Tc (HTC) superconductors including MgB2 will show excellent properties under temperature of Liquid Hydrogen (LH2:20K), which has large latent heat and low viscosity coefficient. In order to design and fabricate the LH2 cooled superconducting energy devices, we must clear the cooling property of LH2 for superconductors, the cooling system and safety design of LH2 cooled superconducting devices and electro-magnetic property evaluation of superconductors (BSCCO, REBCO and MgB2) and their magnets cooled by LH2. As the first step of the study, an experimental setup which can be used for investigating heat transfer characteristics of LH2 in a pool and also in forced flow (circulation loop with a pump), and also for evaluation of electro-magnetic properties of LH2 cooled superconductors under external magnetic field (up to 7 T). In this paper, we will show a short sketch of the experimental set-up, practical experiences in safety operation of liquid hydrogen cooling system and example test results of critical current evaluation of HTC superconductors cooled by LH2.

  11. Female genital cosmetic surgery: a critical review of current knowledge and contemporary debates.

    PubMed

    Braun, Virginia

    2010-07-01

    Female genital cosmetic surgery procedures have gained popularity in the West in recent years. Marketing by surgeons promotes the surgeries, but professional organizations have started to question the promotion and practice of these procedures. Despite some surgeon claims of drastic transformations of psychological, emotional, and sexual life associated with the surgery, little reliable evidence of such effects exists. This article achieves two objectives. First, reviewing the published academic work on the topic, it identifies the current state of knowledge around female genital cosmetic procedures, as well as limitations in our knowledge. Second, examining a body of critical scholarship that raises sociological and psychological concerns not typically addressed in medical literature, it summarizes broader issues and debates. Overall, the article demonstrates a paucity of scientific knowledge and highlights a pressing need to consider the broader ramifications of surgical practices. "Today we have a whole society held in thrall to the drastic plastic of labial rejuvenation."( 1 ) "At the present time, the field of female cosmetic genital surgery is like the old Wild, Wild West: wide open and unregulated"( 2 ).

  12. Enhancement of pumped current in quantum dots

    NASA Astrophysics Data System (ADS)

    Ramos, Juan Pablo; Foa, Luis; Apel, Victor Marcelo; Orellana, Pedro

    A direct current usually requires the application of a non-zero potential difference between source and drain, but on nanoscale systems (NSS) it is possible to obtain a non-zero current while the potential difference is zero. The effect is known as quantum charge pumping (QCP) and it is due to the interference provided by the existence of a time-dependent potential (TDP). QCP can be generated by a TDP in non-adiabatic limit. An example of this is a system composed by a ring with a dot embedded on it, under the application of an oscillating TDP. By the action of a magnetic field across the system, a pumped current is generated, since time reversal symmetry is broken. Decoherence is crucial, both from a scientific and technological point of view. In NSS it is expected that decoherence, among others things, decreases the QCP amplitude. In this context, we study what is the effect of a bath on the pumped current in our system. We find that for certain values of magnetic flux, the bath-system produce amplification of the pumped current.

  13. Chronic Enhancement of Serotonin Facilitates Excitatory Transcranial Direct Current Stimulation-Induced Neuroplasticity.

    PubMed

    Kuo, Hsiao-I; Paulus, Walter; Batsikadze, Giorgi; Jamil, Asif; Kuo, Min-Fang; Nitsche, Michael A

    2016-04-01

    Serotonin affects memory formation via modulating long-term potentiation (LTP) and depression (LTD). Accordingly, acute selective serotonin reuptake inhibitor (SSRI) administration enhanced LTP-like plasticity induced by transcranial direct current stimulation (tDCS) in humans. However, it usually takes some time for SSRI to reduce clinical symptoms such as anxiety, negative mood, and related symptoms of depression and anxiety disorders. This might be related to an at least partially different effect of chronic serotonergic enhancement on plasticity, as compared with single-dose medication. Here we explored the impact of chronic application of the SSRI citalopram (CIT) on plasticity induced by tDCS in healthy humans in a partially double-blinded, placebo (PLC)-controlled, randomized crossover study. Furthermore, we explored the dependency of plasticity induction from the glutamatergic system via N-methyl-D-aspartate receptor antagonism. Twelve healthy subjects received PLC medication, combined with anodal or cathodal tDCS of the primary motor cortex. Afterwards, the same subjects took CIT (20 mg/day) consecutively for 35 days. During this period, four additional interventions were performed (CIT and PLC medication with anodal/cathodal tDCS, CIT and dextromethorphan (150 mg) with anodal/cathodal tDCS). Plasticity was monitored by motor-evoked potential amplitudes elicited by transcranial magnetic stimulation. Chronic application of CIT increased and prolonged the LTP-like plasticity induced by anodal tDCS for over 24 h, and converted cathodal tDCS-induced LTD-like plasticity into facilitation. These effects were abolished by dextromethorphan. Chronic serotonergic enhancement results in a strengthening of LTP-like glutamatergic plasticity, which might partially explain the therapeutic impact of SSRIs in depression and other neuropsychiatric diseases.

  14. Fabrication of superconductor-ferromagnet-insulator-superconductor Josephson junctions with critical current uniformity applicable to integrated circuits

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Taniguchi, Soya; Ishikawa, Kouta; Akaike, Hiroyuki; Fujimaki, Akira

    2017-03-01

    Nb Josephson junctions (JJs) were fabricated with a Pd89Ni11 ferromagnetic interlayer and an AlO x tunnel barrier layer for use in large-scale superconducting integrated circuits. The junctions had a small critical current (I c) spread, where the standard deviation 1σ was less than 2% at 4.2 K for junctions with the same designed size. It was observed that the electrical behavior of the junctions could be controlled by manipulating the film thickness of the PdNi interlayer. The junctions behaved as a π-JJ for thicknesses of 9 and 11 nm, showing 1σ in the I c spread of 1.2% for 9 nm.

  15. Diffusion studies and critical current in superconducting Nb-Ti-Ta artificial pinning center wire

    NASA Astrophysics Data System (ADS)

    Bormio-Nunes, C.; Gomes, P. M. N.; Tirelli, M. A.; Ghivelder, L.

    2005-08-01

    The diffusion between Nb-20%Ta (wt %) and pure Ti is studied at temperatures of 973, 1023, and 1073K, for duration times among 25 and 121h in an artificial pinning center (APC) wire composed of a Ti core surrounded by a Nb-20%Ta layer. The produced diffusion layer is a ternary alloy with superconducting properties, such as critical field Bc2 and critical current density JC, which intrinsically depend on the layer composition. Measurements of layer morphology and composition were performed, and the results show a preferential diffusion of Nb and Ta into Ti. There is a slight diffusion of Ti into Nb through grain boundaries. The presence of Ta also slows down the diffusion of Nb in Ti if compared to the couple formed by pure Nb and Ti. Regarding the mechanical properties of the composite wire, the use of lower temperatures to form the ternary phase is desirable in order to avoid a larger portion of the diffusion layer rich in Ti that favorites α-Ti precipitations that are detrimental to the wire ductility. The best JC value was obtained for the sample heat treated at 973K. The improvement of the flux-line pinning was associated with a sharp change of the diffusion layer composition rather than pinning by normal layer interfaces, suggesting a new source of pinning in this kind of material. Nb-Ti-Ta ternary alloys have the potential to be used in superconducting magnets when fields above 12T are required.

  16. War, Critical Thinking, and Self-Understanding

    ERIC Educational Resources Information Center

    Noddings, Nel

    2004-01-01

    Can students learn to think critically if they are not asked to engage with critical issues? Fostering critical thinking is frequently stated as a fundamental aim of education, and yet many teachers report that they have been forbidden to discuss such critical issues as current wars, religion, and cultural differences in styles of parenting. The…

  17. Critical current density in (YBa2Cu3O7-δ)1-x-(PrBa2Cu3O7-δ)x melt-textured composites

    NASA Astrophysics Data System (ADS)

    Opata, Yuri Aparecido; Monteiro, João Frederico Haas Leandro; Jurelo, Alcione Roberto; Siqueira, Ezequiel Costa

    2018-06-01

    Melt textured (YBa2Cu3O7-δ)1-x-(PrBa2Cu3O7-δ)x composites (x = 0.00 and x = 0.05) were grown using the top seeding method. The effect of the PrBa2Cu3O7-δ phase on the growth process and the modification of the microstructure as well as on the physical properties was analyzed. X-ray analyses indicated that both pure and Pr-doped samples present an orthorhombic superconducting phase. From resistivity measurements for YBa2Cu3O7-δ and (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 samples, the Tcab did not change and was around 90.5 K. However, from magnetic measurements, the superconductivity was observed in critical temperatures TC = 92.9 K and 92.4 K for YBa2Cu3O7-δ and (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 samples, respectively. The YBa2Cu3O7-δ sample showed higher critical current densities than those shown by the (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 sample, with values of JC = 5.85 × 105 A/cm2 and 4.72 × 105 A/cm2, respectively. This paper also discusses the importance of Pr substitution on nano- and micro-meter scales to enhance JC(H).

  18. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia - current trends.

    PubMed

    Ali, Mohammad; Abbasi, Bilal Haider; Ahmad, Nisar; Khan, Haji; Ali, Gul Shad

    2017-11-01

    The genus Artemisia has been utilized worldwide due to its immense potential for protection against various diseases, especially malaria. Artemisia absinthium, previously renowned for its utilization in the popular beverage absinthe, is gaining resurgence due to its extensive pharmacological activities. Like A. annua, this species exhibits strong biological activities like antimalarial, anticancer and antioxidant. Although artemisinin was found to be the major metabolite for its antimalarial effects, several flavonoids and terpenoids are considered to possess biological activities when used alone and also to synergistically boost the bioavailability of artemisinin. However, due to the limited quantities of these metabolites in wild plants, in vitro cultures were established and strategies have been adopted to enhance medicinally important secondary metabolites in these cultures. This review elaborates on the traditional medicinal uses of Artemisia species and explains current trends to establish cell cultures of A. annua and A. absinthium for enhanced production of medicinally important secondary metabolites.

  19. Transport critical current measurement apparatus using liquid nitrogen cooled high-Tc superconducting magnet with variable temperature insert

    NASA Astrophysics Data System (ADS)

    Nishijima, G.; Kitaguchi, H.; Tshuchiya, Y.; Nishimura, T.; Kato, T.

    2013-01-01

    We have developed an apparatus to investigate transport critical current (Ic) as a function of magnetic field and temperature using only liquid nitrogen. The apparatus consists of a (Bi,Pb)2Sr2Ca2Cu3O10 (Bi-2223) superconducting magnet, an outer dewar, and a variable temperature insert (VTI). The magnet, which is operated in depressurized liquid nitrogen, generates magnetic field up to 1.26 T. The sample is also immersed in liquid nitrogen. The pressure in the VTI is controlled from 0.02 to 0.3 MPa, which corresponds to temperature ranging from 66 to 88 K. We have confirmed the long-term stable operation of the Bi-2223 magnet at 1 T. The temperature stability of the sample at high transport current was also demonstrated. The apparatus provides easy-operating Ic measurement environment for a high-Tc superconductor up to 500 A in magnetic fields up to 1 T and in temperatures ranging from 66 to 88 K.

  20. An Improved Distributed Secondary Control Method for DC Microgrids With Enhanced Dynamic Current Sharing Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Panbao; Lu, Xiaonan; Yang, Xu

    This paper proposes an improved distributed secondary control scheme for dc microgrids (MGs), aiming at overcoming the drawbacks of conventional droop control method. The proposed secondary control scheme can remove the dc voltage deviation and improve the current sharing accuracy by using voltage-shifting and slope-adjusting approaches simultaneously. Meanwhile, the average value of droop coefficients is calculated, and then it is controlled by an additional controller included in the distributed secondary control layer to ensure that each droop coefficient converges at a reasonable value. Hence, by adjusting the droop coefficient, each participating converter has equal output impedance, and the accurate proportionalmore » load current sharing can be achieved with different line resistances. Furthermore, the current sharing performance in steady and transient states can be enhanced by using the proposed method. The effectiveness of the proposed method is verified by detailed experimental tests based on a 3 × 1 kW prototype with three interface converters.« less

  1. Web-based resources for critical care education.

    PubMed

    Kleinpell, Ruth; Ely, E Wesley; Williams, Ged; Liolios, Antonios; Ward, Nicholas; Tisherman, Samuel A

    2011-03-01

    reviews of the benefits of utilizing e-learning. Review of the Web sites of relevant critical care organizations revealed the existence of a number of e-learning resources, including online critical care courses, tutorials, podcasts, webcasts, slide sets, and continuing medical education resources, some requiring membership or a fee to access. Respondents to listserve queries (>100) and critical care medicine fellowship director and advanced practice nursing educator e-mail queries (>50) identified the use of a number of tutorials, self-directed learning modules, and video-enhanced programs for critical care education and practice. In all, >135 Web-based education resources exist, including video Web resources for critical care education in a variety of e-learning formats, such as tutorials, self-directed learning modules, interactive case studies, webcasts, podcasts, and video-enhanced programs. As identified by critical care educators and practitioners, e-learning is actively being integrated into critical care medicine and nursing training programs for continuing medical education and competency training purposes. Knowledge of available Web-based educational resources may enhance critical care practitioners' ongoing learning and clinical competence, although this has not been objectively measured to date.

  2. Enhancing Critical Thinking across the Undergraduate Experience: An Exemplar from Engineering

    ERIC Educational Resources Information Center

    Ralston, Patricia A.; Bays, Cathy L.

    2013-01-01

    Faculty in a large, urban school of engineering designed a longitudinal study to assess the critical thinking skills of undergraduate students as they progressed through the engineering program. The Paul-Elder critical thinking framework was used to design course assignments and develop a holistic assessment rubric. The curriculum was re-designed…

  3. Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification

    NASA Astrophysics Data System (ADS)

    Ha, Minseok; Graham, Samuel

    2017-08-01

    Experimental studies have shown that microporous surfaces induce one of the highest enhancements in critical heat flux (CHF) during pool boiling. However, microporous surfaces may also induce a very large surface superheat (>100 °C) which is not desirable for applications such as microelectronics cooling. While the understanding of the CHF mechanism is the key to enhancing boiling heat transfer, a comprehensive understanding is not yet available. So far, three different theories for the CHF of microporous surfaces have been suggested: viscous-capillary model, hydrodynamic instability model, and dryout of the porous coatings. In general, all three theories account for some aspects of boiling phenomena. In this study, the theories are examined through their correlations with experimental data on microporous surfaces during pool boiling using deionized (DI) water. It was found that the modulation of the vapor-jet through the pore network enables a higher CHF than that of a flat surface based on the hydrodynamic instability theory. In addition, it was found that as the heat flux increases, a vapor layer grows in the porous coatings described by a simple thermal resistance model which is responsible for the large surface superheat. Once the vapor layer grows to fill the microporous structure, transition to film boiling occurs and CHF is reached. By disrupting the formation of this vapor layer through the fabrication of channels to allow vapor escape, an enhancement in the CHF and heat transfer coefficient was observed, allowing CHF greater than 3500 kW/m2 at a superheat less than 50 °C.

  4. Using Teacher Questions to Enhance EFL Students' Critical Thinking Ability

    ERIC Educational Resources Information Center

    Feng, Zhiwen

    2013-01-01

    In this era of information and economic globalization, developing critical thinking skills in college students has been set as a primary goal and learning outcome in higher education. Teaching critical thinking, however, is a great challenge to most EFL teachers. This article, therefore, attempts to examine the nature and teachability of critical…

  5. Critical Period of Memory Enhancement during Taste Avoidance Conditioning in Lymnaea stagnalis

    PubMed Central

    Sunada, Hiroshi; Lukowiak, Ken; Sakakibara, Manabu

    2013-01-01

    The present study investigated the optimal training procedure leading to long-lasting taste avoidance behavior in Lymnaea. A training procedure comprising 5 repeated pairings of a conditional stimulus (CS, sucrose), with an unconditional stimulus (US, a tactile stimulation to the animal’s head), over a 4-day period resulted in an enhanced memory formation than 10 CS-US repeated pairings over a 2-day period or 20 CS-US repeated pairings on a single day. Backward conditioning (US-CS) pairings did not result in conditioning. Thus, this taste avoidance conditioning was CS-US pairing specific. Food avoidance behavior was not observed following training, however, if snails were immediately subjected to a cold-block (4°C for 10 min). It was critical that the cold-block be applied within 10 min to block long-term memory (LTM) formation. Further, exposure to the cold-block 180 min after training also blocked both STM and LTM formation. The effects of the cold-block on subsequent learning and memory formation were also examined. We found no long lasting effects of the cold-block on subsequent memory formation. If protein kinase C was activated before the conditioning paradigm, snails could still acquire STM despite exposure to the cold-block. PMID:24098373

  6. A study of nucleate boiling and critical heat flux with EHD enhancement

    NASA Astrophysics Data System (ADS)

    Hristov, Y.; Zhao, D.; Kenning, D. B. R.; Sefiane, K.; Karayiannis, T. G.

    2009-05-01

    The paper describes results from an experimental and theoretical study of the effect of an electric field on nucleate boiling and the critical heat flux (CHF) in pool boiling of R123 at atmospheric pressure on a horizontal wall with a smooth surface. Two designs of electrode (parallel rods and wire mesh) were used. The experimental data exhibit some differences from the data obtained by other researchers in similar experiments on a wall with a different surface finish and with a slightly different design of wire mesh electrode. The hydrodynamic model for EHD enhancement of CHF cannot reconcile the differences. A theoretical model has been developed for the growth of a single vapour bubble on a superheated wall in an electric field, leading to a numerical simulation based on the level-set method. The model includes matching of sub-models for the micro- and macro-regions, conduction in the wall, distortion of the electric field by the bubble, the temperature dependence of electrical properties and free-charge generation. In the present form of the model, some of these effects are realised in an approximate form. The capability to investigate dry-spot formation and wall temperature changes that might lead to CHF has been demonstrated.

  7. Gadolinium-enhanced computed tomographic angiography: current status.

    PubMed

    Rosioreanu, Alex; Alberico, Ronald A; Litwin, Alan; Hon, Man; Grossman, Zachary D; Katz, Douglas S

    2005-01-01

    This article reviews the research to date, as well as our clinical experience from two institutions, on gadolinium-enhanced computed tomographic angiography (gCTA) for imaging the body. gCTA may be an appropriate examination for the small percentage of patients who would benefit from noninvasive vascular imaging, but who have contraindications to both iodinated contrast and magnetic resonance imaging. gCTA is more expensive than CTA with iodinated contrast, due to the dose of gadolinium administered, and gCTA has limitations compared with CTA with iodinated contrast, in that parenchymal organs are not optimally enhanced at doses of 0.5 mmol/kg or lower. However, in our experience, gCTA has been a very useful problem-solving examination in carefully selected patients. With the advent of 16-64 detector CT, in combination with bolus tracking, we believe that the overall dose of gadolinium needed for diagnostic CTA examinations, while relatively high, can be safely administered.

  8. Enhancement of lower critical field by reducing the thickness of epitaxial and polycrystalline MgB₂ thin films

    DOE PAGES

    Tan, Teng; Wolak, M. A.; Acharya, Narendra; ...

    2015-04-01

    For potential applications in superconducting RF cavities, we have investigated the properties of polycrystalline MgB₂ films, including the thickness dependence of the lower critical field Hc₁. MgB₂ thin films were fabricated by hybrid physical-chemical vapor deposition on (0001) SiC substrate either directly (for epitaxial films) or with a MgO buffer layer (for polycrystalline films). When the film thickness decreased from 300 nm to 100 nm, Hc₁ at 5 K increased from around 600 Oe to 1880 Oe in epitaxial films and to 1520 Oe in polycrystalline films. The result is promising for using MgB₂/MgO multilayers to enhance the vortex penetrationmore » field.« less

  9. A critical care network pressure ulcer prevention quality improvement project.

    PubMed

    McBride, Joanna; Richardson, Annette

    2015-03-30

    Pressure ulcer prevention is an important safety issue, often underrated and an extremely painful event harming patients. Critically ill patients are one of the highest risk groups in hospital. The impact of pressure ulcers are wide ranging, and they can result in increased critical care and the hospital length of stay, significant interference with functional recovery and rehabilitation and increase cost. This quality improvement project had four aims: (1) to establish a critical care network pressure ulcer prevention group; (2) to establish baseline pressure ulcer prevention practices; (3) to measure, compare and monitor pressure ulcers prevalence; (4) to develop network pressure ulcer prevention standards. The approach used to improve quality included strong critical care nursing leadership to develop a cross-organisational pressure ulcer prevention group and a benchmarking exercise of current practices across a well-established critical care Network in the North of England. The National Safety Thermometer tool was used to measure pressure ulcer prevalence in 23 critical care units, and best available evidence, local consensus and another Critical Care Networks' bundle of interventions were used to develop a local pressure ulcer prevention standards document. The aims of the quality improvement project were achieved. This project was driven by successful leadership and had an agreed common goal. The National Safety Thermometer tool was an innovative approach to measure and compare pressure ulcer prevalence rates at a regional level. A limitation was the exclusion of moisture lesions. The project showed excellent engagement and collaborate working in the quest to prevent pressure ulcers from many critical care nurses with the North of England Critical Care Network. A concise set of Network standards was developed for use in conjunction with local guidelines to enhance pressure ulcer prevention. © 2015 British Association of Critical Care Nurses.

  10. Theoretical design strategies of bipolar membrane fuel cell with enhanced self-humidification behavior

    NASA Astrophysics Data System (ADS)

    Li, Qiushi; Gong, Jian; Peng, Sikan; Lu, Shanfu; Sui, Pang-Chieh; Djilali, Ned; Xiang, Yan

    2016-03-01

    The bipolar membrane fuel cells (BPMFCs), which have a unique acid-alkaline jointed membrane electrode assembly (MEA) structure, have demonstrated their great potential for self-humidification during operation. Although the self-humidification ability of such bipolar membranes (BPMs) has recently been validated by a one-dimensional BPM model, the transport mechanism and the formation of self-humidification in the MEAs are not well understood. In the present study, a two-dimensional cross-channel MEA model is developed to elucidate the mechanisms and enhancement of water transport on self-humidification with comprehensive consideration of the three electrochemical reaction zones. The water-formation interface model has been successfully investigated by theoretical and experimental interface reaction kinetics, streamlines of water flux present the formation process and mechanism of self-humidification. A critical current (voltage) value, beyond which self-humidification is initiated, is identified. It is also found that such critical current (voltage) can be adjusted by changing the membrane thickness and the water uptake property of the ionomer. It is concluded that fabricating BPMs with proper membrane thickness and water uptake property are effective strategies to enhance the water management and cell performance in BPMFCs.

  11. Telemedicine in Critical Care

    PubMed Central

    Murias, Gastón; Sales, Bernat; Garcia-Esquirol, Oscar; Blanch, Lluis

    2009-01-01

    Critical care medicine is the specialty that cares for patients with acute life-threatening illnesses where intensivists look after all aspects of patient care. Nevertheless, shortage of physicians and nurses, the relationship between high costs and economic restrictions, and the fact that critical care knowledge is only available at big hospitals puts the system on the edge. In this scenario, telemedicine might provide solutions to improve availability of critical care knowledge where the patient is located, improve relationship between attendants in different institutions and education material for future specialist training. Current information technologies and networking capabilities should be exploited to improve intensivist coverage, advanced alarm systems and to have large critical care databases of critical care signals. PMID:19452034

  12. Intelligent monitoring of critical pathological events during anesthesia.

    PubMed

    Gohil, Bhupendra; Gholamhhosseini, Hamid; Harrison, Michael J; Lowe, Andrew; Al-Jumaily, Ahmed

    2007-01-01

    Expert algorithms in the field of intelligent patient monitoring have rapidly revolutionized patient care thereby improving patient safety. Patient monitoring during anesthesia requires cautious attention by anesthetists who are monitoring many modalities, diagnosing clinically critical events and performing patient management tasks simultaneously. The mishaps that occur during day-to-day anesthesia causing disastrous errors in anesthesia administration were classified and studied by Reason [1]. Human errors in anesthesia account for 82% of the preventable mishaps [2]. The aim of this paper is to develop a clinically useful diagnostic alarm system for detecting critical events during anesthesia administration. The development of an expert diagnostic alarm system called ;RT-SAAM' for detecting critical pathological events in the operating theatre is presented. This system provides decision support to the anesthetist by presenting the diagnostic results on an integrative, ergonomic display and thus enhancing patient safety. The performance of the system was validated through a series of offline and real-time testing in the operation theatre. When detecting absolute hypovolaemia (AHV), moderate level of agreement was observed between RT-SAAM and the human expert (anesthetist) during surgical procedures. RT-SAAM is a clinically useful diagnostic tool which can be easily modified for diagnosing additional critical pathological events like relative hypovolaemia, fall in cardiac output, sympathetic response and malignant hyperpyrexia during surgical procedures. RT-SAAM is currently being tested at the Auckland City Hospital with ethical approval from the local ethics committees.

  13. Geometric and compositional factors on critical current density in YBa2Cu3O7‑δ films containing nanorods

    NASA Astrophysics Data System (ADS)

    Horide, Tomoya; Nagao, Sho; Izutsu, Ryosuke; Ishimaru, Manabu; Kita, Ryusuke; Matsumoto, Kaname

    2018-06-01

    Critical current density (J c) was investigated in YBa2Cu3O7‑δ films containing nanorods prepared with various nanorod materials, with variation of nanorod content, substrate temperature, and oxidization condition. Three types of compositional situation were realized: films containing strain induced oxygen vacancies; fully oxidized films containing cation compositional deviation; and oxygen deficient films. Normalized J c‑B behavior was determined via the matching field, which is a geometric factor, regardless of the compositional details. A J c‑critical temperature (T c) relation depending on distribution and fraction of compositional deviation (cation compositional deviation and strain induced oxygen vacancies) was found: the J c values decreased with decreasing T c due to the effect of T c on nanorod pinning strength in the fully oxidized films; J c decreased with decreasing oxygen pressure in the film cooling process after film deposition in spite of T c remaining almost the same, due to reduction of the effective area for current flow in the oxygen deficient films. Thus, a J c landscape based on geometric and compositional factors was obtained. The study highlights the importance of the J c‑T c analysis in the understanding of J c in YBa2Cu3O7‑δ films containing nanorods.

  14. Current and maintained health-enhancing physical activity in rheumatoid arthritis: a cross-sectional study.

    PubMed

    Demmelmaier, Ingrid; Bergman, Patrick; Nordgren, Birgitta; Jensen, Irene; Opava, Christina H

    2013-07-01

    To describe and identify the explanatory factors of variation in current and maintained health-enhancing physical activity (HEPA) in persons with rheumatoid arthritis (RA). In this cross-sectional study, current HEPA was assessed with the International Physical Activity Questionnaire and maintained HEPA with the Exercise Stage Assessment Instrument, the latter explicitly focusing on both aerobic physical activity and muscle strength training. Sociodemographic, disease-related, and psychosocial data were retrieved from the Swedish Rheumatology Quality (SRQ) registers and a postal questionnaire. The explained variations in the respective HEPA behaviors were analyzed with logistic regression. In all, 3,152 (58.5%) of 5,391 persons identified as eligible from the SRQ registers responded to the questionnaire. Current HEPA was reported by 69%, and maintained HEPA by 11% of the respondents. The most salient and consistent factors explaining variation in both current and maintained HEPA were self-efficacy, social support, and outcome expectations related to physical activity. To our knowledge, this is the first study exploring maintained physical activity in a large well-defined sample of persons with RA. Our results indicate that a minority perform maintained HEPA, including both aerobic physical activity and muscle strength training, and that psychosocial factors are the most salient and consistent in the explanation of HEPA variation. Copyright © 2013 by the American College of Rheumatology.

  15. Enhancing the Resilience of Interdependent Critical Infrastructure Systems Using a Common Computational Framework

    NASA Astrophysics Data System (ADS)

    Little, J. C.; Filz, G. M.

    2016-12-01

    As modern societies become more complex, critical interdependent infrastructure systems become more likely to fail under stress unless they are designed and implemented to be resilient. Hurricane Katrina clearly demonstrated the catastrophic and as yet unpredictable consequences of such failures. Resilient infrastructure systems maintain the flow of goods and services in the face of a broad range of natural and manmade hazards. In this presentation, we illustrate a generic computational framework to facilitate high-level decision-making about how to invest scarce resources most effectively to enhance resilience in coastal protection, transportation, and the economy of a region. Coastal Louisiana, our study area, has experienced the catastrophic effects of several land-falling hurricanes in recent years. In this project, we implement and further refine three process models (a coastal protection model, a transportation model, and an economic model) for the coastal Louisiana region. We upscale essential mechanistic features of the three detailed process models to the systems level and integrate the three reduced-order systems models in a modular fashion. We also evaluate the proposed approach in annual workshops with input from stakeholders. Based on stakeholder inputs, we derive a suite of goals, targets, and indicators for evaluating resilience at the systems level, and assess and enhance resilience using several deterministic scenarios. The unifying framework will be able to accommodate the different spatial and temporal scales that are appropriate for each model. We combine our generic computational framework, which encompasses the entire system of systems, with the targets, and indicators needed to systematically meet our chosen resilience goals. We will start with targets that focus on technical and economic systems, but future work will ensure that targets and indicators are extended to other dimensions of resilience including those in the environmental and

  16. Long-Lasting Enhancement of Visual Perception with Repetitive Noninvasive Transcranial Direct Current Stimulation

    PubMed Central

    Behrens, Janina R.; Kraft, Antje; Irlbacher, Kerstin; Gerhardt, Holger; Olma, Manuel C.; Brandt, Stephan A.

    2017-01-01

    Understanding processes performed by an intact visual cortex as the basis for developing methods that enhance or restore visual perception is of great interest to both researchers and medical practitioners. Here, we explore whether contrast sensitivity, a main function of the primary visual cortex (V1), can be improved in healthy subjects by repetitive, noninvasive anodal transcranial direct current stimulation (tDCS). Contrast perception was measured via threshold perimetry directly before and after intervention (tDCS or sham stimulation) on each day over 5 consecutive days (24 subjects, double-blind study). tDCS improved contrast sensitivity from the second day onwards, with significant effects lasting 24 h. After the last stimulation on day 5, the anodal group showed a significantly greater improvement in contrast perception than the sham group (23 vs. 5%). We found significant long-term effects in only the central 2–4° of the visual field 4 weeks after the last stimulation. We suspect a combination of two factors contributes to these lasting effects. First, the V1 area that represents the central retina was located closer to the polarization electrode, resulting in higher current density. Second, the central visual field is represented by a larger cortical area relative to the peripheral visual field (cortical magnification). This is the first study showing that tDCS over V1 enhances contrast perception in healthy subjects for several weeks. This study contributes to the investigation of the causal relationship between the external modulation of neuronal membrane potential and behavior (in our case, visual perception). Because the vast majority of human studies only show temporary effects after single tDCS sessions targeting the visual system, our study underpins the potential for lasting effects of repetitive tDCS-induced modulation of neuronal excitability. PMID:28860969

  17. Effects of School-Based Educational Interventions for Enhancing Adolescents Abilities in Critical Appraisal of Health Claims: A Systematic Review.

    PubMed

    Nordheim, Lena V; Gundersen, Malene W; Espehaug, Birgitte; Guttersrud, Øystein; Flottorp, Signe

    2016-01-01

    Adolescents are frequent media users who access health claims from various sources. The plethora of conflicting, pseudo-scientific, and often misleading health claims in popular media makes critical appraisal of health claims an essential ability. Schools play an important role in educating youth to critically appraise health claims. The objective of this systematic review was to evaluate the effects of school-based educational interventions for enhancing adolescents' abilities in critically appraising health claims. We searched MEDLINE, Embase, PsycINFO, AMED, Cinahl, Teachers Reference Centre, LISTA, ERIC, Sociological Abstracts, Social Services Abstracts, The Cochrane Library, Science Citation Index Expanded, Social Sciences Citation Index, and sources of grey literature. Studies that evaluated school-based educational interventions to improve adolescents' critical appraisal ability for health claims through advancing the students' knowledge about science were included. Eligible study designs were randomised and non-randomised controlled trials, and interrupted time series. Two authors independently selected studies, extracted data, and assessed risk of bias in included studies. Due to heterogeneity in interventions and inadequate reporting of results, we performed a descriptive synthesis of studies. We used GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) to assess the certainty of the evidence. Eight studies were included: two compared different teaching modalities, while the others compared educational interventions to instruction as usual. Studies mostly reported positive short-term effects on critical appraisal-related knowledge and skills in favour of the educational interventions. However, the certainty of the evidence for all comparisons and outcomes was very low. Educational interventions in schools may have beneficial short-term effects on knowledge and skills relevant to the critical appraisal of health claims. The small

  18. Effects of School-Based Educational Interventions for Enhancing Adolescents Abilities in Critical Appraisal of Health Claims: A Systematic Review

    PubMed Central

    Espehaug, Birgitte; Guttersrud, Øystein; Flottorp, Signe

    2016-01-01

    Background and Objective Adolescents are frequent media users who access health claims from various sources. The plethora of conflicting, pseudo-scientific, and often misleading health claims in popular media makes critical appraisal of health claims an essential ability. Schools play an important role in educating youth to critically appraise health claims. The objective of this systematic review was to evaluate the effects of school-based educational interventions for enhancing adolescents’ abilities in critically appraising health claims. Methods We searched MEDLINE, Embase, PsycINFO, AMED, Cinahl, Teachers Reference Centre, LISTA, ERIC, Sociological Abstracts, Social Services Abstracts, The Cochrane Library, Science Citation Index Expanded, Social Sciences Citation Index, and sources of grey literature. Studies that evaluated school-based educational interventions to improve adolescents’ critical appraisal ability for health claims through advancing the students’ knowledge about science were included. Eligible study designs were randomised and non-randomised controlled trials, and interrupted time series. Two authors independently selected studies, extracted data, and assessed risk of bias in included studies. Due to heterogeneity in interventions and inadequate reporting of results, we performed a descriptive synthesis of studies. We used GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) to assess the certainty of the evidence. Results Eight studies were included: two compared different teaching modalities, while the others compared educational interventions to instruction as usual. Studies mostly reported positive short-term effects on critical appraisal-related knowledge and skills in favour of the educational interventions. However, the certainty of the evidence for all comparisons and outcomes was very low. Conclusion Educational interventions in schools may have beneficial short-term effects on knowledge and skills relevant

  19. Common Ground of Two Paradigms: Incorporating Critical Theory into Current Art Therapy Practices

    ERIC Educational Resources Information Center

    Nolan, Emily

    2013-01-01

    Clinical art therapy and studio-based community art therapy represent two major paradigms in art therapy practice. This viewpoint explores how critical theory can be incorporated into both paradigms and result in common ground between them. Critical theory encompasses an understanding of oppression in psychological, social, and cultural contexts…

  20. Models, measurement, and strategies in developing critical-thinking skills.

    PubMed

    Brunt, Barbara A

    2005-01-01

    Health care professionals must use critical-thinking skills to solve increasingly complex problems. Educators need to help nurses develop their critical-thinking skills to maintain and enhance their competence. This article reviews various models of critical thinking, as well as methods used to evaluate critical thinking. Specific educational strategies to develop nurses' critical-thinking skills are discussed. Additional research studies are needed to determine how the process of nursing practice can nurture and develop critical-thinking skills, and which strategies are most effective in developing and evaluating critical thinking.

  1. Critical infrastructure protection.

    PubMed

    Deitz, Kim M

    2012-01-01

    Current government policies for protecting the nation's critical infrastructure are described in this article which focuses on hospital disaster planning and incident management and the significant role of Security in infrastructure protection

  2. Adaptive critics for dynamic optimization.

    PubMed

    Kulkarni, Raghavendra V; Venayagamoorthy, Ganesh Kumar

    2010-06-01

    A novel action-dependent adaptive critic design (ACD) is developed for dynamic optimization. The proposed combination of a particle swarm optimization-based actor and a neural network critic is demonstrated through dynamic sleep scheduling of wireless sensor motes for wildlife monitoring. The objective of the sleep scheduler is to dynamically adapt the sleep duration to node's battery capacity and movement pattern of animals in its environment in order to obtain snapshots of the animal on its trajectory uniformly. Simulation results show that the sleep time of the node determined by the actor critic yields superior quality of sensory data acquisition and enhanced node longevity. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Evaluation of critical current density and residual resistance ratio limits in powder in tube Nb 3Sn conductors

    DOE PAGES

    Segal, Christopher; Tarantini, Chiara; Sung, Zu Hawn; ...

    2016-06-10

    High critical current density (Jc) Nb 3Sn A15 multifilamentary wires require a large volume fraction of small grain, superconducting A15 phase, as well as Cu stabilizer with high Residual Resistance Ratio (RRR) to provide electromagnetic stabilization and protection. In Powder-in-Tube (PIT) wires the unreacted Nb7.5wt.%Ta outer layer of the tubular filaments acts as a diffusion barrier and protects the interfilamentary Cu stabilizer from Sn contamination. A high RRR requirement generally imposes a restricted A15 reaction heat treatment (HT) to prevent localized full reaction of the filament that could allow Sn to reach the Cu. In this paper we investigate recentmore » high quality PIT wires that achieve a J c(12 T, 4.2 K) up to ~2500 A/mm -2 and find that the minimum diffusion barrier thickness decreases as the filament aspect ratio increases from ~1 in the inner rings of filaments to 1.3 in the outer filament rings. We found that just 2-3 diffusion barrier breaches can degrade RRR from 300 to 150 or less. Using progressive etching of the Cu we also found that the RRR degradation is localized near the external filaments where deformation is highest. Consequently minimizing filament distortion during strand fabrication is important for reducing RRR degradation. The additional challenge of developing the highest possible J c must be addressed by forming the maximum fraction of high J c small-grain (SG) A15 and minimizing low J c large-grain (LG) A15 morphologies. Finally, in one wire we found that 15% of the filaments had a significantly enhanced SG/LG A15 ratio and no residual A15 in the core, a feature that opens a path to substantial J c improvement.« less

  4. Exploring the attributes of critical thinking: a conceptual basis.

    PubMed

    Forneris, Susan G

    2004-01-01

    Many teaching methods used in nursing education to enhance critical thinking focus on teaching students how to directly apply knowledge; a technically rational approach. While seemingly effective at enhancing students' critical thinking abilities in structured learning situations, these methods don't prepare students to operationalize critical thinking to manage the complexities that actually exist in practice. The work of contemporary educational theorists Paulo Freire, Donald Schon, Chris Argyris, Jack Mezirow, Stephen Brookfield, and Robert Tennyson all share similar perspectives on thinking in practice and the use of reflection to achieve a coherence of understanding. Their perspectives provide insight on how educators can shift from a means-end approach to operationalizing thinking in practice. The author identifies four attributes of critical thinking in practice evidenced in these views, followed by a discussion of specific educational strategies that reflect these attributes, and operationalize a critical thinking process in nursing practice to achieve a coherence of understanding.

  5. Current oscillations in semi-insulating GaAs associated with field-enhanced capture of electrons by the major deep donor EL2

    NASA Technical Reports Server (NTRS)

    Kaminska, M.; Parsey, J. M.; Lagowski, J.; Gatos, H. C.

    1982-01-01

    Current oscillations thermally activated by the release of electrons from deep levels in undoped semiinsulating GaAs were observed for the first time. They were attributed to electric field-enhanced capture of electrons by the dominant deep donor EL2 (antisite AsGa defect). This enhanced capture is due to the configurational energy barrier of EL2, which is readily penetrated by hot electrons.

  6. Critical current density measurement of striated multifilament-coated conductors using a scanning Hall probe microscope

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Fen; Kochat, Mehdi; Majkic, Goran; Selvamanickam, Venkat

    2016-08-01

    In this paper the authors succeeded in measuring the critical current density ({J}{{c}}) of multifilament-coated conductors (CCs) with thin filaments as low as 0.25 mm using the scanning hall probe microscope (SHPM) technique. A new iterative method of data analysis is developed to make the calculation of {J}{{c}} for thin filaments possible, even without a very small scan distance. The authors also discussed in detail the advantage and limitation of the iterative method using both simulation and experiment results. The results of the new method correspond well with the traditional fast Fourier transform method where this is still applicable. However, the new method is applicable for the filamentized CCs in much wider measurement conditions such as with thin filament and a large scan distance, thus overcoming the barrier for application of the SHPM technique on {J}{{c}} measurement of long filamentized CCs with narrow filaments.

  7. A novel modeling to predict the critical current behavior of Nb3Sn PIT strand under transverse load based on a scaling law and Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Tiening; Chiesa, Luisa; Takayasu, Makoto; Bordini, Bernardo

    2014-09-01

    Superconducting Nb3Sn Powder-In-Tube (PIT) strands could be used for the superconducting magnets of the next generation Large Hadron Collider. The strands are cabled into the typical flat Rutherford cable configuration. During the assembly of a magnet and its operation the strands experience not only longitudinal but also transverse load due to the pre-compression applied during the assembly and the Lorentz load felt when the magnets are energized. To properly design the magnets and guarantee their safe operation, mechanical load effects on the strand superconducting properties are studied extensively; particularly, many scaling laws based on tensile load experiments have been established to predict the critical current dependence on strain. However, the dependence of the superconducting properties on transverse load has not been extensively studied so far. One of the reasons is that transverse loading experiments are difficult to conduct due to the small diameter of the strand (about 1 mm) and the data currently available do not follow a common measurement standard making the comparison between different data sets difficult. Recently at the University of Geneva, a new device has been developed to characterize the critical current of Nb3Sn strands under transverse loads. In this work we present a new 2D Finite Element Analysis (FEA) to predict the electro-mechanical response of a PIT strand that was tested at the University of Geneva when transverse load is applied. The FEA provides the strain map for the superconducting filaments when the load is applied. Those strain maps are then used to evaluate the critical current behavior of a PIT strand using a recently developed scaling law that correlates the superconducting properties of a wire with the strain invariants due to the load applied on the superconductor. The benefits and limitations of this method are discussed based on the comparison between the critical current simulation results obtained with the filament

  8. Can Steady Magnetospheric Convection Events Inject Plasma into the Ring Current?

    NASA Astrophysics Data System (ADS)

    Lemon, C.; Chen, M. W.; Guild, T. B.

    2009-12-01

    Steady Magnetospheric Convection (SMC) events are characterized by several-hour periods of enhanced convection that are devoid of substorm signatures. There has long been a debate about whether substorms are necessary to inject plasma into the ring current, or whether enhanced convection is sufficient. If ring current injections occur during SMC intervals, this would suggest that substorms are unnecessary. We use a combination of simulations and data observations to examine this topic. Our simulation model computes the energy-dependent plasma drift in a self-consistent electric and magnetic field, which allows us to accurately model the transport of plasma from the plasma sheet (where the plasma pressure is much larger than the magnetic pressure) into the inner magnetosphere (where plasma pressure is much less than the magnetic pressure). In regions where the two pressures are comparable (i.e. the inner plasma sheet), feedback between the plasma and magnetic field is critical for accurately modeling the physical evolution of the system. Our previous work has suggested that entropy losses in the plasma sheet (such as caused by substorms) may be necessary to inject a ring current. However, it is not yet clear whether other small-scale processes (e.g. bursty bulk flows) can provide sufficient entropy loss in the plasma sheet to allow for the penetration of plasma into the ring current. We combine our simulation results with data observations in order to better understand the physical processes required to inject a ring current.

  9. Transport critical current measurement apparatus using liquid nitrogen cooled high-T(c) superconducting magnet with variable temperature insert.

    PubMed

    Nishijima, G; Kitaguchi, H; Tshuchiya, Y; Nishimura, T; Kato, T

    2013-01-01

    We have developed an apparatus to investigate transport critical current (I(c)) as a function of magnetic field and temperature using only liquid nitrogen. The apparatus consists of a (Bi,Pb)(2)Sr(2)Ca(2)Cu(3)O(10) (Bi-2223) superconducting magnet, an outer dewar, and a variable temperature insert (VTI). The magnet, which is operated in depressurized liquid nitrogen, generates magnetic field up to 1.26 T. The sample is also immersed in liquid nitrogen. The pressure in the VTI is controlled from 0.02 to 0.3 MPa, which corresponds to temperature ranging from 66 to 88 K. We have confirmed the long-term stable operation of the Bi-2223 magnet at 1 T. The temperature stability of the sample at high transport current was also demonstrated. The apparatus provides easy-operating I(c) measurement environment for a high-T(c) superconductor up to 500 A in magnetic fields up to 1 T and in temperatures ranging from 66 to 88 K.

  10. Process and device integration for silicon tunnel FETs utilizing isoelectronic trap technology to enhance the ON current

    NASA Astrophysics Data System (ADS)

    Mori, Takahiro; Asai, Hidehiro; Fukuda, Koichi; Matsukawa, Takashi

    2018-04-01

    A tunnel FET (TFET) is a candidate replacement for conventional MOSFETs to realize low-power LSI. The most significant issue with the practical application of TFETs concerns their low tunneling current. Si is an indirect-gap material with a low band-to-band tunneling probability and is not favored for the channel. However, a new technology has recently been proposed to enhance the tunneling current in Si-TFETs by utilizing isoelectronic trap (IET) technology. IET technology provides an innovative approach to realizing low-power LSI with TFETs. In this paper, state-of-the-art research on Si-TFETs with IET technology from the viewpoint of process and device integration is reviewed.

  11. Effect of nanosized Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} on the transport critical current density of Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafiz, M.; Abd-Shukor, R.

    2014-09-03

    The effects of nano-sized Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} addition on the superconducting and transport properties of Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Bi-2223) in bulk form has been investigated. Bi-2223 superconductor was fabricated using co-precipitation method and 0.01 – 0.05 wt% of Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles with average size of 20 nm were added into the samples. The critical temperature (T{sub c}) and critical current density (J{sub c}) of the samples were measured by using the four-point probe method, while the phase formation and microstructure of the samples were examined using x-ray diffraction and SEM respectively.more » It was found that J{sub c} of all samples added with Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} were higher than non-added sample, with x = 0.01 wt. % sample showing the highest J{sub c}. This study showed that small addition of nano-Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} can effectively enhance the transport critical current density in Bi-2223 superconductor.« less

  12. Current consensus and guidelines of contrast enhanced ultrasound for the characterization of focal liver lesions

    PubMed Central

    Jang, Jae Young; Kim, Moon Young; Jeong, Soung Won; Kim, Tae Yeob; Kim, Seung Up; Lee, Sae Hwan; Suk, Ki Tae; Park, Soo Young; Woo, Hyun Young; Kim, Sang Gyune; Heo, Jeong; Baik, Soon Koo; Kim, Hong Soo

    2013-01-01

    The application of ultrasound contrast agents (UCAs) is considered essential when evaluating focal liver lesions (FLLs) using ultrasonography (US). Microbubble UCAs are easy to use and robust; their use poses no risk of nephrotoxicity and requires no ionizing radiation. The unique features of contrast enhanced US (CEUS) are not only noninvasiveness but also real-time assessing of liver perfusion throughout the vascular phases. The later feature has led to dramatic improvement in the diagnostic accuracy of US for detection and characterization of FLLs as well as the guidance to therapeutic procedures and evaluation of response to treatment. This article describes the current consensus and guidelines for the use of UCAs for the FLLs that are commonly encountered in US. After a brief description of the bases of different CEUS techniques, contrast-enhancement patterns of different types of benign and malignant FLLs and other clinical applications are described and discussed on the basis of our experience and the literature data. PMID:23593604

  13. Design Guidelines for Shielding Effectiveness, Current Carrying Capability, and the Enhancement of Conductivity of Composite Materials

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    These guidelines address the electrical properties of composite materials which may have an effect on electromagnetic compatibility (EMC). The main topics of the guidelines include the electrical shielding, fault current return, and lightning protection capabilities of graphite reinforced polymers, since they are somewhat conductive but may require enhancement to be adequate for EMC purposes. Shielding effectiveness depends heavily upon the conductivity of the material. Graphite epoxy can provide useful shielding against RF signals, but it is approximately 1,000 times more resistive than good conductive metals. The reduced shielding effectiveness is significant but is still useful in many cases. The primary concern is with gaps and seams in the material just as it is with metal. Current carrying capability of graphite epoxy is adequate for dissipation static charges, but fault currents through graphite epoxy may cause fire at the shorting contact and at joints. The effect of lightning on selected graphite epoxy material and mating surfaces is described, and protection methods are reviewed.

  14. Enhanced Critical Care Air Transport Team Training for Mitigation of Task Saturation

    DTIC Science & Technology

    2013-03-01

    specialized members (physician, critical care nurse , and respiratory therapist) trained to handle the complex, critical nature of patients in hemodynamic ...with complex medical conditions have been poorly studied. 3.0 BACKGROUND Teams are composed of three medical personnel (a physician, a nurse , and

  15. Graphene interlayer for current spreading enhancement by engineering of barrier height in GaN-based light-emitting diodes.

    PubMed

    Min, Jung-Hong; Son, Myungwoo; Bae, Si-Young; Lee, Jun-Yeob; Yun, Joosun; Maeng, Min-Jae; Kwon, Dae-Gyeon; Park, Yongsup; Shim, Jong-In; Ham, Moon-Ho; Lee, Dong-Seon

    2014-06-30

    Pristine graphene and a graphene interlayer inserted between indium tin oxide (ITO) and p-GaN have been analyzed and compared with ITO, which is a typical current spreading layer in lateral GaN LEDs. Beyond a certain current injection, the pristine graphene current spreading layer (CSL) malfunctioned due to Joule heat that originated from the high sheet resistance and low work function of the CSL. However, by combining the graphene and the ITO to improve the sheet resistance, it was found to be possible to solve the malfunctioning phenomenon. Moreover, the light output power of an LED with a graphene interlayer was stronger than that of an LED using ITO or graphene CSL. We were able to identify that the improvement originated from the enhanced current spreading by inspecting the contact and conducting the simulation.

  16. Strong enhancement of s -wave superconductivity near a quantum critical point of Ca 3 Ir 4 Sn 13

    DOE PAGES

    Biswas, P. K.; Guguchia, Z.; Khasanov, R.; ...

    2015-11-11

    We repormore » t microscopic studies by muon spin rotation/relaxation as a function of pressure of the Ca 3 Ir 4 Sn 13 and Sr 3Ir 4Sn 13 system displaying superconductivity and a structural phase transition associated with the formation of a charge density wave (CDW). Our findings show a strong enhancement of the superfluid density and a dramatic increase of the pairing strength above a pressure of ≈ 1.6 GPa giving direct evidence of the presence of a quantum critical point separating a superconducting phase coexisting with CDW from a pure superconducting phase. The superconducting order parameter in both phases has the same s-wave symmetry. In spite of the conventional phonon-mediated BCS character of the weakly correlated (Ca 1-xSr x) 3Ir 4Sn 13 system the dependence of the effective superfluid density on the critical temperature puts this compound in the “Uemura” plot close to unconventional superconductors. This system exemplifies that conventional BCS superconductors in the presence of competing orders or multi-band structure can also display characteristics of unconventional superconductors.« less

  17. Protein kinase C enhances the swelling-induced chloride current in human atrial myocytes.

    PubMed

    Li, Ye-Tao; Du, Xin-Ling

    2016-06-01

    Swelling-activated chloride currents (ICl.swell) are thought to play a role in several physiologic and pathophysiologic processes and thus represent a target for therapeutic approaches. However, the mechanism of ICl.swell regulation remains unclear. In this study, we used the whole-cell patch-clamp technique to examine the role of protein kinase C (PKC) in the regulation of ICl.swell in human atrial myocytes. Atrial myocytes were isolated from the right atrial appendages of patients undergoing coronary artery bypass and enzymatically dissociated. ICl.swell was evoked in hypotonic solution and recorded using the whole-cell patch-clamp technique. The PKC agonist phorbol dibutyrate (PDBu) enhanced ICl.swell in a concentration-dependent manner, which was reversed in isotonic solution and by a chloride current inhibitor, 9-anthracenecarboxylicacid. Furthermore, the PKC inhibitor bis-indolylmaleimide attenuated the effect and 4α-PDBu, an inactive PDBu analog, had no effect on ICl.swell. These results, obtained using the whole-cell patch-clamp technique, demonstrate the ability of PKC to activate ICl,swell in human atrial myocytes. This observation was consistent with a previous study using a single-channel patch-clamp technique, but differed from some findings in other species.

  18. Decontamination of Anthrax spores in critical infrastructure and critical assets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucher, Raymond M.; Crown, Kevin K.; Tucker, Mark David

    2010-05-01

    Decontamination of anthrax spores in critical infrastructure (e.g., subway systems, major airports) and critical assets (e.g., the interior of aircraft) can be challenging because effective decontaminants can damage materials. Current decontamination methods require the use of highly toxic and/or highly corrosive chemical solutions because bacterial spores are very difficult to kill. Bacterial spores such as Bacillus anthracis, the infectious agent of anthrax, are one of the most resistant forms of life and are several orders of magnitude more difficult to kill than their associated vegetative cells. Remediation of facilities and other spaces (e.g., subways, airports, and the interior of aircraft)more » contaminated with anthrax spores currently requires highly toxic and corrosive chemicals such as chlorine dioxide gas, vapor- phase hydrogen peroxide, or high-strength bleach, typically requiring complex deployment methods. We have developed a non-toxic, non-corrosive decontamination method to kill highly resistant bacterial spores in critical infrastructure and critical assets. A chemical solution that triggers the germination process in bacterial spores and causes those spores to rapidly and completely change to much less-resistant vegetative cells that can be easily killed. Vegetative cells are then exposed to mild chemicals (e.g., low concentrations of hydrogen peroxide, quaternary ammonium compounds, alcohols, aldehydes, etc.) or natural elements (e.g., heat, humidity, ultraviolet light, etc.) for complete and rapid kill. Our process employs a novel germination solution consisting of low-cost, non-toxic and non-corrosive chemicals. We are testing both direct surface application and aerosol delivery of the solutions. A key Homeland Security need is to develop the capability to rapidly recover from an attack utilizing biological warfare agents. This project will provide the capability to rapidly and safely decontaminate critical facilities and assets to return

  19. Progress and challenges in bioinformatics approaches for enhancer identification

    PubMed Central

    Kleftogiannis, Dimitrios; Kalnis, Panos

    2016-01-01

    Enhancers are cis-acting DNA elements that play critical roles in distal regulation of gene expression. Identifying enhancers is an important step for understanding distinct gene expression programs that may reflect normal and pathogenic cellular conditions. Experimental identification of enhancers is constrained by the set of conditions used in the experiment. This requires multiple experiments to identify enhancers, as they can be active under specific cellular conditions but not in different cell types/tissues or cellular states. This has opened prospects for computational prediction methods that can be used for high-throughput identification of putative enhancers to complement experimental approaches. Potential functions and properties of predicted enhancers have been catalogued and summarized in several enhancer-oriented databases. Because the current methods for the computational prediction of enhancers produce significantly different enhancer predictions, it will be beneficial for the research community to have an overview of the strategies and solutions developed in this field. In this review, we focus on the identification and analysis of enhancers by bioinformatics approaches. First, we describe a general framework for computational identification of enhancers, present relevant data types and discuss possible computational solutions. Next, we cover over 30 existing computational enhancer identification methods that were developed since 2000. Our review highlights advantages, limitations and potentials, while suggesting pragmatic guidelines for development of more efficient computational enhancer prediction methods. Finally, we discuss challenges and open problems of this topic, which require further consideration. PMID:26634919

  20. Metal based gas diffusion layers for enhanced fuel cell performance at high current densities

    NASA Astrophysics Data System (ADS)

    Hussain, Nabeel; Van Steen, Eric; Tanaka, Shiro; Levecque, Pieter

    2017-01-01

    The gas diffusion layer strongly influences the performance and durability of polymer electrolyte fuel cells. A major drawback of current carbon fiber based GDLs is the non-controlled variation in porosity resulting in a random micro-structure. Moreover, when subjected to compression these materials show significant reduction in porosity and permeability leading to water management problems and mass transfer losses within the fuel cell. This study investigated the use of uniform perforated metal sheets as GDLs in conjunction with microchannel flowfields. A metal sheet design with a pitch of 110 μm and a hole diameter of 60 μm in combination with an MPL showed superior performance in the high current density region compared to a commercially available carbon paper based GDL in a single cell environment. Fuel cell testing with different oxidants (air, heliox and oxygen) indicate that the metal sheet offers both superior diffusion and reduced flooding in comparison to the carbon based GDL. The presence of the MPL has been found to be critical to the functionality of the metal sheet suggesting that the MPL design may represent an important optimisation parameter for further improvements in performance.

  1. Menthol enhances phasic and tonic GABAA receptor-mediated currents in midbrain periaqueductal grey neurons

    PubMed Central

    Lau, Benjamin K; Karim, Shafinaz; Goodchild, Ann K; Vaughan, Christopher W; Drew, Geoffrey M

    2014-01-01

    Background and Purpose Menthol, a naturally occurring compound in the essential oil of mint leaves, is used for its medicinal, sensory and fragrant properties. Menthol acts via transient receptor potential (TRPM8 and TRPA1) channels and as a positive allosteric modulator of recombinant GABAA receptors. Here, we examined the actions of menthol on GABAA receptor-mediated currents in intact midbrain slices. Experimental Approach Whole-cell voltage-clamp recordings were made from periaqueductal grey (PAG) neurons in midbrain slices from rats to determine the effects of menthol on GABAA receptor-mediated phasic IPSCs and tonic currents. Key Results Menthol (150–750 μM) produced a concentration-dependent prolongation of spontaneous GABAA receptor-mediated IPSCs, but not non-NMDA receptor-mediated EPSCs throughout the PAG. Menthol actions were unaffected by TRPM8 and TRPA1 antagonists, tetrodotoxin and the benzodiazepine antagonist, flumazenil. Menthol also enhanced a tonic current, which was sensitive to the GABAA receptor antagonists, picrotoxin (100 μM), bicuculline (30 μM) and Zn2+ (100 μM), but unaffected by gabazine (10 μM) and a GABAC receptor antagonist, 1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid hydrate (TPMPA; 50 μM). In addition, menthol potentiated currents induced by the extrasynaptic GABAA receptor agonist THIP/gaboxadol (10 μM). Conclusions and Implications These results suggest that menthol positively modulates both synaptic and extrasynaptic populations of GABAA receptors in native PAG neurons. The development of agents that potentiate GABAA-mediated tonic currents and phasic IPSCs in a manner similar to menthol could provide a basis for novel GABAA-related pharmacotherapies. PMID:24460753

  2. Critical periods and amblyopia.

    PubMed

    Daw, N W

    1998-04-01

    During the past 20 years, basic science has shown that there are different critical periods for different visual functions during the development of the visual system. Visual functions processed at higher anatomical levels within the system have a later critical period than functions processed at lower levels. This general principle suggests that treatments for amblyopia should be followed in a logical sequence, with treatment for each visual function to be started before its critical period is over. However, critical periods for some visual functions, such as stereopsis, are not yet fully determined, and the optimal treatment is, therefore, unknown. This article summarizes the current extent of our knowledge and points to the gaps that need to be filled.

  3. Guided Online Group Discussion Enhances Student Critical Thinking Skills

    ERIC Educational Resources Information Center

    Gokhale, Anu; Machina, Kenton

    2018-01-01

    A teacher's objective is to provide students the cognitive strategies that enable them to think critically, make decisions, and solve problems. In order to guide student learning, teachers should be aware of the concepts that are prerequisite to the understanding of others and also of typical student misconceptions. The goal of this study was to…

  4. Over 15 MA/cm2 of critical current density in 4.8 µm thick, Zr-doped (Gd,Y)Ba2Cu3Ox superconductor at 30 K, 3T.

    PubMed

    Majkic, Goran; Pratap, Rudra; Xu, Aixia; Galstyan, Eduard; Selvamanickam, Venkat

    2018-05-03

    An Advanced MOCVD (A-MOCVD) reactor was used to deposit 4.8 µm thick (Gd,Y)BaCuO tapes with 15 mol% Zr addition in a single pass. A record-high critical current density (J c ) of 15.11 MA/cm 2 has been measured over a bridge at 30 K, 3T, corresponding to an equivalent (I c ) value of 8705 A/12 mm width. This corresponds to a lift factor in critical current of ~11 which is the highest ever reported to the best of author's knowledge. The measured critical current densities at 3T (B||c) and 30, 40 and 50 K, respectively, are 15.11, 9.70 and 6.26 MA/cm 2 , corresponding to equivalent Ic values of 8705, 5586 and 3606 A/12 mm and engineering current densities (J e ) of 7068, 4535 and 2928 A/mm 2 . The engineering current density (J e ) at 40 K, 3T is 7 times higher than that of the commercial HTS tapes available with 7.5 mol% Zr addition. Such record-high performance in thick films (>1 µm) is a clear demonstration that growing thick REBCO films with high critical current density (J c ) is possible, contrary to the usual findings of strong J c degradation with film thickness. This achievement was possible due to a combination of strong temperature control and uniform laminar flow achieved in the A-MOCVD system, coupled with optimization of BaZrO 3 nanorod growth parameters.

  5. Current IT Issues, 2004

    ERIC Educational Resources Information Center

    Spicer, Donald Z.; Deblois, Peter B.

    2004-01-01

    This article features the EDUCAUSE Current Issues Survey. Administered by the EDUCAUSE Current Issues Committee, whose members review and recommend the set of issues to be presented each year, the survey identifies the issues that leaders in higher education information technology see as their most critical IT challenges. The Top-Ten current IT…

  6. Critical Learning Periods and Programs of Early Intervention.

    ERIC Educational Resources Information Center

    Magill, Richard A.

    In an effort to clarify understanding of the concept of critical learning periods, this paper discusses problems that people concerned with the motor development of children have had determining relationships between critical periods and learning, and a "readiness model" is offered as a solution that could enhance understanding of critical…

  7. Critical Race Theory and Counselor Education Pedagogy: Creating Equitable Training

    ERIC Educational Resources Information Center

    Haskins, Natoya H.; Singh, Anneliese

    2015-01-01

    Infusing critical race theory, the authors discuss specific pedagogical strategies to enhance educational experiences of counselor trainees. The authors then provide an evaluative checklist to facilitate and evaluate curricular integration of critical race theory.

  8. High Current Emission from Patterned Aligned Carbon Nanotubes Fabricated by Plasma-Enhanced Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Cui, Linfan; Chen, Jiangtao; Yang, Bingjun; Jiao, Tifeng

    2015-12-01

    Vertically, carbon nanotube (CNT) arrays were successfully fabricated on hexagon patterned Si substrates through radio frequency plasma-enhanced chemical vapor deposition using gas mixtures of acetylene (C2H2) and hydrogen (H2) with Fe/Al2O3 catalysts. The CNTs were found to be graphitized with multi-walled structures. Different H2/C2H2 gas flow rate ratio was used to investigate the effect on CNT growth, and the field emission properties were optimized. The CNT emitters exhibited excellent field emission performance (the turn-on and threshold fields were 2.1 and 2.4 V/μm, respectively). The largest emission current could reach 70 mA/cm2. The emission current was stable, and no obvious deterioration was observed during the long-term stability test of 50 h. The results were relevant for practical applications based on CNTs.

  9. Imaging enhancement of malignancy by cyclophosphamide: surprising chemotherapy opposite effects

    NASA Astrophysics Data System (ADS)

    Yamauchi, Kensuke; Yang, Meng; Hayashi, Katsuhiro; Jiang, Ping; Xu, Mingxu; Yamamoto, Norio; Tsuchiya, Hiroyuki; Tomita, Katsuro; Moossa, A. R.; Bouvet, Michael; Hoffman, Robert M.

    2008-02-01

    Although side effects of cancer chemotherapy are well known, "opposite effects" of chemotherapy which enhance the malignancy of the treated cancer are not well understood. We have observed a number of steps of malignancy that are enhanced by chemotherapy pre-treatment of mice before transplantation of human tumor cells. The induction of intravascular proliferation, extravasation, and colony formation by cancer cells, critical steps of metastasis was enhanced by pretreatment of host mice with the commonly-used chemotherapy drug cyclophosphamide. Cyclophosphamide appears to interfere with a host process that inhibits intravascular proliferation, extravasation, and extravascular colony formation by at least some tumor cells. Cyclophosphamide does not directly affect the cancer cells since cyclophosphamide has been cleared by the time the cancer cells were injected. Without cyclophosphamide pretreatment, human colon cancer cells died quickly after injection in the portal vein of nude mice. Extensive clasmocytosis (destruction of the cytoplasm) of the cancer cells occurred within 6 hours. The number of apoptotic cells rapidly increased within the portal vein within 12 hours of injection. However, when the host mice were pretreated with cyclophosphamide, the cancer cells survived and formed colonies in the liver after portal vein injection. These results suggest that a cyclophosphamide-sensitive host cellular system attacked the cancer cells. This review describes an important unexpected "opposite effects" of chemotherapy that enhances critical steps in malignancy rather than inhibiting them, suggesting that certain current approaches to cancer chemotherapy should be modified.

  10. Mechanisms for Enhanced Supercurrent Across Meandered Grain Boundaries in High-Temperature Superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldmann, D. M.; Holesinger, T. G.; Feenstra, Roeland

    2007-01-01

    It has been well established that the critical current density J{sub c} across grain boundaries (GBs) in high-temperature superconductors decreases exponentially with misorientation angle {theta} beyond {approx}2-3 degrees. This rapid decrease is due to a suppression of the superconducting order parameter at the grain boundary, giving rise to weakly pinned Abrikosov-Josephson (AJ) vortices. Here we show that if the GB plane meanders, this exponential dependence no longer holds, permitting greatly enhanced J{sub c} values: up to six times at 0 T and four times at 1 T at {theta}{approx}4-6 degrees. This enhancement is due to an increase in the current-carryingmore » cross section of the GBs and the appearance of short AJ vortex segments in the GB plane, confined by the interaction with strongly pinned Abrikosov (A) vortices in the grains.« less

  11. Driving of Dramatic Geomagnetic Activity by Enhancement of Meso-Scale Polar-cap Flows

    NASA Astrophysics Data System (ADS)

    Lyons, L. R.; Gallardo-Lacourt, B.; Zou, Y.; Nishimura, Y.; Anderson, P. C.; Angelopoulos, V.; Ruohoniemi, J. M.; Mitchell, E. J.; Paxton, L. J.; Nishitani, N.

    2017-12-01

    Recent studies have shown that mesoscale flows are common within the polar cap ionosphere. They often cross the magnetic separatrix, and become are critical to the driving of geomagnetic activity. They lead, for example, to plasma sheet flow bursts, auroral poleward boundary intensifications, auroral streamers, substorms, auroral omega bands, and poleward motion of the polar cap boundary from reconnection. We have found large enhancements of these meso-scale ionospheric polar cap flows heading towards the nightside separatrix. These enhancements are common immediately after the impact of CME shocks under southward IMF, but can also occur in other situations, including without substantial change in the solar wind or IMF. These meso-scale flow enhancements, which must extent outward along magnetospheric field lines from the ionosphere, are seen to drive an almost immediate strong auroral, ionospheric and field-aligned current, and reconnection activity. The resulting activity is particularly dramatic during the initiation of CME storms, but may reflect a more generally occurring phenomenon of mesoscale flow enhancements leading to similar oval responses without a shock impact, including during and following the expansion phase some substorms. If this phenomenon is indeed common, it could lead to possibly fundamental questions, such as when do polar cap convection enhancements lead to a substorm growth phase versus leading directly to strong poleward expansion of, and strong activity within, the auroral oval field line region? Another critical question would be what leads to and causes the enhancements in meso-scale polar cap flows?

  12. The effects of critical thinking instruction on training complex decision making.

    PubMed

    Helsdingen, Anne S; van den Bosch, Karel; van Gog, Tamara; van Merriënboer, Jeroen J G

    2010-08-01

    Two field studies assessed the effects of critical thinking instruction on training and transfer of a complex decision-making skill. Critical thinking instruction is based on studies of how experienced decision makers approach complex problems. Participants conducted scenario-based exercises in both simplified (Study I) and high-fidelity (Study 2) training environments. In both studies, half of the participants received instruction in critical thinking. The other half conducted the same exercises but without critical thinking instruction. After the training, test scenarios were administered to both groups. The first study showed that critical thinking instruction enhanced decision outcomes during both training and the test. In the second study, critical thinking instruction benefited both decision outcomes and processes, specifically on the transfer to untrained problems. The results suggest that critical thinking instruction improves decision strategy and enhances understanding of the general principles of the domain. The results of this study warrant the implementation of critical thinking instruction in training programs for professional decision makers that have to operate in complex and highly interactive, dynamic environments.

  13. Response to ``Comment on `Small field behavior of critical current in Y1Ba2Cu3O7 sintered samples' ''

    NASA Astrophysics Data System (ADS)

    Paternò, G.; Alvani, C.; Casadio, S.; Gambardella, U.; Maritato, L.

    1989-05-01

    In our response we would like to point out the fitting of the data has done to account for the shift of the maximum magnetic field dependence of the critical current. This shift on the order of 1 Gauss or less is gener ally observed in all our data and is attributable to the residual external field. Since we used a crude junction model, the self-field effects were not included. (AIP)

  14. Single prolonged stress enhances hippocampal glucocorticoid receptor and phosphorylated protein kinase B levels

    PubMed Central

    Eagle, Andrew L.; Knox, Dayan; Roberts, Megan M.; Mulo, Kostika; Liberzon, Israel; Galloway, Matthew P.; Perrine, Shane A.

    2012-01-01

    Animal models of posttraumatic stress disorder (PTSD) can explore neurobiological mechanisms by which trauma enhances fear and anxiety reactivity. Single prolonged stress (SPS) shows good validity in producing PTSD-like behavior. While SPS-induced behaviors have been linked to enhanced glucocorticoid receptor (GR) expression, the molecular ramifications of enhanced GR expression have yet to be identified. Phosphorylated protein kinase B (pAkt) is critical for stress-mediated enhancement in general anxiety and memory, and may be regulated by GRs. However, it is currently unknown if pAkt levels are modulated by SPS, as well as if the specificity of GR and pAkt related changes contribute to anxiety-like behavior after SPS. The current study set out to examine the effects of SPS on GR and pAkt protein levels in the amygdala and hippocampus and to examine the specificity of these changes to unconditioned anxiety-like behavior. Levels of GR and pAkt were increased in the hippocampus, but not amygdala. Furthermore, SPS had no effect on unconditioned anxiety-like behavior suggesting that generalized anxiety is not consistently observed following SPS. The results suggest that SPS-enhanced GR expression is associated with phosphorylation of Akt, and also suggest that these changes are not related to an anxiogenic phenotype. PMID:23201176

  15. Precise Regulation of miR-210 Is Critical for the Cellular Homeostasis Maintenance and Transplantation Efficacy Enhancement of Mesenchymal Stem Cells in Acute Liver Failure Therapy.

    PubMed

    Liu, Yingxia; Xiong, Yongjia; Xing, Feiyue; Gao, Hao; Wang, Xiaogang; He, Liumin; Ren, Chaoran; Liu, Lei; So, Kwok-Fai; Xiao, Jia

    2017-05-09

    Stem cell transplantation is a promising clinical strategy to cure acute liver failure. However, a low cell survival ratio after transplantation significantly impairs its therapeutic efficacy. This is partly due to insufficient resistance of transplanted stem cells to severe oxidative and inflammatory stress at the injury sites. In the current study, we demonstrated that a small molecule zeaxanthin dipalmitate (ZD) could enhance the defensive abilities against adverse stresses of human adipose-derived mesenchymal stem cells (hADMSCs) in vitro and increase their therapeutic outcomes of acute liver failure after transplantation in vivo. Treatment with ZD dramatically improved cell survival and suppressed apoptosis, inflammation, and reactive oxygen species (ROS) production of hADMSCs through the PKC/Raf-1/MAPK/NF-κB pathway to maintain a reasonably high expression level of microRNA-210 (miR-210). The regulation loop between miR-210 and cellular/mitochondrial ROS production was found to be linked by the ROS inhibitor iron-sulfur cluster assembly proteins (ISCU). Pretreatment with ZD and stable knockdown of miR-210 significantly improved and impaired the stem cell transplantation efficacy through the alteration of hepatic cell expansion and injury amelioration, respectively. Vehicle treatment with ZD did not pose any adverse effect on cell homeostasis or healthy animal. In conclusion, elevating endogenous antioxidant level of hADMSCs with ZD significantly enhances their hepatic tissue-repairing capabilities. Maintenance of a physiological level of miR-210 is critical for hADMSC homeostasis.

  16. A Critical Appraisal of Foreign Language Research in Content and Language Integrated Learning, Young Language Learners, and Technology-Enhanced Language Learning Published in Spain (2003-2012)

    ERIC Educational Resources Information Center

    Dooly, Melinda; Masats, Dolors

    2015-01-01

    This state-of-the-art review provides a critical overview of research publications in Spain in the last ten years in three areas of teaching and learning foreign languages (especially English): context and language integrated learning (CLIL), young language learners (YLL), and technology-enhanced language learning (TELL). These three domains have…

  17. Analysis and critical assessment of the current and near future plans of the Brazilian satellite applications program and its role in the global space program

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator)

    1983-01-01

    Brazilian programs using satellites for remote sensing, meteorology and communications are analyzed including their current status and near future plans. The experience gained and available information are used to critically discuss some aspects of great importance for the existing and prospective user countries.

  18. Sensitivity Enhancement of an Inductively Coupled Local Detector Using a HEMT-based Current Amplifier

    PubMed Central

    Qian, Chunqi; Duan, Qi; Dodd, Steve; Koretsky, Alan; Murphy-Boesch, Joe

    2015-01-01

    Purpose To improve the signal transmission efficiency and sensitivity of a local detection coil that is weakly inductively coupled to a larger receive coil. Methods The resonant detection coil is connected in parallel with the gate of a HEMT transistor without impedance matching. When the drain of the transistor is capacitively shunted to ground, current amplification occurs in the resonator by feedback that transforms a capacitive impedance on the transistor’s source to a negative resistance on its gate. Results High resolution images were obtained from a mouse brain using a small, 11 mm diameter surface coil that was inductively coupled to a commercial, phased array chest coil. Although the power consumption of the amplifier was only 88 µW, 14 dB gain was obtained with excellent noise performance. Conclusion An integrated current amplifier based on a High Electron Mobility Transistor (HEMT) can enhance the sensitivity of inductively coupled local detectors when weakly coupled. This amplifier enables efficient signal transmission between customized user coils and commercial clinical coils, without the need for a specialized signal interface. PMID:26192998

  19. The Canadian critical care nutrition guidelines in 2013: an update on current recommendations and implementation strategies.

    PubMed

    Dhaliwal, Rupinder; Cahill, Naomi; Lemieux, Margot; Heyland, Daren K

    2014-02-01

    Clinical practice guidelines (CPGs) are systematically developed statements to assist practitioners and patient decisions about appropriate healthcare for specific clinical circumstances, and are designed to minimize practice variation, improve costs, and improve clinical outcomes. The Canadian Critical Care Practice Guidelines (CCPGs) were first published in 2003 and most recently updated in 2013. A total of 68 new randomized controlled trials were identified since the last version in 2009, 50 of them published between 2009 and 2013. The remaining articles were trials published before 2009 but were not identified in previous iterations of the CCPGs. For clinical practice guidelines to be useful to practitioners, they need to be up-to-date and be reflective of the current body of evidence. Herein we describe the process by which the CCPGs were updated. This process resulted in 10 new sections or clinical topics. Of the old clinical topics, 3 recommendations were upgraded, 4 were downgraded, and 27 remained the same. To influence decision making at the bedside, these updated guidelines need to be accompanied by active guideline implementation strategies. Optimal implementation strategies should be guided by local contextual factors including barriers and facilitators to best practice recommendations. Moreover, evaluating and monitoring performance, such as participating in the International Nutrition Survey of practice, should be part of any intensive care unit's performance improvement strategy. The active implementation of the updated CCPGs may lead to better nutrition care and improved patient outcomes in the critical care setting.

  20. Developing Critical Thinking in E-Learning Environment: Kuwait University as a Case Study

    ERIC Educational Resources Information Center

    Al-Fadhli, Salah; Khalfan, Abdulwahed

    2009-01-01

    This article investigated the impact of using e-learning models' with the principles of constructivism to enhance the critical thinking skills of students in higher education institutions. The study examines the effectiveness of e-learning model in enhancing critical thinking of students at university level. This effectiveness is measured by a…

  1. Adapting Entry-Level Engineering Courses to Emphasize Critical Thinking

    ERIC Educational Resources Information Center

    Hagerty, D. Joseph; Rockaway, Thomas D.

    2012-01-01

    The University of Louisville recently developed a Quality Enhancement Plan (QEP) to improve undergraduate instruction across all disciplines as part of its ongoing accreditation requirements. Central elements of the plan are emphasis on critical thinking; integration of critical thinking throughout the curriculum; service learning for…

  2. Eddy current technique for predicting burst pressure

    DOEpatents

    Petri, Mark C.; Kupperman, David S.; Morman, James A.; Reifman, Jaques; Wei, Thomas Y. C.

    2003-01-01

    A signal processing technique which correlates eddy current inspection data from a tube having a critical tubing defect with a range of predicted burst pressures for the tube is provided. The method can directly correlate the raw eddy current inspection data representing the critical tubing defect with the range of burst pressures using a regression technique, preferably an artificial neural network. Alternatively, the technique deconvolves the raw eddy current inspection data into a set of undistorted signals, each of which represents a separate defect of the tube. The undistorted defect signal which represents the critical tubing defect is related to a range of burst pressures utilizing a regression technique.

  3. Think Pair Share: A Teaching Learning Strategy to Enhance Students' Critical Thinking

    ERIC Educational Resources Information Center

    Kaddoura, Mahmoud

    2013-01-01

    This study investigated the change in critical thinking (CT) skills of baccalaureate nursing students who were educated using a Think-Pair-Share (TPS) or an equivalent Non-Think-Pair-Share (Non-TPS) teaching method. Critical thinking has been an essential outcome of nursing students to prepare them to provide effective and safe quality care for…

  4. A review on boiling heat transfer enhancement with nanofluids

    PubMed Central

    2011-01-01

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement. PMID:21711794

  5. Davies Critical Point and Tunneling

    NASA Astrophysics Data System (ADS)

    La, Hoseong

    2012-04-01

    From the point of view of tunneling, the physical meaning of the Davies critical point of a second-order phase transition in the black hole thermodynamics is clarified. At the critical point, the nonthermal contribution vanishes so that the black hole radiation is entirely thermal. It separates two phases: one with radiation enhanced by the nonthermal contribution, the other suppressed by the nonthermal contribution. We show this in both charged and rotating black holes. The phase transition is also analyzed in the cases in which emissions of charges and angular momenta are incorporated.

  6. Enhanced Eddy-Current Detection Of Weld Flaws

    NASA Technical Reports Server (NTRS)

    Van Wyk, Lisa M.; Willenberg, James D.

    1992-01-01

    Mixing of impedances measured at different frequencies reduces noise and helps reveal flaws. In new method, one excites eddy-current probe simultaneously at two different frequencies; usually, one of which integral multiple of other. Resistive and reactive components of impedance of eddy-current probe measured at two frequencies, mixed in computer, and displayed in real time on video terminal of computer. Mixing of measurements obtained at two different frequencies often "cleans up" displayed signal in situations in which band-pass filtering alone cannot: mixing removes most noise, and displayed signal resolves flaws well.

  7. Enhanced labeling of microalgae cellular lipids by application of an electric field generated by alternating current.

    PubMed

    Su, Li-Chien; Hsu, Yi-Hsiang; Wang, Hsiang-Yu

    2012-05-01

    An alternating current was used to generate an electric field to enhance the fluorescent labeling of microalgae cellular lipids with Nile red and LipidTOX. The decay of the fluorescence intensity of Chlorella vulgaris cells in 0 V/cm was more than 50% after 10 min, and the intensity variation was as high as 7% in 20s. At 2000 V/cm, the decay rate decreased to 1.22% per minute and the intensity fluctuation was less than 1% for LipidTOX-labeled cells. For Spirulina sp. cells at 0 V/cm, the fluorescence intensity increased by 10% after 10 min, whereas at 2000 V/cm, labeling was more rapid and fluorescence intensity doubled. These results show that applying an electric field can improve the quality of fluorescence detection by alleviating decay and fluctuation or by enhancing signal intensity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Enhanced low current, voltage, and power dissipation measurements via Arduino Uno microcontroller with modified commercially available sensors

    NASA Astrophysics Data System (ADS)

    Tanner, Meghan; Eckel, Ryan; Senevirathne, Indrajith

    The versatility, simplicity, and robustness of Arduino microcontroller architecture have won a huge following with increasingly serious engineering and physical science applications. Arduino microcontroller environment coupled with commercially available sensors have been used to systematically measure, record, and analyze low currents, low voltages and corresponding dissipated power for assessing secondary physical properties in a diverse array of engineering systems. Setup was assembled via breadboard, wire, and simple soldering with an Arduino Uno with ATmega328P microcontroller connected to a PC. The microcontroller was programmed with Arduino Software while the bootloader was used to upload the code. Commercial Hall effect current sensor modules ACS712 and INA169 current shunt monitor was used to measure corresponding low to ultra-low currents and voltages. Stable measurement data was obtained via sensors and compared with corresponding oscilloscope measurements to assess reliability and uncertainty. Sensor breakout boards were modified to enhance the sensitivity of the measurements and to expand the applicability. Discussion of these measurements will focus on capabilities, capacities and limitations of the systems with examples of possible applications. Lock Haven Nanotechnology Program.

  9. Optimization of L-shaped tunneling field-effect transistor for ambipolar current suppression and Analog/RF performance enhancement

    NASA Astrophysics Data System (ADS)

    Li, Cong; Zhao, Xiaolong; Zhuang, Yiqi; Yan, Zhirui; Guo, Jiaming; Han, Ru

    2018-03-01

    L-shaped tunneling field-effect transistor (LTFET) has larger tunnel area than planar TFET, which leads to enhanced on-current ION . However, LTFET suffers from severe ambipolar behavior, which needs to be further optimized for low power and high-frequency applications. In this paper, both hetero-gate-dielectric (HGD) and lightly doped drain (LDD) structures are introduced into LTFET for suppression of ambipolarity and improvement of analog/RF performance of LTFET. Current-voltage characteristics, the variation of energy band diagrams, distribution of band-to-band tunneling (BTBT) generation and distribution of electric field are analyzed for our proposed HGD-LDD-LTFET. In addition, the effect of LDD on the ambipolar behavior of LTFET is investigated, the length and doping concentration of LDD is also optimized for better suppression of ambipolar current. Finally, analog/RF performance of HGD-LDD-LTFET are studied in terms of gate-source capacitance, gate-drain capacitance, cut-off frequency, and gain bandwidth production. TCAD simulation results show that HGD-LDD-LTFET not only drastically suppresses ambipolar current but also improves analog/RF performance compared with conventional LTFET.

  10. A possible mechanism of the enhancement and maintenance of the shear magnetic field component in the current sheet of the Earth’s magnetotail

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigorenko, E. E., E-mail: elenagrigorenko2003@yahoo.com; Malova, H. V., E-mail: hmalova@yandex.ru; Malykhin, A. Yu., E-mail: anmaurdreg@gmail.com

    2015-01-15

    The influence of the shear magnetic field component, which is directed along the electric current in the current sheet (CS) of the Earth’s magnetotail and enhanced near the neutral plane of the CS, on the nonadiabatic dynamics of ions interacting with the CS is studied. The results of simulation of the nonadiabatic ion motion in the prescribed magnetic configuration similar to that observed in the magnetotail CS by the CLUSTER spacecraft demonstrated that, in the presence of some initial shear magnetic field, the north-south asymmetry in the ion reflection/refraction in the CS is observed. This asymmetry leads to the formationmore » of an additional current system formed by the oppositely directed electric currents flowing in the northern and southern parts of the plasma sheet in the planes tangential to the CS plane and in the direction perpendicular to the direction of the electric current in the CS. The formation of this current system perhaps is responsible for the enhancement and further maintenance of the shear magnetic field near the neutral plane of the CS. The CS structure and ion dynamics observed in 17 intervals of the CS crossings by the CLUSTER spacecraft is analyzed. In these intervals, the shear magnetic field was increased near the neutral plane of the CS, so that the bell-shaped spatial distribution of this field across the CS plane was observed. The results of the present analysis confirm the suggested scenario of the enhancement of the shear magnetic field near the neutral plane of the CS due to the peculiarities of the nonadiabatic ion dynamics.« less

  11. Quasi-critical fluctuations: a novel state of matter?

    PubMed

    Bertel, Erminald

    2013-05-01

    Quasi-critical fluctuations occur close to critical points or close to continuous phase transitions. In three-dimensional systems, precision tuning is required to access the fluctuation regime. Lowering the dimensionality enhances the parameter space for quasi-critical fluctuations considerably. This enables one to make use of novel properties emerging in fluctuating systems, such as giant susceptibilities, Casimir forces or novel quasi-particle interactions. Examples are discussed ranging from simple metal-adsorbate systems to unconventional superconductivity in iron-based superconductors.

  12. Jordanian TEFL Graduate Students' Use of Critical Thinking Skills (as Measured by the Cornell Critical Thinking Test, Level Z)

    ERIC Educational Resources Information Center

    Bataineh, Ruba Fahmi; Zghoul, Lamma Hmoud

    2006-01-01

    This study investigates the critical thinking skills of 50 students currently enrolled in the Master's TEFL Programme at Yarmouk University, Jordan. The Cornell Critical Thinking Test, Level Z is utilised to test the students' use, or lack thereof, of the critical thinking skills of deduction, semantics, credibility, induction, definition and…

  13. Enhancement of anodic current attributed to oxygen evolution on α-Fe2O3 electrode by microwave oscillating electric field

    PubMed Central

    Kishimoto, Fuminao; Matsuhisa, Masayuki; Kawamura, Shinichiro; Fujii, Satoshi; Tsubaki, Shuntaro; Maitani, Masato M.; Suzuki, Eiichi; Wada, Yuji

    2016-01-01

    Various microwave effects on chemical reactions have been observed, reported and compared to those carried out under conventional heating. These effects are classified into thermal effects, which arise from the temperature rise caused by microwaves, and non-thermal effects, which are attributed to interactions between substances and the oscillating electromagnetic fields of microwaves. However, there have been no direct or intrinsic demonstrations of the non-thermal effects based on physical insights. Here we demonstrate the microwave enhancement of oxidation current of water to generate dioxygen with using an α-Fe2O3 electrode induced by pulsed microwave irradiation under constantly applied potential. The rectangular waves of current density under pulsed microwave irradiation were observed, in other words the oxidation current of water was increased instantaneously at the moment of the introduction of microwaves, and stayed stably at the plateau under continuous microwave irradiation. The microwave enhancement was observed only for the α-Fe2O3 electrode with the specific surface electronic structure evaluated by electrochemical impedance spectroscopy. This discovery provides a firm evidence of the microwave special non-thermal effect on the electron transfer reactions caused by interaction of oscillating microwaves and irradiated samples. PMID:27739529

  14. Enhancement and Civic Virtue

    PubMed Central

    Jefferson, Will; Douglas, Thomas; Kahane, Guy; Savulescu, Julian

    2014-01-01

    Opponents of biomedical enhancement frequently adopt what Allen Buchanan has called the Personal Goods Assumption. On this assumption, the benefits of biomedical enhancement will accrue primarily to those individuals who undergo enhancements, not to wider society. Buchanan has argued that biomedical enhancements might in fact have substantial social benefits by increasing productivity. We outline another way in which enhancements might benefit wider society: by augmenting civic virtue and thus improving the functioning of our political communities. We thus directly confront critics of biomedical enhancement who argue that it will lead to a loss of social cohesion and a breakdown in political life. PMID:24882886

  15. Cultural variation in the use of current life satisfaction to predict the future.

    PubMed

    Oishi, S; Wyer, R S; Colcombe, S J

    2000-03-01

    Three studies examined cultural and situational influences on the tendency for people to use their current life satisfaction to predict future life events. On the basis of the self-enhancement literature, it was predicted that either writing about a positive personal experience or reading about another's negative experience would lead European Americans to focus their attention on internal attributes and thus would lead them to use their current life satisfaction in predicting the future. Conversely, on the basis of the self-criticism literature, it was predicted that these same conditions would lead Asian Americans to focus their attention on external factors and, therefore, would decrease their likelihood of using their current life satisfaction to predict the future. Studies 1 and 2 supported these hypotheses. Study 3 showed that these patterns could be obtained by subliminally priming concepts associated with individualism and collectivism.

  16. The critically endangered forest owlet Heteroglaux blewitti is nested within the currently recognized Athene clade: A century-old debate addressed.

    PubMed

    Koparde, Pankaj; Mehta, Prachi; Reddy, Sushma; Ramakrishnan, Uma; Mukherjee, Shomita; Robin, V V

    2018-01-01

    Range-restricted species generally have specific niche requirements and may often have unique evolutionary histories. Unfortunately, many of these species severely lack basic research, resulting in poor conservation strategies. The phylogenetic relationship of the Critically Endangered Forest Owlet Heteroglaux blewitti has been the subject of a century-old debate. The current classifications based on non-phylogenetic comparisons of morphology place the small owls of Asia into three genera, namely, Athene, Glaucidium, and Heteroglaux. Based on morphological and anatomical data, H. blewitti has been alternatively hypothesized to belong within Athene, Glaucidium, or its own monotypic genus Heteroglaux. To test these competing hypotheses, we sequenced six loci (~4300 bp data) and performed phylogenetic analyses of owlets. Mitochondrial and nuclear trees were not congruent in their placement of H. blewitti. However, both mitochondrial and nuclear combined datasets showed strong statistical support with high maximum likelihood bootstrap (>/ = 90) and Bayesian posterior probability values (>/ = 0.98) for H. blewitti being nested in the currently recognized Athene group, but not sister to Indian A. brama. The divergence of H. blewitti from its sister taxa was between 4.3 and 5.7 Ma coinciding with a period of drastic climatic changes in the Indian subcontinent. This study presented the first genetic analysis of H. blewitti, a Critically Endangered species, and addressed the long debate on the relationships of the Athene-Heteroglaux-Glaucidium complex. We recommend further studies with more data and complete taxon sampling to understand the biogeography of Indian Athene species.

  17. The critically endangered forest owlet Heteroglaux blewitti is nested within the currently recognized Athene clade: A century-old debate addressed

    PubMed Central

    Mehta, Prachi; Reddy, Sushma; Ramakrishnan, Uma

    2018-01-01

    Range-restricted species generally have specific niche requirements and may often have unique evolutionary histories. Unfortunately, many of these species severely lack basic research, resulting in poor conservation strategies. The phylogenetic relationship of the Critically Endangered Forest Owlet Heteroglaux blewitti has been the subject of a century-old debate. The current classifications based on non-phylogenetic comparisons of morphology place the small owls of Asia into three genera, namely, Athene, Glaucidium, and Heteroglaux. Based on morphological and anatomical data, H. blewitti has been alternatively hypothesized to belong within Athene, Glaucidium, or its own monotypic genus Heteroglaux. To test these competing hypotheses, we sequenced six loci (~4300 bp data) and performed phylogenetic analyses of owlets. Mitochondrial and nuclear trees were not congruent in their placement of H. blewitti. However, both mitochondrial and nuclear combined datasets showed strong statistical support with high maximum likelihood bootstrap (>/ = 90) and Bayesian posterior probability values (>/ = 0.98) for H. blewitti being nested in the currently recognized Athene group, but not sister to Indian A. brama. The divergence of H. blewitti from its sister taxa was between 4.3 and 5.7 Ma coinciding with a period of drastic climatic changes in the Indian subcontinent. This study presented the first genetic analysis of H. blewitti, a Critically Endangered species, and addressed the long debate on the relationships of the Athene-Heteroglaux-Glaucidium complex. We recommend further studies with more data and complete taxon sampling to understand the biogeography of Indian Athene species. PMID:29401484

  18. Rigorous Mathematical Thinking Approach to Enhance Students’ Mathematical Creative and Critical Thinking Abilities

    NASA Astrophysics Data System (ADS)

    Hidayat, D.; Nurlaelah, E.; Dahlan, J. A.

    2017-09-01

    The ability of mathematical creative and critical thinking are two abilities that need to be developed in the learning of mathematics. Therefore, efforts need to be made in the design of learning that is capable of developing both capabilities. The purpose of this research is to examine the mathematical creative and critical thinking ability of students who get rigorous mathematical thinking (RMT) approach and students who get expository approach. This research was quasi experiment with control group pretest-posttest design. The population were all of students grade 11th in one of the senior high school in Bandung. The result showed that: the achievement of mathematical creative and critical thinking abilities of student who obtain RMT is better than students who obtain expository approach. The use of Psychological tools and mediation with criteria of intentionality, reciprocity, and mediated of meaning on RMT helps students in developing condition in critical and creative processes. This achievement contributes to the development of integrated learning design on students’ critical and creative thinking processes.

  19. Critical Decay Index at the Onset of Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Zuccarello, F. P.; Aulanier, G.; Gilchrist, S. A.

    2015-12-01

    Magnetic flux ropes are topological structures consisting of twisted magnetic field lines that globally wrap around an axis. The torus instability model predicts that a magnetic flux rope of major radius R undergoes an eruption when its axis reaches a location where the decay index -d({ln}{B}{ex})/d({ln}R) of the ambient magnetic field Bex is larger than a critical value. In the current-wire model, the critical value depends on the thickness and time evolution of the current channel. We use magnetohydrodynamic simulations to investigate whether the critical value of the decay index at the onset of the eruption is affected by the magnetic flux rope’s internal current profile and/or by the particular pre-eruptive photospheric dynamics. The evolution of an asymmetric, bipolar active region is driven by applying different classes of photospheric motions. We find that the critical value of the decay index at the onset of the eruption is not significantly affected by either the pre-erupitve photospheric evolution of the active region or the resulting different magnetic flux ropes. As in the case of the current-wire model, we find that there is a “critical range” [1.3-1.5], rather than a “critical value” for the onset of the torus instability. This range is in good agreement with the predictions of the current-wire model, despite the inclusion of line-tying effects and the occurrence of tether-cutting magnetic reconnection.

  20. Chaotic electron diffusion through stochastic webs enhances current flow in superlattices.

    PubMed

    Fromhold, T M; Patanè, A; Bujkiewicz, S; Wilkinson, P B; Fowler, D; Sherwood, D; Stapleton, S P; Krokhin, A A; Eaves, L; Henini, M; Sankeshwar, N S; Sheard, F W

    2004-04-15

    Understanding how complex systems respond to change is of fundamental importance in the natural sciences. There is particular interest in systems whose classical newtonian motion becomes chaotic as an applied perturbation grows. The transition to chaos usually occurs by the gradual destruction of stable orbits in parameter space, in accordance with the Kolmogorov-Arnold-Moser (KAM) theorem--a cornerstone of nonlinear dynamics that explains, for example, gaps in the asteroid belt. By contrast, 'non-KAM' chaos switches on and off abruptly at critical values of the perturbation frequency. This type of dynamics has wide-ranging implications in the theory of plasma physics, tokamak fusion, turbulence, ion traps, and quasicrystals. Here we realize non-KAM chaos experimentally by exploiting the quantum properties of electrons in the periodic potential of a semiconductor superlattice with an applied voltage and magnetic field. The onset of chaos at discrete voltages is observed as a large increase in the current flow due to the creation of unbound electron orbits, which propagate through intricate web patterns in phase space. Non-KAM chaos therefore provides a mechanism for controlling the electrical conductivity of a condensed matter device: its extreme sensitivity could find applications in quantum electronics and photonics.

  1. Posttraumatic stress disorder and traumatic brain injury in current military populations: a critical analysis.

    PubMed

    Wall, Pamela L Herbig

    2012-01-01

    The use of unconventional weaponry combined with decreased mortality rates and servicemembers being exposed to intense ground combat during multiple deployments has increased the risk of servicemembers living with the consequences of traumatic brain injuries (TBI) and combat operational stress. The purpose of this article is to perform a critical analysis of the literature to identify current rates of comorbid posttraumatic stress disorder (PTSD) and TBI in military and veteran populations who have served in Iraq or Afghanistan and their combined effects on persistent postconcussive symptoms. A search of the literature with military and veteran populations published after 2001 in Pubmed, OVID/Medline, Cochran Database, Embase, Scopus, CINAHL, and PsychInfo was conducted using keywords. Twenty studies met inclusion criteria. The literature search yielded mixed results for rates of PTSD, TBI, and comorbid conditions. There is some evidence that comorbid PTSD and TBI result in greater reports of postconcussive symptomology than either condition alone. Limitations include lack of consistency of measurements, sampling biases, and lack of experimental design, and these warrant further exploration. Future research is needed to decrease variability in study findings and elucidate relationships between these disorders and their effects on persistent postconcussive symptomology.

  2. Bone Regeneration in Critical Bone Defects Using Three-Dimensionally Printed β-Tricalcium Phosphate/Hydroxyapatite Scaffolds Is Enhanced by Coating Scaffolds with Either Dipyridamole or BMP-2

    PubMed Central

    Ishack, Stephanie; Mediero, Aranzazu; Wilder, Tuere; Ricci, John L.; Cronstein, Bruce N.

    2017-01-01

    Bone defects resulting from trauma or infection need timely and effective treatments to restore damaged bone. Using specialized three-dimensional (3-D) printing technology we have created custom 3-D scaffolds of hydroxyapatite (HA)/Beta-Tri-Calcium Phosphate (β-TCP) to promote bone repair. To further enhance bone regeneration we have coated the scaffolds with dipyridamole, an agent that increases local adenosine levels by blocking cellular uptake of adenosine. 15% HA:85% β-TCP scaffolds were designed using Robocad software, fabricated using a 3-D Robocasting system, and sintered at 1100°C for 4h. Scaffolds were coated with BMP-2 (200ng/ml), Dypiridamole 100µM or saline and implanted in C57B6 and adenosine A2A receptor knockout (A2AKO) mice with 3mm cranial critical bone defects for 2-8 weeks. Dipyridamole release from scaffold was assayed spectrophotometrically. MicroCT and histological analysis were performed. micro-computed tomography (microCT) showed significant bone formation and remodeling in HA/β-TCP- dipyridamole and HA/β-TCP -BMP-2 scaffolds when compared to scaffolds immersed in vehicle at 2, 4 and 8 weeks (n=5 per group; p≤ 0.05, p≤ 0.05 and p≤ 0.01, respectively). Histological analysis showed increased bone formation and a trend toward increased remodeling in HA/β-TCP- dipyridamole and HA/β-TCP-BMP-2 scaffolds. coating scaffolds with dipyridamole did not enhance bone regeneration in A2AKO mice. In conclusion, scaffolds printed with HA/β-TCP promote bone regeneration in critical bone defects and coating these scaffolds with agents that stimulate A2A receptors and growth factors can further enhance bone regeneration. These coated scaffolds may be very useful for treating critical bone defects due to trauma, infection or other causes. PMID:26513656

  3. Critical Thinking Skills of United States Dental Hygiene Students

    ERIC Educational Resources Information Center

    Notgarnie, Howard M.

    2011-01-01

    The complexity of decision-making in dental hygienists' practice requires critical thinking skills. Interest in raising educational standards for entry into the dental hygiene profession is a response to the demand for enhanced professional skills, including critical thinking skills. No studies found in the course of literature review compared…

  4. Mathematical Teaching Strategies: Pathways to Critical Thinking and Metacognition

    ERIC Educational Resources Information Center

    Su, Hui Fang Huang; Ricci, Frederick A.; Mnatsakanian, Mamikon

    2016-01-01

    A teacher that emphasizes reasoning, logic and validity gives their students access to mathematics as an effective way of practicing critical thinking. All students have the ability to enhance and expand their critical thinking when learning mathematics. Students can develop this ability when confronting mathematical problems, identifying possible…

  5. Transverse stress effect on the critical current of jelly-roll multifilamentary Nb sub 3 Al wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeritis, D.; Ando, T.; Takahashi, Y.

    Experiments were conducted to determine the transverse stress sensitivity of the critical current ({ital I}{sub {ital c}}) of jelly-roll multifilamentary Nb{sub 3}Al wires at 8 and 12 T. For comparison, similar experiments were conducted on bronze-process (NbTi){sub 3}Sn wires. At 12 T and under a transverse compressive stress of 150 MPa{emdash}conditions expected in fusion magnets{emdash}the {ital I}{sub {ital c}} degradation of the Nb{sub 3}Al specimen was {similar to}20% vs {similar to}65% for the (NbTi){sub 3}Sn specimen. The intrinsic superiority of Nb{sub 3}Al over (NbTi){sub 3}Sn with regard to transverse compressive stress is thus clear. There is optimism that Nb{sub 3}Almore » will eventually become a useful superconductor for large-scale, high-field applications.« less

  6. High-Definition Transcranial Direct Current Stimulation Enhances Conditioned Pain Modulation in Healthy Volunteers: A Randomized Trial.

    PubMed

    Flood, Andrew; Waddington, Gordon; Cathcart, Stuart

    2016-05-01

    Transcranial direct current stimulation (tDCS) is a form of brain stimulation that allows for the selective increase or decrease in the cortical excitability of a targeted region. When applied over the motor cortex it has been shown to induce changes in cortical and subcortical brain regions involved in descending pain inhibition or conditioned pain modulation (CPM). The aim of the current study was to assess whether activation of pain inhibitory pathways via tDCS of the motor cortex facilitates the CPM response. Elevated CPM after active tDCS of the motor cortex was hypothesized. Thirty healthy male volunteers attended 2 experimental sessions separated by 7 days. Both sessions consisted of CPM assessment after 20 minutes of either active or sham (placebo) tDCS over the motor cortex. CPM capacity was assessed via the pain-inhibits-pain protocol; CPM responses were shown to be elevated after active compared with sham tDCS. This report concludes that tDCS of the motor cortex enhances the CPM response in healthy men. This finding supports the potential utility of tDCS interventions in clinical pain treatment. The use of noninvasive brain stimulation over the motor cortex was shown to enhance the CPM effect. This finding supports the use of tDCS in the treatment of chronic pain, particularly in sufferers exhibiting maladaptive CPM. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  7. Nanodiamond-Manganese dual mode MRI contrast agents for enhanced liver tumor detection.

    PubMed

    Hou, Weixin; Toh, Tan Boon; Abdullah, Lissa Nurrul; Yvonne, Tay Wei Zheng; Lee, Kuan J; Guenther, Ilonka; Chow, Edward Kai-Hua

    2017-04-01

    Contrast agent-enhanced magnetic resonance (MR) imaging is critical for the diagnosis and monitoring of a number of diseases, including cancer. Certain clinical applications, including the detection of liver tumors, rely on both T1 and T2-weighted images even though contrast agent-enhanced MR imaging is not always reliable. Thus, there is a need for improved dual mode contrast agents with enhanced sensitivity. We report the development of a nanodiamond-manganese dual mode contrast agent that enhanced both T1 and T2-weighted MR imaging. Conjugation of manganese to nanodiamonds resulted in improved longitudinal and transverse relaxivity efficacy over unmodified MnCl 2 as well as clinical contrast agents. Following intravenous administration, nanodiamond-manganese complexes outperformed current clinical contrast agents in an orthotopic liver cancer mouse model while also reducing blood serum concentration of toxic free Mn 2+ ions. Thus, nanodiamond-manganese complexes may serve as more effective dual mode MRI contrast agent, particularly in cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Engineering Surface Critical Behavior of (2 +1 )-Dimensional O(3) Quantum Critical Points

    NASA Astrophysics Data System (ADS)

    Ding, Chengxiang; Zhang, Long; Guo, Wenan

    2018-06-01

    Surface critical behavior (SCB) refers to the singularities of physical quantities on the surface at the bulk phase transition. It is closely related to and even richer than the bulk critical behavior. In this work, we show that three types of SCB universality are realized in the dimerized Heisenberg models at the (2 +1 )-dimensional O(3) quantum critical points by engineering the surface configurations. The ordinary transition happens if the surface is gapped in the bulk disordered phase, while the gapless surface state generally leads to the multicritical special transition, even though the latter is precluded in classical phase transitions because the surface is in the lower critical dimension. An extraordinary transition is induced by the ferrimagnetic order on the surface of the staggered Heisenberg model, in which the surface critical exponents violate the results of the scaling theory and thus seriously challenge our current understanding of extraordinary transitions.

  9. Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive

    PubMed Central

    Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei

    2018-01-01

    Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors. PMID:29762528

  10. Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive.

    PubMed

    Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei

    2018-05-15

    Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors.

  11. Critical current survival in the YBCO superconducting layer of a delaminated coated conductor

    NASA Astrophysics Data System (ADS)

    Feng, Feng; Fu, Qishu; Qu, Timing; Mu, Hui; Gu, Chen; Yue, Yubin; Wang, Linli; Yang, Zhirong; Han, Zhenghe; Feng, Pingfa

    2018-04-01

    A high-temperature superconducting coated conductor can be practically applied in electric equipment due to its favorable mechanical properties and critical current (I c) performance. However, the coated conductor can easily delaminate because of its poor stress tolerance along the thickness direction. It would be interesting to investigate whether the I c of the delaminated YBa2Cu3O7-δ (YBCO) layer can be preserved. In this study, coated conductor samples manufactured through the metal organic deposition route were delaminated by liquid nitrogen immersion. Delaminated samples, including the YBCO layer and silver stabilizer, were obtained. Delamination occurred inside the YBCO layer and near the YBCO-CeO2 interface, as suggested by the results of scanning electron microscopy (SEM) and x-ray diffraction. A scanning Hall probe system was employed to measure the I c distribution of the original sample and the delaminated sample. It was found that approximately 50% of the I c can be preserved after delamination, which was verified by I c measurements using the four-probe method. Dense and crack-free morphologies of the delaminated surfaces were observed by SEM, which accounts for the I c survival of the delaminated YBCO layer. The potential application of the delaminated sample in superconducting joints was discussed based on the oxygen diffusion estimation.

  12. Critical current density, vortex dynamics, and phase diagram of single-crystal FeSe

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Pyon, Sunseng; Tamegai, Tsuyoshi; Kobayashi, Ryo; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2015-10-01

    We present a comprehensive study of the vortex pinning and dynamics in a high-quality FeSe single crystal which is free from doping-introduced inhomogeneities and charged quasiparticle scattering because of its innate superconductivity. The critical current density Jc is found to be almost isotropic and reaches a value of ˜3 ×104 A /cm2 at 2 K (self-field) for both H ∥c and a b . The normalized magnetic relaxation rate S (=∣d ln M /d ln t ∣ ) shows a temperature-insensitive plateau behavior in the intermediate temperature range with a relatively high creep rate (S ˜ 0.02 under zero field), which is interpreted in the framework of the collective creep theory. A crossover from the elastic to plastic creep is observed, while the fishtail effect is absent for both H ∥c and a b . Based on this observation, the origin of the fishtail effect is also discussed. Combining the results of Jc and S , the vortex motion in the FeSe single crystal is found to be dominated by sparse, strong pointlike pinning from nanometer-sized defects or imperfections. The weak collective pinning is also observed and proved in the form of large bundles. Besides, the vortex phase diagram of FeSe is also constructed and discussed.

  13. Classroom Environments That Foster a Disposition for Critical Thinking

    ERIC Educational Resources Information Center

    Mathews, Samuel R.; Lowe, Katie

    2011-01-01

    In this article, we examine the disposition for critical thinking (CT) from three perspectives and analyse the underlying constructs of the disposition for CT, such as one's ability, sensitivity and inclination to engage in critical, mindful thought. Environmental factors that enhance or inhibit the development of a generalisable disposition for…

  14. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence

    PubMed Central

    Verberk, Wilco C.E.P.; Overgaard, Johannes; Ern, Rasmus; Bayley, Mark; Wang, Tobias; Boardman, Leigh; Terblanche, John S.

    2016-01-01

    Over the last decade, numerous studies have investigated the role of oxygen in setting thermal tolerance in aquatic animals, and there has been particular focus on arthropods. Arthropods comprise one of the most species-rich taxonomic groups on Earth, and display great diversity in the modes of ventilation, circulation, blood oxygen transport, with representatives living both in water (mainly crustaceans) and on land (mainly insects). The oxygen and capacity limitation of thermal tolerance (OCLTT) hypothesis proposes that the temperature dependent performance curve of animals is shaped by the capacity for oxygen delivery in relation to oxygen demand. If correct, oxygen limitation could provide a mechanistic framework to understand and predict both current and future impacts of rapidly changing climate. In arthropods, most studies testing the OCLTT hypothesis have considered tolerance to thermal extremes. These studies likely operate from the philosophical viewpoint that if the model can predict these critical thermal limits, then it is more likely to also explain loss of performance at less extreme, non-lethal temperatures, for which much less data is available. Nevertheless, the extent to which lethal temperatures are influenced by limitations in oxygen supply remains unresolved. Here we critically evaluate the support and universal applicability for oxygen limitation being involved in lethal temperatures in crustaceans and insects. The relatively few studies investigating the OCLTT hypothesis at low temperature do not support a universal role for oxygen in setting the lower thermal limits in arthropods. With respect to upper thermal limits, the evidence supporting OCLTT is stronger for species relying on underwater gas exchange, while the support for OCLTT in air-breathers is weak. Overall, strongest support was found for increased anaerobic metabolism close to thermal maxima. In contrast, there was only mixed support for the prediction that aerobic scope

  15. Evidence-based Medicine--How to Teach Critical Scientific Thinking to Medical Undergraduates.

    ERIC Educational Resources Information Center

    Pitkala, K.; Mantyranta, T.; Strandberg, T. E.; Makela, M.; Vanhanen, H.; Varonen, H.

    2000-01-01

    Discusses an evidence-based course which activates students' critical thinking, enhances social learning and group processes, and promotes attitudes towards independent information retrieval and critical appraisal. (Author/CCM)

  16. Research on resistance characteristics of YBCO tape under short-time DC large current impact

    NASA Astrophysics Data System (ADS)

    Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen

    2017-06-01

    Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.

  17. Critical Thinking and the Danger of Intellectual Conformity.

    ERIC Educational Resources Information Center

    Walter, Kerry S.

    1987-01-01

    Although the goals of critical thinking are to foster critical ability and broad-mindedness, it tends to encourage absolutism, promote passivity, and breed intolerance. The current concentration on critical thinking's reductionism should be balanced with the teaching of alternative approaches to understanding knowledge and reality. (Author/LB)

  18. Critical assessment of enhancement factor measurements in surface-enhanced Raman scattering on different substrates.

    PubMed

    Rodrigues, Daniel C; de Souza, Michele L; Souza, Klester S; dos Santos, Diego P; Andrade, Gustavo F S; Temperini, Marcia L A

    2015-09-07

    The SERS enhancement factor (SERS-EF) is one of the most important parameters that characterizes the ability of a given substrate to enhance the Raman signal for SERS applications. The comparison of SERS intensities and SERS-EF values across different substrates is a common practice to unravel the performance of a given substrate. In this study, it is shown that such a comparison may lack significance if we compare substrates of very distinct nature and optical properties. It is specifically shown that the SERS-EF values for static substrates (e.g. immobilized metallic nanostructures) cannot be compared to those of dynamic ones (e.g. colloidal metal nanoparticle solutions), and that the optical properties for the latter show strong dependence on the metal-molecule interaction dynamics. The most representative experimental results concerning the dynamic substrates have been supported by generalized Mie theory simulations, which are tools used to describe the substrate complexity and the microscopic information not usually taken into account.

  19. Does Mindfulness Enhance Critical Thinking? Evidence for the Mediating Effects of Executive Functioning in the Relationship between Mindfulness and Critical Thinking.

    PubMed

    Noone, Chris; Bunting, Brendan; Hogan, Michael J

    2015-01-01

    Mindfulness originated in the Buddhist tradition as a way of cultivating clarity of thought. Despite the fact that this behavior is best captured using critical thinking (CT) assessments, no studies have examined the effects of mindfulness on CT or the mechanisms underlying any such possible relationship. Even so, mindfulness has been suggested as being beneficial for CT in higher education. CT is recognized as an important higher-order cognitive process which involves the ability to analyze and evaluate evidence and arguments. Such non-automatic, reflective responses generally require the engagement of executive functioning (EF) which includes updating, inhibition, and shifting of representations in working memory. Based on research showing that mindfulness enhances aspects of EF and certain higher-order cognitive processes, we hypothesized that individuals higher in facets of dispositional mindfulness would demonstrate greater CT performance, and that this relationship would be mediated by EF. Cross-sectional assessment of these constructs in a sample of 178 university students was achieved using the observing and non-reactivity sub-scales of the Five Factor Mindfulness Questionnaire, a battery of EF tasks and the Halpern Critical Thinking Assessment. Our hypotheses were tested by constructing a multiple meditation model which was analyzed using Structural Equation Modeling. Evidence was found for inhibition mediating the relationships between both observing and non-reactivity and CT in different ways. Indirect-only (or full) mediation was demonstrated for the relationship between observing, inhibition, and CT. Competitive mediation was demonstrated for the relationship between non-reactivity, inhibition, and CT. This suggests additional mediators of the relationship between non-reactivity and CT which are not accounted for in this model and have a negative effect on CT in addition to the positive effect mediated by inhibition. These findings are discussed in the

  20. Does Mindfulness Enhance Critical Thinking? Evidence for the Mediating Effects of Executive Functioning in the Relationship between Mindfulness and Critical Thinking

    PubMed Central

    Noone, Chris; Bunting, Brendan; Hogan, Michael J.

    2016-01-01

    Mindfulness originated in the Buddhist tradition as a way of cultivating clarity of thought. Despite the fact that this behavior is best captured using critical thinking (CT) assessments, no studies have examined the effects of mindfulness on CT or the mechanisms underlying any such possible relationship. Even so, mindfulness has been suggested as being beneficial for CT in higher education. CT is recognized as an important higher-order cognitive process which involves the ability to analyze and evaluate evidence and arguments. Such non-automatic, reflective responses generally require the engagement of executive functioning (EF) which includes updating, inhibition, and shifting of representations in working memory. Based on research showing that mindfulness enhances aspects of EF and certain higher-order cognitive processes, we hypothesized that individuals higher in facets of dispositional mindfulness would demonstrate greater CT performance, and that this relationship would be mediated by EF. Cross-sectional assessment of these constructs in a sample of 178 university students was achieved using the observing and non-reactivity sub-scales of the Five Factor Mindfulness Questionnaire, a battery of EF tasks and the Halpern Critical Thinking Assessment. Our hypotheses were tested by constructing a multiple meditation model which was analyzed using Structural Equation Modeling. Evidence was found for inhibition mediating the relationships between both observing and non-reactivity and CT in different ways. Indirect-only (or full) mediation was demonstrated for the relationship between observing, inhibition, and CT. Competitive mediation was demonstrated for the relationship between non-reactivity, inhibition, and CT. This suggests additional mediators of the relationship between non-reactivity and CT which are not accounted for in this model and have a negative effect on CT in addition to the positive effect mediated by inhibition. These findings are discussed in the

  1. Cultural variation in the motivational standards of self-enhancement and self-criticism among bicultural Asian American and Anglo American students.

    PubMed

    Zusho, Akane

    2008-10-01

    Recent work on biculturalism has made theoretical and methodological inroads into our understanding of the relation of cultural processes with psychological functioning. Through the use of cultural priming methodologies, investigators have demonstrated that biculturals, or individuals who have experienced and identify with more than one culture, can switch between various "cultural frames of reference" in response to corresponding social cues (Hong, Morris, Chiu, & Benet-Martinez, 2000). Drawing on this work on the cognitive implications of biculturalism, the purpose of the present study was to examine the assumption that independent and interdependent self-construals are associated with the motivational standards of self-enhancement and self-criticism, respectively. More specifically, the effects of differential primes of self on ratings of self-enhancement were investigated in a sample of bicultural Asian American (N = 42) and Anglo American (N = 60) college students; overall, more similarities than differences were noted between the two groups. It was hypothesized that Anglo American students would display marked tendencies toward self-enhancement. However, this hypothesis was not supported. Nevertheless, consistent prime effects were observed for a selected number of ratings related to academic virtues, with those who received an independent-self prime often exhibiting greater self-enhancing tendencies than those who received an interdependent-self prime. For example, participants in the independent-self condition reported on average significantly higher ratings for self-discipline and initiative, as well as the degree to which they perceived themselves to be hard working. Implications for the work on self-representations, motivation, and acculturation are discussed.

  2. Current perspective of neuroprotection and glaucoma

    PubMed Central

    Tian, Kailin; Shibata-Germanos, Shannon; Pahlitzsch, Milena; Cordeiro, M Francesca

    2015-01-01

    Glaucoma is the second leading cause of blindness worldwide and is most notably characterized by progressive optic nerve atrophy and advancing loss of retinal ganglion cells (RGCs). The main concomitant factor is the elevated intraocular pressure (IOP). Existing treatments are focused generally on lowering IOP. However, both RGC loss and optic nerve atrophy can independently occur with IOP at normal levels. In recent years, there has been substantial progress in the development of neuroprotective therapies for glaucoma in order to restore vital visual function. The present review intends to offer a brief insight into conventional glaucoma treatments and discuss exciting current developments of mostly preclinical data in novel neuroprotective strategies for glaucoma that include recent advances in noninvasive diagnostics going beyond IOP maintenance for an enhanced global view. Such strategies now target RGC loss and optic nerve damage, opening a critical therapeutic window for preventative monitoring and treatment. PMID:26635467

  3. Enhanced wall-plug efficiency in AlGaN-based deep-ultraviolet light-emitting diodes with uniform current spreading p-electrode structures

    NASA Astrophysics Data System (ADS)

    Hao, Guo-Dong; Taniguchi, Manabu; Tamari, Naoki; Inoue, Shin-ichiro

    2016-06-01

    The current crowding is an especially severe issue in AlGaN-based deep-ultraviolet (DUV) light-emitting diodes (LEDs) because of the low conductivity of the n-AlGaN cladding layer that has a high Al fraction. We theoretically investigated the improvement in internal quantum efficiency and total resistances in DUV-LEDs with an emission wavelength of 265 nm by a well-designed p-electrode geometry to produce uniform current spreading. As a result, the wall-plug efficiency was enhanced by a factor of 60% at an injection current of 350 mA in the designed uniform-current-spreading p-electrode LED when compared with an LED with a conventional cross-bar p-electrode pattern.

  4. Healthcare disparities in critical illness.

    PubMed

    Soto, Graciela J; Martin, Greg S; Gong, Michelle Ng

    2013-12-01

    To summarize the current literature on racial and gender disparities in critical care and the mechanisms underlying these disparities in the course of acute critical illness. MEDLINE search on the published literature addressing racial, ethnic, or gender disparities in acute critical illness, such as sepsis, acute lung injury, pneumonia, venous thromboembolism, and cardiac arrest. Clinical studies that evaluated general critically ill patient populations in the United States as well as specific critical care conditions were reviewed with a focus on studies evaluating factors and contributors to health disparities. Study findings are presented according to their association with the prevalence, clinical presentation, management, and outcomes in acute critical illness. This review presents potential contributors for racial and gender disparities related to genetic susceptibility, comorbidities, preventive health services, socioeconomic factors, cultural differences, and access to care. The data are organized along the course of acute critical illness. The literature to date shows that disparities in critical care are most likely multifactorial involving individual, community, and hospital-level factors at several points in the continuum of acute critical illness. The data presented identify potential targets as interventions to reduce disparities in critical care and future avenues for research.

  5. Critical study of current situation of Vrănicioara tailing pond on Cavnicului Valley, risks and consequences

    NASA Astrophysics Data System (ADS)

    Bud, I.; Duma, S.; Gusat, D.; Pasca, I.; Bud, A.

    2017-05-01

    In northern Romania, there are numerous tailing ponds, resulting from mining activities that present significant environmental risks. Some of them, including Vrănicioara tailing pond, were the subject of technical projects for ecological rehabilitation. Vrănicioara pond is located on the right side of Cavnic Valley, downstream Cavnic town, about 4 kilometers far. It has about 500 m length and is located parallel to the road linking Baia Sprie and Cavnic localities. Chemical and physical stability of the tailing pond before rehabilitation interest the research, analysis and conclusions were published in several scientific meetings. In addition, close to the pond at less than 100 m, an open pit has developed, exploiting andesite by mining blast, increasing the risk of physical stability by continuous exposure to vibration. This activity currently continues, advancing towards the tailing pond body. The critical study addresses the current state of Vrănicioara Tailing Pond, analysis of some rehabilitation works done incorrectly, analysis of chemical stability that was not a priority during rehabilitation. Research intention is heading to water analysis confirming the existence of acid drainage that was not stopped or at least reduced. The scientific approach is based on the Technical Standards for Waste Deposits, in force in Romania, providing the rules to ensure physical and chemical stability.

  6. Spoilt for choice: A critical review on the chemical and biological assessment of current wastewater treatment technologies.

    PubMed

    Prasse, Carsten; Stalter, Daniel; Schulte-Oehlmann, Ulrike; Oehlmann, Jörg; Ternes, Thomas A

    2015-12-15

    The knowledge we have gained in recent years on the presence and effects of compounds discharged by wastewater treatment plants (WWTPs) brings us to a point where we must question the appropriateness of current water quality evaluation methodologies. An increasing number of anthropogenic chemicals is detected in treated wastewater and there is increasing evidence of adverse environmental effects related to WWTP discharges. It has thus become clear that new strategies are needed to assess overall quality of conventional and advanced treated wastewaters. There is an urgent need for multidisciplinary approaches combining expertise from engineering, analytical and environmental chemistry, (eco)toxicology, and microbiology. This review summarizes the current approaches used to assess treated wastewater quality from the chemical and ecotoxicological perspective. Discussed chemical approaches include target, non-target and suspect analysis, sum parameters, identification and monitoring of transformation products, computational modeling as well as effect directed analysis and toxicity identification evaluation. The discussed ecotoxicological methodologies encompass in vitro testing (cytotoxicity, genotoxicity, mutagenicity, endocrine disruption, adaptive stress response activation, toxicogenomics) and in vivo tests (single and multi species, biomonitoring). We critically discuss the benefits and limitations of the different methodologies reviewed. Additionally, we provide an overview of the current state of research regarding the chemical and ecotoxicological evaluation of conventional as well as the most widely used advanced wastewater treatment technologies, i.e., ozonation, advanced oxidation processes, chlorination, activated carbon, and membrane filtration. In particular, possible directions for future research activities in this area are provided. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Thermal Control Method for High-Current Wire Bundles by Injecting a Thermally Conductive Filler

    NASA Technical Reports Server (NTRS)

    Rodriguez-Ruiz, Juan; Rowles, Russell; Greer, Greg

    2011-01-01

    A procedure was developed to inject thermal filler material (a paste-like substance) inside the power wire bundle coming from solar arrays. This substance fills in voids between wires, which enhances the heat path and reduces wire temperature. This leads to a reduced amount of heat generated. This technique is especially helpful for current and future generation high-power spacecraft (1 kW or more), because the heat generated by the power wires is significant enough to cause unacceptable overheating to critical components that are in close contact with the bundle.

  8. Intrinsic Plasticity Induced by Group II Metabotropic Glutamate Receptors via Enhancement of High Threshold KV Currents in Sound Localizing Neurons

    PubMed Central

    Hamlet, William R.; Lu, Yong

    2016-01-01

    Intrinsic plasticity has emerged as an important mechanism regulating neuronal excitability and output under physiological and pathological conditions. Here, we report a novel form of intrinsic plasticity. Using perforated patch clamp recordings, we examined the modulatory effects of group II metabotropic glutamate receptors (mGluR II) on voltage-gated potassium (KV) currents and the firing properties of neurons in the chicken nucleus laminaris (NL), the first central auditory station where interaural time cues are analyzed for sound localization. We found that activation of mGluR II by synthetic agonists resulted in a selective increase of the high threshold KV currents. More importantly, synaptically released glutamate (with reuptake blocked) also enhanced the high threshold KV currents. The enhancement was frequency-coding region dependent, being more pronounced in low frequency neurons compared to middle and high frequency neurons. The intracellular mechanism involved the Gβγ signaling pathway associated with phospholipase C and protein kinase C. The modulation strengthened membrane outward rectification, sharpened action potentials, and improved the ability of NL neurons to follow high frequency inputs. These data suggest that mGluR II provides a feedforward modulatory mechanism that may regulate temporal processing under the condition of heightened synaptic inputs. PMID:26964678

  9. Enhancing Critical Thinking by Teaching Two Distinct Approaches to Management

    ERIC Educational Resources Information Center

    Dyck, Bruno; Walker, Kent; Starke, Frederick A.; Uggerslev, Krista

    2012-01-01

    The authors explore the effect on students' critical thinking of teaching only one approach to management versus teaching two approaches to management. Results from a quasiexperiment--which included a survey, interviews, and case analysis--suggest that compared with students who are taught only a conventional approach to management (which…

  10. Effective Instruction and Assessment Methods That Lead to Gains in Critical Thinking as Measured by the Critical Thinking Assessment Test (CAT)

    ERIC Educational Resources Information Center

    Leming, Katie P.

    2016-01-01

    Previous qualitative research on educational practices designed to improve critical thinking has relied on anecdotal or student self-reports of gains in critical thinking. Unfortunately, student self-report data have been found to be unreliable proxies for measuring critical thinking gains. Therefore, in the current interpretivist study, five…

  11. Critical mass of public goods and its coevolution with cooperation

    NASA Astrophysics Data System (ADS)

    Shi, Dong-Mei; Wang, Bing-Hong

    2017-07-01

    In this study, the enhancing parameter represented the value of the public goods to the public in public goods game, and was rescaled to a Fermi-Dirac distribution function of critical mass. Public goods were divided into two categories, consumable and reusable public goods, and their coevolution with cooperative behavior was studied. We observed that for both types of public goods, cooperation was promoted as the enhancing parameter increased when the value of critical mass was not very large. An optimal value of critical mass which led to the best cooperation was identified. We also found that cooperations emerged earlier for reusable public goods, and defections became extinct earlier for the consumable public goods. Moreover, we observed that a moderate depreciation rate for public goods resulted in an optimal cooperation, and this range became wider as the enhancing parameter increased. The noise influence on cooperation was studied, and it was shown that cooperation density varied non-monotonically as noise amplitude increased for reusable public goods, whereas decreased monotonically for consumable public goods. Furthermore, existence of the optimal critical mass was also identified in other three regular networks. Finally, simulation results were utilized to analyze the provision of public goods in detail.

  12. Pulmonary infections in critical/intensive care - rapid diagnosis and optimizing antimicrobial usage.

    PubMed

    Douglas, Ivor S

    2017-05-01

    Diagnosis of pulmonary infection, including hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) in the critically ill patient remains a common and therapeutically challenging diagnosis with significant attributable morbidity, mortality, and cost. Current clinical approaches to surveillance, early detection and, conventional culture-based microbiology are inadequate for optimal targeted antibiotic treatment and stewardship. Efforts to enhance diagnosis of HAP and VAP and the impact of these novel approaches on rational antimicrobial selection and stewardship are the focus of recent studies reviewed here. Recent consensus guidelines for diagnosis and management of HAP and VAP are relatively silent on the potential role of novel rapid microbiological techniques and reply heavily on conventional culture strategies of noninvasively obtained (including endotracheal aspirate samples). Novel rapid microbiological diagnostics, including nucleic acid amplification, mass spectrometry, and fluorescence microscopy-based technologies are promising approaches for the future. Exhaled breath biomarkers, including measurement of VOC represent a future approach. Further validation of novel diagnostic technology platforms will be required to evaluate their utility for enhancing diagnosis and guiding treatment of pulmonary infections in the critically ill. However, the integration of novel diagnostics for rapid microbial identification, resistance phenotyping, and antibiotic sensitivity testing into usual care practice could significantly transform the care of patients and potentially inform improved targeted antimicrobial selection, de-escalation, and stewardship.

  13. THE DYNAMICAL GENERATION OF CURRENT SHEETS IN ASTROPHYSICAL PLASMA TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howes, Gregory G.

    2016-08-20

    Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here, we presentmore » evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfvén waves, or strong Alfvén wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear dynamics of Alfvén wave collisions, showing that these current sheets arise through constructive interference among the initial Alfvén waves and nonlinearly generated modes. The properties of current sheets generated by strong Alfvén wave collisions are compared to published observations of current sheets in the Earth's magnetosheath and the solar wind, and the nature of these current sheets leads to the expectation that Landau damping of the constituent Alfvén waves plays a dominant role in the damping of turbulently generated current sheets.« less

  14. Foliar penetration enhanced by biosurfactant rhamnolipid.

    PubMed

    Liu, Haojing; Shao, Bing; Long, Xuwei; Yao, Yang; Meng, Qin

    2016-09-01

    With recent environmental and health concerns, biosurfactants have obtained increasing interest in replacing conventional surfactants for diverse applications. In agriculture, the use of surfactant in stimulating foliar uptake is mainly for wetting leaf surface, resisting deposition/evaporation, enhancing penetration across cuticular membrane (CM) and translocation. This paper aimed to address the improved foliar uptake by rhamnolipid (RL) in comparison with the currently used alkyl polyglucoside (APG). As found, compared with APG at 900mg/L (1×critical micellar concentration, CMC), RL at a much lower concentration of 50mg/L (1×CMC) showed much better wettability and surface activity, indicative of its high effectiveness as surfactants. Its performance on resistance to deposition and evaporation was at least as same as APG. Moreover, RL could significantly improve the penetration of herbicide glyphosate and other two small water-soluble molecules (phenol red and Fe(2+)) across CM at an equivalent efficiency as APG at 1×CMC. Finally, the greatly enhanced herbicidal actitivity of glyphosate on greenhouse plants confirmed that RL and APG could both enhance the foliar uptake including translocation. Overall, RL should be more applicable than APG in agriculture due to its more promising properties on health/environmental friendliness. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Ultrasound-enhanced drug delivery for cancer.

    PubMed

    Mo, Steven; Coussios, Constantin-C; Seymour, Len; Carlisle, Robert

    2012-12-01

    Ultrasound, which has traditionally been used as a diagnostic tool, is increasingly being used in non-invasive therapy and drug delivery. Of particular interest to this review is the rapidly accumulating evidence that ultrasound may have a key role to play both in improving the targeting and the efficacy of drug delivery for cancer. Currently available ultrasound-triggerable vehicles are first described, with particular reference to the ultrasonic mechanism that can activate release and the suitability of the size range of the vehicle used for drug delivery. Further mechanical and thermal effects of ultrasound that can enhance extravasation and drug distribution following release are then critically reviewed. Acoustic cavitation is found to play a potentially key role both in achieving targeted drug release and enhanced extravasation at modest pressure amplitudes and acoustic energies, whilst simultaneously enabling real-time monitoring of the drug delivery process. The next challenge in ultrasound-enhanced drug delivery will thus be to develop a new generation of drug-carrying nanoparticles which are of the right size range for delivery to tumours, yet still capable of achieving initiation of cavitation activity and drug release at modest acoustic pressures and energies that have no safety implications for the patient.

  16. Technology to enhance physical rehabilitation of critically ill patients.

    PubMed

    Needham, Dale M; Truong, Alex D; Fan, Eddy

    2009-10-01

    Neuromuscular complications after critical illness are common and can be severe and persistent. To ameliorate complications, there is growing interest in starting physical medicine and rehabilitation therapy immediately after physiologic stabilization. The introduction of physical medicine and rehabilitation-related technology into the intensive care unit may help facilitate delivery of this therapy. Neuromuscular electrical stimulation therapy creates passive contraction of muscles through low-voltage electrical impulses delivered through skin electrodes placed over target muscles. Although neuromuscular electrical stimulation has not been studied in patients with acute critical illness, published guidelines based on available evidence suggest that neuromuscular electrical stimulation may be considered in intensive care unit patients who are at high risk of developing muscle weakness. Bedside cycle ergometry can provide range of motion and muscle strength training for intensive care unit patients who are either sedated or awake, and may help preserve muscle architecture and improve strength and function. Finally, custom-designed technological aids to assist with ambulating mechanically ventilated patients may reduce the human resource requirements and improve the safety and effectiveness of early mobilization in the intensive care unit. Physical medicine and rehabilitation-related technologies may play an important role in preventing and treating intensive care unit-acquired neuromuscular complications. Future studies are needed to evaluate their efficacy in intensive care unit patients.

  17. Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems.

    PubMed

    Guo, Kun; Donose, Bogdan C; Soeriyadi, Alexander H; Prévoteau, Antonin; Patil, Sunil A; Freguia, Stefano; Gooding, J Justin; Rabaey, Korneel

    2014-06-17

    Stainless steel (SS) can be an attractive material to create large electrodes for microbial bioelectrochemical systems (BESs), due to its low cost and high conductivity. However, poor biocompatibility limits its successful application today. Here we report a simple and effective method to make SS electrodes biocompatible by means of flame oxidation. Physicochemical characterization of electrode surface indicated that iron oxide nanoparticles (IONPs) were generated in situ on an SS felt surface by flame oxidation. IONPs-coating dramatically enhanced the biocompatibility of SS felt and consequently resulted in a robust electroactive biofilm formation at its surface in BESs. The maximum current densities reached at IONPs-coated SS felt electrodes were 16.5 times and 4.8 times higher than the untreated SS felts and carbon felts, respectively. Furthermore, the maximum current density achieved with the IONPs-coated SS felt (1.92 mA/cm(2), 27.42 mA/cm(3)) is one of the highest current densities reported thus far. These results demonstrate for the first time that flame oxidized SS felts could be a good alternative to carbon-based electrodes for achieving high current densities in BESs. Most importantly, high conductivity, excellent mechanical strength, strong chemical stability, large specific surface area, and comparatively low cost of flame oxidized SS felts offer exciting opportunities for scaling-up of the anodes for BESs.

  18. Using Transcranial Direct Current Stimulation to Enhance Creative Cognition: Interactions between Task, Polarity, and Stimulation Site

    PubMed Central

    Weinberger, Adam B.; Green, Adam E.; Chrysikou, Evangelia G.

    2017-01-01

    Creative cognition is frequently described as involving two primary processes, idea generation and idea selection. A growing body of research has used transcranial direct current stimulation (tDCS) to examine the neural mechanisms implicated in each of these processes. This literature has yielded a diverse set of findings that vary depending on the location and type (anodal, cathodal, or both) of electrical stimulation employed, as well as the task’s reliance on idea generation or idea selection. As a result, understanding the interactions between stimulation site, polarity and task demands is required to evaluate the potential of tDCS to enhance creative performance. Here, we review tDCS designs that have elicited reliable and dissociable enhancements for creative cognition. Cathodal stimulation over the left inferior frontotemporal cortex has been associated with improvements on tasks that rely primarily on idea generation, whereas anodal tDCS over left dorsolateral prefrontal cortex (DLPFC) and frontopolar cortex has been shown to augment performance on tasks that impose high demands on creative idea selection. These results highlight the functional selectivity of tDCS for different components of creative thinking and confirm the dissociable contributions of left dorsal and inferior lateral frontotemporal cortex for different creativity tasks. We discuss promising avenues for future research that can advance our understanding of the effectiveness of tDCS as a method to enhance creative cognition. PMID:28559804

  19. Geographic Hotspots of Critical National Infrastructure.

    PubMed

    Thacker, Scott; Barr, Stuart; Pant, Raghav; Hall, Jim W; Alderson, David

    2017-12-01

    Failure of critical national infrastructures can result in major disruptions to society and the economy. Understanding the criticality of individual assets and the geographic areas in which they are located is essential for targeting investments to reduce risks and enhance system resilience. Within this study we provide new insights into the criticality of real-life critical infrastructure networks by integrating high-resolution data on infrastructure location, connectivity, interdependence, and usage. We propose a metric of infrastructure criticality in terms of the number of users who may be directly or indirectly disrupted by the failure of physically interdependent infrastructures. Kernel density estimation is used to integrate spatially discrete criticality values associated with individual infrastructure assets, producing a continuous surface from which statistically significant infrastructure criticality hotspots are identified. We develop a comprehensive and unique national-scale demonstration for England and Wales that utilizes previously unavailable data from the energy, transport, water, waste, and digital communications sectors. The testing of 200,000 failure scenarios identifies that hotspots are typically located around the periphery of urban areas where there are large facilities upon which many users depend or where several critical infrastructures are concentrated in one location. © 2017 Society for Risk Analysis.

  20. Immunomodulator-based enhancement of anti smallpox immune responses.

    PubMed

    Martínez, Osmarie; Miranda, Eric; Ramírez, Maite; Santos, Saritza; Rivera, Carlos; Vázquez, Luis; Sánchez, Tomás; Tremblay, Raymond L; Ríos-Olivares, Eddy; Otero, Miguel

    2015-01-01

    The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  1. Revitalized militarily critical technologies program

    NASA Astrophysics Data System (ADS)

    Wick, Raymond V.

    2005-04-01

    The Department of Defense (DoD) Militarily Critical Technologies Program (MCTP) provides a systematic, ongoing assessment and analysis of goods and technologies to determine those that would permit significant advances in the development, production and use of military capabilities of potential adversaries and those that are being developed worldwide that have the potential to significantly enhance or degrade US military capabilities in the future. The program's objective is to characterize the technologies, including quantitative values and parameters, and assess worldwide technology capabilities. The MCTP is composed of two sets of documents, the well known and often referenced one, the MCTL, and a second one, a more recently added list called the Developing Science and Technologies List (DSTL). Both are products of the MCTP process, however, the later is primarily used by DDR&E and other government organizations and agencies to aid in the prioritization and understanding of new technologies being developed worldwide. Technologies are selected for the MCTL and the DSTL through the deliberation and consensus of Technology Working Groups (TWGs). TWGs continually screen technologies and nominate items to be added or removed from the MCTL and the DSTL as appropriate. Working within an informal structure, TWG members are composed of government, industry and academia subject matter experts, who strive to produce precise and objective analyses across each technology areas. This process and details of the current MCTP are outlined in this poster paper. This paper focuses on the solid state laser technology area, using it as an example of the MCTP's product of assessing, identifying, and quantifying militarily critical technology parameters.

  2. Early mobilization in the critical care unit: A review of adult and pediatric literature.

    PubMed

    Cameron, Saoirse; Ball, Ian; Cepinskas, Gediminas; Choong, Karen; Doherty, Timothy J; Ellis, Christopher G; Martin, Claudio M; Mele, Tina S; Sharpe, Michael; Shoemaker, J Kevin; Fraser, Douglas D

    2015-08-01

    Early mobilization of critically ill patients is beneficial, suggesting that it should be incorporated into daily clinical practice. Early passive, active, and combined progressive mobilizations can be safely initiated in intensive care units (ICUs). Adult patients receiving early mobilization have fewer ventilator-dependent days, shorter ICU and hospital stays, and better functional outcomes. Pediatric ICU data are limited, but recent studies also suggest that early mobilization is achievable without increasing patient risk. In this review, we provide a current and comprehensive appraisal of ICU mobilization techniques in both adult and pediatric critically ill patients. Contraindications and perceived barriers to early mobilization, including cost and health care provider views, are identified. Methods of overcoming barriers to early mobilization and enhancing sustainability of mobilization programs are discussed. Optimization of patient outcomes will require further studies on mobilization timing and intensity, particularly within specific ICU populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves.

    PubMed

    Meyer, Cora; Stenberg, Lena; Gonzalez-Perez, Francisco; Wrobel, Sandra; Ronchi, Giulia; Udina, Esther; Suganuma, Seigo; Geuna, Stefano; Navarro, Xavier; Dahlin, Lars B; Grothe, Claudia; Haastert-Talini, Kirsten

    2016-01-01

    Biosynthetic nerve grafts are developed in order to complement or replace autologous nerve grafts for peripheral nerve reconstruction. Artificial nerve guides currently approved for clinical use are not widely applied in reconstructive surgery as they still have limitations especially when it comes to critical distance repair. Here we report a comprehensive analysis of fine-tuned chitosan nerve guides (CNGs) enhanced by introduction of a longitudinal chitosan film to reconstruct critical length 15 mm sciatic nerve defects in adult healthy Wistar or diabetic Goto-Kakizaki rats. Short and long term investigations demonstrated that the CNGs enhanced by the guiding structure of the introduced chitosan film significantly improved functional and morphological results of nerve regeneration in comparison to simple hollow CNGs. Importantly, this was detectable both in healthy and in diabetic rats (short term) and the regeneration outcome almost reached the outcome after autologous nerve grafting (long term). Hollow CNGs provide properties likely leading to a wider clinical acceptance than other artificial nerve guides and their performance can be increased by simple introduction of a chitosan film with the same advantageous properties. Therefore, the chitosan film enhanced CNGs represent a new generation medical device for peripheral nerve reconstruction. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Pedagogy for Developing Critical Thinking in Adolescents: Explicit Instruction Produces Greatest Gains

    ERIC Educational Resources Information Center

    Marin, Lisa M.; Halpern, Diane F.

    2011-01-01

    Although the development and transfer of critical thinking skills are recognized as primary goals for education, there is little empirical evidence to help educators decide how to teach in ways that enhance critical thinking. In two studies, we compared explicit and imbedded instructional modes and assessed critical thinking with the Halpern…

  5. Partially Redundant Enhancers Cooperatively Maintain Mammalian Pomc Expression Above a Critical Functional Threshold

    PubMed Central

    Lam, Daniel D.; de Souza, Flavio S. J.; Nasif, Sofia; Yamashita, Miho; López-Leal, Rodrigo; Meece, Kana; Sampath, Harini; Mercer, Aaron J.; Wardlaw, Sharon L.

    2015-01-01

    Cell-specific expression of many genes is conveyed by multiple enhancers, with each individual enhancer controlling a particular expression domain. In contrast, multiple enhancers drive similar expression patterns of some genes involved in embryonic development, suggesting regulatory redundancy. Work in Drosophila has indicated that functionally overlapping enhancers canalize development by buffering gene expression against environmental and genetic disturbances. However, little is known about regulatory redundancy in vertebrates and in genes mainly expressed during adulthood. Here we study nPE1 and nPE2, two phylogenetically conserved mammalian enhancers that drive expression of the proopiomelanocortin gene (Pomc) to the same set of hypothalamic neurons. The simultaneous deletion of both enhancers abolished Pomc expression at all ages and induced a profound metabolic dysfunction including early-onset extreme obesity. Targeted inactivation of either nPE1 or nPE2 led to very low levels of Pomc expression during early embryonic development indicating that both enhancers function synergistically. In adult mice, however, Pomc expression is controlled additively by both enhancers, with nPE1 being responsible for ∼80% and nPE2 for ∼20% of Pomc transcription. Consequently, nPE1 knockout mice exhibit mild obesity whereas nPE2-deficient mice maintain a normal body weight. These results suggest that nPE2-driven Pomc expression is compensated by nPE1 at later stages of development, essentially rescuing the earlier phenotype of nPE2 deficiency. Together, these results reveal that cooperative interactions between the enhancers confer robustness of Pomc expression against gene regulatory disturbances and preclude deleterious metabolic phenotypes caused by Pomc deficiency in adulthood. Thus, our study demonstrates that enhancer redundancy can be used by genes that control adult physiology in mammals and underlines the potential significance of regulatory sequence mutations in

  6. Fostering Skills to Enhance Critical Educators: A Pedagogical Proposal for Pre-Service Teachers

    ERIC Educational Resources Information Center

    Aguirre Morales, Jahir; Ramos Holguín, Bertha

    2011-01-01

    This article aims to share with teacher-educators a pedagogical proposal which we have applied in the past year. This investigation analyzes issues linked to critical pedagogy using movies connected to educational themes and readings based on critical pedagogy. We have used this study to generate class discussions in order to analyze educational…

  7. History of pulmonary critical care nursing and where we are going.

    PubMed

    Lareau, Suzanne C; Mealer, Meredith

    2012-09-01

    Pulmonary critical care nurses have played a prominent role in the ICUs from the inception of critical care units. This article describes how the history of pulmonary critical care nursing has evolved and discusses a few of the challenges in the years to come: stress imposed by working in a critical care environment, enhancing the care of patients by altering patterns of sedation and promoting early mobilization, and dealing with increasing infection rates.

  8. A critical analysis of penile enhancement procedures for patients with normal penile size: surgical techniques, success, and complications.

    PubMed

    Vardi, Yoram; Har-Shai, Yaron; Harshai, Yaron; Gil, Tamir; Gruenwald, Ilan

    2008-11-01

    Most men who request surgical penile enhancement have a normal-sized and fully functional penis but visualize their penises as small (psychological dysmorphism). The aim of this review is to describe the various reported techniques and to provide the available scientific data on the success and complication rates of penile enhancement procedures. We performed an extensive systematic review based on a search of the MEDLINE database for articles published between 1965 and 2008. The following key words were used: penis, enhancement, enlargement, phalloplasty, reconstruction, girth, lengthening, and augmentation. Only English-language articles that were related to penile surgery and dysmorphobia were sought. We excluded articles in which fewer than five cases were described and articles in which the type of surgical treatment and the outcome were not clear. Of the 176 papers found, 34 were selected and critically analyzed. We found only a small number of well-designed and comprehensive studies, and most of the published articles reported data that were obtained from small cohorts of patients. The more recently published studies presented better methodologies and descriptions of the surgical techniques than did the older publications. In general, penile enhancement surgery can cause a 1-2-cm increase in penile length and a 2.5-cm augmentation of penile girth. Unwanted outcomes and complications, namely penile deformity, paradoxical penile shortening, disagreeable scarring, granuloma formation, migration of injected material, and sexual dysfunction were reported frequently in these studies. Disappointing short- and long-term patient satisfaction rates following these procedures were also reported in most studies. To date, the use of cosmetic surgery to enlarge the penis remains highly controversial. There is a lack of any standardization of all described procedures. Indications and outcome measures are poorly defined, and the reported complications are unacceptably high

  9. Effects of Critical Thinking Intervention for Early Childhood Teacher Candidates

    ERIC Educational Resources Information Center

    Han, Heejeong Sophia; Brown, E. Todd

    2013-01-01

    This study is based on an intervention designed to enhance early childhood teacher candidates' critical thinking abilities. The concept, elements, standards, and traits of critical thinking were integrated into the main course contents, and the effects of the intervention were examined. The results indicated that early childhood teacher…

  10. The Department of Energy Nuclear Criticality Safety Program

    NASA Astrophysics Data System (ADS)

    Felty, James R.

    2005-05-01

    This paper broadly covers key events and activities from which the Department of Energy Nuclear Criticality Safety Program (NCSP) evolved. The NCSP maintains fundamental infrastructure that supports operational criticality safety programs. This infrastructure includes continued development and maintenance of key calculational tools, differential and integral data measurements, benchmark compilation, development of training resources, hands-on training, and web-based systems to enhance information preservation and dissemination. The NCSP was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 97-2, Criticality Safety, and evolved from a predecessor program, the Nuclear Criticality Predictability Program, that was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 93-2, The Need for Critical Experiment Capability. This paper also discusses the role Dr. Sol Pearlstein played in helping the Department of Energy lay the foundation for a robust and enduring criticality safety infrastructure.

  11. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence.

    PubMed

    Verberk, Wilco C E P; Overgaard, Johannes; Ern, Rasmus; Bayley, Mark; Wang, Tobias; Boardman, Leigh; Terblanche, John S

    2016-02-01

    Over the last decade, numerous studies have investigated the role of oxygen in setting thermal tolerance in aquatic animals, and there has been particular focus on arthropods. Arthropods comprise one of the most species-rich taxonomic groups on Earth, and display great diversity in the modes of ventilation, circulation, blood oxygen transport, with representatives living both in water (mainly crustaceans) and on land (mainly insects). The oxygen and capacity limitation of thermal tolerance (OCLTT) hypothesis proposes that the temperature dependent performance curve of animals is shaped by the capacity for oxygen delivery in relation to oxygen demand. If correct, oxygen limitation could provide a mechanistic framework to understand and predict both current and future impacts of rapidly changing climate. In arthropods, most studies testing the OCLTT hypothesis have considered tolerance to thermal extremes. These studies likely operate from the philosophical viewpoint that if the model can predict these critical thermal limits, then it is more likely to also explain loss of performance at less extreme, non-lethal temperatures, for which much less data is available. Nevertheless, the extent to which lethal temperatures are influenced by limitations in oxygen supply remains unresolved. Here we critically evaluate the support and universal applicability for oxygen limitation being involved in lethal temperatures in crustaceans and insects. The relatively few studies investigating the OCLTT hypothesis at low temperature do not support a universal role for oxygen in setting the lower thermal limits in arthropods. With respect to upper thermal limits, the evidence supporting OCLTT is stronger for species relying on underwater gas exchange, while the support for OCLTT in air-breathers is weak. Overall, strongest support was found for increased anaerobic metabolism close to thermal maxima. In contrast, there was only mixed support for the prediction that aerobic scope

  12. Think Pair Share: A Teaching Learning Strategy to Enhance Students' Critical Thinking

    ERIC Educational Resources Information Center

    Kaddoura, Mahmoud

    2013-01-01

    This study investigated the change in critical thinking (CT) skills of baccalaureate nursing students who were educated using a Think-Pair-Share (TPS) or an equivalent Non-Think-Pair-Share (Non-TPS) teaching method. Critical thinking has been an essential outcome of nursing students to prepare them to provide effective and safe quality care for…

  13. Healthcare Disparities in Critical Illness

    PubMed Central

    Soto, Graciela J.; Martin, Greg S.; Gong, Michelle Ng

    2013-01-01

    Objective To summarize the current literature on racial and gender disparities in critical care and the mechanisms underlying these disparities in the course of acute critical illness. Data Sources MEDLINE search on the published literature addressing racial, ethnic, or gender disparities in acute critical illness such as sepsis, acute lung injury, pneumonia, venous thromboembolism, and cardiac arrest. Study Selection Clinical studies that evaluated general critically ill patient populations in the United States as well as specific critical care conditions were reviewed with a focus on studies evaluating factors and contributors to health disparities. Data Extraction Study findings are presented according to their association with the incidence, clinical presentation, management, and outcomes in acute critical illness. Data Synthesis This review presents potential contributors for racial and gender disparities related to genetic susceptibility, comorbidities, preventive health services, socioeconomic factors, cultural differences, and access to care. The data is organized along the course of acute critical illness. Conclusions The literature to date shows that disparities in critical care are most likely multifactorial involving individual, community, and hospital-level factors at several points in the continuum of acute critical illness. The data presented identify potential targets as interventions to reduce disparities in critical care and future avenues for research. PMID:24121467

  14. Current Perspectives on Profiling and Enhancing Wheelchair Court Sport Performance.

    PubMed

    Paulson, Thomas; Goosey-Tolfrey, Victoria

    2017-03-01

    Despite the growing interest in Paralympic sport, the evidence base for supporting elite wheelchair sport performance remains in its infancy when compared with able-bodied (AB) sport. Subsequently, current practice is often based on theory adapted from AB guidelines, with a heavy reliance on anecdotal evidence and practitioner experience. Many principles in training prescription and performance monitoring with wheelchair athletes are directly transferable from AB practice, including the periodization and tapering of athlete loads around competition, yet considerations for the physiological consequences of an athlete's impairment and the interface between athlete and equipment are vital when targeting interventions to optimize in-competition performance. Researchers and practitioners are faced with the challenge of identifying and implementing reliable protocols that detect small but meaningful changes in impairment-specific physical capacities and on-court performance. Technologies to profile both linear and rotational on-court performance are an essential component of sport-science support to understand sport-specific movement profiles and prescribe training intensities. In addition, an individualized approach to the prescription of athlete training and optimization of the "wheelchair-user interface" is required, accounting for an athlete's anthropometrics, sports classification, and positional role on court. In addition to enhancing physical capacities, interventions must focus on the integration of the athlete and his or her equipment, as well as techniques for limiting environmental influence on performance. Taken together, the optimization of wheelchair sport performance requires a multidisciplinary approach based on the individual requirements of each athlete.

  15. Augmented sodium currents contribute to the enhanced excitability of small diameter capsaicin-sensitive sensory neurons isolated from Nf1+/⁻ mice.

    PubMed

    Wang, Yue; Duan, J-H; Hingtgen, C M; Nicol, G D

    2010-04-01

    Neurofibromin, the product of the Nf1 gene, is a guanosine triphosphatase activating protein (GAP) for p21ras (Ras) that accelerates conversion of active Ras-GTP to inactive Ras-GDP. Sensory neurons with reduced levels of neurofibromin likely have augmented Ras-GTP activity. We reported previously that sensory neurons isolated from a mouse model with a heterozygous mutation of the Nf1 gene (Nf1+/⁻) exhibited greater excitability compared with wild-type mice. To determine the mechanism giving rise to the augmented excitability, differences in specific membrane currents were examined. Consistent with the enhanced excitability of Nf1+/⁻ neurons, peak current densities of both tetrodotoxin-resistant sodium current (TTX-R I(Na)) and TTX-sensitive (TTX-S) I(Na) were significantly larger in Nf1+/⁻ than in wild-type neurons. Although the voltages for half-maximal activation (V(0.5)) were not different, there was a significant depolarizing shift in the V(0.5) for steady-state inactivation of both TTX-R and TTX-S I(Na) in Nf1+/⁻ neurons. In addition, levels of persistent I(Na) were significantly larger in Nf1+/⁻ neurons. Neither delayed rectifier nor A-type potassium currents were altered in Nf1+/⁻ neurons. These results demonstrate that enhanced production of action potentials in Nf1+/⁻ neurons results, in part, from larger current densities and a depolarized voltage dependence of steady-state inactivation for I(Na) that potentially leads to a greater availability of sodium channels at voltages near the firing threshold for the action potential.

  16. Respiratory assessment in critical care units.

    PubMed

    Cox, C L; McGrath, A

    1999-08-01

    As healthcare delivery changes in critical care, nursing continues to extend its practice base. Nursing practice is expanding to incorporate skills once seen as the remit of the medical profession. Critical care nurses are equipping themselves with evidence-based knowledge and skills that can enhance the care they provide to their patients. Assessment of patients is a major role in nursing and, by expanding assessment techniques, nurses can ensure patients receive the care most appropriate to their needs. Nurses in critical care are well placed to perform a more detailed assessment which can help to focus nursing care. This article describes the step-by-step process of undertaking a full and comprehensive respiratory assessment in critical care settings. It identifies many of the problems that patients may have and the signs and symptoms that a nurse may not whilst undertaking the assessment and preparing to prescribe care.

  17. Comparative study of flux pinning, creep and critical currents between YBaCuO crystals with and without Y2BaCuO5 inclusions

    NASA Technical Reports Server (NTRS)

    Murakami, Masato; Gotoh, Satoshi; Fujimoto, Hiroyuki; Koshizuka, Naoki; Tanaka, Shoji

    1991-01-01

    In the Y-Ba-Cu-O system, YBa2Cu3O(x) phase is produced by the following peritectic reaction: Y2BaCuO5 + liquid yields 2YBa2Cu3O(x). Through the control of processing conditions and starting compositions, it becomes possible to fabricate large crystals containing fine Y2BaCuO5(211) inclusions. Such crystals exhibit Jc values exceeding 10000 A/sq cm at 77 K and 1T. Recently, researchers developed a novel process which can control the volume fraction of 211 inclusions. Elimination of 211 inclusions is also possible. In this study, researchers prepared YBaCuO crystals with and without 211 inclusions using the novel process, and compared flux pinning, flux creep and critical currents. Magnetic field dependence of Jc for YBaCuO crystals with and with 211 inclusions is shown. It is clear that fine 211 inclusions can contribute to flux pinning. It was also found that flux creep rate could be reduced by increasing flux pinning force. Critical current density estimates based on the conventional flux pinning theory were in good agreement with experimental results.

  18. Facilitating critical thinking.

    PubMed

    Hansten, R I; Washburn, M J

    2000-01-01

    Supporting staff to think effectively is essential to improve clinical systems, decrease errors and sentinel events, and engage staff involvement to refine patient care systems in readiness for new care-delivery models that truly reflect the valued role of the RN. The authors explore practical methods, based on current research and national consulting experience, to facilitate the development of mature critical thinking skills. Assessment tools, a sample agenda for formal presentations, and teaching strategies using behavioral examples that make the important and necessary link of theory to reality are discussed in the form of a critical thinking test as well as a conceptual model for application in problem solving.

  19. Mechanisms of weak thickness dependence of the critical current density in strong-pinning ex situ metal organic-deposition-route YBa2Cu3O7-x coated conductors

    NASA Astrophysics Data System (ADS)

    Kim, S. I.; Gurevich, A.; Song, X.; Li, X.; Zhang, W.; Kodenkandath, T.; Rupich, M. W.; Holesinger, T. G.; Larbalestier, D. C.

    2006-09-01

    We report on the thickness dependence of the superconducting characteristics including critical current Ic, critical current density Jc, transition temperature Tc, irreversibility field Hirr, bulk pinning force plot Fp(H), and normal state resistivity curve ρ(T) measured after successive ion milling of ~1 µm thick high-Ic YBa2Cu3O7-x films made by an ex situ metal-organic deposition process on Ni-W rolling-assisted biaxially textured substrates (RABiTSTM). In contrast to many recent data, mostly on in situ pulsed laser deposition (PLD) films, which show strong depression of Jc with increasing film thickness t, our films exhibit only a weak dependence of Jc on t. The two better textured samples had full cross-section average Jc,avg (77 K, 0 T) ~4 MA cm-2 near the buffer layer interface and ~3 MA cm-2 at full thickness, despite significant current blocking due to ~30% porosity in the film. Taking account of the thickness dependence of the porosity, we estimate that the local, vortex-pinning current density is essentially independent of thickness, while accounting for the additional current-blocking effects of grain boundaries leads to local, vortex-pinning Jc values well above 5 MA cm-2. Such high local Jc values are produced by strong three-dimensional vortex pinning which subdivides vortex lines into weakly coupled segments much shorter than the film thickness.

  20. Enhancement of Hc2 and Jc by carbon-based chemical doping

    NASA Astrophysics Data System (ADS)

    Yeoh, W. K.; Dou, S. X.

    2007-06-01

    In the past 5 years, various kinds of doping of MgB 2, including single elements (metal and non-metal), silicates, various carbon sources, and other compounds have been investigated and reported. Most nanoparticle doping leads to improvement of critical current density, Jc( H), and performance, but some types show a negative effect. In this paper, the effect of carbon doping on Jc and the upper critical field, Hc2, of MgB 2 is reviewed. Carbon substitution effects make two distinguishable contributions to the enhancement of Jc field performance: increase of Hc2 and improvement of flux pinning, both because carbon substitutes for boron in the MgB 2 lattice. Among all the carbon sources so far, nano-SiC has been confirmed to be the most effective dopant to enhance the Jc in magnetic fields and Hc2. An irreversibility field, Hirr, of 10 T has been achieved with nano-SiC doping at 20 K, exceeding Hirr of NbTi at 4.2 K. Besides that, Hc2 of carbon alloyed MgB 2 film has reached the value of 71 T. The significant enhancement in Jc( H) and Hc2 via carbon substitution has provided great potential for practical applications of MgB 2. The dual reaction model proposed by the authors’ group provides a comprehensive understanding of the mechanism of enhancement in Jc and Hc2 by chemical doping. Further improvement in self-field Jc performance while maintaining the already achieved in-field performance remains as a major challenge in the development of MgB 2.