Science.gov

Sample records for enhance critical current

  1. Enhancing critical current density of cuprate superconductors

    DOEpatents

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  2. Enhancing superconducting critical current by randomness

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Thoutam, L. R.; Xiao, Z. L.; Shen, B.; Pearson, J. E.; Divan, R.; Ocola, L. E.; Crabtree, G. W.; Kwok, W. K.

    2016-01-01

    The key ingredient of high critical currents in a type-II superconductor is defect sites that pin vortices. Contrary to earlier understanding on nanopatterned artificial pinning, here we show unequivocally the advantages of a random pinscape over an ordered array in a wide magnetic field range. We reveal that the better performance of a random pinscape is due to the variation of its local density of pinning sites (LDOPS), which mitigates the motion of vortices. This is confirmed by achieving even higher enhancement of the critical current through a conformally mapped random pinscape, where the distribution of the LDOPS is further enlarged. The demonstrated key role of LDOPS in enhancing superconducting critical currents gets at the heart of random versus commensurate pinning. Our findings highlight the importance of random pinscapes in enhancing the superconducting critical currents of applied superconductors.

  3. Enhancing superconducting critical current by randomness.

    SciTech Connect

    Wang, Y. L.; Thoutam, L. R.; Xiao, Z. L.; Shen, B.; Pearson, J.; Divan, R.; Ocola, L. E.; Crabtree, G. W.; Kwok, W. K.

    2016-01-11

    The key ingredient of high critical currents in a type-II superconductor is defect sites that pin vortices. Here, we demonstrate that a random pinscape, an overlooked pinning system in nanopatterned superconductors, can lead to a substantially larger critical current enhancement at high magnetic fields than an ordered array of vortex pin sites. We reveal that the better performance of a random pinscape is due to the variation of the local density of its pinning sites, which mitigates the motion of vortices. This is confirmed by achieving even higher enhancement of the critical current through a conformally mapped random pinscape, where the distribution of the local density of pinning sites is further enlarged. Our findings highlight the potential of random pinscapes in enhancing the superconducting critical currents of applied superconductors in which random pin sites of nanoscale defects emerging in the materials synthesis process or through ex-situ irradiation are the only practical choice for large-scale production. Our results may also stimulate research on effects of a random pinscape in other complementary systems such as colloidal crystals, Bose-Einstein condensates, and Luttinger liquids.

  4. Enhancing superconducting critical current by randomness

    SciTech Connect

    Wang, Y. L.; Thoutam, L. R.; Xiao, Z. L.; Shen, B.; Pearson, J. E.; Divan, R.; Ocola, L. E.; Crabtree, G. W.; Kwok, W. K.

    2016-01-11

    The key ingredient of high critical currents in a type-II superconductor is defect sites that pin vortices. Here, we demonstrate that a random pinscape, an overlooked pinning system in nanopatterned superconductors, can lead to a substantially larger critical current enhancement at high magnetic fields than an ordered array of vortex pin sites. We reveal that the better performance of a random pinscape is due to the variation of the local density of its pinning sites, which mitigates the motion of vortices. This is confirmed by achieving even higher enhancement of the critical current through a conformally mapped random pinscape, where the distribution of the local density of pinning sites is further enlarged. Our findings highlight the potential of random pinscapes in enhancing the superconducting critical currents of applied superconductors in which random pin sites of nanoscale defects emerging in the materials synthesis process or through ex-situ irradiation are the only practical choice for large-scale production. Our results may also stimulate research on effects of a random pinscape in other complementary systems such as colloidal crystals, Bose-Einstein condensates, and Luttinger liquids.

  5. Enhancing superconducting critical current by randomness

    DOE PAGES

    Wang, Y. L.; Thoutam, L. R.; Xiao, Z. L.; ...

    2016-01-11

    The key ingredient of high critical currents in a type-II superconductor is defect sites that pin vortices. Here, we demonstrate that a random pinscape, an overlooked pinning system in nanopatterned superconductors, can lead to a substantially larger critical current enhancement at high magnetic fields than an ordered array of vortex pin sites. We reveal that the better performance of a random pinscape is due to the variation of the local density of its pinning sites, which mitigates the motion of vortices. This is confirmed by achieving even higher enhancement of the critical current through a conformally mapped random pinscape, wheremore » the distribution of the local density of pinning sites is further enlarged. Our findings highlight the potential of random pinscapes in enhancing the superconducting critical currents of applied superconductors in which random pin sites of nanoscale defects emerging in the materials synthesis process or through ex-situ irradiation are the only practical choice for large-scale production. Our results may also stimulate research on effects of a random pinscape in other complementary systems such as colloidal crystals, Bose-Einstein condensates, and Luttinger liquids.« less

  6. Fabrication and Enhancement of Critical Currents of Silver Sheathed

    NASA Astrophysics Data System (ADS)

    Hu, Qingyu

    X-ray diffraction was used to characterise the phase composition and to investigate the formation mechanism of the (Bi,Pb)_2Sr_2Ca_2Cu _3O_{10} phase from the precursor with (Bi,Pb)_2Sr_2CaCu _2O_8 as the main phase. The reaction is found to be a two-dimensional nucleation (random)-growth type, (-(ln(1-F)) ^{1/2} = kt, where F is the conversional fraction of (Bi,Pb) _2Sr_2CaCu_2O_8 phase and t is the sintering time. The two dimensional behaviour of the critical current in (Bi,Pb)_2Sr2Ca_2Cu _3O_{10}/Ag tapes was observed and analysed by introducing an effective grain misalignment angle, varphi_{eff}. This angle was found to be identical to the average crystallographic grain misalignment angle in the superconducting core. Furthermore, after fast neutron irradiation, which is isotropical, the J_{c}'s of the tapes were modified by the introduction of artificial defects, but the varphi_{eff}'s remained the same. The transport critical current of (Bi,Pb) _2Sr_2Ca_2Cu_3O_ {10}/Ag tapes was measured in magnetic fields up to 15 T and at temperatures from of 4.2 to 84 K. At high temperatures, the J_ {c} is strongly anisotropic and the anisotropy increases rapidly with magnetic field, whereas at low temperatures the critical current is less anisotropic and the anisotropy is almost field independent above 1 T. The transport J_{c }'s in (Bi,Pb)_2Sr_2Ca _2Cu_3O_{10}/Ag tapes at 77 K and higher magnetic fields after neutron irradiation are significantly enhanced. This enhancement is attributed to an improvement in the flux pinning capability of this material by the neutron-induced defects. The angular dependence of J_{c} is still consistent with two-dimensionality, i.e. flux pinning of pancake and/or Josephson vortices is directly confirmed by this transport measurement. Short multifilamentary (Bi,Pb)_2Sr_2Ca_2Cu_2O_{10 }/Ag tapes were fabricated. The sintering parameters were optimised to be 832^circ C and 180 h. The multifilamentary tape consists mainly of pure (Bi,Pb)_2Sr_2Ca

  7. Enhancing undergraduate community placements: a critical review of current literature.

    PubMed

    Dickson, Caroline A W; Morris, Gillian; Gable, Clare

    2015-04-01

    In the face of the UK-wide policy shift to increased home care, inspiring and enabling the next generation of community nurses is more urgent than ever. The quality of the pre-registration practice learning experience is highly influential on career choices at the point of qualification. Given that 50% of learning by pre-registration students takes place in practice, mentors have a crucial role to play in preparing the next generation of nurses to work in the community. This article discusses the findings of a systematic and critical literature review of pre-registration placements that was funded by the Queen's Nursing Institute Scotland. The review found that students' experiences of learning in community settings are variable, and perceptions of students and mentors are misaligned in terms of what a quality placement should look like. Although there is no clear definition of what constitutes a community placement and there is some underuse of learning environments in areas such as general practice nursing, there are also a number of examples of new and imaginative placements. While these innovations provide 'whole experience' placements, they are currently lacking robust evaluation, despite their potential usefulness on a larger scale. Mentors have the opportunity to provide students with a range of learning opportunities that increase preparedness for working in the community, allowing final year students in particular greater influence over their learning experience. Students undertaking community practice learning, where they have a managed level of autonomy, are more likely to feel confident to take on community nursing roles.

  8. Phonon-induced enhancements of the energy gap and critical current in superconducting aluminum

    SciTech Connect

    Seligson, D.

    1983-05-01

    8 to 10 GHz phonons were generated by piezoelectric transduction of a microwave and by means of a quartz delay line, were allowed to enter the aluminum only after the microwaves had long since disappeared. The maximum enhancements detected were (deltaT/T/sub c/) = -0.07, for i/sub c/ and (deltaT/T/sub c/) = -0.03 for ..delta... The power- and temperature-dependence (0.82 less than or equal to T/T/sub c/ less than or equal to 0.994) of the enhancements were compared with the prediction of a theory given by Eliashberg. The gap-enhancement was in good agreement with the theory only for low input lower. The critical current measurements are predicted to be in rough agreement with the ..delta.. measurements but this was not observed. The magnitude of the critical current enhancements was typically more than twice the observed gap enhancements. The measured critical current enhancement was relatively independent of temperature whereas the gap enhancement decreased rapidly as the temperature was lowered.

  9. Flux Pinning and Enhanced Critical Current in Magnetic Field by Artificial Pinning Centers.#

    NASA Astrophysics Data System (ADS)

    Wang, J.-Q.; Rizzo, N. D.; McCambridge, J. D.; Prober, D. E.; Motowidlo, L. R.; Zeitlin, B. A.

    1996-03-01

    Flux pinning to enhance critical currents (Jc) in type II superconductors (NbTi) in a magnetic field was studied, using nanometer sized artificial pins. From consideration of free energy and proximity effects, we compare pinning by various materials, ranging from weak superconductors (Nb), normal metals (Ti, Cu), to ferromagnets (Ni, Fe). A trade-off is found between induced superconductivity in the pin and a reduction of superconductivity in the NbTi. Thus, a normal metal can have stronger pinning than a similar-sized void. This idea is supported by our finding that Ti provides the strongest pinning in multilayer film systems. Pinning mechanisms by ferromagnetic (FM) pins are also discussed, along with results of Jc for NbTiTa wires with FM artificial pinning centers. #Support by CT Dept. Econ. Dev. Grant 94G014 and IGC-AS. *present address: Westinghouse STC, Pittsburgh, PA

  10. Enhanced critical currents in (Gd,Y)Ba2Cu3Ox superconducting tapes with high levels of Zr addition

    SciTech Connect

    Selvamanickam, V; Chen, Y; Shi, T; Liu, Y; Khatri, ND; Liu, J; Yao, Y; Xiong, X; Lei, C; Soloveichik, S; Galstyan, E; Majkic, G

    2013-01-21

    The critical current and structural properties of (Gd,Y)BaCuO tapes made by metal organic chemical vapor deposition (MOCVD) with Zr addition levels up to 30 at.% have been investigated. The reduction in critical current beyond the previously optimized Zr addition level of 7.5 at.% was found to be due to structural deterioration of the (Gd,Y)Ba2Cu3Ox film. By a modified MOCVD process,enhanced critical current densities have been achieved with high levels of Zr addition,including 3.83 MA cm(-2) in 15 at.% Zr- added 1.1 mu m thick film at 77 K in zero magnetic field. Critical currents as high as 1072 A/ 12 mm have been reached in (Gd,Y) BaCuO tapes with 15 at.% Zr addition at 30 K in a field of 3 T applied perpendicular to the tape,corresponding to a pinning force value of 268 GN m(-3). The enhanced critical currents achievable with a high density of nanoscale defects by employing high levels of second- phase additions enable the performance targets needed for the use of HTS tapes in coil applications involving high magnetic fields at temperatures below 50 K to be met.

  11. Enhanced critical currents in (Gd,Y)Ba2Cu3Ox superconducting tapes with high levels of Zr addition

    NASA Astrophysics Data System (ADS)

    Selvamanickam, V.; Chen, Y.; Shi, T.; Liu, Y.; Khatri, N. D.; Liu, J.; Yao, Y.; Xiong, X.; Lei, C.; Soloveichik, S.; Galstyan, E.; Majkic, G.

    2013-03-01

    The critical current and structural properties of (Gd,Y)BaCuO tapes made by metal organic chemical vapor deposition (MOCVD) with Zr addition levels up to 30 at.% have been investigated. The reduction in critical current beyond the previously optimized Zr addition level of 7.5 at.% was found to be due to structural deterioration of the (Gd,Y)Ba2Cu3Ox film. By a modified MOCVD process, enhanced critical current densities have been achieved with high levels of Zr addition, including 3.83 MA cm-2 in 15 at.% Zr-added 1.1 μm thick film at 77 K in zero magnetic field. Critical currents as high as 1072 A/12 mm have been reached in (Gd,Y)BaCuO tapes with 15 at.% Zr addition at 30 K in a field of 3 T applied perpendicular to the tape, corresponding to a pinning force value of 268 GN m-3. The enhanced critical currents achievable with a high density of nanoscale defects by employing high levels of second-phase additions enable the performance targets needed for the use of HTS tapes in coil applications involving high magnetic fields at temperatures below 50 K to be met.

  12. Enhancement of the critical current of intrinsic Josephson junctions by carrier injection

    NASA Astrophysics Data System (ADS)

    Kizilaslan, O.; Simsek, Y.; Aksan, M. A.; Koval, Y.; Müller, P.

    2015-08-01

    We present a study of the doping effect by carrier injection of high-Tc superconducting Bi-based whiskers. The current was injected in the c-axis direction, i.e., perpendicular to the superconducting planes. Superconducting properties were investigated systematically as a function of the doping level. The doping level of one and the same sample was changed by current injection in very small steps from an underdoped state up to a slightly overdoped state. We have observed that Tc versus log (jc) exhibits a dome-shaped characteristic, which can be fitted by a parabola. As Tc versus carrier concentration has a parabolic form, too, it can be concluded that the critical current density jc increases exponentially with the doping level. The electron-trapping mechanism is interpreted in the framework of Phillips’ microscopic theory. In addition, the Joule heating effect in the intrinsic Josephson junction (IJJ) was controlled by carrier injection, and the effect of the non-equilibrium quasiparticle on the I-V curves of the IJJs was also discussed.

  13. Hydrostatic pressure: A very effective approach to significantly enhance critical current density in granular iron pnictide superconductors

    PubMed Central

    Shabbir, Babar; Wang, Xiaolin; Ghorbani, S. R.; Shekhar, Chandra; Dou, Shixue; Srivastava, O. N.

    2015-01-01

    Pressure is well known to significantly raise the superconducting transition temperature, Tc, in both iron pnictides and cuprate based superconductors. Little work has been done, however, on how pressure can affect the flux pinning and critical current density in the Fe-based superconductors. Here, we propose to use hydrostatic pressure to significantly enhance flux pinning and Tc in polycrystalline pnictide bulks. We have chosen Sr4V2O6Fe2As2 polycrystalline samples as a case study. We demonstrate that the hydrostatic pressure up to 1.2 GPa can not only significantly increase Tc from 15 K (underdoped) to 22 K, but also significantly enhance the irreversibility field, Hirr, by a factor of 4 at 7 K, as well as the critical current density, Jc, by up to 30 times at both low and high fields. It was found that pressure can induce more point defects, which are mainly responsible for the Jc enhancement. Our findings provide an effective method to significantly enhance Tc, Jc, Hirr, and the upper critical field, Hc2, for other families of Fe-based superconductors in the forms of wires/tapes, films, and single crystal and polycrystalline bulks. PMID:25645351

  14. Enhanced critical current density in the pressure-induced magnetic state of the high-temperature superconductor FeSe

    PubMed Central

    Jung, Soon-Gil; Kang, Ji-Hoon; Park, Eunsung; Lee, Sangyun; Lin, Jiunn-Yuan; Chareev, Dmitriy A.; Vasiliev, Alexander N.; Park, Tuson

    2015-01-01

    We investigate the relation of the critical current density (Jc) and the remarkably increased superconducting transition temperature (Tc) for the FeSe single crystals under pressures up to 2.43 GPa, where the Tc is increased by ~8 K/GPa. The critical current density corresponding to the free flux flow is monotonically enhanced by pressure which is due to the increase in Tc, whereas the depinning critical current density at which the vortex starts to move is more influenced by the pressure-induced magnetic state compared to the increase of Tc. Unlike other high-Tc superconductors, FeSe is not magnetic, but superconducting at ambient pressure. Above a critical pressure where magnetic state is induced and coexists with superconductivity, the depinning Jc abruptly increases even though the increase of the zero-resistivity Tc is negligible, directly indicating that the flux pinning property compared to the Tc enhancement is a more crucial factor for an achievement of a large Jc. In addition, the sharp increase in Jc in the coexisting superconducting phase of FeSe demonstrates that vortices can be effectively trapped by the competing antiferromagnetic order, even though its antagonistic nature against superconductivity is well documented. These results provide new guidance toward technological applications of high-temperature superconductors. PMID:26548444

  15. Enhanced critical current density in the pressure-induced magnetic state of the high-temperature superconductor FeSe.

    PubMed

    Jung, Soon-Gil; Kang, Ji-Hoon; Park, Eunsung; Lee, Sangyun; Lin, Jiunn-Yuan; Chareev, Dmitriy A; Vasiliev, Alexander N; Park, Tuson

    2015-11-09

    We investigate the relation of the critical current density (Jc) and the remarkably increased superconducting transition temperature (Tc) for the FeSe single crystals under pressures up to 2.43 GPa, where the Tc is increased by ~8 K/GPa. The critical current density corresponding to the free flux flow is monotonically enhanced by pressure which is due to the increase in Tc, whereas the depinning critical current density at which the vortex starts to move is more influenced by the pressure-induced magnetic state compared to the increase of Tc. Unlike other high-Tc superconductors, FeSe is not magnetic, but superconducting at ambient pressure. Above a critical pressure where magnetic state is induced and coexists with superconductivity, the depinning Jc abruptly increases even though the increase of the zero-resistivity Tc is negligible, directly indicating that the flux pinning property compared to the Tc enhancement is a more crucial factor for an achievement of a large Jc. In addition, the sharp increase in Jc in the coexisting superconducting phase of FeSe demonstrates that vortices can be effectively trapped by the competing antiferromagnetic order, even though its antagonistic nature against superconductivity is well documented. These results provide new guidance toward technological applications of high-temperature superconductors.

  16. High critical current density and enhanced irreversibility field in superconducting MgB2 thin films

    NASA Astrophysics Data System (ADS)

    Eom, C. B.; Lee, M. K.; Choi, J. H.; Belenky, L. J.; Song, X.; Cooley, L. D.; Naus, M. T.; Patnaik, S.; Jiang, J.; Rikel, M.; Polyanskii, A.; Gurevich, A.; Cai, X. Y.; Bu, S. D.; Babcock, S. E.; Hellstrom, E. E.; Larbalestier, D. C.; Rogado, N.; Regan, K. A.; Hayward, M. A.; He, T.; Slusky, J. S.; Inumaru, K.; Haas, M. K.; Cava, R. J.

    2001-05-01

    The discovery of superconductivity at 39K in magnesium diboride offers the possibility of a new class of low-cost, high-performance superconducting materials for magnets and electronic applications. This compound has twice the transition temperature of Nb3Sn and four times that of Nb-Ti alloy, and the vital prerequisite of strongly linked current flow has already been demonstrated. One possible drawback, however, is that the magnetic field at which superconductivity is destroyed is modest. Furthermore, the field which limits the range of practical applications-the irreversibility field H*(T)-is approximately 7T at liquid helium temperature (4.2K), significantly lower than about 10T for Nb-Ti (ref. 6) and ~20T for Nb3Sn (ref. 7). Here we show that MgB2 thin films that are alloyed with oxygen can exhibit a much steeper temperature dependence of H*(T) than is observed in bulk materials, yielding an H* value at 4.2K greater than 14T. In addition, very high critical current densities at 4.2K are achieved: 1MAcm-2 at 1T and 105Acm-2 at 10T. These results demonstrate that MgB2 has potential for high-field superconducting applications.

  17. The role of interfacial defects in enhancing the critical current density of YBa2Cu3O7-delta coatings

    SciTech Connect

    Foltyn, Stephen R; Wang, Haiyan; Civale, Leonardo; Maiorov, Boris A; Jia, Quanxi

    2009-01-01

    The critical current density (J{sub c}) of YBa{sub 2}Cu{sub 3}0{sub 7-{delta}} (YBCO) films can approach 10 MA/cm{sup 2} at 77 K in self field , but only for very thin films. We have shown previously that strong thickness dependence results if J{sub c} is enhanced near the film-substrate interface. In the present work we investigate interfacial enhancement using laser-deposited YBCO films on NdGaO{sub 3} substrates, and find that we can adjust deposition conditions to switch the enhancement on and off. Interestingly, we find that the 'on' state is accompanied by interfacial misfit dislocations, establishing an unambiguous correlation between enhanced J{sub c} and dislocations at the film-substrate interface.

  18. Enhanced critical currents of commercial 2G superconducting coated conductors through proton irradiation

    NASA Astrophysics Data System (ADS)

    Welp, Ulrich; Leroux, M.; Kihlstrom, K. J.; Kwok, W.-K.; Koshelev, A. E.; Miller, D. J.; Rupich, M. W.; Fleshler, S.; Malozemoff, A. P.; Kayani, A.

    2015-03-01

    We report on magnetization and transport measurements of the critical current density, Jc, of commercial 2G YBCO coated conductors before and after proton irradiation. The samples were irradiated along the c-axis with 4 MeV protons. Proton irradiation produces a mixed pinning landscape composed of pre-existing rare earth particles and a uniform distribution of irradiation induced nm-sized defects. This pinning landscape strongly reduces the suppression of Jc in magnetic fields resulting in a doubling of Jc in a field of ~ 4T. The irradiation dose-dependence of Jc is characterized by a temperature and field dependent sweat spot that at 5 K and 6 T occurs around 20x1016 p/cm2. Large-scale time dependent Ginzburg-Landau simulations yield a good description of our results. This work supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. D.O.E., Office of Science, Office of Basic Energy Sciences (KK, ML, AEK) and by the D.O.E, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 (UW, WKK).

  19. Enhanced low-temperature critical current by reduction of stacking faults in REBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Puichaud, A.-H.; Wimbush, S. C.; Knibbe, R.

    2017-07-01

    The effect of stacking faults (SF) on flux pinning and critical current (I c) in rare earth based coated conductors was investigated. The SF density in YBa2Cu3O7-δ (YBCO) films with and without Dy addition, produced by metal organic deposition, was modified by altering the oxygenation temperature. A detailed microstructural analysis of the coated conductors was performed by x-ray diffraction, scanning and transmission electron microscopy and energy dispersive spectroscopy, and the observed defect population was correlated with both the self-field and in-field I c. We report that the best self-field I c was obtained for samples having a low SF density, in spite of the SF being effective flux pinning defects at 77 K for magnetic fields applied within the ab plane. We also show that the SF have no observable flux pinning effect at low temperatures. This study demonstrates that for devices operated at low temperatures, the elimination of SF in the conductor wires is essential to attain higher I c.

  20. Enhancement of critical current densities in (Ba,K)Fe2As2 wires and tapes using HIP technique

    NASA Astrophysics Data System (ADS)

    Pyon, Sunseng; Suwa, Takahiro; Park, Akiyoshi; Kajitani, Hideki; Koizumi, Norikiyo; Tsuchiya, Yuji; Awaji, Satoshi; Watanabe, Kazuo; Tamegai, Tsuyoshi

    2016-11-01

    (Ba,K)Fe2As2 superconducting wires and tapes are fabricated by using hot isostatic pressing (HIP) technique, and their superconducting properties are studied. In the HIP round wire, transport critical current density (J c) at 4.2 K has achieved record-high value of 175 kA cm-2 at zero field, and exceeds 20 kA cm-2 even at 100 kOe. Improvement of polycrystalline powder synthesis may play a key role for the enhancement of J c. In the HIP tape, even larger transport J c of 380 kA cm-2 is realized at zero field. Based on magnetization and magneto-optical measurements, possible further enhancement of J c is discussed.

  1. Dominant Majorana bound energy and critical current enhancement in ferromagnetic-superconducting topological insulator

    NASA Astrophysics Data System (ADS)

    Khezerlou, Maryam; Goudarzi, Hadi; Asgarifar, Samin

    2017-03-01

    Among the potential applications of topological insulators, we theoretically study the coexistence of proximity-induced ferromagnetic and superconducting orders in the surface states of a 3-dimensional topological insulator. The superconducting electron-hole excitations can be significantly affected by the magnetic order induced by a ferromagnet. In one hand, the surface state of the topological insulator, protected by the time-reversal symmetry, creates a spin-triplet and, on the other hand, magnetic order causes to renormalize the effective superconducting gap. We find Majorana mode energy along the ferromagnet/superconductor interface to sensitively depend on the magnitude of magnetization m zfs from superconductor region, and its slope around perpendicular incidence is steep with very low dependency on m zfs . The superconducting effective gap is renormalized by a factor η( m zfs ), and Andreev bound state in ferromagnet-superconductor/ferromagnet/ferromagnet-superconductor (FS/F/FS) Josephson junction is more sensitive to the magnitude of magnetizations of FS and F regions. In particular, we show that the presence of m zfs has a noticeable impact on the gap opening in Andreev bound state, which occurs in finite angle of incidence. This directly results in zero-energy Andreev state being dominant. By introducing the proper form of corresponding Dirac spinors for FS electron-hole states, we find that via the inclusion of m zfs , the Josephson supercurrent is enhanced and exhibits almost abrupt crossover curve, featuring the dominant zero-energy Majorana bound states.

  2. Enhanced electron-phonon coupling and critical current density in rapid thermally quenched MgB2 bulk samples

    NASA Astrophysics Data System (ADS)

    Suraj, T. S.; Muralidhar, M.; Sethupathi, K.; Rao, M. S. Ramachandra; Murakami, M.

    2017-08-01

    We report Rapid Thermal Quenching (RTQ) studies on MgB2 samples from optimized sintering temperature of 800 °C down to liquid nitrogen temperature with different sintering duration. Superior electron-phonon coupling strength (λe -E2g ) , critical current density (Jc) and irreversibility fields (Hirr) compared to doped MgB2 were observed without compromising transition temperature Tc. Structural studies showed a contraction of the unit cell due to thermal stress induced by RTQ. Enhanced λe -E2g evaluated from line width, and phonon frequency of Raman spectra using Allen equation was consistent with structural and magnetic studies. Microstructural analysis showed a decrease in grain size resulting in increased Jc and Hirr.

  3. Investigation on the enhancement of the critical current densities in bronze-process Nb/sub 3/Sn

    SciTech Connect

    Hong, M.; Wu, I.W.; Morris, J.W. Jr.; Gilbert, W.; Hassenzahl, W.V.; Taylor, C.

    1981-10-01

    The work reported here addressed the problem of improving the critical current characteristic of a comercial multifilamentary Nb/sub 3/Sn strand by varying its heat treatment. The work was done from the perspective that the critical current characteristic is controlled by the metallurgical state of the reacted layer, which is, in turn, fixed by the processing the wire has undergone. The research was carried out in parallel with metallographic studies which analyzed the microstructure and composition profile within the reacted Nb/sub 3/Sn layer as a function of heat treatment. The combined results of metallographic and processing research suggest that it is possible to engineer the microstructure of the reacted layer to improve J/sub c/(H). The specific product of the work is a tailored double-aging treatment which introduces a favorable combination of microstructure and composition in the reacted layer and causes a substantial improvement in the critical current characteristic of the strand.

  4. Enhancement of critical current of SiC and malic acid codoped MgB2/Fe wires

    NASA Astrophysics Data System (ADS)

    Li, W. X.; Chen, R. H.; Xu, X.; Hu, Y. M.; Zhu, M. Y.; Li, Y.; Dou, S. X.

    2015-09-01

    The influences of microstructure, connectivity, and disorder on the critical current density, Jc, are discussed to clarify the different mechanisms of Jc(H) in different magnetic field ranges for in situ and combined in situ/ex situ MgB2/Fe wires with nano SiC and malic acid codoping. Sintering temperature plays a very important role in the electromagnetic properties at different temperatures and under various magnetic fields. Connectivity, upper critical field, Hc2, and irreversibility field, Hirr, are studied to demonstrate the mechanism of Jc dependence on magnetic field. The combined in situ/ex situ process is proved to be a promising technique for fabrication of practical MgB2 wires.

  5. Enhancement of the critical current density in single-crystal Bi2Sr2CaCu2O8 superconductors by chemically induced disorder.

    PubMed Central

    Wang, Y L; Wu, X L; Chen, C C; Lieber, C M

    1990-01-01

    The effect of metal substitution on the critical current densities of single-crystal PbxBi2-xSr2CaCu2O8 (x = 0 or x = 0.7) superconductors has been investigated. Substitution of lead was found to increase the average critical current density from 1 x 10(5) A/cm2 to 2 x 10(6) A/cm2 at 5 K in an applied magnetic field of 10 kilooersteds (1 oersted = 80 A/m). The order of magnitude increase in the critical current density was observed for temperatures up to the flux vortex lattice melting point; the flux lattice melting point was also found to increase to 30 K (from 22 K) in the lead-substituted materials. Diffraction and microscopy investigations of the structural parameters indicate that the fundamental atomic lattices are virtually the same for both materials. Scanning tunneling microscopy images demonstrate, however, that lead substitution causes significant disorder (or defects) in the one-dimensional superstructure found in Bi2Sr2CaCu2O8. Since crystal defects can increase the critical current density by pinning the motion of flux vortices, it is likely that this lead-induced disorder enhances vortex pinning. The lead-induced disorder is specific to the nonsuperconducting Bi-O layers, and thus our results suggest that chemical substitutions may be utilized to control selectively flux pinning and the critical current density in these materials. Images PMID:11607103

  6. A study of enhancing critical current densities (J(sub c)) and critical temperature (T(sub c)) of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vlasse, Marcus

    1992-01-01

    The development of pure phase 123 and Bi-based 2223 superconductors has been optimized. The pre-heat processing appears to be a very important parameter in achieving optimal physical properties. The synthesis of pure phases in the Bi-based system involves effects due to oxygen partial pressure, time, and temperature. Orientation/melt-sintering effects include the extreme c-axis orientation of Yttrium 123 and Bismuth 2223, 2212, and 2201 phases. This orientation is conductive to increasing critical currents. A procedure was established to substitute Sr for Ba in Y-123 single crystals.

  7. Enhancement of low temperature Critical current density of MgB2 thin films by Au coating

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Mi; Lee, Hyun-Sook; Kim, Heon-Jung; Lee, Sung-Ik; Kim, Hyeong-Jin; Kang, W. N.

    2004-03-01

    We measured the superconducting critical current densities (J_c) from the magnetization hysteresis (M-H) loop while depositing the gold on top of the MgB2 thin film. The purpose of this experiment is whether the vortex avalanche phenomena which suppress the Jc for low temperature ( T < 15 K ) and low field (H ≤ 1000 Oe) can be cured by gold deposition. This avalanche called flux noise has been headache for the application of the MgB2 thin films. As increasing the thickness of Au film, fortunately, the flux noise in the M-H loop is suppressed and finally disappears when thickness of the gold becomes 2.55 ¥im. From this experiment, the obstacles of the application of MgB2 thin film are completely overcome

  8. Enhancement at low temperatures of the critical current density for Au-coated MgB2 thin films

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Mi; Lee, Hyun-Sook; Kim, Heon-Jung; Lee, Sung-Ik; Kim, Hyeong-Jin; Kang, W. N.

    2004-01-01

    We measured the superconducting critical current densities (Jc) from the magnetization hysteresis (M-H) loop for Au-coated MgB2 thin films. The purpose of this experiment was to determine whether the vortex avalanche phenomenon which suppresses the Jc for low temperature (T<15 K) and low field (H⩽1000 Oe) could be cured by gold deposition. This avalanche, called flux noise, has been a headache in applications of MgB2 thin films. Fortunately, the flux noise in the M-H loop is suppressed with increasing Au-film thickness and finally disappears when the thickness of the gold becomes 2.55 μm. We found a way to remove one obstacle for applications of MgB2 thin films as an superconducting device.

  9. High critical current superconducting tapes

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi; Foltyn, Stephen R.

    2003-09-23

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  10. High Critical Current Coated Conductors

    SciTech Connect

    Paranthaman, M. P.; Selvamanickam, V.

    2011-12-27

    One of the important critical needs that came out of the DOE’s coated conductor workshop was to develop a high throughput and economic deposition process for YBCO. Metal-organic chemical vapor deposition (MOCVD) technique, the most critical steps in high technical micro fabrications, has been widely employed in semiconductor industry for various thin film growth. SuperPower has demonstrated that (Y,Gd)BCO films can be deposited rapid with world record performance. In addition to high critical current density with increased film thickness, flux pinning properties of REBCO films needs to be improved to meet the DOE requirements for various electric-power equipments. We have shown that doping with Zr can result in BZO nanocolumns, but at substantially reduced deposition rate. The primary purpose of this subtask is to develop high current density MOCVD-REBCO coated conductors based on the ion-beam assisted (IBAD)-MgO deposition process. Another purpose of this subtask is to investigate HTS conductor design optimization (maximize Je) with emphasis on stability and protection issues, and ac loss for REBCO coated conductors.

  11. Reactive spark plasma sintering of MgB2 in nitrogen atmosphere for the enhancement of the high-field critical current density

    NASA Astrophysics Data System (ADS)

    Badica, P.; Burdusel, M.; Popa, S.; Pasuk, I.; Ivan, I.; Borodianska, H.; Vasylkiv, O.; Kuncser, A.; Ionescu, A. M.; Miu, L.; Aldica, G.

    2016-10-01

    High density bulks (97%-99%) of MgB2 were prepared by spark plasma sintering (SPS) in nitrogen (N2) atmosphere for different heating rates (10, 20 and 100 °C min-1) and compared with reference samples processed in vacuum and Ar. N2 reacts with MgB2 and forms MgB9N along the MgB2 grain boundaries. The high-field critical current density is enhanced for the sample processed in N2 with a heating rate of 100 °C min-1. At 2-35 K, this sample shows the strongest contribution of the grain boundary pinning (GBP). All samples are in the point pinning (PP) limit and by increasing temperature the GBP contribution decreases.

  12. Highly enhanced in-field critical current density of MgB 2 superconductor by combined addition of burned rice husk and nano Ho 2O 3

    NASA Astrophysics Data System (ADS)

    Vinod, K.; Varghese, Neson; Sundaresan, A.; Syamaprasad, U.

    2010-04-01

    With the aim of improving flux pinning and in-field critical current density [ JC( H)], two physically and chemically different additives - burned rice husk (BRH) and nano Ho 2O 3 were introduced into in situ MgB 2 superconductor. The effects of the above two additives were studied individually and combinedly. Ho 2O 3 decomposed and reacted with B to form HoB 4, without any substitution. BRH caused considerable amount of C substitution at B site and formed Mg 2Si and Mg 2C 3 secondary phases. Addition of Ho 2O 3 improved the JC( H) only marginally, but BRH improved the JC( H) strongly. Combined addition of Ho 2O 3 with BRH was found to be much more effective than their solo addition for the enhancement of JC( H) of MgB 2.

  13. 200 MeV Ag +15 ion irradiation created columnar defects and enhanced critical current density of La-2125 type superconducting thin films

    NASA Astrophysics Data System (ADS)

    Mavani, K. R.; Rana, D. S.; Rayaprol, S.; Parmar, R. N.; Kuberkar, D. G.; Ravi Kumar; Tonouchi, M.; John, J.; Nagarajan, R.

    2007-05-01

    We have deposited c-axis oriented thin films of La 1.5Dy 0.5CaBa 2Cu 5O z (La-2125) tetragonal superconductor on LaAlO 3(001) substrates by pulsed laser deposition. These films were irradiated with 200 MeV Ag +15 ions. Atomic force microscopy and elastic recoil detection analysis indicate that the irradiation has created columnar defects through the entire thickness (2000 Å) of these films. With ion irradiation up to 1×10 11 ions/cm 2, the critical current density ( Jc(H)) enhances by fivefold, which is attributed to the augmented flux pinning by the columnar defects. A further increase in irradiation to 1×10 12 ions/cm 2 causes reduction in Jc(H) due to distorted morphology of the film. Our work shows that the enhancement in Jc(H) of the irradiated La-2125 film is comparable to that in irradiated RE-123 (RE = rare earth ion). Also, as the La-2125 type films have greater chemical stability than RE-123, La-2125 type superconductors are potential candidates for applications. It is interesting to note that there are partial flux jumps observed to occur symmetrically in the magnetic hysteresis of irradiated La-2125 thin films with enhanced Jc(H).

  14. Enhanced critical current properties in Ba0.6K0.4+xFe2As2 superconductor by overdoping of potassium

    NASA Astrophysics Data System (ADS)

    Wang, Chunlei; Wang, Lei; Gao, Zhaoshun; Yao, Chao; Wang, Dongliang; Qi, Yanpeng; Zhang, Xianping; Ma, Yanwei

    2011-01-01

    Phase-pure polycrystalline Ba0.6K0.4+xFe2As2 with 0≤x≤0.1 were prepared using a one-step solid-state reaction method. We found that overdoping of potassium can improve the critical current density (Jc). High-field Jc for samples with x =0.1 is three times higher than that for samples with x =0. Overdoping of K has minimal effect on the critical transition temperature (Tc). Less than 0.5 K degradations in Tc was measured for samples with x =0.1. Transmission electron microscopy (TEM) revealed high concentration of dislocations in samples with x =0.1, resulting in enhanced flux pining. Further analyses on magnetization loops for powder samples confirm that K overdoping can promote intragrain Jc. Our results indicate that slight excess of K in Ba0.6K0.4Fe2As2 superconductor is beneficial to high-field applications.

  15. Giant enhancement in critical current density, up to a hundredfold, in superconducting NaFe0.97Co0.03 As single crystals under hydrostatic pressure

    PubMed Central

    Shabbir, Babar; Wang, Xiaolin; Ghorbani, S. R.; Wang, A. F.; Dou, Shixue; Chen, X. H.

    2015-01-01

    Tremendous efforts towards improvement in the critical current density “Jc” of iron based superconductors (FeSCs), especially at relatively low temperatures and magnetic fields, have been made so far through different methods, resulting in real progress. Jc at high temperatures in high fields still needs to be further improved, however, in order to meet the requirements of practical applications. Here, we demonstrate a simple approach to achieve this. Hydrostatic pressure can significantly enhance Jc in NaFe0.97Co0.03As single crystals by at least tenfold at low field and more than a hundredfold at high fields. Significant enhancement in the in-field performance of NaFe0.97Co0.03As single crystal in terms of pinning force density (Fp) is found at high pressures. At high fields, the Fp is over 20 and 80 times higher than under ambient pressure at12 K and 14 K, respectively, at P = 1 GPa. We believe that the Co-doped NaFeAs compounds are very exciting and deserve to be more intensively investigated. Finally, it is worthwhile to say that by using hydrostatic pressure, we can achieve more milestones in terms of high Jc values in tapes, wires or films of other Fe-based superconductors. PMID:26030085

  16. Enhancement of the critical current density by increasing the collective pinning energy in heavy ion irradiated Co-doped BaFe2As2 single crystals

    DOE PAGES

    Haberkorn, N.; Kim, Jeehoon; Gofryk, K.; ...

    2015-04-08

    Here, we investigate the effect of heavy ion irradiation (1.4 GeV Pb) on the vortex matter in Ba(Fe0.92Co0.08)2As2 single crystals by superconducting quantum interference device (SQUID) magnetometry. The defects created by the irradiation are discontinuous amorphous tracks, resulting in an effective track density smaller than 25% of the nominal doses. In this study, we observe large increases in the critical current density (Jc), ranging from a factor of ~3 at low magnetic fields to a factor of ~10 at fields close to 1 T after irradiation with a nominal fluence of BΦ = 3.5 T. From the normalized flux creepmore » rates (S) and the Maley analysis, we determine that the Jc increase can be mainly attributed to a large increment in the pinning energy, from <50 K to ≈500 K, while the glassy exponent μ changes from ~1.5 to <1. Even though the enhancement of Jc is substantial in the entire temperature range and S is strongly suppressed, the artificial pinning landscape induced by the irradiation does not modify significantly the crossover to fast creep in the field-temperature vortex phase diagram.« less

  17. Enhancement of the critical current density in FeO-coated MgB2 thin films at high magnetic fields

    PubMed Central

    Surdu, Andrei E; Hamdeh, Hassan H; Al-Omari, I A; Sellmyer, David J; Socrovisciuc, Alexei V; Prepelita, Andrei A; Koparan, Ezgi T; Yanmaz, Ekrem; Ryazanov, Valery V; Hahn, Horst

    2011-01-01

    Summary The effect of depositing FeO nanoparticles with a diameter of 10 nm onto the surface of MgB2 thin films on the critical current density was studied in comparison with the case of uncoated MgB2 thin films. We calculated the superconducting critical current densities (J c) from the magnetization hysteresis (M–H) curves for both sets of samples and found that the J c value of FeO-coated films is higher at all fields and temperatures than the J c value for uncoated films, and that it decreases to ~105 A/cm2 at B = 1 T and T = 20 K and remains approximately constant at higher fields up to 7 T. PMID:22259764

  18. Apparatus and method for critical current measurements

    DOEpatents

    Martin, Joe A.; Dye, Robert C.

    1992-01-01

    An apparatus for the measurement of the critical current of a superconductive sample, e.g., a clad superconductive sample, the apparatus including a conductive coil, a means for maintaining the coil in proximity to a superconductive sample, an electrical connection means for passing a low amplitude alternating current through the coil, a cooling means for maintaining the superconductive sample at a preselected temperature, a means for passing a current through the superconductive sample, and, a means for monitoring reactance of the coil, is disclosed, together with a process of measuring the critical current of a superconductive material, e.g., a clad superconductive material, by placing a superconductive material into the vicinity of the conductive coil of such an apparatus, cooling the superconductive material to a preselected temperature, passing a low amplitude alternating current through the coil, the alternating current capable of generating a magnetic field sufficient to penetrate, e.g., any cladding, and to induce eddy currents in the superconductive material, passing a steadily increasing current through the superconductive material, the current characterized as having a different frequency than the alternating current, and, monitoring the reactance of the coil with a phase sensitive detector as the current passed through the superconductive material is steadily increased whereby critical current of the superconductive material can be observed as the point whereat a component of impedance deviates.

  19. Combined Effect of Upper Critical Field and Flux Pinning on Enhancing Critical Current Density of In-situ MgB2/Fe Tapes with Various Carbon Sources Simultaneously Doped

    NASA Astrophysics Data System (ADS)

    Pan, Xifeng; Matsumoto, Akiyoshi; Kumakura, Hiroaki; Zhao, Yong; Yan, Guo; Feng, Yong

    2012-01-01

    MgB2/Fe tapes with various forms of mono- and co-doped C sources were prepared by an in-situ powder-in-tube (PIT) method to study the effect of different C sources on the transport critical current density Jc behavior of MgB2. A remarkable Jc improvement at 4.2 K under higher fields and a significant increase in the actual content of C substitution for B were achieved for the tapes with various C sources co-doped. For these co-doped tapes, both enhanced Hc2 and flux pinning properties are responsible for their Jc improvement in this work. Comparing the 4 wt % C9H11NO doped tape with the 20 wt % malic acid doped tape, the latter possesses much better in-field Jc performance at 4.2 K and 10 T and sharper field dependence of Jc, which suggests that the flux pinning plays a crucial role in determining its Jc behavior.

  20. Enhanced critical current density using Nd2O3 nano-islands on NdBa2Cu3O7-δ thin films prepared by PLD

    NASA Astrophysics Data System (ADS)

    Sönmez, Erdal; Ertuğrul, Mehmet

    2013-04-01

    In this study, the effect of Nd2O3 nano-islands on the critical properties of NdBa2Cu3O7-δ (Nd-123) superconductive thin films grown on Ni-W metallic substrates was investigated. Nd-123 superconducting ceramic materials were prepared by solid-state reaction technique and then this ceramic material was used as target for producing the Nd-123 superconductive thin films with pulsed laser deposition (PLD). Nano-islands were prepared with the deposition of Nd2O3 by PLD. The obtained superconductive thin films were characterized by X-ray diffraction (XRD) analysis, morphological investigations of atomic force microscopy (AFM) images, transport analysis such as Jc and R-T measurements by four-point probe (FPP). As a result of these analyses, it was determined that nano-islands have important role for the flux pinning and it provides the increase of about 32% for the critical current value (Jc).

  1. Enhanced critical-current in P-doped BaFe2As2 thin films on metal substrates arising from poorly aligned grain boundaries

    PubMed Central

    Sato, Hikaru; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2016-01-01

    Thin films of the iron-based superconductor BaFe2(As1−xPx)2 (Ba122:P) were fabricated on polycrystalline metal-tape substrates with two kinds of in-plane grain boundary alignments (well aligned (4°) and poorly aligned (8°)) by pulsed laser deposition. The poorly aligned substrate is not applicable to cuprate-coated conductors because the in-plane alignment >4° results in exponential decay of the critical current density (Jc). The Ba122:P film exhibited higher Jc at 4 K when grown on the poorly aligned substrate than on the well-aligned substrate even though the crystallinity was poorer. It was revealed that the misorientation angles of the poorly aligned samples were less than 6°, which are less than the critical angle of an iron-based superconductor, cobalt-doped BaFe2As2 (~9°), and the observed strong pinning in the Ba122:P is attributed to the high-density grain boundaries with the misorientation angles smaller than the critical angle. This result reveals a distinct advantage over cuprate-coated conductors because well-aligned metal-tape substrates are not necessary for practical applications of the iron-based superconductors. PMID:27833118

  2. Variable-Temperature Critical-Current Measurements

    SciTech Connect

    L. F. Goodrich; T. C. Stauffer

    2009-05-19

    This is the final report of a three year contract that covered 09/19/2005 to 07/14/2008. We requested and received a no cost time extension for the third year, 07/15/2007 to 07/14/2008, to allow DoE to send us funds if they became available during that year. It turned out that we did not receive any funding for the third year. The following paper covers our variable-temperature critical-current measurements. We made transport critical-current (Ic) measurements on commercial multifilamentary Nb3Sn strands at temperatures (T) from 4 to 17 K and magnetic fields (H) from 0 to 14 T. One of the unique features of our measurements is that we can cover a wide range of critical currents from less than 0.1 A to over 700 A.

  3. Critical currents in sputtered copper molybdenum sulphide

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Woollam, J. A.; Kammerdiner, L.; Luo, H.-L.

    1977-01-01

    Critical currents in a sputtered Chevrel-phase copper molybdenum sulfide have been measured at 4.2 K as a function of applied magnetic field. Self-field critical-current values up to 10 to the 9th A/sq m were found, decreasing to 10 to the 8th A/sq m at 3 T. Graphs of pinning forces versus field were found to be independent of field direction, and the pinning mechanism is sample independent. Critical-current densities for sputtered lead molybdenum sulphide are estimated to be about 10 to the 8th A/sq m at 26 T based on a scaling law for pinning.

  4. Critical currents in sputtered copper molybdenum sulphide

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Woollam, J. A.; Kammerdiner, L.; Luo, H.-L.

    1977-01-01

    Critical currents in a sputtered Chevrel-phase copper molybdenum sulfide have been measured at 4.2 K as a function of applied magnetic field. Self-field critical-current values up to 10 to the 9th A/sq m were found, decreasing to 10 to the 8th A/sq m at 3 T. Graphs of pinning forces versus field were found to be independent of field direction, and the pinning mechanism is sample independent. Critical-current densities for sputtered lead molybdenum sulphide are estimated to be about 10 to the 8th A/sq m at 26 T based on a scaling law for pinning.

  5. Josephson junctions with alternating critical current density

    SciTech Connect

    Mints, R.G.; Kogan, V.G.

    1997-04-01

    The magnetic-field dependence of the critical current I{sub c}(H) is considered for a short Josephson junction with the critical current density j{sub c} alternating along the tunnel contact. Two model cases, periodic and randomly alternating j{sub c}, are treated in detail. Recent experimental data on I{sub c}(H) for grain-boundary Josephson junctions in YBa{sub 2}Cu{sub 3}O{sub x} are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  6. Architecture for high critical current superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.

    2002-01-01

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of, e.g., multilayer YBCO structures where individual YBCO layers are separated by a layer of an insulating material such as CeO.sub.2 and the like, a layer of a conducting material such as strontium ruthenium oxide and the like or by a second superconducting material such as SmBCO and the like.

  7. Nutrition in critical illness: a current conundrum

    PubMed Central

    Hoffer, L. John; Bistrian, Bruce R.

    2016-01-01

    Critically ill people are unable to eat. What’s the best way to feed them? Nutrition authorities have long recommended providing generous amounts of protein and calories to critically ill patients, either intravenously or through feeding tubes, in order to counteract the catabolic state associated with this condition. In practice, however, patients in modern intensive care units are substantially underfed. Several large randomized clinical trials were recently carried out to determine the clinical implications of this situation. Contradicting decades of physiological, clinical, and observational data, the results of these trials have been claimed to justify the current practice of systematic underfeeding in the intensive care unit. This article explains and suggests how to resolve this conundrum. PMID:27803805

  8. Current trends in critical care nutrition.

    PubMed

    Mehta, Jinesh P; Chihada Alhariri, Bashar; Patel, Mihir Kishorchandra

    2011-08-01

    Nutrition in the intensive care setting is a vital part of patient care, and may even be referred to as "nutritional therapy". Current nutritional practices have progressed a lot over the past few years, and draw from a large body of accumulating evidence. Yet, as with other trends in critical care, there are a lot of variations in the way nutrition is approached between institutions, as well as between individual physicians. This review attempts to look at some of these differences and provide recommendations based upon the available literature.

  9. Enhancing Critical Thinking Skills among Authoritarian Students

    ERIC Educational Resources Information Center

    Henderson Hurley, Martha; Hurley, David

    2013-01-01

    This article focuses on assignments designed to enhance critical thinking skills for authoritarian personality types. This paper seeks to add to the literature by exploring instructional methods to overcome authoritarian traits that could inhibit the development of critical thinking skills. The article presents a strategy which can be employed…

  10. Toward superconducting critical current by design

    DOE PAGES

    Sadovskyy, Ivan A.; Jia, Ying; Leroux, Maxime; ...

    2016-03-31

    The interaction of vortex matter with defects in applied superconductors directly determines their current carrying capacity. Defects range from chemically grown nanostructures and crystalline imperfections to the layered structure of the material itself. The vortex-defect interactions are non-additive in general, leading to complex dynamic behavior that has proven difficult to capture in analytical models. With recent rapid progress in computational powers, a new paradigm has emerged that aims at simulation assisted design of defect structures with predictable ‘critical-current-by-design’: analogous to the materials genome concept of predicting stable materials structures of interest. We demonstrate the feasibility of this paradigm by combiningmore » large-scale time-dependent Ginzburg-Landau numerical simulations with experiments on commercial high temperature superconductor (HTS) containing well-controlled correlated defects.« less

  11. Toward superconducting critical current by design

    SciTech Connect

    Sadovskyy, Ivan A.; Jia, Ying; Leroux, Maxime; Kwon, Jihwan; Hu, Hefei; Fang, Lei; Chaparro, Carlos; Zhu, Shaofei; Welp, Ulrich; Zuo, Jian -Min; Zhang, Yifei; Nakasaki, Ryusuke; Selvamanickam, Venkat; Crabtree, George W.; Koshelev, Alexei E.; Glatz, Andreas; Kwok, Wai -Kwong

    2016-03-31

    The interaction of vortex matter with defects in applied superconductors directly determines their current carrying capacity. Defects range from chemically grown nanostructures and crystalline imperfections to the layered structure of the material itself. The vortex-defect interactions are non-additive in general, leading to complex dynamic behavior that has proven difficult to capture in analytical models. With recent rapid progress in computational powers, a new paradigm has emerged that aims at simulation assisted design of defect structures with predictable ‘critical-current-by-design’: analogous to the materials genome concept of predicting stable materials structures of interest. We demonstrate the feasibility of this paradigm by combining large-scale time-dependent Ginzburg-Landau numerical simulations with experiments on commercial high temperature superconductor (HTS) containing well-controlled correlated defects.

  12. Strong enhancement of high-field critical current properties and irreversibility field of MgB2 superconducting wires by coronene active carbon source addition via the new B powder carbon-coating method

    NASA Astrophysics Data System (ADS)

    Ye, Shu Jun; Matsumoto, Akiyoshi; Chao Zhang, Yun; Kumakura, Hiroaki

    2014-08-01

    We report an effective carbon-containing additive, coronene (C24H12), for MgB2 superconducting wires. We used B powder coated with C24H12 to fabricate MgB2 wires using the powder-in-tube (PIT) and internal Mg diffusion (IMD) processes. The in-field critical current properties are strongly enhanced for both PIT- and IMD-processed MgB2 wires. For PIT MgB2 wires, a critical current density (Jc) value of 1.8 × 104 A cm-2 is obtained at 4.2 K and 10 T. For IMD MgB2 wires, we obtained a Jc of 1.07 × 105 A cm-2 and an engineering Jc (Je) of 1.12 × 104 A cm-2 at 4.2 K and 10 T. These Jc and Je values are similar to the highest values reported for MgB2 wires thus far. Furthermore, the irreversibility field, Birr, determined with a current density criterion of 100 A cm-2, is strongly enhanced to 25 T at 4.2 K, which is also the highest value reported for MgB2 superconducting wires thus far. Coronene is an active carbon source for MgB2 superconducting wires because (1) coronene has a high carbon content (96 wt%) with a small amount of hydrogen (impurity), (2) the decomposition temperature for coronene is near the reaction temperature between Mg and B, and (3) uniform dispersion of coronene on the B surface can be obtained due to the melting point of coronene being lower than the decomposition temperature. Carbon substitution for B caused by the coronene active carbon source is mainly responsible for the high field critical current properties and the high Birr obtained in this work.

  13. Enhancing critical thinking in paramedic continuing education.

    PubMed

    Dalton, A L

    1996-01-01

    Critical thinking has become a buzzword, especially in medical education. The challenge is first to determine what skills compose critical thinking and what teaching techniques promote critical-thinking skills, and then to determine how to apply these techniques effectively and efficiently to a given population in the classroom. This article begins with a working definition of critical thinking and explores the parameters and skills implied or stated in the definition. Then a teaching environment constructed around a model of critical thinking and characteristics of the audience is described. A specific teaching method, suggested by research and designed to exercise critical-thinking skills, is then applied to a specific patient problem in a continuing education class. Preliminary outcomes are presented. The purpose of this article is to propose a productive and efficient educational method for promoting and enhancing critical-thinking skills appropriate for paramedic-level continuing education.

  14. Enhancement of critical current density in a Ca0.85La0.15Fe(As0.92Sb0.08)2 superconductor with T c = 47 K through 3 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Park, Akiyoshi; Mine, Akinori; Yamada, Tatsuhiro; Ohtake, Fumiaki; Akiyama, Hiroki; Sun, Yue; Pyon, Sunseng; Tamegai, Tsuyoshi; Kitahama, Yutaka; Mizukami, Tasuku; Kudo, Kazutaka; Nohara, Minoru; Kitamura, Hisashi

    2016-05-01

    We examine the critical current density (J c) of Ca{}1-xLa x Fe(As{}1-ySb y )2, a 112-type iron-based superconductor (IBS) with {T}{{c}} = 47 K, via magneto-optical imaging and magnetization measurements. We assert that the large self-field J c of 2.2× {10}6 A cm- 2 at 2 K is a strong indication that it is a bulk superconductor with spatially homogeneous superconductivity. A 2.8-fold enhancement in J c to 6.2× {10}6 A cm- 2 was achieved through artificially engineering pinning centers by irradiating 3 MeV protons with a total dosage of 1.0× {10}16 {{cm}}-2. The results not only demonstrate the potential of 112-type IBSs for application but also enrich the current understanding of the role of artificial defects in IBSs.

  15. Enhancement of critical currents in (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (Bi-2223) superconducting tapes.

    SciTech Connect

    Balachandran, U.

    1998-11-11

    The performance of (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (Bi-2223) superconducting tapes in magnetic fields at 77 K is critical for winding this material into high-field magnets. We have recently enhanced the transport current (I{sub c}) of multifilament Ag-clad Bi-2223 tapes in a self-field at 77 K by increasing the packing density of the precursor powder improving the mechanical deformation, optimizing the conductor design, and adjusting the cooling rate. I{sub c} values of >40 A were obtained repeatedly. However, a transport current of 42 A in a self-field declined to 4 A in a 0.2 T magnetic field applied parallel to the c-axis at 77 K. A new composite tape was then fabricated in which a YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (Y-123) film was deposited on the top of the Ag-sheathed Bi-2223 tape to shield the applied magnetic field and protect the central Bi-2223 filaments. Magnetization measurements showed that the critical current densities of the Y-123-coated, Ag-sheathed Bi-2223 tapes were higher than those of an uncoated tape. These preliminary results may provide the basis for further improving the processing of long-length Bi-2223 tapes for high-field applications.

  16. Enhanced high-field transport critical current densities observed for ex situ PIT processed Ag/(Ba, K)Fe2As2 thin tapes

    NASA Astrophysics Data System (ADS)

    Togano, Kazumasa; Gao, Zhaoshun; Taira, Hideaki; Ishida, Shigeyuki; Kihou, Kunihiro; Iyo, Akira; Eisaki, Hiroshi; Matsumoto, Akiyoshi; Kumakura, Hiroaki

    2013-06-01

    We found that the transport Jc of ex situ PIT (powder-in-tube) processed (Ba,K)Fe2As2 (Ba-122) wires with a single Ag sheath can be significantly enhanced by repeating a combined process of rolling and heat treatment. A transport Jc (4.2 K and 10 T) of 4.4 × 103 A cm-2 (Ic = 15.7 A) was obtained for a thin tape (0.3 mm thick) produced by this method, which is the highest reported so far for Ag-sheathed Ba-122 and Sr-122 wires processed by the conventional PIT route. The measurement by a hybrid magnet showed that the Jc-H curve maintains a very small field dependence up to the strong magnetic field of 28 T, as expected from the previously reported high Hc2 value. The core of the thin tape shows dense grain structure with fewer cracks and voids, which is considered to be responsible for the large enhancement of Jc. We believe that this new approach is useful for further development of 122 wires with higher transport Jc.

  17. Enhanced transport critical current density in Sn-added SmFeAsO1-x F x tapes prepared by the PIT method

    NASA Astrophysics Data System (ADS)

    Zhang, Qianjun; Zhang, Xianping; Yao, Chao; Huang, He; Wang, Dongliang; Dong, Chiheng; Ma, Yanwei; Ogino, Hiraku; Awaji, Satoshi

    2017-06-01

    SmFeAsO1-x F x tapes were fabricated by the ex situ powder-in-tube (PIT) method followed by a low temperature (300 °C) ordinary sintering process. The purity of the superconducting core of the tapes has been largely improved. The reduction of SmAs and FeAs impurities has significantly enhanced the transport J c of the SmFeAsO1-x F x tapes. At 4.2 K, the transport J c values of the SmFeAsO1-x F x tapes have achieved 1.8 × 104 A cm-2 at 0.6 T and 2.9 × 102 A cm-2 at 10 T, which is the highest among 1111 type wires and tapes. Similar field dependences of transport J c and magnetic J c imply improved grain connectivity in the superconducting cores.

  18. Eddy current enhancement for EMATs

    NASA Astrophysics Data System (ADS)

    Palmer, S. B.; Jian, X.; Dixon, S.

    2007-04-01

    When an electromagnetic acoustic transducer (EMAT) is used to generate ultrasound in an electrically conducting sample, eddy currents are generated in the sample's skin depth as the first stage in transduction. The resultant acoustic wave amplitude is proportional to the amplitude of this eddy current, and so anything that we can do to increase the eddy current will lead to the generation of larger amplitude ultrasonic waves. In eddy current testing, wire coils are often wound onto a ferrite core to increase the generated eddy current, with the effect that inductance of the coil increases greatly. When we are dealing with an EMAT, any increase in the coil inductance is usually unacceptable as it leads to a reduction in the amplitude of a given frequency of eddy current from a limited voltage source. This is particularly relevant where current arises from capacitor discharge, as is typically used in EMAT driver current circuitry. We present a method for electromagnetic acoustic transduction where ferrite is used to increase eddy current amplitude, without significantly increasing coil inductance or changing the frequency content of the eddy current or the generated acoustic wave.

  19. Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping

    NASA Astrophysics Data System (ADS)

    Dou, S. X.; Soltanian, S.; Horvat, J.; Wang, X. L.; Zhou, S. H.; Ionescu, M.; Liu, H. K.; Munroe, P.; Tomsic, M.

    2002-10-01

    Doping of MgB2 by nano-SiC and its potential for the improvement of flux pinning were studied for MgB2-x)(SiCx/2 with x=0, 0.2, and 0.3 and for 10 wt % nano-SiC-doped MgB2 samples. Cosubstitution of B by Si and C counterbalanced the effects of single-element doping, decreasing Tc by only 1.5 K, introducing intragrain pinning centers effective at high fields and temperatures, and significantly enhancing Jc and Hirr. Compared to the undoped sample, Jc for the 10 wt % doped sample increased by a factor of 32 at 5 K and 8 T, 42 at 20 K and 5 T, and 14 at 30 K and 2 T. At 20 K and 2 T, the Jc for the doped sample was 2.4 x105 A/cm2, which is comparable to Jc values for the best Ag/Bi-2223 tapes. At 20 K and 4 T, Jc was twice as high as for the best MgB2 thin films and an order of magnitude higher than for the best Fe/MgB2 tapes. The magnetic Jc is consistent with the transport Jc which remains at 20 000 A/cm2 even at 10 T and 5 K for the doped sample, an order of magnitude higher than the undoped one. Because of such high performance, it is anticipated that the future MgB2 conductors will be made using a formula of MgBxSiyCz instead of pure MgB2.

  20. Enhancing Critical Thinking: Accounting Students' Perceptions

    ERIC Educational Resources Information Center

    Wilkin, Carla L.

    2017-01-01

    Purpose: The purpose of this paper is to demonstrate how assessment design was used to enhance students' critical thinking in a subject concerned with business enterprise systems. The study shows positive results and favorable perceptions of the merit of the approach. Design/Methodology/Approach: A case study approach was used to examine how the…

  1. Enhancing Critical Thinking: Accounting Students' Perceptions

    ERIC Educational Resources Information Center

    Wilkin, Carla L.

    2017-01-01

    Purpose: The purpose of this paper is to demonstrate how assessment design was used to enhance students' critical thinking in a subject concerned with business enterprise systems. The study shows positive results and favorable perceptions of the merit of the approach. Design/Methodology/Approach: A case study approach was used to examine how the…

  2. Critical Consciousness: Current Status and Future Directions

    ERIC Educational Resources Information Center

    Watts, Roderick J.; Diemer, Matthew A.; Voight, Adam M.

    2011-01-01

    In this chapter, the authors consider Paulo Freire's construct of critical consciousness (CC) and why it deserves more attention in research and discourse on youth political and civic development. His approach to education and similar ideas by other scholars of liberation aims to foster a critical analysis of society--and one's status within…

  3. Critical Consciousness: Current Status and Future Directions

    ERIC Educational Resources Information Center

    Watts, Roderick J.; Diemer, Matthew A.; Voight, Adam M.

    2011-01-01

    In this chapter, the authors consider Paulo Freire's construct of critical consciousness (CC) and why it deserves more attention in research and discourse on youth political and civic development. His approach to education and similar ideas by other scholars of liberation aims to foster a critical analysis of society--and one's status within…

  4. Critical consciousness: current status and future directions.

    PubMed

    Watts, Roderick J; Diemer, Matthew A; Voight, Adam M

    2011-01-01

    In this chapter, the authors consider Paulo Freire's construct of critical consciousness (CC) and why it deserves more attention in research and discourse on youth political and civic development. His approach to education and similar ideas by other scholars of liberation aims to foster a critical analysis of society--and one's status within it--using egalitarian, empowering, and interactive methods. The aim is social change as well as learning, which makes these ideas especially relevant to the structural injustice faced by marginalized youth. From their review of these ideas, the authors derive three core CC components: critical reflection, political efficacy, and critical action. They highlight promising research related to these constructs and innovative applied work including youth action-research methodology. Their conclusion offers ideas for closing some of the critical gaps in CC theory and research. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  5. Continuously tuneable critical current in superconductor-ferromagnet multilayers

    NASA Astrophysics Data System (ADS)

    Curran, P. J.; Kim, J.; Satchell, N.; Witt, J. D. S.; Burnell, G.; Flokstra, M. G.; Lee, S. L.; Bending, S. J.

    2017-06-01

    We demonstrate that the critical current of superconducting Nb/Ni multilayers can be continuously tuned by up to a factor of three during magnetization reversal of the Ni films under an applied in-plane magnetic field. Our observations are in reasonably good agreement with a model of vortex pinning by Bloch domain walls that proliferate in the samples during magnetization reversal, whereby each vortex interacts with at most one wall in any of the Ni layers. Our model suggests ways in which the controllable pinning effect could be significantly enhanced, with important potential applications in tuneable superconducting devices.

  6. Logic models used to enhance critical thinking.

    PubMed

    Ellermann, Caroline R; Kataoka-Yahiro, Merle R; Wong, Lorrie C

    2006-06-01

    Over time, various methods have been used to stimulate critical thinking in undergraduate nursing students, and although many have been successful in helping students integrate the essential knowledge, experiences, and clinical reasoning that support practice, it is also useful to explore new methods. Faculty at the University of Hawaii at Manoa, School of Nursing and Dental Hygiene have taken an innovative approach of using logic models to further enhance critical thinking. This article presents an application of varying experiences and methods of using logic models to support the development of critical thinking and reasoning skills in nursing students. The processes in which logic models are used in the curriculum are described. The models are used to connect concepts from concrete to abstract levels in diverse and often nonlinear diagrams, guided discourse, and written assignments. The specific instructional methods used include concept mapping, concept papers, conceptual linking, and substruction.

  7. Enhancement of Flux Pinning and Critical Currents in YBa2Cu3O7-δ Films by Nano-Scale Iridium Pretreatment of Substrate Surfaces

    SciTech Connect

    Aytug, Tolga; Paranthaman, Mariappan Parans; Gapud, Albert Agcaoili; Kang, Sukill; Christen, Hans M; Leonard, Keith J; Martin, Patrick M; Thompson, James R; Christen, David K; Meng, R.; Rusakova, I.; Chu, C. W.; Johansen, T. H.

    2005-01-01

    We have acquired positive results in a controlled study to investigate the effects of substrate surface modification on the growth-induced flux-pinning nanostructures in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) films. Nanoscale iridium (Ir) particles were applied to single-crystal SrTiO{sub 3} substrate surfaces using dc-magnetron sputtering. Superconducting properties of YBCO films grown on the Ir-modified substrates, measured by transport and magneto-optical imaging, have shown substantial improvement in the critical current densities (J{sub c}) at 77 K over those on untreated, control substrates. Results also show a nearly uniform enhancement of J{sub c} over all orientations of magnetic field. Present results are found to be consistent with cross-sectional transmission electron microscopy investigations. Ultimately, the objective of this approach is to produce enhancements in the properties of coated conductors by a simple pretreatment of the substrate surface.

  8. Enhancement of Transport Critical Current Density in Nano Cr2O3 Added Ag-SHEATHED (Bi1.6Pb0.4)Sr2Ca2Cu3O10 Superconductor Tapes

    NASA Astrophysics Data System (ADS)

    Kong, W.; Abd-Shukor, R.

    Ag-sheathed (Bi1.6Pb0.4)Sr2Ca2Cu3O10 (Bi-2223) high temperature superconductor tapes with 0.1 wt% nano Cr2O3 were fabricated using the powder-in-tube method. The effects of intermediate rolling and sintering temperature on the transport critical current density (Jc) under self-field and applied magnetic field were studied. The X-ray patterns showed a dominant Bi-2223 phase (~80%). A decrease in Jc in applied magnetic field, parallel or perpendicular to the sample wide surface was observed for all tapes. Intermediate rolling improved the self-field Jc (T=77 K) of the tapes by 25%. Both Jc versus applied field curves and normalized pinning force density Fp/Fpmax versus applied field curves showed that the pinning strength was significantly enhanced with thermo-mechanical treatments. SEM micrographs showed improvements in the grain alignment of tapes with intermediate rolling. Enhancement in Jc was observed in the nano Cr2O3 added tapes.

  9. Critical care in Latin America: current situation.

    PubMed

    Celis-Rodriguez, Edgar; Rubiano, Sandra

    2006-07-01

    Critical care has grown significantly in Latin America. This grow this caused by the increase in the number of patients requiring this specialized care for whom excellent outcomes are achieved with the indisputable development of critical care. There is an increasing interest for the application of systems ensuring quality medical care, a reason why some countries have decided to make critical care part of their legislation. Because of the economic conditions in the region there is a marked difference in the number of intensive care beds among Latin American countries compared with European countries and the United States. Standards are being prepared to establish minimum human and physical resource requirements to ensure that existing beds are equipped as best as possible.

  10. Nuclear data for criticality safety - current issues

    SciTech Connect

    Leal, L.C.; Jordan, W.C.; Wright, R.Q.

    1995-06-01

    Traditionally, nuclear data evaluations have been performed in support of the analysis and design of thermal and fast reactors. In general, the neutron spectra characteristic of the thermal and fast systems used for data testing are predominantly in the low- and high-energy range with a relatively small influence from the intermediate-energy range. In the area of nuclear criticality safety, nuclear systems arising from applications involving fissionable materials outside reactors can lead to situations very different from those most commonly found in reactor analysis and design. These systems are not limited to thermal or fast and may have significant influence from the intermediate energy range. The extension of the range of applicability of the nuclear data evaluation beyond thermal and fast systems is therefore needed to cover problems found in nuclear criticality safety. Before criticality safety calculations are performed, the bias and uncertainties of the codes and cross sections that are used must be determined. The most common sources of uncertainties, in general, are the calculational methodologies and the uncertainties related to the nuclear data, such as the microscopic cross sections, entering into the calculational procedure. The aim here is to focus on the evaluated nuclear data pertaining to applications in nuclear criticality safety.

  11. Regulatory views on current criticality safety issues

    SciTech Connect

    Conde, J.M.; Recio, M.

    1996-12-31

    The nuclear facilities in Spain of interest from the stand-point of criticality are a fuel fabrication facility, handling only fresh fuel; seven pressurized water reactor (PWR) plants with different nuclear steam supply system designs; two boiling water reactor (BWR) plants; and an ongoing program of dual-purpose casks (storage and transport) for spent fuel. Given the spent-fuel storage space problems with the original rack designs, a plan was developed and started in 1990 to incorporate high-density racks (borated steel or Boral) in the spent-fuel storage of all plants, giving credit for fuel burnup. Following this plan, five PWR units have licensed burnup-credited criticality safety analyses using a two-zone approach (fresh and spent fuel) for the spent-fuel pool. The two BWR plants have also licensed a criticality safety analysis with credit for the reactivity reduction provided by the gadolinia rods. The only spent-fuel cask yet licensed has followed the expected fresh fuel assumption for the criticality safety evaluation. However, it can be expected that the industry will submit burnup-credit safety analyses for the future casks designs.

  12. [Current role of albumin in critical care].

    PubMed

    Aguirre Puig, P; Orallo Morán, M A; Pereira Matalobos, D; Prieto Requeijo, P

    2014-11-01

    The use of colloids in fluid therapy has been, and still continues to be a controversial topic, particularly when referring to the critical patient. The choice of the fluid that needs to be administered depends on several factors, many of which are theoretical, and continue being an object of debate. The interest in the clinical use of the albumin has emerged again, immediately after recent publications in the search of the most suitable colloid. It is the most abundant protein in the plasma, being responsible for 80% of the oncotic pressure. It regulates the balance between the intra- and extra-vascular volumes. Recent multicenter studies question the supposed lack of safety that was previously assigned to it. Furthermore, in vitro studies demonstrate other important actions besides oncotic, for example neutralization of free radicals, and exogenous (drugs) and endogenous substances (bile pigments, cholesterol). Being aware of these secondary properties of albumin, and evaluating the pathophysiology of the critical patient (in particular, sepsis), to maintain plasma albumin levels within the normal range, could be of great importance. Based on the most recent publications, the aim of this review is to briefly analyze the pathophysiology of albumin, as well as to discuss its possible indications in the critical patient.

  13. Current approach to burn critical care.

    PubMed

    Sakallioglu, A E; Haberal, M

    2007-10-01

    Burn trauma is a frequent cause of morbidity and mortality all over the world. Advancements in resuscitation, surgical tecniques, infection control and nutritional/metaolic support decreased mortality and morbidity. This article intends to review current outlines for initial treatment and resuscitation nutritional/metabolic support and wound management peculiar to burn patients.

  14. Enhancement of the critical current density by increasing the collective pinning energy in heavy ion irradiated Co-doped BaFe2As2 single crystals

    SciTech Connect

    Haberkorn, N.; Kim, Jeehoon; Gofryk, K.; Ronning, F.; Sefat, Athena Safa; Fang, L.; Welp, U.; Kwok, W. K.; Civale, L.

    2015-04-08

    Here, we investigate the effect of heavy ion irradiation (1.4 GeV Pb) on the vortex matter in Ba(Fe0.92Co0.08)2As2 single crystals by superconducting quantum interference device (SQUID) magnetometry. The defects created by the irradiation are discontinuous amorphous tracks, resulting in an effective track density smaller than 25% of the nominal doses. In this study, we observe large increases in the critical current density (Jc), ranging from a factor of ~3 at low magnetic fields to a factor of ~10 at fields close to 1 T after irradiation with a nominal fluence of BΦ = 3.5 T. From the normalized flux creep rates (S) and the Maley analysis, we determine that the Jc increase can be mainly attributed to a large increment in the pinning energy, from <50 K to ≈500 K, while the glassy exponent μ changes from ~1.5 to <1. Even though the enhancement of Jc is substantial in the entire temperature range and S is strongly suppressed, the artificial pinning landscape induced by the irradiation does not modify significantly the crossover to fast creep in the field-temperature vortex phase diagram.

  15. Hepatic encephalopathy: a critical current review.

    PubMed

    Hadjihambi, Anna; Arias, Natalia; Sheikh, Mohammed; Jalan, Rajiv

    2017-08-02

    Hepatic encephalopathy (HE) is a serious neuropsychiatric complication of cirrhosis and/or porto-systemic shunting. The clinical symptoms are widely variable, extending from subtle impairment in mental state to coma. The utility of categorizing the severity of HE accurately and efficiently serves not only to provide practical functional information about the current clinical status of the patient but also gives valuable prognostic information. In the past 20-30 years, there has been rapid progress in understanding the pathophysiological basis of HE; however, the lack of direct correlation between pathogenic factors and the severity of HE make it difficult to select appropriate therapy for HE patients. In this review, we will discuss the classification system and its limitations, the neuropsychometric assessments and their challenges, as well as the present knowledge on the pathophysiological mechanisms. Despite the many prevalent hypotheses around the pathogenesis of the disease, most treatments focus on targeting and lowering the accumulation of ammonia as well as inflammation. However, treatment of minimal HE remains a huge unmet need and a big concerted effort is needed to better define this condition to allow the development of new therapies. We review the currently available therapies and future approaches to treat HE as well as the scientific and clinical data that support their effectiveness.

  16. Critical and supercritical current measurements by a magnetic induction method

    NASA Astrophysics Data System (ADS)

    Harris, E. A.; Bishop, J. E. L.; Havill, R. L.; Ward, P. J.

    1988-10-01

    The temperature dependence of the critical current and current-voltage characteristics at supercritical currents have been measured in the low field limit on toroidal samples of the ceramic high Tc superconductor YBa 2Cu 3O 7- δ by a contactless magnetic induction technique that is sensitive to the transport supercurrent but not to any intragrain current loops. The sample constitutes a tertiary winding on a small ferrite transformer core. The secondary voltage provides a very sensitive indication of when the critical current is exceeded, and when it is integrated it yields the supercritical current-voltage characteristic.

  17. Critical currents in A-15 structure Nb3Al converted from cold-worked bcc structure

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Alterovitz, S. A.; Haugland, E.; Webb, G. W.

    1980-01-01

    The paper considers critical currents in A-15 structure Nb3Al converted from a cold-worked bcc structure. Nb3Al prepared in the ductile phase by quenching and mechanical working followed by conversion to the A-15 structure could carry currents above 10 to the 9th power A/sq m in fields near 20 T. These critical currents are comparable to those of Nb3Ge and V3Ga which are closest competing materials for use in high fields; further enhancement of the critical current is possible if thermal treatments are optimized.

  18. Model of current enhancement at high pressure

    SciTech Connect

    Yu, S.S.; Melendez, R.E.

    1983-04-05

    A model is proposed to account for the phenomenon of net current enhancement at high pressures recently observed on the Experimental Test Accelerator. The proposed mechanism involves energetic secondary electrons (delta rays) which are pushed forward by the self-magnetic field of the electron beam. For high current beams, the forward delta ray current can build up to a significant fraction of the beam current. Analytic calculations of the steady-state solution as well as the rate of buildup of the delta ray current are presented in this paper. In addition, numerical results from a nonlocal Boltzmann code, NUTS, are presented. The analytic and numerical results have many features which are in qualitative agreement with the experiments, but quantitative discrepancies still exist.

  19. Torsion Strain Effects on Critical Currents of Hts Superconducting Tapes

    NASA Astrophysics Data System (ADS)

    Takayasu, Makoto; Minervini, Joseph V.; Bromberg, Leslie

    2010-04-01

    A torsional twist strain effect on the critical current of a thin HTS tape has been found to be well described by a longitudinal strain model taking into account the internal shortening compressive strains accompanied with the tensile longitudinal strains due to a torsional twist. The critical current of a twisted tape is given by the integration of the critical current densities corresponding to the strain distribution over the tape cross-section using axial strain data of the tape. The model is supported with experimental results of YBCO and BSCCO-2223 tapes. It has been also found that torsional twisting effects on the critical currents of a tape composing of the conventional lapped-tape cable and the twisted stacked-tape cable are described by the same equation as that of a twisted single tape.

  20. The critical current and irreversible magnetisation in UPt 3

    NASA Astrophysics Data System (ADS)

    Kambe, S.; Huxley, A. D.; Rodière, P.; Paulsen, C.; Flouquet, J.

    1999-01-01

    We have measured the field-dependence of critical current and magnetisation in the superconducting phase of a single crystal of UPt 3. At low temperatures the critical current shows a peak below Hc2, which is also seen in measurements of the magnetic hysterisis. The onset of the peak does not coincide with the transition between the B and C superconducting phases, which is consistent with measurements of the magnetic hysterisis.

  1. Non Pharmacological Cognitive EnhancersCurrent Perspectives

    PubMed Central

    Kumar, Kuldip; Anand, Kuljeet Singh

    2015-01-01

    Cognition refers to the mental processes involved in thinking, knowing, remembering, judging, and problem solving. Cognitive dysfunctions are an integral part of neuropsychiatric disorders as well as in healthy ageing. Cognitive Enhancers are molecules that help improve aspects of cognition like memory, intelligence, motivation, attention and concentration. Recently, Non Pharmacological Cognitive Enhancers have gained popularity as effective and safe alternative to various established drugs. Many of these Non Pharmacological Cognitive Enhancers seem to be more efficacious compared to currently available Pharmacological Cognitive Enhancers. This review describes and summarizes evidence on various Non Pharmacological Cognitive Enhancers such as physical exercise, sleep, meditation and yoga, spirituality, nutrients, computer training, brain stimulation, and music. We also discuss their role in ageing and different neuro-psychiatric disorders, and current status of Cochrane database recommendations. We searched the Pubmed database for the articles and reviews having the terms ‘non pharmacological and cognitive’ in the title, published from 2000 till 2014. A total of 11 results displayed, out of which 10 were relevant to the review. These were selected and reviewed. Appropriate cross-references within the articles along with Cochrane reviews were also considered and studied. PMID:26393186

  2. Non Pharmacological Cognitive Enhancers - Current Perspectives.

    PubMed

    Sachdeva, Ankur; Kumar, Kuldip; Anand, Kuljeet Singh

    2015-07-01

    Cognition refers to the mental processes involved in thinking, knowing, remembering, judging, and problem solving. Cognitive dysfunctions are an integral part of neuropsychiatric disorders as well as in healthy ageing. Cognitive Enhancers are molecules that help improve aspects of cognition like memory, intelligence, motivation, attention and concentration. Recently, Non Pharmacological Cognitive Enhancers have gained popularity as effective and safe alternative to various established drugs. Many of these Non Pharmacological Cognitive Enhancers seem to be more efficacious compared to currently available Pharmacological Cognitive Enhancers. This review describes and summarizes evidence on various Non Pharmacological Cognitive Enhancers such as physical exercise, sleep, meditation and yoga, spirituality, nutrients, computer training, brain stimulation, and music. We also discuss their role in ageing and different neuro-psychiatric disorders, and current status of Cochrane database recommendations. We searched the Pubmed database for the articles and reviews having the terms 'non pharmacological and cognitive' in the title, published from 2000 till 2014. A total of 11 results displayed, out of which 10 were relevant to the review. These were selected and reviewed. Appropriate cross-references within the articles along with Cochrane reviews were also considered and studied.

  3. Micromagnetic modeling of critical current oscillations in magnetic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Golovchanskiy, I. A.; Bol'ginov, V. V.; Stolyarov, V. S.; Abramov, N. N.; Ben Hamida, A.; Emelyanova, O. V.; Stolyarov, B. S.; Kupriyanov, M. Yu.; Golubov, A. A.; Ryazanov, V. V.

    2016-12-01

    In this work we propose and explore an effective numerical approach for investigation of critical current dependence on applied magnetic field for magnetic Josephson junctions with in-plane magnetization orientation. This approach is based on micromagnetic simulation of the magnetization reversal process in the ferromagnetic layer with introduced internal magnetic stiffness and subsequent reconstruction of the critical current value using total flux or reconstructed actual phase difference distribution. The approach is flexible and shows good agreement with experimental data obtained on Josephson junctions with ferromagnetic barriers. Based on this approach we have obtained a critical current dependence on applied magnetic field for rectangular magnetic Josephson junctions with high size aspect ratio. We have shown that the rectangular magnetic Josephson junctions can be considered for application as an effective Josephson magnetic memory element with the value of critical current defined by the orientation of magnetic moment at zero magnetic field. An impact of shape magnetic anisotropy on critical current is revealed and discussed. Finally, we have considered a curling magnetic state in the ferromagnetic layer and demonstrated its impact on critical current.

  4. Use of a Web Site to Enhance Criticality Safety Training

    SciTech Connect

    Huang, S T; Morman, J

    2003-08-04

    Currently, a website dedicated to enhancing communication and dissemination of criticality safety information is sponsored by the U.S. Department of Energy (DOE) Nuclear Criticality Safety Program (NCSP). This website was developed as part of the DOE response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 97-2, which reflected the need to make criticality safety information available to a wide audience. The website is the focal point for DOE nuclear criticality safety (NCS) activities, resources and references, including hyperlinks to other sites actively involved in the collection and dissemination of criticality safety information. The website is maintained by the Lawrence Livermore National Laboratory (LLNL) under auspices of the NCSP management. One area of the website contains a series of Nuclear Criticality Safety Engineer Training (NCSET) modules. During the past few years, many users worldwide have accessed the NCSET section of the NCSP website and have downloaded the training modules as an aid for their training programs. This trend was remarkable in that it points out a continuing need of the criticality safety community across the globe. It has long been recognized that training of criticality safety professionals is a continuing process involving both knowledge-based training and experience-based operations floor training. As more of the experienced criticality safety professionals reach retirement age, the opportunities for mentoring programs are reduced. It is essential that some method be provided to assist the training of young criticality safety professionals to replenish this limited human expert resource to support on-going and future nuclear operations. The main objective of this paper is to present the features of the NCSP website, including its mission, contents, and most importantly its use for the dissemination of training modules to the criticality safety community. We will discuss lessons learned and several ideas

  5. Enhancing m currents: a way out for neuropathic pain?

    PubMed

    Rivera-Arconada, Ivan; Roza, Carolina; Lopez-Garcia, Jose A

    2009-01-01

    Almost three decades ago, the M current was identified and characterized in frog sympathetic neurons (Brown and Adams, 1980). The years following this discovery have seen a huge progress in the understanding of the function and the pharmacology of this current as well as on the structure of the underlying ion channels. Therapies for a number of syndromes involving abnormal levels of excitability in neurons are benefiting from research on M currents. At present, the potential of M current openers as analgesics for neuropathic pain is under discussion. Here we offer a critical view of existing data on the involvement of M currents in pain processing. We believe that enhancement of M currents at the site of injury may become a powerful strategy to alleviate pain in some peripheral neuropathies.

  6. Current Pulses Momentarily Enhance Thermoelectric Cooling

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey; Fleurial, Jean-Pierre; Caillat, Thierry; Chen, Gang; Yang, Rong Gui

    2004-01-01

    The rates of cooling afforded by thermoelectric (Peltier) devices can be increased for short times by applying pulses of electric current greater than the currents that yield maximum steady-state cooling. It has been proposed to utilize such momentary enhancements of cooling in applications in which diode lasers and other semiconductor devices are required to operate for times of the order of milliseconds at temperatures too low to be easily obtainable in the steady state. In a typical contemplated application, a semiconductor device would be in contact with the final (coldest) somewhat taller stage of a multistage thermoelectric cooler. Steady current would be applied to the stages to produce steady cooling. Pulsed current would then be applied, enhancing the cooling of the top stage momentarily. The principles of operation are straightforward: In a thermoelectric device, the cooling occurs only at a junction at one end of the thermoelectric legs, at a rate proportional to the applied current. However, Joule heating occurs throughout the device at a rate proportional to the current squared. Hence, in the steady state, the steady temperature difference that the device can sustain increases with current only to the point beyond which the Joule heating dominates. If a pulse of current greater than the optimum current (the current for maximum steady cooling) is applied, then the junction becomes momentarily cooled below its lowest steady temperature until thermal conduction brings the resulting pulse of Joule heat to the junction and thereby heats the junction above its lowest steady temperature. A theoretical and experimental study of such transient thermoelectric cooling followed by transient Joule heating in response to current pulses has been performed. The figure presents results from one of the experiments. The study established the essential parameters that characterize the pulse cooling effect, including the minimum temperature achieved, the maximum

  7. Metacognitive Strategies that Enhance Critical Thinking

    ERIC Educational Resources Information Center

    Ku, Kelly Y. L.; Ho, Irene T.

    2010-01-01

    The need to cultivate students' use of metacognitive strategies in critical thinking has been emphasized in the related literature. The present study aimed at examining the role of metacognitive strategies in critical thinking. Ten university students with comparable cognitive ability, thinking disposition and academic achievement but with…

  8. Setup for fast-pulsed measurements of large critical currents

    NASA Astrophysics Data System (ADS)

    D'Ovidio, Claudio Alberto; Esparza, Daniel Antonio; Malachevsky, Maria Teresa

    2000-07-01

    We describe a set of equipments for pulsed measurements of transport critical currents in superconducting materials having a critical current of tens or hundreds of amperes. It is based on the appliance of an electrical current for a very short period of time, rapid enough to preserve the integrity of the current leads and to minimize the Joule effect. Power is applied to the wire-sample setup and the voltage drop is measured within seconds, with a resolution of the order of 10 nV. In this way the I- V characteristics can be obtained with a 1% error, if the 1 μV/ cm criterion is employed. The hardware is composed of three parts: the current pulse generator, a fast low-noise voltage amplifier and a PC with a DAC-ADC card. The data acquisition is achieved via an Assembler program.

  9. Electromigration kinetics and critical current of Pb-free interconnects

    SciTech Connect

    Lu, Minhua; Rosenberg, Robert

    2014-04-07

    Electromigration kinetics of Pb-free solder bump interconnects have been studied using a single bump parameter sweep technique. By removing bump to bump variations in structure, texture, and composition, the single bump sweep technique has provided both activation energy and power exponents that reflect atomic migration and interface reactions with fewer samples, shorter stress time, and better statistics than standard failure testing procedures. Contact metallurgies based on Cu and Ni have been studied. Critical current, which corresponds to the Blech limit, was found to exist in the Ni metallurgy, but not in the Cu metallurgy. A temperature dependence of critical current was also observed.

  10. Criticality and turbulence in a resistive magnetohydrodynamic current sheet.

    PubMed

    Klimas, Alexander J; Uritsky, Vadim M

    2017-02-01

    Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.

  11. Criticality and turbulence in a resistive magnetohydrodynamic current sheet

    NASA Astrophysics Data System (ADS)

    Klimas, Alexander J.; Uritsky, Vadim M.

    2017-02-01

    Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.

  12. Interlaboratory Comparisons of NbTi Critical Current Measurements

    SciTech Connect

    Godeke, A.; Turrioni, D.; Boutboul, T.; Cheggour, N.; Goodrich, L.F.; Ghosh, A.; Den Ouden, A.; Meinesz, M.

    2009-08-16

    We report on a multi-institute comparison of critical current data measured on a modern NbTi wire for the Large Hadron Collider (LHC), which has shown a standard deviation below 1% in critical current density spread in more than 1500 measurements. Interlaboratory comparisons on Nb{sub 3}Sn wires have shown ambiguities that could be attributable to strain related differences in critical current density, originating from differences in sample handling, reaction, and mounting techniques, or also to differences in the magnetic field and current calibrations between the institutes. A round robin test of a well characterized NbTi wire provides a baseline variance in critical current results that is presumed to be attributable only to differences in the characterization systems. Systematic differences on the order of 3.5% are found in the comparison. The most likely cause for the observed differences is a small diameter holder that brings the wire into a strain regime in which strain effects can no longer be ignored. A NbTi round robin test, when performed properly, will separate system differences from sample specific differences and provide laboratories with an opportunity to calibrate equipment against a standard measurement.

  13. Critical Current Measurements in Commercial Tapes, Coils, and Magnets.

    NASA Astrophysics Data System (ADS)

    Gubser, D. U.; Soulen, R. J., Jr.; Fuller-Mora, W. W.; Francavilla, T. L.

    1996-03-01

    We have measured a number of tapes, coils, and magnets produced by commercial vendors and determined their properties as functions of magnetic field and temperature. The tapes were measured at the National High Magnetic Field Laboratory in magnetic fields to 20 tesla and at temperatures of 4.2 K, 27 K, 65 K, and 77 K. For the tapes we report critical currents and current-voltage characteristics. Six inch diameter coils were measured at NRL in zero magnetic field. Critical currents, current-voltage characteristics, and reliability studies are reported for the coils. Larger 10 inch diameter coils, which are to be used in a 200 hp superconducting motor, were also measured and results will be presented. The talk will also review the status of the most recent tests of the superconducting motor.

  14. Critical current anistropy in NbTi cables

    SciTech Connect

    Garber, M.; Sampson, W.B.

    1984-01-01

    The short sample critical current of multifilamentary NbTi cables is usually measured in a magnetic field which is oriented perpendicular to the broad face of the cable. This is the same orientation that occurs at the equatorial turns of a cos theta type dipole magnet and is, therefore, usually specified in quality control short sample tests. It is generally found that the current density in cables is less than in wires. This degradation, as it is commonly called, may be as large as 15%. The effect is illustrated in a statistical way which shows the distribution of wire and cable results for the Colliding Beam Accelerator Project at BNL. The current densities were calculated using geometrical data given below. Some 200 cable and 750 wire tests are included in the normal curve distributions shown. The mean cable Jc is 14% lower than that of the wire. Similar results were obtained in previous work. In this note we present results of critical current measurements which are made with the applied magnetic field oriented parallel to the plane of the cable (still perpendicular to the direction of current flow) as well as perpendicular. It is found that the parallel critical current is generally larger than the perpendicular and is usually almost equal to that of the wires prior to cabling. The degradation is small for the parallel field orientation.

  15. Critical current studies of a HTS rectangular coil

    NASA Astrophysics Data System (ADS)

    Zhong, Z.; Chudy, M.; Ruiz, H. S.; Zhang, X.; Coombs, T.

    2017-05-01

    Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.

  16. Apparatus for measurement of critical current in superconductive tapes

    DOEpatents

    Coulter, J. Yates; DePaula, Raymond

    2002-01-01

    A cryogenic linear positioner which is primarily used for characterizing coated conductor critical current homogeneity at 75K is disclosed. Additionally, this tool can be used to measure the positional dependence of the coated conductor resistance at room temperature, and the room temperature resistance of the underlying YBCB coating without the overlaying protective cover of silver.

  17. Bolstering medical education to enhance critical care capacity in Cambodia.

    PubMed

    Albert, Tyler J; Fassier, Thomas; Chhuoy, Meng; Bounchan, Youttiroung; Tan, Sokhak; Ku, No; Chhor, Nareth; LoGerfo, James P; West, T Eoin

    2015-04-01

    The capacity to care for the critically ill has long been viewed as a fundamental element of established and comprehensive health care systems. Extending this capacity to health care systems in low- and middle-income countries is important given the burden of disease in these regions and the significance of critical care in overall health system strengthening. However, many practicalities of improving access and delivery of critical care in resource-limited settings have yet to be elucidated. We have initiated a program to build capacity for the care of critically ill patients in one low-income Southeast Asian country, Cambodia. We are leveraging existing international academic partnerships to enhance postgraduate critical care education in Cambodia. After conducting a needs assessment and literature review, we developed a three-step initiative targeting training in mechanical ventilation. First, we assessed and revised the current resident curriculum pertaining to mechanical ventilation. We addressed gaps in training, incorporated specific goals and learning objectives, and decreased the hours of lectures in favor of additional bedside training. Second, we are incorporating e-learning, e-teaching, and e-assessment into the curriculum, with both live, interactive and independent, self-paced online instruction. Third, we are developing a train-the-trainer program defined by bidirectional international faculty exchanges to provide hands-on, case-based, and bedside training to achieve competency-based outcomes. In targeting specific educational needs and a key population-the next generation of Cambodian intensivists-this carefully designed approach should address some existing gaps in the health care system and hopefully yield a lasting impact.

  18. Magnetically modulated critical current densities of Co/Nb hybrid

    NASA Astrophysics Data System (ADS)

    Li, Zhigang; Wang, Weike; Zhang, Li; Yang, Zhaorong; Tian, Mingliang; Zhang, Yuheng

    2015-12-01

    By tuning morphology and size of magnetic subsystem, ferromagnet-superconductor (F/S) hybrid system provides an effective way to modulate superconductivity due to the interaction between superconducting and magnetic-order parameters at the mesoscopic length scale. In this work, we report on investigations of critical current density in a large-area Co/Nb hybrid via facile colloidal lithography. Here, Co hexagon shell array as a magnetic template build on Nb film to modulate the critical current density. A novel superconducting transition has been observed in I-V curve with two metastable transition states: double-transition and binary-oscillation-transition states. Importantly, such unusual behavior can be adjusted by temperature, magnetic field and contact area of F/S. Such hybrid film has important implications for understanding the role of magnetic subsystem modulating superconductivity, as well as applied to low-energy electronic devices such as superconducting current fault limiters.

  19. Using innovative strategies to enhance health promotion critical literacy.

    PubMed

    Harvard-Hinchberger, Patricia Ann

    2006-01-01

    New and improved teaching strategies are required to engage students in meaningful coursework to enhance critical thinking, problem-solving, and decision-making. Advanced practice nurses are responsible for producing creative and realistic health promotion and disease prevention proposals, which have the potential for implementation as part of a course requirement. Unfortunately, these proposals often lack the sophistication and critical literacy necessary to effectively communicate the student's knowledge and understanding of their ideas. Infusing critical thinking and critical literacy into all curricula is one of the stated goals of the university-wide "Enhancing Critical Literacy Project." This learning-centered program serves as the platform for this article and the early adoption of selected student assessment techniques. Concepts presented as part of a critical literacy enhancement seminar provides the theoretical underpinning of this approach and is designed to encourage student innovation through creative writing. A detailed description of the various strategies and their implementation are discussed.

  20. Critical Fields, Thermally Activated Transport, and Critical Current Density of Beta-FeSe Single Crystals

    SciTech Connect

    Petrovic, C.; Lei, H.; Hu, R.

    2011-07-27

    We present critical fields, thermally activated flux flow (TAFF), and critical current density of tetragonal phase {beta}-FeSe single crystals. The upper critical fields H{sub c2}(T) for H {parallel} (101) and H {perpendicular} (101) are nearly isotropic and are likely governed by the Pauli limiting process. The large Ginzburg-Landau parameter {Kappa} {approx} 72.3(2) indicates that {beta}-FeSe is a type-II superconductor with a smaller penetration depth than in Fe(Te, Se). The resistivity below T{sub c} follows Arrhenius TAFF behavior. For both field directions below 30 kOe, single-vortex pinning is dominant, whereas collective creep becomes important above 30 kOe. The critical current density J{sub c} from M-H loops for H {parallel} (101) is about five times larger than for H {perpendicular} (101), yet much smaller than in other iron-based superconductors.

  1. Negative correlation between enhanced crossover temperature and fluctuation-free critical current of the second switch in Bi2Sr2CaCu2O{}_{8+\\delta } intrinsic Josephson junction

    NASA Astrophysics Data System (ADS)

    Nomura, Y.; Okamoto, R.; Kakeya, I.

    2017-10-01

    We have investigated the switching dynamics of the first and second switches in intrinsic Josephson junctions (IJJs) of Bi2Sr2CaCu2O{}8+δ with different maximum Josephson current density J c to reveal the doping evolution of interaction between IJJs. For the second switch, the crossover temperature between temperature-independent switching similar to quantum tunneling and thermally activated switching {T}2{nd}* is remarkably higher than that for the first switch. Moreover, {T}2{nd}* slightly decreases with increasing J c, which violates the conventional relation between the crossover temperature and the critical current density. These features can be explained not by a change in the Josephson coupling energy but by a change in the charging energy of the Josephson junction. We argue that the capacitive coupling model explains the increase in the fluctuation in the quantum regime of the second switch and the anti-correlation between {T}2{nd}* and J c. Furthermore, inductive coupling does not contribute to these peculiar phenomena in the switching dynamics of stacked IJJs.

  2. Critical current density in railgrun accelerators with composite electrodes

    SciTech Connect

    Stankevich, S.V.; Shvetsov, G.A.

    1995-11-01

    The present paper is intended to study the possibilities of increasing the critical current density in railgun accelerators using composite electrodes of various structure. Before proceeding to the analysis this way, it should be noted that the requirements for materials selected for the rails go beyond the values of the current density. In real practice account should be taken of the technological problems concerned with the production of the electrodes, as well as of those concerned with the railgun performance, including the multishot life.

  3. Thin-film Josephson junctions with alternating critical current density

    NASA Astrophysics Data System (ADS)

    Moshe, Maayan; Kogan, V. G.; Mints, R. G.

    2009-01-01

    We study the field dependence of the maximum current Im(H) in narrow edge-type thin-film Josephson junctions with alternating critical current density. Im(H) is evaluated within nonlocal Josephson electrodynamics taking into account the stray fields that affect the difference of the order-parameter phases across the junction and therefore the tunneling currents. We find that the phase difference along the junction is proportional to the applied field, depends on the junction geometry, but is independent of the Josephson critical current density gc , i.e., it is universal. An explicit form for this universal function is derived for small currents through junctions of the width W≪Λ , the Pearl length. The result is used to calculate Im(H) . It is shown that the maxima of Im(H)∝1/H and the zeros of Im(H) are equidistant but only in high fields. We find that the spacing between zeros is proportional to 1/W2 . The general approach is applied to calculate Im(H) for a superconducting quantum interference device with two narrow edge-type junctions. If gc changes sign periodically or randomly, as it does in grain boundaries of high- Tc materials and superconductor-ferromagnet-superconductor heterostructures, Im(H) not only acquires the major side peaks, but due to nonlocality the following peaks decay much slower than in bulk junctions.

  4. Enhancing Critical Thinking in High School English and Theatre Arts.

    ERIC Educational Resources Information Center

    Baker, Tonya; Delmonico, Janine

    This report describes a program for enhancing critical thinking skills within the high school English and theatre classrooms. The targeted population consists of high school students in two multicultural middle-class suburbs of Chicago. The lack of critical thinking in the classroom was documented through data garnered from teacher observations,…

  5. Using the Enhanced Critical Incident Technique in Counselling Psychology Research

    ERIC Educational Resources Information Center

    Butterfield, Lee D.; Borgen, William A.; Maglio, Asa-Sophia T.; Amundson, Norman E.

    2009-01-01

    This article describes an effective approach to using the Enhanced Critical Incident Technique (ECIT) research method based on Flanagan's (1954) Critical Incident Technique (CIT). It begins with an overview of the CIT, how to decide if it is the appropriate methodology to use, then, using a recent CIT study as an example, discusses Flanagan's five…

  6. Transport critical current of MgB2 wires: pulsed current of varying rate compared to direct current method

    NASA Astrophysics Data System (ADS)

    See, K. W.; Xu, X.; Horvat, J.; Cook, C. D.; Dou, S. X.

    2011-10-01

    The measurement of transport critical current (Ic) for MgB2 wires and tapes has been investigated with two different techniques, the conventional four-probe arrangement with direct current (DC) power source, and a tailored triangle pulse at different rates of current change. The DC method has been widely used and practiced by various groups, but suffers from inevitable heating effects when high currents are used at low magnetic fields. The pulsed current method has no heating effects, but the critical current can depend on the rate of the current change (dI/dt) in the pulse. Our pulsed current measurements with varying dI/dt show that the same values of Ic are obtained as with the DC method, but without the artifacts of heating. Our method is particularly useful at low field regions which are often inaccessible by DC methods. We also performed a finite element method (FEM) analysis to obtain the time dependent heat distribution in MgB2 due to the electric potential produced at the current contacts to the superconducting sample and its gradient around the contacts. This gradient is defined as the current transfer length (CTL) of the samples and leads to Joule heating of the wire near the contacts. The FEM results provide further evidence of the limitation of the DC method in obtaining high transport critical current.

  7. Enhancing critical thinking in clinical practice: implications for critical and acute care nurses.

    PubMed

    Shoulders, Bridget; Follett, Corrinne; Eason, Joyce

    2014-01-01

    The complexity of patients in the critical and acute care settings requires that nurses be skilled in early recognition and management of rapid changes in patient condition. The interpretation and response to these events can greatly impact patient outcomes. Nurses caring for these complex patients are expected to use astute critical thinking in their decision making. The purposes of this article were to explore the concept of critical thinking and provide practical strategies to enhance critical thinking in the critical and acute care environment.

  8. Simulators of Superconductor Critical Current: Design, Characteristics, and Applications

    PubMed Central

    Goodrich, L. F.; Srivastava, A. N.; Stauffer, T. C.

    1991-01-01

    The superconductor simulator is an electronic circuit that emulates the extremely nonlinear voltage-current characteristic (the basis of a critical-current measurement) of a superconductor along with its other major electrical properties. Three different types of simulators have been constructed: the passive, active, and hybrid simulator. The passive simulator has the fewest circuit components and offers the least amount of versatility, while the active and hybrid simulators offer more versatility and consequently have more components. Design, characteristics, and applications of the superconductor simulator along with a summary of features are presented. These simulators are high precision instruments, and are thus useful for establishing the integrity of part of a superconductor measurement system. They are potentially useful for testing the measurement method and data acquisition and analysis routines. The 50 A simulator provides critical-current precision of 0.1% at a 1 μV signal. This is significantly higher than the precision of a superconducting standard reference material. The superconductor simulator could significantly benefit superconductor measurement applications that require high-precision quality assurance. PMID:28184143

  9. Distribution of critical current density for magnetic domain wall motion

    NASA Astrophysics Data System (ADS)

    Fukami, S.; Yamanouchi, M.; Nakatani, Y.; Kim, K.-J.; Koyama, T.; Chiba, D.; Ikeda, S.; Kasai, N.; Ono, T.; Ohno, H.

    2014-05-01

    The bit-to-bit distribution of a critical current density for magnetic domain wall (DW) motion is studied using Co/Ni wires with various wire widths (ws). The distribution inherently decreases with the w, and the ratio of standard deviation to average is 9.8% for wires with w = 40 nm. It is found that a self-distribution within one device, which is evaluated through repeated measurement, is a dominant factor in the bit-to-bit distribution. Micromagnetic simulation reveals that the distribution originates from DW configuration, which varies with device size.

  10. Critical currents of Bi:2212 doped by Fe and Ni

    NASA Astrophysics Data System (ADS)

    Ilonca, G.; Yang, T. R.; Pop, A. V.; Stiufiuc, G.; Stiufiuc, R.; Lung, C.

    2003-05-01

    Measurements of the irreversible magnetization, ac susceptibility and electrical resistivity of Bi2Sr2Ca1-xErx(Cu1-yMy)2O8+d bulk are reported. Low concentrations of the doping elements increase the pinning force density and shift the magnetic irreversibility line towards higher fields. The intergranular critical current density was determined from ac susceptibility data by varying the field amplitude Hac in the range from 0.4 to 1000 A/m and from the irreversible part of magnetization using Bean’s model. The results were discussed in terms of SIS- and SNS-type models for granular superconductors.

  11. A Novel Short Sample Mounting Fixture for Critical Current Measurements

    NASA Astrophysics Data System (ADS)

    Chesny, Ph.; Fazilleau, Ph.; Gheller, J.-M.

    2006-04-01

    One of the essential characteristics of a superconducting wire is its critical current, defined as the maximal current at given temperature and magnetic field for which it remains superconducting. In order to make measurements from 1.8 K to 4.2 K and up to 1200 A at very low pressure, we studied and manufactured an original short sample mount; it is made of are two co-axial current leads (46 mm and 24 mm of external diameter) terminating with two Nb3Sn buss bars. Annular space has been dimensioned in order to minimize the pressure drop for sub atmospheric operations (use of a 600 m3/h roots at 15 mbar with adjustable speed). The LHe supply is achieved with a transfer line covered with Kapton insulation. It is located inside the internal current lead and equipped with a JT valve. The sample to be measured, V A M A S type (Versailles project on Advanced MAterials and Standards), is assembled at the low end of the two buss bars. The quality of the electrical contacts is ensured by simple tightening. This paper presents the current lead computations, the test facility design and realization as well as the first measurements achieved with the short sample mounting fixture.

  12. Ketamine: Current applications in anesthesia, pain, and critical care

    PubMed Central

    Kurdi, Madhuri S.; Theerth, Kaushic A.; Deva, Radhika S.

    2014-01-01

    Ketamine was introduced commercially in 1970 with the manufacturer's description as a “rapidly acting, nonbarbiturate general anesthetic” and a suggestion that it would be useful for short procedures. With the help of its old unique pharmacological properties and newly found beneficial clinical properties, ketamine has survived the strong winds of time, and it currently has a wide variety of clinical applications. It's newly found neuroprotective, antiinflammatory and antitumor effects, and the finding of the usefulness of low dose ketamine regimens have helped to widen the clinical application profile of ketamine. The present article attempts to review the current useful applications of ketamine in anesthesia, pain and critical care. It is based on scientific evidence gathered from textbooks, journals, and electronic databases. PMID:25886322

  13. Radial magnetic field reduction to improve critical current of HTS solenoid

    NASA Astrophysics Data System (ADS)

    Kang, Joonsun; Lee, Joon-Ho; Nah, Wansoo; Kim, Dong-Hun; Park, Il-Han; Joo, Jinho

    2002-08-01

    To enhance the critical current of superconducting coil, the magnetic field experienced by superconductor strand (tape) in a coil should be minimized. This is true for both low Tc and high Tc superconductors, and the difference between the two lies in their isotropic/anisotropic characteristics. In this paper, we propose a shape optimization algorithm to reduce radial magnetic field components in HTS solenoid to enhance critical current of a solenoid. In the algorithm, the finite element method and the continuum shape design sensitivity formula were employed. The objective function is to minimize the maximum radial magnetic fields in a solenoid with a constraint of constant solenoid volume condition. In this paper, the details on algorithm are introduced and the calculated optimized shapes are presented.

  14. Hysteresis in Transport Critical-Current Measurements of Oxide Superconductors.

    PubMed

    Goodrich, L F; Stauffer, T C

    2001-01-01

    We have investigated magnetic hysteresis in transport critical-current (I c) measurements of Ag-matrix (Bi,Pb)2Sr2Ca2Cu3O10- x (Bi-2223) and AgMg-matrix Bi2Sr2CaCu2O8+ x (Bi-2212) tapes. The effect of magnetic hysteresis on the measured critical current of high temperature superconductors is a very important consideration for every measurement procedure that involves more than one sweep of magnetic field, changes in field angle, or changes in temperature at a given field. The existence of this hysteresis is well known; however, the implications for a measurement standard or interlaboratory comparisons are often ignored and the measurements are often made in the most expedient way. A key finding is that I c at a given angle, determined by sweeping the angles in a given magnetic field, can be 17 % different from the I c determined after the angle was fixed in zero field and the magnet then ramped to the given field. Which value is correct is addressed in the context that the proper sequence of measurement conditions reflects the application conditions. The hysteresis in angle-sweep and temperature-sweep data is related to the hysteresis observed when the field is swept up and down at constant angle and temperature. The necessity of heating a specimen to near its transition temperature to reset it to an initial state between measurements at different angles and temperatures is discussed.

  15. Critical current density and current distribution in field cooled superconducting disks

    NASA Astrophysics Data System (ADS)

    Bernstein, Pierre; Noudem, Jacques; Dupont, Louis

    2016-07-01

    Applications of bulk superconductors concern superconducting motors and generators, the levitation of vehicles, the generation of high magnetic fields with small size cryo-magnets, the shielding of magnetic fields and other applications. For all of them, it is essential to determine the critical current density, and to understand the effect of the shape and size of the bulks on the properties of interest. In this contribution, we show how the combination of levitation force and trapped field measurements allow one to determine the characteristics and the potential performances of superconducting disks using analytical modeling. As examples of applications we detail the effects of the magnetizing field and of the bulk sheet critical current density on the levitation force. An important result of the reported measurements is that in field-cooled samples, the shielding currents possibly do not flow along the whole thickness of the disks.

  16. Critical current statistical distribution and voltage-current characteristics in superconducting wires

    NASA Astrophysics Data System (ADS)

    Manfreda, G.; Bellina, F.; Volpini, G.

    2014-12-01

    Type II superconductors, like Nb-Ti and Nb3Sn, play a central role in the design of magnets for fusion and particle accelerators. These materials show experimentally a longitudinal electric field which depends in a nonlinear way on the current. Different models have been developed to analyse this phenomenon, mainly based on the role of defects and inhomogeneities in the superconducting sample. Some of these models are based on a statistical description of the critical current distribution along the wire, that can explain the presence of a curvature in the volt-ampere characteristic (VAC). In the work we have studied the impact of different critical current statistical distributions on the VAC and their implications, and compared some experimental data with our theoretical results.

  17. Giant increase in critical current density of KxFe2-ySe₂ single crystals

    DOE PAGES

    Lei, Hechang; Petrovic, C.

    2011-12-28

    The critical current density Jabc of KxFe2-ySe₂ single crystals can be enhanced by more than one order of magnitude, up to ~2.1×10⁴ A/cm² by the post annealing and quenching technique. A scaling analysis reveals the universal behavior of the normalized pinning force as a function of the reduced field for all temperatures, indicating the presence of a single vortex pinning mechanism. The main pinning sources are three-dimensional (3D) point-like normal cores. The dominant vortex interaction with pinning centers is via spatial variations in critical temperature Tc (“δTc pinning”).

  18. Microstructural and crystallographic imperfections of MgB{sub 2} superconducting wire and their correlation with the critical current density

    SciTech Connect

    Shahabuddin, Mohammed; Alzayed, Nasser S.; Oh, Sangjun; Choi, Seyong; Maeda, Minoru; Hata, Satoshi; Shimada, Yusuke; Hossain, Md Shahriar Al; Kim, Jung Ho

    2014-01-15

    A comprehensive study of the effects of structural imperfections in MgB{sub 2} superconducting wire has been conducted. As the sintering temperature becomes lower, the structural imperfections of the MgB{sub 2} material are increased, as reflected by detailed X-ray refinement and the normal state resistivity. The crystalline imperfections, caused by lattice disorder, directly affect the impurity scattering between the π and σ bands of MgB{sub 2}, resulting in a larger upper critical field. In addition, low sintering temperature keeps the grain size small, which leads to a strong enhancement of pinning, and thereby, enhanced critical current density. Owing to both the impurity scattering and the grain boundary pinning, the critical current density, irreversibility field, and upper critical field are enhanced. Residual voids or porosities obviously remain in the MgB{sub 2}, however, even at low sintering temperature, and thus block current transport paths.

  19. What happens in Josephson junctions at high critical current densities

    NASA Astrophysics Data System (ADS)

    Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Caruso, R.; Galletti, L.; Montemurro, D.; Jouault, B.; Campagnano, G.; Arani, H. F.; Longobardi, L.; Parlato, L.; Pepe, G. P.; Rotoli, G.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.

    2017-07-01

    The impressive advances in material science and nanotechnology are more and more promoting the use of exotic barriers and/or superconductors, thus paving the way to new families of Josephson junctions. Semiconducting, ferromagnetic, topological insulator and graphene barriers are leading to unconventional and anomalous aspects of the Josephson coupling, which might be useful to respond to some issues on key problems of solid state physics. However, the complexity of the layout and of the competing physical processes occurring in the junctions is posing novel questions on the interpretation of their phenomenology. We classify some significant behaviors of hybrid and unconventional junctions in terms of their first imprinting, i.e., current-voltage curves, and propose a phenomenological approach to describe some features of junctions characterized by relatively high critical current densities Jc. Accurate arguments on the distribution of switching currents will provide quantitative criteria to understand physical processes occurring in high-Jc junctions. These notions are universal and apply to all kinds of junctions.

  20. Caffeine and cardiovascular diseases: critical review of current research.

    PubMed

    Zulli, Anthony; Smith, Renee M; Kubatka, Peter; Novak, Jan; Uehara, Yoshio; Loftus, Hayley; Qaradakhi, Tawar; Pohanka, Miroslav; Kobyliak, Nazarii; Zagatina, Angela; Klimas, Jan; Hayes, Alan; La Rocca, Giampiero; Soucek, Miroslav; Kruzliak, Peter

    2016-06-01

    Caffeine is a most widely consumed physiological stimulant worldwide, which is consumed via natural sources, such as coffee and tea, and now marketed sources such as energy drinks and other dietary supplements. This wide use has led to concerns regarding the safety of caffeine and its proposed beneficial role in alertness, performance and energy expenditure and side effects in the cardiovascular system. The question remains "Which dose is safe?", as the population does not appear to adhere to the strict guidelines listed on caffeine consumption. Studies in humans and animal models yield controversial results, which can be explained by population, type and dose of caffeine and low statistical power. This review will focus on comprehensive and critical review of the current literature and provide an avenue for further study.

  1. Critical current densities in Bi-2223 sinter forgings.

    SciTech Connect

    Balachandran, U.; Fisher, B. L.; Goretta, K. C.; Harris, N. C.; Murayama, N.

    1999-07-23

    (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (Bi-2223) bars, prepared by sinter forging, exhibited good phase purity and strong textures with the c axes of the Bi-2223 grains parallel to the forging direction. The initial zero-field critical current density (J{sub c}) of the bars was 10{sup 3} A/cm{sup 2}, but because the forged bars were uncoated, this value decreased with repeated thermal cycling. J{sub c} as a function of applied magnetic field magnitude and direction roughly followed the dependencies exhibited by Ag-sheathed Bi-2223 tapes, but the forged bars were more strongly dependent on field strength and less strongly dependent on field angle.

  2. Current diagnostic approaches to invasive candidiasis in critical care settings.

    PubMed

    Pemán, Javier; Zaragoza, Rafael

    2010-09-01

    For the specialist, the management of invasive candidiasis infections, from diagnosis to selection of the therapeutic protocol, is often a challenge. Although early diagnosis and treatment are associated with a better prognosis, apart from cases with positive blood cultures or fluid/tissue biopsy, diagnosis is neither sensitive nor specific, relying on many different factors, clinical and laboratory findings but there is certainly a need for the specific markers in this disease. Recently, new serodiagnostic assays as Candida albicans germ-tube antibodies or (1,3)-beta-D-glucan detection and molecular techniques for the detection of fungal-specific DNA have been developed with controversial results in critical care setting. One of the main features in diagnosis is the evaluation of risk factor for infection, which will identify patients in need of preemptive or empirical treatment. Clinical scores were built from those risk factors. For these reasons, an approach to the new diagnosis tools in the clinical mycology laboratory and an analysis of the new prediction rules and its application situations has been made. Currently, the combination of prediction rules and non-culture microbiological tools could be the clue for improving the diagnosis and prognosis of invasive fungal infections in critically ill patients.

  3. A statistical study of current-sheet formation above solar active regions based on selforganized criticality

    NASA Astrophysics Data System (ADS)

    Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M.; Anastasiadis, A.; Toutountzi, A.

    2013-09-01

    We treat flaring solar active regions as physical systems having reached the self-organized critical state. Their evolving magnetic configurations in the low corona may satisfy an instability criterion, related to the excession of a specific threshold in the curl of the magnetic field. This imposed instability criterion implies an almost zero resistivity everywhere in the solar corona, except in regions where magnetic-field discontinuities and. hence, local currents, reach the critical value. In these areas, current-driven instabilities enhance the resistivity by many orders of magnitude forming structures which efficiently accelerate charged particles. Simulating the formation of such structures (thought of as current sheets) via a refined SOC cellular-automaton model provides interesting information regarding their statistical properties. It is shown that the current density in such unstable regions follows power-law scaling. Furthermore, the size distribution of the produced current sheets is best fitted by power laws, whereas their formation probability is investigated against the photospheric magnetic configuration (e.g. Polarity Inversion Lines, Plage). The average fractal dimension of the produced current sheets is deduced depending on the selected critical threshold. The above-mentioned statistical description of intermittent electric field structures can be used by collisional relativistic test particle simulations, aiming to interpret particle acceleration in flaring active regions and in strongly turbulent media in astrophysical plasmas. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  4. Enhancement of pumped current in quantum dots

    NASA Astrophysics Data System (ADS)

    Ramos, Juan Pablo; Foa, Luis; Apel, Victor Marcelo; Orellana, Pedro

    A direct current usually requires the application of a non-zero potential difference between source and drain, but on nanoscale systems (NSS) it is possible to obtain a non-zero current while the potential difference is zero. The effect is known as quantum charge pumping (QCP) and it is due to the interference provided by the existence of a time-dependent potential (TDP). QCP can be generated by a TDP in non-adiabatic limit. An example of this is a system composed by a ring with a dot embedded on it, under the application of an oscillating TDP. By the action of a magnetic field across the system, a pumped current is generated, since time reversal symmetry is broken. Decoherence is crucial, both from a scientific and technological point of view. In NSS it is expected that decoherence, among others things, decreases the QCP amplitude. In this context, we study what is the effect of a bath on the pumped current in our system. We find that for certain values of magnetic flux, the bath-system produce amplification of the pumped current.

  5. Enhancing critical thinking in the preceptorship experience in nursing education.

    PubMed

    Myrick, Florence; Yonge, Olive

    2004-02-01

    To date no research has been conducted to examine the process used in the preceptorship experience to enhance critical thinking at the graduate level. This study provides data that could revitalize the preceptor/learner relationship and in turn influence future preceptorship programmes in graduate nursing education. The purpose of this study was to examine the preceptorship experience and its role in the enhancement of critical thinking in graduate nursing education. A grounded theory approach was employed, through semi-structured, tape-recorded interviews. Overall, 45 interviews were completed with graduate nursing students ranging in age from 26 to 53 years, and master's and doctorally prepared preceptors who ranged in age from 47 to 58 years. In addition, a journal of personal reflections was kept by each of the researchers. Analysis of data included the process of open coding, theoretical coding, selective coding, reduction and comparison. Data revealed that a process, designated The Relational Process, occurred in the preceptorship experience to enhance the critical thinking ability of graduate nursing students. This process was found to be a complex, ongoing interpersonal dynamic between the graduate student and assigned preceptor. The relational process that emerged from this study indicates that specific preceptor behaviours are pivotal to the enhancement of critical thinking of graduate nursing students and ultimately impact on the success or failure of the preceptorship experience.

  6. Enhancement in the transport critical current density J{sub c} in YBa{sub 2}Cu{sub 3}O{sub 7−δ} added with an insulating nano crystalline YBa{sub 2}HfO{sub 5.5} perovskite

    SciTech Connect

    Rejith, P. P.; Vidya, S.; Thomas, J. K.; Solomon, Sam

    2014-01-28

    When a magnetic field is applied to type II superconductors, such as YBa{sub 2}Cu{sub 3}0{sub 7−δ} (YBCO), the flux quanta penetrate the material as a regular array of vortices. However when transport currents are applied, they act to move these vortices, thus lowers the critical current density (J{sub c}) as well as destroying superconductivity. The development of microstructures made of YBCO materials has enabled engineers to increase the critical current density, within Type II materials by introducing flux pinning centres into the material. The microstructure and flux pinning properties of YBa{sub 2}Cu{sub 3}O{sub 7−δ} system with varying levels (0-5 wt. %) of a nano perovskite ceramic insulator; YBa{sub 2}HfO{sub 5.5} addition was studied in detail. Orthorhombic YBa{sub 2}Cu{sub 3}O{sub 7−δ} powder was prepared through conventional solid state route and a modified combustion method was used for synthesizing nanocrystalline YBa{sub 2}HfO{sub 5.5}. The structure and microstructure of the samples examined by X-ray diffraction and scanning electron microscopy showed that YBa{sub 2}HfO{sub 5.5} and YBCO remained unreacted even at higher processing temperature without deteriorating the superconducting properties. The scanning electron microscope image shows that YBa{sub 2}HfO{sub 5.5} forms an electrical-network between grains. These observations suggest that the YBa{sub 2}HfO{sub 5.5} addition to the Y-123-compounds improve the electrical connection between superconducting grains and substantial improvements in the relative electrical transport properties of the composites. The variation of sintering temperature, density, critical transition temperature (T{sub c}) and magnetic field dependence of critical current density (J{sub c}) of YBa{sub 2}Cu{sub 3}O{sub 7−δ} having different proportions of YBa{sub 2}HfO{sub 5.5} in the matrix were also studied in detail. It is found that the addition of these elements considerably enhances the flux pinning

  7. Current trends in developing medical students' critical thinking abilities.

    PubMed

    Harasym, Peter H; Tsai, Tsuen-Chiuan; Hemmati, Payman

    2008-07-01

    Health care is fallible and prone to diagnostic and management errors. The major categories of diagnostic errors include: (1) no-fault errors--the disease is present but not detected; (2) system errors--a diagnosis is delayed or missed because of the imperfection in the health care system; and (3) cognitive errors--a misdiagnosis from faulty data collection or interpretation, flawed reasoning, or incomplete knowledge. Approximately one third of patient problems are mismanaged because of diagnostic errors. Part of the solution lies in improving the diagnostic skills and critical thinking abilities of physicians as they progress through medical school and residency training. However, this task is challenging since both medical problem-solving and the learning environments are complex and not easily understood. There are many interacting variables including the motivation of the medical student (e.g. deep versus surface learning), the acquisition and evolution of declarative and conditional knowledge (e.g. reduced, dispersed, elaborated, scheme, and scripted), problem-solving strategies (e.g. procedural knowledge-guessing, hypothetical deductive, scheme inductive, and pattern recognition), curricular models (e.g. apprenticeship, discipline-based, body system-based, case-based, clinical presentation-based), teaching strategies (e.g. teaching general to specific or specific to general), the presented learning opportunities (PBL versus scheme inductive PBL), and the nature of the learning environment (e.g. modeling critical thinking and expert problem-solving). This paper elaborates on how novices differ from experts and how novices can be educated in a manner that enhances their level of expertise and diagnostic abilities as they progress through several years of medical training.

  8. Correlation of superconductor strand, cable, and dipole critical currents in CBA magnets

    SciTech Connect

    Tannenbaum, M.J.; Garber, M.; Sampson, W.B.

    1982-01-01

    A calibration between vendor critical current data for 0.0268'' diameter superconductor strand supplied to Fermilab, and the BNL 10/sup -12/..cap omega..cm critical current specification is presented. Vendor critical current data for over 400 Fermilab type billets are shown, both as supplied by the vendor and converted to BNL units. Predictions of cable critical current are made using the sum of the critical currents of the 23 strands, where all strands from the same half billet are assigned the same critical current. The measured critical current shows excellent correlation to the predicted value and is approximately 14 +- 2 percent below it. Colliding Beam Accelerator (CBA) full length dipoles reach the conductor critical current limit, essentially without training. Magnet performance is predictable from the measured critical current of a short sample of cable to within 2%.

  9. Correlation of superconductor strand, cable and dipole critical currents in ISABELLE magnets

    SciTech Connect

    Tannenbaum, M.J.; Garber, M.; Sampson, W.B.

    1982-01-01

    A calibration between vendor critical current data for 0.0268'' diameter superconductor strand supplied to Fermilab, and the BNL 10/sup -12/ OMEGA cm critical current specification is presented. Vendor critical current data for over 400 Fermilab type billets are shown, both as supplied by the vendor and converted to BNL units. Predictions of cable critical current are made using the sum of the critical currents of the 23 strands, where all strands from the same half billet are assigned the same critical current. The measured cable critical current shows excellent correlation to the predicted value and is approximately 14 +- 2% below it. ISABELLE full length dipoles reach the conductor critical current limit, essentially without training. Magnet performance is predictable from the measured critical current of a short sample of cable to within 2%.

  10. Phase dynamics of low critical current density YBCO Josephson junctions

    NASA Astrophysics Data System (ADS)

    Massarotti, D.; Stornaiuolo, D.; Rotoli, G.; Carillo, F.; Galletti, L.; Longobardi, L.; Beltram, F.; Tafuri, F.

    2014-08-01

    High critical temperature superconductors (HTS) based devices can have impact in the study of the phase dynamics of Josephson junctions (JJs) thanks to the wide range of junction parameters they offer and to their unconventional properties. Measurements of current-voltage characteristics and of switching current distributions constitute a direct way to classify different regimes of the phase dynamics and of the transport, also in nontrivial case of the moderately damped regime (MDR). MDR is going to be more and more common in JJs with advances in nanopatterning superconductors and synthesizing novel hybrid systems. Distinctive signatures of macroscopic quantum tunneling and of thermal activation in presence of different tunable levels of dissipation have been detected in YBCO grain boundary JJs. Experimental data are supported by Monte Carlo simulations of the phase dynamics, in a wide range of temperatures and dissipation levels. This allows us to quantify dissipation in the MDR and partially reconstruct a phase diagram as guideline for a wide range of moderately damped systems.

  11. MOS: A Critical Tool for Current and Future Radio Surveys

    NASA Astrophysics Data System (ADS)

    Smith, D. J. B.

    2016-10-01

    Since radio continuum observations are not affected by dust obscuration, they are of immense potential diagnostic power as cosmological probes and for studying galaxy formation and evolution out to high redshifts. However, the power-law nature of radio frequency spectra ensures that ancillary spectroscopic information remains critical for studying the properties of the faint radio sources being detected in rapidly-increasing numbers on the pathway to the Square Kilometre Array. In this contribution, I present some of the key scientific motivations for exploiting the immense synergies between radio continuum observations and multi-object spectroscopic surveys. I review some of the ongoing efforts to obtain the spectra necessary to harness the huge numbers of star-forming galaxies and AGN that current and future radio surveys will detect. I also touch on the WEAVE-LOFAR survey, which will use the WEAVE spectrograph currently being built for the William Herschel Telescope to target hundreds of thousands of low-frequency sources selected from the LOFAR continuum surveys.

  12. Magnetic field dependence of critical currents in superconducting polycrystals

    SciTech Connect

    Kugel, K.I.; Lisovskaya, T.Y. ); Mints, R.G. )

    1992-02-10

    The authors study the dependence of critical current j{sub c} on magnetic field H in superconducting polycrystals which are considered as system of superconducting crystallites (isotropic or anisotropic) with Josephson contacts between them. Isotropy or anisotropy of contacts depends on the orientation of their crystallographic axes relatively to edges of contact planes. In this paper it is shown that for a system of randomly oriented isotropic contacts, the dependence j{sub c}(H) in a relatively wide field range has the asymptotic form j{sub c} {approximately} (InH)/H{sup 2}. This differs drastically from j{sub c}(H) for single contacts. Anisotropy effects due to large differences in London penetration depth {lambda} values corresponding to external magnetic field directed along different axes are analyzed in detail. It is shown that for uniaxal crystals with {lambda}{sub 1} = {lambda}{sub 2} {lt} {lambda}{sub 3}, this anisotropy leads to the relation j{sub c} {approximately} {radical}{lambda}{sub 3}/{lambda}{sub 1} for chaotic orientation of crystallites. The form of j{sub c}(H) curves for two different orientations of the magnetic field relatively to the transport current through the sample is found.

  13. Enhancement of superconductivity near a nematic quantum critical point.

    PubMed

    Lederer, S; Schattner, Y; Berg, E; Kivelson, S A

    2015-03-06

    We consider a low T_{c} metallic superconductor weakly coupled to the soft fluctuations associated with proximity to a nematic quantum critical point (NQCP). We show that (1) a BCS-Eliashberg treatment remains valid outside of a parametrically narrow interval about the NQCP, (2) the symmetry of the superconducting state (d wave, s wave, p wave) is typically determined by the noncritical interactions, but T_{c} is enhanced by the nematic fluctuations in all channels, and (3) in 2D, this enhancement grows upon approach to criticality up to the point at which the weak coupling approach breaks down, but in 3D, the enhancement is much weaker.

  14. Significant enhancement of the in-field critical current density of the MgB2 superconductor through codoping of nano-TiC with nano-SiC

    NASA Astrophysics Data System (ADS)

    Vinod, K.; Varghese, Neson; Roy, S. B.; Syamaprasad, U.

    2009-05-01

    Nanoparticles of two carbides, SiC and TiC, having different reactivities with the Mg/B are doped into the MgB2 system. These carbides are added in mono-and codoping conditions through the in situ solid state reaction, and the structural and superconducting properties are studied. The results show distinct modifications in the structural and superconducting properties by the two dopants. SiC causes considerable C substitution at the B site and the formation of intragrain inclusions, whereas TiC remains unreacted and does not cause any substitution. The codoped samples show significantly enhanced JC(H) performance compared to the undoped and monodoped samples. Compared to the undoped sample, the enhancement of JC is more than two orders of magnitude at 15 K for fields >7 T for the best sample. The results of JC(H) performance of the samples are discussed.

  15. Current anti-doping policy: a critical appraisal.

    PubMed

    Kayser, Bengt; Mauron, Alexandre; Miah, Andy

    2007-03-29

    Current anti-doping in competitive sports is advocated for reasons of fair-play and concern for the athlete's health. With the inception of the World Anti Doping Agency (WADA), anti-doping effort has been considerably intensified. Resources invested in anti-doping are rising steeply and increasingly involve public funding. Most of the effort concerns elite athletes with much less impact on amateur sports and the general public. We review this recent development of increasingly severe anti-doping control measures and find them based on questionable ethical grounds. The ethical foundation of the war on doping consists of largely unsubstantiated assumptions about fairness in sports and the concept of a "level playing field". Moreover, it relies on dubious claims about the protection of an athlete's health and the value of the essentialist view that sports achievements reflect natural capacities. In addition, costly antidoping efforts in elite competitive sports concern only a small fraction of the population. From a public health perspective this is problematic since the high prevalence of uncontrolled, medically unsupervised doping practiced in amateur sports and doping-like behaviour in the general population (substance use for performance enhancement outside sport) exposes greater numbers of people to potential harm. In addition, anti-doping has pushed doping and doping-like behaviour underground, thus fostering dangerous practices such as sharing needles for injection. Finally, we argue that the involvement of the medical profession in doping and anti-doping challenges the principles of non-maleficience and of privacy protection. As such, current anti-doping measures potentially introduce problems of greater impact than are solved, and place physicians working with athletes or in anti-doping settings in an ethically difficult position. In response, we argue on behalf of enhancement practices in sports within a framework of medical supervision. Current anti

  16. Current anti-doping policy: a critical appraisal

    PubMed Central

    Kayser, Bengt; Mauron, Alexandre; Miah, Andy

    2007-01-01

    Background Current anti-doping in competitive sports is advocated for reasons of fair-play and concern for the athlete's health. With the inception of the World Anti Doping Agency (WADA), anti-doping effort has been considerably intensified. Resources invested in anti-doping are rising steeply and increasingly involve public funding. Most of the effort concerns elite athletes with much less impact on amateur sports and the general public. Discussion We review this recent development of increasingly severe anti-doping control measures and find them based on questionable ethical grounds. The ethical foundation of the war on doping consists of largely unsubstantiated assumptions about fairness in sports and the concept of a "level playing field". Moreover, it relies on dubious claims about the protection of an athlete's health and the value of the essentialist view that sports achievements reflect natural capacities. In addition, costly antidoping efforts in elite competitive sports concern only a small fraction of the population. From a public health perspective this is problematic since the high prevalence of uncontrolled, medically unsupervised doping practiced in amateur sports and doping-like behaviour in the general population (substance use for performance enhancement outside sport) exposes greater numbers of people to potential harm. In addition, anti-doping has pushed doping and doping-like behaviour underground, thus fostering dangerous practices such as sharing needles for injection. Finally, we argue that the involvement of the medical profession in doping and anti-doping challenges the principles of non-maleficience and of privacy protection. As such, current anti-doping measures potentially introduce problems of greater impact than are solved, and place physicians working with athletes or in anti-doping settings in an ethically difficult position. In response, we argue on behalf of enhancement practices in sports within a framework of medical supervision

  17. Implementation and evaluation of critical thinking strategies to enhance critical thinking skills in Middle Eastern nurses.

    PubMed

    Simpson, Elaine; Courtney, Mary

    2008-12-01

    The purpose of this study was to develop, implement and evaluate critical thinking strategies to enhance critical thinking skills in Middle Eastern nurses. Critical thinking strategies such as questioning, debate, role play and small group activity were developed and used in a professional development programme, which was trialled on a sample of Middle Eastern nurses (n = 20), to promote critical thinking skills, encourage problem solving, development of clinical judgment making and care prioritization in order to improve patient care and outcomes. Classroom learning was transformed from memorization to interaction and active participation. The intervention programme was successful in developing critical thinking skills in both the nurse educators and student nurses in this programme. This programme successfully integrated critical thinking strategies into a Middle Eastern nursing curriculum. Recommendations are as follows: (1) utilize evidence-based practice and stem questions to encourage the formulation of critical thinking questions; (2) support the needs of nurse educators for them to effectively implement teaching strategies to foster critical thinking skills; and (3) adopt creative approaches to (i) transform students into interactive participants and (ii) open students' minds and stimulate higher-level thinking and problem-solving abilities.

  18. Management of polycythaemia vera: a critical review of current data.

    PubMed

    McMullin, Mary F; Wilkins, Bridget S; Harrison, Claire N

    2016-02-01

    Polycythaemia vera (PV) is a chronic blood cancer; its clinical features are dominated by myeloproliferation (erythrocytosis, often leucocytosis and/or thrombocytosis) and a tendency for thrombosis and transformation to myelofibrosis or acute myeloid leukaemia. In the past 10 years the pathophysiology of this condition has been defined as JAK/STAT pathway activation, almost always due to mutations in JAK2 exons 12 or 14 (JAK2 V617F). In the same time period our understanding of the optimal management of PV has expanded, most recently culminating in the approval of JAK inhibitors for the treatment of PV patients who are resistant or intolerant to therapy with hydroxycarbamide. It has also been demonstrated that life expectancy for many patients with PV is not normal, nor is their quality of life. We critically explore these findings and discuss their impact. In addition, we highlight persisting gaps in our current management strategy; for example, what is the optimal first line cytoreductive therapy and, indeed, which patients need cytoreductive drugs.

  19. Vibration effect on magnetization and critical current density of superconductors

    NASA Astrophysics Data System (ADS)

    Golovchanskiy, Igor A.; Pan, Alexey V.; George, Jonathan; Wells, Frederick S.; Fedoseev, Sergey A.; Rozenfeld, Anatoly

    2016-07-01

    In this work the effect of vibrations on critical current density (J c ) of superconductors has been studied. The vibrations are shown to affect J c of all types of superconductors during their measurements, employing a vibrating sample magnetometer (VSM). Increasing vibration frequency (f) and/or amplitude (A) leads to progressive reduction of J c as a function of magnetic field (B a ). The effect of vibrations is substantially stronger in thin films. It leads to development of unexpected kinks on {J}c({B}a) curves. Analysis of magnetization loops and relaxation of magnetization in YBCO films revealed that the vibration effect can be treated as the effective reduction of pinning potential. The asymmetry of the vibration effect in ascending and descending B a is observed, indicating differences in free energy of the corresponding vortex structures. Thermal effects induced by vibrations with large f and A are shown to have rather insignificant influence, while the vibrational vortex dynamics exhibit a strong impact. The irreversibility field ({B}{{irr}}) is shown to be instrumentally defined, and its value depends on VSM settings. In addition, the practical importance of {B}{{irr}} for J c modeling is demonstrated.

  20. Ethical debates: enhancing critical thinking in nursing students.

    PubMed

    Candela, Lori; Michael, Susan Rush; Mitchell, Shae

    2003-01-01

    The use of classroom debates can be helpful in teaching ethical content that is often nebulous and difficult for students to comprehend and apply. Debates enhance critical thinking skills through researching issues and developing a stance that can be supported in scientific literature. The authors describe a student debate project involving ethical issues with chronically ill clients. Many students changed their views during the debates. Students evaluated the debates as a positive learning experience.

  1. A critical evaluation of the current "p-value controversy".

    PubMed

    Wellek, Stefan

    2017-09-01

    This article has been triggered by the initiative launched in March 2016 by the Board of Directors of the American Statistical Association (ASA) to counteract the current p-value focus of statistical research practices that allegedly "have contributed to a reproducibility crisis in science." It is pointed out that in the very wide field of statistics applied to medicine, many of the problems raised in the ASA statement are not as severe as in the areas the authors may have primarily in mind, although several of them are well-known experts in biostatistics and epidemiology. This is mainly due to the fact that a large proportion of medical research falls under the realm of a well developed body of regulatory rules banning the most frequently occurring misuses of p-values. Furthermore, it is argued that reducing the statistical hypotheses tests nowadays available to the class of procedures based on p-values calculated under a traditional one-point null hypothesis amounts to ignoring important developments having taken place and going on within the statistical sciences. Although hypotheses testing is still an indispensable part of the statistical methodology required in medical and other areas of empirical research, there is a large repertoire of methods based on different paradigms of inference that provide ample options for supplementing and enhancing the methods of data analysis blamed in the ASA statement for causing a crisis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Current and Future Critical Issues in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Navaz, Homayun K.; Dix, Jeff C.

    1998-01-01

    The objective of this research was to tackle several problems that are currently of great importance to NASA. In a liquid rocket engine several complex processes take place that are not thoroughly understood. Droplet evaporation, turbulence, finite rate chemistry, instability, and injection/atomization phenomena are some of the critical issues being encountered in a liquid rocket engine environment. Pulse Detonation Engines (PDE) performance, combustion chamber instability analysis, 60K motor flowfield pattern from hydrocarbon fuel combustion, and 3D flowfield analysis for the Combined Cycle engine were of special interest to NASA. During the summer of 1997, we made an attempt to generate computational results for all of the above problems and shed some light on understanding some of the complex physical phenomena. For this purpose, the Liquid Thrust Chamber Performance (LTCP) code, mainly designed for liquid rocket engine applications, was utilized. The following test cases were considered: (1) Characterization of a detonation wave in a Pulse Detonation Tube; (2) 60K Motor wall temperature studies; (3) Propagation of a pressure pulse in a combustion chamber (under single and two-phase flow conditions); (4) Transonic region flowfield analysis affected by viscous effects; (5) Exploring the viscous differences between a smooth and a corrugated wall; and (6) 3D thrust chamber flowfield analysis of the Combined Cycle engine. It was shown that the LTCP-2D and LTCP-3D codes are capable of solving complex and stiff conservation equations for gaseous and droplet phases in a very robust and efficient manner. These codes can be run on a workstation and personal computers (PC's).

  3. Charge and current reservoirs for electric and magnetic field enhancement.

    PubMed

    Wang, Dongxing; Yang, Tian; Crozier, Kenneth B

    2010-05-10

    Two optical antenna designs incorporating structures termed charge and current reservoirs are proposed to realize localized high electric and magnetic field enhancement, respectively. Simulation results show that the fan-rod electric antenna design combines the advantages of the rod antenna and the bowtie antenna, and has higher field enhancement than either. The performance of a loop shaped magnetic antenna consisting of a pair of metallic strips with offsets is also verified numerically, with high magnetic field enhancement being observed in the simulation. In both of the designs, the concepts of charge and current reservoirs contribute to high electric and magnetic field enhancement.

  4. Criticality safety enhancements for SCALE 6.2 and beyond

    SciTech Connect

    Rearden, Bradley T.; Bekar, Kursat B.; Celik, Cihangir; Clarno, Kevin T.; Dunn, Michael E.; Hart, Shane W.; Ibrahim, Ahmad M.; Johnson, Seth R.; Langley, Brandon R.; Lefebvre, Jordan P.; Lefebvre, Robert A.; Marshall, William J.; Mertyurek, Ugur; Mueller, Don; Peplow, Douglas E.; Perfetti, Christopher M.; Petrie Jr, Lester M.; Thompson, Adam B.; Wiarda, Dorothea; Wieselquist, William A.; Williams, Mark L.

    2015-09-01

    SCALE is a widely used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. Since 1980, regulators, industry, and research institutions around the world have relied on SCALE for nuclear safety analysis and design. SCALE 6.2 provides several new capabilities and significant improvements in many existing features for criticality safety analysis. Enhancements are realized for nuclear data; multigroup resonance self-shielding; continuous-energy Monte Carlo analysis for sensitivity/uncertainty analysis, radiation shielding, and depletion; and graphical user interfaces. An overview of these capabilities is provided in this paper, and additional details are provided in several companion papers.

  5. Critical current calculations in high temperature superconductors from levitation force measurements

    NASA Astrophysics Data System (ADS)

    Gazinszky, T.; Bánkuti, J.

    1997-04-01

    The critical current density in high temperature superconductor grains were taken from magnetic levitation data. The nature of this current is given by the critical state model and calculations were made for different models, supposing field dependence. The regimes in which the critical state is valid are also determined.

  6. A route for a strong increase of critical current in nanostrained iron-based superconductors

    SciTech Connect

    Ozaki, Toshinori; Li, Qiang; Wu, Lijun; Zhang, Cheng; Jaroszynski, Jan; Si, Weidong; Zhou, Juan; Zhu, Yimei

    2016-10-06

    The critical temperature Tc and the critical current density Jc determine the limits to large-scale superconductor applications. Superconductivity emerges at Tc. The practical current-carrying capability, measured by Jc, is the ability of defects in superconductors to pin the magnetic vortices, and that may reduce Tc. Simultaneous increase of Tc and Jc in superconductors is desirable but very difficult to realize. Here we demonstrate a route to raise both Tc and Jc together in iron-based superconductors. By using low-energy proton irradiation, we create cascade defects in FeSe0.5Te0.5 films. Tc is enhanced due to the nanoscale compressive strain and proximity effect, whereas Jc is doubled under zero field at 4.2 K through strong vortex pinning by the cascade defects and surrounding nanoscale strain. At 12 K and above 15 T, one order of magnitude of Jc enhancement is achieved in both parallel and perpendicular magnetic fields to the film surface.

  7. A route for a strong increase of critical current in nanostrained iron-based superconductors

    DOE PAGES

    Ozaki, Toshinori; Li, Qiang; Wu, Lijun; ...

    2016-10-06

    The critical temperature Tc and the critical current density Jc determine the limits to large-scale superconductor applications. Superconductivity emerges at Tc. The practical current-carrying capability, measured by Jc, is the ability of defects in superconductors to pin the magnetic vortices, and that may reduce Tc. Simultaneous increase of Tc and Jc in superconductors is desirable but very difficult to realize. Here we demonstrate a route to raise both Tc and Jc together in iron-based superconductors. By using low-energy proton irradiation, we create cascade defects in FeSe0.5Te0.5 films. Tc is enhanced due to the nanoscale compressive strain and proximity effect, whereasmore » Jc is doubled under zero field at 4.2 K through strong vortex pinning by the cascade defects and surrounding nanoscale strain. At 12 K and above 15 T, one order of magnitude of Jc enhancement is achieved in both parallel and perpendicular magnetic fields to the film surface.« less

  8. A route for a strong increase of critical current in nanostrained iron-based superconductors

    PubMed Central

    Ozaki, Toshinori; Wu, Lijun; Zhang, Cheng; Jaroszynski, Jan; Si, Weidong; Zhou, Juan; Zhu, Yimei; Li, Qiang

    2016-01-01

    The critical temperature Tc and the critical current density Jc determine the limits to large-scale superconductor applications. Superconductivity emerges at Tc. The practical current-carrying capability, measured by Jc, is the ability of defects in superconductors to pin the magnetic vortices, and that may reduce Tc. Simultaneous increase of Tc and Jc in superconductors is desirable but very difficult to realize. Here we demonstrate a route to raise both Tc and Jc together in iron-based superconductors. By using low-energy proton irradiation, we create cascade defects in FeSe0.5Te0.5 films. Tc is enhanced due to the nanoscale compressive strain and proximity effect, whereas Jc is doubled under zero field at 4.2 K through strong vortex pinning by the cascade defects and surrounding nanoscale strain. At 12 K and above 15 T, one order of magnitude of Jc enhancement is achieved in both parallel and perpendicular magnetic fields to the film surface. PMID:27708268

  9. A route for a strong increase of critical current in nanostrained iron-based superconductors.

    PubMed

    Ozaki, Toshinori; Wu, Lijun; Zhang, Cheng; Jaroszynski, Jan; Si, Weidong; Zhou, Juan; Zhu, Yimei; Li, Qiang

    2016-10-06

    The critical temperature Tc and the critical current density Jc determine the limits to large-scale superconductor applications. Superconductivity emerges at Tc. The practical current-carrying capability, measured by Jc, is the ability of defects in superconductors to pin the magnetic vortices, and that may reduce Tc. Simultaneous increase of Tc and Jc in superconductors is desirable but very difficult to realize. Here we demonstrate a route to raise both Tc and Jc together in iron-based superconductors. By using low-energy proton irradiation, we create cascade defects in FeSe0.5Te0.5 films. Tc is enhanced due to the nanoscale compressive strain and proximity effect, whereas Jc is doubled under zero field at 4.2 K through strong vortex pinning by the cascade defects and surrounding nanoscale strain. At 12 K and above 15 T, one order of magnitude of Jc enhancement is achieved in both parallel and perpendicular magnetic fields to the film surface.

  10. Stable superconducting magnet. [high current levels below critical temperature

    NASA Technical Reports Server (NTRS)

    Boom, R. W. (Inventor)

    1967-01-01

    Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.

  11. On the origin of critical temperature enhancement in atomically thin superconductors

    NASA Astrophysics Data System (ADS)

    Talantsev, E. F.; Crump, W. P.; Island, J. O.; Xing, Ying; Sun, Yi; Wang, Jian; Tallon, J. L.

    2017-06-01

    Recent experiments showed that thinning gallium, iron selenide and 2H tantalum disulfide to single/several monoatomic layer(s) enhances their superconducting critical temperatures. Here, we characterize these superconductors by extracting the absolute values of the London penetration depth, the superconducting energy gap, and the relative jump in specific heat at the transition temperature from their self-field critical currents. Our central finding is that the enhancement in transition temperature for these materials arises from the opening of an additional superconducting gap, while retaining a largely unchanged ‘bulk’ superconducting gap. Literature data reveals that ultrathin niobium films similarly develop a second superconducting gap. Based on the available data, it seems that, for type-II superconductors, a new superconducting band appears when the film thickness becomes smaller than the out-of-plane coherence length. The same mechanism may also be the cause of enhanced interface superconductivity.

  12. Postgraduate Research Supervision: A Critical Review of Current Practice

    ERIC Educational Resources Information Center

    McCallin, Antoinette; Nayar, Shoba

    2012-01-01

    Changes in the funding and delivery of research programmes at the university level have, in recent years, resulted in significant changes to research supervision. This paper critically reviews key influences effecting postgraduate supervision. Analysis draws on literature spanning 2000-2010 to determine the appropriateness of traditional models of…

  13. [Current aspects of diagnostics of hepatic dysfunction in critically ill].

    PubMed

    Gonnert, F; Bauer, M; Kortgen, A

    2012-10-01

    Hepatic dysfunction may develop in critically ill patients in the course of extrahepatic diseases such as sepsis and is frequently limiting prognosis. Conventional "static" laboratory parameters assess hepatocellular damage, synthetic function or cholestasis, providing informations about (differential) diagnostic aspects, while their significance to assess rapid changes in flow and function in the critical care setting is limited. In contrast, quantitative (or "dynamic") liver function tests, such as measurement of plasma disappearance rate of indocyanine green (PDRICG) or 13C-methacetin metabolism, assess specific metabolic and/or excretory function of the liver together with sinusoidal perfusion at the time of measurement and can detect liver dysfunction early in the course of critical illness. In addition, PDRICG demonstrated prognostic significance, albeit, severity of canalicular excretory dysfunction might be underestimated. For chronic liver disease, scoring systems, such as the Child-Turcotte-Pugh-score or the MELD, were developed to assess severity of disease and probability of survival. Scoring systems are also used for graft allocation. Combining scoring systems with dynamic tests holds the potential to improve predictive value, e.g. in the transplant setting.

  14. Large critical current density improvement in Bi-2212 wires through the groove-rolling process

    NASA Astrophysics Data System (ADS)

    Malagoli, A.; Bernini, C.; Braccini, V.; Romano, G.; Putti, M.; Chaud, X.; Debray, F.

    2013-04-01

    Recently there has been a growing interest in Bi-2212 superconductor round wire for high magnetic field use despite the fact that an increase of the critical current is still needed to boost its successful use in such applications. Recent studies have demonstrated that the main obstacle to current flow, especially in long wires, is the residual porosity inside these powder-in-tube processed conductors that develops from bubble agglomeration when the Bi-2212 melts. In this work we tried to overcome this issue affecting the wire densification by changing the deformation process. Here we show the effects of groove rolling versus the drawing process on the critical current density JC and on the microstructure. In particular, groove-rolled multifilamentary wires show a JC increased by a factor of about 3 with respect to drawn wires prepared with the same Bi-2212 powder and architecture. We think that this approach in the deformation process is able to produce the required improvements both because the superconducting properties are enhanced and because it makes the fabrication process faster and cheaper.

  15. Critical Language Awareness Part I: A Critical Review of Three Current Approaches to Language Awareness.

    ERIC Educational Resources Information Center

    Clark, Romy; And Others

    1990-01-01

    Argues for a critical language awareness (LA) and for LA to be closely linked to the development of learners' practical language capabilities. The paper offers a critical evaluation of three major programmatic statements about LA: Committee for Linguistics in Education (1985); National Congress on Languages in Education (1985); and Hawkins (1984).…

  16. Critical Current in YBCO Coated Conductors in the Presence of a Macroscopic Defect (POSTPRINT)

    DTIC Science & Technology

    2010-03-01

    AFRL-RZ-WP-TP-2010-2084 CRITICAL CURRENT IN YBCO COATED CONDUCTORS IN THE PRESENCE OF A MACROSCOPIC DEFECT (POSTPRINT) Milan Polak and...CRITICAL CURRENT IN YBCO COATED CONDUCTORS IN THE PRESENCE OF A MACROSCOPIC DEFECT (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c...display, or disclose the work. 14. ABSTRACT We have studied the effects of localized defects in the YBCO coated conductors on the critical current. The

  17. Critical Current Oscillations of Josephson Junctions Containing PdFe Nanomagnets (Author’s Manuscript)

    DTIC Science & Technology

    2016-11-17

    ar X iv :1 60 9. 01 33 0v 1 [ co nd -m at .s up r- co n] 5 S ep 2 01 6 Critical Current Oscillations of Josephson Junctions Containing PdFe...shaped Josephson junctions containing Pd97Fe3 layers of varying thickness. By applying an external magnetic field, the critical current of the junctions...are found to follow characteristic Fraunhofer patterns. The maximum value of the critical current , extracted from the Fraunhofer patterns, oscillates

  18. Long-lasting enhancement of ACh receptor currents by lysophospholipids.

    PubMed

    Ikeuchi, Y; Nishizaki, T; Matsuoka, T; Sumikawa, K

    1997-05-01

    Lysophosphatidylcholine (LysoPtdCho) and lysophosphatidylethanolamine (LysoPtdEtn), which are formed by phospholipase A2-catalyzed hydrolysis of phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn), respectively, are proposed to be involved in protein kinase C (PKC) activation. Their physiological significance, however, remains unclear. We examined the effects of lysoPtdCho and lysoPtdEtn on acetylcholine (ACh) receptor currents using oocytes expressing Torpedo nicotinic ACh receptors. LysoPtdCho enhanced the currents in a washing time- and dose-dependent manner (10 nM-1 microM), reaching a maximum of 191% at 20 min after treatment. The currents were enhanced to a lesser extent at higher concentrations, and instead, inhibited to 81% at 10 microM. Likewise, lysoPtdEtn also potentiated the currents to 200% at 10 microM, although its dose-dependent curve shifted to right as compared with that of lysoPtdCho. The current potentiation was blocked by a PKC inhibitor, PKC inhibitor peptide (PKCI), or removal of extracellular Ca2+. In addition, lysoPtdCho and lysoPtdEtn enhanced the currents in mutant ACh receptors lacking PKC phosphorylation sites on the alpha and delta subunits. These results suggest that lysophospholipids such as lysoPtdCho and lysoPtdEtn potentiated ACh receptor currents by Ca2+-dependent PKC activation, but that this effect did not require PKC phosphorylation of the ACh receptor.

  19. Neural correlates of metacognition: A critical perspective on current tasks.

    PubMed

    Insabato, Andrea; Pannunzi, Mario; Deco, Gustavo

    2016-12-01

    Humans have a remarkable ability to reflect upon their behavior and mental processes, a capacity known as metacognition. Recent neurophysiological experiments have attempted to elucidate the neural correlates of metacognition in other species. Despite this increased attention, there is still no operational definition of metacognition and the ability of behavioral tasks to reflect metacognition is the subject of debate. The most widely used task for studying metacognition in animals, the uncertain-option task, has been criticized because it can be solved by simple associative mechanisms. Here we propose a broad perspective that generalizes those critiques to another task, post-decision wagering. Moreover, we extend this critical view to account for recent neurophysiological evidence. We argue these tasks are simple enough that any animal could solve them using very simple mechanisms such as sensory-motor associations. In this case, it is impossible to know whether all animals are metacognitive, or if the tasks are simply not appropriate. Therefore, we suggest using better defined concepts until a suitable task for metacognition is available.

  20. Critical reflections on the currently leading definition of sustainable employability.

    PubMed

    Fleuren, Bram Bi; de Grip, Andries; Jansen, Nicole Wh; Kant, Imjert; Zijlstra, Fred Rh

    2016-06-01

    the labor market to maintain economic welfare (1). Moreover, as a consequence of population aging (2-6), longevity, rapid changes in technology (7, 8) and changes in the nature of work (1), both the need to promote sustainable employability of individuals in society and the complexity to succeed in doing so increase even further. Only recently, van der Klink et al provided the first definition of the concept in the international scientific literature (1, p74): "Sustainable employability means that throughout their working lives, workers can achieve tangible opportunities in the form of a set of capabilities. They also enjoy the necessary conditions that allow them to make a valuable contribution through their work, now and in the future, while safeguarding their health and welfare. This requires, on the one hand, a work context that facilitates this for them and, on the other, the attitude and motivation to exploit these opportunities." This definition is accompanied by an equally recent operationalization of SE as a set of capabilities (9). Moreover, the definition itself also appeared in an earlier Dutch publication (10), which other international publications about SE most commonly refer to [ie, in comparison with other definitions in the non-international (eg, Dutch) literature] (11-13). As mentioned, the present paper provides a critical reflection on van der Klink et al's aforementioned definition of SE (1). Merits Van der Klink et al's definition of SE (1) has three important merits. First, SE is seen as a multidimensional construct. It is presented as consisting of a broad set of opportunities for employees to create value for themselves and for their employer that cover various aspects of working. Moreover, the individual's health and well-being as well as attitudinal and motivational aspects are included in the definition as well. This acknowledgement of the multidimensionality of SE is favorable, as it illustrates the complexity of the construct and of what

  1. Critical appraisal. Current usage of glutaraldehyde/HEMA.

    PubMed

    Boksman, Leendert Len; Swift, Edward J

    2011-12-01

    The use of glutaraldehyde/2-hydroxyethylmethacrylate (HEMA) combinations has been recommended for routine use in restorative dentistry by many authors and opinion leaders. Clinical restorative sites are colonized by bacteria that can contribute to postoperative sensitivity or recurrent caries. The structure of dentin allows for fluid conductance, which has been identified by Brännström as the cause of dentin sensitivity and as well, its water content challenges short- and long-term adhesion. The glutaraldehyde/HEMA combination is stated to be antimicrobial, a flocculating agent that strengthens collagen, and an agent that can create tubular occlusion, thereby reducing postoperative sensitivity by limiting fluid movement without affecting the strength of bonding or adhesive cements. This Critical Appraisal reviews five publications that deal with the various issues and clinical challenges described above, and provides suggestions for additional reading. A Bottom Line summary is provided.

  2. Raising Relational Critical Consciousness to Enhance Empathy in Clinical Hypnosis.

    PubMed

    Vargas, H Luis

    2016-01-01

    Empathic involvement theory suggests that a trance-like experience occurs when a cross-relational empathic connection is achieved. The empathically-laden relational phenomenon is thought to enhance hypnosis. Empathic involvement theory suggests hypnotizables are highly empathic. By the same token, the relational empathic connection necessitates a highly empathic practitioner of hypnosis. In the United States, where values of individualism are thought to be socially embedded and internalized, practitioners of hypnosis and clients alike may be impeded by an individually oriented worldview to empathically connect with others. Raising a relational critical consciousness is promoted as a way to increase sensitivity to the marginalization of relationships, limit empathic-effort burn-out, and promote cross-relational empathic connection.

  3. Current diagnosis and treatments for critical congenital heart defects

    PubMed Central

    ZENG, ZHANDONG; ZHANG, HONGWEI; LIU, FENGLI; ZHANG, NING

    2016-01-01

    Congenital heart defects (CHD) affect approximately 7% of infants, and account for 3% of all infant deaths. CHD is most often caused by the defects associated with ductus arteriosus, which is a vessel that usually closes shortly after birth. The types of CHD include tetralogy of fallot, hypoplastic left heart syndrome, pulmonary atresia, total anomalous pulmonary venous return, transposition of great arteries, tricuspid atresia and truncus arteriosus. There are some risk factors that can increase the chance of a fetus developing CHD such as prematurity, an existing CHD in a first-degree relative, genetic syndromes, infections in utero, maternal drug consumptions and disorders. CHD is diagnosed is through different techniques including pulse oximetry, echocardiograms and physical exams. In this review, we examined the current incidence of CHD, the risk factors associated with CHD, the current methods of diagnosis and surgical options used to repair the defects. PMID:27168772

  4. High Critical Current in Metal Organic Derived YBCO Films

    DTIC Science & Technology

    2010-10-31

    Report 3 BACKGROUND The Second Generation (2G) high temperature superconducting (HTS) YBCO wire is a versatile, potentially transformational...transformers, fault current limiters, superconducting magnetic energy storage, and power transmission lines [ 1 ] require improvement in the performance of 2G...commercialization of 2G superconducting wire. The obvious route to higher Ic is to increase the thickness, t, of the YBa2Cu3O7-x (YBCO) layer

  5. Simulation study of the critical current density of YBa2Cu3O7 ceramics

    NASA Astrophysics Data System (ADS)

    Cai, Zhi-Xiong; Welch, David O.

    1992-02-01

    A two-dimensional Josephson-junction-array model is used to study the effect of grain boundaries on the critical current density of YBa2Cu3O7 superconducting ceramics. The model represents a network of superconducting grains with a distribution of tilt angles θ. Each grain boundary has a critical current density Jc(θ) and normal-state resistance R(θ). The current-voltage characteristics are calculated numerically for different tilt-angle distributions. The scaling law and statistics of extremes, introduced by Duxbury, Beale, and Leath for general breakdown behavior, based on the most critical defect (normal region) in the network, are tested and found to be accurate for the predicted critical-current distribution of random samples. When the applied current is larger than but close to its critical value, there is a periodic V(t) with discrete power spectra. When the applied current gets larger, chaotic behavior appears with nearly continuous power spectra.

  6. Enhancement of the Bootstrap Current in a Tokamak Pedestal

    SciTech Connect

    Kagan, Grigory; Catto, Peter J.

    2010-07-23

    The strong radial electric field in a subsonic tokamak pedestal modifies the neoclassical ion parallel flow velocity, as well as the radial ion heat flux. Existing experimental evidence of the resulting alteration in the poloidal flow of a trace impurity is discussed. We then demonstrate that the modified parallel ion flow can noticeably enhance the pedestal bootstrap current when the background ions are in the banana regime. Only the coefficient of the ion temperature gradient drive term is affected. The revised expression for the pedestal bootstrap current is presented. The prescription for inserting the modification into any existing banana regime bootstrap current expression is given.

  7. Enhancement of the Bootstrap Current in a Tokamak Pedestal

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory; Catto, Peter J.

    2010-07-01

    The strong radial electric field in a subsonic tokamak pedestal modifies the neoclassical ion parallel flow velocity, as well as the radial ion heat flux. Existing experimental evidence of the resulting alteration in the poloidal flow of a trace impurity is discussed. We then demonstrate that the modified parallel ion flow can noticeably enhance the pedestal bootstrap current when the background ions are in the banana regime. Only the coefficient of the ion temperature gradient drive term is affected. The revised expression for the pedestal bootstrap current is presented. The prescription for inserting the modification into any existing banana regime bootstrap current expression is given.

  8. Core Stability in Athletes: A Critical Analysis of Current Guidelines.

    PubMed

    Wirth, Klaus; Hartmann, Hagen; Mickel, Christoph; Szilvas, Elena; Keiner, Michael; Sander, Andre

    2017-03-01

    Over the last two decades, exercise of the core muscles has gained major interest in professional sports. Research has focused on injury prevention and increasing athletic performance. We analyzed the guidelines for so-called functional strength training for back pain prevention and found that programs were similar to those for back pain rehabilitation; even the arguments were identical. Surprisingly, most exercise specifications have neither been tested for their effectiveness nor compared with the load specifications normally used for strength training. Analysis of the scientific literature on core stability exercises shows that adaptations in the central nervous system (voluntary activation of trunk muscles) have been used to justify exercise guidelines. Adaptations of morphological structures, important for the stability of the trunk and therefore the athlete's health, have not been adequately addressed in experimental studies or in reviews. In this article, we explain why the guidelines created for back pain rehabilitation are insufficient for strength training in professional athletes. We critically analyze common concepts such as 'selective activation' and training on unstable surfaces.

  9. Critical current of an inhomogeneous superconductor as a percolation-breakdown phenomenon

    NASA Astrophysics Data System (ADS)

    Leath, P. L.; Tang, W.

    1989-04-01

    A percolation model for the critical current in inhomogeneous superconductors is introduced. The model is a network of randomly configured superconducting (concentration p) and normal (concentration 1-p) bonds on a lattice. Each superconducting bond has a critical current ic above which it becomes a normal Ohmic resistor. The current distribution in the superconducting regions is solved using the linearized Landau-Ginzburg equations for a network of wires as proposed by de Gennes. The current distribution in the normal regions is solved using Kirchoff's laws. The critical current and the voltage-current relations are studied numerically in two dimensions on a square lattice, and comparisons are made with recent voltage-current experimental data on high-Tc superconductors. The scaling concepts and statistics of extremes introduced by Duxbury, Leath, and Beale (DLB) for general breakdown behavior, based on the most critical defect (normal region) in the network, are tested and found to be accurate for the scale-size dependence of the critical current and for the predicted critical-current distribution of random samples. In particular, it appears that the critical current goes to zero logarithmically in the thermodynamic limit, as proposed by DLB.

  10. Doubled critical current density in Bi-2212 round wires by reduction of the residual bubble density

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Starch, W. L.; Hannion, M.; Kametani, F.; Trociewitz, U. P.; Hellstrom, E. E.; Larbalestier, D. C.

    2011-08-01

    We have recently shown that the gas present in the only ~ 70% dense filaments of as-drawn Bi-2212 wire agglomerates into large bubbles that fill the entire filament diameter during the melt phase of the heat treatment. Once formed, these bubbles never disappear, although they can be bridged by 2212 grains formed on cooling. In order to test the effect of these bubbles on the critical current Ic, we increased the density of the filaments after drawing using 2 GPa of cold isostatic pressure, finding that the bubble density and size were greatly reduced and that Ic could be at least doubled. We conclude that enhancement of the filament packing density is of great importance for making major Ic improvements in this very useful, round superconducting wire.

  11. Flux avalanche in a superconducting film with non-uniform critical current density

    NASA Astrophysics Data System (ADS)

    Lu, Yurong; Jing, Ze; Yong, Huadong; Zhou, Youhe

    2016-10-01

    The flux avalanche in type-II superconducting thin film is numerically simulated in this paper. We mainly consider the effect of non-uniform critical current density on the thermomagnetic stability. The nonlinear electromagnetic constitutive relation of the superconductor is adopted. Then, Maxwell's equations and heat diffusion equation are numerically solved by the fast Fourier transform technique. We find that the non-uniform critical current density can remarkably affect the behaviour of the flux avalanche. The external magnetic field ramp rate and the environmental temperature have been taken into account. The results are compared with a film with uniform critical current density. The flux avalanche first appears at the interface where the critical current density is discontinuous. Under the same environmental temperature or magnetic field, the flux avalanche occurs more easily for the film with the non-uniform critical current density. The avalanche structure is a finger-like pattern rather than a dendritic structure at low environmental temperatures.

  12. Effect of twisting on microstructure, critical current, and AC losses of Bi-2223 superconductor tape

    NASA Astrophysics Data System (ADS)

    Lim, Jun Hyung; Jang, Seok Hern; Kim, Ho Jin; Joo, Jinho; Nah, Wansoo; Kim, Chang Wan; Ryu, Kyung-Woo; Ha, Hong-Soo; Oh, Sang-Soo

    2002-08-01

    We evaluated the effect of twisting on microstructure, critical current, and AC losses of Bi-2223 superconductor tapes. It was observed that grain size and grain alignment were reduced with decreasing twist pitch probably due to the formation of an irregular interface between Ag and filaments. The critical current of the tapes decreased with decreasing pitch. For the tape having a twist pitch of 10 mm, ≈50% of the critical current was maintained compared to that of the non-twisted tape. The reduction of critical current is believed to be due to irregular interface, poor grain alignment, small grain size, and existence of second phases, etc. In addition, it was observed that AC losses of the tapes were reduced as the pitch decreased probably due to the combined effect of lower critical current and electrically decoupled filament of twisted tape.

  13. Current status of treatments for dyslexia: critical review.

    PubMed

    Alexander, Ann W; Slinger-Constant, Anne-Marie

    2004-10-01

    The acquisition of reading is a complex neurobiologic process. Identifying the most effective instruction and remedial intervention methods for children at risk of developing reading problems and for those who are already struggling is equally complex. This article aims to provide the clinician with a review of more current findings on the prevention and remediation of reading problems in children, along with an approach to considering the diagnosis and treatment of a child with dyslexia. The first part of the review describes interventions targeted at preventing reading difficulties in the at-risk younger child. The second part of the review discusses the efficacy of approaches to treat the older, reading-disabled child ("intervention studies"). Factors that impact the response to treatment are also discussed, as are neuroimaging studies that offer insight into how the brain responds to treatment interventions. With appropriate instruction, at-risk readers can become both accurate and fluent readers. In contrast, although intensive, evidence-based remedial interventions can markedly improve reading accuracy in older, reading-disabled children, they have been significantly less effective in closing the fluency gap. Owing to the dynamic course of language development and the changes in language demands over time, even after a child has demonstrated a substantial response to treatment interventions, his or her subsequent progress should be carefully tracked to ensure optimal progress toward the development of functional reading and written language skills.

  14. Critical current and electric transport properties of superconducting epitaxial Nb(Ti)N submicron structures

    NASA Astrophysics Data System (ADS)

    Klimov, A.; Słysz, W.; Guziewicz, M.; Kolkovsky, V.; Wegrzecki, M.; Bar, J.; Marchewka, M.; Seredyński, B.

    2016-12-01

    Critical current and current-voltage characteristics of epitaxial Nb(Ti)N submicron ultrathin structures were measured as function of temperature. For 700-nm-wide bridge we found current-driven vortex de-pinning at low temperatures and thermally activated flux flow closer to the transition temperature, as the limiting factors for the critical current density. For 100-nm-wide meander we observed combination of phase-slip activation and vortex-anti-vortex pair (VAP) thermal excitation. Our Nb(Ti)N meander structure demonstrates high de-pairing critical current densities 107 A/cm2 at low temperatures, but the critical currents are much smaller due to presence of the local constrictions.

  15. The influence of critical current density of Bi-2212 superconductors by defects after Yb-doping

    NASA Astrophysics Data System (ADS)

    Lu, Tianni; Zhang, Cuiping; Guo, Shengwu; Wu, Yifang; Li, Chengshan; Zhou, Lian

    2015-12-01

    Bi2Sr2Ca1-xYbxCu2O8+δ (Bi-2212) single crystals with x = 0.000, 0.005, 0.010 and 0.020 have been prepared by self-flux method. The influences of Yb doping on the formation of the dislocations in the lattice structures, as well as the related current carrying capability are investigated. Due to the SQUID measurement and the Bean model calculation, the maximum critical current density (Jc) is obtained when the Yb doping content is x = 0.010, though the Tc and the carrier concentration are not in the optimal region. Based on the HRTEM analyses of the Ca-O and Cu-O2 layers, the optimal dislocation density in the Cu-O2 layers is deduced according to the number of the dislocations per unit area. Besides, the sizes of the dislocations also prove the effectiveness of Yb substitution on the enhancement of the current carrying capability in Bi-2212 single crystals.

  16. Enhancement of Current Density by dc Electric Concentrator

    PubMed Central

    Jiang, Wei Xiang; Luo, Chen Yang; Ma, Hui Feng; Mei, Zhong Lei; Cui, Tie Jun

    2012-01-01

    We investigate a dc electric concentrator for steady current fields theoretically and experimentally. Based on the transformation electrostatics, we show that the dc concentrator can focus electric currents into the central concentrated region and enhance the electric field and current density. Outside the concentrator, the current lines are distributed as the same as those in a homogeneous conducting material. Hence, such a dc electric concentrator has no impact on other external devices. Using the analogy between electrically conducting materials and resistor networks, we design, fabricate, and test a dc concentrator using the circuit theory. The measured results agree very well with the theoretical predictions and numerical simulations, demonstrating the perfect concentrating performance. PMID:23233875

  17. Enhancing Neurosurgical Education in Low- and Middle-income Countries: Current Methods and New Advances.

    PubMed

    Liang, Kevin E; Bernstein, Ilia; Kato, Yoko; Kawase, Takeshi; Hodaie, Mojgan

    2016-11-15

    Low- and middle-income countries (LMICs) face a critical shortage of basic surgical services. Adequate neurosurgical services can have a far-reaching positive impact on society's health care and, consequently, the economic development in LMICs. Yet surgery, and specifically neurosurgery has been a long neglected sector of global health. This article reviews the current efforts to enhance neurosurgery education in LMICs and outlines ongoing approaches for improvement. In addition, we introduce the concept of a sustainable and cost-effective model to enhance neurosurgical resources in LMICs and describe the process and methods of online curriculum development.

  18. Enhancing Neurosurgical Education in Low- and Middle-income Countries: Current Methods and New Advances

    PubMed Central

    LIANG, Kevin E; BERNSTEIN, Ilia; KATO, Yoko; KAWASE, Takeshi; HODAIE, Mojgan

    2016-01-01

    Low- and middle-income countries (LMICs) face a critical shortage of basic surgical services. Adequate neurosurgical services can have a far-reaching positive impact on society’s health care and, consequently, the economic development in LMICs. Yet surgery, and specifically neurosurgery has been a long neglected sector of global health. This article reviews the current efforts to enhance neurosurgery education in LMICs and outlines ongoing approaches for improvement. In addition, we introduce the concept of a sustainable and cost-effective model to enhance neurosurgical resources in LMICs and describe the process and methods of online curriculum development. PMID:27616319

  19. Enhancing communication in oncology outpatient consultations: critical reflections from doctors

    PubMed Central

    Murphy, Roger; Cox, Karen; Steward, William

    2011-01-01

    Objectives The experiences of patients diagnosed with advanced incurable cancer and the doctors who conducted their medical consultations were studied in order to improve the understanding of what happens in consultations, when bad news is disclosed. The major objective of the study was to critically reflect upon doctor-patient communication, in such situations, with a view to considering future strategies for doctors’ continuing professional development. Methods Sixteen patients and sixteen Oncologists, from a cancer centre in the UK were recruited into this ethnographic study. One hundred and fifteen episodes of data were collected from audio recorded consultations; interviews with doctors and patients and their relatives and observations of consultations. These data were analysed using a constant comparison method. Results Interactions between doctors and patients are complex and consultations can be challenging for both of them. Some doctors spoke openly about their need for additional support to enhance their communication related competencies within Oncology consultations. These doctors wanted to observe their peers conducting consultations. They also wanted to receive feedback about their own clinical practices. These doctors stated that they wanted an open culture whereby they could talk freely about difficult and emotionally challenging consultations without fear of being considered incompetent by their Consultants, who act in a clinical supervisory role. Conclusions To help practitioners consolidate their practice in such settings it is necessary to develop better collaborations among practitioners within clinical practice. Providing individual supervisory sessions or group workshops can facilitate reflective learning and provide an open and supportive learning culture.

  20. Enhancing Critical Thinking in Graduate Nursing Online Asynchronous Discussions.

    PubMed

    Novotny, Nancy L; Stapleton, Stephen J; Hardy, Elaine C

    2016-09-01

    Graduate nursing students in online courses often have limited success in developing the critical thinking (CT) skills essential for advanced roles. This study describes the use of complementary strategies in a graduate-level nursing course to enhance CT in online discussions. Using Paul and Elder's framework for understanding the components of CT, the authors designed an asynchronous online course using multiple strategies to promote CT. We used mixed methods to collect descriptive and numerical data and content and repeated measures analyses to identify changes in CT skills and student perceptions across the semester. CT scores increased significantly and aligned with students' perceived improvements in CT. Evidence of CT in online discussions increased significantly across the semester with the use of multiple instructional strategies and substantial student and faculty efforts. The findings are a useful benchmark for future studies comparing combinations of strategies to identify those most effective and least arduous. [J Nurs Educ. 2016;55(9):514-521.]. Copyright 2016, SLACK Incorporated.

  1. Development of high speed continuous transport critical current measurement system for long piece of HTS conductor

    NASA Astrophysics Data System (ADS)

    Kim, Seokho; Park, Minwon; Yu, In-Keun; Kim, Gyeong-Hun; Ha, Hong-Su; Sim, Kideok; Oh, Sang-Soo; Moon, Seung-Hyun

    2013-01-01

    In case of long pieces of HTS conductor, their critical current measurement is an important process for the conductor manufacturer and the customer, however, it is very time consuming process. Conventional critical current measurement is carried out by ‘four probe method’, which increase the transport current and measure the voltage between the fixed voltage taps. Therefore, it consists of conductor moving and measuring process. To speed up the measuring process, longer distance between voltage taps is required. In this case, the measured critical current is averaged and small defects, which can be very crucial for thermal stability, cannot be found. Therefore, the limitation of the voltage tap length should be carefully decided considering the cooling environment. Another non-contact or indirect method is to measure the screening effect of magnetic field and converting the field signal to the critical current, which is called as hall probe method. This process is known as a very efficient way to find local defects and estimate the distribution of the critical current, however, it contains inevitable error and noise because it should measure the small magnetic field signals. This paper describes a new critical current measurement system, which have similar hardware structure of conventional ‘four probe method’. However, it is much faster than other systems using fast feedback control of the transport current while the conductor is continuously moving with high speed. The measured results are compared with the conventional method and hall probe method.

  2. Method for determining transport critical current densities and flux penetration depth in bulk superconductors

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1992-01-01

    A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.

  3. Upper critical fields and critical current densities of Fe-based superconductors as compared to those of other technical superconductors

    NASA Astrophysics Data System (ADS)

    Pallecchi, I.; Tropeano, M.; Lamura, G.; Pani, M.; Palombo, M.; Palenzona, A.; Putti, M.

    2012-11-01

    Three years since the discovery by the Hosono's group of Fe-based superconductors, an enormous number of compounds, belonging to several different families have been discovered and fundamental properties have been deeply investigated in order to clarify the interplay between magnetisms and superconductivity in these compounds. Indeed, the actual potential of these compounds for practical applications remains still unclear. Fe-based superconductors are midway between high temperature superconductors (HTSCs) and MgB2. In Fe-based superconductors the critical current is rather independent of the field, similarly to HTSCs, as a consequence of the exceptionally high upper critical field and strong pinning associated with nm-scale local modulations of the order parameter. They exhibit low anisotropy of the critical current with respect to the crystalline directions, as in the case of MgB2, which allows current flow along the c-axis. However, Fe-based superconductor polycrystalline materials currently available still exhibit electromagnetic granularity, like the HTSCs, which suppresses superconducting current flow over long length. Whether the nature of such granularity is extrinsic, as due to spurious phases or cracks between grains or intrinsic, as related to misalignment of adjacent grains, is under debate. These aspects will be reviewed in the light of the recent literature.

  4. Differences between two definitions of the critical current of HTS coils

    NASA Astrophysics Data System (ADS)

    Pitel, Jozef

    2013-12-01

    Definition of the critical current of a coil made of anisotropic high temperature superconducting conductor is rather complicated and ambiguous, since the magnetic field generated across the winding can differ considerably in relation to both its magnitude and orientation. Two definitions of the critical current of such coils are discussed. The first definition, very often used in calculations to analyze the current carrying capacity, electric field and power dissipation of individual turns, represents an operating current at which an electric field of 1 μV cm-1 appears on one turn. The second definition represents an integral approach, and is used in experiments. This definition introduces the critical current of the coil as an operating current at which an average electric field Es, usually 0.1 μV cm-1, appears on coil terminals. As an example, the distribution of the critical current and electric field of individual turns in the winding of a BSCCO model coil was analyzed. Critical currents of the coil as a function of an external magnetic field parallel with the coil axis were calculated according to both definitions. The results show that the first definition, which characterizes the winding at the local level, is suitable for HTS coils either operating in self-field or in a low external field, because the differences between the critical currents and n-indices of individual turns are considerable. The second criterion is suitable for the HTS coils operating in high fields, i.e. like high field insert coils. The self-field of a high field insert coil is negligible if the external field is high. As a result, the critical currents of all turns are almost identical, and the anisotropy in Ic(B) characteristic plays practically no role. Rather unexpected behavior of the voltage-current characteristic of the model coil is predicted if an external field is applied.

  5. A Critical Test of Self-Enhancement, Exposure, and Self-Categorization Explanations for First- and Third-Person Perceptions

    ERIC Educational Resources Information Center

    Reid, Scott A.; Byrne, Sahara; Brundidge, Jennifer S.; Shoham, Mirit D.; Marlow, Mikaela L.

    2007-01-01

    The third-person perception is the tendency for people to believe that others are more influenced by media content than themselves (W. P. Davison, 1983). The current study provides a critical test of self-enhancement, exposure, and self-categorization explanations for first- (i.e., self more influenced than others) and third-person perceptions.…

  6. A Critical Test of Self-Enhancement, Exposure, and Self-Categorization Explanations for First- and Third-Person Perceptions

    ERIC Educational Resources Information Center

    Reid, Scott A.; Byrne, Sahara; Brundidge, Jennifer S.; Shoham, Mirit D.; Marlow, Mikaela L.

    2007-01-01

    The third-person perception is the tendency for people to believe that others are more influenced by media content than themselves (W. P. Davison, 1983). The current study provides a critical test of self-enhancement, exposure, and self-categorization explanations for first- (i.e., self more influenced than others) and third-person perceptions.…

  7. Doubling the Critical Current Density of 2G-Coated Conductors through Proton Irradiation

    NASA Astrophysics Data System (ADS)

    Leroux, Maxime; Jia, Y.; Miller, D. J.; Wen, J. G.; Kwok, W. K.; Welp, U.; Rupich, M.; Fleshler, S.; Malozemoff, A.; Kayani, A.; Ayala-Valenzuela, O.; Civale, L.

    2014-03-01

    The in-field performance of production-line 2nd generation high temperature superconducting cable can be substantially improved by post-fabrication irradiation with 4 MeV protons. A dose of 8 .1016 p / cm2 nearly doubles the critical current in fields of 6 T // c at 27 K and more generally the suppression of Jc in magnetic field is reduced. A mixed pinning landscape composed of preexisting precipitates and twin boundaries and small, finely dispersed irradiation induced defects may account for the improved vortex pinning in high magnetic fields. Our current data-set indicates that there is significant head-room for further enhancements.This work was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (Y.J., M.L., W.K.K., U.W., O.A.V., L.C.) and by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02- 06CH11357 (D.J.M., J.G.W.). Irradiations were carried out at the Western Michigan University accelerator laboratory. Microstructure was characterized in the Electron Microscopy Center at Argonne, supported by the Office of Science-Basic Energy Science.

  8. Critical current density and grain connectivity of Bi-2223 added MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Tripathi, D.; Dey, T. K.

    2014-04-01

    Polycrystalline MgB2 with addition of 0, 1, 3, and 5 wt. % of Bi-2223(Bi1.8Pb0.26Sr2Ca2Cu3O10+x) powder has been synthesized by solid reaction process. The effect of Bi-2223 addition on current transport and superconducting properties of polycrystalline MgB2 superconductor is discussed. Four probe DC resistivity measurement shows that low level of Bi-2223 addition hardly affects the superconducting transition temperature, Tc of MgB2. The modified Bloch- Gruneisen (B-G) analysis of normal state resistivity data reveals a decrease in intergrain connectivity and increase in intragrain connectivity of MgB2 by Bi-2223 addition. The critical current density of present set of samples is estimated from M- H hysteresis loop in the light of Bean's model. MgB2 added with 1 wt. % of Bi- 2223 added gives the best performance (˜ 2 times enhancement in Jc) amongst the studied samples.

  9. Inflammatory Signals Enhance Piezo2-Mediated Mechanosensitive Currents

    PubMed Central

    Dubin, Adrienne E.; Schmidt, Manuela; Mathur, Jayanti; Petrus, Matthew J.; Xiao, Bailong; Coste, Bertrand; Patapoutian, Ardem

    2012-01-01

    Summary Heightened nociceptor function caused by inflammatory mediators such as bradykinin contributes to increased pain perception (hyperalgesia) to noxious mechanical and thermal stimuli. While sensitization of the heat transducer TRPV1 largely subserves thermal hyperalgesia, cellular mechanisms underlying mechanical hyperalgesia have been elusive. The role of the mechanically-activated (MA) channel piezo2 (known as FAM38B) present in mammalian sensory neurons is unknown. We test the hypothesis that piezo2 activity is enhanced by bradykinin, an algogenic peptide that induces mechanical hyperalgesia within minutes. Piezo2 current amplitude is increased and inactivation slowed by bradykinin 2 receptor (BDKRB2) activation in heterologous expression systems. Protein Kinase A (PKA) and Protein Kinase C (PKC) agonists enhance piezo2 activity. BDKRB2-mediated effects are abolished by PKA and PKC inhibitors. Finally, piezo2-dependent MA currents in a class of native sensory neurons are enhanced 8-fold by bradykinin via PKA and PKC. Thus, piezo2 sensitization may contribute to PKA- and PKC-mediated mechanical hyperalgesia. PMID:22921401

  10. Inflammatory signals enhance piezo2-mediated mechanosensitive currents.

    PubMed

    Dubin, Adrienne E; Schmidt, Manuela; Mathur, Jayanti; Petrus, Matthew J; Xiao, Bailong; Coste, Bertrand; Patapoutian, Ardem

    2012-09-27

    Heightened nociceptor function caused by inflammatory mediators such as bradykinin (BK) contributes to increased pain sensitivity (hyperalgesia) to noxious mechanical and thermal stimuli. Although it is known that sensitization of the heat transducer TRPV1 largely subserves thermal hyperalgesia, the cellular mechanisms underlying mechanical hyperalgesia have been elusive. The role of the mechanically activated (MA) channel piezo2 (known as FAM38B) present in mammalian sensory neurons is unknown. We test the hypothesis that piezo2 activity is enhanced by BK, an algogenic peptide that induces mechanical hyperalgesia within minutes. Piezo2 current amplitude is increased and inactivation is slowed by bradykinin receptor beta 2 (BDKRB2) activation in heterologous expression systems. Protein kinase A (PKA) and protein kinase C (PKC) agonists enhance piezo2 activity. BDKRB2-mediated effects are abolished by PKA and PKC inhibitors. Finally, piezo2-dependent MA currents in a class of native sensory neurons are enhanced 8-fold by BK via PKA and PKC. Thus, piezo2 sensitization may contribute to PKA- and PKC-mediated mechanical hyperalgesia. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Apparatus and method for measuring critical current properties of a coated conductor

    DOEpatents

    Mueller, Fred M [Los Alamos, NM; Haenisch, Jens [Dresden, DE

    2012-07-24

    The transverse critical-current uniformity in a superconducting tape was determined using a magnetic knife apparatus. A critical current I.sub.c distribution and transverse critical current density J.sub.c distribution in YBCO coated conductors was measured nondestructively with high resolution using a magnetic knife apparatus. The method utilizes the strong depression of J.sub.c in applied magnetic fields. A narrow region of low, including zero, magnetic field in a surrounding higher field is moved transversely across a sample of coated conductor. This reveals the critical current density distribution. A Fourier series inversion process was used to determine the transverse J.sub.c distribution in the sample.

  12. Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films

    NASA Astrophysics Data System (ADS)

    Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z.-L.; Kwok, W.-K.; Glatz, A.

    2017-02-01

    Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patterned molybdenum-germanium films, obtaining good agreement. Our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.

  13. Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films

    DOE PAGES

    Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z. -L.; ...

    2017-02-07

    Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patternedmore » molybdenum-germanium films, obtaining good agreement. In conclusion, our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.« less

  14. Technological adjuncts to enhance current psychotherapy practices: a review.

    PubMed

    Clough, Bonnie A; Casey, Leanne M

    2011-04-01

    Although there are several of reviews of technology in psychology, none to date has focused on technological adjuncts for improving traditional face to face therapy. However, examination of response, adherence, and dropout rates suggests there is considerable scope for improving traditional face to face services. The purpose of this paper was to examine technological adjuncts used to enhance psychotherapy practice. This review focused only on those technologies designed to supplement or enhance traditional therapy methods. Adjuncts designed to reduce direct therapist contact or change the medium of communication were not included. Adjuncts reviewed were mobile phones, personal digital assistants, biofeedback and virtual reality. Limitations in the current literature and directions for future research were identified and discussed. This review provides a comprehensive examination of the way in which adjunctive technologies may be incorporated into face to face therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Phenomenological consequences of enhanced bulk viscosity near the QCD critical point

    NASA Astrophysics Data System (ADS)

    Monnai, Akihiko; Mukherjee, Swagato; Yin, Yi

    2017-03-01

    In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional to nearly the third power of the critical correlation length, and become significantly enhanced. This work is the first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point. For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant, longitudinally expanding 1 +1 dimensional causal relativistic hydrodynamical evolution at nonzero baryon density. We demonstrate that the critically enhanced bulk viscosity induces a substantial nonequilibrium pressure, effectively softening the equation of state, and leads to sizable effects in the flow velocity and single-particle distributions at the freeze-out. The observable effects that may arise due to the enhanced bulk viscosity in the vicinity of the QCD critical point can be used as complementary information to facilitate searches for the QCD critical point.

  16. Self-Magnetic Field Effects on Electron Emission as the Critical Current is Approached

    SciTech Connect

    Ottinger, P. F.; Cooperstein, G.; Schumer, J. W.; Swanekamp, S. B.

    2001-09-28

    The self-magnetic field associated with the current in a planar diode is shown to reduce electron emission below the Child-Langmuir current density. As the magnetic field increases, the diode current is limited to the critical current. Here, a ID analysis is carried out to calculate the suppressed current density in the presence of a transverse magnetic field. The problem is shown to be similar to that of the limiting current (i.e., Hull current) calculated in a crossed field gap, in which a constant transverse magnetic field is applied across the gap to insulate the electron flow. In the case considered here, the magnetic field is produced by the diode current itself and this self-magnetic field decreases with distance along the gap. It is shown that the emitted current density is only modestly reduced from the Child-Langmuir current density. The 1-D analysis remains valid until critical current is approached, at which point orbit crossing occurs and a 2-D kinetic analysis is required. The minimum diode length required to reach critical current is also derived.

  17. Critical current characteristics and history dependence in superconducting SmFeAsOF bulk

    NASA Astrophysics Data System (ADS)

    Ni, B.; Ge, J.; Kiuchi, M.; Otabe, E. S.; Gao, Z.; Wang, L.; Qi, Y.; Zhang, X.; Ma, Y.

    2010-06-01

    The superconducting SmFeAsO1-xFx (x=0.2) polycrystalline bulks were prepared by the powder-in-tube (PIT) method. The magnetic field and temperature dependences of critical current densities in the samples were investigated by resistive and ac inductive (Campbell's) methods. It was found that a fairly large shielding current density over 109 A/m2, which is considered to correspond to the local critical current density, flows locally with the perimeter size similar to the average grain size of the bulk samples, while an extremely low transport current density of about 105 A/m2 corresponding to the global critical current density flows through the whole sample. Furthermore, a unique history dependence of global critical current density was observed, i.e., it shows a smaller value in the increasing-field process than that in the decreasing-field process. The history dependence of global critical current characteristic in our case can be ascribed to the existence of the weak-link property between the grains in SmFeAsO1-xFx bulk.

  18. Identifying Critical Thinking Styles to Enhance Volunteer Development

    ERIC Educational Resources Information Center

    Gay, Keegan D.; Terry, Bryan; Lamm, Alexa J.

    2015-01-01

    Diversity in learning options can increase efficacy of volunteer development systems. The University of Florida Critical Thinking Inventory (UFCTI) is designed to explicate an individual's critical thinking style based upon a continuum from Seeking Information to Engagement. Static and interpretive materials are best used with individuals of a…

  19. Ironic Expression Can Simultaneously Enhance and Dilute Perception of Criticism

    ERIC Educational Resources Information Center

    Boylan, James; Katz, Albert N.

    2013-01-01

    In the context of texts that depicted either a minimally confrontational conversation (study 1) or a more confrontational argument (study 2) with a close friend, the use of ironic criticism was rated as being more humorous, polite, and positive, yet also as more sarcastic and mocking than direct criticism. Although our results were consistent with…

  20. Ironic Expression Can Simultaneously Enhance and Dilute Perception of Criticism

    ERIC Educational Resources Information Center

    Boylan, James; Katz, Albert N.

    2013-01-01

    In the context of texts that depicted either a minimally confrontational conversation (study 1) or a more confrontational argument (study 2) with a close friend, the use of ironic criticism was rated as being more humorous, polite, and positive, yet also as more sarcastic and mocking than direct criticism. Although our results were consistent with…

  1. Identifying Critical Thinking Styles to Enhance Volunteer Development

    ERIC Educational Resources Information Center

    Gay, Keegan D.; Terry, Bryan; Lamm, Alexa J.

    2015-01-01

    Diversity in learning options can increase efficacy of volunteer development systems. The University of Florida Critical Thinking Inventory (UFCTI) is designed to explicate an individual's critical thinking style based upon a continuum from Seeking Information to Engagement. Static and interpretive materials are best used with individuals of a…

  2. Critical Thinking in Wikibook Creation with Enhanced and Minimal Scaffolds

    ERIC Educational Resources Information Center

    Kim, Nari

    2015-01-01

    The purpose of the study was to investigate how to scaffold students' critical thinking skills in the process of co-writing and co-reflection of wikibooks in formal learning contexts. To observe critical thinking skills in wiki collaborations under different levels of instructional guidance, two graduate wikibook projects were selected: an…

  3. Critical Thinking in Wikibook Creation with Enhanced and Minimal Scaffolds

    ERIC Educational Resources Information Center

    Kim, Nari

    2015-01-01

    The purpose of the study was to investigate how to scaffold students' critical thinking skills in the process of co-writing and co-reflection of wikibooks in formal learning contexts. To observe critical thinking skills in wiki collaborations under different levels of instructional guidance, two graduate wikibook projects were selected: an…

  4. Effect of current density on enhanced transformation of naphthalene.

    PubMed

    Alshawabkeh, Akram N; Sarahney, Hussam

    2005-08-01

    The effect of current density on electrochemically enhanced transformation of naphthalene is evaluated. Electrochemical reactors, composed of an anode and a cathode separated by a Nafion membrane, were used to evaluatethe effect of three current densities (1,9, and 18 mA/ L) on the transformation of naphthalene at two concentration levels (13 and 25 mg/L). Transformation rates varied based on the concentration and current density. Almost 88% of the 13 mg/L naphthalene is degraded after 8 h of treatment under 18.2 mA/L. At the same time, more than 90 h was required to degrade the same amount under 9 mA/ L. The results show that most of the naphthalene degradation occurred in the first 4 h under transformation rates of 2.24 and 1.11 mg/L h under applied currents of 18.2 and 9 mA/L, respectively. Increasing the naphthalene concentration to 25 mg/L produced similar results. Under 18.2 mA/L, the redox potential increased significantly at the anolyte in the first 8 h to about 900 mV. After that, the redox potential continued to increase, but at a lower rate, until it reached 1380 mV at the end of processing. Similar behavior is noted for the anolyte pH, which decreased significantly in the first 8 h to less than 2.5 and continued to decrease until it reached a pH value of 1.86 at the end of testing. Naphthalene transformation can be attributed to electrochemically enhanced oxidation at the anolyte by chlorine gas produced by electrolysis.

  5. Enhancing Working Memory Training with Transcranial Direct Current Stimulation.

    PubMed

    Au, Jacky; Katz, Benjamin; Buschkuehl, Martin; Bunarjo, Kimberly; Senger, Thea; Zabel, Chelsea; Jaeggi, Susanne M; Jonides, John

    2016-09-01

    Working memory (WM) is a fundamental cognitive ability that supports complex thought but is limited in capacity. Thus, WM training interventions have become very popular as a means of potentially improving WM-related skills. Another promising intervention that has gained increasing traction in recent years is transcranial direct current stimulation (tDCS), a noninvasive form of brain stimulation that can modulate cortical excitability and temporarily increase brain plasticity. As such, it has the potential to boost learning and enhance performance on cognitive tasks. This study assessed the efficacy of tDCS to supplement WM training. Sixty-two participants were randomized to receive either right prefrontal, left prefrontal, or sham stimulation with concurrent visuospatial WM training over the course of seven training sessions. Results showed that tDCS enhanced training performance, which was strikingly preserved several months after training completion. Furthermore, we observed stronger effects when tDCS was spaced over a weekend break relative to consecutive daily training, and we also demonstrated selective transfer in the right prefrontal group to nontrained tasks of visual and spatial WM. These findings shed light on how tDCS may be leveraged as a tool to enhance performance on WM-intensive learning tasks.

  6. The influence of winding direction of two-layer HTS DC cable on the critical current

    NASA Astrophysics Data System (ADS)

    Vyatkin, V. S.; Kashiwagi, K.; Ivanov, Y. V.; Otabe, E. S.; Yamaguchi, S.

    2017-09-01

    The design of twist pitch and direction of winding in multilayer HTS coaxial cable is important. For HTS AC transmitting cables, the main condition of twist pitch is the balance of inductances of each layer for providing the current balance between layers. In this work, the finite element method analysis for the coaxial cables with both same and opposite directions winding is used to calculate magnetic field distribution, and critical current of the cable is estimated. It was found that the critical current of the cable with same direction winding is about 10 percent higher than that in the case of the cable with the opposite direction winding.

  7. An SF6 autoexpansion breaker; The correlation between magnetic arc control and critical current

    SciTech Connect

    Bernard, G.; Girard, A.; Malkin, P. ); Scarpa, P. )

    1990-01-01

    It is possible to design SF6 autoexpansion breakers which are free from critical currents. In these devices which combine arc rotation in a magnetic field and thermal expansion of gas, critical currents can effectively occur if these effects are incorrectly created and combined. An analytic and experimental method optimizing the current at which rotation should start is presented. The study of the gas flow then ensures coupling with expansion. These investigations lead to representation of a thermal time constant directly related to interrupting capacity.

  8. Magnetic Field Dependence of the Critical Current in S-N Bilayer Thin Films

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.; Lee, Sang-Jun; Smith, Stephen James; Bandler, Simon; Chervenak, James; Kilbourne, Caroline A.; Finkbeiner, Fred M.; Porter, Frederick S.; Kelley, Richard L.; Adams, Joseph S.; Eckart, Megan E.; Busch, Sarah; Porst, Jan-Patrick

    2013-01-01

    Here we investigate the effects a non-uniform applied magnetic field has on superconducting transition-edge sensors (TESs) critical current. This has implications on TES optimization. It has been shown that TESs resistive transition can be altered by magnetic fields. We have observed critical current rectification effects and explained these effects in terms of a magnetic self-field arising from asymmetric current injection into the sensor. Our TES physical model shows that this magnetic self-field can result in significantly degraded or improved TES performance. In order for this magnetically tuned TES strategy to reach its full potential we are investigating the effect a non-uniform applied magnetic field has on the critical current.

  9. The critical path initiative: leveraging collaborations to enhance regulatory science.

    PubMed

    Barratt, R A; Bowens, S L; McCune, S K; Johannessen, J N; Buckman, S Y

    2012-03-01

    Since 2004, the Critical Path Initiative has prompted industry, academia, and government agencies to work together to share the information, technology, and expertise critical to modernize and transform our approach to drug development and review. Various collaborations have been sharing data in a precompetitive space, establishing data standards, and facilitating collective tool development. As a result, the organization is making progress toward developing knowledge and tools that can reduce uncertainty in medical product development.

  10. Investigation of inter- and intragrain critical currents in high Tc ceramic superconductors

    NASA Astrophysics Data System (ADS)

    Kuepfer, H.; Apfelstedt, I.; Fluekiger, R.; Keller, C.; Meier-Hirmer, R.

    1988-10-01

    Polycrystalline sintered bulk samples of REBa2Cu3O7 with RE = Y, Gd were studied by ac susceptibility and an inductive measurement technique which allows the separation of intergrain (transport) from intragrain critical current density. Field and temperature dependence of the intergrain current are compared with theoretical predictions for a weakly coupled grain structure. Up to fields 0.3 T the weak link character of the intergrain current predominates. At higher fields it changes and points to a percolation current via superconducting grain boundaries. A quantitative correlation between intragrain current and twin spacing is hidden, probably by oxygen deficiency in the grain interior. No variation of the intragrain critical current density with temperature is observed up to 85 K in a textured specimen.

  11. The Use of Argument Mapping to Enhance Critical Thinking Skills in Business Education

    ERIC Educational Resources Information Center

    Kunsch, David W.; Schnarr, Karin; van Tyle, Russell

    2014-01-01

    Complex business problems require enhanced critical thinking skills. In a dedicated, in-person critical thinking class, argument mapping techniques were used in conjunction with business and nonbusiness case studies to build the critical thinking skills of a group of master of business administration students. Results demonstrated that the…

  12. Enhanced Critical Thinking Skills through Problem-Solving Games in Secondary Schools

    ERIC Educational Resources Information Center

    McDonald, Scott Douglas

    2017-01-01

    Aim/Purpose: Students face many challenges improving their soft skills such as critical thinking. This paper offers one possible solution to this problem. Background: This paper considers one method of enhancing critical thinking through a problem-solving game called the Coffee Shop. Problem-solving is a key component to critical thinking, and…

  13. The Use of Argument Mapping to Enhance Critical Thinking Skills in Business Education

    ERIC Educational Resources Information Center

    Kunsch, David W.; Schnarr, Karin; van Tyle, Russell

    2014-01-01

    Complex business problems require enhanced critical thinking skills. In a dedicated, in-person critical thinking class, argument mapping techniques were used in conjunction with business and nonbusiness case studies to build the critical thinking skills of a group of master of business administration students. Results demonstrated that the…

  14. Enhanced plasma current collection from weakly conducting solar array blankets

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry

    1993-01-01

    Among the solar cell technologies to be tested in space as part of the Solar Array Module Plasma Interactions Experiment (SAMPIE) will be the Advanced Photovoltaic Solar Array (APSA). Several prototype twelve cell coupons were built for NASA using different blanket materials and mounting techniques. The first conforms to the baseline design for APSA which calls for the cells to be mounted on a carbon loaded Kapton blanket to control charging in GEO. When deployed, this design has a flexible blanket supported around the edges. A second coupon was built with the cells mounted on Kapton-H, which was in turn cemented to a solid aluminum substrate. A final coupon was identical to the latter but used germanium coated Kapton to control atomic oxygen attack in LEO. Ground testing of these coupons in a plasma chamber showed considerable differences in plasma current collection. The Kapton-H coupon demonstrated current collection consistent with exposed interconnects and some degree of cell snapover. The other two coupons experienced anomalously large collection currents. This behavior is believed to be a consequence of enhanced plasma sheaths supported by the weakly conducting carbon and germanium used in these coupons. The results reported here are the first experimental evidence that the use of such materials can result in power losses to high voltage space power systems.

  15. A self-consistent model for estimating the critical current of superconducting devices

    NASA Astrophysics Data System (ADS)

    Zermeño, V.; Sirois, F.; Takayasu, M.; Vojenciak, M.; Kario, A.; Grilli, F.

    2015-08-01

    Nowadays, there is growing interest in using superconducting wires or tapes for the design and manufacture of devices such as cables, coils, rotating machinery, transformers, and fault current limiters, among others. Their high current capacity has made them the candidates of choice for manufacturing compact and light cables and coils that can be used in the large-scale power applications described above. However, the performance of these cables and coils is limited by their critical current, which is determined by several factors, including the conductor’s material properties and the geometric layout of the device itself. In this work we present a self-consistent model for estimating the critical current of superconducting devices. This is of large importance when the operating conditions are such that the self-field produced by the current is a significant fraction of the total field. The model is based on the asymptotic limit when time approaches infinity of Faraday’s equation written in terms of the magnetic vector potential. It uses a continuous E-J relationship and takes the angular dependence of the critical current density on the magnetic flux density into account. The proposed model is used to estimate the critical current of superconducting devices such as cables, coils, and coils made of transposed cables with very high accuracy. The high computing speed of this model makes it an ideal candidate for design optimization.

  16. Predicted field-dependent increase of critical currents in asymmetric superconducting nanocircuits

    NASA Astrophysics Data System (ADS)

    Clem, John R.; Mawatari, Yasunori; Berdiyorov, G. R.; Peeters, F. M.

    2012-04-01

    The critical current of a thin superconducting strip of width W much larger than the Ginzburg-Landau coherence length ξ but much smaller than the Pearl length Λ=2λ2/d is maximized when the strip is straight with defect-free edges. When a perpendicular magnetic field is applied to a long straight strip, the critical current initially decreases linearly with H but then decreases more slowly with H when vortices or antivortices are forced into the strip. However, in a superconducting strip containing sharp 90∘ or 180∘ turns, the zero-field critical current at H=0 is reduced because vortices or antivortices are preferentially nucleated at the inner corners of the turns, where current crowding occurs. Using both analytic London-model calculations and time-dependent Ginzburg-Landau simulations, we predict that in such asymmetric strips the resulting critical current can be increased by applying a perpendicular magnetic field that induces a current-density contribution opposing the applied current density at the inner corners. This effect should apply to all turns that bend in the same direction.

  17. High magnetic-field scales and critical currents in SmFeAs(O, F) crystals

    NASA Astrophysics Data System (ADS)

    Moll, Philip J. W.; Puzniak, Roman; Balakirev, Fedor; Rogacki, Krzysztof; Karpinski, Janusz; Zhigadlo, Nikolai D.; Batlogg, Bertram

    2010-08-01

    With the discovery of new superconducting materials, such as the iron pnictides, exploring their potential for applications is one of the foremost tasks. Even if the critical temperature Tc is high, intrinsic electronic properties might render applications difficult, particularly if extreme electronic anisotropy prevents effective pinning of vortices and thus severely limits the critical current density, a problem well known for cuprates. Although many questions concerning microscopic electronic properties of the iron pnictides have been successfully addressed and estimates point to a very high upper critical field, their application potential is less clear. Thus, we focus here on the critical currents, their anisotropy and the onset of electrical dissipation in high magnetic fields up to 65T. Our detailed study of the transport properties of SmFeAsO0.7F0.25 single crystals reveals a promising combination of high (>2×106Acm-2) and nearly isotropic critical current densities along all crystal directions. This favourable intragrain current transport in SmFeAs(O, F), which shows the highest Tc of 54K at ambient pressure, is a crucial requirement for possible applications. Essential in these experiments are four-probe measurements on focused-ion-beam-cut single crystals with a sub-square-micrometre cross-section, with current along and perpendicular to the crystallographic c axis.

  18. Magnetic field oscillations of the critical current in long ballistic graphene Josephson junctions

    NASA Astrophysics Data System (ADS)

    Rakyta, Péter; Kormányos, Andor; Cserti, József

    2016-06-01

    We study the Josephson current in long ballistic superconductor-monolayer graphene-superconductor junctions. As a first step, we have developed an efficient computational approach to calculate the Josephson current in tight-binding systems. This approach can be particularly useful in the long-junction limit, which has hitherto attracted less theoretical interest but has recently become experimentally relevant. We use this computational approach to study the dependence of the critical current on the junction geometry, doping level, and an applied perpendicular magnetic field B . In zero magnetic field we find a good qualitative agreement with the recent experiment of M. Ben Shalom et al. [Nat. Phys. 12, 318 (2016), 10.1038/nphys3592] for the length dependence of the critical current. For highly doped samples our numerical calculations show a broad agreement with the results of the quasiclassical formalism. In this case the critical current exhibits Fraunhofer-like oscillations as a function of B . However, for lower doping levels, where the cyclotron orbit becomes comparable to the characteristic geometrical length scales of the system, deviations from the results of the quasiclassical formalism appear. We argue that due to the exceptional tunability and long mean free path of graphene systems a new regime can be explored where geometrical and dynamical effects are equally important to understand the magnetic field dependence of the critical current.

  19. Variable-Temperature Critical-Current Measurements on a Nb-Ti Wire

    NASA Astrophysics Data System (ADS)

    Goodrich, L. F.; Stauffer, T. C.

    2004-06-01

    We made variable-temperature critical-current (Ic) measurements on a commercial multifilamentary Nb-Ti wire for temperatures (T) from 4 to 9 K and magnetic fields (H) from 0 to 11.5 T using transport current. The measurements cover the whole range of critical currents from less than 0.1 A to over 800 A. This sample will be useful as a variable-temperature reference wire. To verify the measurements at variable-temperature, we compared critical currents up to 600 A on a specimen that was immersed in liquid helium to those on the same specimen in flowing helium gas. This comparison indicated our ability to control and measure specimen temperature was within 35 mK. We also calibrated the magnetoresistance effect of resistive thermometers for temperatures from 4 to 35 K and magnetic fields from 0 to 12 T. The critical-current data presented include electric field-current (E-I) characteristics, and E-T characteristics at constant I and H, Ic(H) at constant T, and Ic(T) at constant H.

  20. ['I'm worthless' and other forms of self-criticism: Current knowledge and therapeutic interventions].

    PubMed

    Maillard, Pauline; Kramer, Ueli

    2015-01-01

    Self-criticism is considered as a harsh or punitive evaluation of the self. It is omnipresent in culture, in daily life as well as in psychotherapy. Self-criticism can lead to question oneself but can also open new perspectives and guide us. However, it can become excessive, rigid, and might turn out to be deleterious. This present article focuses on the concept of self-criticism in clinical psychology and psychotherapy and aims to review current knowledge about this topic. First, its definition and the reasons for its development in individuals will be presented. Second, a description of the links between self-criticism and psychopathology will be made, in particular regarding depression. Finally, the third part of this article will be dedicated to the therapeutic interventions that can reduce self-criticism.

  1. Calibration of Hall sensor array for critical current measurement of YBCO tape with ferromagnetic substrate

    NASA Astrophysics Data System (ADS)

    Zhu, Yunpeng; Wang, Gang; Liu, Liyuan; Yang, Xinsheng; Zhao, Yong

    2015-12-01

    HAS (Hall sensor array) is a powerful tool to detect the uniformity of HTS (high temperature superconductor) tape through mapping the distribution of remanent or shielding field along the surface of the tape. However, measurement of HTS tape with ferromagnetic parts by HSA is still an issue because the ferromagnetic substrate has influence on the magnetic field around the HTS layer. In this work, a continuous HSA system has been designed to measure the critical current of the YBCO tape with ferromagnetic substrate. The relationship between the remanent field and critical current was calibrated by the finite element method. The result showed that the HSA is an effective method for evaluating the critical current of the HTS tape with ferromagnetic substrate.

  2. Enhancing Critical Thinking by Teaching Two Distinct Approaches to Management

    ERIC Educational Resources Information Center

    Dyck, Bruno; Walker, Kent; Starke, Frederick A.; Uggerslev, Krista

    2012-01-01

    The authors explore the effect on students' critical thinking of teaching only one approach to management versus teaching two approaches to management. Results from a quasiexperiment--which included a survey, interviews, and case analysis--suggest that compared with students who are taught only a conventional approach to management (which…

  3. Enhancing Critical Thinking by Teaching Two Distinct Approaches to Management

    ERIC Educational Resources Information Center

    Dyck, Bruno; Walker, Kent; Starke, Frederick A.; Uggerslev, Krista

    2012-01-01

    The authors explore the effect on students' critical thinking of teaching only one approach to management versus teaching two approaches to management. Results from a quasiexperiment--which included a survey, interviews, and case analysis--suggest that compared with students who are taught only a conventional approach to management (which…

  4. Proximity effect in Nb-Mo layered films: Transition temperature and critical current dependence on period

    NASA Astrophysics Data System (ADS)

    Walker, A. E.; Veldhorst, J.; Myers, D. M.; McElrath, Z.; Lewis, J. B.; Broussard, P. R.

    2011-10-01

    The behavior of the transition temperature and critical current density for a Mo/Nb repeated bilayer system as a function of the number of periods was explored. The measured values of the transition temperature are compared to the theoretical predictions for the proximity effect in the dirty limit. We find that the transition temperature does not decrease as the number of periods increase. In addition, inductive critical current density measurements also show a scaling that indicates the superconductivity properties are not dependent on the number of bilayers.

  5. Change of surface critical current in the surface superconductivity and mixed states of superconducting niobium

    NASA Astrophysics Data System (ADS)

    Aburas, Muhamad; Pautrat, Alain; Bellido, Natalia

    2017-01-01

    A systematic study of irreversible magnetization was performed in bulk niobium after different surface treatments. Starting with smooth surfaces and abrading them, a strong increase of the critical current is observed up to an apparent limiting value. An impressive change of the critical current is also observed in the surface superconductivity (SSC) state, reaching values of the same order of magnitude as in the mixed state. We explain also the observation of strong SSC for magnetic fields perpendicular to large facets in terms of nucleation of superconductivity along bumps of a corrugated surface.

  6. Effects of densification of precursor pellets on microstructures and critical current properties of YBCO melt-textured bulks

    NASA Astrophysics Data System (ADS)

    Setoyama, Yui; Shimoyama, Jun-ichi; Motoki, Takanori; Kishio, Kohji; Awaji, Satoshi; Kon, Koichi; Ichikawa, Naoki; Inamori, Satoshi; Naito, Kyogo

    2016-12-01

    Effects of densification of precursor disks on the density of residual voids and critical current properties for YBCO melt-textured bulk superconductors were systematically investigated. Six YBCO bulks were prepared from precursor pellets with different initial particle sizes of YBa2Cu3Oy (Y123) powder and applied pressures for pelletization. It was revealed that use of finer Y123 powder and consolidation using cold-isostatic-pressing (CIP) with higher pressures result in reduction of residual voids at inner regions of bulks and enhance Jc especially under low fields below the second peak.

  7. Critical current density and mechanism of vortex pinning in KxFe2-ySe₂ doped with S

    DOE PAGES

    Lei, Hechang; Petrovic, C.

    2011-08-15

    We report the critical current density Jc in KxFe2-ySe2-zSz crystals. The Jc can be enhanced significantly with optimal S doping (z=0.99). For K0.70(7)Fe1.55(7)Se1.01(2)S0.99(2), the weak fishtail effect is found for H II c. The normalized vortex pinning forces follow the scaling law with a maximum position at 0.41 of the reduced magnetic field. These results demonstrate that the small size normal point defects dominate the vortex pinning mechanism.

  8. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    SciTech Connect

    Montierth, Leland M.

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  9. Critical Approaches to Accessibility for Technology-Enhanced Learning

    ERIC Educational Resources Information Center

    Lewthwaite, Sarah

    2011-01-01

    The term "accessibility" is broadly used to describe the degree to which a service or product gives learners the "ability to access" functionality, services or materials. In recent years there has been a push towards accessibility in technology-enhanced learning (TEL) across all levels of education. However, accessibility represents a shifting…

  10. A descriptive inquiry of the definitions of critical thinking and enhancers and barriers reported by nurses working in long-term care facilities.

    PubMed

    Raterink, Ginger

    2008-09-01

    Critical thinking has been an outcome of nursing education since the 1980s. There remains a lack of agreement on definitions, methods of teaching, and methods of evaluation among practicing nurses. This study asked practicing nurses to define critical thinking. It also asked nurses to describe what work-related factors enhanced or posed barriers to the use of critical thinking in practice. Elements of the definitions presented were found to be consistent with current nursing definitions of critical thinking. Enhancers and barriers overlapped and were found to be consistent among the nurses at all facilities studied, with implications for continuing education and staff development.

  11. Potential of Surface Enhanced Raman Spectroscopy (SERS) in Therapeutic Drug Monitoring (TDM). A Critical Review

    PubMed Central

    Jaworska, Aleksandra; Fornasaro, Stefano; Sergo, Valter; Bonifacio, Alois

    2016-01-01

    Surface-Enhanced Raman Spectroscopy (SERS) is a label-free technique that enables quick monitoring of substances at low concentrations in biological matrices. These advantages make it an attractive tool for the development of point-of-care tests suitable for Therapeutic Drug Monitoring (TDM) of drugs with a narrow therapeutic window, such as chemotherapeutic drugs, immunosuppressants, and various anticonvulsants. In this article, the current applications of SERS in the field of TDM for cancer therapy are discussed in detail and illustrated according to the different strategies and substrates. In particular, future perspectives are provided and special concerns regarding the standardization of self-assembly methods and nanofabrication procedures, quality assurance, and technology readiness are critically evaluated. PMID:27657146

  12. Potential of Surface Enhanced Raman Spectroscopy (SERS) in Therapeutic Drug Monitoring (TDM). A Critical Review.

    PubMed

    Jaworska, Aleksandra; Fornasaro, Stefano; Sergo, Valter; Bonifacio, Alois

    2016-09-19

    Surface-Enhanced Raman Spectroscopy (SERS) is a label-free technique that enables quick monitoring of substances at low concentrations in biological matrices. These advantages make it an attractive tool for the development of point-of-care tests suitable for Therapeutic Drug Monitoring (TDM) of drugs with a narrow therapeutic window, such as chemotherapeutic drugs, immunosuppressants, and various anticonvulsants. In this article, the current applications of SERS in the field of TDM for cancer therapy are discussed in detail and illustrated according to the different strategies and substrates. In particular, future perspectives are provided and special concerns regarding the standardization of self-assembly methods and nanofabrication procedures, quality assurance, and technology readiness are critically evaluated.

  13. Critical current density and vortex pinning in tetragonal FeS1 -xSex (x =0 ,0.06 )

    NASA Astrophysics Data System (ADS)

    Wang, Aifeng; Wu, Lijun; Ivanovski, V. N.; Warren, J. B.; Tian, Jianjun; Zhu, Yimei; Petrovic, C.

    2016-09-01

    We report critical current density (Jc) in tetragonal FeS single crystals, similar to iron-based superconductors with much higher superconducting critical temperatures (Tc). The Jc is enhanced three times by 6% Se doping. We observe scaling of the normalized vortex pinning force as a function of reduced field at all temperatures. Vortex pinning in FeS and FeS0.94Se0.06 shows contribution of core-normal surfacelike pinning. Reduced temperature dependence of Jc indicates that dominant interaction of vortex cores and pinning centers is via scattering of charge carriers with reduced mean free path (δ l ), in contrast to KxFe2 -ySe2 where spatial variations in Tc (δ Tc ) prevails.

  14. Effects of grain size and grain boundary on critical current density of high T(sub c) superconducting oxides

    NASA Technical Reports Server (NTRS)

    Zhao, Y.; Zhang, Q. R.; Zhang, H.

    1990-01-01

    By means of adding impurity elements in high T sub c oxides, the effects were studied of grain size and grain boundary on the critical current density of the following systems: YBa2Cu3O(7-y) and Bi-Pr-Sr-Ca-Cu-O. In order to only change the microstructure instead of the superconductivity of the grains in the samples, the impurity elements were added into the systems in terms of the methods like this: (1) substituting Y with the lanthanide except Pr, Ce, and Tb in YBa2Cu3O(7-y) system to finning down grains in the samples, therefore, the effect can be investigated of the grain size on the critical current density of 1:2:3 compounds; (2) mixing the high T sub c oxides with the metal elements, such as Ag, according to the composition of (high T sub c oxide)1-xAgx to metallize the grain boundaries in the samples, studying the effect of the electric conductivity of the grain boundaries on the critical current density; (3) adding SiO2, PbO2, and SnO2 into the high T sub c oxide to form impurity phases in the grain boundaries, trying to find out the effects of the impurity phases or metalloid grain boundaries on the critical current density of the high T sub c superconductors. The experimental results indicate that in the case of of the presence of the metalloid grain boundaries finning down grains fails to enhance the j sub c, but restrains it strongly, the granular high T sub c superconductors with the small size grains coupled weakly is always the low j sub c system.

  15. Critical currents of Rutherford MgB2 cables compacted by two-axial rolling

    NASA Astrophysics Data System (ADS)

    Kopera, L.; Kováč, P.; Kulich, M.; Melišek, T.; Rindfleisch, M.; Yue, J.; Hušek, I.

    2017-01-01

    Two types of Rutherford cables made of two strand layers of commercial MgB2 wires manufactured by Hyper Tech Research, Inc. have been made. Flat rectangular cables consisting of 12 single-core MgB2/Nb/Cu10Ni, or 6-filaments MgB2/Nb/Cu strands, both of diameter 390 mewm, were assembled using a back-twist cabling machine with transposition length of 20 mm. In order to analyze impact of the cable compaction on critical currents, cables were two-axially rolled, each by a single step reduction of 3.5%-29.7% to thickness range of 0.775-0.62 mm. It was found that by increasing the packing factor (PF) of cable above 0.79, the critical current begins to increase. It is improved nearly two times up to the PF limit 0.89. Compaction over the PF limit introduced cable degradation and decrease of critical current. Bending tests applied to cables showed that critical current degradation starts below the bending diameter 120 mm for 6-filaments Cu sheath and 70 mm for single-core Cu10Ni sheath cable. Tensile tests showed similar irreversible strain values for the both types of cables. Rutherford cables assembled of single-core strands are promising for low field (2.7-4 T) applications where low bending diameters are required.

  16. A Critical Analysis of Approaches To Targeted PTSD Prevention: Current Status and Theoretically Derived Future Directions

    ERIC Educational Resources Information Center

    Feldner, Matthew T.; Monson, Candice M.; Friedman, Matthew J.

    2007-01-01

    Although efforts to prevent posttraumatic stress disorder (PTSD) have met with relatively limited success, theoretically driven preventive approaches with promising efficacy are emerging. The current article critically reviews investigations of PTSD prevention programs that target persons at risk for being exposed to a traumatic event or who have…

  17. Critical current density in wire drawn and hydrostatically extruded Nb-Ti superconductors

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Woollam, J. A.; Collings, E. W.

    1979-01-01

    Critical current studies have been made on copper-clad Nb-Ti composite wire prepared under area reductions of 100:1 and 10,000:1 by hydrostatic extrusion (HE), wire drawing and HE plus drawing. Comparative evaluation of the thermomechanical processing equivalent of HE was performed.

  18. Critical current density in wire drawn and hydrostatically extruded Nb-Ti superconductors

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Woollam, J. A.; Collings, E. W.

    1979-01-01

    Critical current studies have been made on copper-clad Nb-Ti composite wire prepared under area reductions of 100:1 and 10,000:1 by hydrostatic extrusion (HE), wire drawing and HE plus drawing. Comparative evaluation of the thermomechanical processing equivalent of HE was performed.

  19. AFM nano-plough planar YBCO micro-bridges: critical currents and magnetic field effects.

    PubMed

    Elkaseh, A A O; Perold, W J; Srinivasu, V V

    2010-10-01

    The critical current (Ic) of YBa2Cu3O7-x (YBCO) AFM plough micro-constrictions is measured as a function of temperature, width and the magnetic flux density (B), which was applied perpendicular to the YBCO ab-plane and surface of the bridges. C-axis oriented thin films of YBa2Cu3O7-x were deposited on MgO substrates using an inverted cylindrical magnetron (ICM) sputtering technique. The films were then patterned into 8-10 micron size strips, using standard photolithography and dry etching processes. Micro-bridges with widths between 1.9 microm to 4.1 microm were fabricated by using atomic force microscope (AFM) nanolithography techniques. Critical current versus temperature data shows a straight-line behavior, which is typical of constriction type Josephson junctions. The Ic versus B characteristics exhibited a modulation, and a suppression of the critical current of up to 84%. It was also found that the critical current increases with increasing constriction width.

  20. Purification of SoyScreen using critical carbon dioxide in a counter-current fractionation column

    USDA-ARS?s Scientific Manuscript database

    This research evaluated the use of critical carbon dioxide (CO2) in a counter-current fractionation column for purifying SoyScreen, a mixture of feruloylated glycerides. The process concept was tested using a mixture consisting of triacylglycerides (TAGs), ethyl ferulate and fatty acid ethyl esters...

  1. Enhanced photogalvanic current in topological insulators via Fermi energy tuning

    NASA Astrophysics Data System (ADS)

    Okada, Ken N.; Ogawa, Naoki; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Kawasaki, Masashi; Tokura, Yoshinori

    2016-02-01

    We achieve the enhancement of the circular photogalvanic effect arising from the photoinjection of spins in topological insulator thin films by tuning the Fermi level (EF) . A series of (Bi1-xSbx) 2Te3 thin films were tailored so that the Fermi energy ranges above 0.34 eV to below 0.29 eV of the Dirac point, i.e., from the bulk conduction band bottom to the valence band top through the bulk in-gap surface-Dirac cone. The circular photogalvanic current, indicating a flow of spin-polarized surface-Dirac electrons, shows a pronounced peak when the EF is set near the Dirac point and is also correlated with the carrier mobility. Our observation reveals that there are substantial scatterings between the surface-Dirac and bulk state electrons in the generation process of spin-polarized photocurrent, which can be avoided by designing the electronic structure in topological insulators.

  2. Alternating current electrokinetics enhanced in situ capacitive immunoassay.

    PubMed

    Li, Shanshan; Ren, Yukun; Cui, Haochen; Yuan, Quan; Wu, Jie; Eda, Shigetoshi; Jiang, Hongyuan

    2015-02-01

    A rapid in situ capacitive immunoassay is presented herein. Conventional immunoassay typically relies on diffusion for transport of analytes in many cases causing long detection time and lack of sensitivity. By integrating alternating current electrokinetics (ACEK) and impedance sensing, this work provides a rapid in situ capacitive affinity biosensing. ACEK induces both fluid flow and particle motion, conveying target molecules toward electrodes immobilized with probes, resulting in rapid enrichment of target molecules and a capacitance change at the ''electrode-fluid'' interface. The benefit of ACEK enhanced immunoassay was demonstrated using the antigen and antibody from Johne's disease (JD) as an example. To clarify the importance of DEP and ACET effects for binding reaction, two different electrode pattern designs for capacitive immunoassay are studied. The asymmetric array and symmetric electrodes exhibit very similar response at lower electric field due to DEP effects, while asymmetric array has remarkable higher response at high-electric field because the convection becomes more important at high field. The disease positive and negative serum samples are distinguished in few minutes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Quantum periodicity in the critical current of superconducting rings with asymmetric link-up of current leads

    NASA Astrophysics Data System (ADS)

    Burlakov, A. A.; Chernykh, A. V.; Gurtovoi, V. L.; Ilin, A. I.; Mikhailov, G. M.; Nikulov, A. V.; Tulin, V. A.

    2017-08-01

    We use superconducting rings with asymmetric link-up of current leads for experimental investigation of winding number change at magnetic field corresponding to the half of the flux quantum inside the ring. According to the conventional theory, the critical current of such rings should change by jump due to this change. Experimental data obtained at measurements of aluminum rings agree with theoretical prediction in magnetic flux region close to integer numbers of the flux quantum and disagree in the region close to the half of the one, where a smooth change is observed instead of the jump. First measurements of tantalum ring give a hope for the jump. Investigation of this problem may have both fundamental and practical importance.

  4. Transcranial direct current stimulation enhances verbal working memory training performance over time and near transfer outcomes.

    PubMed

    Richmond, Lauren L; Wolk, David; Chein, Jason; Olson, Ingrid R

    2014-11-01

    Studies attempting to increase working memory (WM) capacity show promise in enhancing related cognitive functions but have also raised criticism in the broader scientific community given the inconsistent findings produced by these studies. Transcranial direct current stimulation (tDCS) has been shown to enhance WM performance in a single session [Fregni, F., Boggio, P., Nitsche, M., Bermpohl, F., Anatal, A., Feredoes, E., et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166, 23-30, 2005]; however, the extent to which tDCS might enhance learning on a WM training regime and the extent to which learning gains might transfer outside the training task remains largely unknown. To this end, participants engaged in an adaptive WM training task [previously utilized in Richmond, L., Morrison, A., Chein, J., & Olson, I. Working memory training and transfer in older adults. Psychology & Aging, 26, 813-822, 2011; Chein, J., & Morrison, A. Expanding the mind's workspace: Training and transfer effects with a complex working memory span task. Psychonomic Bulletin & Review, 17, 193-199, 2010] for 10 sessions over 2 weeks, concurrent with either active or sham stimulation of dorsolateral pFC. Before and after training, a battery of tests tapping domains known to relate to WM abilities was administered. Results show that tDCS enhanced learning on the verbal portion of the training task by 3.65 items. Furthermore, tDCS was shown to enhance near transfer to other untrained WM tasks in comparison with a no-contact control group. These results lend support to the idea that tDCS might bolster training and transfer gains in populations with compromised WM abilities.

  5. Reversible stress and strain limits of the critical current of practical REBCO and BSCCO wires

    NASA Astrophysics Data System (ADS)

    Osamura, K.; Machiya, S.; Nishijima, G.

    2016-09-01

    Practical REBCO and BSCCO-2223 tape-shaped wires are now manufactured on an industrial scale. They are a typical composite material consisting of superconducting layer/filaments together with functional components. These functional components affect directly the stress and strain dependences of the critical current. When applying an external stress R, the critical current I c was measured. Then the external stress was reduced to R = 0 and the recovered critical current I cr was again measured. The tensile stress and strain dependences of both normalized critical currents divided by the original value, I c/I c0 and I cr/I c0 were investigated. In general I cr/I c0 recovered close to unity when the applied stress was low, but its recovering level decreased gradually with increasing applied stress. The definition of the reversible stress and strain limits was investigated and its validity was proved using the cyclic loading test. The original definition of reversible stress and strain limits of critical current relates to: (1) when releasing the applied stress and strain, the I c shall recover to the original value, and (2) when applying the cyclic stresses, the I c shall keep the original value. Here, as a practical definition for the reversible stress and strain limits, the tensile stress and strain at 99% recovery of I c have been proposed. On the other hand, it was made clear that the stress and strain at I c 95% retention are not valid for use commonly as a criterion of reversible stress and strain limits for both practical REBCO and BSCCO-2223 wires.

  6. A Critical Review of Digital Storyline-Enhanced Learning

    ERIC Educational Resources Information Center

    Novak, Elena

    2015-01-01

    Storyline is one of the major motivators that lead people to play video games. However, little empirical evidence exists on the instructional effectiveness of integrating a storyline into digital learning materials. This systematic literature review presents current empirical findings on the effects of a storyline game design element for human…

  7. A Critical Review of Digital Storyline-Enhanced Learning

    ERIC Educational Resources Information Center

    Novak, Elena

    2015-01-01

    Storyline is one of the major motivators that lead people to play video games. However, little empirical evidence exists on the instructional effectiveness of integrating a storyline into digital learning materials. This systematic literature review presents current empirical findings on the effects of a storyline game design element for human…

  8. Microstructure dependence of the c-axis critical current density in second generation YBCO tapes

    SciTech Connect

    Jia, Y. Welp, U. Crabtree, G.W.; Kwok, W.K.; Malozemoff, A.P.; Rupich, M.W.; Fleshler, S.; Clem, J.R.

    2011-10-31

    C-axis current flow in high temperature superconductor (HTS) tape-shaped wires arises in configurations where the local wire axis is not perpendicular to the local magnetic field, such as in power cables with helically wound HTS tapes. The c-axis critical current density J{sub c}{sup c} has been recently found to be orders of magnitude lower than the ab-plane critical current density J{sub c}{sup ab}. Here we report on J{sub c}{sup c} (77 K, sf) values of various YBa{sub 2}Cu{sub 3}O{sub 7}-based (YBCO) tapes with different microstructures. Our results show that the value of J{sub c}{sup c} (77 K, sf) decreases significantly with increasing concentration of ab-plane stacking faults in YBCO thin films and that the critical current anisotropy {gamma} = J{sub c}{sup ab}/J{sub c}{sup c} can reach values as high as 2070, implying that in the highest-anisotropy tape, {approx}20% of the tape width carries c-axis current in a helically wound power cable.

  9. Microstructure dependence of the c-axis critical current density in second-generation YBCO tapes.

    SciTech Connect

    Jia, Y.; Welp, U.; Crabtree, G. W.; Kwok, W. K.; Malozemoff, A. P.; Rupich, M. W.; Fleshler, S.; Clem, J. R.

    2011-10-01

    C-axis current flow in high temperature superconductor (HTS) tape-shaped wires arises in configurations where the local wire axis is not perpendicular to the local magnetic field, such as in power cables with helically wound HTS tapes. The c-axis critical current density J{sub c}{sup c} has been recently found to be orders of magnitude lower than the ab-plane critical current density J{sub c}{sup ab}. Here we report on J{sub c}{sup c} (77 K, sf) values of various YBa{sub 2}Cu{sub 3}O{sub 7}-based (YBCO) tapes with different microstructures. Our results show that the value of J{sub c}{sup c} (77 K, sf) decreases significantly with increasing concentration of ab-plane stacking faults in YBCO thin films and that the critical current anisotropy {gamma} = J{sub c}{sup ab}/J{sub c}{sup c} can reach values as high as 2070, implying that in the highest-anisotropy tape, {approx}20% of the tape width carries c-axis current in a helically wound power cable.

  10. Relaxation of the transport critical current in high-Tc polycrystals

    NASA Astrophysics Data System (ADS)

    Altshuler, E.; Cobas, R.; Batista-Leyva, A. J.; Noda, C.; Flores, L. E.; Martínez, C.; Orlando, M. T. D.

    1999-08-01

    We perform a systematic study of the time evolution of the transport critical current in polycrystalline samples of the high temperature superconducting system (Hg1-xRex)Ba2Ca2Cu3O8+δ and YBa2Cu3O7-δ after application and removal of an external magnetic field Hm. Within our time, temperature, and remanent field windows, the transport critical current increases logarithmically in time. The relaxation rates in the range 80-115 K decrease with increasing temperature at a fixed Hm, while temperature-dependent maxima are observed in the relaxation rate versus Hm plots. These experimental results are reproduced by a phenomenological model applicable to any high-Tc polycrystals. In the model, the time increase of the transport current is determined by the effective field at the intergrain junctions, which relaxes in time due to the flux creep of the intragrain magnetization.

  11. Mapping the current–current correlation function near a quantum critical point

    SciTech Connect

    Prodan, Emil; Bellissard, Jean

    2016-05-15

    The current–current correlation function is a useful concept in the theory of electron transport in homogeneous solids. The finite-temperature conductivity tensor as well as Anderson’s localization length can be computed entirely from this correlation function. Based on the critical behavior of these two physical quantities near the plateau–insulator or plateau–plateau transitions in the integer quantum Hall effect, we derive an asymptotic formula for the current–current correlation function, which enables us to make several theoretical predictions about its generic behavior. For the disordered Hofstadter model, we employ numerical simulations to map the current–current correlation function, obtain its asymptotic form near a critical point and confirm the theoretical predictions.

  12. Enhancing mathematics communication using critical aspects and dimensions of variation

    NASA Astrophysics Data System (ADS)

    Olteanu, Constanta; Olteanu, Lucian

    2013-06-01

    This article deals with two prominent topics in the field of mathematics education: the communication in mathematics and its teaching and learning and the continuous professional development of mathematics teachers. In this article, a framework is proposed for analysing the effectiveness of communication in mathematics classrooms. The presentation is based on data collected, during a 3-year period, while different objects of learning is presented in nine classes, and it includes 22 teachers and 884 students. Among other things, the data consist of the students' tests, the teachers' lessons plan and reports of the lessons' instructions. In the analysis, concepts relating to variation theory have been used as analytical tools. The results show that effective communication occurs in the classroom if it has the real critical aspects in student learning as its starting point. Also, the results show that teachers develop new strategies to present the contents by having the focus to open up dimensions of variation.

  13. Superconducting fluctuations in organic molecular metals enhanced by Mott criticality.

    PubMed

    Nam, Moon-Sun; Mézière, Cécile; Batail, Patrick; Zorina, Leokadiya; Simonov, Sergey; Ardavan, Arzhang

    2013-12-02

    Unconventional superconductivity typically occurs in materials in which a small change of a parameter such as bandwidth or doping leads to antiferromagnetic or Mott insulating phases. As such competing phases are approached, the properties of the superconductor often become increasingly exotic. For example, in organic superconductors and underdoped high-T(c) cuprate superconductors a fluctuating superconducting state persists to temperatures significantly above T(c). By studying alloys of quasi-two-dimensional organic molecular metals in the κ-(BEDT-TTF)₂X family, we reveal how the Nernst effect, a sensitive probe of superconducting phase fluctuations, evolves in the regime of extreme Mott criticality. We find strong evidence that, as the phase diagram is traversed through superconductivity towards the Mott state, the temperature scale for superconducting fluctuations increases dramatically, eventually approaching the temperature at which quasiparticles become identifiable at all.

  14. Effects of rf current on critical field for magnetization reversal in spin torque devices

    NASA Astrophysics Data System (ADS)

    Chen, Wenyu; Florez, Sylvia; Katine, Jordan; Carey, Matthew; Folks, Liesl; Terris, Bruce

    2009-03-01

    Current induced switching assisted by rf current has recently been observed in spin torque devices at low temperature [1, 2]. This effect allows control of spin transfer induced magnetization reversal through the frequency of an injected rf current. In this study, the effects of the rf current injection on critical field for magnetization reversal in spin valve junctions have been investigated. Measurements were conducted at room temperature, and the magnetic field was applied along the easy axis of the junction. An rf current was injected into the nanojunction at various frequencies ranging between 1 and 20 GHz. The dynamic resistance, dV/dI, was measured as a function of the rf frequency, power and the dc bias current while ramping the magnetic field. The rf current injection was observed to change the critical field for free layer magnetization reversal when the intrinsic spin-transfer-induced dynamics is frequency-locked with the injected rf. The results will be discussed in the context of macrospin models of spin transfer in metallic spin valve structures. [1] S. H. Florez et al. Phys. Rev. B 78, 184403 (2008) [2] Y.-T. Cui et al. Phys. Rev. B 77, 214440 (2008)

  15. Effects of Active Learning on Enhancing Student Critical Thinking in an Undergraduate General Science Course

    ERIC Educational Resources Information Center

    Kim, Kyoungna; Sharma, Priya; Land, Susan M.; Furlong, Kevin P.

    2013-01-01

    To enhance students' critical thinking in an undergraduate general science course, we designed and implemented active learning modules by incorporating group-based learning with authentic tasks, scaffolding, and individual reports. This study examined the levels of critical thinking students exhibited in individual reports and the students'…

  16. Enhancing Critical Thinking, Writing and Disposition Preparedness amongst Four-Year University Teacher Education Students

    ERIC Educational Resources Information Center

    Lane-Patrice, Libra A.

    2013-01-01

    More and more, critical thinking and writing skills are necessary and of prime significance. Stakeholders across the board are concerned that students are deficient in these vital areas. The purpose of this study was to examine how the employment of specific, targeted and explicit critical thinking and writing instruction could enhance the…

  17. Effects of Active Learning on Enhancing Student Critical Thinking in an Undergraduate General Science Course

    ERIC Educational Resources Information Center

    Kim, Kyoungna; Sharma, Priya; Land, Susan M.; Furlong, Kevin P.

    2013-01-01

    To enhance students' critical thinking in an undergraduate general science course, we designed and implemented active learning modules by incorporating group-based learning with authentic tasks, scaffolding, and individual reports. This study examined the levels of critical thinking students exhibited in individual reports and the students'…

  18. Enhancing Critical Thinking, Writing and Disposition Preparedness amongst Four-Year University Teacher Education Students

    ERIC Educational Resources Information Center

    Lane-Patrice, Libra A.

    2013-01-01

    More and more, critical thinking and writing skills are necessary and of prime significance. Stakeholders across the board are concerned that students are deficient in these vital areas. The purpose of this study was to examine how the employment of specific, targeted and explicit critical thinking and writing instruction could enhance the…

  19. Enhancement of Students' Independent Learning through Their Critical Thinking Skills Development

    ERIC Educational Resources Information Center

    Kopzhassarova, Umit; Akbayeva, Gulden; Eskazinova, Zhanar; Belgibayeva, Gulbarshyn; Tazhikeyeva, Akerke

    2016-01-01

    The article focuses on the problem of developing students' critical thinking skills, which help them become independent learners. Analysis of research works of educators and scholars enable the authors to reveal qualities, necessary for students to enhance their critical thinking skills and become independent learners. Different points of view on…

  20. An exponential scaling law for the strain dependence of the Nb3Sn critical current density

    NASA Astrophysics Data System (ADS)

    Bordini, B.; Alknes, P.; Bottura, L.; Rossi, L.; Valentinis, D.

    2013-07-01

    The critical current density of the Nb3Sn superconductor is strongly dependent on the strain applied to the material. In order to investigate this dependence, it is a common practice to measure the critical current of Nb3Sn strands for different values of applied axial strain. In the literature, several models have been proposed to describe these experimental data in the reversible strain region. All these models are capable of fitting the measurement results in the strain region where data are collected, but tend to predict unphysical trends outside the range of data, and especially for large strain values. In this paper we present a model of a new strain function, together with the results obtained by applying the new scaling law on relevant datasets. The data analyzed consisted of the critical current measurements at 4.2 K that were carried out under applied axial strain at Durham University and the University of Geneva on different strand types. With respect to the previous models proposed, the new scaling function does not present problems at large strain values, has a lower number of fitting parameters (only two instead of three or four), and is very stable, so that, starting from few experimental points, it can estimate quite accurately the strand behavior in a strain region where there are no data. A relationship is shown between the proposed strain function and the elastic strain energy, and an analogy is drawn with the exponential form of the McMillan equation for the critical temperature.

  1. Nursing care plans versus concept maps in the enhancement of critical thinking skills in nursing students enrolled in a baccalaureate nursing program.

    PubMed

    Sinatra-Wilhelm, Tina

    2012-01-01

    Appropriate and effective critical thinking and problem solving is necessary for all nurses in order to make complex decisions that improve patient outcomes, safety, and quality of nursing care. With the current emphasis on quality improvement, critical thinking ability is a noteworthy concern within the nursing profession. An in-depth review of literature related to critical thinking was performed. The use of nursing care plans and concept mapping to improve critical thinking skills was among the recommendations identified. This study compares the use of nursing care plans and concept mapping as a teaching strategy for the enhancement of critical thinking skills in baccalaureate level nursing students. The California Critical Thinking Skills Test was used as a method of comparison and evaluation. Results indicate that concept mapping enhances critical thinking skills in baccalaureate nursing students.

  2. Effectiveness of past and current critical incident analysis on reflective learning and practice change.

    PubMed

    Vachon, Brigitte; LeBlanc, Jeannette

    2011-09-01

    Critical incident analysis (CIA) is one of the strategies frequently used to facilitate reflective learning. It involves the thorough description and analysis of an authentic and experienced event within its specific context. However, CIA has also been described as having the potential to expose vulnerabilities, threaten learners' coping mechanisms and increase rather than reduce their anxiety levels. The aim of this study was to compare the analysis of current critical incidents with that of past critical incidents, and to further explore why and how the former is more conducive to reflective learning and practice change than the latter. A collaborative research study was conducted. Eight occupational therapists were recruited to participate in a reflective learning group that convened for 12 meetings held over a 15-month period. The group facilitator planned and adapted the learning strategies to be used to promote reflective learning and guided the group process. Critical incident analysis represented the main activity carried out in the group discussions. The data collected were analysed using the grounded theory method. Three phenomena were found to differentiate between the learning contexts created by the analysis of, respectively, past and current critical incidents: attitudinal disposition; legitimacy of purpose, and the availability of opportunities for experimentation. Analysis of current clinical events was found to improve participants' motivation to self-evaluate, to increase their self-efficacy, and to help them transfer learning into action and to progressively self-regulate. The results of this collaborative research study suggest that the analysis of current clinical events in order to promote reflection offers a safer and more constructive learning environment than does the analysis of incidents that have occurred in the past. This learning strategy is directly grounded in health professional practice. The remaining challenge for continuing

  3. Comparison between the magnetic and transport critical current densities in high critical current density melt-textured yttrium barium copper-oxide

    NASA Technical Reports Server (NTRS)

    Gao, L.; Meng, R. L.; Xue, Y. Y.; Hor, P. H.; Chu, C. W.

    1991-01-01

    Using a recently developed pulsed critical current density (Jc) measuring system, the Jc of the high-Jc melt-textured YBa2Cu3O(7-delta) (Y123) bulk samples has been determined. I-V curves with a voltage resolution of 0.5 microV were obtained, and transport Jc's along the a-b plane as high as 7.2 x 10 to the 4th A/sq cm were extracted. These results are comparable to the values obtained magnetically. On the other hand, transport Jc along the c axis were found to be two orders of magnitude smaller, even though the magnetic Jc along the c axis is only about five times smaller than Jc along the a-b plane. It is suggested that for the high-temperature superconducting materials which are highly anisotropic, caution should be taken when using the nontransport magnetic methods to determine Jc.

  4. Comparison between the magnetic and transport critical current densities in high critical current density melt-textured yttrium barium copper-oxide

    NASA Technical Reports Server (NTRS)

    Gao, L.; Meng, R. L.; Xue, Y. Y.; Hor, P. H.; Chu, C. W.

    1991-01-01

    Using a recently developed pulsed critical current density (Jc) measuring system, the Jc of the high-Jc melt-textured YBa2Cu3O(7-delta) (Y123) bulk samples has been determined. I-V curves with a voltage resolution of 0.5 microV were obtained, and transport Jc's along the a-b plane as high as 7.2 x 10 to the 4th A/sq cm were extracted. These results are comparable to the values obtained magnetically. On the other hand, transport Jc along the c axis were found to be two orders of magnitude smaller, even though the magnetic Jc along the c axis is only about five times smaller than Jc along the a-b plane. It is suggested that for the high-temperature superconducting materials which are highly anisotropic, caution should be taken when using the nontransport magnetic methods to determine Jc.

  5. Transport behavior and critical current densities in MgB2 wires

    NASA Astrophysics Data System (ADS)

    Pradhan, A. K.; Feng, Y.; Zhao, Y.; Koshizuka, N.; Zhou, L.; Zhang, P. X.; Liu, X. H.; Ji, P.; Du, S. J.; Liu, C. F.

    2001-09-01

    We report on the transport and magnetization properties of MgB2 wires fabricated by a powder-in-tube (PIT) technique. Temperature and magnetic-field-dependent resistivity displays a high conductivity and upper critical field Hc2 generally observed in dense samples. The electronic mass anisotropy γ≈1.3±0.15 predicts some texturing in the wire. Our data on transition temperature TC, Hc2, and both magnetic and transport critical current density Jc indicate that MgB2 can be manufactured in a wire form using a PIT technique and required engineering Jc can be achieved on further optimization.

  6. Critical currents of aligned grains of Tl-Ba-Ca-Cu-O compounds

    NASA Technical Reports Server (NTRS)

    Fang, M. M.; Finnemore, D. K.; Farrell, D. E.; Bansal, N. R.

    1989-01-01

    A study of irreversibility in the magnetization curves of Tl2Ba2Ca2Cu3O10 and Tl2Ba2Ca1Cu2O8 was undertaken to determine the intragranular critical currents and the effects of flux-creep in grain-aligned samples of these materials. For fields of greater than 0.3 T, and H parallel to c axis, the critical supercurrent falls approximately exponentially with both magnetic field and temperature. Flux-creep is found to be linear in the logarithm of time at low fields over a wide temperature range.

  7. Nonionic surfactants enhancing bactericidal activity at their critical micelle concentrations.

    PubMed

    Tobe, Seiichi; Majima, Toshiaki; Tadenuma, Hirohiko; Suekuni, Tomonari; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2015-01-01

    Bactericidal activities of benzalkonium chloride [also known as alkyldimethylbenzylammonium chloride (ADBAC)] containing nonionic surfactants such as methyl ester ethoxylates (MEE) with the alkyl group C8-C14 and oxyethylene (EO) group of average adduct number 3-15 were measured against Escherichia coli and Staphylococcus aureus. Sample solutions containing MEE in the vicinity of the critical micelle concentration exhibited a dramatic decrease in viable bacterial counts. MEE with an alkyl group of C12 and an oxyethylene group of lower adduct number exhibited little viable bacterial counts than those having higher EO adduct numbers. MEE with reduced EO adduct numbers increased fluorescence intensity in E. coli using the viability stain SYTO 9. Our results show that MEE molecules with low EO adduct numbers exhibited bactericidal activity by increasing the permeability of the E. coli cell membrane. Sample solution containing ADBAC and MEE molecules with lower EO adduct numbers also displayed higher zeta potentials. Moreover, ADBAC molecules incorporated into micelles of MEE with lower EO adduct numbers were adsorbed onto the surface of E. coli, which augmented bactericidal activity.

  8. Low field critical current density of titanium sheathed magnesium diboride wires

    NASA Astrophysics Data System (ADS)

    Rostila, L.; Grasso, G.; Demenčík, E.; Tumino, A.; Brisigotti, S.; Kováč, P.

    2010-06-01

    Magnesium diboride (MgB2) is replacing some of the conventional superconductors due to its low cost and availability in kilometer lengths. MgB2 has also been considered for AC applications. In order to model the AC losses and the critical currents of the applications, intrinsic Jc(B)-dependence is an important factor also at low fields. In this work Jc(B)-dependence of an MgB2 sample is extracted from the standard in field voltage-current measurements. The proposed method is applied to a non magnetic titanium sheathed sample at 16 and 20 K and a simple formula for Jc(B) aligns with the measurements. In the fitting process, the critical current distribution inside the wire is numerically simulated in order to take the self field of the sample into account. Moreover, the same formula aligns with measurements of a different sample. These critical current measurements, performed at 4.2 K, were based on magnetization. In the self field computations, the superconducting cross section must be determined accurately. Therefore, we tailored an image processing tool for MgB2 wires to obtain the geometry from a photograph.

  9. Theory of the critical current in two-band superconductors with application to Mg B2

    NASA Astrophysics Data System (ADS)

    Nicol, E. J.; Carbotte, J. P.

    2005-07-01

    Using a Green’s function formulation of the superfluid current js , where a momentum qs is applied to the Cooper pair, we have calculated js as a function of qs , temperature, and impurity scattering for a two-band superconductor. We consider both renormalized BCS and full strong-coupling Eliashberg theory. There are two peaks in the current as a function of qs due to the two energy scales for the gaps, and this can give rise to nonstandard behavior for the critical current. The critical current jc , which is given as the maximum in js , can exhibit a kink as a function of temperature as the maximum is transferred from one peak to other. Other temperature variations are also possible and the universal BCS behavior is violated. The details depend on the material parameters of the system, such as the amount of coupling between the bands, the gap anisotropy, the Fermi velocities, and the density of states of each band. The Ginzburg-Landau relation between jc , the penetration depth λL , and thermodynamic critical field Hc is modified. Using Eliashberg theory with the electron-phonon spectral densities given from band structure calculations, we have applied our calculations for js and jc to the case of MgB2 and find agreement with experiment.

  10. A Critical Appraisal of Solubility Enhancement Techniques of Polyphenols

    PubMed Central

    Kaur, Harkiran; Kaur, Gurpreet

    2014-01-01

    Polyphenols constitute a family of natural substances distributed widely in plant kingdom. These are produced as secondary metabolites by plants and so far 8000 representatives of this family have been identified. Recently, there is an increased interest in the polyphenols because of the evidence of their role in prevention of degenerative diseases such as neurodegenerative diseases, cancer, and cardiovascular diseases. Although a large number of drugs are available in the market for treatment of these diseases, however, the emphasis these days is on the exploitation of natural principles derived from plants. Most polyphenols show low in vivo bioavailability thus limiting their application for oral drug delivery. This low bioavailability could be associated with low aqueous solubility, first pass effect, metabolism in GIT, or irreversible binding to cellular DNA and proteins. Therefore, there is a need to devise strategies to improve oral bioavailability of polyphenols. Various approaches like nanosizing, self-microemulsifying drug delivery systems (SMEDDS), microencapsulation, complexation, and solid dispersion can be used to increase the bioavailability. This paper will highlight the various methods that have been employed till date for the solubility enhancement of various polyphenols so that a suitable drug delivery system can be formulated. PMID:26556188

  11. Is faculty development critical to enhance teaching effectiveness?

    PubMed Central

    Bhatnagar, Kavita; Srivastava, Kalpana; Singh, Amarjit

    2010-01-01

    India has the highest number of medical colleges in the world and, consequently, the highest number of medical teachers. The unprecedented growth of medical institutions in India in the past two decades has led to a shortage of teachers and created a quality challenge for medical education. In recent years, though medical advances have been understood and adopted by many institutions, the same is not true for educational planning and implementation. There is a need for well-trained faculty who will help improve programs to produce quality graduates. The existing teachers’ training programs are insufficient; both in number and aspects they cover, to meet this demand. Provision of faculty development related to teaching and assessment strategies is widely perceived to be the essential ingredient in the efforts to introduce new curricular approaches and modify the educational environment in academic medicine. Analyses of the outcomes of efforts to revise health professions curricula have identified the availability and effectiveness of faculty development as a predictor of the success or failure of reform initiatives. This article will address faculty development for the purpose of enhancing teaching effectiveness and preparing instructors for potential new roles associated with curriculum changes. PMID:22174541

  12. Phenomenological consequences of enhanced bulk viscosity near the QCD critical point

    DOE PAGES

    Monnai, Akihiko; Mukherjee, Swagato; Yin, Yi

    2017-03-06

    In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional to nearly the third power of the critical correlation length, and become significantly enhanced. Here, this work is the first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point. For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant, longitudinally expanding 1 + 1 dimensional causal relativistic hydrodynamical evolution at nonzero baryon density. We demonstrate that the critically enhanced bulk viscosity induces a substantial nonequilibrium pressure, effectively softening themore » equation of state, and leads to sizable effects in the flow velocity and single-particle distributions at the freeze-out. In conclusion, the observable effects that may arise due to the enhanced bulk viscosity in the vicinity of the QCD critical point can be used as complementary information to facilitate searches for the QCD critical point.« less

  13. Critical thinking instruction and technology enhanced learning from the student perspective: A mixed methods research study.

    PubMed

    Swart, Ruth

    2017-03-01

    Critical thinking is acclaimed as a valuable asset for graduates from higher education programs. Technology has advanced in quantity and quality; recognized as a requirement of 21st century learners. A mixed methods research study was undertaken, examining undergraduate nursing student engagement with critical thinking instruction, platformed on two technology-enhanced learning environments: a classroom response system face-to-face in-class and an online discussion forum out-of-class. The Community of Inquiry framed the study capturing constructivist collaborative inquiry to support learning, and facilitate critical thinking capability. Inclusion of quantitative and qualitative data sources aimed to gather a comprehensive understanding of students' development of critical thinking and engagement with technology-enhanced learning. The findings from the students' perspectives were positive toward the inclusion of technology-enhanced learning, and use in supporting their development of critical thinking. Students considered the use of two forms of technology beneficial in meeting different needs and preferences, offering varied means to actively participate in learning. They valued critical thinking instruction being intentionally aligned with subject-specific content facilitating understanding, application, and relevance of course material. While the findings are limited to student participants, the instructional strategies and technology-enhanced learning identified as beneficial can inform course design for the development of critical thinking.

  14. Critical-current diffraction patterns of grain-boundary Josephson weak links

    SciTech Connect

    Peterson, R.L.; Ekin, J.W. )

    1990-11-01

    We discuss the diffraction patterns and other characteristics of the critical current as a function of magnetic field in grain-boundary Josephson barriers. Diffraction patterns occur not just for {ital SIS} junctions but for all types of Josephson links, including {ital SNS} junctions, which may be present at grain boundaries in high-{Tc} superconductors. We discuss the generality of the Airy diffraction pattern, which is expected to characterize grain-boundary barriers in bulk material more accurately than the Fraunhofer pattern. The transport critical-current density in many bulk, granular high-{ital T}{sub {ital c}} superconductors has a power-law dependence on very low magnetic fields, characteristic of averaged diffraction patterns, and cannot be fitted by an exponential magnetic-field dependence, which may result from the material properties of the barriers.

  15. Study on the limiting factor of critical current in Ag-Bi2223 tapes

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Ding, S. Y.; Luo, H.; Leng, X.; Lin, J. W.

    2003-04-01

    The silver sheathed tapes of Ag-Bi 2- xPb xSr 2Ca 2-Cu 3O 7- y (Ag-Bi2223) were fabricated by usual process. The limiting factor of the critical current density jc of the tapes was studied. V- I characteristic was performed for the tapes immersed in liquid nitrogen with and without magnetic fields. Hysteresis loop of V- I curve was observed. A model based on polycrystalline superconductors was proposed to account for this kind of hysteresis. The result shows that in our Ag-Bi2223 tapes the weak link is the key factor limiting the global critical current. The measurement of V- I loop can be an effective method to check whether there exist harmful weak links in polycrystalline samples.

  16. Persistent critical current of YBa2Cu3O7-δ nanowires

    NASA Astrophysics Data System (ADS)

    Mansour, A. I.; Chow, K. H.; Jung, J.

    2011-09-01

    C-axis oriented YBa2Cu3O7-δ (YBCO) nanowires have been fabricated so as to connect two c-axis oriented semi-ring-shaped YBCO thin films along the c-axis direction. This allows the characterization of high-Tc nanowires with the electrodes being of the same material. Four different lengths of the nanowire arrays were characterized. When the YBCO nanowires were narrower than 100 nm, their persistent critical current revealed an anomalous temperature dependence. The narrow YBCO nanowires behave like superconductor/semiconductor/superconductor junctions with a universal critical current density Jc(T)∝(Tc-T)3/2 at low temperatures. Above a certain temperature T*, the flow of the supercurrent is controlled by thermally activated phase-slip events, with Jc(T) following a power-law dependence Jc∝(Tc-T)α >3/2.

  17. Critical Current Scaling in Long Diffusive Graphene-Based Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Ke, Chung Ting; Borzenets, Ivan V.; Draelos, Anne W.; Amet, Francois; Bomze, Yuriy; Jones, Gareth; Craciun, Monica; Russo, Saverio; Yamamoto, Michihisa; Tarucha, Seigo; Finkelstein, Gleb

    2016-08-01

    We present transport measurements on long diffusive graphene-based Josephson junctions. Several junctions are made on a single-domain crystal of CVD graphene and feature the same contact width of ~9$\\mu$m but vary in length from 400 to 1000 nm. As the carrier density is tuned with the gate voltage, the critical current in the these junctions spans a range from a few nA up to more than $5\\mu$A, while the Thouless energy, ETh, covers almost two orders of magnitude. Over much of this range, the product of the critical current and the normal resistance IcRn is found to scale linearly with ETh, as expected from theory. However, the ratio IcRn /ETh is found to be 0.1-0.2: much smaller than the predicted ~10 for long diffusive SNS junctions.

  18. Critical carbon input to maintain current soil organic carbon stocks in global wheat systems

    NASA Astrophysics Data System (ADS)

    Wang, Guocheng; Luo, Zhongkui; Han, Pengfei; Chen, Huansheng; Xu, Jingjing

    2016-01-01

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1° × 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha-1 yr-1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.

  19. C-axis critical current density of second-generation YBCO tapes.

    SciTech Connect

    Jia, Y.; Hua, J.; Crabtree, G. W.; Kwok, W. K.; Welp, U.; Malozemoff, A. P.; Rupich, M.; Fleshler, S.; Materials Science Division; American Superconductor Corp.

    2010-10-01

    We report on measurements of the temperature and field dependence of the c-axis critical current density (J{sub c}{sup c}) obtained on mesa structures that were patterned into the YBCO layer of second-generation HTS tapes. We find the J{sub c}{sup c}-values of {approx}4 kA cm{sup -2} at 77 K and self-field, corresponding to an unexpectedly high anisotropy in the critical current density J{sub c}{sup ab}/J{sub c}{sup c} of 500-600. C-axis current flow is expected to arise in applications such as the helically wound wires in HTS cables. A simple estimate is given of the fraction of tape width for such a c-axis flow; while in our samples this fraction is approximately 5% for a typical geometry, the fraction will grow linearly with increasing current density anisotropy and could affect the current-carrying ability of the tape.

  20. C-Axis critical current density of second-generation YBCO tapes

    SciTech Connect

    Jia, Y.; Hua, J.; Crabtree, G.W.; Kwok, W.K.; Welp, U.; Malozemoff, A.P.; Rupich, M.; Fleshler, S.

    2010-10-21

    We report on measurements of the temperature and field dependence of the c-axis critical current density (Jcc) obtained on mesa structures that were patterned into the YBCO layer of second-generation HTS tapes. We find the Jcc—values of ~ 4 kA cm-2 at 77 K and self-field, corresponding to an unexpectedly high anisotropy in the critical current density Jcab/Jcc of 500–600. C-axis current flow is expected to arise in applications such as the helically wound wires in HTS cables. A simple estimate is given of the fraction of tape width for such a c-axis flow; while in our samples this fraction is approximately 5% for a typical geometry, the fraction will grow linearly with increasing current density anisotropy and could affect the current-carrying ability of the tape.

  1. Enhancement of superconductivity near the ferromagnetic quantum critical point in UCoGe.

    PubMed

    Slooten, E; Naka, T; Gasparini, A; Huang, Y K; de Visser, A

    2009-08-28

    We report a high-pressure single crystal study of the superconducting ferromagnet UCoGe. Measurements of the ac susceptibility and resistivity under pressures up to 2.2 GPa show ferromagnetism is smoothly depressed and vanishes at a critical pressure p(c) = 1.4 GPa. Near the ferromagnetic critical point superconductivity is enhanced. Upper-critical field measurements under pressure show B(c2)(0) attains remarkably large values, which provides solid evidence for spin-triplet superconductivity over the whole pressure range. The obtained p-T phase diagram reveals superconductivity is closely connected to a ferromagnetic quantum-critical point hidden under the superconducting "dome."

  2. Intracardiac Origin of Heart Rate Variability, Pacemaker Funny Current and their Possible Association with Critical Illness

    PubMed Central

    Papaioannou, Vasilios E; Verkerk, Arie O; Amin, Ahmed S; de Bakker, Jaques MT

    2013-01-01

    Heart rate variability (HRV) is an indirect estimator of autonomic modulation of heart rate and is considered a risk marker in critical illness, particularly in heart failure and severe sepsis. A reduced HRV has been found in critically ill patients and has been associated with neuro-autonomic uncoupling or decreased baroreflex sensitivity. However, results from human and animal experimental studies indicate that intracardiac mechanisms might also be responsible for interbeat fluctuations. These studies have demonstrated that different membrane channel proteins and especially the so-called ‘funny’ current (If), an hyperpolarization-activated, inward current that drives diastolic depolarization resulting in spontaneous activity in cardiac pacemaker cells, are altered during critical illness. Furthermore, membrane channels kinetics seem to have significant impact upon HRV, whose early decrease might reflect a cellular metabolic stress. In this review article we present research findings regarding intracardiac origin of HRV, at the cellular level and in both isolated sinoatrial node and whole ex vivo heart preparations. In addition, we will review results from various experimental studies that support the interrelation between If and HRV during endotoxemia. We suggest that reduced HRV during sepsis could also be associated with altered pacemaker cell membrane properties, due to ionic current remodeling. PMID:22920474

  3. Magnetic field orientation dependence of critical current in industrial Nb 3Sn strands

    NASA Astrophysics Data System (ADS)

    Schild, T.; Cloez, H.

    In usual superconducting devices such as magnets for NMR, the magnetic field is perpendicular to the superconducting strand axis. But in some special devices, such as magnets for the toroidal field system of fusion machines, the strands can experience any field orientation. For NbTi strands, the pinning force is dependent on the field orientation because of the drawing process (Takacs, S., Polak, M. and Krempasky, L., Critical currents of NbTi tapes with differently oriented anisotropic defects, Cryogenics, 1983, 23, 153-159). In the case of Nb 3Sn strands, the draw and react process suggests that the pinning force is isotropic. In fact, preliminary experiments have shown the contrary, which is why the magnetic field orientation dependence of the critical current for two types of industrial Nb 3Sn strands has been measured. These measurements have been performed for seven field orientations at field strengths up to 20 T. A clear anisotropic effect has been observed, which cannot be explained by Kramer's pinning law. The results are in very good agreement with an empirical law proposed in a recent study by Takayasu et al. (Takayasu, M., Montgomery, D.B. and Minervini, J.V., Effect of magnetic field direction on the critical current of twisted multifilamentary superconducting wires, Inst. of Phys. Conf. Ser., 1997, 158, 917-920). The parameters to be used in this law could be specific to the manufacturing process.

  4. A direct tensile device to investigate the critical current properties in superconducting tapes

    NASA Astrophysics Data System (ADS)

    Zhang, Xingyi; Liu, Wei; Zhou, Jun; Yue, Donghua; Wang, Jun; Liu, Cong; Huang, Yi; Liu, Yong; Zhou, Youhe

    2014-02-01

    We construct an instrument to study the behavior of the critical current in superconducting tapes as a function of magnetic field and axial tension strain. The apparatus combines a material testing machine made by the non-magnetic stainless steel, which is capable of producing mechanical forces up to 1000 N and magnetic field up to 5 T with a homogeneous range of Φ150 × 110 mm. Moreover, the apparatus allows the automatic measurement of time dependence of voltage (V-t) under different magnetic fields and applied strains, which can be used to investigate the vortex instability and its time effect in the superconducting tapes. As an example, the simultaneous measurements of critical current and voltage relaxation with time at various strains and magnetic fields for the YaBa2Cu3O7-x coated conductors are carried out. Comparisons are made with the earlier reports in literature; the strain and magnetic field dependence of critical current indicate consistent behavior of this instrument.

  5. Universal self-field critical current for thin-film superconductors

    PubMed Central

    Talantsev, E. F.; Tallon, J. L.

    2015-01-01

    For any practical superconductor the magnitude of the critical current density, Jc, is crucially important. It sets the upper limit for current in the conductor. Usually Jc falls rapidly with increasing external magnetic field, but even in zero external field the current flowing in the conductor generates a self-field that limits Jc. Here we show for thin films of thickness less than the London penetration depth, λ, this limiting Jc adopts a universal value for all superconductors—metals, oxides, cuprates, pnictides, borocarbides and heavy Fermions. For type-I superconductors, it is Hc/λ where Hc is the thermodynamic critical field. But surprisingly for type-II superconductors, we find the self-field Jc is Hc1/λ where Hc1 is the lower critical field. Jc is thus fundamentally determined and this provides a simple means to extract absolute values of λ(T) and, from its temperature dependence, the symmetry and magnitude of the superconducting gap. PMID:26240014

  6. Josephson critical current of long SNS junctions in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Meier, Hendrik; Fal'Ko, Vladimir I.; Glazman, Leonid I.

    We evaluate the Josephson critical current of a long and wide two-dimensional superconductor-normal metal-superconductor (SNS) junction, taking into account the effect of electron reflection off the side edges of the junction. Considering clean junctions, we find that the effect of edges alters the usual Fraunhofer-like dependence of the Josephson critical current Ic on the magnetic flux Φ. At relatively weak fields, B <~Φ0 /W2 , the edge effect lifts zeros of the Ic (Φ) dependence and gradually shifts the maxima of that function by Φ0 / 2 . (Here W is the width of the junction and Φ0 the magnetic flux quantum.) At higher fields, B >~Φ0 /W2 , the edge effect leads to an accelerated decay of the critical current Ic (Φ) with increasing Φ. Our results are robust with respect to the roughness of realistic boundaries. Finally, we discuss the role of mesoscopic fluctuations of Ic (Φ) originating from the scattering off the edges, and compare our findings to recent experiments.

  7. Effect of a pinning field on the critical current density for current-induced domain wall motion in perpendicular magnetic anisotropy nanowires.

    PubMed

    Ooba, Ayaka; Fujimura, Yuma; Takahashi, Kota; Komine, Takashi; Sugita, Ryuji

    2012-09-01

    In this study, the effect of a pinning field on the critical current density for current-induced domain wall motion in nanowires with perpendicular magnetic anisotropy was investigated using micromagnetic simulations. In order to estimate the pinning field in notched nanowires, we conducted wall energy calculations for nanowires with various saturation magnetizations. The pinning field increased as the notch size increased. The pinning field decreased as the saturation magnetization decreased. As a result, the decreased in the pinning field causes the reduction of the critical current density. Therefore, a significant reduction of the critical current density can be obtained by decreasing the saturation magnetization, even if wall pinning occurs.

  8. Finite temperature and density depletion effects on persistent current state transitions and critical velocity of a toroidal Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Kumar, Avinash; Eckel, Stephen; Jendrzejewski, Fred; Campbell, Gretchen

    We study the decay of a persistent, quantized current state in a toroidal geometry. Our experiment involves trapping neutral 23Na atoms in an all optical ``target trap'' shaped potential. This potential consists of a disc surrounded by an annular potential. A current in a superfluid can be sustained only below a critical current. This critical current can be tuned by introducing a density perturbation which depletes the local density. The decay time of a persistent current state can also be controlled by enhancing fluctuations of the system thermally. We study the decay at four different temperatures between 30 nK and 190 nK. For each temperature we record the decay at four different perturbation strengths. We find that increasing the magnitude of the density depletion or the temperature leads to a faster decay, and have seen the decay constant change by over two orders of magnitude. We also studied the size of hysteresis loop between different current states as a function of temperature, allowing us to extract a critical velocity. We find that the discrepancies between the experimentally extracted critical velocity and theoretically calculated critical velocity (using local-density approximation) decreases as the temperature is decreased. Now at University of Heidelberg.

  9. Flux motion, proximity effect, and critical current density in YBa2Cu3O7-δ/silver composites

    NASA Astrophysics Data System (ADS)

    Jung, J.; Mohamed, M. A.-K.; Cheng, S. C.; Franck, J. P.

    1990-10-01

    We report on studies of magnetic and transport properties, as well as on characterization of defects in the pure YBa2Cu3O7-δ and the YBa2Cu3O7-δ/Ag(10 and 30 wt. %) composites. The studies of magnetic properties include the diamagnetic shielding, the Meissner effect, the trapped field [for both zero-field-cooling (ZFC) and field-cooling (FC) cases], and their dependence on applied magnetic field, temperature, and time. High- and low-magnetic-field hysteresis loops were measured and the intragrain ``magnetic'' critical current density was calculated. The studies of transport properties include the resistivity and intergrain ``transport'' critical-current-density measurements. Distribution, spacing, and size of intragrain twin boundaries were investigated. The results show the degradation of superconducting properties if silver is added to YBa2Cu3O7-δ during the sintering process, except the enhancement of the intergrain critical current density JCT in YBa2Cu3O7-δ/Ag(10 wt. %) composite. The activation energy for intergranular flux creep of 1.6 and ~0.3 eV was found for the pure YBa2Cu3O7-δ and the YBa2Cu3O7-δ/Ag composites, respectively. The results did not show any relationship between JCT, the activation energy, and the number of pinning centers (the trapped field) in these samples. It is suggested that the proximity junctions superconductor-normal-metal-superconductor built up by intergranular silver, and not flux pinning, are responsible for the increase of JCT. Defect characterization by transmission electron microscopy revealed that silver does not affect the structure of twin boundaries inside the grains of YBa2Cu3O7-δ.

  10. Ultra-thin YBa2Cu3O7-x films with high critical current density

    NASA Astrophysics Data System (ADS)

    Lyatti, M.; Savenko, A.; Poppe, U.

    2016-06-01

    Despite impressive progress in the development of superconducting nanowire single-photon detectors (SNSPD), the main obstacle for the widespread use of such detectors is the low operating temperature required for low-temperature superconductors. The very attractive idea of increasing the operating temperature using high-temperature superconductors for SNSPD fabrication is problematic due to the insufficient quality of ultra-thin films from high-temperature superconductors, which is one of the key requirements for the single-photon detection by superconducting nanowires. In this work, we demonstrate the possibility of fabricating ultra-thin YBa2Cu3O7-x films on SrTiO3 substrates with a surface flatness of ±1 unit cell and a high critical current density up to 14 MA cm-2 at T = 78 K. The critical current density of ultra-thin films had very low value in the first three unit cell layers adjacent to the substrate and reached nearly the bulk value at the fifth layer. 97% of the superconducting current is carried by only two upper layers of a 5-unit-cell thick YBa2Cu3O7-x film. Due to such superconducting current distribution over the film thickness and good surface flatness 5-unit-cell thick YBa2Cu3O7-x films could be promising for the fabrication of single-photon detectors.

  11. Optimization of Drive-Bunch Current Profile for Enhanced Transformer Ratio in Beam-Driven Acceleration Techniques

    SciTech Connect

    Lemery, F.; Mihalcea, D.; Prokop, C.R.; Piot, P.; /Northern Illinois U. /Fermilab

    2012-07-08

    In recent years, wakefield acceleration has gained attention due to its high acceleration gradients and cost effectiveness. In beam-driven wakefield acceleration, a critical parameter to optimize is the transformer ratio. It has been shown that current shaping of electron beams allows for enhanced (> 2) transformer ratios. In this paper we present the optimization of the pulse shape of the drive bunch for dielectric-wakefield acceleration.

  12. Characterization of the critical current and physical properties of superconducting epitaxial NbTiN sub-micron structures

    NASA Astrophysics Data System (ADS)

    Klimov, A.; Słysz, W.; Guziewicz, M.; Kolkovsky, V.; Zaytseva, I.; Malinowski, A.

    2017-05-01

    Measurements of critical current in NbTiN as a function of applied magnetic field and temperature are reported for two samples: 700-nm-wide bridge and 100-nm-wide meander. In 700-nm-wide NbTiN bridge we pinpointed the limiting factors for the critical current density to be current-driven vortex de-pinning at low temperatures and thermally activated flux flow closer to the transition temperature. In 100-nm-wide NbTiN meander we found phase slips activation, accompanied by hotspots formation at all measured temperatures. These two types of structures demonstrate different dependence of the critical current on the applied magnetic field. Although our NbTiN meander structures has high de-pairing critical current densities ∼107 A/cm2 at low temperatures, the real critical currents are smaller due to the presence of the local constrictions.

  13. Current trends in the enhancement of biomaterial osteointegration: biophysical stimulation.

    PubMed

    Fini, M; Giavaresi, G; Setti, S; Martini, L; Torricelli, P; Giardino, R

    2004-08-01

    To enhance bone implant osteointegration, many strategies for improving biomaterial properties have been developed which include optimization of implant material, implant design, surface morphology and osteogenetic coatings. Other methods that have been attempted to enhance endogenous bone healing around biomaterials are different forms of biophysical stimulations such as pulsed electromagnetic fields (PEMFs) and low intensity pulsed ultrasounds (LIPUS), which were initially developed to accelerate fracture healing. To aid in the use of adjuvant biophysical therapies in the management of bone-implant osteointegration, the present authors reviewed experimental and clinical studies published in the literature over the last 20 years on the combined use of biomaterials and PEMFs or LIPUS, and summarized the methodology, and the possible mechanism of action and effectiveness of the different biophysical stimulations for the enhancement of bone healing processes around bone implanted biomaterials.

  14. Temperature Distribution and Critical Current of Long HTS Cables Cooled with Subcooled Liquid Nitrogen

    NASA Astrophysics Data System (ADS)

    Vyatkin, V. S.; Ivanov, Y. V.; Watanabe, H.; Chikumoto, N.; Yamaguchi, S.

    2017-07-01

    Cooling of the long HTS power transmission lines performs by pumping of subcooled liquid nitrogen (LN2) along the cable. The temperature of LN2 along the cable increases due to the heat losses of the cryostat and heat generation in the HTS cable. The experiment using test cable line in Ishikari shows that flow rate of 35 L/min retains increasing of LN2 temperature by 1 K per 1 km of length. The technology when the back flow of LN2 cools the radiation shield surrounding the cable pipe is also applied in Ishikari-2 project. In this case the ambient heat flow into cable pipe is 50 times less than that without radiation shield. Back flow of LN2 removes almost all heat coming from the environment. When transport current is close to the critical value the Joule heat of HTS cable is significant. This heat additionally increases the temperature of LN2 flowing along the HTS cable. Near the outlet the temperature of HTS cable is maximal and the local critical current is minimal. The current matching critical current criterion of average electrical field of E 0 = 10-4 V/m provides the voltage drop and significant Joule heat at the hot end of the cable. It can lead the damage of the cable. The present work contains analysis of temperature distribution along the cable and the way to achieve the fail-safe operation of long HTS cable cooled by subcooled LN2. We also performed extrapolation of obtained results for several times longer cable lines by decreasing the LN2 flow rate.

  15. High critical currents in iron-clad superconducting MgB2 wires.

    PubMed

    Jin, S; Mavoori, H; Bower, C; van Dover, R B

    2001-05-31

    Technically useful bulk superconductors must have high transport critical current densities, Jc, at operating temperatures. They also require a normal metal cladding to provide parallel electrical conduction, thermal stabilization, and mechanical protection of the generally brittle superconductor cores. The recent discovery of superconductivity at 39 K in magnesium diboride (MgB2) presents a new possibility for significant bulk applications, but many critical issues relevant for practical wires remain unresolved. In particular, MgB2 is mechanically hard and brittle and therefore not amenable to drawing into the desired fine-wire geometry. Even the synthesis of moderately dense, bulk MgB2 attaining 39 K superconductivity is a challenge because of the volatility and reactivity of magnesium. Here we report the successful fabrication of dense, metal-clad superconducting MgB2 wires, and demonstrate a transport Jc in excess of 85,000 A cm-2 at 4.2 K. Our iron-clad fabrication technique takes place at ambient pressure, yet produces dense MgB2 with little loss of stoichiometry. While searching for a suitable cladding material, we found that other materials dramatically reduced the critical current, showing that although MgB2 itself does not show the 'weak-link' effect characteristic of the high-Tc superconductors, contamination does result in weak-link-like behaviour.

  16. High critical currents in iron-clad superconducting MgB2 wires

    NASA Astrophysics Data System (ADS)

    Jin, S.; Mavoori, H.; Bower, C.; van Dover, R. B.

    2001-05-01

    Technically useful bulk superconductors must have high transport critical current densities, Jc, at operating temperatures. They also require a normal metal cladding to provide parallel electrical conduction, thermal stabilization, and mechanical protection of the generally brittle superconductor cores. The recent discovery of superconductivity at 39K in magnesium diboride (MgB2) presents a new possibility for significant bulk applications, but many critical issues relevant for practical wires remain unresolved. In particular, MgB2 is mechanically hard and brittle and therefore not amenable to drawing into the desired fine-wire geometry. Even the synthesis of moderately dense, bulk MgB2 attaining 39K superconductivity is a challenge because of the volatility and reactivity of magnesium. Here we report the successful fabrication of dense, metal-clad superconducting MgB2 wires, and demonstrate a transport Jc in excess of 85,000Acm-2 at 4.2K. Our iron-clad fabrication technique takes place at ambient pressure, yet produces dense MgB2 with little loss of stoichiometry. While searching for a suitable cladding material, we found that other materials dramatically reduced the critical current, showing that although MgB2 itself does not show the `weak-link' effect characteristic of the high-Tc superconductors, contamination does result in weak-link-like behaviour.

  17. Using a kinesthetic learning strategy to engage nursing student thinking, enhance retention, and improve critical thinking.

    PubMed

    Wagner, Elissa A

    2014-06-01

    This article reports the outcomes of a kinesthetic learning strategy used during a cardiac lecture to engage students and to improve the use of classroom-acquired knowledge in today's challenging clinical settings. Nurse educators are constantly faced with finding new ways to engage students, stimulate critical thinking, and improve clinical application in a rapidly changing and complex health care system. Educators who deviate from the traditional pedagogy of didactic, content-driven teaching to a concept-based, student-centered approach using active and kinesthetic learning activities can enhance engagement and improve clinical problem solving, communication skills, and critical thinking to provide graduates with the tools necessary to be successful. The goals of this learning activity were to decrease the well-known classroom-clinical gap by enhancing engagement, providing deeper understanding of cardiac function and disorders, enhancing critical thinking, and improving clinical application.

  18. Effect of Adding on the Critical Current Density and Lateral Levitation Force of Bulk

    NASA Astrophysics Data System (ADS)

    Savaşkan, B.; Koparan, E. Taylan; Güner, S. B.; Çelik, Ş.; Öztürk, K.; Yanmaz, E.

    2015-10-01

    We fabricated malic acid -added bulks by wet mixing and "Two-step solid state reaction method". The effects of adding malic acid on , behaviour and lateral levitation force features of bulk have been investigated. A systematic decrease in the critical temperature with increasing adding level confirms the substitution of C at the B site of . While the 4 wt% sample showed the best of at 4 T and 5 K, 15 wt% sample showed uncompetitive lower critical current density , which ascribes the poor connectivity due to the excessive unsubstituted C distribution at grain boundaries and the presence of high MgO amount. At 24 and 28 K, the 4 and 6 wt% malic-acid-added samples exhibit a higher lateral force than pure sample. Based on the observed values of M- H, ( H) and lateral levitation force , it can be concluded that the 4 wt% malic-acid-added sample is the best of the studied samples.

  19. Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution.

    PubMed

    Scharp, David W; Marchetti, Piero

    2014-04-01

    Insulin therapy became a reality in 1921 dramatically saving lives of people with diabetes, but not protecting them from long-term complications. Clinically successful free islet implants began in 1989 but require life long immunosuppression. Several encapsulated islet approaches have been ongoing for over 30 years without defining a clinically relevant product. Macro-devices encapsulating islet mass in a single device have shown long-term success in large animals but human trials have been limited by critical challenges. Micro-capsules using alginate or similar hydrogels encapsulate individual islets with many hundreds of promising rodent results published, but a low incidence of successful translation to large animal and human results. Reduction of encapsulated islet mass for clinical transplantation is in progress. This review covers the status of both early and current studies including the presentation of corporate efforts involved. It concludes by defining the critical items requiring solution to enable a successful clinical diabetes therapy.

  20. Enhanced Lower Hybrid Current Drive Experiments on HT-7 Tokamak

    NASA Astrophysics Data System (ADS)

    Shen, Wei-ci; Kuang, Guang-li; Liu, Yue-xiu; Ding, Bo-jiang; Shi, Yao-jiang; HT-7 Team

    2003-02-01

    Effective Lower Hybrid Current Driving (LHCD) and improved confinement experiments in higher plasma parameters (Ip > 200 kA, ne > 2 × 1013 cm-3, Te >= 1 keV) have been curried out in optimized LH wave spectrum and plasma parameters in HT-7 superconducting tokamak. The dependence of current driving efficiency on LH power spectrum, plasma density ne and toroidal magnetic field BT has been obtained under optimal conditions. A good CD efficiency was obtained at higher plasma current and higher electron density. The improvement of the energy confinement time is accompanied with the increase in line averaged electron density, and in ion and electron temperatures. The highest current driving efficiency reached ηCD = Ipbar neR/PRF approx 1.05 × 1019 Am-2/W. Wave-plasma coupling was sustained in a good state and the reflective coefficient was less than 5%. The experiments have also demonstrated the ability of LH wave in the start-up and ramp-up of the plasma current. The measurement of the temporal distribution of plasma parameter shows that lower hybrid leads to a broader profile in plasma parameter. The LH power deposition profile and the plasma current density profile were modeled with a 2D Fokker-Planck code corresponding to the evolution process of the hard x-ray detector array.

  1. Transport critical current density of Fe sheath MgB 2 tapes sintered at different temperatures

    NASA Astrophysics Data System (ADS)

    Ruan, K. Q.; Li, H. L.; Yu, Y.; Wang, C. Y.; Cao, L. Z.; Liu, C. F.; Du, S. J.; Yan, G.; Feng, Y.; Wu, X.; Wang, J. R.; Liu, X. H.; Zhang, P. X.; Wu, X. Z.; Zhou, L.

    2003-04-01

    Fe sheath MgB 2 tapes sintered at 650, 750, 850 and 950 °C, respectively, for 2 h in a high purity argon gas were prepared using the powder-in-tube method. Transport critical current densities of tapes were measured in the fields up to 10 T from 4 to 30 K. Both tapes sintered at 850 and 950 °C completely lost the capacity of carrying superconducting current over the temperature range from 4 to 30 K. Compared to a tape sintered at 650 °C, an improvement in the in-field critical current density Jc and irreversibility field μ0H*( T) was observed in a tape sintered at 750 °C. At 20 K, the Jc value was ∼1.32×10 5 A/cm 2 in self-field and the μ0H* value 4.2 T for the tape sintered at 750 °C, whereas the Jc in self-field and μ0H* values were ∼5.9×10 4 A/cm 2 and 2.8 T for that sintered at 650 °C.

  2. Current clinical nutrition practices in critically ill patients in Latin America: a multinational observational study.

    PubMed

    Vallejo, Karin Papapietro; Martínez, Carolina Méndez; Matos Adames, Alfredo A; Fuchs-Tarlovsky, Vanessa; Nogales, Guillermo Carlos Contreras; Paz, Roger Enrique Riofrio; Perman, Mario Ignacio; Correia, Maria Isabel Toulson Davisson; Waitzberg, Dan Linetzky

    2017-08-25

    Malnutrition in critically ill adults in the intensive care unit (ICU) is associated with a significantly elevated risk of mortality. Adequate nutrition therapy is crucial to optimise outcomes. Currently, there is a paucity of such data in Latin America. Our aims were to characterise current clinical nutrition practices in the ICU setting in Latin America and evaluate whether current practices meet caloric and protein requirements in critically ill patients receiving nutrition therapy. We conducted a cross-sectional, retrospective, observational study in eight Latin American countries (Argentina, Brazil, Chile, Colombia, Ecuador, Mexico, Panama, and Peru). Eligible patients were critically ill adults hospitalised in the ICU and receiving enteral nutrition (EN) and/or parenteral nutrition (PN) on the Screening Day and the previous day (day -1). Caloric and protein balance on day -1, nutritional status, and prescribed nutrition therapy were recorded. Multivariable logistic regression analysis was performed to identify independent predictors of reaching daily caloric and protein targets. The analysis included 1053 patients from 116 hospitals. Evaluation of nutritional status showed that 74.1% of patients had suspected/moderate or severe malnutrition according to the Subjective Global Assessment. Prescribed nutrition therapy included EN alone (79.9%), PN alone (9.4%), and EN + PN (10.7%). Caloric intake met >90% of the daily target in 59.7% of patients on day -1; a caloric deficit was present in 40.3%, with a mean (±SD) daily caloric deficit of -688.8 ± 455.2 kcal. Multivariable logistic regression analysis showed that combined administration of EN + PN was associated with a statistically significant increase in the probability of meeting >90% of daily caloric and protein targets compared with EN alone (odds ratio, 1.56; 95% confidence interval, 1.02-2.39; p = 0.038). In the ICU setting in Latin America, malnutrition was highly prevalent and caloric

  3. Epac activator critically regulates action potential duration by decreasing potassium current in rat adult ventricle.

    PubMed

    Brette, Fabien; Blandin, Erick; Simard, Christophe; Guinamard, Romain; Sallé, Laurent

    2013-04-01

    Sympathetic stimulation is an important modulator of cardiac function via the classic cAMP-dependent signaling pathway, PKA. Recently, this paradigm has been challenged by the discovery of a family of guanine nucleotide exchange proteins directly activated by cAMP (Epac), acting in parallel to the classic signaling pathway. In cardiac myocytes, Epac activation is known to modulate Ca(2+) cycling yet their actions on cardiac ionic currents remain poorly characterized. This study attempts to address this paucity of information using the patch clamp technique to record action potential (AP) and ionic currents on rat ventricular myocytes. Epac was selectively activated by 8-CPT-AM (acetoxymethyl ester form of 8-CPT). AP amplitude, maximum depolarization rate and resting membrane amplitude were unaltered by 8-CPT-AM, strongly suggesting that Na(+) current and inward rectifier K(+) current are not regulated by Epac. In contrast, AP duration was significantly increased by 8-CPT-AM (prolongation of duration at 50% and 90% of repolarization by 41±10% and 43±8% respectively, n=11). L-type Ca(2+) current density was unaltered by 8-CPT-AM (n=16) so this cannot explain the action potential lengthening. However, the steady state component of K(+) current was significantly inhibited by 8-CPT-AM (-38±6%, n=15), while the transient outward K(+) current was unaffected by 8-CPT-AM. These effects were PKA-independent since they were observed in the presence of PKA inhibitor KT5720. Isoprenaline (100nM) induced a significant prolongation of AP duration, even in the presence of KT5720. This study provides the first evidence that the cAMP-binding protein Epac critically modulates cardiac AP duration by decreasing steady state K(+) current. These observations may be relevant to diseases in which Epac is upregulated, like cardiac hypertrophy.

  4. Method and composition for improving flux pinning and critical current in superconductors

    DOEpatents

    Morris, D.E.

    1995-07-04

    Superconducting materials and methods of forming superconducting materials are disclosed. Highly oxidized superconductors are heated at a relatively high temperature so as to release oxygen, which migrates out of the material, and form a non-superconducting phase which does not diffuse out of grains of the material. The material is then reoxidized at a lower temperature, leaving the non-superconducting inclusions inside a superconducting phase. The non-superconducting inclusions act as pinning centers in the superconductor, increasing the critical current thereof. 14 figs.

  5. Method and composition for improving flux pinning and critical current in superconductors

    DOEpatents

    Morris, Donald E.

    1995-01-01

    Superconducting materials and methods of forming superconducting materials are disclosed. Highly oxidized superconductors are heated at a relatively high temperature so as to release oxygen, which migrates out of the material, and form a non-superconducting phase which does not diffuse out of grains of the material. The material is then reoxidized at a lower temperature, leaving the non-superconducting inclusions inside a superconducting phase. The non-superconducting inclusions act as pinning centers in the superconductor, increasing the critical current thereof.

  6. Effect of Nb3Sn layer structure and morphology on critical current density of multifilamentary superconductors

    NASA Astrophysics Data System (ADS)

    Deryagina, I. L.; Popova, E. N.; Patrakov, E. I.; Valova-Zaharevskaya, E. G.

    2017-10-01

    The microstructure and morphology of superconducting Nb3Sn layers in multifilamentary composites differing in the fabrication route (bronze technology and internal-tin method), the shape of Nb filaments (continuous, coupled and tubular) and in the mode of Ti doping (doping of bronze matrix or Nb filaments) have been studied. Significant factors determining critical current density of these wires are the average grain sizes and the fraction of equiaxed grains in the superconducting layers. The minimal grain sizes are characteristic of the composites with tubular Nb filaments, whereas the maximal fraction of equiaxed grains is obtained in the internal-tin wires.

  7. Low frequency critical current noise and two level system defects in Josephson junctions

    NASA Astrophysics Data System (ADS)

    Nugroho, Christopher Daniel

    The critical current in a Josephson junction is known to exhibit a 1/falpha low frequency noise. Implemented as a superconducting qubit, this low frequency noise can lead to decoherence. While the 1/f noise has been known to arise from an ensemble of two level systems connected to the tunnel barrier, the precise microscopic nature of these TLSs remain a mystery. In this thesis we will present measurements of the 1/f alpha low frequency noise in the critical current and tunneling resistance of Al-AlOx-Al Josephson junctions. Measurements in a wide range of resistively shunted and unshunted junctions confirm the equality of critical current and tunneling resistance noise. That is the critical current fluctuation corresponds to fluctuations of the tunneling resistance. In not too small Al-AlOx-Al junctions we have found that the fractional power spectral density scales linearly with temperature. We confirmed that the 1/falpha power spectrum is the result of a large number of two level systems modulating the tunneling resistance. At small junction areas and low temperatures, the number of thermally active TLSs is insufficient to integrate out a featureless 1/ f spectral shape. By analyzing the spectral variance in small junction areas, we have been able to deduce the TLS defect density, n ≈ 2.53 per micrometer squared per Kelvin spread in the TLS energy per factor e in the TLS lifetimes. This density is consistent with the density of tunneling TLSs found in glassy insulators, as well as the density deduced from coherent TLSs interacting at qubit frequencies. The deduced TLS density combined with the magnitude of the 1/f power spectral density in large area junctions, gives an average TLS effective area, A ˜ 0.3 nanometer squared. In ultra small tunnel junctions, we have studied the time-domain dynamics of isolated TLSs. We have found a TLS whose dynamics is described by the quantum tunneling between the two localized wells, and a one-phonon absorption

  8. Source tracking fecal bacteria in water: a critical review of current methods.

    PubMed

    Meays, Cynthia L; Broersma, Klaas; Nordin, Rick; Mazumder, Asit

    2004-10-01

    Many molecular and biochemical methods and techniques are being developed to track sources of bacteria in water and food. Currently, there is no standard method proposed for source tracking. This manuscript is a critical evaluation of the various methods used in watersheds, and highlights some of the advantages and disadvantages of each method. Making a decision on a single or combination of methods to use under a particular situation will depend on a number of factors including: question(s) to be answered, scale of identification (broad scale versus specific species identification), available expertise, cost of analysis, turnaround time, and access to facilities. This manuscript reviews several source tracking methodologies which are in current use for source tracking fecal bacteria in the environment including: ribotyping, pulse-field gel electrophoresis, denaturing-gradient gel electrophoresis, repetitive DNA sequences (Rep-PCR), host-specific 16S rDNA genetic markers, and antibiotic resistance analysis.

  9. Critical currents in thin-film superconductors via two-coil mutual inductance measurements

    NASA Astrophysics Data System (ADS)

    Draskovic, John; Yong, Jie; Hinton, Michael; Ahmed, Adam; Wang, Song; Steers, Stanley; Lemberger, Thomas

    2012-02-01

    Following Claassen et al.(RSI 1991), we determine the critical current density, Jc(T), in a superconducting thin film by measuring the inductive coupling between two coils located on opposite sides of the film as a function of temperature. For several values of the AC drive magnetic field, we record the temperature at which inductive coupling between the coils jumps dramatically. The peak current density in the film at such temperature is computed by numerical simulation. For thin niobium films, we obtain Jc(0) values greater than 10 percent of the Ginzburg-Landau (GL) prediction with the correct temperature dependence. This suggests the possibility of practical measurement of the GL coherence length in thin films without need for the strong magnetic fields used to measure Bc2. Application of this technique to cuprates and pnictides will be discussed.

  10. [Current views on surface enhanced Raman spectroscopy in microbiology].

    PubMed

    Jia, Xiaoxiao; Li, Jing; Qin, Tian; Deng, Aihua; Liu, Wenjun

    2015-05-01

    Raman spectroscopy has generated many branches during the development for more than 90 years. Surface enhanced Raman spectroscopy (SERS) improves SNR by using the interaction between tested materials and the surface of rough metal, as to quickly get higher sensitivity and precision spectroscopy without sample pretreatment. This article describes the characteristic and classification of SERS, and updates the theory and clinical application of SERS. It also summarizes the present status and progress of SERS in various disciplines and illustrates the necessity and urgency of its research, which provides rationale for the application for SERS in microbiology.

  11. Critical current and flux dynamics in Ag-doped FeSe superconductor

    NASA Astrophysics Data System (ADS)

    Galluzzi, A.; Polichetti, M.; Buchkov, K.; Nazarova, E.; Mancusi, D.; Pace, S.

    2017-02-01

    The measurements of DC magnetization as a function of the temperature M(T), magnetic field M(H), and time M(t) have been performed in order to compare the superconducting and pinning properties of an undoped FeSe0.94 sample and a silver doped FeSe0.94 + 6 wt% Ag sample. The M(T) curves indicate an improvement of the superconducting critical temperature and a reduction of the non-superconducting phase Fe7Se8 due to the silver doping. This is confirmed by the field and temperature dependent critical current density Jc(H,T) extracted from the superconducting hysteresis loops at different temperatures within the Bean critical state model. Moreover, the combined analysis of the Jc(T) and of the pinning force Fp(H/Hirr) indicate that the pinning mechanisms in both samples can be described in the framework of the collective pinning theory. The U*(T, J) curves show a pinning crossover from an elastic creep regime of intermediate size flux bundles, for low temperatures, to a plastic creep regime at higher temperatures for both the samples. Finally, the vortex hopping attempt time has been evaluated for both samples and the results are comparable with the values reported in the literature for high Tc materials.

  12. The current role of the consultant nurse in critical care: consolidation or consternation?

    PubMed

    Dawson, Deborah; Coombs, Maureen

    2008-06-01

    The consultant nurse role emerged into the National Health Service in 1999, presented against a backdrop of practice and service modernisation. As with any innovative development, the role was originally subject to much scrutiny with regards to impact and outcome. However, six years after its initial introduction, continued focus and support on this role is less visible. This paper presents a follow-up review of the role and function of consultant nurses in critical care, using an original survey tool that underpinned Dawson and McEwen's work in 2003. From the results of the current study, key changes in role are identified and areas for further development are highlighted. To provide a contemporary profile of the consultant nurse in critical care. To identify changes in the consultant nurse role from 2003 to 2006. A national email survey of all known critical care nurse consultants in post in the United Kingdom was undertaken in October 2006. Using a validated survey tool originally used in 2003, a return rate of 73% (n = 47) was yielded. Biographics of this survey reveal a static consultant nurse population with increasing length of tenure in post (mean = 60.2 months). There is no substantial increase in the size of the cohort since 2003. Postholders demonstrate advanced academic skills through higher degrees (94%) and carry a national and international profile through presentation and publication portfolios (92% national and 53% international presentation, 62% multi-authored publication, 47% single authored publication). The core role that consultant nurses in critical care engaged in is practice and service development (mean involvement score = 3.65), with expert practice holding least mean involvement scores (mean involvement score = 2.67). There is evidence of increasing use by these posts for strategic input at organisational/trust level. This paper has identified ongoing strengths and limited developments of the consultant nurse in critical care role

  13. Hydrogen-inclusion-induced variation of critical current in Nb-AlOx-Nb Josephson junctions

    NASA Astrophysics Data System (ADS)

    Hinode, Kenji; Satoh, Tetsuro; Nagasawa, Shuichi; Hidaka, Mutsuo

    2008-07-01

    The critical current density (Jc) of Nb-AlOx-Nb Josephson-junction (JJ) arrays was found to depend on their wiring structure. The Jc values of all JJs wired with a niobium electrode covered with a palladium layer increased by about 20%, while the Jc values of those with electrodes without palladium coverage stayed unchanged (except for that of the two junctions directly connected to the pads of an electrical probe covered with palladium.) To explain this Jc increase, we propose a "hydrogen mechanism," that is, the hydrogen inclusion into niobium electrodes occurs during fabrication, and its desorption occurs after fabrication. Hydrogen atoms incorporated in the electrodes are thought to influence the mechanical and the electronical properties of niobium, resulting in the deviation of critical current density. Hydrogen desorption analysis and measurements on niobium-film properties verified the occurrence of hydrogen incorporation into the niobium films during the fabrication process for superconducting JJ circuits. The incorporation and desorption processes were confirmed to proceed, even in air, if the niobium film is covered with palladium. As hydrogen diffuses quickly in niobium but stops in aluminum or aluminum oxide, differences in hydrogen concentration can happen within a circuit consisting of electrically connected multiple junctions. This hydrogen concentration difference can explain the observation that two junctions with increased Jc exist in the serial junction array without palladium coverage.

  14. Critical Current Density and Bulk Pinning Force in RHQT-Processed Niobium-Aluminum Superconductors

    NASA Astrophysics Data System (ADS)

    Buta, F.; Sumption, M. D.; Collings, E. W.

    2004-06-01

    Transformation heat treatments with short excursions (1-10 min) to 1000°C preceding the conventional 800°C/10h were applied to jelly-roll Nb-Al samples that had been rapidly heated and quenched (RHQ) in bcc phase from high temperatures. The critical current density dependence on magnetic field at 4.2K in magnetic fields ranging from 0 to 8.5T was determined from magnetization measurements performed by Vibrating Sample Magnetometry. It was found that in this range of magnetic fields the highest critical current densities are not necessarily obtained for the samples with the highest initial heating rate of the transformation heat treatment as it is the case at magnetic fields in the vicinity of 20T. The highest pinning force density is present in samples that were transformed by rapid insertion in a furnace preheated to 1000°C and not in samples that were ohmically heated to 1000°C (the fastest heating rate employed).

  15. High critical currents in heavily doped (Gd,Y)Ba2Cu3Ox superconductor tapes

    SciTech Connect

    Selvamanickam, V; Gharahcheshmeh, MH; Xu, A; Galstyan, E; Delgado, L; Cantoni, C

    2015-01-19

    REBa2Cu3Ox ((REBCO), RE = rare earth) superconductor tapes with moderate levels of dopants have been optimized for high critical current density in low magnetic fields at 77 K, but they do not exhibit exemplary performance in conditions of interest for practical applications, i.e., temperatures less than 50K and fields of 2-30 T. Heavy doping of REBCO tapes has been avoided by researchers thus far due to deterioration in properties. Here, we report achievement of critical current densities (J(c)) above 20 MA/cm(2) at 30 K, 3 T in heavily doped (25 mol.% Zr-added) (Gd,Y)Ba2Cu3Ox superconductor tapes, which is more than three times higher than the J(c) typically obtained in moderately doped tapes. Pinning force levels above 1000 GN/m(3) have also been attained at 20 K. A composition map of lift factor in J(c) (ratio of J(c) at 30 K, 3 T to the J(c) at 77 K, 0 T) has been developed which reveals the optimum film composition to obtain lift factors above six, which is thrice the typical value. A highly c-axis aligned BaZrO3 (BZO) nanocolumn defect density of nearly 7 x 10(11) cm(-2) as well as 2-3 nm sized particles rich in Cu and Zr have been found in the high J(c) films. (C) 2015 AIP Publishing LLC.

  16. Critical current density and microstructural state of an internal tin multifilamentary superconducting wire

    NASA Astrophysics Data System (ADS)

    Dietderich, D. R.; Glazer, J.; Lea, C.; Hassenzahl, W. V.; Morris, J. W., Jr.

    1984-09-01

    The critical current density (J sub c) of internal tin wires is increased when low-temperature diffusion heat treatments are performed prior to a high temperature reaction. To determine the variation of J sub c with prereaction heat treatments a copper-stabilized IGC internal tin wire with an outside diameter of 0.267mm was studied. The wire has 2 to 2.5 micron diameter filameters, and within the Ta barrier, the area ratio of the copper matrix and Sn core to Nb is about 2.2. Due to the character of the Cu-Sn phase diagram, heat treatments at a series of temperatures below the Nb3Sn reaction temperature affect the local Sn concentration in the matrix about the Nb filaments. The variation in J sub c resulting from these heat treatments is a consequence of the microstructural state of the conductor and the morphology of the Nb3Sn layer produced. The results of this work show that the internal tin and bronze-processed wires have different J sub c (H) characteristics. The two processes have comparable critical currents at high fields, suggesting the same H sub c2, while at low fields the internal tin wire is superior, suggesting a better grain morphology.

  17. Phase development and critical current density of Bi-2223 tapes fabricated by groove rolling

    NASA Astrophysics Data System (ADS)

    Iyer, A. N.; Salib, S.; Vipulanandan, C.; Salama, K.; Balachandran, U.

    1999-07-01

    The powder-in-tube technique is the most widely used method for fabricating silver-clad Bi-2223 wires and tapes. In this method the silver billet containing the precursor material is transformed to the final shape using metallurgical deformation techniques such as wire drawing and flat rolling. In the present study, a modified version of the powder-in-tube technique was adopted where the silver billet was reduced in size by groove rolling instead of wire drawing. Microstructural analysis during the initial deformation stage revealed crack formation in the superconductor core. Stress conditions during groove rolling were analysed and appropriate changes were incorporated in the deformation process. After groove rolling the wires were flat rolled to a final thickness of 250 icons/Journals/Common/mu" ALT="mu" ALIGN="TOP"/>m. Subsequent thermomechanical treatment resulted in tapes with critical current density of icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>19700 A cm-2 (critical current of icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>40 A).

  18. High transport critical current density in Cu-clad multifilament MgB2 tape

    NASA Astrophysics Data System (ADS)

    Liu, C. F.; Du, S. J.; Yan, G.; Fu, B. Q.; Feng, Y.; Ji, P.; Wang, J. R.; Liu, X. H.; Zhang, P. X.; Wu, X. Z.; Zhou, L.; Cao, L. Z.; Ruan, K. Q.; Wang, C. Y.; Li, X. G.; Zhou, G. E.; Zhang, Y. H.

    2002-05-01

    Cu-clad multifilament MgB2 tapes with Ta or NbZr buffer have been fabricated by using a powder-in-tube (PIT). Mg+2B mixture powder was used as the central conductor core in single filament with Cu sheath and Ta or NbZr buffer wall. The composite tapes with 18 filaments were heat-treated in pure Ar atmosphere at 600-1000 °C for 1-10 h, and reacted in-situ to form MgB2. The phase composition and microstructure in the samples were examined by using X-ray diffraction and optical microscopy. Transport critical current was measured by a standard four-probe technique at different magnetic fields and temperatures. The sample with 18 filaments and NbZr buffer shows a high transport critical current density of 8×104 A/cm2 (10 K, 0 T) and 1.36×104 A/cm2 (10 K, 1 T).

  19. High critical currents in heavily doped (Gd,Y)Ba2Cu3Ox superconductor tapes

    DOE PAGES

    Selvamanickam, V.; Gharahcheshmeh, M. Heydari; Xu, A.; ...

    2015-01-20

    REBa2Cu3Ox superconductor tapes with moderate levels of dopants have been optimized for high critical current density in low magnetic fields at 77 K, but they do not exhibit exemplary performance in conditions of interest for practical applications, i.e., temperatures less than 50 K and fields of 2–30 T. Heavy doping of REBCO tapes has been avoided by researchers thus far due to deterioration in properties. Here, we report achievement of critical current densities (Jc) above 20 MA/cm2 at 30 K, 3 T in heavily doped (25 mol. % Zr-added) (Gd,Y)Ba2Cu3Ox superconductor tapes, which is more than three times higher thanmore » the Jc typically obtained in moderately doped tapes. Pinning force levels above 1000 GN/m3 have also been attained at 20 K. A composition map of lift factor in Jc (ratio of Jc at 30 K, 3 T to the Jc at 77 K, 0 T) has been developed which reveals the optimum film composition to obtain lift factors above six, which is thrice the typical value. A highly c-axis aligned BaZrO3 (BZO) nanocolumn defect density of nearly 7 × 1011 cm–2 as well as 2–3nm sized particles rich in Cu and Zr have been found in the high Jc films.« less

  20. Resonant electromagnetic emission from intrinsic Josephson-junction stacks with laterally modulated Josephson critical current

    NASA Astrophysics Data System (ADS)

    Koshelev, A. E.; Bulaevskii, L. N.

    2008-01-01

    Intrinsic Josephson-junction stacks realized in mesas fabricated out of high-temperature superconductors may be used as sources of coherent electromagnetic radiation in the terahertz range. The major challenge is to synchronize Josephson oscillations in all junctions in the stack to get significant radiation out of the crystal edge parallel to the c axis. We suggest a simple way to solve this problem via artificially prepared lateral modulation of the Josephson critical current identical in all junctions. In such a stack, phase oscillations excite the in-phase Fiske mode when the Josephson frequency matches the Fiske-resonance frequency which is set by the stack lateral size. The powerful, almost standing electromagnetic wave is excited inside the crystal in the resonance. This wave is homogeneous across the layers, meaning that the oscillations are synchronized in all junctions in the stack. We evaluate behavior of the I-V characteristics and radiated power near the resonance for arbitrary modulation and find exact solutions for several special cases corresponding to symmetric and asymmetric modulations of the critical current.

  1. Critical current retention of potted and unpotted REBCO Roebel cables under transverse pressure and thermal cycling

    NASA Astrophysics Data System (ADS)

    Talantsev, E. F.; Badcock, R. A.; Mataira, R.; Chong, S. V.; Bouloukakis, K.; Hamilton, K.; Long, N. J.

    2017-04-01

    Coated conductor Roebel cables are an effective way to create a high current density, fully transposed cable. However, despite REBCO tapes being robust against transverse stress, the Roebel architecture can concentrate transverse stress in non-trivial and random patterns depending on the exact arrangement of strands. If stands are embedded in a solid media which consolidates all strands then a transverse stress concentration will not occur. We tested this idea through mechanical and thermo-cycling tests on 5 strand Roebel cables. For non-impregnated cable irreversible degradation in critical currents is initiated at transverse pressures in a range of 4-34 MPa. Optical examination of the cables shows stress concentration patterns beyond those predicted by thickness variations. For cables impregnated with epoxy filled with SiO2 nanopowder, which has a similar thermal expansion coefficient to the metallic substrate of the strands, the irreversibility point is increased above our highest experimentally available pressure of 270 MPa. Thermo-cycling experiments confirmed a closely matched thermal expansion coefficient between the embedding media and metallic substrate is critical to avoid wire failures.

  2. Temperature and Magnetic Field Dependence of Critical Current Density of YBCO with Varying Flux Pinning Additions (POSTPRINT)

    DTIC Science & Technology

    2010-03-01

    compared to YBCO. Index Terms—Critical current density, engineering current den- sity, flux pinning, high temperature superconductor , nanoparticle...I. INTRODUCTION T HE development of high temperature superconductor (YBCO or 123) thin films on polycrys- talline substrates (coated...conductors) with a critical current density offers great promise for incorpo- ration into power applications such as generators or motors , operating at 40–77

  3. Scaling laws for the critical current density of NbN films in high magnetic fields

    SciTech Connect

    Hampshire, D.P. . Dept. of Physics); Gray, K.E.; Kampwirth, R.T. )

    1992-08-01

    We have measured the critical current density (Jc) of two NbN films (500 {Angstrom} and 1550 {Angstrom} thick) as a function of temperature in magnetic fields up to 25 Tesla using transport measurements. In both films, the functional form of the volume pinning force F{sub p} obeys the Fietz - Webb scaling law throughout the entire magnetic field and temperature range such that: F{sub p}=J{sub c} {times} B= {alpha}B{sub c2}{sup m}(T)b{sup {1/2}} (1-b){sup 2} = {alpha}*(1-T/T{sub c}){sup m}b{sup {1/2}}(1-b){sup 2} where {alpha} and {alpha}* are constants dependent on the film, B{sub c2}(T) is the upper critical field, b = B/B{sub c2}(T) is the reduced magnetic field, {Tc} is the critical temperature and we find m = 2.7 {plus minus} 0.1. Over a limited range of magnetic fields close to B{sub c2}(T), we can approximate this functional form by: F{sub p} = {Beta}B{sub c2}{sup M}(T)b(1-b){sup 2}={Beta}*(1-T/{Tc}){sup M}b(1-b){sup 2} where {Beta} and {Beta}* are constants and we find M = 2.6{plus minus}0.2. Values of J{sub c} derived from D.C. magnetisation data obtained using Bean's model show qualitative agreement with the transport measurements throughout the superconducting phase. Despite the marked granularity in the microstructure of these films, we interpret our results as evidence that a flux pinning mechanism determines the transport current density in NbN films in high magnetic fields.

  4. Scaling laws for the critical current density of NbN films in high magnetic fields

    SciTech Connect

    Hampshire, D.P.; Gray, K.E.; Kampwirth, R.T.

    1992-08-01

    We have measured the critical current density (Jc) of two NbN films (500 {Angstrom} and 1550 {Angstrom} thick) as a function of temperature in magnetic fields up to 25 Tesla using transport measurements. In both films, the functional form of the volume pinning force F{sub p} obeys the Fietz - Webb scaling law throughout the entire magnetic field and temperature range such that: F{sub p}=J{sub c} {times} B= {alpha}B{sub c2}{sup m}(T)b{sup {1/2}} (1-b){sup 2} = {alpha}*(1-T/T{sub c}){sup m}b{sup {1/2}}(1-b){sup 2} where {alpha} and {alpha}* are constants dependent on the film, B{sub c2}(T) is the upper critical field, b = B/B{sub c2}(T) is the reduced magnetic field, {Tc} is the critical temperature and we find m = 2.7 {plus_minus} 0.1. Over a limited range of magnetic fields close to B{sub c2}(T), we can approximate this functional form by: F{sub p} = {Beta}B{sub c2}{sup M}(T)b(1-b){sup 2}={Beta}*(1-T/{Tc}){sup M}b(1-b){sup 2} where {Beta} and {Beta}* are constants and we find M = 2.6{plus_minus}0.2. Values of J{sub c} derived from D.C. magnetisation data obtained using Bean`s model show qualitative agreement with the transport measurements throughout the superconducting phase. Despite the marked granularity in the microstructure of these films, we interpret our results as evidence that a flux pinning mechanism determines the transport current density in NbN films in high magnetic fields.

  5. Enhancing Critical Reflection and Writing Skills in the HBSE Classroom and beyond

    ERIC Educational Resources Information Center

    Wiener, Diane R.

    2012-01-01

    Human Behavior in the Social Environment (HBSE) is an ideal location in which graduate social work students can enhance their critical reflection and writing skills while integrating social work theories with practice, research, and policy. A writing-intensive, learner-centered model using specific strategies is described via a framework of…

  6. Enhancing Educators' Skills for Promoting Critical Thinking in Their Classroom Discourses: A Randomized Control Trial

    ERIC Educational Resources Information Center

    Gul, Raisa B.; Khan, Shehla; Ahmed, Azra; Cassum, Shanaz; Saeed, Tanveer; Parpio, Yasmin; Schopflocher, Donald; Profetto-McGrath, Joanne

    2014-01-01

    The literature reveals that educators find it challenging to foster critical thinking (CT) in their students if they have not learned how to use CT in their educational system or training. This paper reports findings from a national research project that was undertaken to enhance the educators' ability to promote CT in their teaching practices.…

  7. The Case Study Method: Critical Thinking Enhanced by Effective Teacher Questioning Skills.

    ERIC Educational Resources Information Center

    Wood, Alexander T.; Anderson, Carol H.

    A diverse body of educational research provides strong theoretical support for the development of higher order cognitive learning skills through case teaching. Case study teachers can improve their questioning skills to enhance students' critical thinking. The theoretical background for questioning in case method teaching and learning is traceable…

  8. Values Advocacy: Enhancing Organizational Images, Deflecting Public Criticism, and Grounding Future Arguments.

    ERIC Educational Resources Information Center

    Bostdorff, Denise M.; Vibbert, Steven L.

    1994-01-01

    Argues that organizations routinely engage in values advocacy (the appeal to shared cultural values) to perform three distinct functions: (1) to enhance the organization's image; (2) to deflect criticism of the organization and/or its policies, products, and services; and (3) to establish value premises that can be used in later discourse. (SR)

  9. Enhancing Undergraduate Critical Reading Skills in Neuroscience Using Instructor-Developed Study Guides

    ERIC Educational Resources Information Center

    Moraru, Andreea; LeBoutillier, Janelle C.

    2009-01-01

    This study proposes an innovative instructional method for enhancing critical reading skills. Students enrolled in an undergraduate neuroscience course offered at the University of Toronto Scarborough reported that they often experience difficulty in analyzing and interpreting empirical and review journal articles. Our research focuses on student…

  10. Workplace Learning Curriculum Guides. Volume VII: Enhanced Basic Skills--Decisions, Teams, Problem Solving, Critical Thinking.

    ERIC Educational Resources Information Center

    Colorado Community Coll. and Occupational Education System, Denver.

    This volume, one of a series of curriculum guides compiled by the Colorado Workplace Learning Initiative: 1991-92, contains seven workplace literacy courses on enhanced basic skills involving decisions, teams, problem solving, and critical thinking. Introductory materials include a table of contents and a list of the curriculum topics covered by…

  11. Enhancing Critical Reflection and Writing Skills in the HBSE Classroom and beyond

    ERIC Educational Resources Information Center

    Wiener, Diane R.

    2012-01-01

    Human Behavior in the Social Environment (HBSE) is an ideal location in which graduate social work students can enhance their critical reflection and writing skills while integrating social work theories with practice, research, and policy. A writing-intensive, learner-centered model using specific strategies is described via a framework of…

  12. Nanocomposites for enhancing current collection in organic solar cells

    NASA Astrophysics Data System (ADS)

    Peterson, Eric David

    The enhancement of charge collection in organic photovoltaics by using nanocomposite materials is investigated. Two such approaches are detailed in this thesis. Chapter 1 addresses the addition of metal nanorods to the PEDOT layer of an organic solar cell in an attempt to focus incident light for better absorption by the polymer layer. Composites designed to facilitate charge transfer from nanoparticles to the polymer/fullerene system are the focus of the second chapter. Chapter 3 details a refinement to the research presented in chapter 2, adding fullerenes to the mix and creating ternary systems and providing an analytical framework for evaluating these systems. The material choices are expanded in chapter 4; we investigate a new, lower band gap conjugated polymer (PCPDTBT) as well as core-shell nanoparticles and how they interact in the system. Results are reported and further avenues of research are suggested.

  13. Enhancing attention in neurodegenerative diseases: current therapies and future directions.

    PubMed

    Sharma, Kanchan; Davis, Thomas; Coulthard, Elizabeth

    2016-01-01

    We all experience at least occasional lapses in attention but in some neurological conditions, loss of attention is pervasive and debilitating. Treating deficits in attention first requires an understanding of the neurobiology of attention, which we now understand to be a set of different cognitive processes. Cholinesterase inhibitors are already established as effective attentional enhancers used in the treatment of certain dementias. Other stimulant agents such as modafanil, amphetamine and methylphenidate have demonstrated limited success in healthy individuals where attention is already optimal and clinical trials in patients with neurological disease are sparse. Dietary and lifestyle changes are gaining increasing prominence, as are experimental treatments such as deep brain stimulation and transcranial magnetic stimulation. As the therapeutic arsenal widens, clinicians will be able to match specific treatments to selective deficits in attention, giving patients a tailored management plan. Here we review common diseases that impair attention and emphasise how an understanding of attentional processing within the brain might lead to improved therapeutic strategies.

  14. Recanalization of Chronic Total Occlusion Lesions: A Critical Appraisal of Current Devices and Techniques

    PubMed Central

    2016-01-01

    Chronic Total Occlusion (CTO) has been considered as one of the “final frontier” in interventional cardiology. Until recently, the patients with CTO are often managed surgically or medically due to lack of published evidence of clinical benefits and lower success rate of percutaneous recanalization of CTO. However, the introduction of enhanced guidewires, microcatheters combined with novel specialized devices and techniques reduce the number of unapproachable CTO. In this review article, current techniques and devices of percutaneous recanalization of CTO have been systematically summarized, which may help budding interventional cardiologists to theoretically understand these complex procedures and to deliver safe and effective percutaneous management of CTO to the patients. PMID:27790503

  15. Impact of a mean current on internal tide energy dissipation at the critical latitude

    NASA Astrophysics Data System (ADS)

    Richet, O.; Muller, C. J.; Chomaz, J. M.

    2016-02-01

    In many regions of the ocean, the abyssal flow is dominated by tidal flow. A large fraction of the tidal energy input in the ocean is dissipated via the generation of internal waves above rough topography. Idealised simulations suggest that internal tide energy is transferred and dissipated at smallerscales by the formation of a resonant triad between near-inertial waves, internal tides and subharmonics waves. Furthermore, the energy dissipation is enhanced at the critical latitude (28.8o), corresponding to the Parametric Subharmonic Instability (PSI). In the ocean, the presence of background flow, for instance due to the passage of a mesoscale eddy, can modify energy transfer mechanisms and the amount of energy dissipation. In this study, we investigate the generation and dissipation of internal tides in the presence of a background flow. We use a high-resolution two-dimensional nonhydrostatic numerical model (the MITgcm), with realistic multiscale topography representing the Brazil basin region. The purpose of this study is to understand the impact of the mean flow on the generation and dissipation of tidal waves. Our particular interest is how the maximum of energy dissipation at the critical latitude is impacted by the mean flow.

  16. Impact of a mean current on internal tide energy dissipation at the critical latitude

    NASA Astrophysics Data System (ADS)

    Richet, Océane; Chomaz, Jean-Marc; Muller, Caroline

    2015-11-01

    In many regions of the ocean, the abyssal flow is dominated by tidal flow. A large fraction of the tidal energy input in the ocean is dissipated via the generation of internal waves above rough topography. Idealised simulations suggest that internal tide energy is transferred and dissipated at smallerscales by the formation of a resonant triad between near-inertial waves, internal tides and subharmonics waves. Furthermore, the energy dissipation is enhanced at the critical latitude (28.8°), corresponding to the Parametric Subharmonic Instability (PSI). In the ocean, the presence of background flow, for instance due to the passage of a mesoscale eddy, can modify energy transfer mechanisms and the amount of energy dissipation. In this study, we investigate the generation and dissipation of internal tides in the presence of a background flow. We use a high-resolution two-dimensional nonhydrostatic numerical model (the MITgcm), with realistic multiscale topography representing the Brazil basin region. The purpose of this study is to understand the impact of the mean flow on the generation and dissipation of tidal waves. Our particular interest is how the maximum of energy dissipation at the critical latitude is impacted by the mean flow.

  17. Critical field enhancement of asymptotic optical bound states in the continuum

    PubMed Central

    Yoon, Jae Woong; Song, Seok Ho; Magnusson, Robert

    2015-01-01

    We study spectral singularities and critical field enhancement factors associated with embedded photonic bound states in subwavelength periodic Si films. Ultrahigh-Q resonances supporting field enhancement factor exceeding 108 are obtained in the spectral vicinity of exact embedded eigenvalues in spite of deep surface modulation and vertical asymmetry of the given structure. Treating relations between the partial resonance Q and field enhancement factors with an analytical coupled-mode model, we derive a general strategy to maximize the field enhancement associated with these photonic bound states in the presence of material dissipation. The analytical expression for the field enhancement quantitatively agrees with rigorous numerical calculations. Therefore, our results provide a general knowledge for designing practical resonance elements based on optical bound states in the continuum in various applications. PMID:26673548

  18. Enhancing attention in neurodegenerative diseases: current therapies and future directions

    PubMed Central

    Davis, Thomas; Coulthard, Elizabeth

    2016-01-01

    Abstract We all experience at least occasional lapses in attention but in some neurological conditions, loss of attention is pervasive and debilitating. Treating deficits in attention first requires an understanding of the neurobiology of attention, which we now understand to be a set of different cognitive processes. Cholinesterase inhibitors are already established as effective attentional enhancers used in the treatment of certain dementias. Other stimulant agents such as modafanil, amphetamine and methylphenidate have demonstrated limited success in healthy individuals where attention is already optimal and clinical trials in patients with neurological disease are sparse. Dietary and lifestyle changes are gaining increasing prominence, as are experimental treatments such as deep brain stimulation and transcranial magnetic stimulation. As the therapeutic arsenal widens, clinicians will be able to match specific treatments to selective deficits in attention, giving patients a tailored management plan. Here we review common diseases that impair attention and emphasise how an understanding of attentional processing within the brain might lead to improved therapeutic strategies. PMID:28123829

  19. Anodal transcranial direct current stimulation enhances procedural consolidation.

    PubMed

    Tecchio, Franca; Zappasodi, Filippo; Assenza, Giovanni; Tombini, Mario; Vollaro, Stefano; Barbati, Giulia; Rossini, Paolo Maria

    2010-08-01

    The primary motor cortex (M1) area recruitment enlarges while learning a finger tapping sequence. Also M1 excitability increases during procedural consolidation. Our aim was to investigate whether increasing M1 excitability by anodal transcranial DC stimulation (AtDCS) when procedural consolidation occurs was able to induce an early consolidation improvement. Forty-seven right-handed healthy participants were trained in a nine-element serial finger tapping task (SFTT) executed with the left hand. Random series blocks were interspersed with training series blocks. Anodal or sham tDCS was administered over the right M1 after the end of the training session. After stimulation, the motor skills of both trained and a new untrained sequential series blocks were tested again. For each block, performance was estimated as the median execution time of correct series. Early consolidation of the trained series, assessed by the performance difference between the first block after and the last block before stimulation normalized by the random, was enhanced by anodal and not by sham tDCS. Stimulation did not affect random series execution. No stimulation effect was found on the on-line learning of the trained and new untrained series. Our results suggest that AtDCS applied on M1 soon after training improves early consolidation of procedural learning. Our data highlight the importance of neuromodulation procedures for understanding learning processes and support their use in the motor rehabilitation setting, focusing on the timing of the application.

  20. Enhanced recovery after surgery: Current research insights and future direction

    PubMed Central

    Abeles, Aliza; Kwasnicki, Richard Mark; Darzi, Ara

    2017-01-01

    Since the concept of enhanced recovery after surgery (ERAS) was introduced in the late 1990s the idea of implementing specific interventions throughout the peri-operative period to improve patient recovery has been proven to be beneficial. Minimally invasive surgery is an integral component to ERAS and has dramatically improved post-operative outcomes. ERAS can be applicable to all surgical specialties with the core generic principles used together with added specialty specific interventions to allow for a comprehensive protocol, leading to improved clinical outcomes. Diffusion of ERAS into mainstream practice has been hindered due to minimal evidence to support individual facets and lack of method for monitoring and encouraging compliance. No single outcome measure fully captures recovery after surgery, rather multiple measures are necessary at each stage. More recently the pre-operative period has been the target of a number of strategies to improve clinical outcomes, described as prehabilitation. Innovation of technology in the surgical setting is also providing opportunities to overcome the challenges within ERAS, e.g., the use of wearable activity monitors to record information and provide feedback and motivation to patients peri-operatively. Both modernising ERAS and providing evidence for key strategies across specialties will ultimately lead to better, more reliable patient outcomes. PMID:28289508

  1. Current-induced enhancement of DNA bubble creation

    NASA Astrophysics Data System (ADS)

    Gu, Lei; Fu, Hua-Hua

    2016-05-01

    Current-induced heating of short double-stranded DNA chains is studied within a two-probe transport setup by using the Langevin approach. The electrons are modeled by a tight-binding Hamiltonian. The DNA atomic motion is described by the Peyrard-Bishop-Dauxois atomic potential, coupled with electrons through the Holstein interaction. The solvent environment is accounted for as a classical heat bath. Voltage biases of 0.1˜ 0.5 {{V}} can effectively break the base pairs and lead to the melting transition, which can be detected from the resulting significant reduction of the conductance. When the bias increases, the opening of base pairs near the leads with higher chemical potential is suppressed and bubble (localized separation of the double strand) formation becomes asymmetric. Our results suggest that the voltage bias can excite the base pairs, hence increases the chemical activity of DNA.

  2. Kiloampere, Variable-Temperature, Critical-Current Measurements of High-Field Superconductors

    PubMed Central

    Goodrich, LF; Cheggour, N; Stauffer, TC; Filla, BJ; Lu, XF

    2013-01-01

    We review variable-temperature, transport critical-current (Ic) measurements made on commercial superconductors over a range of critical currents from less than 0.1 A to about 1 kA. We have developed and used a number of systems to make these measurements over the last 15 years. Two exemplary variable-temperature systems with coil sample geometries will be described: a probe that is only variable-temperature and a probe that is variable-temperature and variable-strain. The most significant challenge for these measurements is temperature stability, since large amounts of heat can be generated by the flow of high current through the resistive sample fixture. Therefore, a significant portion of this review is focused on the reduction of temperature errors to less than ±0.05 K in such measurements. A key feature of our system is a pre-regulator that converts a flow of liquid helium to gas and heats the gas to a temperature close to the target sample temperature. The pre-regulator is not in close proximity to the sample and it is controlled independently of the sample temperature. This allows us to independently control the total cooling power, and thereby fine tune the sample cooling power at any sample temperature. The same general temperature-control philosophy is used in all of our variable-temperature systems, but the addition of another variable, such as strain, forces compromises in design and results in some differences in operation and protocol. These aspects are analyzed to assess the extent to which the protocols for our systems might be generalized to other systems at other laboratories. Our approach to variable-temperature measurements is also placed in the general context of measurement-system design, and the perceived advantages and disadvantages of design choices are presented. To verify the accuracy of the variable-temperature measurements, we compared critical-current values obtained on a specimen immersed in liquid helium (“liquid” or Ic liq) at

  3. Kiloampere, Variable-Temperature, Critical-Current Measurements of High-Field Superconductors.

    PubMed

    Goodrich, L F; Cheggour, N; Stauffer, T C; Filla, B J; Lu, X F

    2013-01-01

    We review variable-temperature, transport critical-current (I c) measurements made on commercial superconductors over a range of critical currents from less than 0.1 A to about 1 kA. We have developed and used a number of systems to make these measurements over the last 15 years. Two exemplary variable-temperature systems with coil sample geometries will be described: a probe that is only variable-temperature and a probe that is variable-temperature and variable-strain. The most significant challenge for these measurements is temperature stability, since large amounts of heat can be generated by the flow of high current through the resistive sample fixture. Therefore, a significant portion of this review is focused on the reduction of temperature errors to less than ±0.05 K in such measurements. A key feature of our system is a pre-regulator that converts a flow of liquid helium to gas and heats the gas to a temperature close to the target sample temperature. The pre-regulator is not in close proximity to the sample and it is controlled independently of the sample temperature. This allows us to independently control the total cooling power, and thereby fine tune the sample cooling power at any sample temperature. The same general temperature-control philosophy is used in all of our variable-temperature systems, but the addition of another variable, such as strain, forces compromises in design and results in some differences in operation and protocol. These aspects are analyzed to assess the extent to which the protocols for our systems might be generalized to other systems at other laboratories. Our approach to variable-temperature measurements is also placed in the general context of measurement-system design, and the perceived advantages and disadvantages of design choices are presented. To verify the accuracy of the variable-temperature measurements, we compared critical-current values obtained on a specimen immersed in liquid helium ("liquid" or I c liq) at 5

  4. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    DOE PAGES

    Lemery, F.; Piot, P.

    2015-08-03

    Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less

  5. Critical current density of YBCO films with different configurations of columnar defects in longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Sueyoshi, T.; Iwanaga, Y.; Kai, T.; Izumi, T.; Fujiyoshi, T.; Ishikawa, N.

    2017-07-01

    Critical current density (J c) properties in longitudinal magnetic fields were investigated for YBa2Cu3O y thin films with columnar defects (CDs), where different configurations of CDs were systematically installed into the films by using heavy-ion irradiation: a parallel configuration of CDs aligned along the c-axis and two bimodal splay configurations composed of CDs crossing at ±θ i relative to the c-axis, where the splay plane defined by the two irradiation angles is perpendicular or parallel to the transport current direction. The unirradiated film under the longitudinal magnetic field shows a J c peak in the magnetic field dependence of J c, which is 1.1 times higher than the self-field J c. For the irradiated films with the parallel CD configuration, on the other hand, the J c is lower than that for the unirradiated film in all magnetic fields and the value of J c decreases with increasing CD density. Such degradation effect by CDs under longitudinal magnetic field was observed even for the bimodal splay configurations. These results are attributed to local meandering of current flow induced by CDs extending through the film thickness, which deteriorates the force-free condition.

  6. Enhanced motor learning with bilateral transcranial direct current stimulation: Impact of polarity or current flow direction?

    PubMed

    Naros, Georgios; Geyer, Marc; Koch, Susanne; Mayr, Lena; Ellinger, Tabea; Grimm, Florian; Gharabaghi, Alireza

    2016-04-01

    Bilateral transcranial direct current stimulation (TDCS) is superior to unilateral TDCS when targeting motor learning. This effect could be related to either the current flow direction or additive polarity-specific effects on each hemisphere. This sham-controlled randomized study included fifty right-handed healthy subjects in a parallel-group design who performed an exoskeleton-based motor task of the proximal left arm on three consecutive days. Prior to training, we applied either sham, right anodal (a-TDCS), left cathodal (c-TDCS), concurrent a-TDCS and c-TDCS with two independent current sources and return electrodes (double source (ds)-TDCS) or classical bilateral stimulation (bi-TDCS). Motor performance improved over time for both unilateral (a-TDCS, c-TDCS) and bilateral (bi-TDCS, ds-TDCS) TDCS montages. However, only the two bilateral paradigms led to an improvement of the final motor performance at the end of the training period as compared to the sham condition. There was no difference between the two bilateral stimulation conditions (bi-TDCS, ds-TDCS). Bilateral TDCS is more effective than unilateral stimulation due to its polarity-specific effects on each hemisphere rather than due to its current flow direction. This study is the first systematic evaluation of stimulation polarity and current flow direction of bi-hemispheric motor cortex TDCS on motor learning of proximal upper limb muscles. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Developing measurement indices to enhance protection and resilience of critical infrastructure and key resources.

    PubMed

    Fisher, Ronald E; Norman, Michael

    2010-07-01

    The US Department of Homeland Security (DHS) is developing indices to better assist in the risk management of critical infrastructures. The first of these indices is the Protective Measures Index - a quantitative index that measures overall protection across component categories: physical security, security management, security force, information sharing, protective measures and dependencies. The Protective Measures Index, which can also be recalculated as the Vulnerability Index, is a way to compare differing protective measures (eg fence versus security training). The second of these indices is the Resilience Index, which assesses a site's resilience and consists of three primary components: robustness, resourcefulness and recovery. The third index is the Criticality Index, which assesses the importance of a facility. The Criticality Index includes economic, human, governance and mass evacuation impacts. The Protective Measures Index, Resilience Index and Criticality Index are being developed as part of the Enhanced Critical Infrastructure Protection initiative that DHS protective security advisers implement across the nation at critical facilities. This paper describes two core themes: determination of the vulnerability, resilience and criticality of a facility and comparison of the indices at different facilities.

  8. Enhancing the mirror illusion with transcranial direct current stimulation.

    PubMed

    Jax, Steven A; Rosa-Leyra, Diana L; Coslett, H Branch

    2015-05-01

    Visual feedback has a strong impact on upper-extremity movement production. One compelling example of this phenomena is the mirror illusion (MI), which has been used as a treatment for post-stroke movement deficits (mirror therapy). Previous research indicates that the MI increases primary motor cortex excitability, and this change in excitability is strongly correlated with the mirror's effects on behavioral performance of neurologically-intact controls. Based on evidence that primary motor cortex excitability can also be increased using transcranial direct current stimulation (tDCS), we tested whether bilateral tDCS to the primary motor cortices (anode right-cathode left and anode left-cathode right) would modify the MI. We measured the MI using a previously-developed task in which participants make reaching movements with the unseen arm behind a mirror while viewing the reflection of the other arm. When an offset in the positions of the two limbs relative to the mirror is introduced, reaching errors of the unseen arm are biased by the reflected arm's position. We found that active tDCS in the anode right-cathode left montage increased the magnitude of the MI relative to sham tDCS and anode left-cathode right tDCS. We take these data as a promising indication that tDCS could improve the effect of mirror therapy in patients with hemiparesis.

  9. Critical assessment of enhancement factor measurements in surface-enhanced Raman scattering on different substrates.

    PubMed

    Rodrigues, Daniel C; de Souza, Michele L; Souza, Klester S; dos Santos, Diego P; Andrade, Gustavo F S; Temperini, Marcia L A

    2015-09-07

    The SERS enhancement factor (SERS-EF) is one of the most important parameters that characterizes the ability of a given substrate to enhance the Raman signal for SERS applications. The comparison of SERS intensities and SERS-EF values across different substrates is a common practice to unravel the performance of a given substrate. In this study, it is shown that such a comparison may lack significance if we compare substrates of very distinct nature and optical properties. It is specifically shown that the SERS-EF values for static substrates (e.g. immobilized metallic nanostructures) cannot be compared to those of dynamic ones (e.g. colloidal metal nanoparticle solutions), and that the optical properties for the latter show strong dependence on the metal-molecule interaction dynamics. The most representative experimental results concerning the dynamic substrates have been supported by generalized Mie theory simulations, which are tools used to describe the substrate complexity and the microscopic information not usually taken into account.

  10. A critical review of the current knowledge regarding the biological impact of nanocellulose.

    PubMed

    Endes, C; Camarero-Espinosa, S; Mueller, S; Foster, E J; Petri-Fink, A; Rothen-Rutishauser, B; Weder, C; Clift, M J D

    2016-12-01

    Several forms of nanocellulose, notably cellulose nanocrystals and nanofibrillated cellulose, exhibit attractive property matrices and are potentially useful for a large number of industrial applications. These include the paper and cardboard industry, use as reinforcing filler in polymer composites, basis for low-density foams, additive in adhesives and paints, as well as a wide variety of food, hygiene, cosmetic, and medical products. Although the commercial exploitation of nanocellulose has already commenced, little is known as to the potential biological impact of nanocellulose, particularly in its raw form. This review provides a comprehensive and critical review of the current state of knowledge of nanocellulose in this format. Overall, the data seems to suggest that when investigated under realistic doses and exposure scenarios, nanocellulose has a limited associated toxic potential, albeit certain forms of nanocellulose can be associated with more hazardous biological behavior due to their specific physical characteristics.

  11. Anomalous anisotropy of critical currents in (Sr, K)Fe2As2 tapes

    NASA Astrophysics Data System (ADS)

    Awaji, Satoshi; Nakazawa, Yushiro; Oguro, Hidetoshi; Tsuchiya, Yuji; Watanabe, Kazuo; Shimada, Yusuke; Lin, He; Yao, Chao; Zhang, Xianping; Ma, Yanwei

    2017-03-01

    We measured critical currents and irreversibility fields of Ag-sheath (Sr, K)Fe2As2 tapes at various temperatures, magnetic fields and magnetic field directions. The sample tapes were made by a powder-in-tube with a hot-press process in the final heat treatments. The inverse anisotropy in J c in comparison with the effective mass anisotropy can be found in the hot-pressed (Sr, K)Fe2As2 tapes. We found that the broad c-axis peak in angular dependence of J c appears in a low field region and it decreases with increasing field and temperature. In addition, the crossover of J c anisotropy appears around 10 T at 4.2 K and the crossover field decreases with increasing temperature. It is considered that these unusual anisotropic J c behaviors may be originated by the strong random pinning center which is larger than the coherence length,

  12. Treatment of pediculosis capitis: a critical appraisal of the current literature.

    PubMed

    Feldmeier, Hermann

    2014-10-01

    Pediculosis capitis is the most common ectoparasitic disease in children in industrialized countries and extremely common in resource-poor communities of the developing world. The extensive use of pediculicides with a neurotoxic mode of action has led to the development and spread of resistant head lice populations all over the world. This triggered the development of compounds with other modes of action. The current literature on treatment approaches of head lice infestation was searched, and published randomized controlled trials were critically analyzed. The following compounds/family of compounds were identified: spinosad, a novel compound with a new neurotoxic mode of action, isopropyl myristate, 1,2-octanediol, ivermectin, plant-based products, and dimeticones. The efficacy and safety of these compounds are reviewed and recommendations for the treatment of pediculosis capitis in individuals as well as the interruption of ongoing epidemics are provided.

  13. Achieving glycemic control in elderly patients with type 2 diabetes: a critical comparison of current options

    PubMed Central

    Du, Ye-Fong; Ou, Horng-Yih; Beverly, Elizabeth A; Chiu, Ching-Ju

    2014-01-01

    The prevalence of type 2 diabetes mellitus (T2DM) is increasing in the elderly. Because of the unique characteristics of elderly people with T2DM, therapeutic strategy and focus should be tailored to suit this population. This article reviews the guidelines and studies related to older people with T2DM worldwide. A few important themes are generalized: 1) the functional and cognitive status is critical for older people with T2DM considering their life expectancy compared to younger counterparts; 2) both severe hypoglycemia and persistent hyperglycemia are deleterious to older adults with T2DM, and both conditions should be avoided when determining therapeutic goals; 3) recently developed guidelines emphasize the avoidance of hypoglycemic episodes in older people, even in the absence of symptoms. In addition, we raise the concern of glycemic variability, and discuss the rationale for the selection of current options in managing this patient population. PMID:25429208

  14. Contactless measurement of critical current of high temperature superconductor tape by magnetic circuit.

    PubMed

    Gu, C; Qu, T-M; Zou, S-N; Han, Z

    2010-08-01

    A method based on the principle of the magnetic circuit is proposed and realized for contactless measurement of critical current (I(c)) of high temperature superconductor tapes. This method has two unique features: first, it eliminates noises caused by mechanical fluctuations and thus makes high speed and high stability measurement possible and second, adapts for both Bi(2)Si(2)Ca(2)Cu(3)O(x) (Bi2223) and YBa(2)Cu(3)O(7-x) (YBCO) tape, which even has a magnetic substrate. Theoretical analysis is given and an apparatus for the reel-to-reel measurement has been constructed, by which continuous inspection of I(c) uniformity of YBCO and Bi2223 tapes measured at different speeds is reported.

  15. Intergrain magnetic properties and critical currents of T1-1223 bulk and tape superconductors

    NASA Astrophysics Data System (ADS)

    Zalecki, R.; Kolodziejczyk, A.; Chmist, J.; König, W.; Gritzner, G.

    2000-11-01

    The magnetic field and the temperature dependencies of the dispersive and the absorption components of the low frequency ac magnetic susceptibility for Pb and Bi single doped bulk superconductors as well as for Pb and Bi co-doped Ag-sheathed superconducting T1-1223 tapes have been measured and analyzed. The studies were accompanied by optical and electron microscopic observations of the microstructure. The ac susceptibility measured at various ac magnetic field amplitudes showed both intergrain and intragrain features. The temperature dependencies of the intergrain critical current densities were extracted from the absorption susceptibility via a modified Bean model. They were at relevant temperatures one order of magnitude larger for the tape than for the bulk specimens.

  16. [Critical evaluation of current diagnostic classification systems in psychiatry: the case of DSM-5].

    PubMed

    Luciano, Mario; Sampogna, Gaia; Del Vecchio, Valeria; De Rosa, Corrado; Albert, Umberto; Carrà, Giuseppe; Dell'Osso, Bernardo; Lorenzo, Giorgio Di; Ferrari, Silvia; Martinotti, Giovanni; Nanni, Maria Giulia; Pinna, Federica; Pompili, Maurizio; Volpe, Umberto; Catapano, Francesco; Fiorillo, Andrea

    2016-01-01

    Since its first edition, the Diagnostic and Statistical manual of Mental disorders (DSM) has had a great impact on the scientific community and the public opinion as well. In 2013, the American Psychiatric Association released the fifth edition of the manual and - as for the previous versions - several criticisms raised. In particular, the persistence of the categorical approach to mental disorders represents one of the main debated topics, as well as the introduction of new diagnostic syndromes, which are not based on an adequate evidences. Moreover, the threshold of diagnostic criteria for many mental disorders has been lowered, with the consequence that the boundaries between "normality" and "pathology" is not so clear. In this paper, we will: 1) report the historical development of the DSM from the publication of its first edition; 2) describe the main changes introduced in the DSM-5; 3) discuss critical elements in the DSM-5. The current debate regarding the validity of diagnostic manuals and its criteria is threatening the psychiatric discipline, but a possible solution should be represented by the integration of diagnostic criteria with the in-depth description of patient's psychopathological experiences.

  17. Development and current use of parenteral nutrition in critical care - an opinion paper.

    PubMed

    Berger, Mette M; Pichard, Claude

    2014-08-08

    Critically ill patients depend on artificial nutrition for the maintenance of their metabolic functions and lean body mass, as well as for limiting underfeeding-related complications. Current guidelines recommend enteral nutrition (EN), possibly within the first 48 hours, as the best way to provide the nutrients and prevent infections. EN may be difficult to realize or may be contraindicated in some patients, such as those presenting anatomic intestinal continuity problems or splanchnic ischemia. A series of contradictory trials regarding the best route and timing for feeding have left the medical community with great uncertainty regarding the place of parenteral nutrition (PN) in critically ill patients. Many of the deleterious effects attributed to PN result from inadequate indications, or from overfeeding. The latter is due firstly to the easier delivery of nutrients by PN compared with EN increasing the risk of overfeeding, and secondly to the use of approximate energy targets, generally based on predictive equations: these equations are static and inaccurate in about 70% of patients. Such high uncertainty about requirements compromises attempts at conducting nutrition trials without indirect calorimetry support because the results cannot be trusted; indeed, both underfeeding and overfeeding are equally deleterious. An individualized therapy is required. A pragmatic approach to feeding is proposed: at first to attempt EN whenever and as early as possible, then to use indirect calorimetry if available, and to monitor delivery and response to feeding, and finally to consider the option of combining EN with PN in case of insufficient EN from day 4 onwards.

  18. Critical Development? Using a Critical Theory Lens to Examine the Current Role of Evaluation in the Youth-Development Field

    ERIC Educational Resources Information Center

    Zeller-Berkman, Sarah

    2010-01-01

    A critical theory lens is used to explore the role of evaluation in youth development, a field aimed at recognizing youth as assets. A theory of change in the field is questioned for its emphasis on individual youth outcomes as programmatic outcome measures. A review of 209 evaluations of 131 programs in the Harvard Family Research Project's…

  19. Critical Development? Using a Critical Theory Lens to Examine the Current Role of Evaluation in the Youth-Development Field

    ERIC Educational Resources Information Center

    Zeller-Berkman, Sarah

    2010-01-01

    A critical theory lens is used to explore the role of evaluation in youth development, a field aimed at recognizing youth as assets. A theory of change in the field is questioned for its emphasis on individual youth outcomes as programmatic outcome measures. A review of 209 evaluations of 131 programs in the Harvard Family Research Project's…

  20. SDF-1 enhances wound healing of critical-sized calvarial defects beyond self-repair capacity.

    PubMed

    Jin, Qiming; Giannobile, William V

    2014-01-01

    Host blood circulating stem cells are an important cell source that participates in the repair of damaged tissues. The clinical challenge is how to improve the recruitment of circulating stem cells into the local wound area and enhance tissue regeneration. Stromal-derived factor-1 (SDF-1) has been shown to be a potent chemoattractant of blood circulating stem cells into the local wound microenvironment. In order to investigate effects of SDF-1 on bone development and the repair of a large bone defect beyond host self-repair capacity, the BMP-induced subcutaneous ectopic bone formation and calvarial critical-sized defect murine models were used in this preclinical study. A dose escalation of SDF-1 were loaded into collagen scaffolds containing BMP, VEGF, or PDGF, and implanted into subcutaneous sites at mouse dorsa or calvarial critical-sized bone defects for 2 and 4 weeks. The harvested biopsies were examined by microCT and histology. The results demonstrated that while SDF-1 had no effect in the ectopic bone model in promoting de novo osteogenesis, however, in the orthotopic bone model of the critical-sized defects, SDF-1 enhanced calvarial critical-sized bone defect healing similar to VEGF, and PDGF. These results suggest that SDF-1 plays a role in the repair of large critical-sized defect where more cells are needed while not impacting de novo bone formation, which may be associated with the functions of SDF-1 on circulating stem cell recruitment and angiogenesis.

  1. Microstructure, critical current density and trapped field experiments in IG-processed Y-123

    NASA Astrophysics Data System (ADS)

    Muralidhar, M.; Ide, N.; Koblischka, M. R.; Diko, P.; Inoue, K.; Murakami, M.

    2016-05-01

    In this paper, we adapted the top-seeded infiltration growth ‘IG’ technique and produced several YBa2Cu3O y ‘Y-123’ samples with an addition of Y2BaCuO5 ‘Y-211’ secondary phase particles with varying sizes by the sintering process and the ball milling technique. For the first set of samples, Y-211 disks were sintered at temperatures ranging between 900 °C and 1100 °C and were used for the production of Y-123 material by the IG process. Magnetization measurements showed a sharp superconducting transition with an onset T c at around 92 K, irrespective of the sintering temperature. However, the trapped field and critical current density (J c) values were dependent on the sintering temperature and it was found that the best temperature is around 925 °C. Further, the trapped field distribution measurements at 77 K indicated that all samples are of single grain nature. The highest trapped field was recorded around 0.31 T at 77 K for the Y-123 sample with 20 mm in diameter and 5 mm thickness produced by Y-211 pre-from around 925 °C. On the other hand, a second set of samples Y-211 were controlled by ball milling technique combined with an optimized slow cooling process. As a result, the critical current density (J c) at 77 K and zero field was determined to be 225 kA cm-2. The improved performance of the Y-123 material can be understood in terms of homogeneous distribution of fine secondary phase particles which is demonstrated by AFM micrographs.

  2. Enhancing skills of critical reflection to evidence learning in professional practice.

    PubMed

    Paterson, Colin; Chapman, Judith

    2013-08-01

    Professional organisations and regulatory bodies are making critical reflection a mandatory component of professional practice. Reflection is a vital part of learning from experience and is central to developing and maintaining competency across a practitioner's lifetime. This paper will discuss key educational theories to illustrate why reflection is important. Kolb's and Gibbs' reflective cycles are used to structure the process of critical reflection. Elements of the educational tradition of Bildung are discussed and integrated to enrich the understanding of self and to facilitate the reader's ability to enhance their professional practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Correlation of Critical Current Density with Cu3+ Concentration and Density in YBa2Cu3O7-x

    NASA Astrophysics Data System (ADS)

    Dou, S. X.; Liu, H. K.; Zhou, J. P.; Bourdillon, A. J.; Savvides, N.; Apperley, M.; Gouch, A.; Sorrell, C. C.

    Superconducting YBa2Cu3O7 wires and tapes were fabricated by cold drawing, rolling and extrusion processes. It was found that the critical current density, after O2 equilibration, correlates both with density and Cu3+ concentration. Full density was achieved by using a special heat treatment, but the critical current density was low owing to the low Cu3+ concentration present in this heavily twinned material. The best critical current density results were obtained for material with density of 92-95% of the theoretical value. The low critical current density of the porous specimens is attributed not only to a poor connectivity between grains but also to a low Cu3+ concentration due to the instability of Cu3+ at crystallite surfaces which increase in area with specimen porosity.

  4. Analytical formulae for computing the critical current of an Nb3Sn strand under bending

    NASA Astrophysics Data System (ADS)

    Ciazynski, D.; Torre, A.

    2010-12-01

    Works on bending strain in Nb3Sn wires were initiated in support of the 'react-and-wind' technique used to manufacture superconducting coils. More recently, the bending strains of Nb3Sn strands in cable-in-conduit conductors (CICC) under high Lorentz forces have been thought to be partly responsible for the degradation of the conductor performance in terms of critical current and n index, particularly for the international thermonuclear experimental reactor (ITER) conductors. This has led to a new wave of experiments and modelling on this subject. The computation of the current transport capability in an Nb3Sn wire under uniform bending used to be carried out through the so-called Ekin's models, and more recently through numerical simulations with electric networks. The flaws of Ekin's models are that they consider only two extreme cases or limits, namely the so-called long twist pitch (LTP) or short twist pitch (STP) cases, and that these models only allow computation of a value for the critical current without reference to the n index of the superconducting filaments (i.e. this index is implicitly assumed to be infinite). Although the numerical models allow a fine description of the wire under operation and can take into account the filament's n index, they need a refined meshing to be accurate enough and their results may be sensitive to boundary conditions (i.e. current injection in the wire), also general intrinsic parameters cannot be easily identified. In this paper, we propose clearly to go further than Ekin's models by developing, from a homogeneous model and Maxwell's equations, an analytical model to establish the general equation governing the evolution of the electric field inside an Nb3Sn strand under uniform bending (with possible longitudinal strain). Within the usual strand fabrication limits, this equation allows the definition of one single parameter to discriminate the STP and LTP cases. It is also shown that whereas Ekin's LTP model corresponds

  5. Critical current scaling and the pivot-point in Nb3Sn strands

    NASA Astrophysics Data System (ADS)

    Tsui, Y.; Hampshire, D. P.

    2012-05-01

    Detailed measurements are provided of the engineering critical current density (Jc) and the index of transition (n-value) of two different types of advanced ITER Nb3Sn superconducting strand for fusion applications. The samples consist of one internal-tin strand (OST) and two bronze-route strands (BEAS I and BEAS II—reacted using different heat treatments). Tests on different sections of these wires show that prior to applying strain, Jc is homogeneous to better than 2% along the length of each strand. Jc data have been characterized as a function of magnetic field (B ≤ 14.5 T), temperature (4.2 K ≤ T ≤ 12 K) and applied axial strain ( - 1% ≤ ɛA ≤ 0.8%). Strain-cycling tests demonstrate that the variable strain Jc data are reversible to better than 2% when the applied axial strain is in the range of - 1% ≤ ɛA ≤ 0.5%. The wires are damaged when the intrinsic strain (ɛI) is ɛI ≥ 0.55% and ɛI ≥ 0.23% for the OST and BEAS strands, respectively. The strain dependences of the normalized Jc for each type of strand are similar to those of prototype strands of similar design measured in 2005 and 2008 to about 2% which makes them candidate strands for a round-robin interlaboratory comparison. The Jc data are described by Durham, ITER and Josephson-junction parameterizations to an accuracy of about 4%. For all of these scaling laws, the percentage difference between the data and the parameterization is larger when Jc is small, caused by high B, T or |ɛI|. The n-values can be described by a modified power law of the form n=1+r{I}_{{c}}^{s}, where r and s are approximately constant and Ic is the critical current. It has long been known that pivot-points (or cross-overs) in Jc occur at high magnetic field and temperature. Changing the magnetic field or temperature from one side of the pivot-point to the other changes the highest Jc sample to the lowest Jc sample and vice versa. The pivot-point follows the B-T phase boundary associated with the upper

  6. Constructing vulnerabilty and protective measures indices for the enhanced critical infrastructure protection program.

    SciTech Connect

    Fisher, R. E.; Buehring, W. A.; Whitfield, R. G.; Bassett, G. W.; Dickinson, D. C.; Haffenden, R. A.; Klett, M. S.; Lawlor, M. A.; Decision and Information Sciences; LANL

    2009-10-14

    The US Department of Homeland Security (DHS) has directed its Protective Security Advisors (PSAs) to form partnerships with the owners and operators of assets most essential to the Nation's well being - a subclass of critical infrastructure and key resources (CIKR) - and to conduct site visits for these and other high-risk assets as part of the Enhanced Critical Infrastructure Protection (ECIP) Program. During each such visit, the PSA documents information about the facility's current CIKR protection posture and overall security awareness. The primary goals for ECIP site visits (DHS 2009) are to: (1) inform facility owners and operators of the importance of their facilities as an identified high-priority CIKR and the need to be vigilant in light of the ever-present threat of terrorism; (2) identify protective measures currently in place at these facilities, provide comparisons of CIKR protection postures across like assets, and track the implementation of new protective measures; and (3) enhance existing relationships among facility owners and operators; DHS; and various Federal, State, local tribal, and territorial partners. PSAs conduct ECIP visits to assess overall site security; educate facility owners and operators about security; help owners and operators identify gaps and potential improvements; and promote communication and information sharing among facility owners and operators, DHS, State governments, and other security partners. Information collected during ECIP visits is used to develop metrics; conduct sector-by-sector and cross-sector vulnerability comparisons; identify security gaps and trends across CIKR sectors and subsectors; establish sector baseline security survey results; and track progress toward improving CIKR security through activities, programs, outreach, and training (Snyder 2009). The data being collected are used in a framework consistent with the National Infrastructure Protection Plan (NIPP) risk criteria (DHS 2009). The NIPP

  7. Analysis of the variations between Accreditation Council for Graduate Medical Education requirements for critical care training programs and their effects on the current critical care workforce.

    PubMed

    Gupta, Rakesh; Zad, Omid; Jimenez, Edgar

    2013-12-01

    Adult critical care medicine (CCM) is ill prepared for the demands of an aging US population. Sources have acknowledged a severe shortage of intensivists, yet there has been minimal discussion on the lack of critical care training opportunities. Inconsistencies in training options have led to fragmentation of how critical care services are provided to the US adult population. Significant differences exist between CCM without pulmonary and pulmonary critical care (PCCM) training as it relates to critical care coverage, patient population, and procedural skill of a trainee. The Internal Medicine Residency Review Committee appears more aligned with the PCCM vision of training rather than the CCM; thus, many PCCM programs are more available than pure CCM. Internal medicine offers the greatest pool of candidates to practice full-time CCM, yet there are minimal opportunities for internists wanting to go into straight CCM without also receiving pulmonary training. However, because many PCCM physicians spend a significant amount of time outside critical care, current PCCM training options do not meet the demand for critical care physicians. In this article, we review the barriers to critical care training opportunities and expanding the intensivist workforce and propose reasonable and practical solutions.

  8. Constructing a resilience index for the Enhanced Critical Infrastructure Protection Program

    SciTech Connect

    Fisher, R. E.; Bassett, G. W.; Buehring, W. A.; Collins, M. J.; Dickinson, D. C.; Eaton, L. K.; Haffenden, R. A.; Hussar, N. E.; Klett, M. S.; Lawlor, M. A.; Millier, D. J.; Petit, F. D.; Peyton, S. M.; Wallace, K. E.; Whitfield, R. G.; Peerenboom, J P

    2010-10-14

    Following recommendations made in Homeland Security Presidential Directive 7, which established a national policy for the identification and increased protection of critical infrastructure and key resources (CIKR) by Federal departments and agencies, the U.S. Department of Homeland Security (DHS) in 2006 developed the Enhanced Critical Infrastructure Protection (ECIP) program. The ECIP program aimed to provide a closer partnership with state, regional, territorial, local, and tribal authorities in fulfilling the national objective to improve CIKR protection. The program was specifically designed to identify protective measures currently in place in CIKR and to inform facility owners/operators of the benefits of new protective measures. The ECIP program also sought to enhance existing relationships between DHS and owners/operators of CIKR and to build relationships where none existed (DHS 2008; DHS 2009). In 2009, DHS and its protective security advisors (PSAs) began assessing CIKR assets using the ECIP program and ultimately produced individual protective measure and vulnerability values through the protective measure and vulnerability indices (PMI/VI). The PMI/VI assess the protective measures posture of individual facilities at their 'weakest link,' allowing for a detailed analysis of the most vulnerable aspects of the facilities (Schneier 2003), while maintaining the ability to produce an overall protective measures picture. The PMI has six main components (physical security, security management, security force, information sharing, protective measures assessments, and dependencies) and focuses on actions taken by a facility to prevent or deter the occurrence of an incident (Argonne National Laboratory 2009). As CIKR continue to be assessed using the PMI/VI and owners/operators better understand how they can prevent or deter incidents, academic research, practitioner emphasis, and public policy formation have increasingly focused on resilience as a necessary

  9. Effects of filament size on critical current density in overpressure processed Bi-2212 round wire.

    PubMed

    Jiang, Jianyi; Francis, Ashleigh; Alicea, Ryan; Matras, Maxime; Kametani, Fumitake; Trociewitz, Ulf P; Hellstrom, Eric E; Larbalestier, David C

    2017-06-01

    Bi2Sr2CaCu2Ox (Bi-2212) conductor is the only high temperature superconductor manufactured as a round wire and is a very promising conductor for very high field applications. One of the key design parameters of Bi-2212 wire is its filament size, which has been previously reported to affect the critical current density (Jc ) and ac losses. Work with 1 bar heat treatment showed that the optimal filament diameter was about 15 μm but it was not well understood at that time that gas bubbles were the main current limiting mechanism. Here we investigated a recent Bi-2212 wire with a 121×18 filament architecture with varying wire diameter (1.0 to 1.5 mm) using 50 bar overpressure processing. This wire is part of a 1.2 km piece length of 1.0 mm diameter made by Oxford Superconducting Technology. We found that Jc is independent of the filament size in the range from 9 to 14 μm, although the n value increased with increasing filament size. A new record Jc (4.2 K, 15 T) of 4200 A/mm(2) and JE (4.2 K, 15 T) of 830 A/mm(2) were achieved.

  10. Critical evaluation of current developmental toxicity testing strategies: a case of babies and their bathwater.

    PubMed

    Carney, Edward W; Ellis, Amy L; Tyl, Rochelle W; Foster, Paul M D; Scialli, Anthony R; Thompson, Kary; Kim, James

    2011-10-01

    This review is the second in a series of four papers emanating from a workshop entitled "Developmental Toxicology-New Directions," which was sponsored by the ILSI Health and Environmental Sciences Institute's (HESI) Developmental and Reproductive Toxicology Technical Committee. The present review analyzes the strengths and weaknesses of current developmental safety testing approaches in an effort to identify those strengths that should be retained in the future versus the weaknesses that should be eliminated. Workshop participants considered the following to be key strengths of current testing approaches: the integrated biology of pregnant animal models including pharmacokinetic and pharmacodynamic processes, the ability to detect low incidence malformations as well as maternally mediated toxicity, and the long history of use coupled with extensive historical data. A number of weaknesses were related to the resource-intensive nature of developmental toxicity testing (e.g., large number of animals, high costs, low throughput, the inability to keep pace with the demand for more toxicity data). Other weaknesses included the use of very high dose levels that often far exceed human exposure levels, the confounding influence of maternal toxicity, sparse understanding of basic developmental mechanisms and genetics of standard animal models relative to mouse or lower organisms, difficulties interpreting low incidence findings, and issues surrounding the interpretation of minor skeletal variations. An appreciation of these strengths and weaknesses is critical for the design of new approaches to developmental toxicity testing in the 21st century. © 2011 Wiley Periodicals, Inc.

  11. A Study on Critical Current of Twisted Soldered-Stacked-Square (3S) HTS Wire with 1mm Width

    NASA Astrophysics Data System (ADS)

    Hu, M.; Xie, Z. L.; Xi, D. M.; Zhou, Y. K.; Li, Z. Y.; Hong, Z. Y.; Jin, Z. J.; Yin, Z.; Wang, X. F.; Zhang, Y. L.

    2017-07-01

    In high temperature superconducting (HTS) applications, the external magnetic field affects the performance of the critical current and the AC loss. To improve the performance, a novel soldered-stacked-square (3S) HTS wire is developed through narrowing, stacking and soldering processes using 2G narrow wires with 1 mm width. In this paper, the narrowing process of the wire with 4 mm width was showed and the stacking and soldering processes were also presented. The 3S wire was made of three narrow HTS tapes and four brass strips. For the 3S HTS samples, the typical electrical and mechanical properties have been tested. Based on that, single 3S wire and double 3S wires were twisted. Then the critical currents of the samples were tested at different twist pitches. The test results showed that the measured critical currents of 3S wire samples were between 120 A and 150 A. The critical current of the single 3S wire at average twist pitch of 50∼70 mm was about 8% lower than that of the original wire. And the critical current of double 3S wires was about 10% lower than the original critical current at a twist pitch of 65 mm.

  12. Critical dimension and pattern size enhancement using pre-strained lithography

    SciTech Connect

    Hong, Jian-Wei; Yang, Chung-Yuan; Lo, Cheng-Yao

    2014-10-13

    This paper proposes a non-wavelength-shortening-related critical dimension and pattern size reduction solution for the integrated circuit industry that entails generating strain on the substrate prior to lithography. Pattern size reduction of up to 49% was achieved regardless of shape, location, and size on the xy plane, and complete theoretical calculations and process steps are described in this paper. This technique can be applied to enhance pattern resolution by employing materials and process parameters already in use and, thus, to enhance the capability of outdated lithography facilities, enabling them to particularly support the manufacturing of flexible electronic devices with polymer substrates.

  13. A Critical Examination of Current On-Orbit Satellite Collision Risk Analysis Under Constraints of Public Data

    NASA Astrophysics Data System (ADS)

    Whitworth, Brandon; Moon, Mark; Pace, William; Baker, Robert

    2010-09-01

    SSN will need greatly increased resources to meet this challenge. For these reasons, the creation of a clearinghouse for maneuvers, changes to the planning process for space missions, changes to the spacecraft for evasive and end of life actions, and improved quantity and quality of the information available to the public from the SSN should all be considered by the community to increase the level of safety and lengthen the service life of all current and future spacecraft. This paper provides a critical examination of current on-orbit collision risk analysis techniques and suggests improvements to enhance the safety of future space operations.

  14. Scapulothoracic bursitis and snapping scapula syndrome: a critical review of current evidence.

    PubMed

    Warth, Ryan J; Spiegl, Ulrich J; Millett, Peter J

    2015-01-01

    Symptomatic scapulothoracic disorders, such as painful scapular crepitus and/or bursitis, are uncommon; however, they can produce significant pain and disability in many patients. To review the current knowledge pertaining to snapping scapula syndrome and to identify areas of further research that may be helpful to improve clinical outcomes and patient satisfaction. Systematic review. We performed a preliminary search of the PubMed and Embase databases using the search terms "snapping scapula," "scapulothoracic bursitis," "partial scapulectomy," and "superomedial angle resection" in September 2013. All nonreview articles related to the topic of snapping scapula syndrome were included. The search identified a total of 167 unique articles, 81 of which were relevant to the topic of snapping scapula syndrome. There were 36 case series of fewer than 10 patients, 16 technique papers, 11 imaging studies, 9 anatomic studies, and 9 level IV outcomes studies. The level of evidence obtained from this literature search was inadequate to perform a formal systematic review or meta-analysis. Therefore, a critical review of current evidence is presented. Snapping scapula syndrome, a likely underdiagnosed condition, can produce significant shoulder dysfunction in many patients. Because the precise origin is typically unknown, specific treatments that are effective for some patients may not be effective for others. Nevertheless, bursectomy with or without partial scapulectomy is currently the most effective primary method of treatment in patients who fail nonoperative therapy. However, many patients experience continued shoulder disability even after surgical intervention. Future studies should focus on identifying the modifiable factors associated with poor outcomes after operative and nonoperative management for snapping scapula syndrome in an effort to improve clinical outcomes and patient satisfaction. © 2014 The Author(s).

  15. Comparison of the pinning and the bulk currents in the critical state of a type-II superconductor

    NASA Astrophysics Data System (ADS)

    Krasnov, V. M.; Ryazanov, V. V.

    1998-03-01

    The bulk current density distribution in the critical state of a type-II superconductor is studied for different pinning strengths and external magnetic fields. The calculations were made within the extended critical state model for a three-axis ellipsoid, taking into account the equilibrium vortex lattice magnetization caused by the vortex interaction. It is shown that the average current density, Jav, could be considerably different from the critical pinning current density, Jc, for the magnetic fields not much larger than the lower critical field Hc1. The difference between Jav and Jc result in additional curvature of the local magnetic field profiles and modifies the total moment of the sample which might be important for the analysis of various magnetization experiments.

  16. Current-pulse-induced enhancement of transient photodetective effect in tilted manganite film.

    PubMed

    Ni, H; Zhao, K; Xi, J F; Feng, X; Xiang, W F; Zhao, S Q; Kong, Y-C; Wong, H K

    2012-12-17

    A current-pulse-induced enhancement effect of transient photovoltage has been discovered in tilted manganite La(2/3)Ca(1/3)MnO(3) film at room temperature. Here, by applying a pulsed current stimulus before pulse laser irradiation, we observed a significant enhancement of more than 50% in photovoltaic sensitivity. The current-pulse-induced photovoltaic enhancement can be tuned not only by the stimulating current value but also by the stimulating time. Such enhancement is time-sensitive and reproducible. This electrically induced effect, observed at room temperature, has both the benefit of a discovery in materials properties and the promise of applications for thin film manganites in photodetectors.

  17. Critical current density behaviors across a grain boundary inclined to current with different angles in YBa2Cu3O7-δ bicrystal junctions

    NASA Astrophysics Data System (ADS)

    Tao, Hua; Wei-Wei, Xu; Zheng-Ming, Ji; Da-Yuan, Guo; Qing-Yun, Wang; Xiang-Rong, Ma; Rui-Yu, Liang

    2016-06-01

    The critical current density behaviors across a bicrystal grain boundary (GB) inclined to the current direction with different angles in YBa2Cu3O7-δ bicrystal junctions in magnetic fields are investigated. There are two main reasons for the difference in critical current density in junctions at different GB inclined angles in the same magnetic field: (i) the GB plane area determines the current carrying cross section; (ii) the vortex motion dynamics at the GB affects the critical current value when the vortex starts to move along the GB by Lorentz force. Furthermore, the vortex motion in a bicrystal GB is studied by investigating transverse (Hall) and longitudinal current-voltage characteristics (I-V xx and I-V xy ). It is found that the I-V xx curve diverges from linearity at a high driving current, while the I-V xy curve keeps nearly linear, which indicates the vortices inside the GB break out of the GB by Lorentz force. Project supported by the National Natural Science Foundation of China (Grant Nos. 61501222, 61371036, and 61571219) and the School Scientific Research Fund of Nanjing Institute of Technology, China (Grant Nos. YKJ201418).

  18. Enhancement of critical heat flux in pool boiling using atomic layer deposition of alumina

    NASA Astrophysics Data System (ADS)

    Feng, Bo; Weaver, Keith; Peterson, G. P.

    2012-01-01

    Alumina nano coatings on platinum (Pt) micro wires were fabricated using atomic layer deposition. During the pool boiling heat transfer, the critical heat flux (CHF) of Pt/Alumina in de-ionized water was found to have a two-fold enhancement compared to that of the same Pt bare wire. The CHF was shown to increase with coating thickness of alumina up to a thickness of 20 nm. Coating thicknesses in excess of 20 nm had no additional influence on the CHF. The enhancement of the CHF is the result of the superwetting property of the amorphous alumina coatings, which significantly increases the liquid film thickness, enhancing the rewetting of the "hot spot."

  19. Importance of critical micellar concentration for the prediction of solubility enhancement in biorelevant media.

    PubMed

    Ottaviani, G; Wendelspiess, S; Alvarez-Sánchez, R

    2015-04-06

    This study evaluated if the intrinsic surface properties of compounds are related to the solubility enhancement (SE) typically observed in biorelevant media like fasted state simulated intestinal fluids (FaSSIF). The solubility of 51 chemically diverse compounds was measured in FaSSIF and in phosphate buffer and the surface activity parameters were determined. This study showed that the compound critical micellar concentration parameter (CMC) correlates strongly with the solubility enhancement (SE) observed in FaSSIF compared to phosphate buffer. Thus, the intrinsic capacity of molecules to form micelles is also a determinant for each compound's affinity to the micelles of biorelevant surfactants. CMC correlated better with SE than lipophilicity (logD), especially over the logD range typically covered by drugs (2 < logD < 4). CMC can become useful to guide drug discovery scientists to better diagnose, improve, and predict solubility in biorelevant media, thereby enhancing oral bioavailability of drug candidates.

  20. Influence of Critical Current Density on Magnetic Force of Htsc Bulk above Pmr with 3D-MODELING Numerical Solutions

    NASA Astrophysics Data System (ADS)

    Lu, Yiyun; Lu, Bingjuan; Ge, Yunwang; Chen, Wenqing

    Numerical electromagnetic field simulations of high-temperature superconductors (HTSC) bulk were carried out to calculate the magnetic force between the HTSC bulk and the permanent magnet railway (PMR). A 3D-modeling numerical calculation method is proposed using the finite element method. The model is formulated with the magnetic field vector (H-method). The resulting code was written with FORTRAN language. The electric field intensity E and the current density J constitutive relation of HTSC were described with E-J power law. The Kim macro-model is used to describe critical current density Jc of HTSC bulk. Two virtual HTSC bulks were used to solve the critical current density Jc anisotropic properties of HTSC materials. A superconducting levitation system composed of one HTSC bulk and PMR is successfully investigated using the proposed method. By this method, the influence of critical current density on magnetic levitation force of the superconducting levitation system is mathematically studied.

  1. Critical currents, Ic-anisotropy and stress tolerance of MgB2 wires made by internal magnesium diffusion

    NASA Astrophysics Data System (ADS)

    Kováč, P.; Hušek, I.; Melišek, T.; Kopera, L.; Kováč, J.

    2014-06-01

    Single- and four-core MgB2 wires have been manufactured by internal magnesium diffusion (IMD) into boron. Initial hydrostatic extrusion was applied for single-core Cu sheathed wire and mostly rolling deformation for assembled four-core wires with Inconel or GlidCop sheath. The highest critical current density (Jc) was measured for the wire with boron densified by cold isostatic pressing by 1.9 GPa. Rolled tapes have exhibited critical current anisotropy increasing with the tape’s aspect ratio. Low critical current degradation of IMD wires by twisting has been observed, which can be utilized for effective reduction of AC losses. High engineering current densities of IMD wires are promising for the generation of magnetic fields between 1 and 3 T at cryogen-free conditions, which can be utilized for future MRI systems or wind power generators.

  2. Magnetic Field Dependence of the Critical Current of Planar Geometry Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Ma, Meng; Cho, Ethan; Huynh, Chuong; Cybart, Shane; Dynes, Robert

    2015-03-01

    We report a study on the magnetic field dependence of the critical current of planar geometry Josephson junctions. We have fabricated Josephson junctions by using a focused helium ion beam to irradiate a narrow barrier in the plane of a 25 nm thick Y-Ba-Cu-O film. The London penetration depth λL is large (~1 μm) because of the ultra-thin thickness of the film. As a result, calculations of the Josephson penetration depth λJ are not realistic nor physical. Therefore in this work, we measure λJ experimentally. We tested devices with bridge widths ranging from 4 to 50 μm, and present measurements of the Fraunhofer quantum diffraction pattern (IC (B)). We observe a crossover from short to long junction behavior, which gives an experimentally measured λJ that ranges between 3 μm to 5 μm. The shape of the IC (B) pattern is strongly affected by the width of the bridge because of self-field effects. As the bridge width increases, Josephson vortices enter the junction and skew the patterns. This work shows that the electronic properties of the planar junctions are very different than those classical ``sandwich'' junctions due to the differences in geometry.

  3. Renal cell carcinoma: a critical analysis of metabolomic biomarkers emerging from current model systems.

    PubMed

    Rodrigues, Daniela; Monteiro, Márcia; Jerónimo, Carmen; Henrique, Rui; Belo, Luís; Bastos, Maria de Lourdes; Guedes de Pinho, Paula; Carvalho, Márcia

    2017-02-01

    Metabolomics, an emerging field of "omics" sciences, has caught wide scientific attention in the area of biomarker research for cancers in which early diagnostic biomarkers have the potential to greatly improve patient outcome, such as renal cell carcinoma (RCC). Metabolomic approaches have been successfully applied to various human RCC model systems, mostly ex vivo neoplastic renal tissues and biofluids (urine and serum) from patients with RCC. Importantly, in contrast to other cancers, only a few studies have addressed the RCC metabolome using cancer cell culture-based in vitro models. Herein, we first carried out a comprehensive review of current metabolomic data in RCC, with emphasis on metabolite disturbances and dysregulated metabolic pathways identified in each of these experimental models. We then critically analyzed the consistency of evidence in this field and whether metabolites found altered in tumor cell and tissue microenvironment are reflected in biofluids, which constitute the rationale underlying the translation of discovered metabolic biomarkers into noninvasive diagnostic tools. Finally, dominant metabolic pathways and promising metabolites as biomarkers for diagnosis and prognosis of RCC are outlined.

  4. Atmospheric deposition and critical loads for nitrogen and metals in Arctic Alaska: Review and current status

    USGS Publications Warehouse

    Linder, Greg L.; Brumbaugh, William G.; Neitlich, Peter; Little, Edward

    2013-01-01

    To protect important resources under their bureau’s purview, the United States National Park Service’s (NPS) Arctic Network (ARCN) has developed a series of “vital signs” that are to be periodically monitored. One of these vital signs focuses on wet and dry deposition of atmospheric chemicals and further, the establishment of critical load (CL) values (thresholds for ecological effects based on cumulative depositional loadings) for nitrogen (N), sulfur, and metals. As part of the ARCN terrestrial monitoring programs, samples of the feather moss Hylocomium splendens are being col- lected and analyzed as a cost-effective means to monitor atmospheric pollutant deposition in this region. Ultimately, moss data combined with refined CL values might be used to help guide future regulation of atmospheric contaminant sources potentially impacting Arctic Alaska. But first, additional long-term studies are needed to determine patterns of contaminant deposition as measured by moss biomonitors and to quantify ecosystem responses at particular loadings/ ranges of contaminants within Arctic Alaska. Herein we briefly summarize 1) current regulatory guidance related to CL values 2) derivation of CL models for N and metals, 3) use of mosses as biomonitors of atmospheric deposition and loadings, 4) preliminary analysis of vulnerabilities and risks associated with CL estimates for N, 5) preliminary analysis of existing data for characterization of CL values for N for interior Alaska and 6) implications for managers and future research needs.

  5. Additive Manufacturing Techniques in Prosthodontics: Where Do We Currently Stand? A Critical Review.

    PubMed

    Alharbi, Nawal; Wismeijer, Daniel; Osman, Reham B

    The aim of this article was to critically review the current application of additive manufacturing (AM)/3D-printing techniques in prosthodontics and to highlight the influence of various technical factors involved in different AM technologies. A standard approach of searching MEDLINE, EMBASE, and Google Scholar databases was followed. The following search terms were used: (Prosth* OR Restoration) AND (Prototype OR Additive Manufacture* OR Compute* OR 3D-print* OR CAD/CAM) AND (Dentistry OR Dental). Hand searching the reference lists of the included articles and personal connections revealed additional relevant articles. Selection criteria were any article written in English and reporting on the application of AM in prosthodontics from 1990 to February 2016. From a total of 4,290 articles identified, 33 were seen as relevant. Of these, 3 were narrative reviews, 18 were in vitro studies, and 12 were clinical in vivo studies. Different AM technologies are applied in prosthodontics, directly and indirectly for the fabrication of fixed metal copings, metal frameworks for removable partial dentures, and plastic mock-ups and resin patterns for further conventional metal castings. Technical factors involved in different AM techniques influence the overall quality, the mechanical properties of the printed parts, and the total cost and manufacturing time. AM is promising and offers new possibilities in the field of prosthodontics, though its application is still limited. An understanding of these limitations and of developments in material science is crucial prior to considering AM as an acceptable method for the fabrication of dental prostheses.

  6. Anticatabolic and anabolic strategies in critical illness: a review of current treatment modalities.

    PubMed

    Chang, D W; DeSanti, L; Demling, R H

    1998-09-01

    Critically ill patients characteristically exhibit a pronounced catabolism in addition to a down-regulation of normal anabolic activity, leading to major complications from loss of body protein stores. The marked decrease in lean body mass and protein stores leads to the loss of essential structural and functional proteins required for restoring and maintaining homeostasis. The standard management of the catabolic response to injury and illness has centered on optimizing nutrient intake that modulates but does not reverse the process. Complications of ongoing catabolism therefore remain a major cause of morbidity. Addition of anticatabolic and anabolic agents that may counteract "the stress response to injury or illness" may be of significant clinical benefit. Agents currently available for clinical use, which will be described, can be divided into two groups. The first group are nutrients and nutrient metabolites, namely protein and the specific amino acids, glutamine, arginine, and branched chain amino acids, especially leucine. The second group are anabolic hormones, namely growth hormone, testosterone, and the testosterone analog oxandrolone. The pros and cons of these agents, as to their anabolic and anticatabolic value, are described.

  7. Improvement of critical current density of bronze processed Nb{sub 3}Sn superconducting wire

    SciTech Connect

    Miyazaki, T.; Fukumoto, Y.; Matsukura, N.

    1997-06-01

    Effects of tantalum addition to niobium filaments and tin contents in bronze matrix on the critical current density (J{sub c}) of Nb{sub 3}Sn superconducting wires manufactured by the bronze process were investigated in order to improve the J{sub c} in the high magnetic fields. In the results using the bronze composition of Cu-13wt.%Sn-0.3wt.%Ti, the J{sub c} shows a peak for 1 wt.% of tantalum content in the niobium filament. On the other hand, J{sub c} of samples with Cu-14wt.%Sn-0.3wt.%Ti is almost 1.7 times higher than that with Cu-13wt.%Sn-0.3wt.%Ti. From these findings, the authors manufactured a multifilamentary prototype (Nb,Ti,Ta){sub 3}Sn conductor made of Nb-1.0wt.%Ta and Cu-14wt.%Sn.0.3wt.%Ti. The non Cu J{sub c} of the conductor was 701 A/mm{sup 2} at 12 T and 51 A/mm{sup 2} at 21 T for the heat treatment temperature of 650{degrees} C.

  8. Origin of the hysteresis of the current voltage characteristics of superconducting microbridges near the critical temperature

    NASA Astrophysics Data System (ADS)

    Vodolazov, D. Yu.; Peeters, F. M.

    2011-09-01

    The current voltage (IV) characteristics of short [with length L≲ξ(T)] and long [L≫ξ(T)] microbridges are theoretically investigated near the critical temperature of the superconductor. Calculations are made in the nonlocal (local) limit when the inelastic relaxation length due to electron-phonon interactions Lin=(Dτin)1/2 is larger (smaller) than the temperature-dependent coherence length ξ(T) (D is the diffusion coefficient, τin is the inelastic relaxation time of the quasiparticle distribution function). We find that, in both limits, the origin of the hysteresis in the IV characteristics is mainly connected with the large time scale over which the magnitude of the order parameter varies in comparison with the time-scale variation of the superconducting phase difference across the microbridge in the resistive state. In the nonlocal limit, the time-averaged heating and cooling of quasiparticles are found in different areas of the microbridge, which are driven, respectively, by oscillations of the order parameter and the electric field. We show that, by introducing an additional term in the time-dependent Ginzburg-Landau equation, it is possible to take into account the cooling effect in the local limit too.

  9. Female genital cosmetic surgery: a critical review of current knowledge and contemporary debates.

    PubMed

    Braun, Virginia

    2010-07-01

    Female genital cosmetic surgery procedures have gained popularity in the West in recent years. Marketing by surgeons promotes the surgeries, but professional organizations have started to question the promotion and practice of these procedures. Despite some surgeon claims of drastic transformations of psychological, emotional, and sexual life associated with the surgery, little reliable evidence of such effects exists. This article achieves two objectives. First, reviewing the published academic work on the topic, it identifies the current state of knowledge around female genital cosmetic procedures, as well as limitations in our knowledge. Second, examining a body of critical scholarship that raises sociological and psychological concerns not typically addressed in medical literature, it summarizes broader issues and debates. Overall, the article demonstrates a paucity of scientific knowledge and highlights a pressing need to consider the broader ramifications of surgical practices. "Today we have a whole society held in thrall to the drastic plastic of labial rejuvenation."( 1 ) "At the present time, the field of female cosmetic genital surgery is like the old Wild, Wild West: wide open and unregulated"( 2 ).

  10. Field and temperature scaling of the critical current density in commercial REBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Senatore, Carmine; Barth, Christian; Bonura, Marco; Kulich, Miloslav; Mondonico, Giorgio

    2016-01-01

    Scaling relations describing the electromagnetic behaviour of coated conductors (CCs) greatly simplify the design of REBCO-based devices. The performance of REBCO CCs is strongly influenced by fabrication route, conductor architecture and materials, and these parameters vary from one manufacturer another. In the present work we have examined the critical surface for the current density, J c(T, B, θ), of coated conductors from six different manufacturers: American Superconductor Co. (US), Bruker HTS GmbH (Germany), Fujikura Ltd (Japan), SuNAM Co. Ltd (Korea), SuperOx ZAO (Russia) and SuperPower Inc. (US). Electrical transport and magnetic measurements were performed at temperatures between 4.2 K and 77 K and in magnetic fields of up to 19 T. Experiments were conducted at three different orientations of the field with respect to the crystallographic c-axis of the REBCO layer, θ = 0°, 45° and 90°, in order to probe the angular anisotropy of J c. In spite of the large variability of the CCs’ performance, we show here that field and temperature dependences of J c at a given angle can be reproduced over wide ranges using a scaling relation based only on three parameters. Furthermore, we present and validate a new approach combining magnetic and transport measurements for the determination of the scaling parameters with minimal experimental effort.

  11. Current status of presurgical infant orthopaedic treatment for cleft lip and palate patients: A critical review

    PubMed Central

    Niranjane, P. Priyanka; Kamble, R. H.; Diagavane, S. Pallavi; Shrivastav, S. Sunita; Batra, Puneet; Vasudevan, S. D.; Patil, Pushkar

    2014-01-01

    Rehabilitation of cleft lip and palate (CLP) patients is a challenge for all the concerned members of the cleft team, and various treatment modalities have been attempted to obtain aesthetic results. Presurgical infant orthopaedics (PSIO) was introduced to reshape alveolar and nasal segments prior to surgical repair of cleft lip. However, literature reports lot of controversy regarding the use of PSIO in patients with CLP. Evaluation of long-term results of PSIO can provide scientific evidence on the efficacy and usefulness of PSIO in CLP patients. The aim was to assess the scientific evidence on the efficiency of PSIO appliances in patients with CLP and to critically analyse the current status of PSIO. A PubMed search was performed using the terms PSIO, presurgical nasoalveolar moulding and its long-term results and related articles were selected for the review. The documented studies report no beneficial effect of PSIO on maxillary arch dimensions, facial aesthetics and in the subsequent development of dentition and occlusion in CLP patients. Nasal moulding seems to be more beneficial and effective in unilateral cleft lip and palate patients with better long-term results. PMID:25593413

  12. Connectivity and limitation of critical current in Bi-Pb-Sr-Ca-Cu/Ag tapes

    NASA Astrophysics Data System (ADS)

    Müller, K.-H.; Andrikidis, C.; Du, J.; Leslie, K. E.; Foley, C. P.

    1999-07-01

    We have shown experimentally that the remanent magnetic moments of Y-Ba-Cu-O thin-film networks and of Bi-2223/Ag monofilamentary tapes show remarkable similarities, as their magnetic moments are both composed of intersquare (intergrain) and intrasquare (intragrain) magnetic moments. Starting from the geometrical definition of connectivity in a thin-film network, we show that connectivity in a Bi-2223/Ag monofilamentary tape is solely defined by the ratio of the average grain size to the width of the superconducting core and by the ratio of the intergrain to intragrain remanent magnetic moments at saturation. The measured upper limit for the connectivities ranged from 4.2×10-3 in a tape with low critical current density Jc to 2.9×10-2 in a tape with Jc(77 K,0 T)~=2×108 A m-2. Our study reveals that even good Bi-2223/Ag tapes suffer from very low grain connectivity. We estimate that in the case of perfect connectivity a Jc(77 K,0 T) between 8×109 and 6×1010 A m-2 would be achievable.

  13. Relationship between intrinsic surface resistance and critical current density of YBCO thin films with various thickness

    NASA Astrophysics Data System (ADS)

    Nakagawa, K.; Nakayama, S.; Saito, A.; Ono, S.; Kai, H.; Mukaida, M.; Honma, T.; Ohshima, S.

    2010-11-01

    We investigated the relationship between the intrinsic surface resistance (Rsint) and critical current density (Jc) of YBa2Cu3Oy (YBCO) film thinner than the penetration depth (λL). The measured YBCO films were deposited on CeO2-buffered r-cut Al2O3 substrates by the pulsed laser deposition method. The thicknesses of these films were 300, 200, and 100 nm, respectively. The Rsint means the surface resistance of YBCO film removing the loss by the impedance of the substrates. The effective surface resistance (Rseff) including the impedance of the substrate and the Jc of each YBCO film were measured using the dielectric resonator method at 21.8 GHz and the inductive method. We calculated Rsint by using phenomenological expressions and the Rseff value. The Rsint values of each YBCO film were almost the same in the measured temperature region. As a result, we found that Rsint was in inverse proportion to the Jc of YBCO film thinner than λL.

  14. Critical Current Test of Liquid Hydrogen Cooled HTC Superconductors under External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Shirai, Yasuyuki; Shiotsu, Masahiro; Tatsumoto, Hideki; Kobayashi, Hiroaki; Naruo, Yoshihiro; Nonaka, Satoshi; Inatani, Yoshifumi

    High-Tc (HTC) superconductors including MgB2 will show excellent properties under temperature of Liquid Hydrogen (LH2:20K), which has large latent heat and low viscosity coefficient. In order to design and fabricate the LH2 cooled superconducting energy devices, we must clear the cooling property of LH2 for superconductors, the cooling system and safety design of LH2 cooled superconducting devices and electro-magnetic property evaluation of superconductors (BSCCO, REBCO and MgB2) and their magnets cooled by LH2. As the first step of the study, an experimental setup which can be used for investigating heat transfer characteristics of LH2 in a pool and also in forced flow (circulation loop with a pump), and also for evaluation of electro-magnetic properties of LH2 cooled superconductors under external magnetic field (up to 7 T). In this paper, we will show a short sketch of the experimental set-up, practical experiences in safety operation of liquid hydrogen cooling system and example test results of critical current evaluation of HTC superconductors cooled by LH2.

  15. [Indications of dexmedetomidine in the current sedoanalgesia tendencies in critical patients].

    PubMed

    Romera Ortega, M A; Chamorro Jambrina, C; Lipperheide Vallhonrat, I; Fernández Simón, I

    2014-01-01

    Recently, dexmedetomidine has been marketed in Spain and other European countries. The published experience regarding its use has placed dexmedetomidine on current trends in sedo-analgesic strategies in the adult critically ill patient. Dexmedetomidine has sedative and analgesic properties, without respiratory depressant effects, inducing a degree of depth of sedation in which the patient can open its eyes to verbal stimulation, obey simple commands and cooperate in nursing care. It is therefore a very useful drug in patients who can be maintained on mechanical ventilation with these levels of sedation avoiding the deleterious effects of over or infrasedation. Because of its effects on α2-receptors, it's very useful for the control and prevention of tolerance and withdrawal to other sedatives and psychotropic drugs. The use of dexmedetomidine has been associated with lower incidence of delirium when compared with other sedatives. Moreover, it's a potentially useful drug for sedation of patients in non-invasive ventilation. Copyright © 2013 Elsevier España, S.L. y SEMICYUC. All rights reserved.

  16. Current practices in the identification of critical habitat for threatened species.

    PubMed

    Camaclang, Abbey E; Maron, Martine; Martin, Tara G; Possingham, Hugh P

    2015-04-01

    The term critical habitat is used to describe the subset of habitat that is essential to the survival and recovery of species. Some countries legally require that critical habitat of listed threatened and endangered species be identified and protected. However, there is little evidence to suggest that the identification of critical habitat has had much impact on species recovery. We hypothesized that this may be due at least partly to a mismatch between the intent of critical habitat identification, which is to protect sufficient habitat for species persistence and recovery, and its practice. We used content analysis to systematically review critical habitat documents from the United States, Canada, and Australia. In particular, we identified the major trends in type of information used to identify critical habitat and in occupancy of habitat identified as critical. Information about population viability was used to identify critical habitat for only 1% of the species reviewed, and for most species, designated critical habitat did not include unoccupied habitat. Without reference to population viability, it is difficult to determine how much of a species' occupied and unoccupied habitat will be required for persistence. We therefore conclude that the identification of critical habitat remains inconsistent with the goal of protecting sufficient habitat to support persistence and recovery of the species. Ensuring that critical habitat identification aligns more closely with its intent will improve the accuracy of the designations and may therefore help improve the benefits to species recovery when combined with adequate implementation and enforcement of legal protections.

  17. Development of Critical Profilometers to Meet Current and Future NASA Composite Overwrapped Pressure Vessel (COPV) Inspection Needs

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor; Nichols, Charles

    2012-01-01

    This project is part of a multi-center effort to develop and validate critical NDE techniques which can be implemented into current and future NASA spacecraft COPV manufacturing processes. After decades of COPV development, manufacturing variance is still high and has necessitated higher safety factors and additional mass to be flown on spacecraft (reducing overall performance). Additionally, the NASA Engineering and Safety Center (NESC) indicated that nondestructive evaluation (NDE) was not adequately implemented during Shuttle and International Space Station (ISS) COPV manufacturing and provisions were not made for on-going structural integrity and health checks during the various spacecraft programs. This project helps to provide additional data needed to help address these issues. This project seeks to develop and install internal and external laser profilometers at COPV manufacturing facilities to provide data needed to improve COPV quality and consistency. This project also investigates other scanning techniques that will enhance the system to more completely meet manufacturing needs, thus transforming the profilometer into what has been termed the "Universal Manufacturing COPV Scanner".

  18. Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire

    NASA Astrophysics Data System (ADS)

    Clem, John R.

    2011-06-01

    I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Pérez-Rodríguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting (ρ∥) and flux flow (ρ⊥), and their ratio r=ρ∥/ρ⊥. When r<1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magnetic moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle ϕ. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density Jc(ϕ) that makes the vortex arc unstable.

  19. Person-centred health care: a critical assessment of current and emerging research approaches.

    PubMed

    Martin, Carmel M; Félix-Bortolotti, Margot

    2014-12-01

    Person-centred health care is prominent in international health care reforms. A shift to understanding and improving personal care at the point of delivery has generated debates about the nature of the person-centred research agenda. This paper purviews research paradigms that influence current person-centred research approaches and traditions that influence knowledge foundations in the field. It presents a synthesis of the emergent approaches and methodologies and highlights gaps between static academic research and the increasing accessibility of evaluation, informatics and big data from health information systems. Paradigms in health services research range from theoretical to atheoretical, including positivist, interpretive, postmodern and pragmatic. Interpretivist (subjective) and positivist (objectivist) paradigms have been historically polarized. Yet, integrative and pragmatic approaches have emerged. Nevertheless, there is a tendency to reductionism, and to reduce personal experiences to metrics in the positivist paradigm. Integrating personalized information into clinical systems is increasingly driven by the pervasive health information technology, which raises many issues about the asymmetry and uncertainty in the flow of information to support personal health journeys. The flux and uncertainty of knowledge between and within paradigmatic or pragmatic approaches highlights the uncertainty and the 'unorder and disorder' in what is known and what it means. Transdisciplinary, complex adaptive systems theory with multi-ontology sense making provides an overarching framework for making sense of the complex dynamics in research progress. A major challenge to current research paradigms is focus on the individualizing of care and enhancing experiences of persons in health settings. There is an urgent need for person-centred research to address this complex process. A transdisciplinary and complex systems approach provides a sense-making framework. © 2014 John

  20. Using Quantitative Literacy to Enhance Critical Thinking Skills in Undergraduate Nursing Students.

    PubMed

    Asknes, Edna

    2017-04-01

    Critical thinking and quantitative literacy (QL) are similarly grounded: both focus on analyzing and evaluating evidence, identifying implications and consequences, drawing inferences, and communicating information. This teaching strategy was based on those commonalities and was designed so that undergraduate nursing students would enhance their critical thinking skills as they used their QL skills. QL skills are most effective when taught, learned, and used to solve significant, pertinent problems. Using the principles of learner-centered, team-based learning, QL was integrated into the curriculum of the Maternal-Newborn Nursing course at an urban community college with a diverse student population. Students were engaged and demonstrated enhanced and ongoing development of their critical thinking and problem-solving skills. They also reported a better understanding of data interpretation and use. The positive outcome of this project revealed further opportunities for incorporating QL into nursing curricula and highlighted the need for research on the use of QL in nursing education. [J Nurs Educ. 2017;56(4):240-242.]. Copyright 2017, SLACK Incorporated.

  1. Cathodic current enhancement via manganese and oxygen related reactions in marine biofilms

    NASA Astrophysics Data System (ADS)

    Strom, Matthew James

    Corrosion is a threat that has economic, and environmental impacts worldwide. Many types of corrosive attack are the subject of ongoing research. One of these areas of research is microbiologically influenced corrosion, which is the enhancement and/or initiation of corrosion events caused by microorganisms. It is well known that colonies of microorganisms can enhance cathodic currents through biofilm formation. The aim of the present work was to elucidate the role of manganese in enhancing cathodic currents in the presence of biofilms. Repeated polarizations conducted in Delaware Bay waters, on biofilm coated Cr identified potentially sustainable reduction reactions. The reduction of MnO2 and the enhancement of the oxygen reduction reaction (ORR) were proven to be factors that influence cathodic current enhancement. The removal of ambient oxygen during polarizations resulted in a shutdown of cathodic current enhancement. These field data led to an exploration of the synergistic relationship between MnO2 and the ORR. Laboratory studies of the catalysis of peroxide disproportionation by MnO2 were monitored using a hanging mercury drop electrode. Experiments were run at an ambient sweater pH of 8 and pH 9, which simulated the near-surface conditions typical of cathodes immersed in seawater. Rapid reoxidation at the more basic pH was shown to allow manganese to behave as a persistent catalyst under the typical electrochemical surface conditions of a cathode. As a result a mechanism for ORR enhancement by manganese was proposed as a unique mechanism for cathodic current enhancement in biofilms. A separate field study of Delaware biofilms on stainless steel coupled to a sacrificial Al anode was carried out to identify the ORR enhancement mechanism and sustainable redox reactions at the cathode. Chemical treatments of glutaraldehyde and formaldoxime were applied to cathodes with biofilms to distinguish between enzymatic and MnO2 related ORR enhancement. The results ruled

  2. Innovations in teaching: a learning format designed to enhance critical appraisal skills

    PubMed Central

    Jamison, Jennifer R

    1995-01-01

    Aim: To create a learning experience which enhances clinical competence by encouraging critical appraisal and accurate self-assessment. Method: Strategies for enhancing participants’ appraisal skills included: • preparation of a “case study” to demonstrate clinical decision making in primary practice • self-evaluation of that case study according to a pre-determined framework. • critiquing of case studies prepared by peers. All participants were provided with a set of guidelines for case selection, case preparation and case evaluation. Each participant prepared one case study and critiqued two others. Student anonymity was ensured by means of cases and critiques being identified through examination numbers rather than names. Results: From the student perspective the case preparation aspect of this learning experience was well accepted. The student response to peer-evaluation was more guarded while only one third of respondents considered that the self-assessment component of the exercise may potentially contribute to their development as independent learners. From the lecturer’s perspective the total exercise was worthwhile despite certain logistic difficulties. Recommendations for modifying the learning experience have been included. Conclusions: By encouraging reflective clinical decision making and engaging participants in self- and peer performance appraisal, this format creates a learning framework which provides an opportunity for students to enhance their ability to undertake critical appraisal in a context relevant to their future professional practice.

  3. High fidelity simulation of nucleate boiling and transition to critical heat flux on enhanced structures

    NASA Astrophysics Data System (ADS)

    Yazdani, Miad; Alahyari, Abbas; Radcliff, Thomas; Soteriou, Marios

    2015-11-01

    Surface enhancement is often is the primary approach for improved heat transfer performance of two-phase thermal systems particularly when they operate in nucleate boiling regime. This paper exploits the modeling capability developed by Yazdani et al. for simulation of nucleate boiling and transition to critical heat flux to study the nucleation phenomenon on various enhanced structures. The multi-scale of two-phase flow associated with boiling phenomena is addressed through combination of deterministic CFD for the macro-scale transport, asymptotic based representation of micro-layer, and stochastic representation of surface roughness so as to allow a high-fidelity simulation of boiling on an arbitrary surface. In addition, given the excessive complexity of surface structures often used for enhancement of boiling heat transfer, a phase-field-based method is developed to generate the structures where the numerical parameters in the phase-field model determine the topology of a given structure. The ``generated'' structure is then embedded into the two-phase flow model through virtual boundary method for the boiling simulation. The model is validated against experimental data for the boiling curve and the critical heat flux as well as nucleation and bubble dynamics characteristics.

  4. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence

    PubMed Central

    Verberk, Wilco C.E.P.; Overgaard, Johannes; Ern, Rasmus; Bayley, Mark; Wang, Tobias; Boardman, Leigh; Terblanche, John S.

    2016-01-01

    Over the last decade, numerous studies have investigated the role of oxygen in setting thermal tolerance in aquatic animals, and there has been particular focus on arthropods. Arthropods comprise one of the most species-rich taxonomic groups on Earth, and display great diversity in the modes of ventilation, circulation, blood oxygen transport, with representatives living both in water (mainly crustaceans) and on land (mainly insects). The oxygen and capacity limitation of thermal tolerance (OCLTT) hypothesis proposes that the temperature dependent performance curve of animals is shaped by the capacity for oxygen delivery in relation to oxygen demand. If correct, oxygen limitation could provide a mechanistic framework to understand and predict both current and future impacts of rapidly changing climate. In arthropods, most studies testing the OCLTT hypothesis have considered tolerance to thermal extremes. These studies likely operate from the philosophical viewpoint that if the model can predict these critical thermal limits, then it is more likely to also explain loss of performance at less extreme, non-lethal temperatures, for which much less data is available. Nevertheless, the extent to which lethal temperatures are influenced by limitations in oxygen supply remains unresolved. Here we critically evaluate the support and universal applicability for oxygen limitation being involved in lethal temperatures in crustaceans and insects. The relatively few studies investigating the OCLTT hypothesis at low temperature do not support a universal role for oxygen in setting the lower thermal limits in arthropods. With respect to upper thermal limits, the evidence supporting OCLTT is stronger for species relying on underwater gas exchange, while the support for OCLTT in air-breathers is weak. Overall, strongest support was found for increased anaerobic metabolism close to thermal maxima. In contrast, there was only mixed support for the prediction that aerobic scope

  5. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence.

    PubMed

    Verberk, Wilco C E P; Overgaard, Johannes; Ern, Rasmus; Bayley, Mark; Wang, Tobias; Boardman, Leigh; Terblanche, John S

    2016-02-01

    Over the last decade, numerous studies have investigated the role of oxygen in setting thermal tolerance in aquatic animals, and there has been particular focus on arthropods. Arthropods comprise one of the most species-rich taxonomic groups on Earth, and display great diversity in the modes of ventilation, circulation, blood oxygen transport, with representatives living both in water (mainly crustaceans) and on land (mainly insects). The oxygen and capacity limitation of thermal tolerance (OCLTT) hypothesis proposes that the temperature dependent performance curve of animals is shaped by the capacity for oxygen delivery in relation to oxygen demand. If correct, oxygen limitation could provide a mechanistic framework to understand and predict both current and future impacts of rapidly changing climate. In arthropods, most studies testing the OCLTT hypothesis have considered tolerance to thermal extremes. These studies likely operate from the philosophical viewpoint that if the model can predict these critical thermal limits, then it is more likely to also explain loss of performance at less extreme, non-lethal temperatures, for which much less data is available. Nevertheless, the extent to which lethal temperatures are influenced by limitations in oxygen supply remains unresolved. Here we critically evaluate the support and universal applicability for oxygen limitation being involved in lethal temperatures in crustaceans and insects. The relatively few studies investigating the OCLTT hypothesis at low temperature do not support a universal role for oxygen in setting the lower thermal limits in arthropods. With respect to upper thermal limits, the evidence supporting OCLTT is stronger for species relying on underwater gas exchange, while the support for OCLTT in air-breathers is weak. Overall, strongest support was found for increased anaerobic metabolism close to thermal maxima. In contrast, there was only mixed support for the prediction that aerobic scope

  6. Estimation of critical current density and grain connectivity in superconducting MgB 2 bulk using Campbell’s method

    NASA Astrophysics Data System (ADS)

    Ni, B.; Morita, Y.; Liu, Z.; Liu, C.; Himeki, K.; Otabe, E. S.; Kiuchi, M.; Matsushita, T.

    2008-09-01

    Many recent reports on the critical current density ( Jc) in superconducting MgB 2 bulks indicated that improving the grain connectivity is important, since the obtained Jc values were generally much lower than those in other metallic superconductors and it was ascribed to the poor connectivity between grains in polycrystalline MgB 2. In this study, we focused on the estimation of the global critical current density, super-current path, grain connectivity and their relationships with the faults volume fraction in the MgB 2 bulks prepared by a modified PIT (powder in tube) method. Campbell’s method was applied for the purpose of obtaining the penetrating AC flux profile and the characteristic of AC magnetic field vs. penetration depth from the sample’s surface. A computer simulation on the penetrating AC flux profile in MgB 2 bulks with randomly distributed voids, oxidized grains and other faults was also carried out. Jc obtained by Campbell’s method turned out to be smaller than that obtained from the SQUID measurement, implying that the global super-current was reduced by the existence of various faults and the lack of the electrical connectivity. It was verified that the relationship between the global critical current characteristics and the faults contained in MgB 2 samples can be quantitatively clarified by comparing the simulated critical current densities and other factors with the experimental results.

  7. Preparation and critical current densities of highly textured 2212 BiSrCaCu oxide layers on silver

    NASA Astrophysics Data System (ADS)

    Kress, B.; Neumüller, H. W.; Assmann, H.; Wohlfart, M.; Kase, J.; Kumakura, H.; Togano, K.

    1991-12-01

    Doctor blade processed green tapes and screen printable pastes on silver foil, both prepared with Bi 2Sr 2Ca 1Cu 2O x powder, were subjected to melt-texturing using melting and crystallization temperatures derived from DTA measurements. Highly textured layers were formed by slow cooling from the melting temperature to the crystallization temperature and quenching after a holding period. Quenching increased Tc to 90 K. The critical current density was measured as a function of temperature and magnetic field. At 4.2 K and 77 K and 0 Tesla, critical current densities as high as 1.3 × 10 5 A/cm 2 and 1.04 × 10 4 A/cm 2 were observed, respectively. At 4.2 K and 10 Tesla a critical current density of up to 5 × 10 4 A/cm 2 was obtained, even with B ⊥ tape

  8. The influence of post-growth thermal treatments on the critical current density of TSMG YBCO bulk superconductors

    NASA Astrophysics Data System (ADS)

    Diko, P.; Antal, V.; Zmorayová, K.; Šefčiková, M.; Chaud, X.; Kováč, J.; Yao, X.; Chen, I.; Eisterer, M.; Weber, H. W.

    2010-12-01

    Oxygenation and thermochemical post-growth treatments of top seeded melt-growth (TSMG) YBCO bulk superconductors can significantly influence critical current density. It is shown that, depending on oxygenation conditions and the size of 211 particles, different reductions of intrinsic critical current density values can be obtained due to the reduction in the sample cross-section caused by the presence of a/b-microcracks induced by 211 particles, and a/b- and a/c-cracks induced by oxygenation. The possibility of eliminating oxygenation cracks by high pressure oxygenation and consequently significantly increasing the macroscopic critical current density is demonstrated. An effective dopant concentration for chemical pinning is proposed and possible clustering of substitutions in the Y123 lattice by thermochemical treatments is shown.

  9. High critical current density and improved flux pinning in bulk MgB2 synthesized by Ag addition

    NASA Astrophysics Data System (ADS)

    Shekhar, Chandra; Giri, Rajiv; Tiwari, R. S.; Srivastava, O. N.; Malik, S. K.

    2007-02-01

    In the present investigation, we report a systematic study of Ag admixing in MgB2 prepared by solid-state reaction at ambient pressure. All the samples in the present investigation have been subjected to structural/ microstructural characterization employing x-ray diffraction and transmission electron microscopic (TEM) techniques. The magnetization measurements were performed by physical property measurement system. The TEM investigations reveal the formation of MgAg nanoparticles in Ag admixed samples. These nanoparticles may enhance critical current density due to their size (˜5-20nm ) which is compatible with the coherence length of MgB2 (˜5-6nm ). In order to study the flux pinning effect of Ag admixing in MgB2, the evaluation of intragrain critical current density (Jc) has been carried out through magnetic measurements on the fine powdered version of the as synthesized samples. The optimum result on intragrain Jc is obtained for 10at.% Ag admixed sample at 5K. This corresponds to ˜9.23×107A /cm2 in self-field, ˜5.82×107A/cm2 at 1T, ˜4.24×106A/cm2 at 3.6T, and ˜1.52×105A/cm2 at 5T. However, intragrain Jc values for MgB2 sample without Ag admixing are ˜2.59×106, ˜1.09×106, ˜4.53×104, and 2.91×103A /cm2 at 5K in self-field, 1T, 3.6T, and 5T, respectively. The high value of intragrain Jc for Ag admixed MgB2 superconductor has been attributed to the inclusion of MgAg nanoparticles into the crystal matrix of MgB2, which are capable of providing effective flux pinning centers. A feasible correlation between microstructural features and superconducting properties has been put forward.

  10. Enhancing nursing informatics competencies and critical thinking skills using wireless clinical simulation laboratories.

    PubMed

    Cholewka, Patricia A; Mohr, Bernard

    2009-01-01

    Nursing students at New York City College of Technology are assigned client care experiences that focus on common alterations in health status. However, due to the unpredictability of client census within any healthcare facility, it is not possible for all students to have the same opportunity to care for clients with specific medical conditions. But with the use of patient simulators in a dedicated Clinical Simulation Laboratory setting, students can be universally, consistently, and repeatedly exposed to programmed scenarios that connect theory with the clinical environment. Outcomes from using patient simulators include improved nursing knowledge base, enhanced critical thinking, reflective learning, and increased understanding of information technology for using a Personal Digital Assistant and documenting care by means of an electronic Patient Record System. An innovative nursing education model using a wireless, inter-connective data network was developed by this college in response to the need for increasing nursing informatics competencies and critical thinking skills by students in preparation for client care.

  11. Effect of La doping on microstructure and critical current density of MgB2

    NASA Astrophysics Data System (ADS)

    Shekhar, Chandra; Giri, Rajiv; Tiwari, R. S.; Rana, D. S.; Malik, S. K.; Srivastava, O. N.

    2005-09-01

    In the present study, La-doped MgB2 superconductors with different doping levels (Mg1-xLaxB2; x = 0.00, 0.01, 0.03 and 0.05) have been synthesized by the solid-state reaction route at ambient pressure. Effects of La doping have been investigated in relation to microstructural characteristics and superconducting properties, particularly intragrain critical current density (Jc). The microstructural characteristics of the as-synthesized Mg(La)B2 compounds were studied employing the transmission electron microscopic (TEM) technique. The TEM investigations reveal inclusion of LaB6 nanoparticles within the MgB2 grains, which provide effective flux pinning centres. The evaluation of intragrain Jc through magnetic measurements on the fine powdered version of the as-synthesized samples reveal that Jc values of the samples change significantly with the doping level. The optimum result on Jc is obtained for Mg0.97La0.03B2 at 5 K Jc reaches ~1.4 × 107 A cm-2 in self-field, ~2.1 × 106 A cm-2 at 1 T, ~2.5 × 105 A cm-2 at 2.5 T and ~1.8 × 104 A cm-2 at 4.5 T. The highest value of intragrain Jc in the Mg0.97La0.03B2 superconductor has been attributed to the inclusion of LaB6 nanoparticles, which are capable of providing effective flux pinning centres.

  12. Neutron-Absorbing Coatings for Safe Storage of Fissile Materials with Enhanced Shielding & Criticality Safety

    SciTech Connect

    Choi, J; Farmer, J; Lee, C; Fischer, L; Boussoufi, M; Liu, B; Egbert, H

    2007-07-03

    Neutron-absorbing Fe-based amorphous-metal coatings have been developed that are more corrosion resistant than other criticality-control materials, including Al-B{sub 4}C composites, borated stainless steels, and Ni-Cr-Mo-Gd alloys. The presence of relatively high concentration of boron in these coatings not only enhances its neutron-absorption capability, but also enables these coatings to exist in the amorphous state. Exceptional corrosion resistance has been achieved with these Fe-based amorphous-metal alloys through additions of chromium, molybdenum, and tungsten. The addition of rare earth elements such as yttrium has lowered the critical cooling rate of these materials, thereby rendering them more easily processed. Containers used for the storage of nuclear materials, and protected from corrosion through the application of amorphous metal coatings, would have greatly enhanced service lives, and would therefore provide greater long-term safety. Amorphous alloy powders have been successfully produced in multi-ton quantities with gas atomization, and applied to several half-scale spent fuel storage containers and criticality control structures with the high-velocity oxy-fuel (HVOF) thermal spray process. Salt fog testing and neutron radiography of these prototypes indicates that such an approach is viable for the production of large-scale industrial-scale facilities and containers. The use of these durable neutron-absorbing materials to coat stainless steel containers and storage racks, as well as vaults, hot-cell facilities and glove boxes could substantially reduce the risk of criticality in the event of an accident. These materials are particularly attractive for shielding applications since they are fire proof. Additionally, layers of other cold and thermal sprayed materials that include carbon and/or carbides can be used in conjunction with the high-boron amorphous metal coatings for the purpose of moderation. For example, various carbides, including boron

  13. Common Ground of Two Paradigms: Incorporating Critical Theory into Current Art Therapy Practices

    ERIC Educational Resources Information Center

    Nolan, Emily

    2013-01-01

    Clinical art therapy and studio-based community art therapy represent two major paradigms in art therapy practice. This viewpoint explores how critical theory can be incorporated into both paradigms and result in common ground between them. Critical theory encompasses an understanding of oppression in psychological, social, and cultural contexts…

  14. Common Ground of Two Paradigms: Incorporating Critical Theory into Current Art Therapy Practices

    ERIC Educational Resources Information Center

    Nolan, Emily

    2013-01-01

    Clinical art therapy and studio-based community art therapy represent two major paradigms in art therapy practice. This viewpoint explores how critical theory can be incorporated into both paradigms and result in common ground between them. Critical theory encompasses an understanding of oppression in psychological, social, and cultural contexts…

  15. Effects of the vortex line shape on the critical current density in high Tc superconducting film with nanorod pinning centers

    NASA Astrophysics Data System (ADS)

    Jung, Y.; Kwak, K.; Lee, W.; Rhee, J.; Youm, D.; Yoo, J.; Han, Y. H.; Park, B. J.

    2012-06-01

    We studied the critical current density distribution in a coated conductor comprised of (Gd,Y)1Ba2Cu3O7-δ-BaZrO3 film. Transmission electron microscopy measurements showed that nanorod pinning centers tilt by ˜13° from the c-axis. Magneto-optical image (MOI) measurements showed interesting asymmetric distributions of magnetic flux density. From MOIs we calculated the asymmetric distributions of the critical current density, which is associated with the properties of vortex pinning. We were able to explain these results through the geometrical relationship of the tilted rod pinning centers and the curved vortex lines.

  16. Correlation of radial inhomogeneties and critical current at 77 K in LFZ Bi-2212 textured thin rods

    NASA Astrophysics Data System (ADS)

    Natividad, E.; Díez, J. C.; Peña, J. I.; Angurel, L. A.; Navarro, R.; Andrés, J. M.; Ferrando, A. C.

    2002-08-01

    The fabrication of thin Bi-2212 rods by laser floating zone techniques gives high critical currents, Ic, but strong radial inhomogeneities in microstructure and physical properties. By changing the precursor stoichiometry or the processing parameters, we have succeeded in improving the homogeneity and the Ic values. Towards the centre of the rods, the superconducting material tends to have lower Tc values associated to higher Bi content in the Bi-2212 superconducting grains. At 77 K, this gradient of Bi originates strong variations of critical current density across the rod.

  17. Effects of oxygen content on the pinning energy and critical current in the granular (Hg, Re)-1223 superconductors

    NASA Astrophysics Data System (ADS)

    Passos, C. A. C.; Orlando, M. T. D.; Fernandes, A. A. R.; Oliveira, F. D. C.; Simonetti, D. S. L.; Fardin, J. F.; Belich, H.; Ferreira, M. M.

    2005-02-01

    Hg 0.82Re 0.18Ba 2Ca 2Cu 3O 8+ d polycrystalline samples, with different oxygen content, were investigated by ac resistance measurements under different applied magnetic field (up to <32 × 10 3 A/m) and critical current measurements. The intergrain and intragrain regions have shown an improvement in the pinning energy and critical current density, as considering the precursor preparation with 10% of O 2 and 90% of Ar (optimal doped). In addition, the samples presented S-I-S junctions type as considering Ambegaokar-Baratoff theory.

  18. Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review

    PubMed Central

    2011-01-01

    Nanofluids (suspensions of nanometer-sized particles in base fluids) have recently been shown to have nucleate boiling critical heat flux (CHF) far superior to that of the pure base fluid. Over the past decade, numerous experimental and analytical studies on the nucleate boiling CHF of nanofluids have been conducted. The purpose of this article is to provide an exhaustive review of these studies. The characteristics of CHF enhancement in nanofluids are systemically presented according to the effects of the primary boiling parameters. Research efforts to identify the effects of nanoparticles underlying irregular enhancement phenomena of CHF in nanofluids are then presented. Also, attempts to explain the physical mechanism based on available CHF theories are described. Finally, future research needs are identified. PMID:21711949

  19. Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review.

    PubMed

    Kim, Hyungdae

    2011-06-09

    Nanofluids (suspensions of nanometer-sized particles in base fluids) have recently been shown to have nucleate boiling critical heat flux (CHF) far superior to that of the pure base fluid. Over the past decade, numerous experimental and analytical studies on the nucleate boiling CHF of nanofluids have been conducted. The purpose of this article is to provide an exhaustive review of these studies. The characteristics of CHF enhancement in nanofluids are systemically presented according to the effects of the primary boiling parameters. Research efforts to identify the effects of nanoparticles underlying irregular enhancement phenomena of CHF in nanofluids are then presented. Also, attempts to explain the physical mechanism based on available CHF theories are described. Finally, future research needs are identified.

  20. Harnessing the agricultural critical zone for climate change mitigation through enhanced rock weathering with croplands

    NASA Astrophysics Data System (ADS)

    Beerling, D. J.; Taylor, L.; Banwart, S. A.; Kantzas, E. P.; Kelland, M.; Leake, J.; Lomas, M.; Mueller, C.; Hodson, M.; Ridgwell, A.; Quegan, S.

    2016-12-01

    In an agricultural context, enhanced rock weathering resulting from the application of crushed silicates to soils is driven by climate and photosynthate energy exported by crops below ground to roots and their associated mycorrhizal partners. Detailed mechanisms involved are increasingly well resolved for natural soils but not for agriculturally managed soils supplemented with crushed silicates. Assessment of the potential of the approach is made first with controlled environment studies using the mycorrhizal C4 crop sorghum grown in agricultural soil with and without the addition of crushed basalt. We then extend these findings with simulations capturing regional-to-global rates of enhanced basalt weathering by root system-microbial processes for the major crop functional types. Resulting global carbon cycle simulations indicate significant capacity for sequestering anthropogenic CO2 emissions through manipulating the agricultural critical zone in this way with multiple co-benefits, including remediating acidic soils, fertilization of crop production and crop protection from herbivores and biotrophs.

  1. Rapid doubling of the critical current of YBa2Cu3O7-δ coated conductors for viable high-speed industrial processing

    DOE PAGES

    Leroux, M.; Kihlstrom, K. J.; Holleis, S.; ...

    2015-11-09

    Here, we demonstrate that 3.5-MeV oxygen irradiation can markedly enhance the in-field critical current of commercial second generation superconducting tapes with an exposure time of just 1 s per 0.8 cm2. Furthermore we demonstrate how speed is now at the level required for an industrial reel-to-reel post-processing. The irradiation is made on production line samples through the protective silver coating and does not require any modification of the growth process. From TEM imaging, we identify small clusters as the main source of increased vortex pinning.

  2. Space-charge-limited currents for cathodes with electric field enhanced geometry

    NASA Astrophysics Data System (ADS)

    Lai, Dingguo; Qiu, Mengtong; Xu, Qifu; Huang, Zhongliang

    2016-08-01

    This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that the space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(βE)2J0, where J0 is the classical (1D) Child-Langmuir current density, βE is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.

  3. Space-charge-limited currents for cathodes with electric field enhanced geometry

    SciTech Connect

    Lai, Dingguo Qiu, Mengtong; Xu, Qifu; Huang, Zhongliang

    2016-08-15

    This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that the space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.

  4. Prevention-enhancing interactions: a Critical Interpretive Synthesis of the evidence about children who sexually abuse other children.

    PubMed

    McKibbin, Gemma; Humphreys, Cathy; Hamilton, Bridget

    2016-11-01

    There is a growing interest in English-speaking jurisdictions, including Australia, North America, Canada, the United Kingdom and New Zealand, about the prevention of sexual abuse perpetrated by children against other children. The aim of this review was to identify opportunities for research, policy and practice which could enhance the prevention agenda relating to the perpetration of sexual abuse by children through conducting a Critical Interpretive Synthesis. Eleven electronic databases were searched in the period from 22 April to 23 May 2013 and included: SocINDEX, Social Services Abstracts, Applied Social Sciences Index and Abstracts, Family and Society Studies Worldwide, Project Muse, PsychINFO, Family and Society Plus, Jstor, Expanded Academic ASAP, Web of Science and Google Scholar. Key individual journals were also searched, including Child Abuse and Neglect and the Journal of Interpersonal Violence, as well as the grey literature. The search was guided by the research question: How could the prevention agenda relating to sexual abuse perpetrated by children be enhanced? The systematic literature search yielded 3323 titles, and 34 of these papers were included in the final synthesis. The authors identified five domains operating in the evidence base: characteristics, causes, communications, interventions and treatments. A synthesising construct emerged from the review: prevention-enhancing interactions. This construct referred to the potential for enhancing the prevention agenda which exists as the evidence domains interact with one another, and with the public health model of prevention. The authors consider this review to be a timely contribution to the current agenda pertaining to sexual abuse perpetrated by children. It provides researchers, policy makers and practitioners in the field with an evidence-informed conceptualisation of opportunities for enhancing prevention work.

  5. Enhancement of resistive switching under confined current path distribution enabled by insertion of atomically thin defective monolayer graphene.

    PubMed

    Lee, Keundong; Hwang, Inrok; Lee, Sangik; Oh, Sungtaek; Lee, Dukhyun; Kim, Cheol Kyeom; Nam, Yoonseung; Hong, Sahwan; Yoon, Chansoo; Morgan, Robert B; Kim, Hakseong; Seo, Sunae; Seo, David H; Lee, Sangwook; Park, Bae Ho

    2015-07-10

    Resistive random access memory (ReRAM) devices have been extensively investigated resulting in significant enhancement of switching properties. However fluctuations in switching parameters are still critical weak points which cause serious failures during 'reading' and 'writing' operations of ReRAM devices. It is believed that such fluctuations may be originated by random creation and rupture of conducting filaments inside ReRAM oxides. Here, we introduce defective monolayer graphene between an oxide film and an electrode to induce confined current path distribution inside the oxide film, and thus control the creation and rupture of conducting filaments. The ReRAM device with an atomically thin interlayer of defective monolayer graphene reveals much reduced fluctuations in switching parameters compared to a conventional one. Our results demonstrate that defective monolayer graphene paves the way to reliable ReRAM devices operating under confined current path distribution.

  6. Enhancement of resistive switching under confined current path distribution enabled by insertion of atomically thin defective monolayer graphene

    PubMed Central

    Lee, Keundong; Hwang, Inrok; Lee, Sangik; Oh, Sungtaek; Lee, Dukhyun; Kim, Cheol Kyeom; Nam, Yoonseung; Hong, Sahwan; Yoon, Chansoo; Morgan, Robert B.; Kim, Hakseong; Seo, Sunae; Seo, David H.; Lee, Sangwook; Park, Bae Ho

    2015-01-01

    Resistive random access memory (ReRAM) devices have been extensively investigated resulting in significant enhancement of switching properties. However fluctuations in switching parameters are still critical weak points which cause serious failures during ‘reading’ and ‘writing’ operations of ReRAM devices. It is believed that such fluctuations may be originated by random creation and rupture of conducting filaments inside ReRAM oxides. Here, we introduce defective monolayer graphene between an oxide film and an electrode to induce confined current path distribution inside the oxide film, and thus control the creation and rupture of conducting filaments. The ReRAM device with an atomically thin interlayer of defective monolayer graphene reveals much reduced fluctuations in switching parameters compared to a conventional one. Our results demonstrate that defective monolayer graphene paves the way to reliable ReRAM devices operating under confined current path distribution. PMID:26161992

  7. Accuracy of Subcutaneous Continuous Glucose Monitoring in Critically Ill Adults: Improved Sensor Performance with Enhanced Calibrations

    PubMed Central

    Leelarathna, Lalantha; English, Shane W.; Thabit, Hood; Caldwell, Karen; Allen, Janet M.; Kumareswaran, Kavita; Wilinska, Malgorzata E.; Nodale, Marianna; Haidar, Ahmad; Evans, Mark L.; Burnstein, Rowan

    2014-01-01

    Abstract Objective: Accurate real-time continuous glucose measurements may improve glucose control in the critical care unit. We evaluated the accuracy of the FreeStyle® Navigator® (Abbott Diabetes Care, Alameda, CA) subcutaneous continuous glucose monitoring (CGM) device in critically ill adults using two methods of calibration. Subjects and Methods: In a randomized trial, paired CGM and reference glucose (hourly arterial blood glucose [ABG]) were collected over a 48-h period from 24 adults with critical illness (mean±SD age, 60±14 years; mean±SD body mass index, 29.6±9.3 kg/m2; mean±SD Acute Physiology and Chronic Health Evaluation score, 12±4 [range, 6–19]) and hyperglycemia. In 12 subjects, the CGM device was calibrated at variable intervals of 1–6 h using ABG. In the other 12 subjects, the sensor was calibrated according to the manufacturer's instructions (1, 2, 10, and 24 h) using arterial blood and the built-in point-of-care glucometer. Results: In total, 1,060 CGM–ABG pairs were analyzed over the glucose range from 4.3 to 18.8 mmol/L. Using enhanced calibration median (interquartile range) every 169 (122–213) min, the absolute relative deviation was lower (7.0% [3.5, 13.0] vs. 12.8% [6.3, 21.8], P<0.001), and the percentage of points in the Clarke error grid Zone A was higher (87.8% vs. 70.2%). Conclusions: Accuracy of the Navigator CGM device during critical illness was comparable to that observed in non–critical care settings. Further significant improvements in accuracy may be obtained by frequent calibrations with ABG measurements. PMID:24180327

  8. Experimental investigation and mechanism of critical heat flux enhancement in pool boiling heat transfer with nanofluids

    NASA Astrophysics Data System (ADS)

    Kamatchi, R.; Venkatachalapathy, S.; Nithya, C.

    2016-11-01

    In the present study, reduced graphene oxide (rGO) is synthesized from graphite using modified Hummer and chemical reduction methods. Various characterizations techniques are carried out to study the in-plane crystallite size, number of layers, presence of functional groups and surface morphology. Different concentrations of 0.01, 0.1, and 0.3 g/l of rGO/water nanofluids are prepared by dispersing the flakes in DI water. The colloidal stability of 0.3 g/l concentration is measured after 5 days using Zetasizer and found to be stable. The rGO/water nanofluids are then used to study the effect on the enhancement of critical heat flux (CHF) in pool boiling heat transfer. Results indicate an enhancement in CHF ranging from 145 to 245 % for the tested concentrations. The mechanisms of CHF enhancement are analyzed based on surface wettability, surface roughness, and porous layer thickness. The macrolayer dryout model sufficiently supports the mechanism of CHF enhancement of thin wire with rGO deposits, which is not reported yet.

  9. A critical review of engineered nanomaterial release data: Are current data useful for material flow modeling?

    PubMed

    Caballero-Guzman, Alejandro; Nowack, Bernd

    2016-06-01

    Material flow analysis (MFA) is a useful tool to predict the flows of engineered nanomaterials (ENM) to the environment. The quantification of release factors is a crucial part of MFA modeling. In the last years an increasing amount of literature on release of ENM from materials and products has been published. The purpose of this review is to analyze the strategies implemented by MFA models to include these release data, in particular to derive transfer coefficients (TC). Our scope was focused on those articles that analyzed the release from applications readily available in the market in settings that resemble average use conditions. Current MFA studies rely to a large extent on extrapolations, authors' assumptions, expert opinions and other informal sources of data to parameterize the models. We were able to qualitatively assess the following aspects of the release literature: (i) the initial characterization of ENM provided, (ii) quantitative information on the mass of ENM released and its characterization, (iii) description of transformation reactions and (iv) assessment of the factors determining release. Although the literature on ENM release is growing, coverage of exposure scenarios is still limited; only 20% of the ENMs used industrially and 36% of the product categories involved have been investigated in release studies and only few relevant release scenarios have been described. Furthermore, the information provided is rather incomplete concerning descriptions and characterizations of ENMs and the released materials. Our results show that both the development of methods to define the TCs and of protocols to enhance assessment of ENM release from nano-applications will contribute to increase the exploitability of the data provided for MFA models. The suggestions we provide in this article will likely contribute to an improved exposure modeling by providing ENM release estimates closer to reality.

  10. Reduction of critical current in magnetic tunnel junctions with CoFeB/Ru/CoFeB synthetic free layer

    NASA Astrophysics Data System (ADS)

    Zaleski, A.; Skowronski, W.; Czapkiewicz, M.; Kanak, J.; Stobiecki, T.; Macedo, R.; Cardoso, S.; Freitas, P. P.

    2010-01-01

    Reduction of the critical current density (Jc) in magnetic tunnel junctions (MTJs) can be achieved by replacing the standard Co40Fe40B20 free layer with a synthetic antiferromagnet. Patterned MTJs prepared by ion-beam assisted deposition (nanopillars, sizes down to 60 nm × 80 nm) with 2 nm CoFeB free layer and Co40Fe40B20/Ru (tRu)/ Co40Fe40B20 as a synthetic free layer (SyF) were studied. We have measured critical current density of CIMS in thermally activated switching regime (long current pulses). Values of switching current densities for standard MTJs with SyF were of the order 106 A/cm2, whilst MTJs with standard free layer demonstrated up to four times higher values of Jc.

  11. Biodiesel production from soybean oil deodorizer distillate enhanced by counter-current pulsed ultrasound.

    PubMed

    Yin, Xiulian; You, Qinghong; Ma, Haile; Dai, Chunhua; Zhang, Henan; Li, Kexin; Li, Yunliang

    2015-03-01

    Biodiesel production from soybean oil deodorizer distillate enhanced by counter-current pulsed ultrasound was studied. Effect of static probe ultrasonic enhanced transesterification (SPUE) and counter-current probe ultrasonic enhanced transesterification (CCPUE) on the biodiesel conversion were compared. The results indicated that CCPUE was a better method for enhancing transesterification. The working conditions of CCPUE were studied by single-factor experiment design and the results showed that the optimal conditions were: initial temperature 25 °C, methanol to triglyceride molar ratio 10:1, flow rate 200 mL/min, catalyst content 1.8%, ultrasound working on-time 4 s, off-time 2 s, total working time 50 min. Under these conditions, the average biodiesel conversion of three experiments was 96.1%. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Spin vortices in cuprates: Magnetic excitations, optical conductivity, enhanced Nernst signal, and a persistent current generation

    NASA Astrophysics Data System (ADS)

    Koizumi, Hiroyasu

    2010-12-01

    When spin vortices are present, loop currents arise around them. These loop currents are germs of a macroscopic current, i.e., a macroscopic current is created as a collection of them, and eventually form a persistent current at temperatures below T. We argue that this is what happening in the underdoped cuprates. The hourglass-shaped magnetic excitation spectrum observed in cuprates is considered as evidence of the presence of spin vortices; the Drude-like peak in the optical conductivity is also explained as arising from spin-wave excitations in the presence of spin vortices. The observed enhanced Nernst signals and magnetization in the psudogap phase is explained due to the flow of the loop currents. If we calculate T in the underdoped sample as the temperature where the coherence establishes among the loop currents, the doping concentration dependence of it is given by T=T0lnxx0, which is shown to agree well with experiments.

  13. Enhanced D-T supershot performance at high current using extensive lithium conditioning in TFTR

    SciTech Connect

    Mansfield, D.K.; Strachan, J.D.; Bell, M.G.; Scott, S.D.; Budny, R.; Bell, R.E.; Bitter, M.; Darrow, D.S.; Fredrickson, E.; Grek, B.

    1995-05-01

    A substantial improvement in supershot fusion plasma performance has been realized by combining the enhanced confinement due to tritium fueling with the enhanced confinement due to extensive Li conditioning of the TFTR limiter. This combination has resulted in not only significantly higher global energy confinement times than had previously been obtained in high current supershots, but also the highest ratio of central fusion output power to input power observed to date.

  14. Critical thinking, nurse education and universities: some thoughts on current issues and implications for nursing practice.

    PubMed

    Morrall, Peter; Goodman, Benny

    2013-09-01

    When in the latter part of the 20th century nurse 'training' in the UK left the old schools of nursing (based within the health delivery system) and entered universities, the promise was not just a change of focus from training to education but an embracement of 'higher' education. Specifically, nurses were to be exposed to the demands of thinking rather than just doing - and critical thinking at that. However, despite a history of critical perspectives informing nursing theory, that promise may be turning sour. The insidious saturation of the university system in bureaucracy and managerialism has, we argue, undermined critical thinking. A major funding restructuring of higher education in the UK, coinciding with public concern about the state of nursing practice, is undermining further the viability of critical thinking in nursing and potentially the acceptability of university education for nurses. Nevertheless, while critical thinking in universities has decayed, there is no obvious educational alternative that can provide this core attribute, one that is even more necessary to understand health and promote competent nursing practice in an increasingly complex and globalising world. We propose that nurse academics and their colleagues from many other academic and professional disciplines engage in collegiate 'moral action' to re-establish critical thinking in UK universities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Criticality-Enhanced Magnetocaloric Effect in Quantum Spin Chain Material Copper Nitrate

    NASA Astrophysics Data System (ADS)

    Xiang, Jun-Sen; Chen, Cong; Li, Wei; Sheng, Xian-Lei; Su, Na; Cheng, Zhao-Hua; Chen, Qiang; Chen, Zi-Yu

    2017-03-01

    In this work, a systematic study of Cu(NO3)2·2.5 H2O (copper nitrate hemipentahydrate, CN), an alternating Heisenberg antiferromagnetic chain model material, is performed with multi-technique approach including thermal tensor network (TTN) simulations, first-principles calculations, as well as magnetization measurements. Employing a cutting-edge TTN method developed in the present work, we verify the couplings J = 5.13 K, α = 0.23(1) and Landé factors g∥= 2.31, g⊥ = 2.14 in CN, with which the magnetothermal properties have been fitted strikingly well. Based on first-principles calculations, we reveal explicitly the spin chain scenario in CN by displaying the calculated electron density distributions, from which the distinct superexchange paths are visualized. On top of that, we investigated the magnetocaloric effect (MCE) in CN by calculating its isentropes and magnetic Grüneisen parameter. Prominent quantum criticality-enhanced MCE was uncovered near both critical fields of intermediate strengths as 2.87 and 4.08 T, respectively. We propose that CN is potentially a very promising quantum critical coolant.

  16. Criticality-Enhanced Magnetocaloric Effect in Quantum Spin Chain Material Copper Nitrate

    PubMed Central

    Xiang, Jun-Sen; Chen, Cong; Li, Wei; Sheng, Xian-Lei; Su, Na; Cheng, Zhao-Hua; Chen, Qiang; Chen, Zi-Yu

    2017-01-01

    In this work, a systematic study of Cu(NO3)2·2.5 H2O (copper nitrate hemipentahydrate, CN), an alternating Heisenberg antiferromagnetic chain model material, is performed with multi-technique approach including thermal tensor network (TTN) simulations, first-principles calculations, as well as magnetization measurements. Employing a cutting-edge TTN method developed in the present work, we verify the couplings J = 5.13 K, α = 0.23(1) and Landé factors g∥= 2.31, g⊥ = 2.14 in CN, with which the magnetothermal properties have been fitted strikingly well. Based on first-principles calculations, we reveal explicitly the spin chain scenario in CN by displaying the calculated electron density distributions, from which the distinct superexchange paths are visualized. On top of that, we investigated the magnetocaloric effect (MCE) in CN by calculating its isentropes and magnetic Grüneisen parameter. Prominent quantum criticality-enhanced MCE was uncovered near both critical fields of intermediate strengths as 2.87 and 4.08 T, respectively. We propose that CN is potentially a very promising quantum critical coolant. PMID:28294147

  17. Criticality-Enhanced Magnetocaloric Effect in Quantum Spin Chain Material Copper Nitrate.

    PubMed

    Xiang, Jun-Sen; Chen, Cong; Li, Wei; Sheng, Xian-Lei; Su, Na; Cheng, Zhao-Hua; Chen, Qiang; Chen, Zi-Yu

    2017-03-15

    In this work, a systematic study of Cu(NO3)2·2.5 H2O (copper nitrate hemipentahydrate, CN), an alternating Heisenberg antiferromagnetic chain model material, is performed with multi-technique approach including thermal tensor network (TTN) simulations, first-principles calculations, as well as magnetization measurements. Employing a cutting-edge TTN method developed in the present work, we verify the couplings J = 5.13 K, α = 0.23(1) and Landé factors g∥= 2.31, g⊥ = 2.14 in CN, with which the magnetothermal properties have been fitted strikingly well. Based on first-principles calculations, we reveal explicitly the spin chain scenario in CN by displaying the calculated electron density distributions, from which the distinct superexchange paths are visualized. On top of that, we investigated the magnetocaloric effect (MCE) in CN by calculating its isentropes and magnetic Grüneisen parameter. Prominent quantum criticality-enhanced MCE was uncovered near both critical fields of intermediate strengths as 2.87 and 4.08 T, respectively. We propose that CN is potentially a very promising quantum critical coolant.

  18. Critical current density and vortex pinning in tetragonal FeS1₋xSex (x=0,0.06)

    DOE PAGES

    Wang, Aifeng; Wu, Lijun; Ivanovski, V. N.; ...

    2016-09-07

    Here we report critical current density (Jc) in tetragonal FeS single crystals, similar to iron-based superconductors with much higher superconducting critical temperatures (Tc). The Jc is enhanced three times by 6% Se doping. We observe scaling of the normalized vortex pinning force as a function of reduced field at all temperatures. Vortex pinning in FeS and FeS0.94Se0.06 shows contribution of core-normal surfacelike pinning. Lastly, reduced temperature dependence of Jc indicates that dominant interaction of vortex cores and pinning centers is via scattering of charge carriers with reduced mean free path (δl), in contrast to KxFe2₋ySe2 where spatial variations in Tcmore » (δTc) prevails.« less

  19. Giant increase in critical current density of KxFe2-ySe₂ single crystals

    SciTech Connect

    Lei, Hechang; Petrovic, C.

    2011-12-28

    The critical current density Jabc of KxFe2-ySe₂ single crystals can be enhanced by more than one order of magnitude, up to ~2.1×10⁴ A/cm² by the post annealing and quenching technique. A scaling analysis reveals the universal behavior of the normalized pinning force as a function of the reduced field for all temperatures, indicating the presence of a single vortex pinning mechanism. The main pinning sources are three-dimensional (3D) point-like normal cores. The dominant vortex interaction with pinning centers is via spatial variations in critical temperature Tc (“δTc pinning”).

  20. Magnetization behavior and critical current density along the c-axis in melt-grown YBCO fiber crystal

    NASA Astrophysics Data System (ADS)

    Ishii, H.; Hara, T.; Hirano, S.; Figueredo, A. M.; Cima, M. J.

    1994-05-01

    The magnetic-hysteresis behavior of single-crystal YBCO fibers was investigated below 1 T and in the temperature range 40 to 88 K. The sample was prepared by the laser-heated floating zone method. The magnetization curves exhibited a fairly large asymmetry with respect to the field axis, especially at elevated temperatures. This behavior may be attributed to the surface Meissner current contribution. It was demonstrated for the temperature range examined that the magnetic hysteresis width, Δ M, versus external-field curves were well described by assuming that the critical current density in the c-axis direction Jcc obeys the critical-state model of the form Jc( B)= JcO[1+( B/ B0) n]-1. Then, in turn, the field dependence of the critical current density along the c-axis at field temperatures was deduced using parameters obtained by fitting the Δ M vs. field curves. It was shown that the critical current density in the direction of the c-axis in our sample was over 10 4 A/cm 2 at 77.3 K below 0.3 T. The field and temperature variations of Jcc were discussed in relation to the previous studies on some melt-processed YBCO.

  1. Large transport critical currents in dense Fe- and Ni-clad MgB2 superconducting tapes

    NASA Astrophysics Data System (ADS)

    Suo, HongLi; Beneduce, Concetta; Dhallé, Marc; Musolino, Nicolas; Genoud, Jean-Yves; Flükiger, René

    2001-11-01

    We report on the preparation of dense monofilamentary MgB2/Ni and MgB2/Fe tapes with high critical current densities. In annealed MgB2/Ni tapes, we obtained transport critical current densities as high as 2.3×105A/cm2 at 4.2 K and 1.5 T, and for MgB2/Fe tapes 104A/cm2 at 4.2 K and 6.5 T. An extrapolation to zero field of the MgB2/Fe data gives a critical current value of ˜1 MA/cm2, corresponding to a critical current value well above 1000 A. The high jc values obtained after annealing are a consequence of sintering densification and grain reconnection. Fe does not react with MgB2 and is thus an excellent sheath material candidate for tapes with self-field jc values at 4.2 K in excess of 1 MA/cm2.

  2. Temperature-dependent roles of inter- and intragrain current systems on the critical current and magnetization of BSCCO-2223/Ag tapes

    NASA Astrophysics Data System (ADS)

    Paasi, Jaakko; Kottman, Peter; Polák, Milan

    1995-02-01

    In this study we examine the role of inter- and intragrain current systems on the temperature-dependent critical current and magnetization of BSCCO-2223/Ag tapes. Experiments were done by measuring the sample magnetization field with movable miniature Hall sensors. We found that both systems have their own irreversible characteristics. The overall level of the intergrain (transport) critical current density, Jc, was limited at both lower (<30 K) and higher temperatures (30-95 K) by intergranular flux pinning, which seemed to be related to the maximum Josephson current of the weak links. Furthermore, we found that the irreversible intragranular magnetization has an influence on the magnetic field dependence of the intergrain Jc: when the intragrain pinning is strong (as at lower temperatures), the reduction of Jc in magnetic fields is moderate, and, when it is weaker (at higher temperatures), the decrease of Jc in fields is strong. This is a consequence of the field dependence of the maximum Josephson current density of the weak links, when the adjacent superconducting grains are in the mixed state.

  3. Enhancing Students' Critical Thinking in Science: A Two-Year Design Based Exploration in a Large Undergraduate Science Course

    ERIC Educational Resources Information Center

    Yoo, Suhyun

    2011-01-01

    The purpose of this study was to explore how to enhance students' critical thinking in an introductory undergraduate science course. As a design experiment, this study aimed to design, develop, implement, and refine learning activities, and investigate how the learning activities worked in fostering students' critical thinking in a large size…

  4. Critical Thinking Skills and Academic Maturity: Emerging Results from a Five-Year Quality Enhancement Plan (QEP) Study

    ERIC Educational Resources Information Center

    Toppin, Ian N.; Chitsonga, Shadreck

    2016-01-01

    The QEP that was implemented in this study focused on enhancing students' critical thinking skills. A pretest/posttest approach was used to assess students' critical thinking progress in freshman level core English and Math courses. An intervention was performed involving intensive instruction and assignments relating to a set of reasoning…

  5. Enhancing Students' Critical Thinking in Science: A Two-Year Design Based Exploration in a Large Undergraduate Science Course

    ERIC Educational Resources Information Center

    Yoo, Suhyun

    2011-01-01

    The purpose of this study was to explore how to enhance students' critical thinking in an introductory undergraduate science course. As a design experiment, this study aimed to design, develop, implement, and refine learning activities, and investigate how the learning activities worked in fostering students' critical thinking in a large size…

  6. Evaluation of critical current density and residual resistance ratio limits in powder in tube Nb3Sn conductors

    NASA Astrophysics Data System (ADS)

    Segal, Christopher; Tarantini, Chiara; Hawn Sung, Zu; Lee, Peter J.; Sailer, Bernd; Thoener, Manfred; Schlenga, Klaus; Ballarino, Amalia; Bottura, Luca; Bordini, Bernardo; Scheuerlein, Christian; Larbalestier, David C.

    2016-08-01

    High critical current density (J c) Nb3Sn A15 multifilamentary wires require a large volume fraction of small grain (SG), superconducting A15 phase, as well as Cu stabilizer with high Residual Resistance Ratio (RRR) to provide electromagnetic stabilization and protection. In powder-in-tube (PIT) wires the unreacted Nb7.5 wt%Ta outer layer of the tubular filaments acts as a diffusion barrier and protects the interfilamentary Cu stabilizer from Sn contamination. A high RRR requirement generally imposes a restricted A15 reaction heat treatment to prevent localized full reaction of the filament that could allow Sn to reach the Cu. In this study we investigate recent high quality PIT wires that achieve a J c (12 T, 4.2 K) up to ˜2500 A mm-2 and find that the minimum diffusion barrier thickness decreases as the filament aspect ratio increases from ˜1 in the inner rings of filaments to 1.3 in the outer filament rings. We found that just 2-3 diffusion barrier breaches can degrade RRR from 300 to 150 or less. Using progressive etching of the Cu we also found that the RRR degradation is localized near the external filaments where deformation is highest. Consequently minimizing filament distortion during strand fabrication is important for reducing RRR degradation. The additional challenge of developing the highest possible J c must be addressed by forming the maximum fraction of high J c SG A15 and minimizing low J c large-grain (LG) A15 morphologies. In one wire we found that 15% of the filaments had a significantly enhanced SG/LG A15 ratio and no residual A15 in the core, a feature that opens a path to substantial J c improvement.

  7. Evaluation of critical current density and residual resistance ratio limits in powder in tube Nb3Sn conductors

    DOE PAGES

    Segal, Christopher; Tarantini, Chiara; Sung, Zu Hawn; ...

    2016-06-10

    High critical current density (Jc) Nb3Sn A15 multifilamentary wires require a large volume fraction of small grain, superconducting A15 phase, as well as Cu stabilizer with high Residual Resistance Ratio (RRR) to provide electromagnetic stabilization and protection. In Powder-in-Tube (PIT) wires the unreacted Nb7.5wt.%Ta outer layer of the tubular filaments acts as a diffusion barrier and protects the interfilamentary Cu stabilizer from Sn contamination. A high RRR requirement generally imposes a restricted A15 reaction heat treatment (HT) to prevent localized full reaction of the filament that could allow Sn to reach the Cu. In this paper we investigate recent highmore » quality PIT wires that achieve a Jc(12 T, 4.2 K) up to ~2500 A/mm-2 and find that the minimum diffusion barrier thickness decreases as the filament aspect ratio increases from ~1 in the inner rings of filaments to 1.3 in the outer filament rings. We found that just 2-3 diffusion barrier breaches can degrade RRR from 300 to 150 or less. Using progressive etching of the Cu we also found that the RRR degradation is localized near the external filaments where deformation is highest. Consequently minimizing filament distortion during strand fabrication is important for reducing RRR degradation. The additional challenge of developing the highest possible Jc must be addressed by forming the maximum fraction of high Jc small-grain (SG) A15 and minimizing low Jc large-grain (LG) A15 morphologies. Finally, in one wire we found that 15% of the filaments had a significantly enhanced SG/LG A15 ratio and no residual A15 in the core, a feature that opens a path to substantial Jc improvement.« less

  8. The enhancement of edge turbulence in tokamaks by a limiter current

    SciTech Connect

    Nedospasov, A.V. )

    1993-09-01

    The results indicating that enhanced electrostatic potential fluctuations had been observed in the scrape-off layer, due to biasing, were published recently. The qualitative explanation of these experimental results as an effect of current owing to the flute instability with the dissipation into the sheath layer near the surfaces is presented in this paper. The possibility of controlling the edge turbulence by a limiter current is shown.

  9. Critical Concentration of Lecithin Enhances the Antimicrobial Activity of Eugenol against Escherichia coli.

    PubMed

    Zhang, Haoshu; Dudley, Edward G; Davidson, P Michael; Harte, Federico

    2017-04-15

    Lecithin is a natural emulsifier used in a wide range of food and nonfood applications to improve physical stability, with no known bioactive effects. In this study, the effect of lecithin on the antimicrobial performance of a constant eugenol concentration was tested against three Escherichia coli strains (C600, 0.1229, and O157:H7 strain ATCC 700728). This is the first study, to our knowledge, focusing on lecithin at concentrations below those commonly used in foods to improve the stability of oil in water emulsions (≤10 mg/100 ml). For all three cultures, significant synergistic antimicrobial effects were observed when E. coli cultures were exposed to a constant eugenol concentration (ranging from 0.043 to 0.050% [wt/wt]) together with critical lecithin concentrations ranging from 0.5 to 1 mg/100 ml. Increasing the concentration of lecithin above 1 mg/100 ml (up to 10 mg/100 ml lecithin) diminished the antibacterial effect to values similar to those with eugenol-only treatments. The formation of aggregates (<100 nm) at the critical lecithin concentration was observed using cryo-transmission electron microscopy (cryo-TEM), together with a reduction in light absorbance at 284 nm. At critically low concentrations of lecithin, the formation of nanoscale aggregates is responsible for improving eugenol antimicrobial effects.IMPORTANCE Essential oils (EOs) are effective natural antimicrobials. However, their hydrophobicity and strong aromatic character limit the use of essential oils in food systems. Emulsifiers (e.g., lecithin) increase the stability of EOs in water-based systems but fail to consistently improve antimicrobial effects. We demonstrate that lecithin, within a narrow critical concentration window, can enhance the antimicrobial properties of eugenol. This study highlights the potential bioactivity of lecithin when utilized to effectively control foodborne pathogens. Copyright © 2017 American Society for Microbiology.

  10. Superhydrophobic SAM Modified Electrodes for Enhanced Current Limiting Properties in Intrinsic Conducting Polymer Surge Protection Devices.

    PubMed

    Jabarullah, Noor H; Verrelli, Emanuele; Mauldin, Clayton; Navarro, Luis A; Golden, Josh H; Madianos, Leonidas M; Kemp, Neil T

    2015-06-09

    Surface interface engineering using superhydrophobic gold electrodes made with 1-dodecanethiol self-assembled monolayer (SAM) has been used to enhance the current limiting properties of novel surge protection devices based on the intrinsic conducting polymer, polyaniline doped with methanesulfonic acid. The resulting devices show significantly enhanced current limiting characteristics, including current saturation, foldback, and negative differential effects. We show how SAM modification changes the morphology of the polymer film directly adjacent to the electrodes, leading to the formation of an interfacial compact thin film that lowers the contact resistance at the Au-polymer interface. We attribute the enhanced current limiting properties of the devices to a combination of lower contact resistance and increased Joule heating within this interface region which during a current surge produces a current blocking resistive barrier due to a thermally induced dedoping effect caused by the rapid diffusion of moisture away from this region. The effect is exacerbated at higher applied voltages as the higher temperature leads to stronger depletion of charge carriers in this region, resulting in a negative differential resistance effect.

  11. Vortex creep and critical current densities in superconducting (Ba,K)Fe2As2 single crystals

    SciTech Connect

    Konczykowski, M.; van Der Beek, C.J.; Tanatar, Makariy A.; Luo, Huiqian; Wang, Zhaosheng; Shen, Bing; Wen, Hai Hu; Prozorov, Ruslan

    2012-07-13

    The surprisingly rapid relaxation of the sustainable current density in the critical state of single-crystalline Ba1−xKxFe2As2 is investigated for magnetic fields oriented parallel to the c axis and to the ab plane, respectively. Due to the inadequacy of standard analysis procedures developed for flux creep in the high-temperature superconducting cuprates, we develop a simple, straightforward data treatment technique that reveals the creep mechanism and the creep exponent μ. At low magnetic fields, below the second magnetization peak, μ varies only slightly as a function of temperature and magnetic flux density B. From the data, we determine the temperature and field dependencies of the effective activation barrier for creep. At low temperatures, the measured current density approaches the zero-temperature critical current density (in the absence of creep) to within a factor 2, thus lending credence to earlier conclusions drawn with respect to the pinning mechanism. The comparable values of the experimental screening current density and the zero-temperature critical current density reveal the limited usefulness of the widely used “interpolation formula.”

  12. Fabrication of high critical current density superconducting tapes by epitaxial deposition of YBCO thick films on biaxially textured metal substrates

    SciTech Connect

    Goyal, A.; Norton, D.P.; Paranthaman, M.

    1996-12-31

    High critical current density YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) tapes were fabricated by epitaxial deposition on rolling- assisted-biaxially-textured-substrates (RABiTS). The RABiTS technique uses well established, industrially scaleable, thermomechanical processes to impart a strong biaxial texture to a base metal. This is followed by vapor deposition of epitaxial buffer layers to yield chemically and structurally compatible surfaces. Epitaxial YBCO films grown on such substrates have critical current densities approaching 10{sup 6} A/cm{sup 2} at 77K in zero field and have field dependences similar to epitaxial films on single crystal ceramic substrates. Deposited conductors made using this technique offer a potential route for fabricating long lengths of high J{sub c} wire capable of carrying high currents in high magnetic fields and at elevated temperatures.

  13. Field-dependent critical state of high-Tc superconducting strip simultaneously exposed to transport current and perpendicular magnetic field

    SciTech Connect

    Xue, Cun; He, An; Yong, Huadong; Zhou, Youhe

    2013-12-15

    We present an exact analytical approach for arbitrary field-dependent critical state of high-T{sub c} superconducting strip with transport current. The sheet current and flux-density profiles are derived by solving the integral equations, which agree with experiments quite well. For small transport current, the approximate explicit expressions of sheet current, flux-density and penetration depth for the Kim model are derived based on the mean value theorem for integration. We also extend the results to the field-dependent critical state of superconducting strip in the simultaneous presence of applied field and transport current. The sheet current distributions calculated by the Kim model agree with experiments better than that by the Bean model. Moreover, the lines in the I{sub a}-B{sub a} plane for the Kim model are not monotonic, which is quite different from that the Bean model. The results reveal that the maximum transport current in thin superconducting strip will decrease with increasing applied field which vanishes for the Bean model. The results of this paper are useful to calculate ac susceptibility and ac loss.

  14. Longitudinal gradient coils with enhanced radial uniformity in restricted diameter: Single-current and multiple-current approaches.

    PubMed

    Romero, Javier A; Domínguez, Gabriela A; Anoardo, Esteban

    2017-03-01

    An important requirement for a gradient coil is that the uniformity of the generated magnetic field gradient should be maximal within the active volume of the coil. For a cylindrical geometry, the radial uniformity of the gradient turns critic, particularly in cases where the gradient-unit has to be designed to fit into the inner bore of a compact magnet of reduced dimensions, like those typically used in fast-field-cycling NMR. In this paper we present two practical solutions aimed to fulfill this requirement. We propose a matrix-inversion optimization algorithm based on the Biot-Savart law, that using a proper cost function, allows maximizing the uniformity of the gradient and power efficiency. The used methodology and the simulation code were validated in a single-current design, by comparing the computer simulated field map with the experimental data measured in a real prototype. After comparing the obtained results with the target field approach, a multiple-element coil driven by independent current sources is discussed, and a real prototype evaluated. Opposed equispaced independent windings are connected in pairs conforming an arrangement of independent anti-Helmholtz units. This last coil seizes 80% of its radial dimension with a gradient uniformity better than 5%. The design also provides an adaptable region of uniformity along with adjustable coil efficiency.

  15. Longitudinal gradient coils with enhanced radial uniformity in restricted diameter: Single-current and multiple-current approaches

    NASA Astrophysics Data System (ADS)

    Romero, Javier A.; Domínguez, Gabriela A.; Anoardo, Esteban

    2017-03-01

    An important requirement for a gradient coil is that the uniformity of the generated magnetic field gradient should be maximal within the active volume of the coil. For a cylindrical geometry, the radial uniformity of the gradient turns critic, particularly in cases where the gradient-unit has to be designed to fit into the inner bore of a compact magnet of reduced dimensions, like those typically used in fast-field-cycling NMR. In this paper we present two practical solutions aimed to fulfill this requirement. We propose a matrix-inversion optimization algorithm based on the Biot-Savart law, that using a proper cost function, allows maximizing the uniformity of the gradient and power efficiency. The used methodology and the simulation code were validated in a single-current design, by comparing the computer simulated field map with the experimental data measured in a real prototype. After comparing the obtained results with the target field approach, a multiple-element coil driven by independent current sources is discussed, and a real prototype evaluated. Opposed equispaced independent windings are connected in pairs conforming an arrangement of independent anti-Helmholtz units. This last coil seizes 80% of its radial dimension with a gradient uniformity better than 5%. The design also provides an adaptable region of uniformity along with adjustable coil efficiency.

  16. Using Current Events to Enhance Learning: A Social Work Curricular Case Example

    ERIC Educational Resources Information Center

    Grise-Owens, Erlene; Cambron, Shannon; Valade, Rita

    2010-01-01

    Effective social work education that promotes social justice requires expanded curricular models and creative pedagogical approaches. This article presents a curricular case study demonstrating the use of current events to enhance both implicit and explicit curricula. How the cultural crisis of Hurricane Katrina was used to engender transformative…

  17. [Neuroethics of pharmaceutical cognitive enhancement: the first ten years: current problems and practical guiding principles].

    PubMed

    Metzinger, T K

    2012-01-01

    An evaluating survey of the development of the neuroethics of pharmaceutical cognitive enhancement (PCE) during the last decade, focussing on the situation in Germany, has been undertaken. This article presents the most important conceptual problems, current substances and central ethical and legal issues. Very first guidelines and recommendations for policy-makers are formulated at the end of the text.

  18. Using Current Events to Enhance Learning: A Social Work Curricular Case Example

    ERIC Educational Resources Information Center

    Grise-Owens, Erlene; Cambron, Shannon; Valade, Rita

    2010-01-01

    Effective social work education that promotes social justice requires expanded curricular models and creative pedagogical approaches. This article presents a curricular case study demonstrating the use of current events to enhance both implicit and explicit curricula. How the cultural crisis of Hurricane Katrina was used to engender transformative…

  19. Persistent currents in interacting Aharonov-Bohm interferometers and their enhancement by acoustic radiation.

    PubMed

    Entin-Wohlman, O; Imry, Y; Aharony, A

    2003-07-25

    We consider an Aharonov-Bohm interferometer, connected to two electronic reservoirs, with a quantum dot embedded on one of its arms. We find a general expression for the persistent current at steady state, valid for the case where the electronic system is free of interactions except on the dot. The result is used to derive the modification in the persistent current brought about by coupling the quantum dot to a phonon source. The magnitude of the persistent current is found to be enhanced in an appropriate range of the intensity of the acoustic source.

  20. Postharvest intervention technologies for safety enhancement of meat and meat based products; a critical review.

    PubMed

    Sohaib, Muhammad; Anjum, Faqir Muhammad; Arshad, Muhammad Sajid; Rahman, Ubaid Ur

    2016-01-01

    Globally, the demand for safe, healthy and nutritious meat and allied products possesses improved taste with extended shelf life is mounting. Microbial safety is among the imperative challenges that prevails in meat products because they provide an ideal medium for the growth of microorganisms particularly pathogenic bacteria. The incidence of these microbes can result quality deterioration of products leading towards food borne diseases when consumed by peoples. Several preservation technologies like chemical and biological interventions are effective to retard or inactivate the growth of micro-organisms most commonly related to food-borne diseases. Despite these, innovative approaches like hydrostatic pressure processing, active packaging, pulse electric field, hurdle approach and use of natural antimicrobials can be deployed to enhance the safety of meat and meat products. The objective of review is to describe the current approaches and developing technologies for enhancing safety of meat and allied meat products.

  1. Posttetanic potentiation critically depends on an enhanced Ca2+ sensitivity of vesicle fusion mediated by presynaptic PKC

    PubMed Central

    Korogod, Natalya; Lou, Xuelin; Schneggenburger, Ralf

    2007-01-01

    Activity-dependent enhancement of transmitter release is a common form of presynaptic plasticity, but the underlying signaling mechanisms have remained largely unknown, perhaps because of the inaccessibility of most CNS nerve terminals. Here we investigated the signaling steps that underlie posttetanic potentiation (PTP), a form of presynaptic plasticity found at many CNS synapses. Direct whole-cell recordings from the large calyx of Held nerve terminals with the perforated patch-clamp technique showed that PTP was not mediated by changes in the presynaptic action potential waveform. Ca2+ imaging revealed a slight increase of the presynaptic Ca2+ transient during PTP (≈15%), which, however, was too small to explain a large part of PTP. The presynaptic PKC pathway was critically involved in PTP because (i) PTP was occluded by activation of PKC with phorbol esters, and (ii) PTP was largely (by approximately two-thirds) blocked by the PKC inhibitors, Ro31-8220 or bisindolylmaleimide. Activation of PKC during PTP most likely acts directly on the presynaptic release machinery, because in presynaptic Ca2+ uncaging experiments, activation of PKC by phorbol ester greatly increased the Ca2+ sensitivity of vesicle fusion in a Ro31-8220-sensitive manner (≈300% with small Ca2+ uncaging stimuli), but only slightly increased presynaptic voltage-gated Ca2+ currents (≈15%). We conclude that a PKC-dependent increase in the Ca2+ sensitivity of vesicle fusion is a key step in the enhancement of transmitter release during PTP. PMID:17884983

  2. Connecting to Collections in Florida: Current Conditions and Critical Needs in Libraries, Archives, and Museums

    ERIC Educational Resources Information Center

    Jorgensen, Corinne; Marty, Paul F.; Braun, Kathy

    2012-01-01

    This article presents results from an IMLS-funded project to evaluate the current state of collections in Florida's libraries, archives, and museums, current practices to preserve and conserve these collections, and perceived needs to maintain and improve these collections for future generations. The survey, modeled after the Heritage Health Index…

  3. Connecting to Collections in Florida: Current Conditions and Critical Needs in Libraries, Archives, and Museums

    ERIC Educational Resources Information Center

    Jorgensen, Corinne; Marty, Paul F.; Braun, Kathy

    2012-01-01

    This article presents results from an IMLS-funded project to evaluate the current state of collections in Florida's libraries, archives, and museums, current practices to preserve and conserve these collections, and perceived needs to maintain and improve these collections for future generations. The survey, modeled after the Heritage Health Index…

  4. Adenoviral transfer of HIF-1α enhances vascular responses to critical limb ischemia in diabetic mice

    PubMed Central

    Sarkar, Kakali; Fox-Talbot, Karen; Steenbergen, Charles; Bosch-Marcé, Marta; Semenza, Gregg L.

    2009-01-01

    Diabetes is a major risk factor for ischemic disease. Treatment options for diabetic patients with peripheral arterial disease when revascularization is not possible are limited, resulting in a high incidence of limb amputation. We evaluated the therapeutic potential of AdCA5, an adenovirus encoding a constitutively active form of HIF-1α, in a diabetic model of critical limb ischemia. Diabetic db/db and nondiabetic db/+ mice were subjected to unilateral femoral artery ligation. Limb perfusion, tissue viability, and motor function were more severely impaired in db/db mice. Intramuscular injection of AdCA5 into the ischemic limb of db/db mice increased the recovery of limb perfusion and function, reduced tissue necrosis, rescued the diabetes-associated impairment of circulating angiogenic cells, enhanced endothelial nitric oxide synthase activation, and increased vessel density and luminal area in the ischemic limb. PMID:19841279

  5. Combining Wikis and JiTT to enhance critical thinking abilities

    NASA Astrophysics Data System (ADS)

    Mohottala, Hashini

    2012-02-01

    I report the combine use of Just in Time Teaching (JiTT) and Wikispaces (Wikis) in introductory level, calculus based, physics classes. Over the years, JiTT had been effectively used in teaching physics and some uses on Wikis were also reported in the recent years.ootnotetextH. Mohottala The Physics Teacher -- September 2011 -- Vol. 49, Issue 6 Wiki helps students, instructors and technology to interact with one another and JiTT boosts the self-confidence of students to tackle physics problems. Thus, the combine use of Wiki-JiTT is going to be a new experience for both instructors and students. In this experiment, I used Wikis as a platform for JiTT, and conventional JiTT was slightly altered to best fit the combination and to focus on enhancing critical thinking abilities in my students.

  6. Enhanced Spin-Orbit Torque via Modulation of Spin Current Absorption

    NASA Astrophysics Data System (ADS)

    Qiu, Xuepeng; Legrand, William; He, Pan; Wu, Yang; Yu, Jiawei; Ramaswamy, Rajagopalan; Manchon, Aurelien; Yang, Hyunsoo

    2016-11-01

    The magnitude of spin-orbit torque (SOT), exerted to a ferromagnet (FM) from an adjacent heavy metal (HM), strongly depends on the amount of spin current absorbed in the FM. We exploit the large spin absorption at the Ru interface to manipulate the SOTs in HM /FM /Ru multilayers. While the FM thickness is smaller than its spin dephasing length of 1.2 nm, the top Ru layer largely boosts the absorption of spin currents into the FM layer and substantially enhances the strength of SOT acting on the FM. Spin-pumping experiments induced by ferromagnetic resonance support our conclusions that the observed increase in the SOT efficiency can be attributed to an enhancement of the spin-current absorption. A theoretical model that considers both reflected and transmitted mixing conductances at the two interfaces of FM is developed to explain the results.

  7. ON current enhancement of nanowire Schottky barrier tunnel field effect transistors

    NASA Astrophysics Data System (ADS)

    Takei, Kohei; Hashimoto, Shuichiro; Sun, Jing; Zhang, Xu; Asada, Shuhei; Xu, Taiyu; Matsukawa, Takashi; Masahara, Meishoku; Watanabe, Takanobu

    2016-04-01

    Silicon nanowire Schottky barrier tunnel field effect transistors (NW-SBTFETs) are promising structures for high performance devices. In this study, we fabricated NW-SBTFETs to investigate the effect of nanowire structure on the device characteristics. The NW-SBTFETs were operated with a backgate bias, and the experimental results demonstrate that the ON current density is enhanced by narrowing the width of the nanowire. We confirmed using the Fowler-Nordheim plot that the drain current in the ON state mainly comprises the quantum tunneling component through the Schottky barrier. Comparison with a technology computer aided design (TCAD) simulation revealed that the enhancement is attributed to the electric field concentration at the corners of cross-section of the NW. The study findings suggest an effective approach to securing the ON current by Schottky barrier width modulation.

  8. Compression enhancement by current stepping in a multicascade liner gas-puff Z-pinch plasma

    NASA Astrophysics Data System (ADS)

    Khattak, N. A. D.; Ahmad, Zahoor; Zakaullah, M.; Murtaza, G.

    2008-04-01

    Plasma dynamics of a liner consisting of two or three annular cascade gas-puffs with entrained axial magnetic field is studied using the modified snow-plow model. The current stepping technique (Les 1984 J. Phys. D: Appl. Phys. 17 733) is employed to enhance compression of the imploding plasma. A small-diameter low-voltage-driven system of imploding plasma is considered in order to work out the possibility of the highest gain, in terms of plasma parameters and radiation yield with a relatively simple and compact system. Our numerical results demonstrate that current stepping enhances the plasma compression, yielding high values of the plasma parameters and compressed magnetic field Bz (in magnitudes), if the switching time for the additional current is properly synchronized.

  9. Enhanced Spin-Orbit Torque via Modulation of Spin Current Absorption.

    PubMed

    Qiu, Xuepeng; Legrand, William; He, Pan; Wu, Yang; Yu, Jiawei; Ramaswamy, Rajagopalan; Manchon, Aurelien; Yang, Hyunsoo

    2016-11-18

    The magnitude of spin-orbit torque (SOT), exerted to a ferromagnet (FM) from an adjacent heavy metal (HM), strongly depends on the amount of spin current absorbed in the FM. We exploit the large spin absorption at the Ru interface to manipulate the SOTs in HM/FM/Ru multilayers. While the FM thickness is smaller than its spin dephasing length of 1.2 nm, the top Ru layer largely boosts the absorption of spin currents into the FM layer and substantially enhances the strength of SOT acting on the FM. Spin-pumping experiments induced by ferromagnetic resonance support our conclusions that the observed increase in the SOT efficiency can be attributed to an enhancement of the spin-current absorption. A theoretical model that considers both reflected and transmitted mixing conductances at the two interfaces of FM is developed to explain the results.

  10. Teacher development: a patchwork-text approach to enhancing critical reflection in veterinary and para-veterinary educators.

    PubMed

    Silva-Fletcher, Ayona; May, Hilary; Magnier, Kirsty M; May, Stephen A

    2014-01-01

    Reflection is an essential component of teacher-development programs, and reliable, valid methods to teach, assess, and evaluate reflection are critical. However, it is important that appropriate methods are created for and evaluated across multiple disciplinary backgrounds, as the participants' backgrounds are a major factor in the development of critical reflection. The patchwork-text approach is a narrative process that is predominantly focused on the personal development of the individual. The current study used the patchwork-text approach for the development of reflection in participants with a science background who had not used a reflective approach for personal development before. Twenty summative essays and 103 formative essays from 21 participants who underwent a 1-year higher-education teacher-development program were analyzed to assess whether the quality and quantity of reflective writing was enhanced through a regular, iterative process of reflective writing with feedback. The analysis of the essays involved the use of a predefined set of criteria for identifying the different reflective levels from 1 to 4 and the calculation of a reflective score to evaluate the overall development. The results show a clear improvement of higher-level critical thinking as the participants progressed through their course. Higher levels of reflection were achieved particularly where a unit focused on a familiar area for the participant as opposed to one in which the participant had less experience. The analysis provides evidence that the patchwork text is a useful method for development and evaluation of reflection in participants with a veterinary/animal-science base.

  11. Magnetospheric Current Response to Solar Wind Dynamic Pressure Enhancements during Strong Magnetic Storms

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Zesta, E.; Lyons, L. R.

    2007-12-01

    Recent studies have found that solar wind dynamic pressure enhancements can cause clear dawn-dusk asymmetric H perturbations in low-latitude ground magnetometers, particularly when the IMF Bz has been southward for some time before the compression occurs. The asymmetry consists of negative H perturbations on the dusk side and positive H perturbations on the dawn side, a response that is uncharacteristic of what is expected from a typical magnetospheric compression. This response was qualitatively interpreted as the result of the intensification of the existing partial ring current by the pressure enhancement. The assumption is that the intensified partial ring current creates the negative perturbations on the dusk side, overwhelming the effect of all other magnetospheric (Chapman-Ferraro and R1 and R2) currents. The present study quantitatively investigates the response of the different magnetospheric current systems to the solar wind dynamic pressure enhancements and their contribution to the ground H perturbations by combining modeling and observational results during two pressure enhancement events that occurred during strong magnetic storms of similar strength. The magnitude of the pressure in the two events is the differing factor. We used the Tsyganenko storm-time magnetic field models (TS05), which includes separate modules for each magnetospheric current system, to fit and model the ground perturbations that result form the compressions. We first modified the TS05 by adding the present state of dynamic pressure to the parameterization scheme of the R1 and R2 field-aligned current modules and to that of the symmetric and asymmetric ring currents. We then fit the model to the low- and mid-latitude ground magnetometer observations for each of the two selected magnetic compressions. For the pressure enhancement occurring during the main phase of the September 25, 1998 storm, the modeling results show that the primary contributor to the ground asymmetric H

  12. Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity

    PubMed Central

    Martins, Karen A.O.; Cooper, Christopher L.; Stronsky, Sabrina M.; Norris, Sarah L.W.; Kwilas, Steven A.; Steffens, Jesse T.; Benko, Jacqueline G.; van Tongeren, Sean A.; Bavari, Sina

    2015-01-01

    Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP) as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol), MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh) cell frequencies with each adjuvant's impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development. PMID:26870818

  13. Critical enhancement of thermopower in a chemically tuned polar semimetal MoTe2

    PubMed Central

    Sakai, Hideaki; Ikeura, Koji; Bahramy, Mohammad Saeed; Ogawa, Naoki; Hashizume, Daisuke; Fujioka, Jun; Tokura, Yoshinori; Ishiwata, Shintaro

    2016-01-01

    Ferroelectrics with spontaneous electric polarization play an essential role in today’s device engineering, such as capacitors and memories. Their physical properties are further enriched by suppressing the long-range polar order, as exemplified by quantum paraelectrics with giant piezoelectric and dielectric responses at low temperatures. Likewise in metals, a polar lattice distortion has been theoretically predicted to give rise to various unusual physical properties. However, to date, a “ferroelectric”-like transition in metals has seldom been controlled, and hence, its possible impacts on transport phenomena remain unexplored. We report the discovery of anomalous enhancement of thermopower near the critical region between the polar and nonpolar metallic phases in 1T′-Mo1−xNbxTe2 with a chemically tunable polar transition. It is unveiled from the first-principles calculations and magnetotransport measurements that charge transport with a strongly energy-dependent scattering rate critically evolves toward the boundary to the nonpolar phase, resulting in large cryogenic thermopower. Such a significant influence of the structural instability on transport phenomena might arise from the fluctuating or heterogeneous polar metallic states, which would pave a novel route to improving thermoelectric efficiency. PMID:27847874

  14. Microstructure refinement and enhanced critical current density in binary doped SmFeAsO superconductor

    NASA Astrophysics Data System (ADS)

    Anooja, J. B.; Aswathy, P. M.; Varghese, Neson; Aloysius, R. P.; Syamaprasad, U.

    2014-04-01

    The iron-pnictide Sm1-xCaxFeAsO1-2xF2x superconductor was prepared and the combined effect of electron and hole doping was studied in detail. It is observed that the binary doping using CaF2 improves the microstructure tremendously with a preferred orientation of the (00l) planes. Moreover, a maximum TC of 53.8 K and a transport JC of 880 A/cm2 (12 K), which is double to that of the F-doped sample, are achieved. The dopant CaF2 seems to be a potential candidate for solving the grain-connectivity concerns in iron-pnictides paving the way towards conductor development.

  15. Microstructure refinement and enhanced critical current density in binary doped SmFeAsO superconductor

    SciTech Connect

    Anooja, J. B.; Aswathy, P. M.; Varghese, Neson; Syamaprasad, U.; Aloysius, R. P.

    2014-04-24

    The iron-pnictide Sm{sub 1−x}Ca{sub x}FeAsO{sub 1−2x}F{sub 2x} superconductor was prepared and the combined effect of electron and hole doping was studied in detail. It is observed that the binary doping using CaF{sub 2} improves the microstructure tremendously with a preferred orientation of the (00l) planes. Moreover, a maximum T{sub C} of 53.8 K and a transport J{sub C} of 880 A/cm{sup 2} (12 K), which is double to that of the F-doped sample, are achieved. The dopant CaF{sub 2} seems to be a potential candidate for solving the grain-connectivity concerns in iron-pnictides paving the way towards conductor development.

  16. Transfusion in critical care - a UK regional audit of current practice.

    PubMed

    Plumb, J O M; Taylor, M G; Clissold, E; Grocott, M P W; Gill, R

    2017-02-18

    A consistent message within critical care publications has been that a restrictive transfusion strategy is non-inferior, and possibly superior, to a liberal strategy for stable, non-bleeding critically ill patients. Translation into clinical practice has, however, been slow. Here, we describe the degree of adherence to UK best practice guidelines in a regional network of nine intensive care units within Wessex. All transfusions given during a 2-month period were included (n = 444). Those given for active bleeding or within 24 h of major surgery, trauma or gastrointestinal bleeding were excluded (n = 148). The median (IQR [range]) haemoglobin concentration before transfusion was 73 (68-77 [53-106]) g.l(-1) , with only 34% of transfusion episodes using a transfusion threshold of < 70 g.l(-1) . In a subgroup analysis that did not study patients with a history of cardiac disease (n = 42), haemoglobin concentration before transfusion was 72 (68-77 [50-98]) g.l(-1) , with only 36% of transfusion episodes using a threshold of < 70 g.l(-1) (see Fig. 3). Most blood transfusions given to critically ill patients who were not bleeding in this audit used a haemoglobin threshold > 70 g.l(-1) . The reason why recommendations on transfusion triggers have not translated into clinical practice is unclear. With a clear national drive to decrease usage of blood products and clear evidence that a threshold of 70 g.l(-1) is non-inferior, it is surprising that a scarce and potentially dangerous resource is still being overused within critical care. Simple solutions such as electronic patient records that force pause for thought before blood transfusion, or prescriptions that only allow administration of a single unit in non-emergency circumstances may help to reduce the incidence of unnecessary blood transfusions.

  17. Comparison of AC losses, magnetic field/current distributions and critical currents of superconducting circular pancake coils and infinitely long stacks using coated conductors

    NASA Astrophysics Data System (ADS)

    Yuan, Weijia; Campbell, A. M.; Hong, Z.; Ainslie, M. D.; Coombs, T. A.

    2010-08-01

    A model is presented for calculating the AC losses, magnetic field/current density distribution and critical currents of a circular superconducting pancake coil. The assumption is that the magnetic flux lines will lie parallel to the wide faces of tapes in the unpenetrated area of the coil. Instead of using an infinitely long stack to approximate the circular coil, this paper gives an exact circular coil model using elliptic integrals. A new efficient numerical method is introduced to yield more accurate and fast computation. The computation results are in good agreement with the assumptions. For a small value of the coil radius, there is an asymmetry along the coil radius direction. As the coil radius increases, this asymmetry will gradually decrease, and the AC losses and penetration depth will increase, but the critical current will decrease. We find that if the internal radius is equal to the winding thickness, the infinitely long stack approximation overestimates the loss by 10% and even if the internal radius is reduced to zero, the error is still only 60%. The infinitely long stack approximation is therefore adequate for most practical purposes. In addition, the comparison result shows that the infinitely long stack approximation saves computation time significantly.

  18. Critical current densities and irreversibility fields of MgB 2 bulks

    NASA Astrophysics Data System (ADS)

    Kumakura, H.; Takano, Y.; Fujii, H.; Togano, K.; Kito, H.; Ihara, H.

    2001-11-01

    We prepared two MgB 2 bulks by applying conventional sintering and high-pressure sintering methods, and compared the current carrying properties. Jc obtained by the resistive method was larger than that obtained by the magnetic method. Jc- B curves obtained by the resistive method showed no history effect. These results indicate that most of the superconducting currents flowing in the MgB 2 bulks were intergrain (transport) currents and intragrain currents were negligibly small. The high-pressure sintered sample with smaller grain size showed smaller field dependence of Jc and higher Birr than the conventionally sintered sample with larger grain size. This behavior can be explained by the grain boundary flux pinning.

  19. A New Paradigm for Understanding and Enhancing the Critical Heat Flux (CHF) Limit.

    PubMed

    Fazeli, Abdolreza; Moghaddam, Saeed

    2017-07-12

    Nearly a century of research on enhancing critical heat flux (CHF) has focused on altering the boiling surface properties such as its nucleation site density, wettability, wickability and heat transfer area. But, a mechanism to manipulate dynamics of the vapor and liquid interactions above the boiling surface as a means of enhancing CHF has not been proposed. Here, a new approach is implemented to limit the vapor phase lateral expansion over the heat transfer surface and actively control the surface wetted area fraction, known to decline monotonically with increasing heat flux. This new degree of freedom has enabled reaching unprecedented CHF levels and revealed new details about the physics of CHF. The impact of wickability, effective heat transfer area, and liquid pressure on CHF is precisely quantified. Test results show that, when rewetting is facilitated, the CHF increases linearly with the effective surface heat transfer area. A maximum CHF of 1.8 kW/cm(2) was achieved on a copper structure with the highest surface area among all tested surfaces. A model developed based on the experimental data suggests that the thermal conductivity of the surface structures ultimately limits the CHF; and a maximum CHF of 7-8 kW/cm(2) may be achieved using diamond surface structures.

  20. Critical Current Properties of HTS Twisted Stacked-Tape Cable in Subcooled- and Pressurized-Liquid Nitrogen

    NASA Astrophysics Data System (ADS)

    Tomita, M.; Suzuki, K.; Fukumoto, Y.; Ishihara, A.; Akasaka, T.; Kobayashi, Y.; Maeda, A.; Takayasu, M.

    2015-12-01

    A 2 m length Twisted Stacked-Tape Cable (TSTC) conductor which was fabricated by 32-YBCO-tapes (4 mm width) with a 200 mm twist pitch was investigated at various temperatures near 77 K in subcooled- and pressurized-liquid nitrogen. The critical current of the TSTC cable which was 1.45 kA at 77 K measured from 64 K to 85 K by controlling the equilibrium vapor pressure of nitrogen bath and were varied from 3.65 kA at 64 K to 0.42 kA at 85 K. The temperature dependence of cables’ critical current agrees with that of the 4 mm width YBCO tape. These results are encouraging for applications of a compact Twisted Stacked-Tape Cable application in railway systems.

  1. Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification

    NASA Astrophysics Data System (ADS)

    Ha, Minseok; Graham, Samuel

    2017-08-01

    Experimental studies have shown that microporous surfaces induce one of the highest enhancements in critical heat flux (CHF) during pool boiling. However, microporous surfaces may also induce a very large surface superheat (>100 °C) which is not desirable for applications such as microelectronics cooling. While the understanding of the CHF mechanism is the key to enhancing boiling heat transfer, a comprehensive understanding is not yet available. So far, three different theories for the CHF of microporous surfaces have been suggested: viscous-capillary model, hydrodynamic instability model, and dryout of the porous coatings. In general, all three theories account for some aspects of boiling phenomena. In this study, the theories are examined through their correlations with experimental data on microporous surfaces during pool boiling using deionized (DI) water. It was found that the modulation of the vapor-jet through the pore network enables a higher CHF than that of a flat surface based on the hydrodynamic instability theory. In addition, it was found that as the heat flux increases, a vapor layer grows in the porous coatings described by a simple thermal resistance model which is responsible for the large surface superheat. Once the vapor layer grows to fill the microporous structure, transition to film boiling occurs and CHF is reached. By disrupting the formation of this vapor layer through the fabrication of channels to allow vapor escape, an enhancement in the CHF and heat transfer coefficient was observed, allowing CHF greater than 3500 kW/m2 at a superheat less than 50 °C.

  2. General approach for the determination of the magneto-angular dependence of the critical current of YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhong, Z.; Ruiz, H. S.; Geng, J.; Coombs, T. A.

    2017-02-01

    The physical understanding and numerical modelling of superconducting devices which exploit the high performance of second generation high temperature superconducting tapes (2G-HTS), is commonly hindered by the lack of accurate functions which allow the consideration of the in-field dependence of the critical current. This is true regardless of the manufacturer of the superconducting tape. In this paper, we present a general approach for determining a unified function I c(B, θ), ultimately capable of describing the magneto-angular dependence of the in-field critical current of commercial 2G-HTS tapes in the Lorentz configuration. Five widely different superconducting tapes, provided by three different manufacturers, have been tested in a liquid nitrogen bath and external magnetic fields of up to 400 mT. The critical current was recorded at 90 different orientations of the magnetic field ranging from θ = 0°, i.e., with B aligned with the crystallographic ab-planes of the YBCO layer, towards ±90°, i.e., with B perpendicular to the wider surfaces of the 2G-HTS tape. The whole set of experimental data has been analysed using a novel multi-objective model capable of predicting a sole function I c(B, θ). This allows an accurate validation of the experimental data regardless of the fabrication differences and widths of the superconducting tapes. It is shown that, in spite of the wide set of differences between the fabrication and composition of the considered tapes, at liquid nitrogen temperature the magneto-angular dependence of the in-field critical current of YBCO-based 2G-HTS tapes, can be described by a universal function I c(f(B), θ), with a power law field dependence dominated by the Kim’s factor B/B 0, and an angular dependence moderated by the electron mass anisotropy ratio of the YBCO layer.

  3. Anisotropy and hysteresis of transport critical currents in high temperature Ln-Y-Ba-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Noto, K.; Morita, H.; Fujimori, H.; Mizuno, K.; Aomine, T.; Ni, B.; Matsushita, T.; Yamafuji, K.; Muto, Y.

    1989-03-01

    Following the measurements of anisotropy and hysteresis in transport critical currents with changing temperature and polarity of magnetic field, a.c. magnetic measurements by the Campbell method were performed for sintered Ln-Y-Ba-Cu-O superconductors. The information derived from them indicated that hysteresis does not occur in the intragrain current but in the intergrain one. The results are interpreted in terms of flux pinning, where the anisotropy originates from the texture structure and hysteresis is associated with the superconducting weak links of the sintered oxide pellets.

  4. Angular dependence of critical current density and magnetoresistance of sputtered high-T{sub c}-films

    SciTech Connect

    Geerkens, A.; Frenck, H.J.; Ewert, S.

    1994-12-31

    The angular dependence of the critical current density and the magnetoresistance of high-T{sub c}-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle {Theta} between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the {Theta}-rotation plane is discussed.

  5. Angular dependence of critical current density and magnetoresistance of sputtered high-T(sub c)-films

    NASA Technical Reports Server (NTRS)

    Geerkens, A.; Meven, M.; Frenck, H.-J.; Ewert, S.

    1995-01-01

    The angular dependence of the critical current density and the magnetoresistance of high-T(sub c)-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle Theta between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the Theta-rotation plane is discussed.

  6. Application of contrast-enhanced ultrasound after liver transplantation: Current status and perspectives

    PubMed Central

    Ren, Jie; Wu, Tao; Zheng, Bo-Wen; Tan, Ying-Yi; Zheng, Rong-Qin; Chen, Gui-Hua

    2016-01-01

    Liver transplantation is an effective treatment for patients with end-stage liver disease. Accurate imaging evaluation of the transplanted patient is critical for ensuring that the limited donor liver is functioning appropriately. Ultrasound contrast agents (UCAs), in combination with contrast-specific imaging techniques, are increasingly accepted in clinical use for the assessment of the hepatic vasculature, bile ducts and liver parenchyma in pre-, intra- and post-transplant patients. We describe UCAs, their technical requirements, the recommended clinical indications, image interpretation and the limitations for contrast-enhanced ultrasound applications in liver transplantation. PMID:26819526

  7. Superconducting-magnetic heterostructures: a method of decreasing AC losses and improving critical current density in multifilamentary conductors.

    PubMed

    Glowacki, B A; Majoros, M

    2009-06-24

    Magnetic materials can help to improve the performance of practical superconductors on the macroscale/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces AC losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa(2)Cu(3)O(7) and (Pb,Bi)(2)Sr(2)Ca(2)Cu(3)O(9) conductors, and buffer layers have to be used. In contrast, in MgB(2) conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On one hand, magnetic materials reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties.

  8. Anticoagulant therapy in patients undergoing dental interventions: a critical review of the literature and current perspectives.

    PubMed

    Isola, G; Matarese, G; Cordasco, G; Rotondo, F; Crupi, A; Ramaglia, L

    2015-02-01

    Patients treated with oral anticoagulant therapy (OAT) represent an issue to the dentist, as an increasing number of people are using anticoagulant drugs for cardiovascular disease. The choice of an eventual suspension or continuation of anticoagulant therapy is important when considering an efficient management of the patient. Patients in anticoagulant therapy and requiring dental procedures sometimes represent therapeutic concerns especially concerning the suspension of the anticoagulant treatment. At the moment there is no consensus among international experts of a possible discontinuation of therapy before invasive dental procedures. In this paper, the authors try to focus on this topic through a critical review of the literature. Most of the studies suggest the continuation of the anticoagulant treatment with heparin before invasive oral surgical interventions. Based on the data of the literature, two rules must be adopted in clinical practice: 1) maintenance of anticoagulation related to the international normalized ratio (INR); 2) local application of antifibrinolytic agents to ensure a proper hemostatic process. Given the widespread use of anticoagulant drugs in cardiovascular disease, dentists must often face the problem of the therapy and, since there is no consensus on the management of these patients, the authors propose, after a thorough critical review of the literature, the implementation of a multiphase protocol of surgical approach to be implemented with safety in daily clinical practice.

  9. Current-driven domain wall motion enhanced by the microwave field

    SciTech Connect

    Wang, Xi-guang; Guo, Guang-hua Nie, Yao-zhuang; Wang, Dao-wei; Li, Zhi-xiong; Tang, Wei; Zeng, Zhong-ming

    2014-07-14

    The magnetic domain wall (DW) motion driven by a spin-polarized current opens a new concept for memory and logic devices. However, the critical current density required to overcome the intrinsic and/or extrinsic pinning of DW remains too large for practical applications. Here, we show, by using micromagnetic simulations and analytical approaches, that the application of a microwave field offers an effective solution to this problem. When a transverse microwave field is applied, the adiabatic spin-transfer torque (STT) alone can sustain a steady-state DW motion without the sign of Walker breakdown, meaning that the intrinsic pinning disappears. The extrinsic pinning can also be effectively reduced. Moreover, the DW velocity is increased greatly for the microwave-assisted DW motion. This provides a new way to manipulate the DW motion at low current densities.

  10. Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin

    2017-02-01

    Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors.

  11. Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3.

    PubMed

    Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin

    2017-02-20

    Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors.

  12. Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3

    PubMed Central

    Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin

    2017-01-01

    Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors. PMID:28216672

  13. Mars ISRU for Production of Mission Critical Consumables - Options, Recent Studies, and Current State of the Art

    NASA Technical Reports Server (NTRS)

    Sanders, G. B.; Paz, A.; Oryshchyn, L.; Araghi, K.; Muscatello, A.; Linne, D.; Kleinhenz, J.; Peters, T.

    2015-01-01

    In 1978, a ground breaking paper titled, "Feasibility of Rocket Propellant Production on Mars" by Ash, Dowler, and Varsi discussed how ascent propellants could be manufactured on the Mars surface from carbon dioxide collected from the atmosphere to reduce launch mass. Since then, the concept of making mission critical consumables such as propellants, fuel cell reactants, and life support consumables from local resources, commonly known as In-Situ Resource Utilization (ISRU), for robotic and human missions to Mars has been studied many times. In the late 1990's, NASA initiated a series of Mars Human Design Reference Missions (DRMs), the first of which was released in 1997. These studies primarily focused on evaluating the impact of making propellants on Mars for crew ascent to Mars orbit, but creating large caches of life support consumables (water & oxygen) as a backup for regenerative life support systems for long-duration surface stays (>500 days) was also considered in Mars DRM 3.0. Until science data from the Mars Odyssey orbiter and subsequent robotic missions revealed that water may be widely accessable across the surface of Mars, prior Mars ISRU studies were limited to processing Mars atmospheric resources (carbon dioxide, nitrogen, argon, oxygen, and water vapor). In December 2007, NASA completed the Mars Human Design Reference Architecture (DRA) 5.0 study which considered water on Mars as a potential resource for the first time in a human mission architecture. While knowledge of both water resources on Mars and the hardware required to excavate and extract the water were very preliminary, the study concluded that a significant reduction in mass and significant enhancements to the mission architecture were possible if Mars water resources were utilized. Two subsequent Mars ISRU studies aimed at reexamining ISRU technologies, processing options, and advancements in the state-of-the-art since 2007 and to better understand the volume and packaging associated

  14. Enhancement of light extraction efficiency of vertical LED with patterned graphene as current spreading layer

    NASA Astrophysics Data System (ADS)

    Singh, Sumitra; Sai Nandini, Annam Deepthi; Pal, Suchandan; Dhanavantri, Chenna

    2016-01-01

    In this paper we report an optimised pattern of surface textured graphene current spreading layer (CSL) for the enhancement of light extraction efficiency (LEE) in InGaN/GaN vertical light emitting diodes (V-LEDs). It is found that by texturing graphene surface LEE improves drastically. This improvement is attributed to better current spreading of graphene and increased random and multiple scattering of light through textured surfaces. Simulation results illustrate that V-LEDs with surface textured (hexagonal pattern) ITO as CSL shows threefold improvement in light extraction efficiency compared to V-LEDs with no surface texturing on ITO CSL. Further, LEE of V-LEDs having patterned graphene CSL is compared with that for indium tin oxide (ITO) CSL. V-LEDs with optimised hexagonal patterning on graphene CSL shows 13.42% enhancement of LEE compared to that of LED with hexagonal patterning on ITO surface.

  15. Current Issues: Critical Issues Confronting the Nation and the World. 1990 Edition.

    ERIC Educational Resources Information Center

    Close Up Foundation, Arlington, VA.

    This annual publication seeks to inform interested readers about issues currently confronting the United States. The introductory section briefly discusses the 101st Congress, members of the Bush administration, and the Supreme Court. The federal budget process is also discussed in this section. The section on domestic policy issues contains the…

  16. A Critical Review of the Technical Characteristics of Current Preschool Screening Batteries

    ERIC Educational Resources Information Center

    Emmons, Michael R.; Alfonso, Vincent C.

    2005-01-01

    The current review provides a summary and evaluation of the technical characteristics of five preschool screening batteries, including the Brigance Screens, DIAL-3, ESI-R, ESP, and FirstSTEP. These norm-referenced instruments were selected on the basis of their commercial availability, description as a screening instrument, and ability to assess…

  17. Current Issues: Critical Issues Confronting the Nation and the World. 1996 Edition [and Teacher's Guide.

    ERIC Educational Resources Information Center

    Close Up Foundation, Arlington, VA.

    This book accompanied by the Teacher's guide, focuses on policy issues being discussed and debated by U.S. policymakers. The book provides essays on current issues facing the nation and the world. Ten chapters highlight domestic policy issues and 10 chapters are about foreign policy issues. This book informs readers about important concerns of…

  18. Current Issues: Critical Policy Choices Facing the Nation and the World. 1999 Edition [and] Teacher's Guide.

    ERIC Educational Resources Information Center

    Close Up Foundation, Alexandria, VA.

    This student text and teacher's guide feature current events and policy issues that are in discussion today. The books offer background on important domestic and foreign policy issues and present arguments from both sides of key issues. The books are divided into three sections. Section 1, "The Federal Government," contains: (1) "The Clinton…

  19. Current Issues: Critical Policy Choices Facing the Nation and the World. 1998 Edition [and] Teacher's Guide.

    ERIC Educational Resources Information Center

    Close Up Foundation, Alexandria, VA.

    This student text and teacher's guide feature current events and policy issues that are in discussion today. The books offer background on important domestic and foreign policy issues and present arguments from both sides of key issues. The books are divided into three sections. Section 1, "The Federal Government," contains: (1) "The Clinton…

  20. Current Issues: Critical Issues Confronting the Nation and the World. 1997 Edition [and] Teacher's Guide.

    ERIC Educational Resources Information Center

    Close Up Foundation, Arlington, VA.

    This student text and teacher's guide feature current events and policy issues that are in discussion today. The books offer background on 20 important domestic and foreign policy issues and present arguments from both sides of key issues. The books are divided into three sections. Section 1, "The Federal Government," contains: (1) "The Clinton…