Sample records for enhance normal fibroblast

  1. The influence of genistein on free radicals in normal dermal fibroblasts and keloid fibroblasts examined by EPR spectroscopy.

    PubMed

    Jurzak, Magdalena; Ramos, Paweł; Pilawa, Barbara

    2017-01-01

    Normal and keloid fibroblasts were examined using X-band (9.3 GHz) electron paramagnetic resonance spectroscopy. The effect of genistein on the concentration of free radicals in both normal dermal and keloid fibroblasts after ultraviolet irradiation was investigated. The highest concentration of free radicals was seen in keloid fibroblasts, with normal fibroblasts containing a lower concentration. The concentration of free radicals in both normal and keloid fibroblasts was altered in a concentration-dependent manner by the presence of genistein. The change in intra-cellular free radical concentration after the ultraviolet irradiation of both normal and keloid fibroblasts is also discussed. The antioxidant properties of genistein, using its 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging activity as a model, were tested, and the effect of ultraviolet irradiation on its interaction with free radicals was examined. The electron paramagnetic resonance spectra of DPPH showed quenching by genistein. The interaction of genistein with DPPH free radicals in the absence of ultraviolet irradiation was shown to be slow, but this interaction was much faster under ultraviolet irradiation. Ultraviolet irradiation enhanced the free radical-scavenging activity of genistein.

  2. Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.

    Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloidmore » fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.« less

  3. Abnormal Collagen Metabolism in Cultured Skin Fibroblasts from Patients with Duchenne Muscular Dystrophy

    NASA Astrophysics Data System (ADS)

    Rodemann, H. Peter; Bayreuther, Klaus

    1984-08-01

    Total collagen synthesis is decreased by about 29% (P < 0.01) in skin fibroblasts established in vitro from male patients with Duchenne muscular dystrophy (DMD) as compared with that in normal male skin fibroblasts in vitro. The reduction in collagen synthesis is associated with an approximately 2-fold increase in collagen degradation in DMD fibroblasts. Correlated to these alterations in the metabolism of collagen, DMD fibroblasts express a significantly higher hydroxyproline/proline ratio (DMD: 1.36-1.45; P < 0.01) than do normal fibroblasts (controls: 0.86-0.89). The increased hydroxylation of proline residues of collagen (composed of type I and type III) could be the cause for the enhanced degradation of collagen in DMD fibroblasts.

  4. RECQL4-deficient cells are hypersensitive to oxidative stress/damage: Insights for osteosarcoma prevalence and heterogeneity in Rothmund-Thomson syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, Sean R.; Prahalad, Agasanur K.; Yang Jieping

    2006-06-23

    Rothmund-Thomson syndrome (RTS) is a heterogeneous disease, associated with increased prevalence of osteosarcoma in very young patients with a mutated RECQL4 gene. In this study, we tested the ability of RECQL4 deficient fibroblasts, derived from a RTS patient to recover from hydrogen peroxide (H{sub 2}O{sub 2})-induced oxidative stress/damage. Immunoperoxidase staining for 8-oxo-deoxyguanosine (8-oxo-dG) formation in RTS and normal human fibroblasts were compared to assess DNA damage. We determined DNA synthesis, cell growth, cell cycle distribution, and viability in RTS and normal human fibroblasts before and after H{sub 2}O{sub 2} treatment. H{sub 2}O{sub 2} induces 8-oxo-dG formation in both RTS andmore » normal fibroblasts. In normal human fibroblasts, RECQL4 was predominantly localized to cytoplasm; nuclear translocation and foci formation occurred in response to oxidant stimulation. After recovery from oxidant exposure, viable RTS fibroblasts showed irreversible growth arrest compared to normal fibroblasts. DNA synthesis decreased significantly in treated RTS cells, with concomitant reduction of cells in the S-phase. These results suggest that enhanced oxidant sensitivity in RECQL4 deficient fibroblasts derived from RTS patients could be attributed to abnormal DNA metabolism and proliferation failure. The ramifications of these findings on osteosarcoma prevalence and heterogeneity in RTS are discussed.« less

  5. Fibroblast-mediated in vivo and in vitro growth promotion of tumorigenic rat thyroid carcinoma cells but not normal Fisher rat thyroid follicular cells.

    PubMed

    Saitoh, Ohki; Mitsutake, Norisato; Nakayama, Toshiyuki; Nagayama, Yuji

    2009-07-01

    It is known that genetic abnormalities in oncogenes and/or tumor suppressor genes promote carcinogenesis. Numerous recent articles, however, have demonstrated that epithelial-stromal interaction also plays a critical role for initiation and progression of carcinoma cells. Furthermore, ionizing radiation induces alterations in the tissue microenvironments that promote carcinogenesis. There is little or no information on epithelial-stromal interaction in thyroid carcinoma cells. The objective of this study was to determine if epithelial-stromal interaction influenced the growth of thyroid carcinoma cells in vivo and in vitro and to determine if radiation had added or interacting effects. Normal Fisher rat thyroid follicular cells (FRTL5 cells) and tumorigenic rat thyroid carcinoma cells (FRTL-Tc cells) derived from FRTL5 cells were employed. The cells were injected into thyroids or subcutaneously into left flanks of rats alone or in combination with skin-derived fibroblasts. In groups of rats, fibroblasts were irradiated with 0.1 or 4 Gy x-ray 3 days before inoculation. In vitro growth of FRTL-Tc and FRTL-5 cells were evaluated using the fibroblast-conditioned medium and in a co-culture system with fibroblasts. The in vivo experiments demonstrated that FRTL-Tc cells injected intrathyroidally grew faster than those injected subcutaneously, and that admixed fibroblasts enhanced growth of subcutaneous FRTL-Tc tumors, indicating that the intrathyroidal milieu, particularly in the presence of fibroblasts, confer growth-promoting advantage to thyroid carcinoma cells. This in vivo growth-promoting effect of fibroblasts on FRTL-Tc cells was duplicated in the in vitro experiments using the fibroblast-conditioned medium. Thus, our data demonstrate that this effect is mediated by soluble factor(s), is reversible, and is comparable to that of 10% fetal bovine serum. However, normal FRTL5 cells did not respond to the fibroblast-conditioned medium. Furthermore, high- and low-dose irradiation enhanced and suppressed, respectively, the in vivo fibroblast-mediated growth promotion. This effect was, however, not observed in the in vitro experiment with conditioned medium or even that allowing cell-cell contact. The intrathyroidal stromal microenvironments, particularly fibroblasts, appear to enhance the growth of thyroid carcinomas through soluble factor(s), which is modulated differently by high- and low-dose irradiation. To our knowledge this is the first study to show epithelial-stromal interaction in thyroid carcinoma.

  6. MELATONIN ENHANCES JUNCTIONAL TRANSFER IN NORMAL C3H/1OT1/2 CELLS

    EPA Science Inventory

    There is strong evidence that pineal melatonin is involved in controlling neoplastic processes. e have reported that physiological, but not pharmacological or subphysiological, concentrations of melatonin enhance intercellular communication in normal C3H/1OT1/2 fibroblasts. ap ju...

  7. Normal Fibroblasts Induce E-Cadherin Loss and Increase Lymph Node Metastasis in Gastric Cancer

    PubMed Central

    Xu, Wen; Hu, Xinlei; Chen, Zhongting; Zheng, Xiaoping; Zhang, Chenjing; Wang, Gang; Chen, Yu; Zhou, Xinglu; Tang, Xiaoxiao; Luo, Laisheng; Xu, Xiang; Pan, Wensheng

    2014-01-01

    Background A tumor is considered a heterogeneous complex in a three-dimensional environment that is flush with pathophysiological and biomechanical signals. Cell-stroma interactions guide the development and generation of tumors. Here, we evaluate the contributions of normal fibroblasts to gastric cancer. Methodology/Principal Findings By coculturing normal fibroblasts in monolayers of BGC-823 gastric cancer cells, tumor cells sporadically developed short, spindle-like morphological characteristics and demonstrated enhanced proliferation and invasive potential. Furthermore, the transformed tumor cells demonstrated decreased tumor formation and increased lymphomatic and intestinal metastatic potential. Non-transformed BGC-823 cells, in contrast, demonstrated primary tumor formation and delayed intestinal and lymph node invasion. We also observed E-cadherin loss and the upregulation of vimentin expression in the transformed tumor cells, which suggested that the increase in metastasis was induced by epithelial-to-mesenchymal transition. Conclusion Collectively, our data indicated that normal fibroblasts sufficiently induce epithelial-to-mesenchymal transition in cancer cells, thereby leading to metastasis. PMID:24845259

  8. Radiosensitivity of fibroblasts obtained from a cafe-au-lait spot and normal-appearing skin of a patient with neurofibromatosis (NF-6)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannan, M.A.; Smith, B.P.; Sigut, D.

    Fibroblast cells derived from a cafe-au-lait spot and normal-appearing skin of a neurofibromatosis (NF-6) patient were studied for radiosensitivity in comparison with two normal cell lines used as controls. No difference in radiosensitivity was observed between the patient's cell lines and the controls using acute gamma-irradiation. However, a markedly increased radiosensitivity of the fibroblasts obtained from the patient's skin of normal appearance was demonstrated after chronic gamma-irradiation. The cells from the cafe-au-lait spot showed intermediate sensitivity to chronic irradiation as compared with the control cell lines and the fibroblasts derived from the normal skin of the patient. These results showedmore » the usefulness of chronic irradiation in detecting increased cellular radiosensitivity which may result from a unique DNA repair defect in an NF patient. We suggest that enhanced genetic changes in radiosensitive NF patients may lead to formation of cafe-au-lait lesions and certain tumors. Such a transformation may be associated with production of radiotolerant cells.« less

  9. MnTnBuOE-2-PyP protects normal colorectal fibroblasts from radiation damage and simultaneously enhances radio/chemotherapeutic killing of colorectal cancer cells

    PubMed Central

    Kosmacek, Elizabeth A.; Chatterjee, Arpita; Tong, Qiang; Lin, Chi; Oberley, Rebecca E.

    2016-01-01

    Manganese porphyrins have been shown to be potent radioprotectors in a variety of cancer models. However, the mechanism as to how these porphyrins protect normal tissues from radiation damage still remains largely unknown. In the current study, we determine the effects of the manganese porphyrin, MnTnBuOE-2-PyP, on primary colorectal fibroblasts exposed to irradiation. We found that 2 Gy of radiation enhances the fibroblasts' ability to contract a collagen matrix, increases cell size and promotes cellular senesence. Treating fibroblasts with MnTnBuOE-2-PyP significantly inhibited radiation-induced collagen contraction, preserved cell morphology and also inhibited cellular senescence. We further showed that MnTnBuOE-2-PyP enhanced the overall viability of the fibroblasts following exposure to radiation but did not protect colorectal cancer cell viability. Specifically, MnTnBuOE-2-PyP in combination with irradiation, caused a significant decrease in tumor clonogenicity. Since locally advanced rectal cancers are treated with chemoradiation therapy followed by surgery and non-metastatic anal cancers are treated with chemoradiation therapy, we also investigated the effects of MnTnBuOE-2-PyP in combination with radiation, 5-fluorouracil with and without Mitomycin C. We found that MnTnBuOE-2-PyP in combination with Mitomycin C or 5-fluorouracil further enhances those compounds' ability to suppress tumor cell growth. When MnTnBuOE-2-PyP was combined with the two chemotherapeutics and radiation, we observed the greatest reduction in tumor cell growth. Therefore, these studies indicate that MnTnBuOE-2-PyP could be used as a potent radioprotector for normal tissue, while at the same time enhancing radiation and chemotherapy treatment for rectal and anal cancers. PMID:27119354

  10. MnTnBuOE-2-PyP protects normal colorectal fibroblasts from radiation damage and simultaneously enhances radio/chemotherapeutic killing of colorectal cancer cells.

    PubMed

    Kosmacek, Elizabeth A; Chatterjee, Arpita; Tong, Qiang; Lin, Chi; Oberley-Deegan, Rebecca E

    2016-06-07

    Manganese porphyrins have been shown to be potent radioprotectors in a variety of cancer models. However, the mechanism as to how these porphyrins protect normal tissues from radiation damage still remains largely unknown. In the current study, we determine the effects of the manganese porphyrin, MnTnBuOE-2-PyP, on primary colorectal fibroblasts exposed to irradiation. We found that 2 Gy of radiation enhances the fibroblasts' ability to contract a collagen matrix, increases cell size and promotes cellular senesence. Treating fibroblasts with MnTnBuOE-2-PyP significantly inhibited radiation-induced collagen contraction, preserved cell morphology and also inhibited cellular senescence. We further showed that MnTnBuOE-2-PyP enhanced the overall viability of the fibroblasts following exposure to radiation but did not protect colorectal cancer cell viability. Specifically, MnTnBuOE-2-PyP in combination with irradiation, caused a significant decrease in tumor clonogenicity. Since locally advanced rectal cancers are treated with chemoradiation therapy followed by surgery and non-metastatic anal cancers are treated with chemoradiation therapy, we also investigated the effects of MnTnBuOE-2-PyP in combination with radiation, 5-fluorouracil with and without Mitomycin C. We found that MnTnBuOE-2-PyP in combination with Mitomycin C or 5-fluorouracil further enhances those compounds' ability to suppress tumor cell growth. When MnTnBuOE-2-PyP was combined with the two chemotherapeutics and radiation, we observed the greatest reduction in tumor cell growth. Therefore, these studies indicate that MnTnBuOE-2-PyP could be used as a potent radioprotector for normal tissue, while at the same time enhancing radiation and chemotherapy treatment for rectal and anal cancers.

  11. Regulation of fibroblast Fas expression by soluble and mechanical pro-fibrotic stimuli.

    PubMed

    Dodi, Amos E; Ajayi, Iyabode O; Chang, Christine; Beard, Meghan; Ashley, Shanna L; Huang, Steven K; Thannickal, Victor J; Tschumperlin, Daniel J; Sisson, Thomas H; Horowitz, Jeffrey C

    2018-05-10

    Fibroblast apoptosis is a critical component of normal repair and the acquisition of an apoptosis-resistant phenotype contributes to the pathogenesis of fibrotic repair. Fibroblasts from fibrotic lungs of humans and mice demonstrate resistance to apoptosis induced by Fas-ligand and prior studies have shown that susceptibility to apoptosis is enhanced when Fas (CD95) expression is increased in these cells. Moreover, prior work shows that Fas expression in fibrotic lung fibroblasts is reduced by epigenetic silencing of the Fas promoter. However, the mechanisms by which microenvironmental stimuli such as TGF-β1 and substrate stiffness affect fibroblast Fas expression are not well understood. Primary normal human lung fibroblasts (IMR-90) were cultured on tissue culture plastic or on polyacrylamide hydrogels with Young's moduli to recapitulate the compliance of normal (400 Pa) or fibrotic (6400 Pa) lung tissue and treated with or without TGF-β1 (10 ng/mL) in the presence or absence of protein kinase inhibitors and/or inflammatory cytokines. Expression of Fas was assessed by quantitative real time RT-PCR, ELISA and Western blotting. Soluble Fas (sFas) was measured in conditioned media by ELISA. Apoptosis was assessed using the Cell Death Detection Kit and by Western blotting for cleaved PARP. Fas expression and susceptibility to apoptosis was diminished in fibroblasts cultured on 6400 Pa substrates compared to 400 Pa substrates. TGF-β1 reduced Fas mRNA and protein in a time- and dose-dependent manner dependent on focal adhesion kinase (FAK). Surprisingly, TGF-β1 did not significantly alter cell-surface Fas expression, but did stimulate secretion of sFas. Finally, enhanced Fas expression and increased susceptibility to apoptosis was induced by combined treatment with TNF-α/IFN-γ and was not inhibited by TGF-β1. Soluble and matrix-mediated pro-fibrotic stimuli promote fibroblast resistance to apoptosis by decreasing Fas transcription while stimulating soluble Fas secretion. These findings suggest that distinct mechanisms regulating Fas expression in fibroblasts may serve different functions in the complex temporal and spatial evolution of normal and fibrotic wound-repair responses.

  12. Antimicrobial peptide KSL-W promotes gingival fibroblast healing properties in vitro.

    PubMed

    Park, Hyun-Jin; Salem, Mabrouka; Semlali, Abdelhabib; Leung, Kai P; Rouabhia, Mahmoud

    2017-07-01

    We investigated the effect of synthetic antimicrobial decapeptide KSL-W (KKVVFWVKFK) on normal human gingival fibroblast growth, migration, collagen gel contraction, and α-smooth muscle actin protein expression. Results show that in addition to promoting fibroblast adhesion by increasing F-actin production, peptide KSL-W promoted cell growth by increasing the S and G2/M cell cycle phases, and enhanced the secretion of metalloproteinase (MMP)-1 and MMP-2 by upregulating MMP inhibitors, such as tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in fibroblasts. An in vitro wound healing assay confirmed that peptide KSL-W promoted fibroblast migration and contraction of a collagen gel matrix. We also demonstrated a high expression of α-smooth muscle actin by gingival fibroblasts being exposed to KSL-W. This work shows that peptide KSL-W enhances gingival fibroblast growth, migration, and metalloproteinase secretion, and the expression of α-smooth muscle actin, thus promoting wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. IL1{beta}-mediated Stromal COX-2 signaling mediates proliferation and invasiveness of colonic epithelial cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yingting, E-mail: yitizhu@yahoo.com; Tissue Tech Inc, Miami, FL 33173; Zhu, Min

    2012-11-15

    COX-2 is a major inflammatory mediator implicated in colorectal inflammation and cancer. However, the exact origin and role of COX-2 on colorectal inflammation and carcinogenesis are still not well defined. Recently, we reported that COX-2 and iNOS signalings interact in colonic CCD18Co fibroblasts. In this article, we investigated whether activation of COX-2 signaling by IL1{beta} in primary colonic fibroblasts obtained from normal and cancer patients play a critical role in regulation of proliferation and invasiveness of human colonic epithelial cancer cells. Our results demonstrated that COX-2 level was significantly higher in cancer associated fibroblasts than that in normal fibroblasts withmore » or without stimulation of IL-1{beta}, a powerful stimulator of COX-2. Using in vitro assays for estimating proliferative and invasive potential, we discovered that the proliferation and invasiveness of the epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts than with normal fibroblasts, with or without stimulation of IL1{beta}. Further analysis indicated that the major COX-2 product, prostaglandin E{sub 2}, directly enhanced proliferation and invasiveness of the epithelial cancer cells in the absence of fibroblasts. Moreover, a selective COX-2 inhibitor, NS-398, blocked the proliferative and invasive effect of both normal and cancer associate fibroblasts on the epithelial cancer cells, with or without stimulation of IL-1{beta}. Those results indicate that activation of COX-2 signaling in the fibroblasts plays a major role in promoting proliferation and invasiveness of the epithelial cancer cells. In this process, PKC is involved in the activation of COX-2 signaling induced by IL-1{beta} in the fibroblasts.« less

  14. Mechanisms of ozone toxicity in cultured cells. I. Reduced clonogenic ability of polyunsaturated fatty acid-supplemented fibroblasts. Effect of vitamin E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konings, A.W.

    1986-01-01

    The direct action of ozone on viability and survival of normal and modified mouse lung fibroblasts has been studied. By cell manipulation of fibroblasts in culture, the content of polyunsaturated fatty acids (PUFA) in the phospholipids was increased from about 6% to about 40%. The cellular content of alpha-tocopherol (alpha-T) (vitamin E) could be drastically enhanced. Vitamin E supplementation to the cell did not influence the PUFA manipulation. Normal, PUFA, and PUFA(alpha-T) fibroblasts were exposed to ozone by bubbling 10 ppm through the cell suspensions for different periods of time (0-6 h). No significant effects of the ozone exposure couldmore » be established when normal fibroblasts were used. The PUFA fibroblasts, however, were very vulnerable to ozone toxicity, both in terms of dye uptake (Trypan blue) and cell death (clonogenic ability). When alpha-tocopherol was present in the cell (200 ng/10(6) cells), a clear protection against ozone toxicity was found. It is concluded that ozone toxicity might be higher under conditions of a relative high amount of polyunsaturated fatty acids in the membrane phospholipids of the cell and a low cellular antioxidant capacity. Cellular membranes are probably an important target for ozone-induced cell death.« less

  15. Arousal of cancer-associated stroma: overexpression of palladin activates fibroblasts to promote tumor invasion.

    PubMed

    Brentnall, Teresa A; Lai, Lisa A; Coleman, Joshua; Bronner, Mary P; Pan, Sheng; Chen, Ru

    2012-01-01

    Cancer-associated fibroblasts, comprised of activated fibroblasts or myofibroblasts, are found in the stroma surrounding solid tumors. These myofibroblasts promote invasion and metastasis of cancer cells. Mechanisms regulating the activation of the fibroblasts and the initiation of invasive tumorigenesis are of great interest. Upregulation of the cytoskeletal protein, palladin, has been detected in the stromal myofibroblasts surrounding many solid cancers and in expression screens for genes involved in invasion. Using a pancreatic cancer model, we investigated the functional consequence of overexpression of exogenous palladin in normal fibroblasts in vitro and its effect on the early stages of tumor invasion. Palladin expression in stromal fibroblasts occurs very early in tumorigenesis. In vivo, concordant expression of palladin and the myofibroblast marker, alpha smooth muscle actin (α-SMA), occurs early at the dysplastic stages in peri-tumoral stroma and progressively increases in pancreatic tumorigenesis. In vitro introduction of exogenous 90 kD palladin into normal human dermal fibroblasts (HDFs) induces activation of stromal fibroblasts into myofibroblasts as marked by induction of α-SMA and vimentin, and through the physical change of cell morphology. Moreover, palladin expression in the fibroblasts enhances cellular migration, invasion through the extracellular matrix, and creation of tunnels through which cancer cells can follow. The fibroblast invasion and creation of tunnels results from the development of invadopodia-like cellular protrusions which express invadopodia proteins and proteolytic enzymes. Palladin expression in fibroblasts is triggered by the co-culture of normal fibroblasts with k-ras-expressing epithelial cells. Overall, palladin expression can impart myofibroblast properties, in turn promoting the invasive potential of these peri-tumoral cells with invadopodia-driven degradation of extracellular matrix. Palladin expression in fibroblasts can be triggered by k-ras expression in adjacent epithelial cells. This data supports a model whereby palladin-activated fibroblasts facilitate stromal-dependent metastasis and outgrowth of tumorigenic epithelium.

  16. A simple combined floating and anchored collagen gel for enhancing mechanical strength of culture system.

    PubMed

    Harada, Ichiro; Kim, Sung-Gon; Cho, Chong Su; Kurosawa, Hisashi; Akaike, Toshihiro

    2007-01-01

    In this study, a simple combined method consisting of floating and anchored collagen gel in a ligament or tendon equivalent culture system was used to produce the oriented fibrils in fibroblast-populated collagen matrices (FPCMs) during the remodeling and contraction of the collagen gel. Orientation of the collagen fibrils along single axis occurred over the whole area of the floating section and most of the fibroblasts were elongated and aligned along the oriented collagen fibrils, whereas no significant orientation of fibrils was observed in normally contracted FPCMs by the floating method. Higher elasticity and enhanced mechanical strength were obtained using our simple method compared with normally contracted floating FPCMs. The Young's modulus and the breaking point of the FPCMs were dependent on the initial cell densities. This simple method will be applied as a convenient bioreactor to study cellular processes of the fibroblasts in the tissues with highly oriented fibrils such as ligaments or tendons. (c) 2006 Wiley Periodicals, Inc.

  17. Derivation and characterization of putative embryonic stem cells from cloned rabbit embryos.

    PubMed

    Intawicha, Payungsuk; Siriboon, Chawalit; Chen, Chien-Hong; Chiu, Yung-Tsung; Lin, Tzu-An; Kere, Michel; Lo, Neng-Wen; Lee, Kun-Hsiung; Chang, Li-Yung; Chiang, Hsing-I; Ju, Jyh-Cherng

    2016-10-15

    The present study aimed to establish embryonic stem (ES) cell lines, i.e., ntES cells, using rabbit blastocyst stage embryos cloned by somatic cell nuclear transfer. First, we investigated the development of cloned rabbit embryos reconstructed with normal fibroblasts and fibroblasts transfected with enhanced green fluorescence protein (eGFP). Blastocyst rates were 27.4% and 23.9%, respectively, for the embryos reconstructed with normal fibroblasts and fibroblasts transfected with eGFP compared with that from the parthenogenetic group (43.1%). One ntES cell line was established from embryos reconstructed with eGFP-transfected fibroblasts (1 of 17, 5.9%), and three ntES cell lines were derived from those with normal fibroblasts (3 of 17, 17.6%). All the ntES cell lines retained alkaline phosphatase activity and expressed ES cell-specific markers SSEA-4, Oct-4, TRA-1-60, and TRA-1-81. The pluripotency was further confirmed by reverse transcription-polymerase chain reaction analyses of Oct-4, Nanog, and Sox-2 expressions in ntES cell lines. The differentiation capacity of ntES cells was also examined in vitro and in vivo, by which these ntES cell lines were able to differentiate into all three germ layers through embryoid bodies and teratomas. In conclusion, it is apparent that the efficiency of ntES cells derived using eGFP-transfected donor cells is lower than that with nontransfected, normal fibroblasts donor cells. Similar to those from parthenogenetic embryos, all ntES cell lines derived from cloned rabbit embryos are able to express pluripotency markers and retain their capability to differentiate into various cell lineages both in vitro and in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. AGEs trigger autophagy in diabetic skin tissues and fibroblasts.

    PubMed

    Sun, Kan; Wang, Wei; Wang, Chuan; Lao, Guojuan; Liu, Dan; Mai, Lifang; Yan, Li; Yang, Chuan; Ren, Meng

    2016-03-11

    Accumulation of advanced glycation end products (AGEs) contributes to the development of diabetic ulcers. Recent evidence indicates that AGEs administration enhanced autophagy in many cell types. As a positive trigger of autophagy, the effect of AGEs on autophagy in skin tissues and fibroblasts remains unknown. Skin tissues were isolated from Spreqne-Dawley rats and immunohistochemical staining was performed to analyze the location of LC3 and FOXO1 in skin tissues. Then primary cultured foreskin fibroblast cells with treated with AGEs and the effect of AGEs on autophagy was investigated. Protein level expressions of LC3, Beclin-1 and FOXO1 in fibroblasts were analyzed by Western blotting. Autophagic flux is detected with autophagy inhibitor chloroquine and mRFP-GFP-LC3 tandem construct. Compared with skin from normal rats, immunohistochemical staining shows a predominant LC3 localization in fibroblasts cytoplasm in diabetic rats. Elevated expression of FOXO1 also existed in diabetic rats dermis fibroblasts when compared with normal rats in immunohistochemical analysis. In human skin fibroblasts cells, AGEs administration stimulated the autophagy related LC3-II/LC3-I and Beclin-1 expressions and increased autophagy flux. In mRFP-GFP-LC3 puncta formation assays, both autolysosome and autophagosome were increased in human fibroblasts after treatment with AGEs. Fibroblasts exposed to AGEs also have increased FOXO1 expression compared with control group. AGEs could induce autophagy at least in part via regulating the FOXO1 activity in diabetic skin tissues and fibroblasts. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Enhanced malignant transformation is accompanied by increased survival recovery after ionizing radiation in Chinese hamster embryo fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boothman, D.A.

    Transformed Chinese hamster embryo fibroblasts (CHEF), which gradually increase in tumor-forming ability in nude mice, were isolated from normal diploid CHEF/18 cells. Transformed CHEF cells (i.e., T30-4 > 21-2M3 > 21-2 > normal CHEF/18) showed gradual increases in potentially lethal damage (PLD) survival recovery. {beta}-Lapachone and camptothecin, modulators of topoisomerase I (Topo I) activity, not only prevented survival recovery in normal as well as in tumor cells, but enhanced unscheduled DNA synthesis. These seemingly conflicting results are due to the fact that Topo I activity can be modulated by inhibitors to convert single-stranded DNA lesions into double-stranded breaks. Increases inmore » unscheduled DNA synthesis may result from a continual supply of free ends, on which DNA repair processes may act. Altering Topo I activity with modulators appears to increase X-ray lethality via a DNA lesion modification suicide pathway. Cells down-regulate Topo I immediately after ionizing radiation to prevent Topo I-mediated lesion modification and to enhance survival recovery. 16 refs., 3 figs., 1 tab.« less

  20. Pericellular Versican Regulates the Fibroblast-Myofibroblast Transition

    PubMed Central

    Hattori, Noriko; Carrino, David A.; Lauer, Mark E.; Vasanji, Amit; Wylie, James D.; Nelson, Courtney M.; Apte, Suneel S.

    2011-01-01

    The cell and its glycosaminoglycan-rich pericellular matrix (PCM) comprise a functional unit. Because modification of PCM influences cell behavior, we investigated molecular mechanisms that regulate PCM volume and composition. In fibroblasts and other cells, aggregates of hyaluronan and versican are found in the PCM. Dermal fibroblasts from Adamts5−/− mice, which lack a versican-degrading protease, ADAMTS5, had reduced versican proteolysis, increased PCM, altered cell shape, enhanced α-smooth muscle actin (SMA) expression and increased contractility within three-dimensional collagen gels. The myofibroblast-like phenotype was associated with activation of TGFβ signaling. We tested the hypothesis that fibroblast-myofibroblast transition in Adamts5−/− cells resulted from versican accumulation in PCM. First, we noted that versican overexpression in human dermal fibroblasts led to increased SMA expression, enhanced contractility, and increased Smad2 phosphorylation. In contrast, dermal fibroblasts from Vcan haploinsufficient (Vcanhdf/+) mice had reduced contractility relative to wild type fibroblasts. Using a genetic approach to directly test if myofibroblast transition in Adamts5−/− cells resulted from increased PCM versican content, we generated Adamts5−/−;Vcanhdf/+ mice and isolated their dermal fibroblasts for comparison with dermal fibroblasts from Adamts5−/− mice. In Adamts5−/− fibroblasts, Vcan haploinsufficiency or exogenous ADAMTS5 restored normal fibroblast contractility. These findings demonstrate that altering PCM versican content through proteolytic activity of ADAMTS5 profoundly influenced the dermal fibroblast phenotype and may regulate a phenotypic continuum between the fibroblast and its alter ego, the myofibroblast. We propose that a physiological function of ADAMTS5 in dermal fibroblasts is to maintain optimal versican content and PCM volume by continually trimming versican in hyaluronan-versican aggregates. PMID:21828051

  1. Tumor-produced, active Interleukin-1 {beta} regulates gene expression in carcinoma-associated fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudas, Jozsef, E-mail: Jozsef.Dudas@i-med.ac.at; Fullar, Alexandra, E-mail: fullarsz@gmail.com; 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest

    2011-09-10

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated withmore » IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the presence of SCC-25 tumor cells. IL1-{beta} receptor expression in fibroblasts, especially in CAFs represents a major option in coordination of fibroblast and tumor behavior. A key event in IL1-{beta} signaling, the phosphorylation of IRAK1, occurred in co-cultured fibroblasts, which has lead to nuclear translocation of NF{kappa}B{alpha}, and finally to induction of several genes, including BDNF, IRF1, IL-6 and COX-2. The most enhanced induction was found for IL-6 and COX-2.« less

  2. Regulation of Hyaluronan (HA) Metabolism Mediated by HYBID (Hyaluronan-binding Protein Involved in HA Depolymerization, KIAA1199) and HA Synthases in Growth Factor-stimulated Fibroblasts.

    PubMed

    Nagaoka, Aya; Yoshida, Hiroyuki; Nakamura, Sachiko; Morikawa, Tomohiko; Kawabata, Keigo; Kobayashi, Masaki; Sakai, Shingo; Takahashi, Yoshito; Okada, Yasunori; Inoue, Shintaro

    2015-12-25

    Regulation of hyaluronan (HA) synthesis and degradation is essential to maintenance of extracellular matrix homeostasis. We recently reported that HYBID (HYaluronan-Binding protein Involved in hyaluronan Depolymerization), also called KIAA1199, plays a key role in HA depolymerization in skin and arthritic synovial fibroblasts. However, regulation of HA metabolism mediated by HYBID and HA synthases (HASs) under stimulation with growth factors remains obscure. Here we report that TGF-β1, basic FGF, EGF, and PDGF-BB commonly enhance total amount of HA in skin fibroblasts through up-regulation of HAS expression, but molecular size of newly produced HA is dependent on HYBID expression levels. Stimulation of HAS1/2 expression and suppression of HYBID expression by TGF-β1 were abrogated by blockade of the MAPK and/or Smad signaling and the PI3K-Akt signaling, respectively. In normal human skin, expression of the TGF-β1 receptors correlated positively with HAS2 expression and inversely with HYBID expression. On the other hand, TGF-β1 up-regulated HAS1/2 expression but exerted only a slight suppressive effect on HYBID expression in synovial fibroblasts from the patients with osteoarthritis or rheumatoid arthritis, resulting in the production of lower molecular weight HA compared with normal skin and synovial fibroblasts. These data demonstrate that although TGF-β1, basic FGF, EGF, and PDGF-BB enhance HA production in skin fibroblasts, TGF-β1 most efficiently contributes to production of high molecular weight HA by HAS up-regulation and HYBID down-regulation and suggests that inefficient down-regulation of HYBID by TGF-β1 in arthritic synovial fibroblasts may be linked to accumulation of depolymerized HA in synovial fluids in arthritis patients. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Site-Specific Differentiation of Fibroblasts in Normal and Scleroderma Skin

    DTIC Science & Technology

    2010-06-01

    SITE-SPECIFIC DIFFERENTIATION OF FIBROBLASTS IN NORMAL AND SCLERODERMA SKIN PRINCIPAL INVESTIGATOR: Howard Y. Chang, M.D., Ph.D...2010 4. TITLE AND SUBTITLE Site-Specific Differentiation of Fibroblasts in Normal and 5a. CONTRACT NUMBER Scleroderma Skin 5b. GRANT NUMBER...activated fibroblasts from SSc. 15. SUBJECT TERMS Scleroderma , fibroblasts, gene expression 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF

  4. High-Mobility Group Box 1 Mediates Fibroblast Activity via RAGE-MAPK and NF-κB Signaling in Keloid Scar Formation.

    PubMed

    Kim, Jihee; Park, Jong-Chul; Lee, Mi Hee; Yang, Chae Eun; Lee, Ju Hee; Lee, Won Jai

    2017-12-28

    Emerging studies have revealed the involvement of high-mobility group box 1 (HMGB1) in systemic fibrotic diseases, yet its role in the cutaneous scarring process has not yet been investigated. We hypothesized that HMGB1 may promote fibroblast activity to cause abnormal cutaneous scarring. In vitro wound healing assay with normal and keloid fibroblasts demonstrated that HMGB1 administration promoted the migration of both fibroblasts with increased speed and a greater traveling distance. Treatment of the HMGB1 inhibitor glycyrrhizic acid (GA) showed an opposing effect on both activities. To analyze the downstream mechanism, the protein levels of extracellular signal-regulated kinase (ERK) 1/2, protein kinase B (AKT), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were measured by western blot analysis. HMGB1 increased the expression levels of ERK1/2, AKT, and NF-κB compared to the control, which was suppressed by GA. HMGB1 promoted both normal and keloid fibroblasts migration to a degree equivalent to that achieved with TGF-β. We concluded that HMGB1 activates fibroblasts via the receptor for advanced glycation end product (RAGE)-mitogen-activated protein kinases (MAPK) and NF-κB interaction signaling pathways. Further knowledge of the relationship of HMGB1 with skin fibrosis may lead to a promising clinical approach to manage abnormal scarring.

  5. Extracorporeal shock waves enhance normal fibroblast proliferation in vitro and activate mRNA expression for TGF-beta1 and for collagen types I and III.

    PubMed

    Berta, Laura; Fazzari, Annamaria; Ficco, Anna Maria; Enrica, Patrizia Maurici; Catalano, Maria Graziella; Frairia, Roberto

    2009-10-01

    Extracorporeal shock waves (ESWs) are used to good effect in the treatment of soft tissue injuries, but the underlying mechanisms are still unknown. We therefore determined the effects of ESWs on normal fibroblasts in vitro, in order to assess treatment-induced cell response. A normal human fibroblast cell line (NHDF-12519) was treated with ESWs generated by a piezoelectric device (Piezoson 100; Richard Wolfe) using different protocols of impulses (300, 1,000, or 2,000 shots) and energy (0.11 or 0.22 mJ/mm(2)). Untreated controls and treated cells were cultivated for 12 days following a single shock-wave treatment. Viability, growth rate, and expression of mRNA for TGFbeta-1 and collagen types I and III were evaluated at days 3, 6, 9, and 12. 1 hour after shock-wave treatment, cell viability showed a decrease related mainly to impulse numbers applied. Fibroblasts treated with energy of 0.22 mJ/mm(2) subsequently showed an increase in proliferation from day 6 to day 9 that was higher than in untreated controls, without interference with the normal cell kinetic profile. mRNA expression was also higher in treated fibroblasts than in untreated controls for TGFbeta-1 on day 6 and day 9, for collagen type I on day 6, and for collagen type III on day 9. These in vitro data confirm that the main factors involved in the repair process of connective tissues are activated by ESWs. The study gives the rationale for, and may provide schedules for, ESW treatment of tendonopathies.

  6. Identification of a transcriptional signature for the wound healing continuum

    PubMed Central

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF < NF < CWF are candidates for a negative/impaired healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds. PMID:24844339

  7. Fibroblast spheroids as a model to study sustained fibroblast quiescence and their crosstalk with tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmenperä, Pertteli, E-mail: pertteli.salmenpera@helsinki.fi; Karhemo, Piia-Riitta; Räsänen, Kati

    Stromal fibroblasts have an important role in regulating tumor progression. Normal and quiescent fibroblasts have been shown to restrict and control cancer cell growth, while cancer-associated, i. e. activated fibroblasts have been shown to enhance proliferation and metastasis of cancer cells. In this study we describe generation of quiescent fibroblasts in multicellular spheroids and their effects on squamous cell carcinoma (SCC) growth in soft-agarose and xenograft models. Quiescent phenotype of fibroblasts was determined by global down-regulation of expression of genes related to cell cycle and increased expression of p27. Interestingly, microarray analysis showed that fibroblast quiescence was associated with similarmore » secretory phenotype as seen in senescence and they expressed senescence-associated-β-galactosidase. Quiescent fibroblasts spheroids also restricted the growth of RT3 SCC cells both in soft-agarose and xenograft models unlike proliferating fibroblasts. Restricted tumor growth was associated with marginally increased tumor cell senescence and cellular differentiation, showed with senescence-associated-β-galactosidase and cytokeratin 7 staining. Our results show that the fibroblasts spheroids can be used as a model to study cellular quiescence and their effects on cancer cell progression. - Highlights: • Fibroblasts acquire a sustained quiescence when grown as multicellular spheroids. • This quiescence is associated with drastic change in gene expression. • Fibroblasts spheroids secrete various inflammation-linked cytokines and chemokines. • Fibroblasts spheroids reduced growth of RT3 SCC cells in xenograft model.« less

  8. Increase in gap junctional intercellular communication by high molecular weight hyaluronic acid associated with fibroblast growth factor 2 and keratinocyte growth factor production in normal human dermal fibroblasts.

    PubMed

    Park, Jeong Ung; Tsuchiya, Toshie

    2002-07-01

    The effects of different molecular weights of hyaluronic acid (HA), a major component of extracellular matrix, on gap junctional intercellular communication (GJIC) in normal human dermal fibroblasts (NHDF cells) were investigated. NHDF cells were cultured for 4 days with different molecular weights of HA and then the extent of GJIC was assessed by the scrape-loading dye transfer method, using Lucifer yellow. The area of dye transfer was greater in the dishes coated with HA than in those to which HA was added. Thus, NHDF cells cultured on surfaces coated with high molecular weight (HMW) HA (MW, 800 kDa) showed greatly enhanced GJIC. Furthermore, another aim of this study was to evaluate the effects of different molecular weights of HA on the production of FGF-2 and KGF, because both are important cytokines produced by NHDF cells. When FGF-2 and KGF cultured levels of cell extracts and media were determined by ELISA, both levels were significantly enhanced when cells were grown on plates coated with HMW HA. This finding indicated that the function of gap junction channels in NHDF cells grown on plates coated with HMW HA may promote the biosynthesis of growth factors such as FGF-2 and KGF.

  9. Fibroblast-matrix interplay: Nintedanib and pirfenidone modulate the effect of IPF fibroblast-conditioned matrix on normal fibroblast phenotype.

    PubMed

    Epstein Shochet, Gali; Wollin, Lutz; Shitrit, David

    2018-03-12

    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. Activated fibroblasts are the key effector cells in fibrosis, producing excessive amounts of collagen and extracellular matrix (ECM) proteins. Whether the ECM conditioned by IPF fibroblasts determines the phenotype of naïve fibroblasts is difficult to explore. IPF-derived primary fibroblasts were cultured on Matrigel and then cleared using ammonium hydroxide, creating an IPF-conditioned matrix (CM). Normal fibroblast CM served as control. Normal fibroblasts were cultured on both types of CM, and cell count, cell distribution and markers of myofibroblast differentiation; transforming growth factor beta (TGFβ) signalling; and ECM expression were assessed. The effects of the anti-fibrotic drugs nintedanib and pirfenidone at physiologically relevant concentrations were also explored. Normal fibroblasts cultured on IPF-CM arranged in large aggregates as a result of increased proliferation and migration. Moreover, increased levels of pSmad3, pSTAT3 (phospho signal transducer and activator of transcription 3), alpha smooth muscle actin (αSMA) and Collagen1a were found, suggesting a differentiation towards a myofibroblast-like phenotype. SB505124 (10 μmol/L) partially reversed these alterations, suggesting a TGFβ contribution. Furthermore, nintedanib at 100 nmol/L and, to a lesser extent, pirfenidone at 100 μmol/L prevented the IPF-CM-induced fibroblast phenotype alterations, suggesting an attenuation of the ECM-fibroblast interplay. IPF fibroblasts alter the ECM, thus creating a CM that further propagates an IPF-like phenotype in normal fibroblasts. This assay demonstrated differences in drug activities for approved IPF drugs at clinically relevant concentrations. Thus, the matrix-fibroblast phenotype interplay might be a relevant assay to explore drug candidates for IPF treatment. © 2018 Asian Pacific Society of Respirology.

  10. Let-7b inhibits cancer-promoting effects of breast cancer-associated fibroblasts through IL-8 repression

    PubMed Central

    Al-Harbi, Bothina; Hendrayani, Siti-Fauziah; Silva, Gabriela; Aboussekhra, Abdelilah

    2018-01-01

    Cancer-associated fibroblasts (CAFs) are major players in the development and spread of breast carcinomas through non-cell-autonomous signaling. These paracrine effects are under the control of several genes and microRNAs. We present here clear evidence that let-7b, a tumor suppressor microRNA, plays key roles in the persistent activation of breast stromal fibroblasts and their functional interplay with cancer cells. We have first shown that let-7b is down-regulated in CAFs as compared to their corresponding normal adjacent fibroblasts, and transient specific let-7b inhibition permanently activated breast fibroblasts through induction of the IL-6-related positive feedback loop. More importantly, let-7b-deficient cells promoted the epithelial-to-mesenchymal transition process in breast cancer cells in an IL-8-dependent manner, and also enhanced orthotopic tumor growth in vivo. On the other hand, overexpression of let-7b by mimic permanently suppressed breast myofibroblasts through blocking the positive feedback loop, which inhibited their paracrine pro-carcinogenic effects. Furthermore, we have shown that let-7b negatively controls IL-8, which showed higher expression in the majority of CAF cells as compared to their adjacent normal counterparts, indicating that IL-8 plays a major role in the carcinoma/stroma cross-talk. These findings support targeting active stromal fibroblasts through restoration of let-7b/IL-8 expression as a therapeutic option for breast carcinomas. PMID:29707149

  11. 10-Shogaol, an Antioxidant from Zingiber officinale for Skin Cell Proliferation and Migration Enhancer

    PubMed Central

    Chen, Chung-Yi; Cheng, Kuo-Chen; Chang, Andy Y; Lin, Ying-Ting; Hseu, You-Cheng; Wang, Hui-Min

    2012-01-01

    In this work, one of Zingiber officinale components, 10-shogaol, was tested with 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, metal chelating ability, and reducing power to show antioxidant activity. 10-Shogaol promoted human normal epidermal keratinocytes and dermal fibroblasts cell growths. 10-Shogaol enhanced growth factor production in transforming growth factor-β (TGF-β), platelet derived growth factor-αβ (PDGF-αβ) and vascular endothelial growth factors (VEGF) of both cells. In the in vitro wound healing assay for 12 or 24 h, with 10-shogaol, the fibroblasts and keratinocytes migrated more rapidly than the vehicle control group. Thus, this study substantiates the target compound, 10-shogaol, as an antioxidant for human skin cell growth and a migration enhancer with potential to be a novel wound repair agent. PMID:22408422

  12. Effects of hypoxia on the expression of inflammatory markers IL-6 and TNF-a in human normal peritoneal and adhesion fibroblasts.

    PubMed

    Ambler, Dana R; Fletcher, Nicole M; Diamond, Michael P; Saed, Ghassan M

    2012-12-01

    Inflammation is known to be involved in the postoperative adhesion development. Interleukin (IL)-6 and tumor necrosis factor (TNF)-α are cytokines that stimulate the acute-phase reaction, which leads to a systemic reaction including inflammation, fever, and activation of the complement and clotting cascades. The goal of this study was to examine the expression of these inflammatory markers, under normal and hypoxic conditions, in normal and adhesion fibroblasts. Primary cultures of fibroblasts were established from normal peritoneum and adhesion tissues from the same patient(s) and cultured under 20% O(2) or hypoxic 2% O(2) conditions for 24 hours. Cells were harvested and total RNA was isolated. Complimentary DNA was generated by reverse transcription and subjected to real-time RT-PCR using specific primers for IL-6 and TNF-α. Both normal peritoneal and adhesion fibroblasts expressed IL-6 and TNF-α. Adhesion fibroblasts exhibited significantly higher levels of IL-6 and TNF-α mRNA as compared to normal peritoneal fibroblasts (p < 0.05). Both IL-6 and TNF-α mRNA levels were upregulated in response to hypoxia in both normal peritoneal and adhesion fibroblasts. The increase in IL-6 and TNF-α mRNA levels of normal fibroblasts reached the levels observed in adhesion fibroblasts. Our results suggest that hypoxia promotes the development of the adhesion phenotype by the induction of inflammatory markers, which may contribute to the development of postoperative adhesions. The inhibition of inflammation may be a potential therapeutic approach in the prevention and/or reduction of postoperative adhesion development.

  13. LXA{sub 4} actions direct fibroblast function and wound closure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Bruno S.; Microbiology Branch, US Army Dental and Trauma Research Detachment, Institute of Surgical Research, JBSA Fort Sam Houston, TX; Kantarci, Alpdogan

    Timely resolution of inflammation is crucial for normal wound healing. Resolution of inflammation is an active biological process regulated by specialized lipid mediators including the lipoxins and resolvins. Failure of resolution activity has a major negative impact on wound healing in chronic inflammatory diseases that is manifest as excess fibrosis and scarring. Lipoxins, including Lipoxin A{sub 4} (LXA{sub 4}), have known anti-fibrotic and anti-scarring properties. The goal of this study was to elucidate the impact of LXA{sub 4} on fibroblast function. Mouse fibroblasts (3T3 Mus musculus Swiss) were cultured for 72 h in the presence of TGF-β1, to induce fibroblast activation.more » The impact of exogenous TGF-β1 (1 ng/mL) on LXA{sub 4} receptor expression (ALX/FPR2) was determined by flow cytometry. Fibroblast proliferation was measured by bromodeoxyuridine (BrdU) labeling and migration in a “scratch” assay wound model. Expression of α-smooth muscle actin (α-SMA), and collagen types I and III were measured by Western blot. We observed that TGF-β1 up-regulates LXA{sub 4} receptor expression, enhances fibroblast proliferation, migration and scratch wound closure. α-SMA levels and Collagen type I and III deposition were also enhanced. LXA{sub 4} slowed fibroblast migration and scratch wound closure at early time points (24 h), but wound closure was equal to TGF-β1 alone at 48 and 72 h. LXA{sub 4} tended to slow fibroblast proliferation at both concentrations, but had no impact on α-SMA or collagen production by TGF-β1 stimulated fibroblasts. The generalizability of the actions of resolution molecules was examined in experiments repeated with resolvin D2 (RvD2) as the agonist. The activity of RvD2 mimicked the actions of LXA{sub 4} in all assays, through an as yet unidentified receptor. The results suggest that mediators of resolution of inflammation enhance wound healing and limit fibrosis in part by modulating fibroblast function. - Highlights: • TGF-β1 up-regulates LXA{sub 4} receptor (ALX/FPR2) expression on fibroblast. • LXA{sub 4} regulates fibroblast migration and proliferation induced by TGF-β1. • SPMs have no impact on α-SMA, collagen type-I and III expression by fibroblast. • RvD2 regulates TGF-β1-induced fibroblast proliferation and scratch wound closure.« less

  14. Galectin-1 mediates TGF-β-induced transformation from normal fibroblasts into carcinoma-associated fibroblasts and promotes tumor progression in gastric cancer

    PubMed Central

    Zheng, Lingyan; Xu, Cong; Guan, Zhonghai; Su, Xingyun; Xu, Zhenzhen; Cao, Jiang; Teng, Lisong

    2016-01-01

    Rcinoma-associated fibroblasts (CAFs) are a major constituent of the tumor microenvironment. Cancer cells can induce the transformation from normal fibroblasts (NFs) into CAFs, reciprocally, CAFs promote tumor invasion and proliferation. TGF-β has been the mostly accepted factor to fuel NFs transformation into CAFs. Galectin-1 (Gal1) is highly upregulated in CAFs of multiple human cancers, and overexpression of Gal1 in CAFs promotes tumor progression. The effect of Gal1 on TGF-β-induced CAFs activation has not yet been established in gastric cancer (GC). In this study, we show that Gal1 expression in stroma is positively related to TGF-β in epithelial cells by retrospective analysis of GC patient samples. Meanwhile, conditioned media (CMs) from gastric cancer cells induce expression of both Gal1 and the CAFs marker alpha smooth muscle actin (α-SMA) in NFs via TGF-β secretion. Knockdown of Gal1 prevents TGF-β-induced the conversion of NFs to CAFs. CMs from fibroblasts overexpressing Gal1 inhibits cancer cells apoptosis, promotes migration and invasion in vitro. Thus, Gal1 is significantly involved in the development of tumor-promoting microenvironment by enhancing TGF-β signaling in a positive feedback loop. Targeting Gal1 in tumor stroma should be considered as a potential therapeutic target for GC. PMID:27186290

  15. Hedgehog signaling is synergistically enhanced by nutritional deprivation and ligand stimulation in human fibroblasts of Gorlin syndrome.

    PubMed

    Mizuochi, Hiromi; Fujii, Katsunori; Shiohama, Tadashi; Uchikawa, Hideki; Shimojo, Naoki

    2015-02-13

    Hedgehog signaling is a pivotal developmental pathway that comprises hedgehog, PTCH1, SMO, and GLI proteins. Mutations in PTCH1 are responsible for Gorlin syndrome, which is characterized by developmental defects and tumorigenicity. Although the hedgehog pathway has been investigated extensively in Drosophila and mice, its functional roles have not yet been determined in human cells. In order to elucidate the mechanism by which transduction of the hedgehog signal is regulated in human tissues, we employed human fibroblasts derived from three Gorlin syndrome patients and normal controls. We investigated GLI1 transcription, downstream of hedgehog signaling, to assess native signal transduction, and then treated fibroblasts with a recombinant human hedgehog protein with or without serum deprivation. We also examined the transcriptional levels of hedgehog-related genes under these conditions. The expression of GLI1 mRNA was significantly higher in Gorlin syndrome-derived fibroblasts than in control cells. Hedgehog stimulation and nutritional deprivation synergistically enhanced GLI1 transcription levels, and this was blocked more efficiently by vismodegib, a SMO inhibitor, than by the natural compound, cyclopamine. Messenger RNA profiling revealed the increased expression of Wnt signaling and morphogenetic molecules in these fibroblasts. These results indicated that the hedgehog stimulation and nutritional deprivation synergistically activated the hedgehog signaling pathway in Gorlin syndrome fibroblasts, and this was associated with increments in the transcription levels of hedgehog-related genes such as those involved in Wnt signaling. These fibroblasts may become a significant tool for predicting the efficacies of hedgehog molecular-targeted therapies such as vismodegib. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Normal Human Fibroblasts Are Resistant to RAS-Induced Senescence

    PubMed Central

    Benanti, Jennifer A.; Galloway, Denise A.

    2004-01-01

    Oncogenic stimuli are thought to induce senescence in normal cells in order to protect against transformation and to induce proliferation in cells with altered p53 and/or retinoblastoma (Rb) pathways. In human fibroblasts, RAS initiates senescence through upregulation of the cyclin-dependent kinase inhibitor p16INK4A. We show here that in contrast to cultured fibroblast strains, freshly isolated normal fibroblasts are resistant to RAS-induced senescence and instead show some characteristics of transformation. RAS did not induce growth arrest or expression of senescence-associated β-galactosidase, and Rb remained hyperphosphorylated despite elevated levels of p16. Instead, RAS promoted anchorage-independent growth of normal fibroblasts, although expression of hTert with RAS increased colony formation and allowed normal fibroblasts to bypass contact inhibition. To test the hypothesis that p16 levels determine how cells respond to RAS, we expressed RAS in freshly isolated fibroblasts that expressed very low levels of p16, in hTert-immortalized fibroblasts that had accumulated intermediate levels of p16, and in IMR90 fibroblasts with high levels of p16. RAS induced growth arrest in cells with higher p16 levels, and this effect was reversed by p16 knockdown in the hTert-immortalized fibroblasts. These findings indicate that culture-imposed stress sensitizes cells to RAS-induced arrest, whereas early passage cells do not arrest in response to RAS. PMID:15024073

  17. Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair.

    PubMed

    Löser, Dana A; Shibata, Atsushi; Shibata, Akiko K; Woodbine, Lisa J; Jeggo, Penny A; Chalmers, Anthony J

    2010-06-01

    As single agents, chemical inhibitors of poly(ADP-ribose) polymerase (PARP) are nontoxic and have clinical efficacy against BRCA1- and BRCA2-deficient tumors. PARP inhibitors also enhance the cytotoxicity of ionizing radiation and alkylating agents but will only improve clinical outcomes if tumor sensitization exceeds effects on normal tissues. It is unclear how tumor DNA repair proficiency affects the degree of sensitization. We have previously shown that the radiosensitizing effect of PARP inhibition requires DNA replication and will therefore affect rapidly proliferating tumors more than normal tissues. Because many tumors exhibit defective DNA repair, we investigated the impact of double-strand break (DSB) repair integrity on the sensitizing effects of the PARP inhibitor olaparib. Sensitization to ionizing radiation and the alkylating agent methylmethane sulfonate was enhanced in DSB repair-deficient cells. In Artemis(-/-) and ATM(-/-) mouse embryo fibroblasts, sensitization was replication dependent and associated with defective repair of replication-associated damage. Radiosensitization of Ligase IV(-/-) mouse embryo fibroblasts was independent of DNA replication and is explained by inhibition of "alternative" end joining. After methylmethane sulfonate treatment, PARP inhibition promoted replication-independent accumulation of DSB, repair of which required Ligase IV. Our findings predict that the sensitizing effects of PARP inhibitors will be more pronounced in rapidly dividing and/or DNA repair defective tumors than normal tissues and show their potential to enhance the therapeutic ratio achieved by conventional DNA-damaging agents.

  18. Regulation of DNA repair in serum-stimulated xeroderma pigmentosum cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, P.K.; Sirover, M.A.

    1984-10-01

    The regulation of DNA repair during serum stimulation of quiescent cells was examined in normal human cells, in fibroblasts from three xeroderma pigmentosum complementation groups (A, C, and D), in xeroderma pigmentosum variant cells, and in ataxia telangiectasia cells. The regulation of nucleotide excision repair was examined by exposing cells to ultraviolet irradiation at discrete intervals after cell stimulation. Similarly, base excision repair was quantitated after exposure to methylmethane sulfonate. WI-38 normal human diploid fibroblasts, xeroderma pigmentosum variant cells, as well as ataxia telangiectasia cells enhanced their capacity for both nucleotide excision repair and for base excision repair prior tomore » their enhancement of DNA synthesis. Further, in each cell strain, the base excision repair enzyme uracil DNA glycosylase was increased prior to the induction of DNA polymerase using the identical cells to quantitate each activity. In contrast, each of the three xeroderma complementation groups that were examined failed to increase their capacity for nucleotide excision repair above basal levels at any interval examined. This result was observed using either unscheduled DNA synthesis in the presence of 10 mM hydroxyurea or using repair replication in the absence of hydroxyurea to quantitate DNA repair. However, each of the three complementation groups normally regulated the enhancement of base excision repair after methylmethane sulfonate exposure and each induced the uracil DNA glycosylase prior to DNA synthesis. 62 references, 3 figures, 2 tables.« less

  19. Studies on the defect underlying the lysosomal storage of sialic acid in Salla disease. Lysosomal accumulation of sialic acid formed from N-acetyl-mannosamine or derived from low density lipoprotein in cultured mutant fibroblasts.

    PubMed Central

    Renlund, M; Kovanen, P T; Raivio, K O; Aula, P; Gahmberg, C G; Ehnholm, C

    1986-01-01

    Salla disease is a lysosomal storage disorder characterized by mental retardation and disturbed sialic acid metabolism. To study endogenous synthesis and breakdown of sialic acid, fibroblasts were incubated for 5 d in the presence and then in the absence of N-[3H]acetylmannosamine. Labeling of free sialic acid was 5-10 times higher in mutant than in normal cells. Radioactivity decreased in 4 d by 75% in normal but only by 30% in mutant fibroblasts. The labeling pattern was not normalized upon coculture of mutant and normal cells. To study the metabolism of extracellular sialic acid, low-density lipoprotein (LDL) was labeled in the sialic acid moiety (periodate-NaB3H4) or in the protein moiety (125I). Binding, internalization, lysosomal degradation, and exit of products of protein catabolism were similar in normal and mutant fibroblasts. Upon incubation with LDL labeled in the sialic acid moiety, mutant cells accumulated 2-3 times more free sialic acid radioactivity than normal fibroblasts, mostly in the lysosomal fraction. After a 24-h chase incubation, radioactivity in free sialic acid decreased by 70-80% in normal but only by 10-30% in mutant cells. In mutant fibroblasts, 40% of the radioactivity remained in lysosomes, whereas no labeled free sialic acid was detected in lysosomes from normal fibroblasts. We conclude that in Salla disease, fibroblast endogenous synthesis of sialic acid and lysosomal cleavage of exogenous glycoconjugates is normal, but free sialic acid cannot leave the lysosome. These findings suggest that the basic defect in Salla disease is deficient transport of free sialic acid through the lysosomal membrane. PMID:3944269

  20. Neuregulin-1β induces proliferation, survival and paracrine signaling in normal human cardiac ventricular fibroblasts.

    PubMed

    Kirabo, Annet; Ryzhov, Sergey; Gupte, Manisha; Sengsayadeth, Seng; Gumina, Richard J; Sawyer, Douglas B; Galindo, Cristi L

    2017-04-01

    Neuregulin-1β (NRG-1β) is critical for cardiac development and repair, and recombinant forms are currently being assessed as possible therapeutics for systolic heart failure. We previously demonstrated that recombinant NRG-1β reduces cardiac fibrosis in an animal model of cardiac remodeling and heart failure, suggesting that there may be direct effects on cardiac fibroblasts. Here we show that NRG-1β receptors (ErbB2, ErbB3, and ErbB4) are expressed in normal human cardiac ventricular (NHCV) fibroblast cell lines. Treatment of NHCV fibroblasts with recombinant NRG-1β induced activation of the AKT pathway, which was phosphoinositide 3-kinase (PI3K)-dependent. Moreover, the NRG-1β-induced PI3K/AKT signaling in these cells required phosphorylation of both ErbB2 and ErbB3 receptors at tyrosine (Tyr)1248 and Tyr1289 respectively. RNASeq analysis of NRG-1β-treated cardiac fibroblasts obtained from three different individuals revealed a global gene expression signature consistent with cell growth and survival. We confirmed enhanced cellular proliferation and viability in NHCV fibroblasts in response to NRG-1β, which was abrogated by PI3K, ErbB2, and ErbB3 inhibitors. NRG-1β also induced production and secretion of cytokines (interleukin-1α and interferon-γ) and pro-reparative factors (angiopoietin-2, brain-derived neurotrophic factor, and crypto-1), suggesting a role in cardiac repair through the activation of paracrine signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. [Exposure of normal Tenon's capsule fibroblasts from pterygium to 5-fluorouracil and mitomycin C].

    PubMed

    Viveiros, Magda Massae Hata; Schellini, Silvana Artioli; Candeias, João; Padovani, Carlos Roberto

    2007-01-01

    To evaluate the fibroblast proliferation activity of normal Tenon's capsule from primary and recurrent patients with pterygium. A randomized prospective study was performed with 41 normal Tenon's capsule fragments from 21 primary and 20 recurrent patients with pterygium. The sample was collected from the inferior cul-de-sac. Proliferation rate from fibroblasts were evaluated after mitomycin C and 5-fluorouracil exposition. Data were submitted to statistical analysis. Of the 41 cultivated normal Tenon's capsules, only 1 from primary and 2 from recurrent pterygium patients proliferated. After antimitotic exposition, the proliferation rate was similar with both drugs. Mitomycin and 5-fluorouracil promote similar inhibition regarding proliferation of normal Tenon's fibroblast cultures.

  2. The polypeptide in Chlamys farreri can protect human dermal fibroblasts from ultraviolet B damage

    NASA Astrophysics Data System (ADS)

    Zhang, Yujiang; Zhan, Songmei; Cao, Pengli; Liu, Ning; Chen, Xuehong; Wang, Yuejun; Wang, Chunbo

    2005-09-01

    To investigate the effect of polypeptide from Chlamys farreri (PCF) on NHDF in vitro, we modeled oxidative damage on normal human dermal fibroblasts (NHDF) exposed to ultraviolet B (UVB). In this study, 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) were tested to measure cell viability. Enzymes including superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) and xanthine oxidase (XOD) were determined biochemically. Total antioxidative capacity (T-AOC) and anti-superoxide anion capacity (A-SAC) were also determined. Ultrastructure of fibroblasts was observed under transmission electron microscope. The results showed that: UVB (1.176×10-4 J/cm2) suppressed the growth of fibroblasts and the introduction of PCF (0.25% 1%) before UVB reduced the suppression in a concentration-dependent manner. PCF could enhance the activities of SOD, GSH-PX and T-AOC as well as A-SAC. Also PCF could inhibit XOD activity, while it did not affect CAT activity. Ultrastructure of fibroblasts were damaged after UVB irradiation, concentration-dependent PCF reduced the destructive effect of UVB on cells. These results indicated that PCF can protect human dermal fibroblasts from being harmed by UVB irradiation via its antioxidant proerty.

  3. TNF-{alpha} similarly induces IL-6 and MCP-1 in fibroblasts from colorectal liver metastases and normal liver fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Lars, E-mail: lars.mueller@uksh-kiel.de; Seggern, Lena von; Schumacher, Jennifer

    2010-07-02

    Cancer-associated fibroblasts (CAFs) represent the predominant cell type of the neoplastic stroma of solid tumors, yet their biology and functional specificity for cancer pathogenesis remain unclear. We show here that primary CAFs from colorectal liver metastases express several inflammatory, tumor-enhancing factors, including interleukin (IL)-6 and monocyte-chemoattractant protein (MCP)-1. Both molecules were intensely induced by TNF-{alpha} on the transcript and protein level, whereas PDGF-BB, TGF-{beta}1 and EGF showed no significant effects. To verify their potential specialization for metastasis progression, CAFs were compared to fibroblasts from non-tumor liver tissue. Interestingly, these liver fibroblasts (LFs) displayed similar functions. Further analyses revealed a comparablemore » up-regulation of intercellular adhesion molecule-1 (ICAM-1) by TNF-{alpha}, and of alpha-smooth muscle actin, by TGF-{beta}1. Moreover, the proliferation of both cell types was induced by PDGF-BB, and CAFs and LFs displayed an equivalent migration towards HT29 colon cancer cells in Boyden chamber assays. In conclusion, colorectal liver metastasis may be supported by CAFs and resident fibroblastic cells competent to generate a prometastatic microenvironment through inflammatory activation of IL-6 and MCP-1.« less

  4. Validation of in vitro assays in three-dimensional human dermal constructs.

    PubMed

    Idrees, Ayesha; Chiono, Valeria; Ciardelli, Gianluca; Shah, Siegfried; Viebahn, Richard; Zhang, Xiang; Salber, Jochen

    2018-05-01

    Three-dimensional cell culture systems are urgently needed for cytocompatibility testing of biomaterials. This work aimed at the development of three-dimensional in vitro dermal skin models and their optimization for cytocompatibility evaluation. Initially "murine in vitro dermal construct" based on L929 cells was generated, leading to the development of "human in vitro dermal construct" consisting of normal human dermal fibroblasts in rat tail tendon collagen type I. To assess the viability of the cells, different assays CellTiter-Blue ® , RealTime-Glo ™ MT, and CellTiter-Glo ® (Promega) were evaluated to optimize the best-suited assay to the respective cell type and three-dimensional system. Z-stack imaging (Live/Dead and Phalloidin/DAPI-Promokine) was performed to visualize normal human dermal fibroblasts inside matrix revealing filopodia-like morphology and a uniform distribution of normal human dermal fibroblasts in matrix. CellTiter-Glo was found to be the optimal cell viability assay among those analyzed. CellTiter-Blue reagent affected the cell morphology of normal human dermal fibroblasts (unlike L929), suggesting an interference with cell biological activity, resulting in less reliable viability data. On the other hand, RealTime-Glo provided a linear signal only with a very low cell density, which made this assay unsuitable for this system. CellTiter-Glo adapted to three-dimensional dermal construct by optimizing the "shaking time" to enhance the reagent penetration and maximum adenosine triphosphate release, indicating 2.4 times higher viability value by shaking for 60 min than for 5 min. In addition, viability results showed that cells were viable inside the matrix. This model would be further advanced with more layers of skin to make a full thickness model.

  5. Growth enhancement by embryonic fibroblasts upon cotransplantation of noncommitted pig embryonic tissues with fully committed organs.

    PubMed

    Cohen, Sivan; Tchorsh-Yutsis, Dalit; Aronovich, Anna; Tal, Orna; Eventov-Friedman, Smadar; Katchman, Helena; Klionsky, Yael; Shezen, Elias; Reisner, Yair

    2010-05-27

    We recently defined the optimal gestational time windows for the transplantation of several embryonic tissues. We showed that the liver and kidney obtained from E28 pig embryos can grow and differentiate normally after transplantation, whereas 1 week earlier in gestation, these tissues develop into teratoma-like structures or fibrotic mass. In this study, we investigated whether cotransplantation of E28 with E21 tissue could control its tumorogenic potential, or alternatively whether the stem cells derived from the earlier tissue contribute to the growth of the more committed one. Pig embryonic precursors from E21 and E28 gestational age were transplanted alone or together, into nonobese diabetic/severe combined immunodeficiency mice, and their growth and differentiation was evaluated by immunohistology. In situ analysis, based on sex disparity between the E21 and E28 tissues, was used to identify the tissue source. In some experiments, mouse embryonic fibroblasts (MEF) were cotransplanted with E28 liver, and their effect was evaluated. E28 tissues could not abrogate the propensity of the cells within the undifferentiated tissue to form teratoma-like structures. However, E21 kidney or liver tissue markedly enhanced the growth and function of E28 kidney, liver, and heart grafts. Moreover, similar growth enhancement was observed on coimplantation of E28 liver tissue with MEF or on infusion of MEF culture medium, indicating that this enhancement is likely mediated through soluble factors secreted by the fibroblasts. Our results suggest a novel approach for the enhancement of growth and differentiation of transplanted embryonic tissues by the use of soluble factors secreted by embryonic fibroblasts.

  6. c-Met–mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma

    PubMed Central

    Huang, Menggui; Liu, Tianrun; Ma, Peihong; Mitteer, R. Alan; Zhang, Zhenting; Kim, Hyun Jun; Yeo, Eujin; Zhang, Duo; Cai, Peiqiang; Li, Chunsheng; Zhang, Lin; Zhao, Botao; Roccograndi, Laura; O’Rourke, Donald M.; Dahmane, Nadia; Gong, Yanqing; Koumenis, Constantinos

    2016-01-01

    Aberrant vascularization is a hallmark of cancer progression and treatment resistance. Here, we have shown that endothelial cell (EC) plasticity drives aberrant vascularization and chemoresistance in glioblastoma multiforme (GBM). By utilizing human patient specimens, as well as allograft and genetic murine GBM models, we revealed that a robust endothelial plasticity in GBM allows acquisition of fibroblast transformation (also known as endothelial mesenchymal transition [Endo-MT]), which is characterized by EC expression of fibroblast markers, and determined that a prominent population of GBM-associated fibroblast-like cells have EC origin. Tumor ECs acquired the mesenchymal gene signature without the loss of EC functions, leading to enhanced cell proliferation and migration, as well as vessel permeability. Furthermore, we identified a c-Met/ETS-1/matrix metalloproteinase–14 (MMP-14) axis that controls VE-cadherin degradation, Endo-MT, and vascular abnormality. Pharmacological c-Met inhibition induced vessel normalization in patient tumor–derived ECs. Finally, EC-specific KO of Met inhibited vascular transformation, normalized blood vessels, and reduced intratumoral hypoxia, culminating in suppressed tumor growth and prolonged survival in GBM-bearing mice after temozolomide treatment. Together, these findings illustrate a mechanism that controls aberrant tumor vascularization and suggest that targeting Endo-MT may offer selective and efficient strategies for antivascular and vessel normalization therapies in GBM, and possibly other malignant tumors. PMID:27043280

  7. Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yingting, E-mail: yitizhu@yahoo.com; Tissue Tech Inc., Miami, FL 33173; Zhu, Min

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Human colonic cancer associated fibroblasts are major sources of COX-2 and PGE{sub 2}. Black-Right-Pointing-Pointer The fibroblasts interact with human colonic epithelial cancer cells. Black-Right-Pointing-Pointer Activation of COX-2 signaling in the fibroblasts affects behavior of the epithelia. Black-Right-Pointing-Pointer Protein Kinase C controls the activation of COX-2 signaling. -- Abstract: COX-2 is a major regulator implicated in colonic cancer. However, how COX-2 signaling affects colonic carcinogenesis at cellular level is not clear. In this article, we investigated whether activation of COX-2 signaling by deoxycholic acid (DCA) in primary human normal and cancer associated fibroblasts play a significant role in regulationmore » of proliferation and invasiveness of colonic epithelial cancer cells. Our results demonstrated while COX-2 signaling can be activated by DCA in both normal and cancer associated fibroblasts, the level of activation of COX-2 signaling is significantly greater in cancer associated fibroblasts than that in normal fibroblasts. In addition, we discovered that the proliferative and invasive potential of colonic epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts pre-treated with DCA than with normal fibroblasts pre-treated with DCA. Moreover, COX-2 siRNA attenuated the proliferative and invasive effect of both normal and cancer associate fibroblasts pre-treated with DCA on the colonic cancer cells. Further studies indicated that the activation of COX-2 signaling by DCA is through protein kinase C signaling. We speculate that activation of COX-2 signaling especially in cancer associated fibroblasts promotes progression of colonic cancer.« less

  8. Senescent fibroblasts enhance early skin carcinogenic events via a paracrine MMP-PAR-1 axis.

    PubMed

    Malaquin, Nicolas; Vercamer, Chantal; Bouali, Fatima; Martien, Sébastien; Deruy, Emeric; Wernert, Nicolas; Chwastyniak, Maggy; Pinet, Florence; Abbadie, Corinne; Pourtier, Albin

    2013-01-01

    The incidence of carcinoma increases greatly with aging, but the cellular and molecular mechanisms underlying this correlation are only partly known. It is established that senescent fibroblasts promote the malignant progression of already-transformed cells through secretion of inflammatory mediators. We investigated here whether the senescent fibroblast secretome might have an impact on the very first stages of carcinogenesis. We chose the cultured normal primary human epidermal keratinocyte model, because after these cells reach the senescence plateau, cells with transformed and tumorigenic properties systematically and spontaneously emerge from the plateau. In the presence of medium conditioned by autologous senescent dermal fibroblasts, a higher frequency of post-senescence emergence was observed and the post-senescence emergent cells showed enhanced migratory properties and a more marked epithelial-mesenchymal transition. Using pharmacological inhibitors, siRNAs, and blocking antibodies, we demonstrated that the MMP-1 and MMP-2 matrix metalloproteinases, known to participate in late stages of cancer invasion and metastasis, are responsible for this enhancement of early migratory capacity. We present evidence that MMPs act by activating the protease-activated receptor 1 (PAR-1), whose expression is specifically increased in post-senescence emergent keratinocytes. The physiopathological relevance of these results was tested by analyzing MMP activity and PAR-1 expression in skin sections. Both were higher in skin sections from aged subjects than in ones from young subjects. Altogether, our results suggest that during aging, the dermal and epidermal skin compartments might be activated coordinately for initiation of skin carcinoma, via a paracrine axis in which MMPs secreted by senescent fibroblasts promote very early epithelial-mesenchymal transition of keratinocytes undergoing transformation and oversynthesizing the MMP-activatable receptor PAR-1.

  9. N-acetyl-L-cysteine increases MnSOD activity and enhances the recruitment of quiescent human fibroblasts to the proliferation cycle during wound healing.

    PubMed

    Mao, Gaowei; Goswami, Monali; Kalen, Amanda L; Goswami, Prabhat C; Sarsour, Ehab H

    2016-01-01

    The rebuilding of the connective tissue during wound healing requires the recruitment of fibroblasts to the wound area as well as reentry of quiescent fibroblasts to the proliferative cycle. Whether this process can be modulated by a small molecular weight thiol antioxidant N-acetyl-L-cysteine (NAC) was tested in normal human skin fibroblasts (NHFs) using a uni-directional wound healing assay. NAC treated cells demonstrated a decreased migration rate but increased number of proliferating cells recruited into the wound area post wounding. Fifteen day quiescent control and NAC treated NHFs were re-plated at a lower density and cell numbers counted at different days post-plating. Interestingly, NAC treated cells exhibited increased cellular proliferation indicated by both decreased cell population doubling time and increased S phase cells. NAC treated cells demonstrated decreased steady state levels of reactive oxygen species as well as increased protein and activity levels of manganese superoxide dismutase (MnSOD). NAC treatment failed to induce proliferation in quiescent cells lacking MnSOD expression. These results demonstrate that NAC enhanced the recruitment of quiescent NHFs into proliferation cycle during wound healing. Our results also suggest that the wound healing properties of NAC might be due to its ability to induce and enhance MnSOD expression and activity. Altogether, these findings suggest NAC might be potentially developed as a dietary intervention to improve tissue injury in animals and humans.

  10. Rapamycin Inhibits Human Laryngotracheal Stenosis–derived Fibroblast Proliferation, Metabolism, and Function in Vitro

    PubMed Central

    Namba, Daryan R.; Ma, Garret; Samad, Idris; Ding, Dacheng; Pandian, Vinciya; Powell, Jonathan D.; Horton, Maureen R.; Hillel, Alexander T.

    2015-01-01

    Objective To determine if rapamycin inhibits the growth, function, and metabolism of human laryngotracheal stenosis (LTS)–derived fibroblasts. Study Design Controlled in vitro study. Setting Tertiary care hospital in a research university. Subjects and Methods Fibroblasts isolated from biopsies of 5 patients with laryngotracheal stenosis were cultured. Cell proliferation, histology, gene expression, and cellular metabolism of LTS-derived fibroblasts were assessed in 4 conditions: (1) fibroblast growth medium, (2) fibroblast growth medium with dimethylsulfoxide (DMSO), (3) fibroblast growth medium with 10−10 M (low-dose) rapamycin dissolved in DMSO, and (4) fibroblast growth medium with 10−9 M (high-dose) rapamycin dissolved in DMSO. Results The LTS fibroblast count and DNA concentration were reduced after treatment with high-dose rapamycin compared to DMSO (P = .0007) and normal (P = .0007) controls. Collagen I expression decreased after treatment with high-dose rapamycin versus control (P = .0051) and DMSO (P = .0093) controls. Maximal respiration decreased to 68.6 pMoles of oxygen/min/10 mg/protein from 96.9 for DMSO (P = .0002) and 97.0 for normal (P = .0022) controls. Adenosine triphosphate (ATP) production decreased to 66.8 pMoles from 88.1 for DMSO (P = .0006) and 83.3 for normal (P = .0003) controls. Basal respiration decreased to 78.6 pMoles from 108 for DMSO (P = .0002) and 101 for normal (P = .0014) controls. Conclusions Rapamycin demonstrated an anti-fibroblast effect by significantly reducing the proliferation, metabolism, and collagen deposition of human LTS fibroblast in vitro. Rapamycin significantly decreased oxidative phosphorylation of LTS fibroblasts, suggesting at a potential mechanism for the reduced proliferation and differentiation. Furthermore, rapamycin’s anti-fibroblast effects indicate a promising adjuvant therapy for the treatment of laryngotracheal stenosis. PMID:25754184

  11. Potential role of fibroblast growth factor in enhancement of fracture healing.

    PubMed

    Radomsky, M L; Thompson, A Y; Spiro, R C; Poser, J W

    1998-10-01

    Fibroblast growth factors are present in significant amounts in bone and several studies have suggested that they may be involved in normal fracture healing. It is well established that fibroblast growth factors have mitogenic and angiogenic activity on mesoderm and neuroectoderm derived cells. Of particular interest as a member of the fibroblast growth factor family, basic fibroblast growth factor stimulates mitogenesis, chemotaxis, differentiation, and angiogenesis. It also plays an important role in the development of vascular, nervous, and skeletal systems, promotes the maintenance and survival of certain tissues, and stimulates wound healing and tissue repair. Animal studies have shown that the direct injection of fibroblast growth factor into fresh fractures stimulates callus formation, which provides mechanical stability to the fracture, accelerates healing, and restores competence. The matrix used to present the fibroblast growth factor at the fracture site plays a critical role in the effectiveness of the treatment. The evaluation of injectable basic fibroblast growth factor in a sodium hyaluronate gel for its effectiveness in stimulating fracture healing is described. When applied directly into a freshly created fracture in the rabbit fibula, a single injection of the basic fibroblast growth factor and hyaluronan results in the stimulation of callus formation, increased bone formation, and earlier restoration of mechanical strength at the fracture site. The hyaluronan gel serves as a reservoir that sequesters the basic fibroblast growth factor at the injection site for the length of time necessary to create an environment conducive to fracture healing. It is concluded that basic fibroblast growth factor and sodium hyaluronate act synergistically to accelerate fracture healing and that the combination is suitable for clinical evaluation as a therapy in fracture treatment.

  12. Soluble Factors Released by Endogenous Viable Cells Enhance the Antioxidant and Chemoattractive Activities of Cryopreserved Amniotic Membrane

    PubMed Central

    Duan-Arnold, Yi; Gyurdieva, Alexandra; Johnson, Amy; Jacobstein, Douglas A.; Danilkovitch, Alla

    2015-01-01

    Objective: Regulation of oxidative stress and recruitment of key cell types are activities of human amniotic membrane (hAM) that contribute to its benefits for wound treatment. Progress in tissue preservation has led to commercialization of hAM. The majority of hAM products are devitalized with various degrees of matrix alteration. Data show the importance of hAM matrix preservation, but little is known about the advantages of retaining viable endogenous cells. In this study, we compared the antioxidant and chemoattractive properties of viable intact cryopreserved hAM (int-hAM) and devitalized cryopreserved hAM (dev-hAM) to determine the benefits of cell preservation. Approach: We evaluated the ability of int-hAM and dev-hAM to protect fibroblasts from oxidant-induced cell damage, to suppress oxidants, and to recruit fibroblasts and keratinocytes in vitro. Results: Both the int-hAM–derived conditioned medium (CM) and the int-hAM tissue rescued significantly more fibroblasts from oxidant-induced damage than dev-hAM (844% and 93% more, respectively). The int-hAM CM showed a 202% greater antioxidant capacity than dev-hAM. The int-hAM CM enhanced the recruitment of fibroblasts and normal and diseased keratinocytes to a greater extent than dev-hAM (1,555%, 315%, and 151% greater, respectively). Innovation and Conclusion: Int-hAM, in which all native components are preserved, including endogenous viable cells, demonstrated a significantly greater antioxidant and fibroblast and keratinocyte chemoattractive potential compared to dev-hAM, in which viable cells are destroyed. The release of soluble factors that protect fibroblasts from oxidative injury by hAM containing viable cells is a mechanism of hAM antioxidant activity, which is a novel finding of this study. PMID:26029483

  13. Impact of transforming growth factor-beta1 on atrioventricular node conduction modification by injected autologous fibroblasts in the canine heart.

    PubMed

    Bunch, T Jared; Mahapatra, Srijoy; Bruce, G Keith; Johnson, Susan B; Miller, Dylan V; Horne, Benjamin D; Wang, Xiao-Li; Lee, Hon-Chi; Caplice, Noel M; Packer, Douglas L

    2006-05-30

    Atrioventricular (AV) nodal ablation for management of atrial fibrillation (AF) is irreversible and requires permanent pacemaker implantation. We hypothesized that as an alternative, implantation of autologous fibroblasts in the perinodal region would focally modify AV nodal conduction and that this modulation would be enhanced by pretreatment with transforming growth factor-beta1 (TGF-beta1), a stimulant of fibroblasts. Skin biopsies were taken from 12 mongrel dogs, and derived fibroblasts were dissociated and grown in culture for 2 weeks. Multiple injections (0.25 mL) were made through an 8F NOGA catheter along the fast/slow AV nodal pathways as guided by an electroanatomic mapping system. Seven dogs received fibroblasts alone (1x10(6) cells/mL), 7 dogs received TGF-beta1 (5 microg), 4 dogs received fibroblasts and TGF-beta1 (1x10(6) cells/mL+5 microg), and 4 dogs received saline only. AV node function was assessed at baseline and after 4 weeks. Saline (80 mL) with assigned therapy (0.25 mL per injection) was injected into the peri-AV nodal region in each dog. At baseline, the AH interval (66+/-3 ms) and the average RR interval (331+/-17 ms) in pacing-induced AF were similar in each cohort. The increase in AH interval in normal sinus rhythm was longer after fibroblast (23+/-4 versus 5+/-5 ms; P=0.05) and fibroblast plus TGF-beta1 (50+/-5 versus 5+/-5 ms; P<0.001) injections than with saline alone, with similar findings during high right atrium and distal coronary sinus pacing. The AH interval was not significantly increased after TGF-beta1 injections. The AH interval was significantly longer after fibroblast plus TGF-beta1 injections than with either therapy (TGF-beta1 or fibroblasts) alone. The RR interval during AF was increased in dogs that received fibroblasts alone (110+/-36 versus -41+/-34 ms) and to a greater extent with the addition of TGF-beta1 (294+/-108 versus -41+/-34 ms). No AV block was seen in any cohort at 4 weeks. Labeled fibroblasts that expressed vimentin were identified in all dogs that received cell injections at 4 weeks. AV nodal modification can be achieved with injected fibroblasts without the creation of AV block. The effect on AV node conduction is substantially enhanced by pretreatment of fibroblasts with TGF-beta1. These data have therapeutic potential for the management of rapid ventricular rate during AF without pacemaker implantation.

  14. N-acetyl-L-cysteine increases MnSOD activity and enhances the recruitment of quiescent human fibroblasts to the proliferation cycle during wound healing

    PubMed Central

    Mao, Gaowei; Goswami, Monali; Kalen, Amanda L.; Goswami, Prabhat C.; Sarsour, Ehab H.

    2016-01-01

    Background The rebuilding of the connective tissue during wound healing requires the recruitment of fibroblasts to the wound area as well as reentry of quiescent fibroblasts to the proliferative cycle. Whether this process can be modulated by a small molecular weight thiol antioxidant N-acetyl-L-cysteine (NAC) was tested in normal human skin fibroblasts (NHFs) in this study. Methods and Results By using a uni-directional wound healing assay, NAC treated cells demonstrated a decreased migration rate but increased number of proliferating cells recruited into the wound area post wounding. Fifteen day quiescent control and NAC treated NHFs were re-plated at a lower density and cell numbers counted at different days post-plating. Interestingly, NAC treated cells exhibited increased cellular proliferation indicated by both decreased cell population doubling time and increased S phase cells. NAC treated cells demonstrated decreased steady state levels of reactive oxygen species as well as increased protein and activity levels of manganese superoxide dismutase (MnSOD). NAC treatment failed to induce proliferation in quiescent cells lacking MnSOD expression. Conclusions These results demonstrate that NAC enhanced the recruitment of quiescent NHFs into proliferation cycle during wound healing. Our results also suggest that the wound healing properties of NAC might be due to its ability to induce and enhance MnSOD expression and activity. Altogether, these findings suggest NAC might be potentially developed as a dietary intervention to improve tissue injury in animals and humans. PMID:26671656

  15. Effects of mechanical stretching on the morphology of extracellular polymers and the mRNA expression of collagens and small leucine-rich repeat proteoglycans in vaginal fibroblasts from women with pelvic organ prolapse.

    PubMed

    Wang, Sumei; Lü, Dongyuan; Zhang, Zhenyu; Jia, Xingyuan; Yang, Lei

    2018-01-01

    To determine the effect of mechanical stretching load and the efficacy of postmenopausal estrogen therapy (ET) on pelvic organ prolapse (POP), vaginal fibroblasts isolated from postmenopausal women with or without POP were subjected to 0.1-Hz uniaxial cyclic mechanical stretching (CS) with 10% elongation and 10-8 M 17-β-estradiol (E2) treatment. We investigated the morphological characteristics of extracellular polymers using scanning electron microscopy (SEM) and monitored the mRNA expression of type I collagen (COL I) and type III collagen (COL III) as well as the small leucine-rich proteoglycan (SLRP) family members decorin (DCN), biglycan (BGN), fibromodulin (FMO), and lumican (LUM), using real-time quantitative polymerase chain reaction (RT-PCR). Using SEM, certain viscoelastic polymers were found to be randomly distributed among fibroblasts, which for normal fibroblasts formed clusters of plum flower-like patterns under static-culture conditions and resembled stretched strips when stretched in culture, whereas polymers among POP fibroblasts resembled stretched strips under static-cultured conditions and presented broken networks when stretched in culture. RT-PCR revealed that COL I, DCN, BGN, FMO, and LUM mRNA expression was significantly higher in POP than in normal fibroblasts under static-culture condition. Following CS, COL I and BGN mRNA expression was significantly up-regulated in normal fibroblasts, and DCN and FMO mRNA expression was down-regulated in POP fibroblasts. Following concomitant CS and E2 treatment, significantly elevated COL I and DCN mRNA expression was observed in normal fibroblasts, and significantly elevated COL I and BGN mRNA expression was observed in POP fibroblasts. COL III mRNA expression was not significantly different between the POP and normal group, and CS did not significantly affect expression in either group, though COL III was down-regulated in normal fibroblasts concomitantly treated with E2 and CS. We conclude that the morphological distribution of extracellular polymers in POP fibroblasts exhibited higher sensitivity and lower tolerance to stretching loads than do normal fibroblasts. These mechanical properties were further reflected in the transcription of COL I. Defects in the compensatory function of BGN for DCN and LUM for FMO exist in POP fibroblasts, which further affect the structure and function of COL I in response to stretching load, ultimately resulting in abnormal reconstruction of pelvic supportive connective tissues and the occurrence of POP. ET can maintain stretching-induced elevations in COL I and DCN transcription in healthy women and improve stretching-induced COL I, DCN, BGN, and FMO transcriptional changes in POP women to prevent and improve POP. Only down-regulated COL III transcription was observed upon concomitant CS and E2 treatment in normal fibroblasts, which suggests that the tensile strength, not the elasticity, of the supportive connective tissues is damaged in POP and that the higher tensile strength induced by ET in healthy fibroblasts prevents POP. These findings confirm the role of higher sensitivity and lower tolerance to mechanical stretching in the pathogenesis of POP and further provide evidence supporting the use of ET to prevent and inhibit POP in postmenopausal women.

  16. Royal jelly protects against ultraviolet B-induced photoaging in human skin fibroblasts via enhancing collagen production.

    PubMed

    Park, Hye Min; Hwang, Eunson; Lee, Kwang Gill; Han, Sang-Mi; Cho, Yunhi; Kim, Sun Yeou

    2011-09-01

    Royal jelly (RJ) is a honeybee product containing proteins, carbohydrates, fats, free amino acids, vitamins, and minerals. As its principal unsaturated fatty acid, RJ contains 10-hydroxy-2-decenoic acid (10-HDA), which may have antitumor and antibacterial activity and a capacity to stimulate collagen production. RJ has attracted interest in various parts of the world for its pharmacological properties. However, the effects of RJ on ultraviolet (UV)-induced photoaging of the skin have not been reported. In this study we measured the 10-HDA content of RJ by high-performance liquid chromatography and tested the effects of RJ on UVB-induced skin photoaging in normal human dermal fibroblasts. The effects of RJ and 10-HDA on UVB-induced photoaging were tested by measuring procollagen type I, transforming growth factor (TGF)-β1, and matrix metalloproteinase (MMP)-1 after UVB irradiation. The RJ contained about 0.211% 10-HDA. The UVB-irradiated human skin fibroblasts treated with RJ and 10-HDA had increased procollagen type I and TGF-β1 productions, but the level of MMP-1 was not changed. Thus RJ may potentially protect the skin from UVB-induced photoaging by enhancing collagen production.

  17. Stretching Fibroblasts Remodels Fibronectin and Alters Cancer Cell Migration

    NASA Astrophysics Data System (ADS)

    Ao, Mingfang; Brewer, Bryson M.; Yang, Lijie; Franco Coronel, Omar E.; Hayward, Simon W.; Webb, Donna J.; Li, Deyu

    2015-02-01

    Most investigations of cancer-stroma interactions have focused on biochemical signaling effects, with much less attention being paid to biophysical factors. In this study, we investigated the role of mechanical stimuli on human prostatic fibroblasts using a microfluidic platform that was adapted for our experiments and further developed for both repeatable performance among multiple assays and for compatibility with high-resolution confocal microscopy. Results show that mechanical stretching of normal tissue-associated fibroblasts (NAFs) alters the structure of secreted fibronectin. Specifically, unstretched NAFs deposit and assemble fibronectin in a random, mesh-like arrangement, while stretched NAFs produce matrix with a more organized, linearly aligned structure. Moreover, the stretched NAFs exhibited an enhanced capability for directing co-cultured cancer cell migration in a persistent manner. Furthermore, we show that stretching NAFs triggers complex biochemical signaling events through the observation of increased expression of platelet derived growth factor receptor α (PDGFRα). A comparison of these behaviors with those of cancer-associated fibroblasts (CAFs) indicates that the observed phenotypes of stretched NAFs are similar to those associated with CAFs, suggesting that mechanical stress is a critical factor in NAF activation and CAF genesis.

  18. Substance P induced preprotachykinin-a mRNA, neutral endopeptidase mRNA and substance P in cultured normal fibroblasts.

    PubMed

    Bae, Sang-Jae; Matsunaga, Yoshitaka; Takenaka, Motoi; Tanaka, Yoichi; Hamazaki, Yoichiro; Shimizu, Kazuhiro; Katayama, Ichiro

    2002-04-01

    In certain skin diseases, stress can modulate the induction and/or progression of cutaneous manifestations. However, little is known about the circuit in neuroendocrine and in the immune systems of the skin. To address this question, we have analyzed the regulatory mechanisms of autocrine induction of substance P (SP) by cultured normal human fibroblasts that compose the major population of the skin and might augment stress-induced skin inflammatory responses. In nonstimulated conditions, normal fibroblasts express a moderate amount of preprotachykinin-A (PPT-A), a precursor of SP mRNA, and exogenous SP significantly upregulated PPT-A mRNA expression. Maximum response of SP peptide and SP mRNA in fibroblasts was observed 1-3 h after stimulation with SP. In contrast, the expression of neutral endopeptidase (NEP), a cell surface peptide with hydrolyzing activity of SP, was increased in fibroblasts stimulated with SP after 24 h. The administration of NEP inhibitor (phosphoramidon) to the fibroblasts induced higher SP production. In addition, the neurokinin (NK) receptor antagonists (spantide, FK224 and FK888) and protein synthesis inhibitor (cycloheximide) inhibited SP production by 30-40% of control response. In immunostaining study, specific cytoplasmic staining of SP was observed in fibroblasts stimulated with SP. Finally, we confirmed that the nucleotide sequence of the PPT-A expressed in fibroblasts perfectly corresponded to the gene bank human PPT-A cDNA. This is the first report that SP mRNA, NEP mRNA and SP peptide can be induced by normal human skin fibroblasts in response to exogenous SP, and that fibroblast-derived SP might play an important role in the induction and acceleration of certain cutaneous diseases. Copyright 2002 S. Karger AG, Basel

  19. Rabbit collagenase. Immunological identity of the enzymes released from cells and tissues in normal and pathological conditions.

    PubMed Central

    Werb, Z; Reynolds, J J

    1975-01-01

    1. The immunological cross-reactivity between rabbit collagenases from a variety of normal and pathological sources was examined. The specific antibody raised against collagenase secreted from normal rabbit synovial fibroblasts gave reactions of complete identity with collagenases secreted from fibroblasts derived from rabbit skin, and from synovium from experimentally arthritic rabbits. 2. The rabbit fibroblast collagenase was immunologically identical with collagenases obtained from the organ culture medium of normal rabbit skin, synovium, ear fibrocartilage and subchondral bone. 3. Collagenases from the culture media of normal rabbit synovium and from hyperplastic synovium of rabbits made experimentally arthritic were identical. 4. The collagenase secreted from rabbit fibroblasts gave a reaction completely identical with that of a collagenase extracted directly from a rabbit carcinoma. 5. IgG (immunoglobulin G) from a specific antiserum to rabbit fibroblast collagenase was a potent inhibitor of the collagenases obtained from the culture media of the various rabbit cells and tissues. 6. Collagenases from human synovium and from mouse macrophages and bone were neither precipitated nor inhibited by antibodies to rabbit collagenase. 7. No immunoreactive material was found in lysates of rabbit polymorphonuclear leucocyte granules with the specific antisera to rabbit fibroblast collagenase. No evidence for inactive forms of rabbit collagenase in lysates of the rabbit synovial fibroblasts could be found, either by double immunodiffusion against the specific collagenase, or by displacement of active enzyme from inhibition by the IgG. Images PLATE 1 PMID:56176

  20. Immortalization of normal human fibroblasts by treatment with 4-nitroquinoline 1-oxide.

    PubMed

    Bai, L; Mihara, K; Kondo, Y; Honma, M; Namba, M

    1993-02-01

    Normal human fibroblasts (the OUMS-24 strain), derived from a 6-week-old human embryo, were transformed (into the OUMS-24F line) and immortalized by repeated treatments (59 times) with 4-nitroquinoline 1-oxide (4NQO). Treatment began during primary culture and ended at the 51st population doubling level (PDL). At the 57th PDL (146 days after the last treatment), morphologically altered, epithelial-type cells appeared, began to grow and became immortal (now past the 100th PDL). However, the control fibroblasts, which were not treated with 4NQO, senesced at the 62nd PDL. The finding that extensive, repeated treatments with 4NQO are required for the immortalization of normal human cells, indicates that multiple mutational events are involved in the immortalization of human cells in general. In other words, immortalization itself seems to be a multi-step process. Karyotypic analysis showed that many cells were hypodiploid before immortalization, but that afterwards chromosomes were distributed broadly in the diploid to tetraploid regions. The immortalized cells showed amplification and enhanced expression of c-myc. Two-dimensional electrophoretic analysis showed that the number of disappearing cellular proteins was greater than the number of the newly appearing ones after the cells became immortalized. Since the immortalized cells showed neither anchorage-independent growth nor tumorigenicity, they are useful for studying factors that can contribute to multi-step carcinogenesis in human cells. In addition, genetically matched normal (OUMS-24) and immortalized (OUMS-24F) cells will be useful for analyzing the genes related to cellular mortality and immortalization.

  1. Clinical Investigation Program Annual Progress Report.

    DTIC Science & Technology

    1985-09-30

    027 78/114 In Vitro Effect of Minoxidil on Collagen Produc- tion by Normal and Scleroderma Fibroblasts (C) (PR...effect of minoxidil on collagen production Dy normal and scleroderma fibroblasts. Previously titled: The use of minoxidil in treating progressive...Svc: (tO) Assoc Investigators: (11) Key Words: scleroderma, minoxidil Thomas P. O’Barr PhD, DAC fibroblasts, collagen Ellen Swanson MS, DAC Don

  2. A Protective Mechanism of Visible Red Light in Normal Human Dermal Fibroblasts: Enhancement of GADD45A-Mediated DNA Repair Activity.

    PubMed

    Kim, Yeo Jin; Kim, Hyoung-June; Kim, Hye Lim; Kim, Hyo Jeong; Kim, Hyun Soo; Lee, Tae Ryong; Shin, Dong Wook; Seo, Young Rok

    2017-02-01

    The phototherapeutic effects of visible red light on skin have been extensively investigated, but the underlying biological mechanisms remain poorly understood. We aimed to elucidate the protective mechanism of visible red light in terms of DNA repair of UV-induced oxidative damage in normal human dermal fibroblasts. The protective effect of visible red light on UV-induced DNA damage was identified by several assays in both two-dimensional and three-dimensional cell culture systems. With regard to the protective mechanism of visible red light, our data showed alterations in base excision repair mediated by growth arrest and DNA damage inducible, alpha (GADD45A). We also observed an enhancement of the physical activity of GADD45A and apurinic/apyrimidinic endonuclease 1 (APE1) by visible red light. Moreover, UV-induced DNA damages were diminished by visible red light in an APE1-dependent manner. On the basis of the decrease in GADD45A-APE1 interaction in the activating transcription factor-2 (ATF2)-knockdown system, we suggest a role for ATF2 modulation in GADD45A-mediated DNA repair upon visible red light exposure. Thus, the enhancement of GADD45A-mediated base excision repair modulated by ATF2 might be a potential protective mechanism of visible red light. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Uncoupling oxidative phosphorylation with 2,4-dinitrophenol promotes development of the adhesion phenotype.

    PubMed

    Shavell, Valerie I; Fletcher, Nicole M; Jiang, Zhong L; Saed, Ghassan M; Diamond, Michael P

    2012-03-01

    To determine the effect of uncoupling oxidative phosphorylation with 2,4-dinitrophenol (DNP) on adhesion phenotype development. Prospective experimental study. Academic medical center. Women undergoing laparotomy for pelvic pain from whom normal peritoneum and adhesions were excised to create primary cultures of normal peritoneal and adhesion fibroblasts. Treatment of normal peritoneal and adhesion fibroblasts isolated from the same patient(s) with or without 0.2 mM DNP for 24 hours. Evaluation of adhesion phenotype markers type I collagen, vascular endothelial growth factor (VEGF), and hypoxia-inducible factor (HIF)-1α. In agreement with prior findings, adhesion fibroblasts exhibited significantly higher basal levels of type I collagen, VEGF, and HIF-1α compared with normal peritoneal fibroblasts. Treatment of normal peritoneal fibroblasts with DNP resulted in significant increases in type I collagen (10.2 ± 1.4 vs. 18.4 ± 1.9 fg/μg RNA) and VEGF (8.2 ± 1.1 vs. 13.7 ± 0.4 fg/μg RNA) over baseline. HIF-1α levels did not increase when normal peritoneal fibroblasts were treated with DNP. The adhesion phenotype, which is normally expressed in response to hypoxia, is reproduced in a normoxic environment by uncoupling oxidative phosphorylation with DNP, as evidenced by an increase in type I collagen and VEGF. Acquisition of the adhesion phenotype was via a mechanism distinct from up-regulation of HIF-1α. These observations are consistent with the hypothesis that the adhesion phenotype represents a state of intracellular metabolic depletion. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Higher miRNA Tolerance in Immortal Li-Fraumeni Fibroblasts with Abrogated Interferon Signaling Pathway

    PubMed Central

    Li, Qunfang; Tainsky, Michael A.

    2013-01-01

    The IFN pathway is abrogated in fibroblasts from Li-Fraumeni syndrome (LFS) patients during spontaneous cellular immortalization, a necessary step in carcinogenesis. Microarray profiling of differentially expressed microRNAs (miRNA) revealed that most miRNAs were upregulated in IFN pathway–defective MDAH087-10 fibroblasts compared with MDAH087-N cells with relatively normal IFN signaling. Overexpression of Dicer, a critical enzyme in miRNA biogenesis, promoted cell growth and colony formation in MDAH087-10 cells. However, double-stranded miRNA produced by Dicer enhanced the expression of IFN-stimulated genes in MDAH087-N cells resulting in significant cell death and reduced cell growth. Furthermore, manipulation of the IFN pathway in immortal LFS fibroblasts through transcription factor IRF7 reversed their response to Dicer overexpression due to changed IFN pathway activity. Dicer overexpressing MDAH087-N cells contained lower levels of miRNA than vector control, and conversely much higher miRNA expression was detected in Dicertransfected MDAH087-10 cells. Therefore, cells with a defective IFN pathway have a higher miRNA tolerance than cells with normal IFN pathway. This work indicates for the first time that the IFN pathway as mediated through the transcription factor IRF7 must be disrupted to permit miRNA upregulation to occur in early carcinogenesis. The IFN pathway appears to provide a checkpoint for miRNA level tolerance and its abrogation leads to cellular immortalization. PMID:21199806

  5. Higher miRNA tolerance in immortal Li-Fraumeni fibroblasts with abrogated interferon signaling pathway.

    PubMed

    Li, Qunfang; Tainsky, Michael A

    2011-01-01

    The IFN pathway is abrogated in fibroblasts from Li-Fraumeni syndrome (LFS) patients during spontaneous cellular immortalization, a necessary step in carcinogenesis. Microarray profiling of differentially expressed microRNAs (miRNA) revealed that most miRNAs were upregulated in IFN pathway-defective MDAH087-10 fibroblasts compared with MDAH087-N cells with relatively normal IFN signaling. Overexpression of Dicer, a critical enzyme in miRNA biogenesis, promoted cell growth and colony formation in MDAH087-10 cells. However, double-stranded miRNA produced by Dicer enhanced the expression of IFN-stimulated genes in MDAH087-N cells resulting in significant cell death and reduced cell growth. Furthermore, manipulation of the IFN pathway in immortal LFS fibroblasts through transcription factor IRF7 reversed their response to Dicer overexpression due to changed IFN pathway activity. Dicer overexpressing MDAH087-N cells contained lower levels of miRNA than vector control, and conversely much higher miRNA expression was detected in Dicer-transfected MDAH087-10 cells. Therefore, cells with a defective IFN pathway have a higher miRNA tolerance than cells with normal IFN pathway. This work indicates for the first time that the IFN pathway as mediated through the transcription factor IRF7 must be disrupted to permit miRNA upregulation to occur in early carcinogenesis. The IFN pathway appears to provide a checkpoint for miRNA level tolerance and its abrogation leads to cellular immortalization. © 2011 AACR.

  6. Curcumin inhibits TGF-β1-induced connective tissue growth factor expression through the interruption of Smad2 signaling in human gingival fibroblasts.

    PubMed

    Chen, Jung-Tsu; Wang, Chen-Ying; Chen, Min-Huey

    2018-01-13

    Many fibrotic processes are associated with an increased level of transforming growth factor-β1 (TGF-β1). TGF-β1 can increase synthesis of matrix proteins and enhance secretion of protease inhibitors, resulting in matrix accumulation. Connective tissue growth factor (CTGF) is a downstream profibrotic effector of TGF-β1 and is associated with the fibrosis in several human organs. Curcumin has been applied to reduce matrix accumulation in fibrotic diseases. This study was aimed to evaluate whether curcumin could suppress TGF-β1-induced CTGF expression and its related signaling pathway involving in this inhibitory action in primary human gingival fibroblasts. The differences in CTGF expression among three types of gingival overgrowth and normal gingival tissues were assessed by immunohistochemistry. Gingival fibroblast viability in cultured media with different concentrations of curcumin was studied by MTT assay. The effect of curcumin on TGF-β1-induced CTGF expression in primary human gingival fibroblasts was examined by immunoblotting. Moreover, the proteins involved in TGF-β1 signaling pathways including TGF-β1 receptors and Smad2 were also analyzed by immunoblotting. CTGF was highly expressed in fibroblasts, epithelial cells and some of endothelial cells, smooth muscle cells, and inflammatory cells in phenytoin-induced gingival overgrowth tissues rather than in those of hereditary and inflammatory gingival overgrowth tissues. Moreover, CTGF expression in the epithelial and connective tissue layers was higher in phenytoin-induced gingival overgrowth tissues than in normal gingival tissues. Curcumin was nontoxic and could reduce TGF-β1-induced CTGF expression by attenuating the phosphorylation and nuclear translocation of Smad2. Curcumin can suppress TGF-β1-induced CTGF expression through the interruption of Smad2 signaling. Copyright © 2018. Published by Elsevier B.V.

  7. Mitochondrial vulnerability and increased susceptibility to nutrient-induced cytotoxicity in fibroblasts from leigh syndrome French canadian patients.

    PubMed

    Burelle, Yan; Bemeur, Chantal; Rivard, Marie-Eve; Thompson Legault, Julie; Boucher, Gabrielle; Morin, Charles; Coderre, Lise; Des Rosiers, Christine

    2015-01-01

    Mutations in LRPPRC are responsible for the French Canadian variant of Leigh Syndrome (LSFC), a severe disorder characterized biochemically by a tissue-specific deficiency of cytochrome c oxidase (COX) and clinically by the occurrence of severe and deadly acidotic crises. Factors that precipitate these crises remain unclear. To better understand the physiopathology and identify potential treatments, we performed a comprehensive analysis of mitochondrial function in LSFC and control fibroblasts. Furthermore, we have used this cell-based model to screen for conditions that promote premature cell death in LSFC cells and test the protective effect of ten interventions targeting well-defined aspects of mitochondrial function. We show that, despite maintaining normal ATP levels, LSFC fibroblasts present several mitochondrial functional abnormalities under normal baseline conditions, which likely impair their capacity to respond to stress. This includes mitochondrial network fragmentation, impaired oxidative phosphorylation capacity, lower membrane potential, increased sensitivity to Ca2+-induced permeability transition, but no changes in reactive oxygen species production. We also show that LSFC fibroblasts display enhanced susceptibility to cell death when exposed to palmitate, an effect that is potentiated by high lactate, while high glucose or acidosis alone or in combination were neutral. Furthermore, we demonstrate that compounds that are known to promote flux through the electron transport chain independent of phosphorylation (methylene blue, dinitrophenol), or modulate fatty acid (L-carnitine) or Krebs cycle metabolism (propionate) are protective, while antioxidants (idebenone, N-acetyl cysteine, resveratrol) exacerbate palmitate plus lactate-induced cell death. Collectively, beyond highlighting multiple alterations in mitochondrial function and increased susceptibility to nutrient-induced cytotoxicity in LSFC fibroblasts, these results raise questions about the nature of the diets, particularly excess fat intake, as well as on the use of antioxidants in patients with LSFC and, possibly, other COX defects.

  8. The hyperthermia-enhanced association between tropoelastin and its 67-kDa chaperone results in better deposition of elastic fibers.

    PubMed

    Murphy, Brooke A; Bunda, Severa; Mitts, Thomas; Hinek, Aleksander

    2010-12-17

    The results of our in vitro experiments indicate that exposing cultured human aortic smooth muscle cells and dermal fibroblasts to 39 to 41 °C induces a significant up-regulation in the net deposition of elastic fibers, but not of collagen I or fibronectin, and also decreases the deposition of chondroitin sulfate-containing moieties. We further demonstrate that mild hyperthermia also rectifies the insufficient elastogenesis notable in cultures of fibroblasts derived from the stretch-marked skin of adult patients and in cultures of dermal fibroblasts from children with Costello syndrome, which is characterized by the accumulation of chondroitin 6-sulfate glycosaminoglycans that induce shedding and inactivation of the 67-kDa elastin-binding protein. We have previously established that this protein serves as a reusable chaperone for tropoelastin and that its recycling is essential for the normal deposition of elastic fibers. We now report that hyperthermia not only inhibits deposition of chondroitin 6-sulfate moieties and the consequent preservation of elastin-binding protein molecules but also induces their faster recycling. This, in turn, triggers a more efficient preservation of tropoelastin, enhancement of its secretion and extracellular assembly into elastic fibers. The presented results encourage using mild hyperthermia to restore elastic fiber production in damaged adult skin and to enhance elastogenesis in children with genetic elastinopathies.

  9. Chronic exposure of interleukin-13 suppress the induction of matrix metalloproteinase-1 by tumour necrosis factor α in normal and scleroderma dermal fibroblasts through protein kinase B/Akt.

    PubMed

    Brown Lobbins, M L; Shivakumar, B R; Postlethwaite, A E; Hasty, K A

    2018-01-01

    Peripheral blood mononuclear cells taken from patients with scleroderma express increased levels of interleukin (IL)-13. Moreover, the expression of matrix metalloproteinase-1 (MMP-1) from involved scleroderma skin fibroblasts is refractory to stimulation by tumour necrosis factor (TNF)-α. To elucidate the mechanism(s) involved, we examined the effect of IL-13 on TNF-α-induced MMP-1 expression in normal and scleroderma human dermal fibroblast lines and studied the involvement of serine/threonine kinase B/protein kinase B (Akt) in this response. Dermal fibroblast lines were stimulated with TNF-α in the presence of varying concentrations of IL-13. Total Akt and pAkt were quantitated using Western blot analyses. Fibroblasts were treated with or without Akt inhibitor VIII in the presence of IL-13 followed by TNF-α stimulation. MMP-1 expression was analysed by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using analysis of variance (anova) or Student's t-test. Upon TNF-α stimulation, normal dermal fibroblasts secrete more MMP-1 than systemic sclerosis (SSc) fibroblasts. This increase in MMP-1 is lost when fibroblasts are co-incubated with IL-13 and TNF-α. IL-13 induced a significant increase in levels of pAkt in dermal fibroblasts, while Akt inhibitor VIII reversed the suppressive effects of IL-13 on the response of cultured fibroblasts to TNF-α, increasing their expression of MMP-1. We show that IL-13 suppresses MMP-1 in TNF-α-stimulated normal and scleroderma dermal fibroblast. Akt inhibitor VIII is able to reverse the suppressive effect of IL-13 on MMP-1 expression and protein synthesis. Our data suggest that IL-13 regulates MMP-1 expression in response to TNF-α through an Akt-mediated pathway and may play a role in fibrotic diseases such as scleroderma. © 2017 British Society for Immunology.

  10. ATM-dependent DNA damage checkpoint functions regulate gene expression in human fibroblasts

    PubMed Central

    Zhou, Tong; Chou, Jeff; Zhou, Yingchun; Simpson, Dennis A.; Cao, Feng; Bushel, Pierre R.; Paules, Richard S.; Kaufmann, William K.

    2013-01-01

    The relationships between profiles of global gene expression and DNA damage checkpoint functions were studied in cells from patients with ataxia telangiectasia (AT). Three telomerase-expressing AT fibroblast lines displayed the expected hypersensitivity to ionizing radiation (IR) and defects in DNA damage checkpoints. Profiles of global gene expression in AT cells were determined at 2, 6 and 24 h after treatment with 1.5 Gy IR or sham-treatment, and were compared to those previously recognized in normal human fibroblasts. Under basal conditions 160 genes or ESTs were differentially expressed in AT and normal fibroblasts, and these were associated by gene ontology with insulin-like growth factor binding and regulation of cell growth. Upon DNA damage, 1091 gene mRNAs were changed in at least two of the three AT cell lines. When compared with the 1811 genes changed in normal human fibroblasts after the same treatment, 715 were found in both AT and normal fibroblasts, including most genes categorized by gene ontology into cell cycle, cell growth and DNA damage response pathways. However, the IR-induced changes in these 715 genes in AT cells usually were delayed or attenuated in comparison to normal cells. The reduced change in DNA-damage-response genes and the attenuated repression of cell-cycle-regulated genes may account for the defects in cell cycle checkpoint function in AT cells. PMID:17699107

  11. Hereditary orotic aciduria, Lesch-Nyhan syndrome, and xeroderma pigmentosum probed by herpes simplex virus: /sup 125/I-iododeoxycytidine incorporation as an assay for viral growth. [Human fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campisi, J.; Hafner, J.; Boorstein, R.

    /sup 125/I-Iododeoxycytidine (/sup 125/IdC) incorporation into acid-insoluble material was a sensitive, rapid, and quantitative assay for the growth of herpes simplex virus type 1 (HSV-1) in human fibroblasts. Cellular utilization of the isotope was 10 to 25% of the incorporation by infected cells and could be 80% inhibited by tetrahydrouridine (THU). Viral utilization was inhibited by acycloguanosine, thioguanine (TG), and cytosine arabinoside. Isotope was incorporated equally well by growing or quiescent infected cells. HSV-1 was used to probe the metabolic capabilities of three mutant human fibroblast strains. /sup 125/IdC incorporation quantitatively measured the ability of the virus to grow inmore » these cells. Viral /sup 125/IdC incorporation was sensitive to TG in normal fibroblasts but showed a 8- to 10-fold greater resistance to TG in fibroblasts derived from patients with Lesch-Nyhan syndrome (LN). Similarly, the growth of ultraviolet irradiated HSV-1 in normal fibroblasts was 5-fold greater than in fibroblasts derived from patients with xeroderma pigmentosum. In fibroblasts derived from patients with hereditary orotic aciduria, viral /sup 125/IdC incorporation was sensitive to adenosine (AD) at concentrations which were slightly stimulatory in normal fibroblasts. This was a 2-fold difference in AD sensitivity, which the radioassay reliably and quantitatively documented. HSV-1 infected cells could be individually identified by their incorporated /sup 125/IdC; such cells had blackened nuclei in autoradiograms prepared 12 hr after infection. Normal cells infected in the presence of TG had many fewer labeled nuclei than LN cells similarly infected in the presence of the drug. (JMT)« less

  12. Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts

    PubMed Central

    Gupta, Manoj K.; Teo, Adrian Kee Keong; Rao, Tata Nageswara; Bhatt, Shweta; Kleinridders, Andre; Shirakawa, Jun; Takatani, Tomozumi; Hu, Jiang; De Jesus, Dario F.; Windmueller, Rebecca; Wagers, Amy J.

    2015-01-01

    The impact of somatic cell proliferation rate on induction of pluripotent stem cells remains controversial. Herein, we report that rapid proliferation of human somatic fibroblasts is detrimental to reprogramming efficiency when reprogrammed using a lentiviral vector expressing OCT4, SOX2, KLF4, and cMYC in insulin-rich defined medium. Human fibroblasts grown in this medium showed higher proliferation, enhanced expression of insulin signaling and cell cycle genes, and a switch from glycolytic to oxidative phosphorylation metabolism, but they displayed poor reprogramming efficiency compared with cells grown in normal medium. Thus, in contrast to previous studies, our work reveals an inverse correlation between the proliferation rate of somatic cells and reprogramming efficiency, and also suggests that upregulation of proteins in the growth factor signaling pathway limits the ability to induce pluripotency in human somatic fibroblasts. Significance The efficiency with which human cells can be reprogrammed is of interest to stem cell biology. In this study, human fibroblasts cultured in media containing different concentrations of growth factors such as insulin and insulin-like growth factor-1 exhibited variable abilities to proliferate, with consequences on pluripotency. This occurred in part because of changes in the expression of proteins involved in the growth factor signaling pathway, glycolysis, and oxidative phosphorylation. These findings have implications for efficient reprogramming of human cells. PMID:26253715

  13. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts

    PubMed Central

    Baroni, S; Romero-Cordoba, S; Plantamura, I; Dugo, M; D'Ippolito, E; Cataldo, A; Cosentino, G; Angeloni, V; Rossini, A; Daidone, M G; Iorio, M V

    2016-01-01

    It is established that the interaction between microenvironment and cancer cells has a critical role in tumor development, given the dependence of neoplastic cells on stromal support. However, how this communication promotes the activation of normal (NFs) into cancer-associated fibroblasts (CAFs) is still not well understood. Most microRNA (miRNA) studies focused on tumor cell, but there is increasing evidence of their involvement in reprogramming NFs into CAFs. Here we show that miR-9, upregulated in various breast cancer cell lines and identified as pro-metastatic miRNA, affects the properties of human breast fibroblasts, enhancing the switch to CAF phenotype, thus contributing to tumor growth. Expressed at higher levels in primary triple-negative breast CAFs versus NFs isolated from patients, miR-9 improves indeed migration and invasion capabilities when transfected in immortalized NFs; viceversa, these properties are strongly impaired in CAFs upon miR-9 inhibition. We also demonstrate that tumor-secreted miR-9 can be transferred via exosomes to recipient NFs and this uptake results in enhanced cell motility. Moreover, we observed that this miRNA is also secreted by fibroblasts and in turn able to alter tumor cell behavior, by modulating its direct target E-cadherin, and NFs themselves. Consistently with the biological effects observed, gene expression profiles of NFs upon transient transfection with miR-9 show the modulation of genes mainly involved in cell motility and extracellular matrix remodeling pathways. Finally, we were able to confirm the capability of NFs transiently transfected with miR-9 to promote in vivo tumor growth. Taken together, these data provide new insights into the role of miR-9 as an important player in the cross-talk between cancer cells and stroma. PMID:27468688

  14. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts.

    PubMed

    Baroni, S; Romero-Cordoba, S; Plantamura, I; Dugo, M; D'Ippolito, E; Cataldo, A; Cosentino, G; Angeloni, V; Rossini, A; Daidone, M G; Iorio, M V

    2016-07-28

    It is established that the interaction between microenvironment and cancer cells has a critical role in tumor development, given the dependence of neoplastic cells on stromal support. However, how this communication promotes the activation of normal (NFs) into cancer-associated fibroblasts (CAFs) is still not well understood. Most microRNA (miRNA) studies focused on tumor cell, but there is increasing evidence of their involvement in reprogramming NFs into CAFs. Here we show that miR-9, upregulated in various breast cancer cell lines and identified as pro-metastatic miRNA, affects the properties of human breast fibroblasts, enhancing the switch to CAF phenotype, thus contributing to tumor growth. Expressed at higher levels in primary triple-negative breast CAFs versus NFs isolated from patients, miR-9 improves indeed migration and invasion capabilities when transfected in immortalized NFs; viceversa, these properties are strongly impaired in CAFs upon miR-9 inhibition. We also demonstrate that tumor-secreted miR-9 can be transferred via exosomes to recipient NFs and this uptake results in enhanced cell motility. Moreover, we observed that this miRNA is also secreted by fibroblasts and in turn able to alter tumor cell behavior, by modulating its direct target E-cadherin, and NFs themselves. Consistently with the biological effects observed, gene expression profiles of NFs upon transient transfection with miR-9 show the modulation of genes mainly involved in cell motility and extracellular matrix remodeling pathways. Finally, we were able to confirm the capability of NFs transiently transfected with miR-9 to promote in vivo tumor growth. Taken together, these data provide new insights into the role of miR-9 as an important player in the cross-talk between cancer cells and stroma.

  15. Carrier detection of pyruvate carboxylase deficiency in fibroblasts and lymphocytes.

    PubMed

    Atkin, B M

    1979-10-01

    Pyruvate carboxylase (E.C. 6.4.1.1) activity was determined in the circulating peripheral lymphocytes and cultured skin fibroblasts from the family of a patient with hepatic, cerebral, renal cortical, leukocyte, and fibroblast pyruvate carboxylase deficiency (PC Portland deficiency). Lymphocyte activities were: mother, 33--39%; father, 11--29%; brother, 82--103%; and sister, 38--48% of the lowest normal. Fibroblasts from the patient's mother and father had 42 and 34%, respectively, of the activity of the lowest normal. These data demonstrate that the disease is inherited in an autosomal recessive manner and that lymphocytes and fibroblasts can be used to detect carriers. Neither pyruvate carboxylase nor mitochondrial PEPCK activity in lymphocytes was increased by a 21-hr fast.

  16. Abnormal responses to the carcinogen 4-nitroquinoline 1-oxide of cultured fibroblasts from patients with dysplastic nevus syndrome and hereditary cutaneous malignant melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.J.; Greene, M.H.; Adams, D.

    The dysplastic nevus syndrome (DNS) is a preneoplastic melanocyte abnormality which occurs in families affected by hereditary cutaneous malignant melanoma (HCMM). A putative role of host-environmental interactions in the etiology of hereditary melanoma has been strengthened by the recent finding that fibroblasts derived from HCMM/DNS patients demonstrated enhanced sensitivity to u.v.-irradiation in vitro. An extension of these studies is reported in which we have examined the invitro responses to a model environmental carcinogen, 4-nitroquinoline 1-oxide (4NQO), of six non-tumor skin fibroblast strains from HCMM/DNS patients representing five families. Three of the six HCMM/DNS strains showed enhanced cell killing with sensitivitiesmore » greater than that of a xeroderma pigmentosum (XP) variant strain but less than those of ataxia telangiectasia and XP Group D cell strains. The inhibition and recovery of de novo DNA synthesis, together with the expression of repair synthesis, following 4NQO exposure appeared to be normal in HCMM/DNS strains, irrespective of their subsequent clonogenic potential. The data point to a metabolic anomaly which may contribute to the carcinogenic risk of the melanoma prone preneoplastic state presented by some DNS patients.« less

  17. Investigation of the phototoxic effect of ZnO nanorods on fibroblasts and melanoma human cells

    NASA Astrophysics Data System (ADS)

    Kishwar, S.; Siddique, M.; Israr-Qadir, M.; Nur, O.; Willander, M.; Öllinger, K.

    2014-11-01

    Photocytotoxic effects of as-grown and zinc oxide (ZnO) nanorods coated with 5-aminolevulinic acid (ALA) have been studied on human cells, i.e. melanoma and foreskin fibroblast, under dark and ultraviolet light exposures. Zinc oxide nanorods have been grown on the very sharp tip (diameter = 700 nm) of borosilicate glass pipettes and then were coated by the photosensitizer for targeted investigations inside human cells. The coated glass pipette’s tip with photosensitizer has been inserted inside the cells with the help of a micro-manipulator and irradiated through ultraviolet light (UVA), which reduces the membrane potential of the mitochondria leading to cell death. Cell viability loss has been detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay when exposed to the dissolved ZnO nanorods and the production of the reactive oxygen species (ROS) has been detected along with the enhanced cytotoxic effect under UVA irradiation. Additionally, the influence of the lipid soluble antioxidant vitamin E and water-soluble N-acetyl-cysteine toward the enhancement or reduction of the toxicity has been investigated. A comparative analysis of the toxic nature of ZnO nanorods has been drawn between normal human fibroblast and melanoma cells, which can be favorable for understanding the clinical setting for killing tumor cells.

  18. In vitro blood and fibroblast responses to BisGMA-TEGDMA/bioactive glass composite implants.

    PubMed

    Abdulmajeed, Aous A; Kokkari, Anne K; Käpylä, Jarmo; Massera, Jonathan; Hupa, Leena; Vallittu, Pekka K; Närhi, Timo O

    2014-01-01

    This in vitro study was designed to evaluate both blood and human gingival fibroblast responses to bisphenol A-glycidyl methacrylate-triethyleneglycol dimethacrylate (BisGMA-TEGDMA)/bioactive glass (BAG) composite, aimed to be used as composite implant abutment surface modifier. Three different types of substrates were investigated: (a) plain polymer (BisGMA 50 wt%-TEGDMA 50 wt%), (b) BAG-composite (50 wt% polymer + 50 wt% fraction of BAG-particles, <50 μm), and (c) plain BAG plates (100 wt% BAG). The blood response, including the blood-clotting ability and platelet adhesion morphology were evaluated. Human gingival fibroblasts were plated and cultured on the experimental substrates for up to 10 days, then the cell proliferation rate was assessed using AlamarBlue assay™. The BAG-composite and plain BAG substrates had a shorter clotting time than plain polymer substrates. Platelet activation and aggregation were most extensive, qualitatively, on BAG-composite. Analysis of the normalized cell proliferation rate on the different surfaces showed some variations throughout the experiment, however, by day 10 the BAG-composite substrate showed the highest (P < 0.001) cell proliferation rate. In conclusion, the presence of exposed BAG-particles enhances fibroblast and blood responses on composite surfaces in vitro.

  19. [Enhancement of wound healing by taspine and its effect on fibroblast].

    PubMed

    Dong, Yalin; He, Langchong; Chen, Fang

    2005-07-01

    To study the effect of taspine on enhancement of skin wound healing and its effect on fibroblast proliferation and autocrine. The plerosis effect of taspine on experimental skin wound was observed in vivo. Different concentrations of taspine were added in vitro and MTT technique was applied to observe its effect on fibroblast proliferation, the levels of transforming growth factor-beta1 (TGF-13P) and epidermal growth factor (EGF) were determined by ELISA. In vivo, exo-applied taspine 300 microg and 150 microg accelerated the recovery of skin wound. In vitro, 0.50-0.4 microg/ml taspine could increase autocrine of TGF-beta1and EGF by fibroblast, but it showed no effect on L929 fibroblast proliferation. Taspine enhances wound healing by increasing the autocrine of TGF-beta1 and EGF by fibroblast.

  20. Altered chloride metabolism in cultured cystic fibrosis skin fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattes, P.M.; Maloney, P.C.; Littlefield, J.W.

    1987-05-01

    An abnormal regulation of chloride permeability has been described for epithelial cells from patients with cystic fibrosis (CF). To learn more about the biochemical basis of this inherited disease, the authors have studied chloride metabolism in cultured CF fibroblasts by comparing the efflux of /sup 36/Cl/sup -/ from matched pairs of CF and normal fibroblasts. The rate constants describing /sup 36/Cl/sup -/ efflux did not differ between the two cell types, but in each of the four pairs tested the amount of /sup 36/Cl/sup -/ contained within CF cells was consistently reduced, by 25-30%, relative to normal cells. Comparisons ofmore » cell water content and /sup 22/Na/sup +/ efflux showed no differences between the two cell types, suggesting that overall intracellular chloride concentration is lower than normal in CF fibroblasts. Such data suggest that the CF gene defect is expressed in skin fibroblasts and that this defect may alter the regulation of intracellular Cl/sup -/ concentration, perhaps through changes in Cl/sup -/ permeability.« less

  1. Fibroblast growth factor 8 is expressed at higher levels in lactating human breast and in breast cancer.

    PubMed

    Zammit, C; Coope, R; Gomm, J J; Shousha, S; Johnston, C L; Coombes, R C

    2002-04-08

    Fibroblast growth factor 8 can transform NIH3T3 cells and its expression has been found to be associated with breast and prostate cancer. Following our finding that fibroblast growth factor 8 mRNA expression is increased in breast cancer, we have undertaken an immunohistochemistry study of fibroblast growth factor 8 expression in a series of human breast tissues and other normal tissues. Our findings confirm increased expression of fibroblast growth factor 8 in malignant breast tissue but also show significant fibroblast growth factor 8 expression in non-malignant breast epithelial cells. No significant difference in fibroblast growth factor 8 expression was found between different grades of ductal carcinoma, lobular carcinoma and ductal carcinoma in-situ or cancer of different oestrogen receptor, progesterone receptor or nodal status. The highest levels of fibroblast growth factor 8 expression were found in lactating breast tissues and fibroblast growth factor 8 was also detected in human milk. A survey of other normal tissues showed that fibroblast growth factor 8 is expressed in the proliferative cells of the dermis and epithelial cells in colon, ovary fallopian tube and uterus. Fibroblast growth factor 8 appears to be expressed in several organs in man and appears to have an importance in lactation.

  2. Persea americana Mill. Seed: Fractionation, Characterization, and Effects on Human Keratinocytes and Fibroblasts

    PubMed Central

    Ramos-Jerz, Maria del R.; Villanueva, Socorro; Jerz, Gerold; Winterhalter, Peter; Deters, Alexandra M.

    2013-01-01

    Methanolic avocado (Persea americana Mill., Lauraceae) seed extracts were separated by preparative HSCCC. Partition and HSCCC fractions were principally characterized by LC-ESI-MS/MS analysis. Their in vitro influence was investigated on proliferation, differentiation, cell viability, and gene expression on HaCaT and normal human epidermal keratinocytes (NHEK) and normal human dermal fibroblasts (NHDF). The methanol-water partition (M) from avocado seeds and HSCCC fraction 3 (M.3) were mostly composed of chlorogenic acid and its isomers. Both reduced NHDF but enhanced HaCaT keratinocytes proliferation. HSCCC fraction M.2 composed of quinic acid among chlorogenic acid and its isomers inhibited proliferation and directly induced differentiation of keratinocytes as observed on gene and protein level. Furthermore, M.2 increased NHDF proliferation via upregulation of growth factor receptors. Salidrosides and ABA derivatives present in HSCCC fraction M.6 increased NHDF and keratinocyte proliferation that resulted in differentiation. The residual solvent fraction M.7 contained among low concentrations of ABA derivatives high amounts of proanthocyanidins B1 and B2 as well as an A-type trimer and stimulated proliferation of normal cells and inhibited the proliferation of immortalized HaCaT keratinocytes. PMID:24371457

  3. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes

    PubMed Central

    Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing

    2016-01-01

    Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment. PMID:27272504

  4. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes.

    PubMed

    Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing

    2016-06-07

    Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment.

  5. Constituents from the roots of Taraxacum platycarpum and their effect on proliferation of human skin fibroblasts.

    PubMed

    Warashina, Tsutomu; Umehara, Kaoru; Miyase, Toshio

    2012-01-01

    A MeOH extract from the roots of Taraxacum platycarpum has shown significant effects on the proliferation of normal human skin fibroblasts. Chemical analysis of the extract resulted in the isolation of 26 compounds, including eight new triterpenes, one new sesquiterpene glycoside, and seventeen known compounds. The structure of each new compound was established using NMR spectroscopy. Some triterpenes had a significant effect on the proliferation of normal human skin fibroblasts.

  6. Deficiency of gamma-ray excision repair in skin fibroblasts from patients with Fanconi's anemia.

    PubMed Central

    Remsen, J F; Cerutti, P A

    1976-01-01

    The capacity of preparations of skin fibroblasts from normal individuals and patients with Fanconi's anemia to excise gamma-ray products of the 5,6-dihydroxydihydrothymine type from exogenous DNA was investigated. The excision capacity of whole-cell homogenates of fibroblasts from two of four patients with Fanconi's anemia was substantially below normal. This repair deficiency was further pronounced in nuclear preparations from cells of the same two patients. PMID:1065896

  7. Effect of mitomycin C on keloid fibroblasts: an in vitro study.

    PubMed

    Simman, Richard; Alani, Hashim; Williams, Frances

    2003-01-01

    Keloids are the result of aberrant wound healing of human skin after dermal injury. Therapeutic options include excision followed by radiation therapy, steroid injection, and compression with silicone sheets among others. Local invasion and recurrence after excision has provoked interest in treating keloids as neoplasms. The purpose of this study was to determine the effect of mitomycin C (MMC) on keloid fibroblasts. Keloid fibroblasts obtained from five different patients were exposed to MMC. A control group of normal and keloid cells was treated with phosphate buffered saline only. Contrast microscopy showed a decrease of fibroblast density during the 3 weeks after exposure for normal and keloid fibroblasts relative to untreated fibroblasts. This was confirmed by total cell counts ( = 0.1) and measurement of DNA synthesis. By the third week, there was a recovery in DNA synthesis and increased cell count for some of the treated fibroblasts. We concluded that at an appropriate concentration, MMC shows proliferation of keloid fibroblasts in vitro for a period of 3 weeks. This agent may be considered in clinical trials after surgical excision of keloids.

  8. APC+/− alters colonic fibroblast proteome in FAP

    PubMed Central

    Dixon, Maketa P.; Blagoi, Elena L.; Nicolas, Emmanuelle; Seeholzer, Steven H.; Cheng, David; He, Yin A.; Coudry, Renata A.; Howard, Sharon D.; Riddle, Dawn M.; Cooper, Harry S.; Boman, Bruce M.; Conrad, Peggy; Crowell, James A.; Bellacosa, Alfonso; Knudson, Alfred; Yeung, Anthony T.; Kopelovich, Levy

    2011-01-01

    Here we compared the proteomes of primary fibroblast cultures derived from morphologically normal colonic mucosa of familial adenomatous polyposis (FAP) patients with those obtained from unaffected controls. The expression signature of about 19% of total fibroblast proteins separates FAP mutation carriers from unaffected controls (P < 0.01). More than 4,000 protein spots were quantified by 2D PAGE analysis, identifying 368 non-redundant proteins and 400 of their isoforms. Specifically, all three classes of cytoskeletal filaments and their regulatory proteins were altered as were oxidative stress response proteins. Given that FAP fibroblasts showed heightened sensitivity to transformation by KiMSV and SV40 including elevated levels of the p53 protein, events controlled in large measure by the Ras suppressor protein-1 (RSU-1) and oncogenic DJ-1, here we show decreased RSU1 and augmented DJ-1 expression in both fibroblasts and crypt-derived epithelial cells from morphologically normal colonic mucosa of FAP gene-carriers. The results indicate that heterozygosity for a mutant APC tumor suppressor gene alters the proteomes of both colon-derived normal fibroblasts in a gene-specific manner, consistent with a “one-hit” effect. PMID:21411865

  9. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness

    PubMed Central

    Marinković, Aleksandar; Mih, Justin D.; Park, Jin-Ah; Liu, Fei

    2012-01-01

    Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated contraction of lung fibroblasts and suggest that stiff fibrotic lung tissue may promote myofibroblast activation through contractility-driven events, whereas normal lung tissue compliance may protect against such feedback amplification of fibroblast activation. PMID:22659883

  10. The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts.

    PubMed

    Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun

    2017-01-01

    Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6-78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts.

  11. The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts

    PubMed Central

    Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun

    2017-01-01

    Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6–78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts. PMID:28860768

  12. Telomere erosion varies during in vitro aging of normal human fibroblasts from young and adult donors.

    PubMed

    Figueroa, R; Lindenmaier, H; Hergenhahn, M; Nielsen, K V; Boukamp, P

    2000-06-01

    The life span of normal fibroblasts in vitro (Hayflick limit) depends on donor age, and telomere shortening has been proposed as a potential mechanism. By quantitative fluorescence in situ hybridization and Southern blot analysis, we show progressive telomere loss to about 5 kb mean telomere restriction fragment length in fibroblasts from two adult donors within 40 population doublings, whereas in fibroblasts from two infant donors, telomere erosion is reduced, leaving a mean telomere restriction fragment length of approximately 7 kb at senescence (after approximately 60 population doublings). Aging of fibroblasts from both infant and adult donors was not accompanied by chromosomal abnormalities but was correlated with increased telomere repeat-binding factor 2 expression at both the protein and transcriptional level.

  13. 4F2 monoclonal antibody recognizes a surface antigen on spread human fibroblasts of embryonic but not of adult origin

    PubMed Central

    1984-01-01

    The 4F2 monoclonal antibody (mAb) has been shown to recognize a 120- kilodalton glycoprotein expressed on the cell surface of human peripheral blood monocytes, activated (but not resting) T or B cells, and T and B lymphoblastoid cell lines. In this report we show that 4F2 mAb specifically binds to the surface of adherent human embryonic fibroblasts but fails to bind to normal adult fibroblasts. Moreover, 4F2 antigen was expressed on sarcoma-derived or SV40-transformed adult fibroblastic cells. Finally, addition of 4F2 mAb inhibited the growth of cultured HT-1080 fibrosarcoma cell line, but had no inhibitory effect on various embryonic and adult normal or transformed fibroblasts. PMID:6538202

  14. CHEK2 represses breast stromal fibroblasts and their paracrine tumor-promoting effects through suppressing SDF-1 and IL-6.

    PubMed

    Al-Rakan, Maha A; Hendrayani, Siti-Faujiah; Aboussekhra, Abdelilah

    2016-08-02

    Active fibroblasts, the predominant and the most active cells of breast cancer stroma, are responsible for tumor growth and spread. However, the molecular mediators and pathways responsible for stromal fibroblast activation, and their paracrine pro-carcinogenic effects are still not well defined. The CHEK2 tumor suppressor gene codes for a protein kinase, which plays important roles in the cellular response to various genotoxic stresses. Immunoblotting, quantitative RT-PCR and Immunofluorescence were used to assess the expression of CHEK2 in different primary breast fibroblasts and in tissues. The effect of CHEK2 on the expression and secretion of SDF-1 and IL-6 was evaluated by immunoblotting and ELISA. The WST-1 colorimetric assay was used to assess cell proliferation, while the BD BioCoat Matrigel invasion chambers were utilized to determine the effects of CHEK2 on the migratory and the invasiveness capacities of breast stromal fibroblasts as well as breast cancer cells. We have shown that CHEK2 is down-regulated in most cancer-associated fibroblasts (CAFs) as compared to their corresponding tumor counterpart fibroblasts (TCFs) at both the mRNA and protein levels. Interestingly, CHEK2 down-regulation using specific siRNA increased the expression/secretion of both cancer-promoting cytokines SDF-1 and IL-6, and transdifferentiated stromal fibroblasts to myofibroblasts. These cells were able to enhance the proliferation of non-cancerous epithelial cells, and also boosted the migration/invasion abilities of breast cancer cells in a paracrine manner. The later effect was SDF-1/IL-6-dependent. Importantly, ectopic expression of CHEK2 in active CAFs converted these cells to a normal state, with lower migration/invasion capacities and reduced paracrine pro-carcinogenic effects. These results indicate that CHEK2 possesses non-cell-autonomous tumor suppressor functions, and present the Chk2 protein as an important mediator in the functional interplay between breast carcinomas and their stromal fibroblasts.

  15. Effect of mitomycin on normal dermal fibroblast and HaCat cell: an in vitro study

    PubMed Central

    Wang, Yao-wen; Ren, Ji-hao; Xia, Kun; Wang, Shu-hui; Yin, Tuan-fang; Xie, Ding-hua; Li, Li-hua

    2012-01-01

    Objective: To evaluate the effects of mitomycin on the growth of human dermal fibroblast and immortalized human keratinocyte line (HaCat cell), particularly the effect of mitomycin on intracellular messenger RNA (mRNA) synthesis of collagen and growth factors of fibroblast. Methods: The normal dermal fibroblast and HaCat cell were cultured in vitro. Cell cultures were exposed to 0.4 and 0.04 mg/ml of mitomycin solution, and serum-free culture medium was used as control. The cellular morphology change, growth characteristics, cell proliferation, and apoptosis were observed at different intervals. For the fibroblasts, the mRNA expression changes of transforming growth factor (TGF)-β1, basic fibroblast growth factor (bFGF), procollagen I, and III were detected by reverse transcription polymerase chain reaction (RT-PCR). Results: The cultured normal human skin fibroblast and HaCat cell grew exponentially. A 5-min exposure to mitomycin at either 0.4 or 0.04 mg/ml caused marked dose-dependent cell proliferation inhibition on both fibroblasts and HaCat cells. Cell morphology changed, cell density decreased, and the growth curves were without an exponential phase. The fibroblast proliferated on the 5th day after the 5-min exposure of mitomycin at 0.04 mg/ml. Meanwhile, 5-min application of mitomycin at either 0.04 or 0.4 mg/ml induced fibroblast apoptosis but not necrosis. The apoptosis rate of the fibroblast increased with a higher concentration of mytomycin (p<0.05). A 5-min exposure to mitomycin at 0.4 mg/ml resulted in a marked decrease in the mRNA production of TGF-β1, procollagen I and III, and a marked increase in the mRNA production of bFGF. Conclusions: Mitomycin can inhibit fibroblast proliferation, induce fibroblast apoptosis, and regulate intracellular protein expression on mRNA levels. In additon, mitomycin can inhibit HaCat cell proliferation, so epithelial cell needs more protecting to avoid mitomycin’s side effect when it is applied clinically. PMID:23225855

  16. Mitochondrial Vulnerability and Increased Susceptibility to Nutrient-Induced Cytotoxicity in Fibroblasts from Leigh Syndrome French Canadian Patients

    PubMed Central

    Burelle, Yan; Thompson Legault, Julie; Boucher, Gabrielle; Morin, Charles; Coderre, Lise; Des Rosiers, Christine

    2015-01-01

    Mutations in LRPPRC are responsible for the French Canadian variant of Leigh Syndrome (LSFC), a severe disorder characterized biochemically by a tissue-specific deficiency of cytochrome c oxidase (COX) and clinically by the occurrence of severe and deadly acidotic crises. Factors that precipitate these crises remain unclear. To better understand the physiopathology and identify potential treatments, we performed a comprehensive analysis of mitochondrial function in LSFC and control fibroblasts. Furthermore, we have used this cell-based model to screen for conditions that promote premature cell death in LSFC cells and test the protective effect of ten interventions targeting well-defined aspects of mitochondrial function. We show that, despite maintaining normal ATP levels, LSFC fibroblasts present several mitochondrial functional abnormalities under normal baseline conditions, which likely impair their capacity to respond to stress. This includes mitochondrial network fragmentation, impaired oxidative phosphorylation capacity, lower membrane potential, increased sensitivity to Ca2+-induced permeability transition, but no changes in reactive oxygen species production. We also show that LSFC fibroblasts display enhanced susceptibility to cell death when exposed to palmitate, an effect that is potentiated by high lactate, while high glucose or acidosis alone or in combination were neutral. Furthermore, we demonstrate that compounds that are known to promote flux through the electron transport chain independent of phosphorylation (methylene blue, dinitrophenol), or modulate fatty acid (L-carnitine) or Krebs cycle metabolism (propionate) are protective, while antioxidants (idebenone, N-acetyl cysteine, resveratrol) exacerbate palmitate plus lactate-induced cell death. Collectively, beyond highlighting multiple alterations in mitochondrial function and increased susceptibility to nutrient-induced cytotoxicity in LSFC fibroblasts, these results raise questions about the nature of the diets, particularly excess fat intake, as well as on the use of antioxidants in patients with LSFC and, possibly, other COX defects. PMID:25835550

  17. Cell-based and biomaterial approaches to connective tissue repair

    NASA Astrophysics Data System (ADS)

    Stalling, Simone Suzette

    Connective tissue injuries of skin, tendon and ligament, heal by a reparative process in adults, filling the wound site with fibrotic, disorganized scar tissue that poorly reflects normal tissue architecture or function. Conversely, fetal skin and tendon have been shown to heal scarlessly. Complete regeneration is not intrinsically ubiquitous to all fetal tissues; fetal diaphragmatic and gastrointestinal injuries form scars. In vivo studies suggest that the presence of fetal fibroblasts is essential for scarless healing. In the orthopaedic setting, adult anterior cruciate ligament (ACL) heals poorly; however, little is known about the regenerative capacity of fetal ACL or fetal ACL fibroblasts. We characterized in vitro wound healing properties of fetal and adult ACL fibroblasts demonstrating that fetal ACL fibroblasts migrate faster and elaborate greater quantities of type I collagen, suggesting the healing potential of the fetal ACL may not be intrinsically poor. Similar to fetal ACL fibroblasts, fetal dermal fibroblasts also exhibit robust cellular properties. We investigated the age-dependent effects of dermal fibroblasts on tendon-to-bone healing in rat supraspinatus tendon injuries, a reparative injury model. We hypothesized delivery of fetal dermal fibroblasts would increase tissue organization and mechanical properties in comparison to adult dermal fibroblasts. However, at 1 and 8 weeks, the presence of dermal fibroblasts, either adult or fetal, had no significant effect on tissue histology or mechanical properties. There was a decreasing trend in cross-sectional area of repaired tendons treated with fetal dermal fibroblasts in comparison to adult, but this finding was not significant in comparison to controls. Finally, we synthesized a novel polysaccharide, methacrylated methylcellulose (MA-MC), and fabricated hydrogels using a well-established photopolymerization technique. We characterized the physical and mechanical properties of MA-MC hydrogels in vitro as well as in a subcutaneous mouse model. Stable MA-MC hydrogels, of varying weight percentages, demonstrated tunable swelling and mechanical properties in the absence of cytotoxic degradation products. In vivo, 6wt% MA-MC hydrogels maintained their shape and mechanical integrity while eliciting a minimal inflammatory response; highly desirable properties for soft tissue reconstruction. These cellulose-based photopolymerizable hydrogels can be further optimized for drug delivery and tissue engineering applications to enhance wound repair.

  18. Estimation of low-dose radiation-responsive proteins in the absence of genomic instability in normal human fibroblast cells.

    PubMed

    Yim, Ji-Hye; Yun, Jung Mi; Kim, Ji Young; Nam, Seon Young; Kim, Cha Soon

    2017-11-01

    Low-dose radiation has various biological effects such as adaptive responses, low-dose hypersensitivity, as well as beneficial effects. However, little is known about the particular proteins involved in these effects. Here, we sought to identify low-dose radiation-responsive phosphoproteins in normal fibroblast cells. We assessed genomic instability and proliferation of fibroblast cells after γ-irradiation by γ-H2AX foci and micronucleus formation analyses and BrdU incorporation assay, respectively. We screened fibroblast cells 8 h after low-dose (0.05 Gy) γ-irradiation using Phospho Explorer Antibody Microarray and validated two differentially expressed phosphoproteins using Western blotting. Cell proliferation proceeded normally in the absence of genomic instability after low-dose γ-irradiation. Phospho antibody microarray analysis and Western blotting revealed increased expression of two phosphoproteins, phospho-NFκB (Ser536) and phospho-P70S6K (Ser418), 8 h after low-dose radiation. Our findings suggest that low-dose radiation of normal fibroblast cells activates the expression of phospho-NFκB (Ser536) and phospho-P70S6K (Ser418) in the absence of genomic instability. Therefore, these proteins may be involved in DNA damage repair processes.

  19. Differential response of normal human fibroblasts to bombesin versus thrombin.

    PubMed

    Hendey, B; Mamrack, M D

    1988-09-01

    Normal human diploid fibroblasts (WS-1 cells) were growth-arrested under serum-free conditions for 48 hr. The addition of fetal bovine serum (10% final concentration) to these cells stimulated [3H]-thymidine incorporation into DNA and phosphoinositide breakdown over nine-fold. Thrombin, at concentrations above 0.1 unit/ml (u/ml), was also effective at stimulating DNA synthesis and phosphoinositide breakdown as well as causing a rise in intracellular pH. In contrast, the peptide bombesin (concentrations ranging from 1 nM to 100 nM) stimulated phosphoinositide breakdown but did not enhance DNA synthesis or cause an increase in cytoplasmic pH. The time course of accumulation of inositol phosphates differed in response to these agents. The thrombin effect peaked rapidly and leveled off after 5 min while the bombesin effect showed a constant increase for 30 min. Serum showed an intermediate response. The different rates of inositol phosphate accumulation observed with the two growth factors is viewed as representing a difference in the mechanism of phosphoinositide turnover. The relationship between the difference in phosphoinositide turnover and the initiation of DNA synthesis is also discussed.

  20. FAP Promotes Immunosuppression by Cancer-Associated Fibroblasts in the Tumor Microenvironment via STAT3-CCL2 Signaling.

    PubMed

    Yang, Xuguang; Lin, Yuli; Shi, Yinghong; Li, Bingji; Liu, Weiren; Yin, Wei; Dang, Yongjun; Chu, Yiwei; Fan, Jia; He, Rui

    2016-07-15

    Cancer-associated fibroblasts (CAF) are components of the tumor microenvironment whose contributions to malignant progression are not fully understood. Here, we show that the fibroblast activation protein (FAP) triggers induction of a CAF subset with an inflammatory phenotype directed by STAT3 activation and inflammation-associated expression signature marked by CCL2 upregulation. Enforcing FAP expression in normal fibroblasts was sufficient to endow them with an inflammatory phenotype similar to FAP(+)CAFs. We identified FAP as a persistent activator of fibroblastic STAT3 through a uPAR-dependent FAK-Src-JAK2 signaling pathway. In a murine liver tumor model, we found that FAP(+)CAFs were a major source of CCL2 and that fibroblastic STAT3-CCL2 signaling in this setting promoted tumor growth by enhancing recruitment of myeloid-derived suppressor cells (MDSC). The CCL2 receptor CCR2 was expressed on circulating MDSCs in tumor-bearing subjects and FAP(+)CAF-mediated tumor promotion and MDSC recruitment was abrogated in Ccr2-deficient mice. Clinically, we observed a positive correlation between stromal expression of FAP, p-STAT3, and CCL2 in human intrahepatic cholangiocarcinoma, a highly aggressive liver cancer with dense desmoplastic stroma, where elevated levels of stromal FAP predicted a poor survival outcome. Taken together, our results showed how FAP-STAT3-CCL2 signaling in CAFs was sufficient to program an inflammatory component of the tumor microenvironment, which may have particular significance in desmoplasia-associated cancers. Cancer Res; 76(14); 4124-35. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. Interleukin-1 or tumor necrosis factor-alpha augmented the cytotoxic effect of mycobacteria on human fibroblasts: application to evaluation of pathogenesis of clinical isolates of Mycobacterium tuberculosis and M. avium complex.

    PubMed

    Takii, T; Abe, C; Tamura, A; Ramayah, S; Belisle, J T; Brennan, P J; Onozaki, K

    2001-03-01

    Mycobacteria-induced in vitro events reflecting human tuberculosis can contribute to the evaluation of the pathogenesis of Mycobacterium tuberculosis (MTB). In this study, we propose such an in vitro method based on live mycobacteria-induced cytotoxicity to human cell lines. When human lung-derived normal fibroblast cell line MRC-5 was infected with various strains of mycobacteria (M. tuberculosis H(37)Rv and H(37) Ra, Mycobacterium avium 427S and 2151SmO, and Mycobacterium bovis BCG Pasteur and Tokyo), the fibroblasts were killed by mycobacteria according to the degree of virulence. Other human originated macrophage (U-937, THP-1), myeloid (HL-60), and epithelial carcinoma (A549) cell lines exhibited a similar cytotoxic response to virulent mycobacteria. MRC-5 was most susceptible to virulent mycobacteria among various human cell lines examined. The cytotoxicity was enhanced by the proinflammatory cytokines, interleukin-1 (IL-1) and tumor necrosis factor-a (TNF-alpha), which in the absence of mycobacteria stimulate the growth of normal human fibroblasts. This in vitro evaluation system was applied to clinical isolates of drug-sensitive MTB (DS-MTB), drug-resistant MTB (DR-MTB) including multidrug-resistant (MDR-MTB), and M. avium complex (MAC). MTB strains (n = 24) exhibited strong cytotoxic activity, but MAC strains (n = 5) had only weak activity. Furthermore, there was no significant difference in cytotoxicity between DS-MTB (n = 11) and DR-MTB (n = 13). Collectively, these results suggest that this new in vitro system is useful for evaluating the pathogenesis of mycobacteria and that there was no difference in the pathogenesis between drug-susceptible and drug-resistant clinical isolates.

  2. Calreticulin Enhances Porcine Wound Repair by Diverse Biological Effects

    PubMed Central

    Nanney, Lillian B.; Woodrell, Christopher D.; Greives, Mathew R.; Cardwell, Nancy L.; Pollins, Alonda C.; Bancroft, Tara A.; Chesser, Adrianne; Michalak, Marek; Rahman, Mohammad; Siebert, John W.; Gold, Leslie I.

    2008-01-01

    Extracellular functions of the endoplasmic reticulum chaperone protein calreticulin (CRT) are emerging. Here we show novel roles for exogenous CRT in both cutaneous wound healing and diverse processes associated with repair. Compared with platelet-derived growth factor-BB-treated controls, topical application of CRT to porcine excisional wounds enhanced the rate of wound re-epithelialization. In both normal and steroid-impaired pigs, CRT increased granulation tissue formation. Immunohistochemical analyses of the wounds 5 and 10 days after injury revealed marked up-regulation of transforming growth factor-β3 (a key regulator of wound healing), a threefold increase in macrophage influx, and an increase in the cellular proliferation of basal keratinocytes of the new epidermis and of cells of the neodermis. In vitro studies confirmed that CRT induced a greater than twofold increase in the cellular proliferation of primary human keratinocytes, fibroblasts, and microvascular endothelial cells (with 100 pg/ml, 100 ng/ml, and 1.0 pg/ml, respectively). Moreover, using a scratch plate assay, CRT maximally induced the cellular migration of keratinocytes and fibroblasts (with 10 pg/ml and 1 ng/ml, respectively). In addition, CRT induced concentration-dependent migration of keratinocytes, fibroblasts macrophages, and monocytes in chamber assays. These in vitro bioactivities provide mechanistic support for the positive biological effects of CRT observed on both the epidermis and dermis of wounds in vivo, underscoring a significant role for CRT in the repair of cutaneous wounds. PMID:18753412

  3. Leptin and Pro-Inflammatory Stimuli Synergistically Upregulate MMP-1 and MMP-3 Secretion in Human Gingival Fibroblasts.

    PubMed

    Williams, Rachel C; Skelton, Andrew J; Todryk, Stephen M; Rowan, Andrew D; Preshaw, Philip M; Taylor, John J

    2016-01-01

    Gingival fibroblast-mediated extracellular matrix remodelling is implicated in the pathogenesis of periodontitis, yet the stimuli that regulate this response are not fully understood. The immunoregulatory adipokine leptin is detectable in the gingiva, human gingival fibroblasts express functional leptin receptor mRNA and leptin is known to regulate extracellular matrix remodelling responses in cardiac fibroblasts. We therefore hypothesised that leptin would enhance matrix metalloproteinase secretion in human gingival fibroblasts. We used in vitro cell culture to investigate leptin signalling and the effect of leptin on mRNA and protein expression in human gingival fibroblasts. We confirmed human gingival fibroblasts expressed cell surface leptin receptor, found leptin increased matrix metalloproteinase-1, -3, -8 and -14 expression in human gingival fibroblasts compared to unstimulated cells, and observed that leptin stimulation activated MAPK, STAT1/3 and Akt signalling in human gingival fibroblasts. Furthermore, leptin synergised with IL-1 or the TLR2 agonist pam2CSK4 to markedly enhance matrix metalloproteinase-1 and -3 production by human gingival fibroblasts. Signalling pathway inhibition demonstrated ERK was required for leptin-stimulated matrix metalloproteinase-1 expression in human gingival fibroblasts; whilst ERK, JNK, p38 and STAT3 were required for leptin+IL-1- and leptin+pam2CSK4-induced matrix metalloproteinase-1 expression. A genome-wide expression array and gene ontology analysis confirmed genes differentially expressed in leptin+IL-1-stimulated human gingival fibroblasts (compared to unstimulated cells) were enriched for extracellular matrix organisation and disassembly, and revealed that matrix metalloproteinase-8 and -12 were also synergistically upregulated by leptin+IL-1 in human gingival fibroblasts. We conclude that leptin selectively enhances the expression and secretion of certain matrix metalloproteinases in human gingival fibroblasts, and suggest that gingival fibroblasts may have an ECM-degrading phenotype during conditions of hyperleptinaemia (e.g., obesity, type 2 diabetes mellitus, exogenous leptin therapy).

  4. Leptin and Pro-Inflammatory Stimuli Synergistically Upregulate MMP-1 and MMP-3 Secretion in Human Gingival Fibroblasts

    PubMed Central

    Williams, Rachel C.; Skelton, Andrew J.; Todryk, Stephen M.; Rowan, Andrew D.; Preshaw, Philip M.; Taylor, John J.

    2016-01-01

    Introduction Gingival fibroblast-mediated extracellular matrix remodelling is implicated in the pathogenesis of periodontitis, yet the stimuli that regulate this response are not fully understood. The immunoregulatory adipokine leptin is detectable in the gingiva, human gingival fibroblasts express functional leptin receptor mRNA and leptin is known to regulate extracellular matrix remodelling responses in cardiac fibroblasts. We therefore hypothesised that leptin would enhance matrix metalloproteinase secretion in human gingival fibroblasts. Methods and Results We used in vitro cell culture to investigate leptin signalling and the effect of leptin on mRNA and protein expression in human gingival fibroblasts. We confirmed human gingival fibroblasts expressed cell surface leptin receptor, found leptin increased matrix metalloproteinase-1, -3, -8 and -14 expression in human gingival fibroblasts compared to unstimulated cells, and observed that leptin stimulation activated MAPK, STAT1/3 and Akt signalling in human gingival fibroblasts. Furthermore, leptin synergised with IL-1 or the TLR2 agonist pam2CSK4 to markedly enhance matrix metalloproteinase-1 and -3 production by human gingival fibroblasts. Signalling pathway inhibition demonstrated ERK was required for leptin-stimulated matrix metalloproteinase-1 expression in human gingival fibroblasts; whilst ERK, JNK, p38 and STAT3 were required for leptin+IL-1- and leptin+pam2CSK4-induced matrix metalloproteinase-1 expression. A genome-wide expression array and gene ontology analysis confirmed genes differentially expressed in leptin+IL-1-stimulated human gingival fibroblasts (compared to unstimulated cells) were enriched for extracellular matrix organisation and disassembly, and revealed that matrix metalloproteinase-8 and -12 were also synergistically upregulated by leptin+IL-1 in human gingival fibroblasts. Conclusions We conclude that leptin selectively enhances the expression and secretion of certain matrix metalloproteinases in human gingival fibroblasts, and suggest that gingival fibroblasts may have an ECM-degrading phenotype during conditions of hyperleptinaemia (e.g., obesity, type 2 diabetes mellitus, exogenous leptin therapy). PMID:26829555

  5. CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro.

    PubMed

    Begley, Lesa; Monteleon, Christine; Shah, Rajal B; Macdonald, James W; Macoska, Jill A

    2005-12-01

    The direct relationship between the aging process and the incidence and prevalence of both benign prostatic hyperplasia (BPH) and prostate cancer (PCa) implies that certain risk factors associated with the development of both diseases increase with the aging process. In particular, both diseases share an overly proliferative phenotype, suggesting that mechanisms that normally act to suppress cellular proliferation are disrupted or rendered dysfunctional as a consequence of the aging process. We propose that one such mechanism involves changes in the prostate microenvironment, which 'evolves' during the aging process and disrupts paracrine interactions between epithelial and associated stromal fibroblasts. We show that stromal fibroblasts isolated from the prostates of men 63-81 years of age at the time of surgery express and secrete higher levels of the CXCL12 chemokine compared with those isolated from younger men, and stimulate CXCR4-mediated signaling pathways that induce cellular proliferation. These studies represent an important first step towards a mechanistic elucidation of the role of aging in the etiology of benign and malignant prostatic diseases.

  6. Effects of biomaterial-derived fibroblast conditioned medium on the α-amylase expression of parotid gland acinar cells.

    PubMed

    Chou, Ya-Shuan; Young, Tai-Horng; Lou, Pei-Jen

    2015-11-01

    Salivary gland cells are surrounded by a complex stromal environment, in which fibroblasts are the main cells in proximity to the gland cells. In this study, the interaction between parotid gland acinar cells (PGACs), fibroblasts, and biomaterials was investigated. We prepared different biomaterials, including chitosan, polyvinyl alcohol (PVA), poly (ethylene-co-vinyl alcohol) (EVAL), polyvinylidene fluoride (PVDF), and tissue culture polystyrene (TCPS) to culture fibroblasts and then collect their conditioned media to culture PGACs. We observed no difference in AQP3, AQP5, and E-cadherin expression among different fibroblast conditioned medium treatments. Interestingly, α-amylase expression was obviously enhanced in PGACs cultured in the presence of conditioned medium from fibroblasts cultured on PVDF. Higher neurotrophin-4 (NT-4) expression was observed in PVDF-derived fibroblast conditioned medium using a growth factor protein array assay. In addition, directly adding NT-4 into the culture medium significantly promoted α-amylase expression by PGACs. Finally, nestin and βIII-tubulin expression by fibroblasts cultured on PVDF was also enhanced. Together, these results suggest that PVDF could promote α-amylase expression by PGACs via the NT-4 produced by fibroblasts. To date, there is no effective therapy for patients with dry mouth with persistent salivary hypofunction. The study made use of different biomaterials to culture fibroblasts and then collect their conditioned media to culture PGACs. It was found that the effect of fibroblast conditioned medium from PVDF on the α-amylase expression of PGACs was obviously enhanced and higher neurotrophin-4 (NT-4) expression was found in PVDF-derived fibroblast conditioned medium. In addition, directly adding NT-4 into the culture medium significantly promoted the expression of α-amylase by PGACs and the expression of nestin and βIII-tubulin of fibroblasts after being cultured on PVDF was enhanced. Therefore, the present study represents the first description of the role of NT-4 in the expression of α-amylase of PGACs and the role of PVDF in the reprogramming fibroblasts into neural progenitor-like cells, indicating that PVDF could promote the expression of α-amylase by PGACs via the NT-4 produced by fibroblasts. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Conditional knockout of N-WASP in mouse fibroblast caused keratinocyte hyper proliferation and enhanced wound closure

    PubMed Central

    Jain, Neeraj; Kalailingam, Pazhanichamy; Tan, Kai Wei; Tan, Hui Bing; Sng, Ming Keat; Chan, Jeremy Soon Kiat; Tan, Nguan Soon; Thanabalu, Thirumaran

    2016-01-01

    Neural-Wiskott Aldrich Syndrome Protein (N-WASP) is expressed ubiquitously, regulates actin polymerization and is essential during mouse development. We have previously shown that N-WASP is critical for cell-ECM adhesion in fibroblasts. To characterize the role of N-WASP in fibroblast for skin development, we generated a conditional knockout mouse model in which fibroblast N-WASP was ablated using the Cre recombinase driven by Fibroblast Specific Protein promoter (Fsp-Cre). N-WASPFKO (N-WASPfl/fl; Fsp-cre) were born following Mendelian genetics, survived without any visible abnormalities for more than 1 year and were sexually reproductive, suggesting that expression of N-WASP in fibroblast is not critical for survival under laboratory conditions. Histological sections of N-WASPFKO mice skin (13 weeks old) showed thicker epidermis with higher percentage of cells staining for proliferation marker (PCNA), suggesting that N-WASP deficient fibroblasts promote keratinocyte proliferation. N-WASPFKO mice skin had elevated collagen content, elevated expression of FGF7 (keratinocyte growth factor) and TGFβ signaling proteins. Wound healing was faster in N-WASPFKO mice compared to control mice and N-WASP deficient fibroblasts were found to have enhanced collagen gel contraction properties. These results suggest that N-WASP deficiency in fibroblasts improves wound healing by growth factor-mediated enhancement of keratinocyte proliferation and increased wound contraction in mice. PMID:27909303

  8. Response of Fibroblasts MRC-5 to Flufenamic Acid-Grafted MCM-41 Nanoparticles.

    PubMed

    Lara, Giovanna Gomes; Cipreste, Marcelo Fernandes; Andrade, Gracielle Ferreira; Silva, Wellington Marcos da; Sousa, Edésia Martins Barros de

    2018-01-09

    Recently, flufenamic acid (FFA) was discovered among fenamates as a free radical scavenger and gap junction blocker; however, its effects have only been studied in cancer cells. Normal cells in the surroundings of a tumor also respond to radiation, although they are not hit by it directly. This phenomenon is known as the bystander effect, where response molecules pass from tumor cells to normal ones, through communication channels called gap junctions. The use of the enhanced permeability and retention effect, through which drug-loaded nanoparticles smaller than 200 nm may accumulate around a tumor, can prevent the local side effect upon controlled release of the drug. The present work, aimed at functionalizing MCM-41 (Mobil Composition of Matter No. 41) silica nanoparticles with FFA and determining its biocompatibility with human fibroblasts MRC-5 (Medical Research Council cell strain 5). MCM-41, was synthesized and characterized structurally and chemically, with multiple techniques. The biocompatibility assay was performed by Live/Dead technique, with calcein and propidium-iodide. MRC-5 cells were treated with FFA-grafted MCM-41 for 48 h, and 98% of cells remained viable, without signs of necrosis or morphological changes. The results show the feasibility of MCM-41 functionalization with FFA, and its potential protection of normal cells, in comparison to the role of FFA in cancerous ones.

  9. Androgen receptor mutations are associated with altered epigenomic programming as evidenced by HOXA5 methylation.

    PubMed

    Bens, S; Ammerpohl, O; Martin-Subero, J I; Appari, M; Richter, J; Hiort, O; Werner, R; Riepe, F G; Siebert, R; Holterhus, P-M

    2011-01-01

    Male external genital differentiation is accompanied by implementation of a long-term, male-specific gene expression pattern indicating androgen programming in cultured genital fibroblasts. We hypothesized the existence of an epigenetic background contributing to this phenomenon. DNA methylation levels in 2 normal scrotal fibroblast strains from 46,XY males compared to 2 labia majora fibroblast strains from 46,XY females with complete androgen insensitivity syndrome (AIS) due to androgen receptor (AR) mutations were analyzed by Illumina GoldenGate methylation arrays®. Results were validated with pyrosequencing in labia majora fibroblast strains from fifteen 46,XY patients and compared to nine normal male scrotal fibroblast strains. HOXA5 showed a significantly higher methylation level in complete AIS. This finding was confirmed by bisulfite pyrosequencing of 14 CpG positions within the HOXA5 promoter in the same strains. Extension of the 2 groups revealed a constant low HOXA5 methylation pattern in the controls in contrast to a highly variable methylation pattern in the AIS patients. HOXA5 represents a candidate gene of androgen-mediated promoter methylation. The constantly low HOXA5 DNA methylation level of normal male scrotal fibroblast strains and the frequently high methylation levels in labia majora fibroblast strains in AIS indicate for the first time that androgen programming in sexual differentiation is not restricted to global gene transcription but also occurs at the epigenetic level. 2011 S. Karger AG, Basel.

  10. Synergistic cytotoxic action of vitamin C and vitamin K3.

    PubMed

    Zhang, W; Negoro, T; Satoh, K; Jiang, Y; Hashimoto, K; Kikuchi, H; Nishikawa, H; Miyata, T; Yamamoto, Y; Nakano, K; Yasumoto, E; Nakayachi, T; Mineno, K; Satoh, T; Sakagami, H

    2001-01-01

    We investigated the combination effect of sodium ascorbate (vitamin C) and menadione (vitamin K3) on the viability of various cultured cells. Human oral squamous cell carcinoma (HSC-2, HSC-3) and human promyelocytic leukemia (HL-60) cells were more sensitive to these vitamins as compared to normal cells (human gingival fibroblast HGF, human periodontal ligament fibroblast HPLF, human pulp cell HPC). The combination of vitamin C and vitamin K3 produced synergistic cytotoxicity against all these 6 cell lines. Treatment with vitamin C or vitamin K3, or their combination, induced internucleosomal DNA fragmentation only in HL-60 cells, but not in the oral tumor cell lines (HSC-2, HSC-3, HSG). ESR spectroscopy showed that vitamins C and K3 produce radicals under alkaline conditions and that the combination of these two vitamins synergistically enhanced their respective radical intensities.

  11. X ray sensitivity of diploid skin fibroblasts from patients with Fanconi's anemia

    NASA Technical Reports Server (NTRS)

    Kale, Ranjini

    1989-01-01

    Experiments were performed on Fanconi's anemia and normal human fibroblast cell lines growing in culture in an attempt to correlate cell cycle kinetics with genomic damage and determine their bearing on the mechanism of chromosome aberration induction. FA fibroblasts showed a significantly increased susceptibility to chromosomal breakage by x rays in the G2 phase of the cell cycle. No such response was observed in fibroblasts irradiated in the G0 phase. The observed increases in achromatic lesions and in chromatid deletions in FA cells as compared with normal cells appear to indicate that FA cells are deficient in strand break repair and also possibly in base damage excision repair. Experiments are now in progress to further elucidate the mechanisms involved.

  12. Asiaticoside hinders the invasive growth of keloid fibroblasts through inhibition of the GDF-9/MAPK/Smad pathway.

    PubMed

    Wu, Xin; Bian, Difei; Dou, Yannong; Gong, Zhunan; Tan, Qian; Xia, Yufeng; Dai, Yue

    2017-08-01

    Higher expression of growth differentiation factor-9 (GDF-9) in keloids compared with hypertrophic scars and normal skin tissues has been reported recently. The present study was performed to investigate the role of GDF-9 in keloid pathogenesis, and to elucidate its implication for asiaticoside in the keloid management. The data showed that GDF-9 could enhance the proliferation, migration, and invasion of keloid fibroblasts (KFs), while it only slightly elevated collagen expression, indicating that the effect of GDF-9 was opposite to that of TGF-β1. The bioactivity difference between GDF-9 and TGF-β1 could be explained by the different phosphorylated sites on the downstream Smad2/3. Moreover, asiaticoside could inhibit GDF-9-induced activation of MAPKs and Smad pathway in KFs. In conclusion, GDF-9 enhanced the invasive growth of KFs, which was achieved by phosphorylation of Smad 2/3 at the linker region through activation of MAPKs pathway. Asiaticoside hindered the invasive growth of KFs by inhibiting the GDF-9/MAPK/Smad pathway. © 2017 Wiley Periodicals, Inc.

  13. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells

    PubMed Central

    Janssen, Aniek; Kops, Geert J. P. L.; Medema, René H.

    2009-01-01

    The mitotic checkpoint has evolved to prevent chromosome mis-segregations by delaying mitosis when unattached chromosomes are present. Inducing severe chromosome segregation errors by ablating the mitotic checkpoint causes cell death. Here we have analyzed the consequences of gradual increases in chromosome segregation errors on the viability of tumor cells and normal human fibroblasts. Partial reduction of essential mitotic checkpoint components in four tumor cell lines caused mild chromosome mis-segregations, but no lethality. These cells were, however, remarkably more sensitive to low doses of taxol, which enhanced the amount and severity of chromosome segregation errors. Sensitization to taxol was achieved by reducing levels of Mps1 or BubR1, proteins having dual roles in checkpoint activation and chromosome alignment, but not by reducing Mad2, functioning solely in the mitotic checkpoint. Moreover, we find that untransformed human fibroblasts with reduced Mps1 levels could not be sensitized to sublethal doses of taxol. Thus, targeting the mitotic checkpoint and chromosome alignment simultaneously may selectively kill tumor cells by enhancing chromosome mis-segregations. PMID:19855003

  14. Mesenchymal-endothelial-transition contributes to cardiac neovascularization

    PubMed Central

    Ubil, Eric; Duan, Jinzhu; Pillai, Indulekha C.L.; Rosa-Garrido, Manuel; Wu, Yong; Bargiacchi, Francesca; Lu, Yan; Stanbouly, Seta; Huang, Jie; Rojas, Mauricio; Vondriska, Thomas M.; Stefani, Enrico; Deb, Arjun

    2014-01-01

    Endothelial cells contribute to a subset of cardiac fibroblasts by undergoing endothelial-to-mesenchymal-transition, but whether cardiac fibroblasts can adopt an endothelial cell fate and directly contribute to neovascularization after cardiac injury is not known. Here, using genetic fate map techniques, we demonstrate that cardiac fibroblasts rapidly adopt an endothelial cell like phenotype after acute ischemic cardiac injury. Fibroblast derived endothelial cells exhibit anatomical and functional characteristics of native endothelial cells. We show that the transcription factor p53 regulates such a switch in cardiac fibroblast fate. Loss of p53 in cardiac fibroblasts severely decreases the formation of fibroblast derived endothelial cells, reduces post infarct vascular density and worsens cardiac function. Conversely, stimulation of the p53 pathway in cardiac fibroblasts augments mesenchymal to endothelial transition, enhances vascularity and improves cardiac function. These observations demonstrate that mesenchymal-to-endothelial-transition contributes to neovascularization of the injured heart and represents a potential therapeutic target for enhancing cardiac repair. PMID:25317562

  15. Cartilage proteoglycans inhibit fibronectin-mediated adhesion

    NASA Astrophysics Data System (ADS)

    Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.

    1981-09-01

    Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.

  16. An altered redox balance and increased genetic instability characterize primary fibroblasts derived from xeroderma pigmentosum group A patients.

    PubMed

    Parlanti, Eleonora; Pietraforte, Donatella; Iorio, Egidio; Visentin, Sergio; De Nuccio, Chiara; Zijno, Andrea; D'Errico, Mariarosaria; Simonelli, Valeria; Sanchez, Massimo; Fattibene, Paola; Falchi, Mario; Dogliotti, Eugenia

    2015-12-01

    Xeroderma pigmentosum (XP)-A patients are characterized by increased solar skin carcinogenesis and present also neurodegeneration. XPA deficiency is associated with defective nucleotide excision repair (NER) and increased basal levels of oxidatively induced DNA damage. In this study we search for the origin of increased levels of oxidatively generated DNA lesions in XP-A cell genome and then address the question of whether increased oxidative stress might drive genetic instability. We show that XP-A human primary fibroblasts present increased levels and different types of intracellular reactive oxygen species (ROS) as compared to normal fibroblasts, with O₂₋• and H₂O₂ being the major reactive species. Moreover, XP-A cells are characterized by decreased reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios as compared to normal fibroblasts. The significant increase of ROS levels and the alteration of the glutathione redox state following silencing of XPA confirmed the causal relationship between a functional XPA and the control of redox balance. Proton nuclear magnetic resonance (¹H NMR) analysis of the metabolic profile revealed a more glycolytic metabolism and higher ATP levels in XP-A than in normal primary fibroblasts. This perturbation of bioenergetics is associated with different morphology and response of mitochondria to targeted toxicants. In line with cancer susceptibility, XP-A primary fibroblasts showed increased spontaneous micronuclei (MN) frequency, a hallmark of cancer risk. The increased MN frequency was not affected by inhibition of ROS to normal levels by N-acetyl-L-cysteine. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Lysophosphatidic acid stimulates epidermal growth factor-family ectodomain shedding and paracrine signaling from human lung fibroblasts.

    PubMed

    Shiomi, Tetsuya; Boudreault, Francis; Padem, Nurcicek; Higashiyama, Shigeki; Drazen, Jeffrey M; Tschumperlin, Daniel J

    2011-01-01

    Lysophospatidic acid (LPA) is a bioactive lipid mediator implicated in tissue repair and wound healing. It mediates diverse functional effects in fibroblasts, including proliferation, migration and contraction, but less is known about its ability to evoke paracrine signaling to other cell types involved in wound healing. We hypothesized that human pulmonary fibroblasts stimulated by LPA would exhibit ectodomain shedding of epidermal growth factor receptor (EGFR) ligands that signal to lung epithelial cells. To test this hypothesis, we used alkaline phosphatase-tagged EGFR ligand plasmids transfected into lung fibroblasts, and enzyme-linked immunosorbent assays to detect shedding of native ligands. LPA induced shedding of alkaline phosphatase-tagged heparin-binding epidermal growth factor (HB-EGF), amphiregulin, and transforming growth factor-a; non-transfected fibroblasts shed amphiregulin and HBEGF under baseline conditions, and increased shedding of HB-EGF in response to LPA. Treatment of fibroblasts with LPA resulted in elevated phosphorylation of extracellular signal-regulated kinase 1/2, enhanced expression of mRNA for c-fos, HB-EGF and amphiregulin, and enhanced proliferation at 96 hours. However, none of these fibroblast responses to LPA required ectodomain shedding or EGFR activity. To test the ability of LPA to stimulate paracrine signaling from fibroblasts, we transferred conditioned medium from LPA-stimulated cells, and found enhanced EGFR and extracellular signal-regulated kinase 1/2 phosphorylation in reporter A549 cells in excess of what could be accounted for by transferred LPA alone. These data show that LPA mediates EGF-family ectodomain shedding, resulting in enhanced paracrine signaling from lung fibroblasts to epithelial cells. © 2011 by the Wound Healing Society.

  18. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF).

    PubMed

    Abdian, Narges; Ghasemi-Dehkordi, Payam; Hashemzadeh-Chaleshtori, Morteza; Ganji-Arjenaki, Mahbobe; Doosti, Abbas; Amiri, Beheshteh

    2015-12-01

    Basic fibroblast growth factor (bFGF or FGF-2) is a member of the FGF family secreted by different kinds of cells like HDFs and it is an important nutritional factor for cell growth and differentiation. The HDFs release bFGF in culture media at very low. The present study aims to investigate the HDFs growth rate in culture media supplemented either with or without bFGF. In brief, HDFs were isolated from human foreskin sample and were cultured in vitro in media containing bFGF and lack of this factor. The cells growth rate was calculated by trypan blue. The karyotyping was performed using G-banding to investigate the chromosomal abnormality of HDFs in both groups. Total RNA of each groups were extracted and cDNA samples were synthesized then, real-time Q-PCR was used to measure the expression level of p27kip1 and cyclin D1 genes normalized to internal control gene (GAPDH). The karyotype analysis showed that HDFs cultured in media or without bFGF had normal karyotype (46 chromosomes, XY) and chromosomal abnormalities were not observed. The cell growth rates in both groups were normal with proliferated exponentially but the slope of growth curve in HDFs cultured in media containing bFGF was increased. Karyotyp test showed that bFGF does not affect on cytogenetic stability of cells. The survey of p27kip1 and cyclin D1 genes by real-time Q-PCR showed that the expression level of these genes were up-regulated when adding bFGF in culture media (p < 0.05). The findings of the present study demonstrate that appropriate supplementation of culture media with growth factor like bFGF could enhance the proliferation and differentiation capacity of cells and improve cells growth rate. Similarly, fibroblast growth factors did not induce any chromosomal abnormality in cells. Furthermore, in HDFs cultured in bFGF supplemented media, the p27kip1 and cyclin D1 genes were up-regulated and suggesting an important role for bFGF in cell-cycle regulation and progression and fibroblast division stimulation. It also suggests that the effects of bFGF on different cell types with/or without production of bFGF or other regulation factors be investigated in future.

  19. Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer

    PubMed Central

    Hessmann, E; Patzak, M S; Klein, L; Chen, N; Kari, V; Ramu, I; Bapiro, T E; Frese, K K; Gopinathan, A; Richards, F M; Jodrell, D I; Verbeke, C; Li, X; Heuchel, R; Löhr, J M; Johnsen, S A; Gress, T M; Ellenrieder, V; Neesse, A

    2018-01-01

    Objective Desmoplasia and hypovascularity are thought to impede drug delivery in pancreatic ductal adenocarcinoma (PDAC). However, stromal depletion approaches have failed to show clinical responses in patients. Here, we aimed to revisit the role of the tumour microenvironment as a physical barrier for gemcitabine delivery. Design Gemcitabine metabolites were analysed in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) murine tumours and matched liver metastases, primary tumour cell lines, cancer-associated fibroblasts (CAFs) and pancreatic stellate cells (PSCs) by liquid chromatography-mass spectrometry/mass spectrometry. Functional and preclinical experiments, as well as expression analysis of stromal markers and gemcitabine metabolism pathways were performed in murine and human specimen to investigate the preclinical implications and the mechanism of gemcitabine accumulation. Results Gemcitabine accumulation was significantly enhanced in fibroblast-rich tumours compared with liver metastases and normal liver. In vitro, significantly increased concentrations of activated 2′,2′-difluorodeoxycytidine-5′-triphosphate (dFdCTP) and greatly reduced amounts of the inactive gemcitabine metabolite 2′,2′-difluorodeoxyuridine were detected in PSCs and CAFs. Mechanistically, key metabolic enzymes involved in gemcitabine inactivation such as hydrolytic cytosolic 5′-nucleotidases (Nt5c1A, Nt5c3) were expressed at low levels in CAFs in vitro and in vivo, and recombinant expression of Nt5c1A resulted in decreased intracellular dFdCTP concentrations in vitro. Moreover, gemcitabine treatment in KPC mice reduced the number of liver metastases by >50%. Conclusions Our findings suggest that fibroblast drug scavenging may contribute to the clinical failure of gemcitabine in desmoplastic PDAC. Metabolic targeting of CAFs may thus be a promising strategy to enhance the antiproliferative effects of gemcitabine. PMID:28077438

  20. Evidence against involvement of the acid lysosomal sphingomyelinase in the tumor-necrosis-factor- and interleukin-1-induced sphingomyelin cycle and cell proliferation in human fibroblasts.

    PubMed Central

    Andrieu, N; Salvayre, R; Levade, T

    1994-01-01

    The hydrolysis of sphingomyelin (SPM) has been reported to mediate a number of responses to extracellular agents, including cytokines. The so-called SPM cycle may result from the activation of different types of sphingomyelinases (SPMases). We investigated the hypothetical contribution of acid lysosomal SPMase in the SPM signal-transduction pathway. We examined the ability of human skin fibroblasts with a genetic deficiency of acid lysosomal SPMase activity to respond to tumour necrosis factor alpha (TNF-alpha) or interleukin-1 beta (IL-1 beta). We report that both cytokines promoted SPM hydrolysis in fibroblasts derived from patients with Niemann-Pick disease or I-cell disease, similar to that observed in normal cells. Treatment of normal fibroblasts with cationic amphiphilic drugs resulted in inhibition of acid SPMase activity, but had no effect on cytokine-induced SPM turnover. In addition, TNF-alpha and IL-1 beta stimulated [3H]thymidine incorporation in Niemann-Pick fibroblasts, as in normal cells. Thus our results argue against a role for acid endolysosomal SPMase in mediating the cytokine-induced SPM signalling cascade. Images Figure 2 PMID:7980390

  1. Profibrotic Phenotype of Conjunctival Fibroblasts from Mucous Membrane Pemphigoid

    PubMed Central

    Saw, Valerie P.J.; Schmidt, Enno; Offiah, Ifeoma; Galatowicz, Grazyna; Zillikens, Detlef; Dart, John K.G.; Calder, Virginia L.; Daniels, Julie T.

    2011-01-01

    Ocular mucous membrane pemphigoid is an immunobullous disease in which excessive conjunctival fibrosis causes blindness, and the pathogenesis of scarring is incompletely understood. To establish whether profibrotic fibroblasts with an altered phenotype exist in ocular mucous membrane pemphigoid, we compared the functional characteristics of pemphigoid conjunctival fibroblasts to normal conjunctival fibroblasts with respect to cell division; migration; collagen contraction; matrix metalloproteinase, secretion of collagen and chemokines; and myofibroblast differentiation. We found that pemphigoid fibroblasts showed increased cell division (P = 0.01), increased migration in serum-free medium (72 ± 18 migrated cells versus 33 ± 11, P = 0.04), increased collagen contraction in the presence of 10 ng/ml tumor necrosis factor-α, increased collagen type I secretion (P = 0.03), increased secretion of matrix metalloproteinase-3 (P = 0.03), and increased secretion of eotaxin in response to interleukin-13 (P = 0.04). Differences between pemphigoid and normal conjunctival fibroblasts with respect to collagen contraction and MMP secretion in the presence of interleukin-13 were also observed. Together, these findings indicate that pemphigoid conjunctival fibroblasts have a profibrotic phenotype that is maintained in vitro. No differences between pemphigoid fibroblasts obtained from acutely inflamed versus clinically uninflamed conjunctiva were observed. Developing effective antifibrotic therapies will require understanding of the mechanisms that both induce and maintain the profibrotic phenotype. PMID:21224056

  2. Semiquantitative immunohistochemical marker staining and localization in canine thyroid carcinoma and normal thyroid gland.

    PubMed

    Pessina, P; Castillo, V; Sartore, I; Borrego, J; Meikle, A

    2016-09-01

    Immunoreactive proteins in follicular cells, fibroblasts and endothelial cells were assessed in canine thyroid carcinomas and healthy thyroid glands. No differences were detected in thyrotropin receptor and thyroglobulin staining between cancer and normal tissues, but expression was higher in follicular cells than in fibroblasts. Fibroblast growth factor-2 staining was more intense in healthy follicular cells than in those of carcinomas. Follicular cells in carcinomas presented two- to three-fold greater staining intensity of thyroid transcription factor-1 and proliferating cell nuclear antigen, respectively, than healthy cells, and a similar trend was found for the latter antigen in fibroblasts. Vascular endothelial growth factor staining was more intense in the endothelial cells of tumours than in those of normal tissues. In conclusion, greater expression of factors related to proliferation and angiogenesis was demonstrated in several cell types within thyroid carcinomas compared to healthy tissues, which may represent mechanisms of tumour progression in this disease. © 2014 John Wiley & Sons Ltd.

  3. Efficient retrovirus-mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase-deficient human

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, T.D.; Hock, R.A.; Osborne, W.R.A.

    1987-02-01

    Skin fibroblasts might be considered suitable recipients for therapeutic genes to cure several human genetic diseases; however, these cells are resistant to gene transfer by most methods. The authors studied the ability of retroviral vectors to transfer genes into normal human diploid skin fibroblasts. Retroviruses carrying genes for neomycin or hygromycin B resistance conferred drug resistance to greater than 50% of the human fibroblasts after a single exposure to virus-containing medium. This represents at least a 500-fold increase in efficiency over other methods. Transfer was achieved in the absence of helper virus by using amphotropic retrovirus-packaging cells. A retrovirus vectormore » containing a human adenosine deaminase (ADA) cDNA was constructed and used to infect ADA/sup -/ fibroblasts from a patient with ADA deficiency. The infected cells produced 12-fold more ADA enzyme than fibroblasts from normal individuals and were able to rapidly metabolize exogenous deoxyadenosine and adenosine, metabolites that accumulate in plasma in ADA-deficient patients and are responsible for the severe combined immunodeficiency in these patients. These experiments indicate the potential of retrovirus-mediated gene transfer into human fibroblasts for gene therapy.« less

  4. Transcriptional response of dermal fibroblasts in direct current electric fields.

    PubMed

    Jennings, Jessica; Chen, Dongquan; Feldman, Dale

    2008-07-01

    During the course of normal wound healing, fibroblasts at the wound edge are exposed to electric fields (EFs) ranging from 40 to 200 mV/mm. Various forms of EFs influence fibroblast migration, proliferation, and protein synthesis. Thus, EFs may contribute to fibroblast activation during wound repair. To elucidate the role of EFs during the normal progression of healing, this study compares gene expression in normal adult dermal fibroblasts exposed to a 100 mV/mm EF for 1 h to non-stimulated controls. Significantly increased expression of 162 transcripts and decreased expression of 302 transcripts was detected using microarrays, with 126 transcripts above the level of 1.4-fold increases or decreases compared to the controls. Above the level of twofold, only 11 genes were significantly increased or decreased compared to controls. Many of these significantly regulated genes are associated with wound repair through the processes of matrix production, cellular signaling, and growth. Activity within specific cellular signaling pathways is noted, including TGF-beta, G-proteins, and inhibition of apoptosis. In addition, RT-PCR analysis of the expression of KLF6, FN1, RGS2, and JMJD1C over continued stimulation and at different field strengths suggests that there are specific windows of field characteristics for maximum induction of these genes. EFs thus appear to have an important role in controlling fibroblast activity in the process of wound healing.

  5. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results aremore » consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.« less

  6. Quantitative Analysis Reveals that Actin and Src-Family Kinases Regulate Nuclear YAP1 and Its Export.

    PubMed

    Ege, Nil; Dowbaj, Anna M; Jiang, Ming; Howell, Michael; Hooper, Steven; Foster, Charles; Jenkins, Robert P; Sahai, Erik

    2018-06-08

    The transcriptional regulator YAP1 is critical for the pathological activation of fibroblasts. In normal fibroblasts, YAP1 is located in the cytoplasm, while in activated cancer-associated fibroblasts, it is nuclear and promotes the expression of genes required for pro-tumorigenic functions. Here, we investigate the dynamics of YAP1 shuttling in normal and activated fibroblasts, using EYFP-YAP1, quantitative photobleaching methods, and mathematical modeling. Imaging of migrating fibroblasts reveals the tight temporal coupling of cell shape change and altered YAP1 localization. Both 14-3-3 and TEAD binding modulate YAP1 shuttling, but neither affects nuclear import. Instead, we find that YAP1 nuclear accumulation in activated fibroblasts results from Src and actomyosin-dependent suppression of phosphorylated YAP1 export. Finally, we show that nuclear-constrained YAP1, upon XPO1 depletion, remains sensitive to blockade of actomyosin function. Together, these data place nuclear export at the center of YAP1 regulation and indicate that the cytoskeleton can regulate YAP1 within the nucleus. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. A miR-335/COX-2/PTEN axis regulates the secretory phenotype of senescent cancer-associated fibroblasts

    PubMed Central

    Kabir, Tasnuva D.; Leigh, Ross J.; Tasena, Hataitip; Mellone, Massimiliano; Coletta, Ricardo D.; Parkinson, Eric K.; Prime, Stephen S.; Thomas, Gareth J.; Paterson, Ian C.; Zhou, Donghui; McCall, John; Speight, Paul M.; Lambert, Daniel W.

    2016-01-01

    Senescent cancer-associated fibroblasts (CAF) develop a senescence-associated secretory phenotype (SASP) that is believed to contribute to cancer progression. The mechanisms underlying SASP development are, however, poorly understood. Here we examined the functional role of microRNA in the development of the SASP in normal fibroblasts and CAF. We identified a microRNA, miR-335, up-regulated in the senescent normal fibroblasts and CAF and able to modulate the secretion of SASP factors and induce cancer cell motility in co-cultures, at least in part by suppressing the expression of phosphatase and tensin homologue (PTEN). Additionally, elevated levels of cyclo-oxygenase 2 (PTGS2; COX-2) and prostaglandin E2 (PGE2) secretion were observed in senescent fibroblasts, and inhibition of COX-2 by celecoxib reduced the expression of miR-335, restored PTEN expression and decreased the pro-tumourigenic effects of the SASP. Collectively these data demonstrate the existence of a novel miRNA/PTEN-regulated pathway modulating the inflammasome in senescent fibroblasts. PMID:27385366

  8. Establishment of ultra long-lived cell lines by transfection of TERT into normal human fibroblast TIG-1 and their characterization.

    PubMed

    Kamada, Mizuna; Kumazaki, Tsutomu; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko

    2012-06-01

    To establish useful human normal cell lines, TERT (telomerase reverse transcriptase) cDNA was transfected into normal female lung fibroblast, TIG-1. After long-term-sub-cultivation of 74 individual clones selected for resistance to G418, we obtained 55 cultures with normal range of life span [75 PDL (population doubling level)], 16 cultures with extended life span (75-140 PDL). In addition, 3 immortal cell strains and unexpectedly, one ultra long-lived cell line (ULT-1) with life span of 166 PDL were established. IMT-1, one of the immortal cell strains was confirmed to maintain long telomere length, high telomerase activity and an extremely low level of p16INK4A. They also showed moderate p53 and p21CIP1 expression, keeping vigorous growth rate even at 450 PDL. High level of fibronectin and collagen 1α expression confirmed IMT-1 as normal fibroblasts, although one X chromosome had been lost. ULT-1, however, kept a near normal karyotypes and had shortening of telomere length, high expression of p16INK4A, moderate levels of senescence associated-β-galactosidase positive cells and decreased growth rate only after 150 PDs (population doublings), and finally reached senescence at 166 PDL with morphology of normal senescent fibroblasts. As resources of standard normal human cell, abundant vials of early and middle passages of ULT-1 have been stocked. The use of the cell line is discussed, focusing on isograft of artificial skin and screening of anti-aging or safe chemical agents.

  9. Patterning of novel breast implant surfaces by enhancing silicone biocompatibility, using biomimetic topographies.

    PubMed

    Barr, S; Hill, E; Bayat, A

    2010-04-26

    Silicone biocompatibility is dictated by cell-surface interaction and its understanding is important in the field of implantation. The role of surface topography and its associated cellular morphology needs investigation to identify qualities that enhance silicone surface biocompatability. This study aims to create well-defined silicone topographies and examine how breast tissue-derived fibroblasts react and align to these surfaces. Photolithographic microelectronic techniques were modified to produce naturally inspired topographies in silicone, which were cultured with breast tissue-derived human fibroblasts. Using light, immunofluorescent and atomic force microscopy, the cytoskeletal reaction of fibroblasts to these silicone surfaces was investigated. Numerous, well-defined micron-sized pillars, pores, grooves, and ridges were manufactured and characterized in medical grade silicone. Inimitable immunofluorescent microscopy represented in our high magnification images of vinculin, vimentin, and the actin cytoskeleton highlights the differences in fibroblast adhesion between fabricated silicone surfaces. These unique figures illustrate that fibroblast adhesion and the reactions these cells have to silicone can be manipulated to enhance biointegration between the implant and the breast tissue. An alteration of fibroblast phenotype was also observed, exhibiting the propensity of these surfaces to induce categorical remodeling of fibroblasts. This unique study shows that fibroblast reactions to silicone topographies can be tailored to induce physiological changes in cells. This paves the way for further research necessary to develop more biocompatible constructs capable of eliminating capsular contracture by subverting the foreign body response.

  10. Effect of eosinophils activated with Alternaria on the production of extracellular matrix from nasal fibroblasts.

    PubMed

    Shin, Seung-Heon; Ye, Mi-Kyung; Choi, Sung-Yong; Kim, Yee-Hyuk

    2016-06-01

    Eosinophils and fibroblasts are known to play major roles in the pathogenesis of nasal polyps. Fungi are commonly found in nasal secretion and are associated with airway inflammation. To investigate whether activated eosinophils by airborne fungi can influence the production of extracellular matrix (ECM) from nasal fibroblasts. Inferior turbinate and nasal polyp fibroblasts were stimulated with Alternaria or Aspergillus, respectively, for 24 hours and ECM messenger RNA (mRNA) and protein expressions were measured. Eosinophils isolated from healthy volunteers were stimulated with Alternaria or Aspergillus for 4 hours then superoxide, eosinophil peroxidase, and transforming growth factor β1 were measured. Then activated eosinophils were cocultured with nasal fibroblasts for 24 hours, and ECM mRNA expressions were measured. Alternaria strongly enhanced ECM mRNA expression and protein production from nasal fibroblasts. Alternaria also induced the production of superoxide, eosinophil peroxidase, and transforming growth factor β1 from eosinophils, and activated eosinophils enhanced ECM mRNA expression when they were cocultured without the Transwell insert system. Eosinophils activated with Alternaria enhanced ECM mRNA expression from nasal polyp fibroblasts. Alternaria plays an important role in tissue fibrosis in the pathogenesis of nasal polyps by directly or indirectly influencing the production of ECM from nasal fibroblasts. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Niemann-Pick disease, Type C: evidence for the deficiency of an activating factor stimulating sphingomyelin and glucocerebroside degradation.

    PubMed

    Christomanou, H

    1980-10-01

    1) Qualitative lipid analyses by thin-layer chromatography of 4 Niemann-Pick type C spleens confirmed sphingomyelin accumulation together with increase in the amount of glucocerebroside. 2) In the presence of crude sodium taurocholate as detergent, sphingomyelin degradation rates of normal and Niemann-Pick type C-cultured fibroblasts were fairly close under standard conditions at pH 5.0. In the absence of sodium taurocholate, sphingomyelinase activity was optimal at pH 4.0. Sphingomyelinase activities of fibroblasts from two patients with Niemann-Pick disease type C measured without detergent, were about 30% of that of controls. 3) Extracts from Gaucher spleen heated to 90 degrees C and devoid of sphingomyelinase activity stimulated at the optimal pH of 4.0 sphingomyelin degradation by cultured normal fibroblasts (2--4-fold, Niemann-Pick type C fibroblasts (5--9-fold), whereas similarly treated extracts from Niemann-Pick type C spleen showed no stimulation of sphingomyelin catabolism. Heated extracts from normal human spleen exhibited a smaller stimulation than that shown by Gaucher spleen. This stimulating effect could not be observed in fibroblasts from patients suffering from Niemann-Pick type B (sphingomyelinase defect). 4) Heat-treated extracts of Gaucher spleen were fractionated by ion exchange chromatography, isoelectric focusing and gel filtration. The active fractions obtained by these procedures stimulated sphingomyelin as well as glucocerebroside degradation and were absent from the corresponding Niemann-Pick type C preparations. Enriched activator preparations of Gaucher spleen stimulated sphingomyelinase activity of Niemann-Pick type C fibroblasts 25--38-fold and that of normal cells 3-fold. 5) The activating factor had an isoelectric point of 4.0 and an apparent molecular weight, as estimated by gel filtration, of 25000. Treatment with pronase E abolished its activity.

  12. Increased plasma FGF21 level as an early biomarker for insulin resistance and metabolic disturbance in obese insulin-resistant rats.

    PubMed

    Tanajak, Pongpan; Pongkan, Wanpitak; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2018-05-01

    Propose: To investigate the temporal relationship between plasma fibroblast growth factor 21 levels, insulin resistance, metabolic dysfunction and cardiac fibroblast growth factor 21 resistance in long-term high-fat diet-induced obese rats. In total, 36 male Wistar rats were fed with either a normal diet or high-fat diet for 12 weeks. Blood was collected from the tail tip, and plasma was used to determine metabolic profiles and fibroblast growth factor 21 levels. Rats were sacrificed at weeks 4, 8 and 12, and the hearts were rapidly removed for the determination of cardiac fibroblast growth factor 21 signalling pathways. Body weight and plasma fibroblast growth factor 21 levels were increased after 4 weeks of consumption of a high-fat diet. At weeks 8 and 12, high-fat diet rats had significantly increased body weight and plasma fibroblast growth factor 21 levels, together with increased plasma insulin, HOMA index, area under the curve of glucose, plasma total cholesterol, plasma low-density lipoprotein cholesterol, serum malondialdehyde and cardiac malondialdehyde levels. However, plasma high-density lipoprotein cholesterol levels and cardiac fibroblast growth factor 21 signalling proteins (p-FGFR1 Tyr 154 , p-ERK1/2 Thr 202 /Tyr 204 and p-Akt Ser 473 ) were decreased, compared with normal diet rats. These findings suggest that plasma fibroblast growth factor 21 levels could be an early predictive biomarker prior to the development of insulin resistance, metabolic disturbance and cardiac fibroblast growth factor 21 resistance.

  13. Variations in gap junctional intercellular communication and connexin expression in fibroblasts derived from keloid and hypertrophic scars.

    PubMed

    Lu, Feng; Gao, JianHua; Ogawa, Rei; Hyakusoku, Hiko

    2007-03-01

    Expression of connexins and other constituent proteins of gap junctions along with gap junctional intercellular communication are involved in cellular development and differentiation processes. In addition, an increasing number of hereditary skin disorders appear to be linked to connexins. Therefore, in this report, the authors studied in vitro gap junctional intercellular communication function and connexin expression in fibroblasts derived from keloid and hypertrophic scar patients. Fibroblasts harvested from each of six keloid and hypertrophic scar patients were used for this study. Gap junctional intercellular communication function was investigated using the gap fluorescence recovery after photobleaching method, and expression of connexin proteins was studied using quantitative confocal microscopic analyses. Compared with normal skin, a decreased level of gap junctional intercellular communication was seen in fibroblasts derived from hypertrophic scar tissue, whereas an extremely low gap junctional intercellular communication level was detected in fibroblasts derived from keloid tissue. We also detected little connexin 43 (Cx43) protein localized in fibroblasts derived from keloids. Moreover, Cx43 protein levels were much lower in fibroblasts derived from hypertrophic scars than in those derived from normal skin. The authors' data suggest that the loss of gap junctional intercellular communication and connexin expression may affect intercellular recognition and thus break the proliferation and apoptosis balance in fibroblasts derived from keloid and hypertrophic scar tissue.

  14. Blocking CD147 induces cell death in cancer cells through impairment of glycolytic energy metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Miyako; Inoue, Masahiro; Itoh, Kazuyuki

    2008-09-12

    CD147 is a multifunctional transmembrane protein and promotes cancer progression. We found that the anti-human CD147 mouse monoclonal antibody MEM-M6/1 strongly induces necrosis-like cell death in LoVo, HT-29, WiDr, and SW620 colon cancer cells and A2058 melanoma cells, but not in WI-38 and TIG-113 normal fibroblasts. Silencing or overexpression of CD147 in LoVo cells enhanced or decreased the MEM-M6/1 induced cell death, respectively. CD147 is known to form complex with proton-linked monocarboxylate transporters (MCTs), which is critical for lactate transport and intracellular pH (pHi) homeostasis. In LoVo cells, CD147 and MCT-1 co-localized on the cell surface, and MEM-M6/1 inhibited themore » association of these molecules. MEM-M6/1 inhibited lactate uptake, lactate release, and reduced pHi. Further, the induction of acidification was parallel to the decrease of the glycolytic flux and intracellular ATP levels. These effects were not found in the normal fibroblasts. As cancer cells depend on glycolysis for their energy production, CD147 inhibition might induce cell death specific to cancer cells.« less

  15. Comparative human cellular radiosensitivity: I. The effect of SV40 transformation and immortalisation on the gamma-irradiation survival of skin derived fibroblasts from normal individuals and from ataxia-telangiectasia patients and heterozygotes.

    PubMed

    Arlett, C F; Green, M H; Priestley, A; Harcourt, S A; Mayne, L V

    1988-12-01

    We have compared cell killing following 60Co gamma irradiation in 22 primary human fibroblast strains, nine SV40-immortalized human fibroblast lines and seven SV40-transformed pre-crisis human fibroblast cultures. We have examined material from normal individuals, from ataxia-telangiectasia (A-T) patients and from A-T heterozygotes. We have confirmed the greater sensitivity of A-T derived cells to gamma radiation. The distinction between A-T and normal cells is maintained in cells immortalized by SV40 virus but the immortal cells are more gamma radiation resistant than the corresponding primary fibroblasts. Cells transformed by plasmids (pSV3gpt and pSV3neo) expressing SV40 T-antigen, both pre- and post-crisis, show this increased resistance, indicating that it is expression of SV40 T-antigen, rather than immortalization per se which is responsible for the change. We use D0, obtained from a straight line fit, and D, estimated from a multitarget curve, as parameters to compare radiosensitivity. We suggest that both have their advantages; D0 is perhaps more reproducible, but D is more realistic when comparing shouldered and non-shouldered data.

  16. Human brain metastatic stroma attracts breast cancer cells via chemokines CXCL16 and CXCL12.

    PubMed

    Chung, Brile; Esmaeili, Ali A; Gopalakrishna-Pillai, Sailesh; Murad, John P; Andersen, Emily S; Kumar Reddy, Naveen; Srinivasan, Gayathri; Armstrong, Brian; Chu, Caleb; Kim, Young; Tong, Tommy; Waisman, James; Yim, John H; Badie, Behnam; Lee, Peter P

    2017-01-01

    The tumor microenvironment is composed of heterogeneous populations of cells, including cancer, immune, and stromal cells. Progression of tumor growth and initiation of metastasis is critically dependent on the reciprocal interactions between cancer cells and stroma. Through RNA-Seq and protein analyses, we found that cancer-associated fibroblasts derived from human breast cancer brain metastasis express significantly higher levels of chemokines CXCL12 and CXCL16 than fibroblasts from primary breast tumors or normal breast. To further understand the interplay between cancer cells and cancer-associated fibroblasts from each site, we developed three-dimensional organoids composed of patient-derived primary or brain metastasis cancer cells with matching cancer-associated fibroblasts. Three-dimensional CAF aggregates generated from brain metastasis promote migration of cancer cells more effectively than cancer-associated fibroblast aggregates derived from primary tumor or normal breast stromal cells. Treatment with a CXCR4 antagonist and/or CXCL16 neutralizing antibody, alone or in combination, significantly inhibited migration of cancer cells to brain metastatic cancer-associated fibroblast aggregates. These results demonstrate that human brain metastasis cancer-associated fibroblasts potently attract breast cancer cells via chemokines CXCL12 and CXCL16, and blocking CXCR6-CXCL16/CXCR4-CXCL12 receptor-ligand interactions may be an effective therapy for preventing breast cancer brain metastasis.

  17. Skin fibroblasts from individuals hemizygous for the familial adenopolyposis susceptibility gene show delayed crisis in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.; Kazim, D.; Kraveka, J.

    Normal human fibroblast cells have not been reported to escape crisis--that is they die after about 24 doublings in culture. The authors have been studying the growth properties of skin fibroblast cells from persons in families with familial adenopolyposis of the colon (FAP). An individual hemizygous at the FAP locus will develop hyperplasia of the colonic epithelium followed by colonic polyps, both at an early age. Polyps themselves still retain a single functional FAP allele. A mutation or deletion in this allele in a polyp is hypothesized to lead to further loss of growth control; thus, a tumor is formed.more » They found that the in vitro life-span of skin fibroblast cells from FAP individuals and from some asymptomatic children were markedly extended when compared with normal individuals.« less

  18. Modulation of Human Valve Interstitial Cell Phenotype and Function Using a Fibroblast Growth Factor 2 Formulation

    PubMed Central

    Latif, Najma; Quillon, Alfred; Sarathchandra, Padmini; McCormack, Ann; Lozanoski, Alec; Yacoub, Magdi H.; Chester, Adrian H.

    2015-01-01

    Valve interstitial cells (VICs) are fibroblastic in nature however in culture it is widely accepted that they differentiate into a myofibroblastic phenotype. This study assessed a fibroblast culture media formulation for its ability to maintain the phenotype and function of VICs as in the intact healthy valve. Normal human VICs were cultured separately in standard DMEM and in fibroblast media consisting of FGF2 (10ng/ml), insulin (50ng/ml) and 2% FCS for at least a week. Cell morphology, aspect ratio, size, levels and distribution of protein expression, proliferation, cell cycle, contraction and migration were assessed. Some VICs and some valve endothelial cells expressed FGF2 in valve tissue and this expression was increased in calcified valves. VICs in DMEM exhibited large, spread cells whereas VICs in fibroblast media were smaller, elongated and spindly. Aspect ratio and size were both significantly higher in DMEM (p<0.01). The level of expression of α-SMA was significantly reduced in fibroblast media at day 2 after isolation (p<0.01) and the expression of α-SMA, SM22 and EDA-fibronectin was significantly reduced in fibroblast media at days 7 and 12 post-isolation (p<0.01). Expression of cytoskeletal proteins, bone marker proteins and extracellular matrix proteins was reduced in fibroblast media. Proliferation of VICs in fibroblast media was significantly reduced at weeks 1 (p<0.05) and 2 (p<0.01). Collagen gel contraction was significantly reduced in fibroblast media (p<0.05). VICs were found to have significantly fewer and smaller focal adhesions in fibroblast media (p<0.01) with significantly fewer supermature focal adhesions in fibroblast media (p<0.001). Ultrastructurally, VICs in fibroblast media resembled native VICs from intact valves. VICs in fibroblast media demonstrated a slower migratory ability after wounding at 72 hours (p<0.01). Treatment of human VICs with this fibroblast media formulation has the ability to maintain and to dedifferentiate the VICs back to a fibroblastic phenotype with phenotypic and functional characteristics ascribed to cells in the intact valve. This methodology is fundamental in the study of normal valve biology, pathology and in the field of tissue engineering. PMID:26042674

  19. Zebularine and scriptaid significantly improve epigenetic reprogramming of yak fibroblasts and cloning efficiency.

    PubMed

    Xiong, Xianrong; Lan, Daoliang; Li, Jian; Zhong, Jincheng; Zi, Xiangdong; Ma, Li; Wang, Yong

    2013-08-01

    Abnormal epigenetic reprogramming of the donor nucleus after somatic cell nuclear transfer (SCNT) is thought to be the main cause of low cloning efficiency. Following SCNT, the donor nucleus often fails to express early embryonic genes and establish a normal embryonic pattern of chromatin modification. Therefore, in this study, we have attempted to improve epigenetic reprogramming of the donor nucleus and cloned embryos with Zebularine and Scriptaid. Yak fibroblasts were treated with 20 μM Zebularine alone or 20 μM Zebularine plus 0.5 μM Scriptaid for 24 h, whereas yak cloned embryos were treated exclusively with 0.5 μM Scriptaid for 12 h. There was no effect on cellular viability and proliferation after drug treatment. The treatment of fibroblasts with Zebularine or Zebularine plus Scriptaid increased histone acetylation of histone 3 lysine 9 (H3K9), but decreased the level of DNA methylation of Oct-4 and Sox-2 promoter regions. When donor cells were used after Zebularine plus Scriptaid treatment to reconstruct cloned embryos and then treated with Scriptaid, the developmental competence and cryosurvival of embryos were improved significantly. In addition, the relative expression of Oct-4 and Sox-2 were increased significantly. The expression levels of Dnmt-1 and Hdac-1 were significantly decreased when fibroblasts and cloned embryos were treated with Zebularine or Scriptaid. This work provides functional evidence that treatment with Zebularine and Scriptaid modifies the epigenetic status of yak fibroblasts, subsequently enhancing in vitro developmental potential and the quality of yak cloned embryos.

  20. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia.

    PubMed

    Lerman, Oren Z; Galiano, Robert D; Armour, Mary; Levine, Jamie P; Gurtner, Geoffrey C

    2003-01-01

    Although it is known that systemic diseases such as diabetes result in impaired wound healing, the mechanism for this impairment is not understood. Because fibroblasts are essential for wound repair, we compared the in vitro behavior of fibroblasts cultured from diabetic, leptin receptor-deficient (db/db) mice with wild-type fibroblasts from mice of the same genetic background in processes important during tissue repair. Adult diabetic mouse fibroblast migration exhibited a 75% reduction in migration compared to normal fibroblasts (P < 0.001) and was not significantly stimulated by hypoxia (1% O(2)), whereas wild-type fibroblast migration was up-regulated nearly twofold in hypoxic conditions (P < 0.05). Diabetic fibroblasts produced twice the amount of pro-matrix metalloproteinase-9 as normal fibroblasts, as measured by both gelatin zymography and enzyme-linked immunosorbent assay (P < 0.05). Adult diabetic fibroblasts exhibited a sevenfold impairment in vascular endothelial growth factor (VEGF) production (4.5 +/- 1.3 pg/ml versus 34.8 +/- 3.3 pg/ml, P < 0.001) compared to wild-type fibroblasts. Moreover, wild-type fibroblast production of VEGF increased threefold in response to hypoxia, whereas diabetic fibroblast production of VEGF was not up-regulated in hypoxic conditions (P < 0.001). To address the question whether these differences resulted from chronic hyperglycemia or absence of the leptin receptor, fibroblasts were harvested from newborn db/db mice before the onset of diabetes (4 to 5 weeks old). These fibroblasts showed no impairments in VEGF production under basal or hypoxic conditions, confirming that the results from db/db fibroblasts in mature mice resulted from the diabetic state and were not because of alterations in the leptin-leptin receptor axis. Markers of cellular viability including proliferation and senescence were not significantly different between diabetic and wild-type fibroblasts. We conclude that, in vitro, diabetic fibroblasts show selective impairments in discrete cellular processes critical for tissue repair including cellular migration, VEGF production, and the response to hypoxia. The VEGF abnormalities developed concurrently with the onset of hyperglycemia and were not seen in normoglycemic, leptin receptor-deficient db/db mice. These observations support a role for fibroblast dysfunction in the impaired wound healing observed in human diabetics, and also suggest a mechanism for the poor clinical outcomes that occur after ischemic injury in diabetic patients.

  1. Cellular Dysfunction in the Diabetic Fibroblast

    PubMed Central

    Lerman, Oren Z.; Galiano, Robert D.; Armour, Mary; Levine, Jamie P.; Gurtner, Geoffrey C.

    2003-01-01

    Although it is known that systemic diseases such as diabetes result in impaired wound healing, the mechanism for this impairment is not understood. Because fibroblasts are essential for wound repair, we compared the in vitro behavior of fibroblasts cultured from diabetic, leptin receptor-deficient (db/db) mice with wild-type fibroblasts from mice of the same genetic background in processes important during tissue repair. Adult diabetic mouse fibroblast migration exhibited a 75% reduction in migration compared to normal fibroblasts (P < 0.001) and was not significantly stimulated by hypoxia (1% O2), whereas wild-type fibroblast migration was up-regulated nearly twofold in hypoxic conditions (P < 0.05). Diabetic fibroblasts produced twice the amount of pro-matrix metalloproteinase-9 as normal fibroblasts, as measured by both gelatin zymography and enzyme-linked immunosorbent assay (P < 0.05). Adult diabetic fibroblasts exhibited a sevenfold impairment in vascular endothelial growth factor (VEGF) production (4.5 ± 1.3 pg/ml versus 34.8 ± 3.3 pg/ml, P < 0.001) compared to wild-type fibroblasts. Moreover, wild-type fibroblast production of VEGF increased threefold in response to hypoxia, whereas diabetic fibroblast production of VEGF was not up-regulated in hypoxic conditions (P < 0.001). To address the question whether these differences resulted from chronic hyperglycemia or absence of the leptin receptor, fibroblasts were harvested from newborn db/db mice before the onset of diabetes (4 to 5 weeks old). These fibroblasts showed no impairments in VEGF production under basal or hypoxic conditions, confirming that the results from db/db fibroblasts in mature mice resulted from the diabetic state and were not because of alterations in the leptin-leptin receptor axis. Markers of cellular viability including proliferation and senescence were not significantly different between diabetic and wild-type fibroblasts. We conclude that, in vitro, diabetic fibroblasts show selective impairments in discrete cellular processes critical for tissue repair including cellular migration, VEGF production, and the response to hypoxia. The VEGF abnormalities developed concurrently with the onset of hyperglycemia and were not seen in normoglycemic, leptin receptor-deficient db/db mice. These observations support a role for fibroblast dysfunction in the impaired wound healing observed in human diabetics, and also suggest a mechanism for the poor clinical outcomes that occur after ischemic injury in diabetic patients. PMID:12507913

  2. Classical late infantile neuronal ceroid lipofuscinosis fibroblasts are deficient in lysosomal tripeptidyl peptidase I.

    PubMed

    Vines, D J; Warburton, M J

    1999-01-25

    Tripeptidyl peptidase I (TPP-I) is a lysosomal enzyme that cleaves tripeptides from the N-terminus of polypeptides. A comparison of TPP-I amino acid sequences with sequences derived from an EST database suggested that TPP-I is identical to a pepstatin-insensitive carboxyl proteinase of unknown specificity which is mutated in classical late infantile neuronal ceroid lipofuscinosis (LINCL), a lysosomal storage disease. Both TPP-I and the carboxyl proteinase have an M(r) of about 46 kDa and are, or are predicted to be, resistant to inhibitors of the four major classes of proteinases. Fibroblasts from LINCL patients have less than 5% of the normal TPP-I activity. The activities of other lysosomal enzymes, including proteinases, are in the normal range. LINCL fibroblasts are also defective at degrading short polypeptides and this defect can be induced in normal fibroblasts by treatment with a specific inhibitor or TPP-I. These results suggest that the cell damage, especially neuronal, observed in LINCL results from the defective degradation and consequent lysosomal storage of small peptides.

  3. Patterning of Novel Breast Implant Surfaces by Enhancing Silicone Biocompatibility, Using Biomimetic Topographies

    PubMed Central

    Barr, S.; Hill, E.; Bayat, A.

    2010-01-01

    Introduction and Aims: Silicone biocompatibility is dictated by cell-surface interaction and its understanding is important in the field of implantation. The role of surface topography and its associated cellular morphology needs investigation to identify qualities that enhance silicone surface biocompatability. This study aims to create well-defined silicone topographies and examine how breast tissue–derived fibroblasts react and align to these surfaces. Methods: Photolithographic microelectronic techniques were modified to produce naturally inspired topographies in silicone, which were cultured with breast tissue–derived human fibroblasts. Using light, immunofluorescent and atomic force microscopy, the cytoskeletal reaction of fibroblasts to these silicone surfaces was investigated. Results: Numerous, well-defined micron-sized pillars, pores, grooves, and ridges were manufactured and characterized in medical grade silicone. Inimitable immunofluorescent microscopy represented in our high magnification images of vinculin, vimentin, and the actin cytoskeleton highlights the differences in fibroblast adhesion between fabricated silicone surfaces. These unique figures illustrate that fibroblast adhesion and the reactions these cells have to silicone can be manipulated to enhance biointegration between the implant and the breast tissue. An alteration of fibroblast phenotype was also observed, exhibiting the propensity of these surfaces to induce categorical remodeling of fibroblasts. Conclusions: This unique study shows that fibroblast reactions to silicone topographies can be tailored to induce physiological changes in cells. This paves the way for further research necessary to develop more biocompatible constructs capable of eliminating capsular contracture by subverting the foreign body response. PMID:20458346

  4. Response of Fibroblasts MRC-5 to Flufenamic Acid-Grafted MCM-41 Nanoparticles

    PubMed Central

    Lara, Giovanna Gomes; Andrade, Gracielle Ferreira; da Silva, Wellington Marcos

    2018-01-01

    Recently, flufenamic acid (FFA) was discovered among fenamates as a free radical scavenger and gap junction blocker; however, its effects have only been studied in cancer cells. Normal cells in the surroundings of a tumor also respond to radiation, although they are not hit by it directly. This phenomenon is known as the bystander effect, where response molecules pass from tumor cells to normal ones, through communication channels called gap junctions. The use of the enhanced permeability and retention effect, through which drug-loaded nanoparticles smaller than 200 nm may accumulate around a tumor, can prevent the local side effect upon controlled release of the drug. The present work, aimed at functionalizing MCM-41 (Mobil Composition of Matter No. 41) silica nanoparticles with FFA and determining its biocompatibility with human fibroblasts MRC-5 (Medical Research Council cell strain 5). MCM-41, was synthesized and characterized structurally and chemically, with multiple techniques. The biocompatibility assay was performed by Live/Dead technique, with calcein and propidium–iodide. MRC-5 cells were treated with FFA-grafted MCM-41 for 48 h, and 98% of cells remained viable, without signs of necrosis or morphological changes. The results show the feasibility of MCM-41 functionalization with FFA, and its potential protection of normal cells, in comparison to the role of FFA in cancerous ones. PMID:29315235

  5. TβRIII Expression in Human Breast Cancer Stroma and the Role of Soluble TβRIII in Breast Cancer Associated Fibroblasts.

    PubMed

    Jovanović, Bojana; Pickup, Michael W; Chytil, Anna; Gorska, Agnieszka E; Johnson, Kimberly C; Moses, Harold L; Owens, Philip

    2016-11-04

    The TGF-β pathway plays a major role in tumor progression through regulation of epithelial and stromal cell signaling. Dysfunction of the pathway can lead to carcinoma progression and metastasis. To gain insight into the stromal role of the TGF-β pathway in breast cancer, we performed laser capture microdissection (LCM) from breast cancer patients and reduction mammoplasty patients. Microdissected tumor stroma and normal breast stroma were examined for gene expression. Expression of the TGF-β type III receptor ( TGFBR3 ) was greatly decreased in the tumor stroma compared to control healthy breast tissue. These results demonstrated a 44-fold decrease in TGFBR3 mRNA in tumor stroma in comparison to control tissue. We investigated publicly available databases, and have identified that TGFBR3 mRNA levels are decreased in tumor stroma. We next investigated fibroblast cell lines derived from cancerous and normal breast tissue and found that in addition to mRNA levels, TβRIII protein levels were significantly reduced. Having previously identified that cancer-associated fibroblasts secrete greater levels of tumor promoting cytokines, we investigated the consequences of soluble-TβRIII (sTβRIII) on fibroblasts. Fibroblast conditioned medium was analyzed for 102 human secreted cytokines and distinct changes in response to sTβRIII were observed. Next, we used the fibroblast-conditioned medium to stimulate human monocyte cell line THP-1. These results indicate a distinct transcriptional response depending on sTβRIII treatment and whether it was derived from normal or cancerous breast tissue. We conclude that the effect of TβRIII has distinct roles not only in cancer-associated fibroblasts but that sTβRIII has distinct paracrine functions in the tumor microenvironment.

  6. Gene Expression Profile Analysis as a Prognostic Indicator of Normal Tissue Response to Simulated Space Radiations

    NASA Technical Reports Server (NTRS)

    Story, Michael; Stivers, David N.

    2004-01-01

    This project was funded as a pilot project to determine the feasibility of using gene expression profiles to characterize the response of human cells to exposure to particulate radiations such as those encountered in the spaceflight environment. We proposed to use microarray technology to examine the gene expression patterns of a bank of well-characterized human fibroblast cell cultures. These fibroblast cultures were derived from breast or head and neck cancer patients who exhibited normal, minimal, or severe normal tissue reactions following low LET radiation exposure via radiotherapy. Furthermore, determination of SF2 values from fibroblasts cultured from these individuals were predictive of risk for severe late reactions. We hypothesized that by determining the expression of thousands of genes we could identify gene expression patterns that reflect how normal tissues respond to high Z and energy (HZE) particles, that is, that there are molecular signatures for HZE exposures. We also hypothesized that individuals who are intrinsically radiosensitive may elicit a unique response. Because this was funded as a pilot project we focused our initial studies on logistics and appropriate experimental design, and then to test our hypothesis that there is a unique molecular response to specific particles, in this case C and Fe, for primary human skin fibroblasts.

  7. Question of bone marrow stromal fibroblast traffic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, M.A.; Lamela, R.A.; Patt, H.M.

    Bone marrow stromal fibroblasts (CFU-F) normally do not exchange bone marrow sites in vivo. Restitution of the CFU-F after radiation damage is primarily recovery by the local fibroblasts from potentially lethal damage. Migration of stromal fibroblasts from shielded sites to an irradiated site makes a minimal contribution, if any, to CFU-F recovery. Determination of the relative contribution of donor stromal cells in bone marrow transplants by karyotyping the proliferating bone marrow stromal cells in vitro may not reflect the relative distribution of fibroblasts in the marrow. If there is residual damage to the host stromal fibroblasts from treatment before transplantation,more » these cells may not be able to proliferate in vitro. Therefore, an occasional transplanted fibroblast may contribute most of the metaphase figures scored for karyotype.« less

  8. Proliferating fibroblasts and HeLa cells co-cultured in vitro reciprocally influence growth patterns, protein expression, chromatin features and cell survival.

    PubMed

    Delinasios, John G; Angeli, Flora; Koumakis, George; Kumar, Shant; Kang, Wen-Hui; Sica, Gigliola; Iacopino, Fortunata; Lama, Gina; Lamprecht, Sergio; Sigal-Batikoff, Ina; Tsangaris, George T; Farfarelos, Christos D; Farfarelos, Maria C; Vairaktaris, Eleftherios; Vassiliou, Stavros; Delinasios, George J

    2015-04-01

    to identify biological interactions between proliferating fibroblasts and HeLa cells in vitro. Fibroblasts were isolated from both normal and tumour human tissues. Coverslip co-cultures of HeLa and fibroblasts in various ratios with medium replacement every 48 h were studied using fixed cell staining with dyes such as Giemsa and silver staining, with immunochemistry for Ki-67 and E-cadherin, with dihydrofolate reductase (DHFR) enzyme reaction, as well as live cell staining for non-specific esterases and lipids. Other techniques included carmine cell labeling, autoradiography and apoptosis assessment. Under conditions of feeding and cell: cell ratios allowing parallel growth of human fibroblasts and HeLa cells, co-cultured for up to 20 days, a series of phenomena occur consecutively: profound affinity between the two cell types and exchange of small molecules; encircling of the HeLa colonies by the fibroblasts and enhanced growth of both cell types at their contact areas; expression of carbonic anhydrase in both cell types and high expression of non-specific esterases and cytoplasmic argyrophilia in the surrounding fibroblasts; intense production and secretion of lipid droplets by the surrounding fibroblasts; development of a complex net of argyrophilic projections of the fibroblasts; E-cadherin expression in the HeLa cells; from the 10th day onwards, an increasing detachment of batches of HeLa cells at the peripheries of colonies and appearance of areas with many multi-nucleated and apoptotic HeLa cells, and small HeLa fragments; from the 17th day, appearance of fibroblasts blocked at the G2-M phase. Co-cultures at approximately 17-20 days display a cell-cell fight with foci of (a) sparse growth of both cell types, (b) overgrowth of the fibroblasts and (c) regrowth of HeLa in small colonies. These results indicate that during their interaction with HeLa cells in vitro, proliferating fibroblasts can be activated against HeLa. This type of activation is not observed if fibroblast proliferation is blocked by contact inhibition of growth at confluency, or by omitting replacement of the nutrient medium. The present observations show that: (a) interaction between proliferating fibroblasts and HeLa cells in vitro drastically influences each other's protein expression, growth pattern, chromatin features and survival; (b) these functions depend on the fibroblast/HeLa ratio, cell topology (cell-cell contact and the architectural pattern developed during co-culture) and frequent medium change, as prerequisites for fibroblast proliferation; (c) this co-culture model is useful in the study of the complex processes within the tumour microenvironment, as well as the in vitro reproduction and display of several phenomena conventionally seen in tumour cytological sections, such as desmoplasia, apoptosis, nuclear abnormalities; and (d) overgrown fibroblasts adhering to the boundaries of HeLa colonies produce and secrete lipid droplets. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiao-Qing; Zhang, Dao-Liang; Zhang, Ming-Jian

    Aims: Atrial fibroblasts and macrophages have long been thought to participate in atrial fibrillation (AF). However, which specific mediator may regulate the interaction between them remains unclear. Methods and results: We provided the evidence for the involvement of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF), an important inflammation-related molecule, in the pathophysiology of AF. Patients with AF showed higher levels of angiotensin II (AngII) and TRIF expression and larger number of macrophages infiltration in left atria appendage than individuals with sinus rhythm (SR). In the cell study, AngII induced chemokines expressions in mouse atrial fibroblasts and AngII-stimulated atrial fibroblasts inducedmore » the chemotaxis of macrophages, which were reduced by losartan and TRIF siRNA. Meanwhile, AngII-stimulated atrial fibroblasts proliferation was enhanced by macrophages. Conclusions: Our data demonstrated that TRIF may be a crucial factor promoting the interaction between atrial fibroblasts and macrophages, leading to atrial fibrosis. - Highlights: • Compared with SR, AF showed higher TRIF expression in left atrial appendage. • TRIF siRNA reversed macrophage chemotaxis induced by AngII-treated fibroblast. • TRIF siRNA reversed chemokines expressions induced by AngII in fibroblast. • AngII-stimulated atrial fibroblast proliferation was enhanced by macrophage.« less

  10. Evidence of two distinct functionally specialized fibroblast lineages in breast stroma.

    PubMed

    Morsing, Mikkel; Klitgaard, Marie Christine; Jafari, Abbas; Villadsen, René; Kassem, Moustapha; Petersen, Ole William; Rønnov-Jessen, Lone

    2016-11-03

    The terminal duct lobular unit (TDLU) is the most dynamic structure in the human breast and the putative site of origin of human breast cancer. Although stromal cells contribute to a specialized microenvironment in many organs, this component remains largely understudied in the human breast. We here demonstrate the impact on epithelium of two lineages of breast stromal fibroblasts, one of which accumulates in the TDLU while the other resides outside the TDLU in the interlobular stroma. The two lineages are prospectively isolated by fluorescence activated cell sorting (FACS) based on different expression levels of CD105 and CD26. The characteristics of the two fibroblast lineages are assessed by immunocytochemical staining and gene expression analysis. The differentiation capacity of the two fibroblast populations is determined by exposure to specific differentiating conditions followed by analysis of adipogenic and osteogenic differentiation. To test whether the two fibroblast lineages are functionally imprinted by their site of origin, single cell sorted CD271 low /MUC1 high normal breast luminal epithelial cells are plated on fibroblast feeders for the observation of morphological development. Epithelial structure formation and polarization is shown by immunofluorescence and digitalized quantification of immunoperoxidase-stained cultures. Lobular fibroblasts are CD105 high /CD26 low while interlobular fibroblasts are CD105 low /CD26 high . Once isolated the two lineages remain phenotypically stable and functionally distinct in culture. Lobular fibroblasts have properties in common with bone marrow derived mesenchymal stem cells and they specifically convey growth and branching morphogenesis of epithelial progenitors. Two distinct functionally specialized fibroblast lineages exist in the normal human breast, of which the lobular fibroblasts have properties in common with mesenchymal stem cells and support epithelial growth and morphogenesis. We propose that lobular fibroblasts constitute a specialized microenvironment for human breast luminal epithelial progenitors, i.e. the putative precursors of breast cancer.

  11. Immunocytology with microwave-fixed fibroblasts shows 1 alpha,25- dihydroxyvitamin D3-dependent rapid and estrogen-dependent slow reorganization of vitamin D receptors

    PubMed Central

    1990-01-01

    Prior studies have given no evidence for regulation of vitamin D receptor (VDR) compartmentalization or subcellular organization. Microwave fixation (9-15 s) and an indirect immunodetection system of avidin-biotin enhancement and phycoerythrin fluorophore resulted in sufficient spatial and temporal resolution to allow analysis of these processes. We studied cultured fibroblasts from normals or from patients with four different types of hereditary defect compromising VDR function (mutant cells). Compartmentalization of VDRs in the absence of 1,25-dihydroxyvitamin D3 (calcitriol) was regulated by serum or estrogen. VDRs were mainly cytoplasmic in cells cultured without serum and phenol red, but VDRs were mainly intranuclear after addition of serum or an estrogen to cells for at least 18 h (slow regulation). Calcitriol initiated a rapid and multistep process (rapid regulation) of reorganization in a portion of VDRs: clumping within 15-45 s, alignment of clumps along fibrils within 30-45 s, perinuclear accumulation of clumps within 45-90 s, and intranuclear accumulation of clumps within 1-3 min. We found similar rapid effects of calcitriol on VDRs in various other types of cultured cells. These sequential VDR pattern changes showed calcitriol dose dependency and calcitriol analogue specificity characteristic for the VDR. In mutant fibroblasts VDR pattern changes after calcitriol were absent or severely disturbed at selected steps. Treatment of normal cells with wheat germ agglutinin, which blocks protein transport through nuclear pores, also blocked calcitriol-dependent translocation of VDRs. We conclude that immunocytology after microwave fixation provides evidence for regulation of VDR organization and localization. PMID:2177476

  12. Lysine acetylsalicylate decreases proliferation and extracellular matrix gene expression rate in keloid fibroblasts in vitro.

    PubMed

    Petri, Jean-Bernhard; Haustein, Uwe-Frithjof

    2002-01-01

    In genetically predisposed individuals keloids are formed as benign collagenous tumors. The purpose of this study was to investigate whether the proliferation and matrix gene expression of keloid fibroblasts is differently influenced by the anti-inflammatory active drug lysine acetylsalicylate (LAS) when compared to normal skin fibroblasts in vitro. Normal skin and keloid fibroblasts derived from human donors were compared. Excessive scarring and the formation of keloids are (at least in part) due to an overproduction of collagen types I and III. The results show a significant dose-dependent anti-proliferative effect of lysine acetylsalicylate. At the level of gene expression we observed a pronounced inhibitory effect of LAS on procollagen I and III mRNA synthesis, whereas matrix metalloproteinase 1 and tissue inhibitor of metalloproteinases 1 were not altered. Further clinical studies are planned to evaluate these effects of a high-dose treatment of keloids with LAS.

  13. Therapeutic Targeting of CC Ligand 21 or CC Chemokine Receptor 7 Abrogates Pulmonary Fibrosis Induced by the Adoptive Transfer of Human Pulmonary Fibroblasts to Immunodeficient Mice

    PubMed Central

    Pierce, Elizabeth M.; Carpenter, Kristin; Jakubzick, Claudia; Kunkel, Steven L.; Flaherty, Kevin R.; Martinez, Fernando J.; Hogaboam, Cory M.

    2007-01-01

    Idiopathic interstitial pneumonias (IIPs) are a collection of pulmonary fibrotic diseases of unknown etiopathogenesis. CC chemokine receptor 7 (CCR7) is expressed in IIP biopsies and primary fibroblast lines, but its role in pulmonary fibrosis was not previously examined. To study the in vivo role of CCR7 in a novel model of pulmonary fibrosis, 1.0 × 106 primary fibroblasts grown from idiopathic pulmonary fibrosis/usual interstitial pneumonia, nonspecific interstitial pneumonia, or histologically normal biopsies were injected intravenously into C.B-17 severe combined immunodeficiency (SCID)/beige (bg) mice. At days 35 and 63 after idiopathic pulmonary fibrosis/usual interstitial pneumonia fibroblast injection, patchy interstitial fibrosis and increased hydroxyproline were present in the lungs of immunodeficient mice. Adoptively transferred nonspecific interstitial pneumonia fibroblasts caused a more diffuse interstitial fibrosis and increased hydroxyproline levels at both times, but injected normal human fibroblasts did not induce interstitial remodeling changes in C.B-17SCID/bg mice. Systemic therapeutic immunoneutralization of either human CCR7 or CC ligand 21, its ligand, significantly attenuated the pulmonary fibrosis in groups of C.B-17SCID/bg mice that received either type of IIP fibroblasts. Thus, the present study demonstrates that pulmonary fibrosis is initiated by the intravenous introduction of primary human fibroblast lines into immunodeficient mice, and this fibrotic response is dependent on the interaction between CC ligand 21 and CCR7. PMID:17392156

  14. Effects of mitomycin-C on normal dermal fibroblasts.

    PubMed

    Chen, Theodore; Kunnavatana, Shaun S; Koch, R James

    2006-04-01

    To evaluate the effects of mitomycin-C on the growth and autocrine growth factor production of human dermal fibroblasts from the face. In vitro study using normal adult dermal fibroblast cell lines in a serum-free model. Cell cultures were exposed to 4 mg/mL, 0.4 mg/mL, 0.04 mg/mL, 0.004 mg/mL, and 0.0004 mg/mL concentrations of mitomycin-C solution. Cell counts were performed, and the cell-free supernatants were collected at 0, 1, 3, and 5 days after the initial exposure. Population doubling times were calculated and supernatants were quantitatively assayed for basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-beta1. Continuous exposure to mitomycin-C caused fibroblast cell death by day 7 at all tested concentrations. A 4 minute exposure to mitomycin-C at 4 mg/mL caused rapid fibroblast cell death. A 4-minute exposure to mitomycin-C at either 0.4 mg/mL or 0.04 mg/mL resulted in decreased fibroblast proliferation. A 4 minute exposure to mitomycin-C at 0.4 mg/mL resulted in a marked increase in the production of both bFGF and TGF-beta1. A clinically ideal concentration of mitomycin-C would slow fibroblast proliferation yet not cause cell death to allow for a wound healing response. Mitomycin-C 0.4 mg/mL for 4 minutes satisfies the above criteria in vitro.

  15. [Regulation of airway stem cell proliferation in idiopathic pulmonary fibrosis].

    PubMed

    Yang, S X; Wu, Q; Sun, X; Li, X; Li, K; Xu, L; Li, Y; Zhang, Q Y; Zhang, Y C; Chen, H Y

    2016-09-01

    To investigate the effect of fibroblasts on regulating airway stem cell proliferation in idiopathic pulmonary fibrosis. Lung cell suspension was prepared from β-actin-GFP mice. Airway stem cells were obtained by fluorescence activated cell sorting and co-cultured with lung fibroblasts. The fibroblasts were treated with TGF-β inhibitor SB43142. The expression of growth factors FGF1/2 and the effect of FGF1/2 on stem cell proliferation were observed. The cloning efficiency of airway stem cells, when co-cultured with normal lung fibroblast cells for 8 days, was (3.5±1.1)%, while the cloning efficiency was reduced to (0.04±0.04)% when co-cultured with lung fibroblasts from idiopathic pulmonary fibrosis patients. The difference between the 2 groups was statistically significant(P=0.002 5). TGF-β receptor inhibitor SB431542 increased lung fibroblast growth factors FGF1/2 expression.FGF1 mRNA expression was increased to the experimental group 0.005 5 from 0.000 2 in the control group.FGF2 mRNA expression of the amount raised to the experimental group 0.000 15 from 0.000 8 in the control group.FGF1/2 promoted the growth of airway stem cells. After FGF1/2 was co-cultured with normal lung fibroblast cells for 8 days, the cloning efficiency of airway stem cells was (0.3±0.1)%. During the development of idiopathic pulmonary fibrosis, fibroblast secreted FGF1/2 regulate airway stem cell proliferation.

  16. Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming.

    PubMed

    Mohamed, Tamer M A; Stone, Nicole R; Berry, Emily C; Radzinsky, Ethan; Huang, Yu; Pratt, Karishma; Ang, Yen-Sin; Yu, Pengzhi; Wang, Haixia; Tang, Shibing; Magnitsky, Sergey; Ding, Sheng; Ivey, Kathryn N; Srivastava, Deepak

    2017-03-07

    Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells in situ represents a promising strategy for cardiac regeneration. A combination of 3 cardiac transcription factors, Gata4, Mef2c, and Tbx5 (GMT), can convert fibroblasts into induced cardiomyocyte-like cells, albeit with low efficiency in vitro. We screened 5500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. We found that a combination of the transforming growth factor-β inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency 8-fold when added to GMT-overexpressing cardiac fibroblasts. The small molecules also enhanced the speed and quality of cell conversion; we observed beating cells as early as 1 week after reprogramming compared with 6 to 8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared with those exposed to only GMT. Human cardiac reprogramming was similarly enhanced on transforming growth factor-β and WNT inhibition and was achieved most efficiently with GMT plus myocardin. Transforming growth factor-β and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration. © 2016 American Heart Association, Inc.

  17. Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming

    PubMed Central

    Mohamed, Tamer M. A.; Stone, Nicole R.; Berry, Emily C.; Radzinsky, Ethan; Huang, Yu; Pratt, Karishma; Ang, Yen-Sin; Yu, Pengzhi; Wang, Haixia; Tang, Shibing; Magnitsky, Sergey; Ding, Sheng; Ivey, Kathryn N.; Srivastava, Deepak

    2017-01-01

    Background Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells (iCMs) in situ represents a promising strategy for cardiac regeneration. A combination of three cardiac transcription factors, Gata4, Mef2c and Tbx5 (GMT), can convert fibroblasts into iCMs, albeit with low efficiency in vitro. Methods We screened 5,500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. Results We found that a combination of the transforming growth factor (TGF)-β inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency eight-fold when added to GMT-overexpressing cardiac fibroblasts. The small-molecules also enhanced the speed and the quality of cell conversion, as we observed beating cells as early as 1 week after reprogramming compared to 6–8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared to those exposed to only GMT. Human cardiac reprogramming was similarly enhanced upon TGF-β and WNT inhibition and was achieved most efficiently with GMT plus Myocardin. Conclusions Thus, TGF-β and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration. PMID:27834668

  18. Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors.

    PubMed

    Martinez-Outschoorn, Ubaldo E; Pavlides, Stephanos; Whitaker-Menezes, Diana; Daumer, Kristin M; Milliman, Janet N; Chiavarina, Barbara; Migneco, Gemma; Witkiewicz, Agnieszka K; Martinez-Cantarin, Maria P; Flomenberg, Neal; Howell, Anthony; Pestell, Richard G; Lisanti, Michael P; Sotgia, Federica

    2010-06-15

    Loss of stromal caveolin 1 (Cav-1) is a novel biomarker for cancer-associated fibroblasts that predicts poor clinical outcome in breast cancer and DCIS patients. We hypothesized that epithelial cancer cells may have the ability to drive Cav-1 downregulation in adjacent normal fibroblasts, thereby promoting the cancer associated fibroblast phenotype. To test this hypothesis directly, here we developed a novel co-culture model employing (i) human breast cancer cells (MCF7), and (ii) immortalized fibroblasts (hTERT-BJ1), which are grown under defined experimental conditions. Importantly, we show that co-culture of immortalized human fibroblasts with MCF7 breast cancer cells leads to Cav-1 downregulation in fibroblasts. These results were also validated using primary cultures of normal human mammary fibroblasts co-cultured with MCF7 cells. In this system, we show that Cav-1 downregulation is mediated by autophagic/lysosomal degradation, as pre-treatment with lysosome-specific inhibitors rescues Cav-1 expression. Functionally, we demonstrate that fibroblasts co-cultured with MCF7 breast cancer cells acquire a cancer associated fibroblast phenotype, characterized by Cav-1 downregulation, increased expression of myofibroblast markers and extracellular matrix proteins, and constitutive activation of TGFβ/Smad2 signaling. siRNA-mediated Cav-1 downregulation mimics several key changes that occur in co-cultured fibroblasts, clearly indicating that a loss of Cav-1 is a critical initiating factor, driving stromal fibroblast activation during tumorigenesis. As such, this co-culture system can now be used as an experimental model for generating "synthetic" cancer associated fibroblasts (CAFs). More specifically, these "synthetic" CAFs could be used for drug screening to identify novel therapeutics that selectively target the Cav-1-negative tumor micro-environment. Our findings also suggest that chloroquine, or other autophagy/lysosome inhibitors, may be useful as anti-cancer agents, to therapeutically restore the expression of stromal Cav-1 in cancer associated fibroblasts. We discuss this possibility, in light of the launch of a new clinical trial that uses chloroquine to treat DCIS patients: PINC (Preventing Invasive Breast Neoplasia with Cholorquine) [See http://clinicaltrials.gov/show/NCT01023477].

  19. Enhanced cell adhesion on severe peened-plasma nitrided 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, M.; Bhat, Badekai Ramachandra; Bhat, K. Udaya

    2018-04-01

    Plasma nitriding is an effective technique to enhance the wear resistance of austenitic stainless steels. Recently, severe surface deformation techniques are extensively used prior to nitriding to enhance diffusion kinetics. In the present study, AISI 316L austenitic stainless steel is subjected to peening-nitriding duplex treatment and biocompatibility of treated surfaces is assessed through adhesion of the fibroblast cells. Three-fold increase in the surface microhardness is observed from the un-peened sample to the peened-nitrided sample; with severe peened sample showing intermediate hardness. Similar trend is observed in the number of the fibroblast cells attached to the sample surface. Spreading of some of the fibroblast cells is observed on the sample subjected to duplex treatment; while the other two samples showed only the spindle shaped fibroblasts. Combined influence of surface nanocrystallization and presence of nitride layer is responsible for the improved biocompatibility.

  20. Xeroderma pigmentosum cells contain low levels of photoreactivating enzyme.

    PubMed Central

    Sutherland, B M; Rice, M; Wagner, E K

    1975-01-01

    Fibroblasts from patients with xeroderma pigmentosum contain low levels of photoreactivating enzyme in comparison to normal cells. Levels vary from 0 (line 1199) to 50 (line 1259) percent of normal. The depressed enzyme levels are not an artifact of low growth rate, age of cell donor, cell culture conditions, assay conditions, the presence of inhibitors, or mycoplasma contamination. We show that human fibroblasts can monomerize pyrimidine dimers in vivo. PMID:1054487

  1. Studies of UMP synthase in orotic aciduria fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, M.E.; Jones, M.E.

    UMP synthase catalyzes the final two reactions of de novo pyrimidine biosynthesis in mammals. UMP synthase activities are low in fibroblasts from a patient with hereditary orotic aciduria, but increase 80-100 fold to normal levels when the cells are incubated in the presence of 6-azauridine (6-azaU). Normal fibroblasts exhibit at most a two-fold increase in UMP synthase activities in response to 6-azaU. The increase in mutant cell enzyme activity is accompanied by increased UMP synthase protein in immunoprecipitates from (/sup 3//sub 5/S)-methionine-labeled cell extracts. This 6-azaU-dependent protein is precipitated by several monoclonal antibodies and polyclonal antibody raised against pure humanmore » UMP synthase. UMP synthase from normal and mutant fibroblasts comigrate on SDS gels and are stable for at least 2 1/2 hrs at 37/sup 0/C in the presence of a substrate, OMP. However, in the absence of substrate, at 57/sup 0/C, they have different inactivation patterns. Stability of the enzyme derived from normal cells > that of the enzyme from mutant cells cultured with 6-azaU > that of the enzyme from mutant cells. Southern blots of DNA from normal and mutant cells show identical restriction patterns with five enzymes. These results are consistent with the theory that the low level of UMP synthase in mutant cells reflects an increased susceptibility to proteolytic degradation which can be blocked by administration of 6-azaU to the cells in culture.« less

  2. Water extract of gromwell (Lithospermum erythrorhizon) enhances migration of human keratinocytes and dermal fibroblasts with increased lipid synthesis in an in vitro wound scratch model.

    PubMed

    Kim, H; Kim, J; Park, J; Kim, S H; Uchida, Y; Holleran, W M; Cho, Y

    2012-01-01

    Although organic extracts of gromwell (Lithospermum erythrorhizon) have been shown to promote wound healing, the wound healing effects of water extracts of gromwell (WG) that are commonly used in traditional remedies have not been elucidated. We investigated whether WG promotes the migration and/or proliferation of cultured human keratinocytes (CHK) or dermal fibroblasts in parallel with increases in lipid synthesis during in vitro wound healing. CHK or fibroblasts were treated with 1-1,000 μg/ml WG for up to 48 h following scratch wound formation. Cell migration was assessed by measuring coverage (in percent) from the wound margin, while cell proliferation and lipid synthesis were determined by [(3)H]thymidine incorporation into DNA fractions, and [(3)H]palmitate or [(3)H]serine incorporation into lipid fractions, respectively. Low-dose WG (1 μg/ml) enhanced the wound coverage for both CHK and fibroblasts at 24 h, while cell proliferation was not altered in either cell types. Synthesis of both total lipids and individual lipid classes, including phospholipids, sphingolipids and neutral lipids, were found to be increased at 24 h in CHK treated with 1 μg/ml WG; in similarly treated fibroblasts, only the syntheses of sphingolipids (such as ceramides and glucosylceramides), but not other lipid species, were significantly increased. In contrast, a higher dose of WG (10-1,000 μg/ml) did not enhance wound coverage, and 100 μg/ml WG neither altered cell proliferation nor lipid synthesis in both CHK and fibroblasts. Low-dose WG (1 μg/ml) enhances the migration of both CHK and fibroblasts with increased lipid synthesis in an in vitro wound scratch model. Copyright © 2011 S. Karger AG, Basel.

  3. Largazole, a class I histone deacetylase inhibitor, enhances TNF-α-induced ICAM-1 and VCAM-1 expression in rheumatoid arthritis synovial fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Salahuddin, E-mail: Salah.Ahmed@utoledo.edu; Riegsecker, Sharayah; Beamer, Maria

    In the present study, we evaluated the effect of largazole (LAR), a marine-derived class I HDAC inhibitor, on tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and matrix metalloproteinase-2 (MMP-2) activity. LAR (1–5 μM) had no adverse effect on the viability of RA synovial fibroblasts. Among the different class I HDACs screened, LAR (0.5–5 μM) inhibited the constitutive expression of HDAC1 (0–30%). Surprisingly, LAR increased class II HDAC [HDAC6] by ∼ 220% with a concomitant decrease in HDAC5 [30–58%] expression in RA synovial fibroblasts. SAHA (5 μM), a pan-HDAC inhibitor, also inducedmore » HDAC6 expression in RA synovial fibroblasts. Pretreatment of RA synovial fibroblasts with LAR further enhanced TNF-α-induced ICAM-1 and VCAM-1 expression. However, LAR inhibited TNF-α-induced MMP-2 activity in RA synovial fibroblasts by 35% when compared to the TNF-α-treated group. Further, the addition of HDAC6 specific inhibitor Tubastatin A with LAR suppressed TNF-α + LAR-induced ICAM-1 and VCAM-1 expression and completely blocked MMP-2 activity, suggesting a role of HDAC6 in LAR-induced ICAM-1 and VCAM-1 expression. LAR also enhanced TNF-α-induced phospho-p38 and phospho-AKT expression, but inhibited the expression of phospho-JNK and nuclear translocation of NF-κBp65 in RA synovial fibroblasts. These results suggest that LAR activates p38 and Akt pathways and influences class II HDACs, in particular HDAC6, to enhance some of the detrimental effects of TNF-α in RA synovial fibroblasts. Understanding the exact role of different HDAC isoenzymes in RA pathogenesis is extremely important in order to develop highly effective HDAC inhibitors for the treatment of RA. - Highlights: • Largazole enhances TNF-α-induced ICAM-1 and VCAM-1. • Largazole upregulates class II HDAC (HDAC6) in RA synovial fibroblasts. • Largazole also induces the expression of phospho-p38 and phospho-Akt. • A selective HDAC isoform inhibitor may be more effective than a class inhibitor. • Further studies are required to understand the role of class II HDACs in RA.« less

  4. Methyl-CpG-binding protein 2 mediates antifibrotic effects in scleroderma fibroblasts.

    PubMed

    He, Ye; Tsou, Pei-Suen; Khanna, Dinesh; Sawalha, Amr H

    2018-05-14

    Emerging evidence supports a role for epigenetic regulation in the pathogenesis of scleroderma (SSc). We aimed to assess the role of methyl-CpG-binding protein 2 (MeCP2), a key epigenetic regulator, in fibroblast activation and fibrosis in SSc. Dermal fibroblasts were isolated from patients with diffuse cutaneous SSc (dcSSc) and from healthy controls. MeCP2 expression was measured by qPCR and western blot. Myofibroblast differentiation was evaluated by gel contraction assay in vitro. Fibroblast proliferation was analysed by ki67 immunofluorescence staining. A wound healing assay in vitro was used to determine fibroblast migration rates. RNA-seq was performed with and without MeCP2 knockdown in dcSSc to identify MeCP2-regulated genes. The expression of MeCP2 and its targets were modulated by siRNA or plasmid. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) using anti-MeCP2 antibody was performed to assess MeCP2 binding sites within MeCP2-regulated genes. Elevated expression of MeCP2 was detected in dcSSc fibroblasts compared with normal fibroblasts. Overexpressing MeCP2 in normal fibroblasts suppressed myofibroblast differentiation, fibroblast proliferation and fibroblast migration. RNA-seq in MeCP2-deficient dcSSc fibroblasts identified MeCP2-regulated genes involved in fibrosis, including PLAU , NID2 and ADA . Plasminogen activator urokinase (PLAU) overexpression in dcSSc fibroblasts reduced myofibroblast differentiation and fibroblast migration, while nidogen-2 (NID2) knockdown promoted myofibroblast differentiation and fibroblast migration. Adenosine deaminase (ADA) depletion in dcSSc fibroblasts inhibited cell migration rates. Taken together, antifibrotic effects of MeCP2 were mediated, at least partly, through modulating PLAU, NID2 and ADA. ChIP-seq further showed that MeCP2 directly binds regulatory sequences in NID2 and PLAU gene loci. This study demonstrates a novel role for MeCP2 in skin fibrosis and identifies MeCP2-regulated genes associated with fibroblast migration, myofibroblast differentiation and extracellular matrix degradation, which can be potentially targeted for therapy in SSc. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Lithium Sensitivity of Store Operated Ca2+ Entry and Survival of Fibroblasts Isolated from Chorea-Acanthocytosis Patients.

    PubMed

    Pelzl, Lisann; Elsir, Bhaeldin; Sahu, Itishri; Bissinger, Rosi; Singh, Yogesh; Sukkar, Basma; Honisch, Sabina; Schoels, Ludger; Jemaà, Mohamed; Lang, Elisabeth; Storch, Alexander; Hermann, Andreas; Stournaras, Christos; Lang, Florian

    2017-01-01

    The widely expressed protein chorein fosters activation of the phosphoinositide 3 kinase (PI3K) pathway thus supporting cell survival. Loss of function mutations of the chorein encoding gene VPS13A (vacuolar protein sorting-associated protein 13A) causes chorea-acanthocytosis (ChAc), a neurodegenerative disorder paralleled by deformations of erythrocytes. In mice, genetic knockout of chorein leads to enhanced neuronal apoptosis. PI3K dependent signalling upregulates Orai1, a pore forming channel protein accomplishing store operated Ca2+ entry (SOCE). Increased Orai1 expression and SOCE have been shown to confer survival of tumor cells. SOCE could be up-regulated by lithium. The present study explored, whether SOCE and/or apoptosis are altered in ChAc fibroblasts and could be modified by lithium treatment. Fibroblasts were isolated from ChAc patients and age-matched healthy volunteers. Cytosolic Ca2+ activity ([Ca2+]i) was estimated from Fura-2-fluorescence, SOCE from increase of [Ca2+]i following Ca2+ re-addition after Ca2+-store depletion with sarcoendoplasmatic Ca2+-ATPase (SERCA) inhibitor thapsigargin (1 µM), and apoptosis from annexin-V/propidium iodide staining quantified in flow cytometry. SOCE was significantly smaller in ChAc fibroblasts than in control fibroblasts. Lithium (2 mM, 24 hours) significantly increased and Orai1 blocker 2-Aminoethoxydiphenyl Borate (2-APB, 50 µM, 24 hours) significantly decreased SOCE. Annexin-V-binding and propidium iodide staining were significantly higher in ChAc fibroblasts than in control fibroblasts. In ChAc fibroblasts annexin-V-binding and propidium iodide staining were significantly decreased by lithium treatment, significantly increased by 2-APB and virtually lithium insensitive in the presence of 2-APB. In ChAc fibroblasts, downregulation of SOCE contributes to enhanced susceptibility to apoptosis. Both, decreased SOCE and enhanced apoptosis of ChAc fibroblasts can be reversed by lithium treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.

  6. High-LET Radiation Induced Chromosome Aberrations in Normal and Ataxia Telangiectasia Fibroblast Cells

    NASA Astrophysics Data System (ADS)

    Kawata, Tetsuya; George, Ms Kerry; Cucinotta, Francis A.; Shigematsu, Naoyuki; Ito, Hisao; Furusawa, Yoshiya; Uno, Takashi

    We investigated the effects of heavy ions beams on chromosomal aberrations in normal and AT cells. Normal and AT fibroblast cells arrested at G0/G1 phase were irradiated with 2 Gy of X-rays, 490 MeV/u Silicon (LET 55 keV/micron), 500 MeV/u Iron (LET 185 keV/micron) and 200 MeV/u Iron (LET 440 keV/micron) particles, and then cells were allowed to repair for 24 hours at 37 degrees before subculture. Calyculin-A induced PCC method was employed to collect G2/M chromosomes and whole DNA probes 1 and 3 were used to analyze chromosomal aberrations such as color-junctions, deletions, simple exchanges (incomplete and reciprocal exchanges) and complex-type exchanges. The percentages of aberrant cells were higher when normal and AT cells were exposed to heavy ions compared to X-rays, and had a tendency to increase with increasing LET up to 185 keV/micron and then decreased at 440 keV/micron. When the frequency of color-junctions per cell was compared after X-ray exposure, AT cells had around three times higher frequency of color-junctions (mis-rejoining) than normal cells. However, at 185 keV/micron there was no difference in the frequency of color-junctions between two cell lines. It was also found that the frequency of simple exchanges per cell was almost constant in AT cells regardless LET levels, but it was LET dependent for normal cells. Interestingly, the frequency of simple exchanges was higher for normal fibroblast cells when it was compared at 185 keV/micron, but AT cells had more complex-type exchanges at the same LET levels. Heavy ions are more efficient in inducing chromosome aberrations in normal and AT cells compared to X-rays, and the aberration types between normal and AT fibroblast appeared different probably due to difference in the ATM gene function.

  7. Essential oil-loaded lipid nanoparticles for wound healing.

    PubMed

    Saporito, Francesca; Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Boselli, Cinzia; Icaro Cornaglia, Antonia; Mannucci, Barbara; Grisoli, Pietro; Vigani, Barbara; Ferrari, Franca

    2018-01-01

    Chronic wounds and severe burns are diseases responsible for severe morbidity and even death. Wound repair is a crucial process and tissue regeneration enhancement and infection prevention are key factors to minimize pain, discomfort, and scar formation. The aim of this work was the development of lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers [NLC]), to be loaded with eucalyptus or rosemary essential oils and to be used, as medical devices, to enhance healing of skin wounds. Lipid nanoparticles were based on natural lipids: cocoa butter, as solid lipid, and olive oil or sesame oil, as liquid lipids. Lecithin was chosen as surfactant to stabilize nanoparticles and to prevent their aggregation. The systems were prepared by high shear homogenization followed by ultrasound application. Nanoparticles were characterized for physical-chemical properties, bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward normal human dermal fibroblasts. Antimicrobial activity of nanoparticles was evaluated against two reference microbial strains, one of Staphylococcus aureus , the other of Streptococcus pyogenes . Finally, the capability of nanoparticles to promote wound healing in vivo was evaluated on a rat burn model. NLC based on olive oil and loaded with eucalyptus oil showed appropriate physical-chemical properties, good bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward fibroblasts, associated to antimicrobial properties. Moreover, the in vivo results evidenced the capability of these NLC to enhance the healing process. Olive oil, which is characterized by a high content of oleic acid, proved to exert a synergic effect with eucalyptus oil with respect to antimicrobial activity and wound repair promotion.

  8. Essential oil-loaded lipid nanoparticles for wound healing

    PubMed Central

    Saporito, Francesca; Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Boselli, Cinzia; Icaro Cornaglia, Antonia; Mannucci, Barbara; Grisoli, Pietro; Vigani, Barbara; Ferrari, Franca

    2018-01-01

    Chronic wounds and severe burns are diseases responsible for severe morbidity and even death. Wound repair is a crucial process and tissue regeneration enhancement and infection prevention are key factors to minimize pain, discomfort, and scar formation. The aim of this work was the development of lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers [NLC]), to be loaded with eucalyptus or rosemary essential oils and to be used, as medical devices, to enhance healing of skin wounds. Lipid nanoparticles were based on natural lipids: cocoa butter, as solid lipid, and olive oil or sesame oil, as liquid lipids. Lecithin was chosen as surfactant to stabilize nanoparticles and to prevent their aggregation. The systems were prepared by high shear homogenization followed by ultrasound application. Nanoparticles were characterized for physical–chemical properties, bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward normal human dermal fibroblasts. Antimicrobial activity of nanoparticles was evaluated against two reference microbial strains, one of Staphylococcus aureus, the other of Streptococcus pyogenes. Finally, the capability of nanoparticles to promote wound healing in vivo was evaluated on a rat burn model. NLC based on olive oil and loaded with eucalyptus oil showed appropriate physical–chemical properties, good bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward fibroblasts, associated to antimicrobial properties. Moreover, the in vivo results evidenced the capability of these NLC to enhance the healing process. Olive oil, which is characterized by a high content of oleic acid, proved to exert a synergic effect with eucalyptus oil with respect to antimicrobial activity and wound repair promotion. PMID:29343956

  9. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts.

    PubMed

    Gothai, Sivapragasam; Arulselvan, Palanisamy; Tan, Woan Sean; Fakurazi, Sharida

    2016-01-01

    Wounds are the outcome of injuries to the skin that interrupt the soft tissue. Healing of a wound is a complex and long-drawn-out process of tissue repair and remodeling in response to injury. A large number of plants are used by folklore traditions for the treatment of cuts, wounds and burns. Moringa oleifera (MO) is an herb used as a traditional folk medicine for the treatment of various skin wounds and associated diseases. The underlying mechanisms of wound healing activity of ethyl acetate fraction of MO leaves extract are completely unknown. In the current study, ethyl acetate fraction of MO leaves was investigated for its efficacy on cell viability, proliferation and migration (wound closure rate) in human normal dermal fibroblast cells. Results revealed that lower concentration (12.5 µg/ml, 25 µg/ml, and 50 µg/ml) of ethyl acetate fraction of MO leaves showed remarkable proliferative and migratory effect on normal human dermal fibroblasts. This study suggested that ethyl acetate fraction of MO leaves might be a potential therapeutic agent for skin wound healing by promoting fibroblast proliferation and migration through increasing the wound closure rate corroborating its traditional use.

  10. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruzzone, Santina, E-mail: santina.bruzzone@unige.it; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova; Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova

    Highlights: Black-Right-Pointing-Pointer ABA is an endogenous hormone in humans, regulating different cell responses. Black-Right-Pointing-Pointer ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. Black-Right-Pointing-Pointer UV-B irradiation increases ABA content in SSc cultures. Black-Right-Pointing-Pointer SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated themore » effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-{beta} (TGF-{beta}). Conversely, migration toward ABA, but not toward TGF-{beta}, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.« less

  11. Depletion of autophagy receptor p62/SQSTM1 enhances the efficiency of gene delivery in mammalian cells.

    PubMed

    Tsuchiya, Megumi; Ogawa, Hidesato; Koujin, Takako; Kobayashi, Shouhei; Mori, Chie; Hiraoka, Yasushi; Haraguchi, Tokuko

    2016-08-01

    Novel methods that increase the efficiency of gene delivery to cells will have many useful applications. Here, we report a simple approach involving depletion of p62/SQSTM1 to enhance the efficiency of gene delivery. The efficiency of reporter gene delivery was remarkably higher in p62-knockout murine embryonic fibroblast (MEF) cells compared with normal MEF cells. This higher efficiency was partially attenuated by ectopic expression of p62. Furthermore, siRNA-mediated knockdown of p62 clearly increased the efficiency of transfection of murine embryonic stem (mES) cells and human HeLa cells. These data indicate that p62 acts as a key regulator of gene delivery. © 2016 Federation of European Biochemical Societies.

  12. Establishment of proliferative tetraploid cells from telomerase-immortalized normal human fibroblasts.

    PubMed

    Ohshima, Susumu; Seyama, Atsushi

    2016-06-01

    Aneuploidy is observed in the majority of human cancers and is considered to be causally related to carcinogenesis. Although malignant aneuploid cells are suggested to develop from polyploid cells formed in precancerous lesions, the mechanisms of this process remain elusive. This is partly because no experimental model is available where nontransformed polyploid human cells propagate in vitro. We previously showed that proliferative tetraploid cells can be established from normal human fibroblasts by treatment with the spindle poison demecolcine (DC). However, the limited lifespan of these cells hampered detailed analysis of a link between chromosomal instability and the oncogenic transformation of polyploid cells. Here, we report the establishment of proliferative tetraploid cells from the telomerase-immortalized normal human fibroblast cell line TIG-1. Treatment of immortalized diploid cells with DC for 4 days resulted in proliferation of cells with tetraploid DNA content and near-tetraploid/tetraploid chromosome counts. Established tetraploid cells had functional TP53 despite growing at almost the same rate as diploid cells. The frequency of clonal and sporadic chromosome aberrations in tetraploid cells was higher than in diploid cells and in one experiment, gradually increased with repeated subculture. This study suggests that tetraploid cells established from telomerase-immortalized normal human fibroblasts can be a valuable model for studying chromosomal instability and the oncogenic potential of polyploid cells. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellett, O.L.; Smith, M.L.; Greene, A.A.

    Cystinosis is an autosomal recessive disease in which three clinical forms are recognized: infantile nephropathic, with renal tubular damage by 1 year of age and progressive glomerular insufficiency; intermediate, with tubular and glomerular insufficiency beginning at a later age; benign, with no kidney damage. Skin fibroblasts cultured from patients with all types of cystinosis show increased intralysosomal free (nonprotein) cystine; however, fibroblasts from heterozygotes have normal free-cystine values. To determine whether genetic complementation occurs between the different forms, somatic cell hybrids were constructed between cells from a patient with infantile nephropathic cystinosis and cells from patients with other types ofmore » cystinosis. If complementation occurred, the hybrids would be expected to have normal cystine levels. To construct hybrid cells, a universal parent cell type (TG1-neo), which was hypoxanthine/aminopterin/thymidine (HAT) sensitive and G418 resistant was constructed from an infantile nephropathic cystinosis fibroblast strain. Polyethylene glycol fusion of TG1-neo with other cells that are not HAT sensitive or G418 resistant allowed for selection of hybrid cells in a medium containing HAT and the aminoglycoside G418. As indicated by elevated cystine levels, complementation did not occur between TG1-neo and two different benign cystinosis strains, an intermediate cystinosis strain, or another nephropathic cystinosis cell strain. When a normal fibroblast strain was fused with TG1-neo, all 15 hybrid clones studied contained normal amounts of intracellular free cystine.« less

  14. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferationmore » and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.« less

  15. Mitogenic signaling of urokinase receptor-deficient kidney fibroblasts: actions of an alternative urokinase receptor and LDL receptor-related protein.

    PubMed

    Zhang, Guoqiang; Cai, Xiaohe; López-Guisa, Jesús M; Collins, Sarah J; Eddy, Allison A

    2004-08-01

    The urokinase receptor (uPAR) attenuates myofibroblast recruitment and fibrosis in the kidney. This study examined the role of uPAR and its co-receptor LDL receptor-related protein (LRP) in the regulation of kidney fibroblast proliferation and extracellular signal-regulated kinase (ERK) signaling. Compared with uPAR+/+ cells, uPAR-/- kidney fibroblasts were hyperproliferative. UPAR-/- fibroblast proliferation was 60% inhibited by an ERK kinase inhibitor. LRP protein was reduced and extracellular accumulation of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (PAI-1) proteins were greater in uPAR-/- cultures. Addition of functional uPA protein or LRP antisense RNA significantly increased ERK signaling and cell mitosis in both genotypes. Enhanced uPAR-/- fibroblast proliferation was reversed by a recombinant nonfunctional uPA peptide. The density of cell-bound fluor-uPA was similar between uPAR-/- and uPAR+/+ fibroblasts (78 +/- 6 versus 92 +/- 16 units). These data suggest that uPAR-deficient kidney fibroblasts express lower levels of its scavenger co-receptor LRP, resulting in greater extracellular accumulation of uPA and PAI-1. Enhanced proliferation of uPAR-/- fibroblasts seems to be mediated by uPA-dependent ERK signaling via an alternative urokinase receptor.

  16. Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer.

    PubMed

    Hessmann, E; Patzak, M S; Klein, L; Chen, N; Kari, V; Ramu, I; Bapiro, T E; Frese, K K; Gopinathan, A; Richards, F M; Jodrell, D I; Verbeke, C; Li, X; Heuchel, R; Löhr, J M; Johnsen, S A; Gress, T M; Ellenrieder, V; Neesse, A

    2018-03-01

    Desmoplasia and hypovascularity are thought to impede drug delivery in pancreatic ductal adenocarcinoma (PDAC). However, stromal depletion approaches have failed to show clinical responses in patients. Here, we aimed to revisit the role of the tumour microenvironment as a physical barrier for gemcitabine delivery. Gemcitabine metabolites were analysed in LSL-Kras G12D/+ ; LSL-Trp53 R172H/+ ; Pdx-1-Cre (KPC) murine tumours and matched liver metastases, primary tumour cell lines, cancer-associated fibroblasts (CAFs) and pancreatic stellate cells (PSCs) by liquid chromatography-mass spectrometry/mass spectrometry. Functional and preclinical experiments, as well as expression analysis of stromal markers and gemcitabine metabolism pathways were performed in murine and human specimen to investigate the preclinical implications and the mechanism of gemcitabine accumulation. Gemcitabine accumulation was significantly enhanced in fibroblast-rich tumours compared with liver metastases and normal liver. In vitro, significantly increased concentrations of activated 2',2'-difluorodeoxycytidine-5'-triphosphate (dFdCTP) and greatly reduced amounts of the inactive gemcitabine metabolite 2',2'-difluorodeoxyuridine were detected in PSCs and CAFs. Mechanistically, key metabolic enzymes involved in gemcitabine inactivation such as hydrolytic cytosolic 5'-nucleotidases (Nt5c1A, Nt5c3) were expressed at low levels in CAFs in vitro and in vivo, and recombinant expression of Nt5c1A resulted in decreased intracellular dFdCTP concentrations in vitro. Moreover, gemcitabine treatment in KPC mice reduced the number of liver metastases by >50%. Our findings suggest that fibroblast drug scavenging may contribute to the clinical failure of gemcitabine in desmoplastic PDAC. Metabolic targeting of CAFs may thus be a promising strategy to enhance the antiproliferative effects of gemcitabine. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Response of dupuytren fibroblasts to different oxygen environments.

    PubMed

    Türker, Tolga; Murphy, Erin; Kaufman, Christina L; Kutz, Joseph E; Meister, Edward A; Hoying, James B

    2013-12-01

    It is thought that local ischemia and oxygen radicals are responsible for fibroblast-to-myofibroblast cell transformation and proliferation. We hypothesized that hypoxia could differentially activate the contractility of fibroblasts from normal human palmar fascia and from fibroblasts-myofibroblasts of Dupuytren cords. Normal palmar fascia from 5 patients with carpal tunnel syndrome and Dupuytren cords from 5 patients were harvested. Cells were cultured from all tissue samples, and collagen lattices were prepared containing these cells. Oxygen treatment subgroups were created and incubated under hypoxic (1% O(2), 5% CO(2), and 94% N(2)), normoxic (21% O(2), 5% CO(2), and 74% N(2)), and hyperoxic (100% oxygen using 2.4 atm pressure twice a day for 7 d) conditions. After 7 days, each subgroup was photographed, and lattices were released from dishes. Postrelease photographs were taken immediately, 5 minutes after release, and after 1 hour. Areas of the lattices at each time point were calculated using MetaMorph software. Actin staining and live/dead cell analysis was performed. Linear repeated measures analysis of variance was used for data analysis given that contraction levels were measured over 3 distinct time points. We found a statistically significant difference between normal samples and Dupuytren samples in mean contraction levels over time. There was no statistically significant difference between tissue groups over the 3 time periods based on the oxygen treatment received. Our results showed a greater degree of contractility in Dupuytren disease cells than normal fibroblasts. However, the contraction in either group was not affected by oxygen level. Future in vivo research is needed to better understand the nature of pathophysiology of Dupuytren disease. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  18. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease

    PubMed Central

    Gourdie, Robert G.; Dimmeler, Stefanie; Kohl, Peter

    2016-01-01

    Our understanding of cardiac fibroblast functions has moved beyond their roles in heart structure and extracellular matrix generation, and now includes contributions to paracrine, mechanical and electrical signalling during ontogenesis and normal cardiac activity. Fibroblasts have central roles in pathogenic remodelling during myocardial ischaemia, hypertension and heart failure. As key contributors to scar formation, they are crucial for tissue repair after interventions including surgery and ablation. Novel experimental approaches targeting cardiac fibroblasts are promising potential therapies for heart disease. Indeed, several existing drugs act, at least partially, through effects on cardiac connective tissue. This Review outlines the origins and roles of fibroblasts in cardiac development, homeostasis and disease; illustrates the involvement of fibroblasts in current and emerging clinical interventions; and identifies future targets for research and development. PMID:27339799

  19. Serum Factors from Pseudoxanthoma Elasticum Patients Alter Elastic Fiber Formation In Vitro

    PubMed Central

    Le Saux, Olivier; Bunda, Severa; VanWart, Christopher M.; Douet, Vanessa; Got, Laurence; Martin, Ludovic; Hinek, Aleksander

    2017-01-01

    Pseudoxanthoma elasticum (PXE) is a heritable disorder mainly characterized by calcified elastic fibers in cutaneous, ocular, and vascular tissues. PXE is caused by mutations in ABCC6, a gene encoding an ABC transporter predominantly expressed in liver and kidneys. The functional relationship between ABCC6 and elastic fiber calcification is unknown. We speculated that ABCC6 deficiency in PXE patients induces a persistent imbalance in circulating metabolite(s), which may impair the synthetic abilities of normal elastoblasts or specifically alter elastic fiber assembly. Therefore, we compared the deposition of elastic fiber proteins in cultures of fibroblasts derived from PXE and unaffected individuals. PXE fibroblasts cultured with normal human serum expressed and deposited increased amounts of proteins, but structurally normal elastic fibers. Interestingly, normal and PXE fibroblasts as well as normal smooth muscle cells deposited abnormal aggregates of elastic fibers when maintained in the presence of serum from PXE patients. The expression of tropoelastin and other elastic fiber-associated genes was not significantly modulated by the presence of PXE serum. These results indicated that certain metabolites present in PXE sera interfered with the normal assembly of elastic fibers in vitro and suggested that PXE is a primary metabolic disorder with secondary connective tissue manifestations. PMID:16543900

  20. miR-130b-3p Modulates Epithelial-Mesenchymal Crosstalk in Lung Fibrosis by Targeting IGF-1.

    PubMed

    Li, Shuhong; Geng, Jing; Xu, Xuefeng; Huang, Xiaoxi; Leng, Dong; Jiang, Dingyuan; Liang, Jiurong; Wang, Chen; Jiang, Dianhua; Dai, Huaping

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and usually lethal fibrotic lung disease with largely unknown etiology and pathogenesis. Evidence suggests microRNAs (miRNA) contribute to pathogenesis of IPF. In this study, we sought to identify miRNA expression signatures and determine the role of miR-130b-3p in lung fibrosis. The miRNA expression profile of the lungs from patients with IPF and normal donors was determined by Affymetrix microarray, and transcriptome with Affymetrix array. The functions and signal pathways as well as miRNA-mRNA networks were established by bioinformatics analysis. Luciferase assays and ELISA were used to confirm the miRNA target gene. The effect of miRNA-transfected epithelium on fibroblast activities was assessed using a co-culture system. The fibroblast activities were determined by qRT-PCR, western blotting, Transwell and BrdU assays. Seven miRNAs were significantly decreased in IPF lungs, with miR-130b-3p being the highest in the miRNA-mRNA network. Insulin-like growth factor (IGF-1) was a target gene of miR-130b-3p in the epithelium. miR-130b-3p inhibition in the epithelium induced collagen I expression and enhanced the proliferation and migration ability of fibroblast in co-culture systems, which mimicked the functions of exogenous IGF-1 on fibroblasts. Neutralizing IGF-1 with an antibody significantly reduced the modulatory effects of miR-130b-3p inhibitor-transfected epithelium on the activation of fibroblasts. Our results show that miR-130b-3p was downregulated in IPF lungs. miR-130b-3p downregulation contributed to the activation of fibroblasts and the dysregulated epithelial-mesenchymal crosstalk by promoting IGF-1 secretion from lung epithelium, suggesting a key regulatory role for this miRNA in preventing lung fibrosis.

  1. MicroRNA-21a-5p promotes fibrosis in spinal fibroblasts after mechanical trauma.

    PubMed

    Wang, Wenzhao; Tang, Shi; Li, Hongfei; Liu, Ronghan; Su, Yanlin; Shen, Lin; Sun, Mingjie; Ning, Bin

    2018-06-05

    Traumatic spinal cord injury (SCI) causes permanent disability to at least 180,000 people per year worldwide. Early regulation of spinal fibroblast proliferation may inhibit fibrotic scar formation, allowing the creation of a favorable environment for neuronal regeneration and thereby enhancing recovery from traumatic SCIs. In this study, we aimed to identify the role of microRNA-21a-5p (miR-21a-5p) in regulating spinal fibroblasts after mechanical trauma and to investigate the dysregulation of miR-21a-5p in the pathological process of spinal SCI. We investigated the differential expression of microRNAs in primary spinal fibroblasts after mechanical trauma and found that the expression of miR-21a-5p was higher in spinal fibroblasts after scratch damage (SD). In addition, mouse spinal fibroblasts were transfected with miR-21a-5p mimics/inhibitor, and the role of miR-21a-5p in spinal fibrogenic activation was analyzed. These experiments demonstrated that miR-21a-5p overexpression promoted fibrogenic activity in spinal fibroblasts after mechanical trauma, as well as enhancing proliferation and attenuating apoptosis in spinal fibroblasts. Finally, the potential role of miR-21a-5p in regulating the Smad signaling pathway was examined. MiR-21a-5p activated the Smad signaling pathway by enhancing Smad2/3 phosphorylation. These results suggest that miR-21a-5p promotes spinal fibrosis after mechanical trauma. Based on these findings, we propose a close relationship between miR-21a-5p and spinal fibrosis, providing a new potential therapeutic target for SCI. Copyright © 2018. Published by Elsevier Inc.

  2. The Influence of Interleukin-4 on Ligament Healing

    PubMed Central

    Chamberlain, Connie S; Leiferman, Ellen M; Frisch, Kayt E; Wang, Sijian; Yang, Xipei; Brickson, Stacey L; Vanderby, Ray

    2011-01-01

    Despite a complex cascade of cellular events to reconstruct the damaged extracellular matrix, ligament healing results in a mechanically inferior scarred ligament. During normal healing, granulation tissue expands into any residual normal ligamentous tissue (creeping substitution), resulting in a larger region of healing, greater mechanical compromise, and an inefficient repair process. To control creeping substitution and possibly enhance the repair process, the anti-inflammatory cytokine, interleukin-4 (IL-4) was administered to rats prior to and after rupture of their medial collateral ligaments. In vitro experiments demonstrated a time-dependent effect on fibroblast proliferation after interleukin-4 treatment. In vivo treatments with interleukin-4 (100 ng/ml i.v.) for 5 days resulted in decreased wound size and type III collagen and increased type I procollagen, indicating a more regenerative early healing in response to the interleukin-4 treatment. However, continued treatment of interleukin-4 to day 11 antagonized this early benefit and slowed healing. Together, these results suggest that interleukin-4 influences the macrophages and T-lymphocytes but also stimulates fibroblasts associated with the proliferative phase of healing in a dose-, cell-, and time-dependent manner. Although treatment significantly influenced healing in the first week after injury, interleukin-4 alone was unable to maintain this early regenerative response. PMID:21518087

  3. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizoshiri, N.; Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto; Kishida, T.

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genesmore » and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.« less

  4. Sonic-Hedgehog pathway inhibition normalizes desmoplastic tumor microenvironment to improve chemo- and nanotherapy

    PubMed Central

    Voutouri, Chrysovalantis; Kalli, Maria; Pirentis, Athanassios P.; Stylianopoulos, Triantafyllos

    2017-01-01

    Targeting the rich extracellular matrix of desmoplastic tumors has been successfully shown to normalize collagen and hyaluronan levels and re-engineer intratumoral mechanical forces, improving tumor perfusion and chemotherapy. As far as targeting the abundant cancer-associated fibroblasts (CAFs) in desmoplastic tumors is concerned, while both pharmacologic inhibition of the sonic-hedgehog pathway and genetic depletion of fibroblasts have been employed in pancreatic cancers, the results between the two methods have been contradictory. In this study, we employed vismodegib to inhibit the sonic-hedgehog pathway with the aim to i) elucidate the mechanism of how CAFs depletion improves drug delivery, ii) extent and evaluate the potential use of sonic-hedgehog inhibitors to breast cancers, and iii) investigate whether sonic-hedgehog inhibition improves not only chemotherapy, but also the efficacy of the most commonly used breast cancer nanomedicines, namely Abraxane® and Doxil®. We found that treatment with vismodegib normalizes the tumor microenvironment by reducing the proliferative CAFs and in cases the levels of collagen and hyaluronan. These modulations re-engineered the solid and fluid stresses in the tumors, improving blood vessel functionality. As a result, the delivery and efficacy of chemotherapy was improved in two models of pancreatic cancer. Additionally, vismodegib treatment significantly improved the efficacy of both Abraxane and Doxil in xenograft breast tumors. Our results suggest the use of vismodegib, and sonic hedgehog inhibitors in general, to enhance cancer chemo- and nanotherapy. PMID:28662901

  5. A novel role of EMMPRIN/CD147 in transformation of quiescent fibroblasts to cancer-associated fibroblasts by breast cancer cells

    PubMed Central

    Xu, Jing; Lu, Yang; Qiu, Songbo; Chen, Zhi-Nan; Fan, Zhen

    2013-01-01

    We tested the novel hypothesis that EMMPRIN/CD147, a transmembrane glycoprotein overexpressed in breast cancer cells, has a previously unknown role in transforming fibroblasts to cancer-associated fibroblasts, and that cancer-associated fibroblasts in turn induce epithelial-to-mesenchymal transition of breast cancer cells. Co-culture of fibroblasts with breast cancer cells or treatment of fibroblasts with breast cancer cell conditioned culture medium or recombinant EMMPRIN/CD147 induced expression of α-SMA in the fibroblasts in an EMMPRIN/CD147-dependent manner and promoted epithelial-to-mesenchymal transition of breast cancer cells and enhanced cell migration potential. These findings support a novel role of EMMPRIN/CD147 in regulating the interaction between cancer and stroma. PMID:23474495

  6. MMP inhibition as a potential method to augment the healing of skeletal muscle and tendon extracellular matrix

    PubMed Central

    Davis, Max E.; Gumucio, Jonathan P.; Sugg, Kristoffer B.; Bedi, Asheesh

    2013-01-01

    The extracellular matrix (ECM) of skeletal muscle and tendon is composed of different types of collagen molecules that play important roles in the transmission of forces throughout the body, and in the repair and regeneration of injured tissues. Fibroblasts are the primary cells in muscle and tendon that maintain, repair, and modify the ECM in response to mechanical loading, injury, and inactivity. Matrix metalloproteinases (MMPs) are enzymes that digest collagen and other structural molecules, which are synthesized and excreted by fibroblasts. MMPs are required for baseline ECM homeostasis, but disruption of MMP regulation due to injury or disease can alter the normal ECM architecture and prevent proper force transmission. Chronic injuries and diseases of muscles and tendons can be severely debilitating, and current therapeutic modalities to enhance healing are quite limited. This review will discuss the mechanobiology of MMPs, and the potential use of MMP inhibitors to improve the treatment of injured and diseased skeletal muscle and tendon tissue. PMID:23640595

  7. Unchanged thymidine triphosphate pools and thymidine metabolism in two lines of thymidine kinase 2-mutated fibroblasts.

    PubMed

    Frangini, Miriam; Rampazzo, Chiara; Franzolin, Elisa; Lara, Mari-Carmen; Vilà, Maya R; Martí, Ramon; Bianchi, Vera

    2009-02-01

    Mitochondrial thymidine kinase (TK2) catalyzes the phosphorylation of thymidine in mitochondria. Its function becomes essential for dTTP synthesis in noncycling cells, where cytosolic dTTP synthesis via R1/R2 ribonucleotide reductase and thymidine kinase 1 is turned down. Mutations in the nuclear gene for TK2 cause a fatal mtDNA depletion syndrome. Only selected cell types are affected, suggesting that the other cells compensate for the TK2 deficiency by adapting the enzyme network that regulates dTTP synthesis outside S-phase. Here we looked for such metabolic adaptation in quiescent cultures of fibroblasts from two TK2-deficient patients with a slow-progressing syndrome. In cell extracts, we measured the activities of TK2, deoxycytidine kinase, thymidine phosphorylase, deoxynucleotidases and the amounts of the three ribonucleotide reductase subunits. Patient cells contained 40% or 5% TK2 activity and unchanged activities of the other enzymes. However, their mitochondrial and cytosolic dTTP pools were unchanged, and also the overall composition of the dNTP pools was normal. TK2-dependent phosphorylation of [(3)H]thymidine in intact cells and the turnover of the dTTP pool showed that even the fibroblasts with 5% residual TK2 activity synthesized dTTP at an almost normal rate. Normal fibroblasts apparently contain more TK2 than needed to maintain dTTP during quiescence, which would explain why TK2-mutated fibroblasts do not manifest mtDNA depletion despite their reduced TK2 activity.

  8. Immortalisation of a human diploid fibroblast cell strain: a DT-diaphorase paradox.

    PubMed Central

    Kuehl, B. L.; Brezden, C. B.; Traver, R. D.; Siegel, D.; Ross, D.; Renzing, J.; Rauth, A. M.

    1996-01-01

    Transfection of a normal human diploid fibroblast cell strain, GM38, with a simian virus 40 (SV40) large T antigen containing plasmid, yielded an immortal cell line, G38-8X, which had a similar sensitivity as the parental cell strain to the quinone-containing chemotherapeutic agent mitomycin C (MMC), under both aerobic and hypoxic exposure conditions. The activity level of DT-diaphorase was similar in both the parental GM38 and G38-8X cells. Although DT-diaphorase could be detected by Western blot analysis, using two mouse anti-human monoclonal antibodies, in GM38 cells, it was not detected in the G38-8X cells. G38-8X cells have a slightly increased P450R activity (2-fold), and have elevated P-glycoprotein levels compared with the parental GM38 cell strain. The immortal G38-8X cell line is 2-fold more resistant to ionising radiation than the parental GM38 cell strain (D10 approximately 5 Gy). Although these SV40 large T antigen immortalised human diploid fibroblasts behaved similarly to their parental cell strain in terms of MMC sensitivity and DT-diaphorase activity, careful characterisation revealed that these cells had enhanced P-glycoprotein activity and had a decreased sensitivity to ionising radiation. Images Figure 3 PMID:8763839

  9. Aldehyde dehydrogenase inhibition blocks mucosal fibrosis in human and mouse ocular scarring

    PubMed Central

    Ahadome, Sarah D.; Abraham, David J.; Rayapureddi, Suryanarayana; Saw, Valerie P.; Saban, Daniel R.; Calder, Virginia L.; Norman, Jill T.; Ponticos, Markella; Daniels, Julie T.; Dart, John K.

    2016-01-01

    Mucous membrane pemphigoid (MMP) is a systemic mucosal scarring disease, commonly causing blindness, for which there is no antifibrotic therapy. Aldehyde dehydrogenase family 1 (ALDH1) is upregulated in both ocular MMP (OMMP) conjunctiva and cultured fibroblasts. Application of the ALDH metabolite, retinoic acid (RA), to normal human conjunctival fibroblasts in vitro induced a diseased phenotype. Conversely, application of ALDH inhibitors, including disulfiram, to OMMP fibroblasts in vitro restored their functionality to that of normal controls. ALDH1 is also upregulated in the mucosa of the mouse model of scarring allergic eye disease (AED), used here as a surrogate for OMMP, in which topical application of disulfiram decreased fibrosis in vivo. These data suggest that progressive scarring in OMMP results from ALDH/RA fibroblast autoregulation, that the ALDH1 subfamily has a central role in immune-mediated ocular mucosal scarring, and that ALDH inhibition with disulfiram is a potential and readily translatable antifibrotic therapy. PMID:27699226

  10. v-myb transformation of Xeroderma pigmentosum human fibroblasts: Overexpression of the c-Ha-ras oncogene in the transformed cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelin, S.; Varlet, I.; Sarasin, A.

    1991-10-01

    Human Xeroderma pigmentosum normal' fibroblasts AS16 (XP4 VI) were transformed after transfection with a recombinant v-myb clone. In this clone (pKXA 3457) derived from avian myeloblastosis virus (AMV), the expression of the oncogene sequences is driven by the AMV U-5 LTR promoter. The transformed cells (ASKXA), which have integrated a rearranged v-myb oncogene, grow in agar, are not tumorigenic in nude mice, and express a 45-kDa v-myb protein. The HMW DNA of these cells transform chicken embryo fibroblasts. The c-Ha-ras oncogene is overexpressed in the ASKXA cells but not in the parental normal' AS16 cells and a revertant clone (ASKXAmore » Cl 1.1 G). The results lead to the conclusion that the XP fibroblasts are phenotypically transformed by the presence of the transfected v-myb oncogene, which is able to induce an overexpression of the c-Ha-ras gene.« less

  11. TGF-beta-induced early gene-1 overexpression promotes oxidative stress protection and actin cytoskeleton rearrangement in human skin fibroblasts.

    PubMed

    Leduc, Chloe; Sobilo, Lauren; Toumi, Hechmi; Mondon, Philippe; Lespessailles, Eric; Ossant, Fédéric; Kurfurst, Robin; Pichon, Chantal

    2016-06-01

    Transforming growth factor beta inducible early gene-1 (TIEG-1), a member of the Krüppel-like factor, was identified as a primary response gene for TGF-β. The role of TIEG-1 in skin repair has been mainly addressed in vivo on TIEG-1 null mice model and the mechanism remains unexplored. We investigated the modulation of TIEG-1 expression in normal human skin fibroblasts by either down-expressing or overexpressing the gene. We evaluated reactive oxygen species production and the cell viability of treated cells. The effect of TIEG-1 overexpression was monitored by wound healing assay and immunofluorescence staining of actin fibers organization and alpha-smooth muscle actin (α-SMA). Western blots were carried out to identify the level of expression or phosphorylation of key proteins such as cofilin, Rho GTPases, and p38 mitogen-activated protein kinase (p38 MAPK). TIEG-1 down-regulation had a deleterious effect on the cell viability. It was significantly reduced (65±5%) and exposure to ultraviolet further increased this effect (47±3%). By contrast, cells overexpressing TIEG-1 had a reduced reactive oxygen species production (75%) compared to control and mock-transfected cells. This overexpression also resulted in formation of actin stress fibers and increased α-SMA expression and an enhanced wound healing feature. RhoB GTPase was upregulated and phosphorylation of cofilin and p38 MAPK was observed. TIEG-1 overexpression in normal human skin fibroblasts results in improved resistance to oxidative stress, myofibroblast-like conversion that involved RhoB signaling pathway with cofilin and p38 MAPK proteins activation. This study enlightens the role of TIEG-1 role in skin biology. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Role of integrin-linked kinase in regulating phosphorylation of Akt and fibroblast survival in type I collagen matrices through a beta1 integrin viability signaling pathway.

    PubMed

    Nho, Richard Seonghun; Xia, Hong; Kahm, Judy; Kleidon, Jill; Diebold, Deanna; Henke, Craig A

    2005-07-15

    A beta1 integrin phosphatidylinositol 3-kinase/Akt pathway regulates fibroblast survival in collagen matrices. When fibroblasts attach to collagen, Akt becomes phosphorylated, providing a survival signal. In contrast, in response to mechanical forces generated during collagen contraction, Akt is dephosphorylated and fibroblasts undergo apoptosis. The kinase(s) responsible for regulating Akt phosphorylation in response to matrix-derived mechanical signals are unclear. Integrin-linked kinase (ILK) is associated with the beta1 integrin in the focal adhesion complex and as such is a candidate kinase that may regulate Akt phosphorylation and fibroblast viability. Nevertheless, there is no direct evidence that matrix-derived mechanical forces regulate cell viability by modulating ILK activity. Here, we show that ILK activity decreased in response to collagen matrix contraction, which correlated with Akt dephosphorylation and induction of fibroblast apoptosis. In contrast, enforced activation of beta1 integrin by activating antibody preserved ILK and Akt activity during collagen matrix contraction, and this is associated with protection from collagen contraction-induced apoptosis. Knock-down of ILK by small, interfering RNA (siRNA) attenuated Akt phosphorylation in response to ligation of beta1 integrin by collagen or activating antibody and enhanced fibroblast apoptosis in response to collagen contraction. Kinase dead ILK attenuated Akt phosphorylation and enhanced fibroblast apoptosis, whereas hyperactive and wild type ILK augmented Akt phosphorylation and protected fibroblasts from apoptosis. Constitutively active Akt preserved Akt activity and rescued ILK siRNA-treated fibroblasts from collagen contraction-induced apoptosis. These data establish that matrix-derived mechanical forces sensed by beta1 integrin are capable of modulating ILK activity which regulates fibroblast viability via an Akt-dependent mechanism.

  13. Modulation of hepatocyte growth factor secretion in human female reproductive tract stromal fibroblasts by poly (I:C) and estradiol.

    PubMed

    Coleman, Kimberly D; Ghosh, Mimi; Crist, Sarah G; Wright, Jacqueline A; Rossoll, Richard M; Wira, Charles R; Fahey, John V

    2012-01-01

    Hepatocyte Growth Factor (HGF) secretion facilitates epithelial cell growth and development in the female reproductive tract (FRT) and may contribute to pathological conditions such as cancer and endometriosis. We hypothesized that estradiol and poly (I:C), a synthetic RNA mimic, may have a regulatory effect on HGF secretion by stromal fibroblasts from FRT tissues. Following hysterectomies, normal tissue from the uterus, endocervix, and ectocervix were dispersed into stromal cell fractions by enzymatic digestion and differential filtering. Stromal fibroblasts were cultured and treated with estradiol and/or poly (I:C), and conditioned media were analyzed for HGF via enzyme-linked immunosorbent assay. Treating uterine fibroblasts with estradiol or poly (I:C) significantly increased HGF secretion. When uterine fibroblasts were co-treated with estradiol and poly (I:C), the effect on HGF secretion was additive. In contrast, stromal fibroblasts from endo- and ecto-cervix were unresponsive to estradiol, but were stimulated to secrete HGF by poly (I:C). HGF secretion is uniquely regulated in the uterus, but not in ecto- and endo-cervix, by estradiol. Moreover, potential viral pathogens further induce HGF. These findings have potential applications in understanding both hormonal regulation of normal tissue as well as the role of HGF in tumorogenesis, endometriosis, and human immunodeficiency virus infection. © 2011 John Wiley & Sons A/S.

  14. Rapid diagnosis of sensitivity to ultraviolet light in fibroblasts from dermatologic disorders, with particular reference to xeroderma pigmentosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, J.E.; Thomas, G.H.

    1988-04-01

    A rapid and simple method for determining the sensitivity of human fibroblasts to ultraviolet light is described. As an alternative to the colony formation assay, this method can be used for the rapid diagnosis of ultraviolet light sensitivity in fibroblasts from photosensitive disorders. The method is based on growth of small numbers of cells in 1-cm wells of culture trays for 4 or more days after irradiation and determination of cell survival by the incorporation of (/sup 3/H)hypoxanthine. D37 values (the dose at which 37% of the control level of incorporation remains) obtained from this procedure showed the same relativemore » sensitivity of normal and xeroderma pigmentosum fibroblasts as was obtained by colony formation. Untransformed and SV40-transformed fibroblasts, which have different growth rates and different responses to high cell densities, gave different D37 values by this assay in culture trays as compared with colony formation. Comparison of relative sensitivities to irradiation should therefore be made only between cell types with similar growth characteristics. The similar sensitivity of normal and xeroderma pigmentosum cells to mitomycin C was also determined by this culture tray method. By increasing cell density at the beginning of the experiments, a greater capacity of group C compared with group D fibroblasts for recovery from potentially lethal damage was also detected.« less

  15. The hedgehog system machinery controls transforming growth factor-β-dependent myofibroblastic differentiation in humans: involvement in idiopathic pulmonary fibrosis.

    PubMed

    Cigna, Natacha; Farrokhi Moshai, Elika; Brayer, Stéphanie; Marchal-Somme, Joëlle; Wémeau-Stervinou, Lidwine; Fabre, Aurélie; Mal, Hervé; Lesèche, Guy; Dehoux, Monique; Soler, Paul; Crestani, Bruno; Mailleux, Arnaud A

    2012-12-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown cause. Key signaling developmental pathways are aberrantly expressed in IPF. The hedgehog pathway plays a key role during fetal lung development and may be involved in lung fibrogenesis. We determined the expression pattern of several Sonic hedgehog (SHH) pathway members in normal and IPF human lung biopsies and primary fibroblasts. The effect of hedgehog pathway inhibition was assayed by lung fibroblast proliferation and differentiation with and without transforming growth factor (TGF)-β1. We showed that the hedgehog pathway was reactivated in the IPF lung. Importantly, we deciphered the cross talk between the hedgehog and TGF-β pathway in human lung fibroblasts. TGF-β1 modulated the expression of key components of the hedgehog pathway independent of Smoothened, the obligatory signal transducer of the pathway. Smoothened was required for TGF-β1-induced myofibroblastic differentiation of control fibroblasts, but differentiation of IPF fibroblasts was partially resistant to Smoothened inhibition. Furthermore, functional hedgehog pathway machinery from the primary cilium, as well as GLI-dependent transcription in the nucleus, was required for the TGF-β1 effects on normal and IPF fibroblasts during myofibroblastic differentiation. These data identify the GLI transcription factors as potential therapeutic targets in lung fibrosis. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Reduced superoxide dismutase activity in xeroderma pigmentosum fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishigori, C.; Miyachi, Y.; Imamura, S.

    1989-10-01

    This study was performed in order to assess the possible protective effect of superoxide dismutase (SOD) on ultraviolet (UV) damage in xeroderma pigmentosum (XP) fibroblasts. SOD activity in fibroblasts originating from seven xeroderma pigmentosum (XP) patients was significantly lower than that in normal cells (p less than 0.005). Average SOD activity in XP cells belonging to complementation group A was 3.68 +/- 0.54 (n = 7) and that in normal human cells was 5.79 +/- 1.59 (n = 6). Addition of SOD before and during UV irradiation (UVB and UVC) to the cells caused no change in the amount ofmore » unscheduled DNA synthesis and UV survival. A possible involvement of reduced SOD in XP and a possible protective effect by SOD on UV damage is discussed.« less

  17. Notch3 protein expression in skin fibroblasts from CADASIL patients.

    PubMed

    Qualtieri, Antonio; Ungaro, Carmine; Bagalà, Angelo; Bianchi, Silvia; Pantoni, Leonardo; Moccia, Marcello; Mazzei, Rosalucia

    2018-07-15

    CADASIL is an inherited cerebrovascular disease caused by mutations in the NOTCH3 gene. Notch signaling is involved in a broad spectrum of function, from the cell proliferation to apoptosis. Thus far, because the molecular mechanism underlying the pathological alterations remains unclear and taking into account that fibroblasts contribute to the integrity of the vasculature, our aims was to establish whether fibroblasts, in subjects carrying different NOTCH3 mutations, show abnormalities in the protein expression. We performed the investigation on skin fibroblasts in culture obtained from three CADASIL patients and normal subjects. The patients were genetically characterized, and carried a p.R61W, a p.C174T, and p.R103X, mutation respectively. Notch3 expression was first evaluated on fibroblasts by immunofluorescence analysis, then western blot on cellular extract was utilized to validate the immunofluorescence results. The Notch3 immunoreactivity was clearly detected along the cellular body and in the cellular nuclei of the control fibroblasts. We observed a marked, statistically significant, reduction of the fluorescence immunoreactivity in the fibroblasts from patient with the classical C174T cysteine mutation and a less pronounced reduction in the other two subject's samples with respect to the normal controls. These data were confirmed by the immunoblot analysis. Our results show that the investigated three NOTCH3 mutations are associated with a reduction of the levels of Notch3 expression in vitro. Because the smooth muscle cells appear to be predominantly involved in this cerebrovascular disease, our result, despite the limitation of the sample size examinated, clearly suggest that also fibroblasts, directly involved in making the vascular basal lamina and in maintaining the vascular integrity, may play an important role in the mechanism responsible for the disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts

    PubMed Central

    Gothai, Sivapragasam; Arulselvan, Palanisamy; Tan, Woan Sean; Fakurazi, Sharida

    2016-01-01

    Background/Aim: Wounds are the outcome of injuries to the skin that interrupt the soft tissue. Healing of a wound is a complex and long-drawn-out process of tissue repair and remodeling in response to injury. A large number of plants are used by folklore traditions for the treatment of cuts, wounds and burns. Moringa oleifera (MO) is an herb used as a traditional folk medicine for the treatment of various skin wounds and associated diseases. The underlying mechanisms of wound healing activity of ethyl acetate fraction of MO leaves extract are completely unknown. Materials and Methods: In the current study, ethyl acetate fraction of MO leaves was investigated for its efficacy on cell viability, proliferation and migration (wound closure rate) in human normal dermal fibroblast cells. Results: Results revealed that lower concentration (12.5 µg/ml, 25 µg/ml, and 50 µg/ml) of ethyl acetate fraction of MO leaves showed remarkable proliferative and migratory effect on normal human dermal fibroblasts. Conclusion: This study suggested that ethyl acetate fraction of MO leaves might be a potential therapeutic agent for skin wound healing by promoting fibroblast proliferation and migration through increasing the wound closure rate corroborating its traditional use. PMID:27069722

  19. Chemical composition and biological activity of Abies alba and A. koreana seed and cone essential oils and characterization of their seed hydrolates.

    PubMed

    Wajs-Bonikowska, Anna; Sienkiewicz, Monika; Stobiecka, Agnieszka; Maciąg, Agnieszka; Szoka, Łukasz; Karna, Ewa

    2015-03-01

    The chemical composition, including the enantiomeric excess of the main terpenes, the antimicrobial and antiradical activities, as well as the cytotoxicity of Abies alba and A. koreana seed and cone essential oils were investigated. Additionally, their seed hydrolates were characterized. In the examined oils and hydrolates, a total of 174 compounds were identified, which comprised 95.6-99.9% of the volatiles. The essential oils were mainly composed of monoterpene hydrocarbons, whereas the composition of the hydrolates, differing from the seed oils of the corresponding fir species, consisted mainly of oxygenated derivatives of sesquiterpenes. The seed and cone essential oils of both firs exhibited DPPH-radical-scavenging properties and low antibacterial activity against the bacterial strains tested. Moreover, they evoked only low cytotoxicity towards normal fibroblasts and the two cancer cell lines MCF-7 and MDA-MBA-231. At concentrations up to 50 μg/ml, all essential oils were safe in relation to normal fibroblasts. Although they induced cytotoxicity towards the cancer cells at concentrations slightly lower than those required for the inhibition of fibroblast proliferation, their influence on cancer cells was weak, with IC50 values similar to those observed towards normal fibroblasts. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  20. Multistep carcinogenesis of normal human fibroblasts. Human fibroblasts immortalized by repeated treatment with Co-60 gamma rays were transformed into tumorigenic cells with Ha-ras oncogenes.

    PubMed

    Namba, M; Nishitani, K; Fukushima, F; Kimoto, T

    1988-01-01

    Two normal mortal human fibroblast cell strains were transformed into immortal cell lines, SUSM-1 and KMST-6, by treatment with 4-nitroquinoline 1-oxide (4NQO) and Co-60 gamma rays, respectively. These immortalized cell lines showed morphological changes of cells and remarkable chromosome aberrations, but neither of them grew in soft agar or formed tumors in nude mice. The immortal cell line, KMST-6, was then converted into neoplastic cells by treatment with Harvey murine sarcoma virus (Ha-MSV) or the c-Ha-ras oncogene derived from a human lung carcinoma. These neoplastically transformed cells acquired anchorage-independent growth potential and developed tumors when transplanted into nude mice. All the tumors grew progressively without regression until the animals died of tumors. In addition, the tumors were transplantable into other nude mice. Normal human fibroblasts, on the other hand, were not transformed into either immortal or tumorigenic cells by treatment with Ha-MSV or c-Ha-ras alone. Our present data indicate that (1) the chemical carcinogen, 4NQO, or gamma rays worked as an initiator of carcinogenesis in normal human cells, giving rise to immortality, and (2) the ras gene played a role in the progression of the immortally transformed cells to more malignant cells showing anchorage-independent growth and tumorigenicity. In other words, the immortalization process of human cells seems to be a pivotal or rate-limiting step in the carcinogenesis of human cells.

  1. Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions.

    PubMed

    Shiratsuchi, Eri; Nakaba, Misako; Yamada, Michio

    2016-03-30

    Recent studies have shown that certain peptides significantly improve skin conditions, such as skin elasticity and the moisture content of the skin of healthy woman. This study aimed to investigate the effects of elastin hydrolysate on human skin. Proliferation and elastin synthesis were evaluated in human skin fibroblasts exposed to elastin hydrolysate and proryl-glycine (Pro-Gly), which is present in human blood after elastin hydrolysate ingestion. We also performed an ingestion test with elastin hydrolysate in humans and evaluated skin condition. Elastin hydrolysate and Pro-Gly enhanced the proliferation of fibroblasts and elastin synthesis. Maximal proliferation response was observed at 25 ng mL(-1) Pro-Gly. Ingestion of elastin hydrolysate improved skin condition, such as elasticity, number of wrinkles, and blood flow. Elasticity improved by 4% in the elastin hydrolysate group compared with 2% in the placebo group. Therefore, elastin hydrolysate activates human skin fibroblasts and has beneficial effects on skin conditions. © 2015 Society of Chemical Industry.

  2. Differential regulation of cell functions by CSD peptide subdomains

    PubMed Central

    2013-01-01

    Background In fibrotic lung diseases, expression of caveolin-1 is decreased in fibroblasts and monocytes. The effects of this deficiency are reversed by treating cells or animals with the caveolin-1 scaffolding domain peptide (CSD, amino acids 82–101 of caveolin-1) which compensates for the lack of caveolin-1. Here we compare the function of CSD subdomains (Cav-A, Cav-B, Cav-C, Cav-AB, and Cav-BC) and mutated versions of CSD (F92A and T90A/T91A/F92A). Methods Migration toward the chemokine CXCL12 and the associated expression of F-actin, CXCR4, and pSmad 2/3 were studied in monocytes from healthy donors and SSc patients. Fibrocyte differentiation was studied using PBMC from healthy donors and SSc patients. Collagen I secretion and signaling were studied in fibroblasts derived from the lung tissue of healthy subjects and SSc patients. Results Cav-BC and CSD at concentrations as low as 0.01 μM inhibited the hypermigration of SSc monocytes and TGFβ-activated Normal monocytes and the differentiation into fibrocytes of SSc and Normal monocytes. While CSD also inhibited the migration of poorly migrating Normal monocytes, Cav-A (and other subdomains to a lesser extent) promoted the migration of Normal monocytes while inhibiting the hypermigration of TGFβ-activated Normal monocytes. The effects of versions of CSD on migration may be mediated in part via their effects on CXCR4, F-actin, and pSmad 2/3 expression. Cav-BC was as effective as CSD in inhibiting fibroblast collagen I and ASMA expression and MEK/ERK signaling. Cav-C and Cav-AB also inhibited collagen I expression, but in many cases did not affect ASMA or MEK/ERK. Cav-A increased collagen I expression in scleroderma lung fibroblasts. Full effects on fibroblasts of versions of CSD required 5 μM peptide. Conclusions Cav-BC retains most of the anti-fibrotic functions of CSD; Cav-A exhibits certain pro-fibrotic functions. Results obtained with subdomains and mutated versions of CSD further suggest that the critical functional residues in CSD depend on the cell type and readout being studied. Monocytes may be more sensitive to versions of CSD than fibroblasts and endothelial cells because the baseline level of caveolin-1 in monocytes is much lower than in these other cell types. PMID:24011378

  3. Differential regulation of cell functions by CSD peptide subdomains.

    PubMed

    Reese, Charles; Dyer, Shanice; Perry, Beth; Bonner, Michael; Oates, James; Hofbauer, Ann; Sessa, William; Bernatchez, Pascal; Visconti, Richard P; Zhang, Jing; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley; Tourkina, Elena

    2013-09-08

    In fibrotic lung diseases, expression of caveolin-1 is decreased in fibroblasts and monocytes. The effects of this deficiency are reversed by treating cells or animals with the caveolin-1 scaffolding domain peptide (CSD, amino acids 82-101 of caveolin-1) which compensates for the lack of caveolin-1. Here we compare the function of CSD subdomains (Cav-A, Cav-B, Cav-C, Cav-AB, and Cav-BC) and mutated versions of CSD (F92A and T90A/T91A/F92A). Migration toward the chemokine CXCL12 and the associated expression of F-actin, CXCR4, and pSmad 2/3 were studied in monocytes from healthy donors and SSc patients. Fibrocyte differentiation was studied using PBMC from healthy donors and SSc patients. Collagen I secretion and signaling were studied in fibroblasts derived from the lung tissue of healthy subjects and SSc patients. Cav-BC and CSD at concentrations as low as 0.01 μM inhibited the hypermigration of SSc monocytes and TGFβ-activated Normal monocytes and the differentiation into fibrocytes of SSc and Normal monocytes. While CSD also inhibited the migration of poorly migrating Normal monocytes, Cav-A (and other subdomains to a lesser extent) promoted the migration of Normal monocytes while inhibiting the hypermigration of TGFβ-activated Normal monocytes. The effects of versions of CSD on migration may be mediated in part via their effects on CXCR4, F-actin, and pSmad 2/3 expression. Cav-BC was as effective as CSD in inhibiting fibroblast collagen I and ASMA expression and MEK/ERK signaling. Cav-C and Cav-AB also inhibited collagen I expression, but in many cases did not affect ASMA or MEK/ERK. Cav-A increased collagen I expression in scleroderma lung fibroblasts. Full effects on fibroblasts of versions of CSD required 5 μM peptide. Cav-BC retains most of the anti-fibrotic functions of CSD; Cav-A exhibits certain pro-fibrotic functions. Results obtained with subdomains and mutated versions of CSD further suggest that the critical functional residues in CSD depend on the cell type and readout being studied. Monocytes may be more sensitive to versions of CSD than fibroblasts and endothelial cells because the baseline level of caveolin-1 in monocytes is much lower than in these other cell types.

  4. Stimulatory effects of histamine on migration of nasal fibroblasts.

    PubMed

    Hong, Sung-Moon; Park, Il-Ho; Um, Ji-Young; Shin, Jae-Min; Lee, Heung-Man

    2015-10-01

    Fibroblast migration is crucial for normal wound repair after sinonasal surgery. Histamine is known to be involved in wound healing by its effects on cell proliferation and migration. This study aimed to determine whether histamine affects the migration of nasal fibroblasts and to investigate the mechanism of action of histamine on nasal fibroblasts. Primary cultures of nasal fibroblasts were established from inferior turbinate samples. Fibroblast migration was evaluated with scratch assays. Cells were treated with histamine and/or histamine receptor-selective antagonists. U-73122 and pertussis toxin, which are selective inhibitors of the lower signaling pathway of H1R and H4R, were used to confirm the modulation of nasal fibroblast migration by histamine. Fibroblast cytoskeletal structures were visualized with immunocytochemistry. Histamine significantly stimulated the migration of nasal fibroblasts. Antagonists selective for HR1 and HR4 significantly reduced nasal fibroblast migration. In immunocytochemical staining, histamine treatment increased membrane ruffling and pyrilamine, diphenhydramine, fexofenadine, and JNJ7777120 decreased histamine-induced membrane ruffling. U-73122 and pertussis toxin also decreased histamine-induced migration of fibroblasts. Histamine maintains its stimulatory effects on fibroblast migration in the presence of mitomycin C, which blocks proliferation of cells. We showed that histamine stimulates fibroblast migration in nasal fibroblasts. This effect appeared to be mediated by HR1 and HR4. However, because fibroblast migration also can be involved in scaring and fibrosis, more research is necessary to determine the effects of antihistamine on wound healing after sinus surgery. © 2015 ARS-AAOA, LLC.

  5. L'effet de p53 sur la radiosensibilité des cellules humaines normales et cancéreuses

    NASA Astrophysics Data System (ADS)

    Little, J. B.; Li, C. Y.; Nagasawa, H.; Huang, H.

    1998-04-01

    The radiosensitivity of normal human fibroblasts in p53 dependent and associated with the loss of cells from the cycling population as the result of an irreversible G1 arrest; cells lacking normal p53 function show no arrest and are more radioresistant. Under conditions in which the repair potentially lethal radiation damage is facilitated, the fraction of cells arrested in G1 is reduced and survival is enhanced. The response of human tumor cells differs significantly. The radiation-induced G1 arrest is minimal or absent in p53+ tumor cells, and loss of normal p53 function has no consistent effect on their radiosensitivity. These results suggest that p53 status may not be a useful predictive marker for the response of human solid tumors to radiation therapy. La radiosensibilité des fibroblastes diploïdes humains est liée à l'expression de p53, et à la perte de cellules en cycle résultant d'un arrêt irréversible en phase G1 ; dans les cellules n'ayant pas une fonction p53 normale, on ne constate aucun arrêt, et elles sont plus radio-résistantes. Dans des conditions favorables à la réparation de lésions potentiellement léthales dues à l'irradiation, la proportion de cellules bloquées en phase G1 baisse, et les chances de survie sont accrues. Bien différente est la réaction des cellules cancéreuses humaines. Le blocage par irradiation en phase G1 est minime ou inexistant dans les cellules cancéreuses p53^+, et la perte de la fonction normale p53 n'a pas d'effet constant sur leur radiosensibilité. Ces résultats laissent penser que l'expression de p53 n'est pas un indice fiable permettant de prévoir la réaction des tumeurs solides à la radiothérapie.

  6. Signaling pathway activation drift during aging: Hutchinson-Gilford Progeria Syndrome fibroblasts are comparable to normal middle-age and old-age cells.

    PubMed

    Aliper, Alexander M; Csoka, Antonei Benjamin; Buzdin, Anton; Jetka, Tomasz; Roumiantsev, Sergey; Moskalev, Alexy; Zhavoronkov, Alex

    2015-01-01

    For the past several decades, research in understanding the molecular basis of human aging has progressed significantly with the analysis of premature aging syndromes. Progerin, an altered form of lamin A, has been identified as the cause of premature aging in Hutchinson-Gilford Progeria Syndrome (HGPS), and may be a contributing causative factor in normal aging. However, the question of whether HGPS actually recapitulates the normal aging process at the cellular and organismal level, or simply mimics the aging phenotype is widely debated. In the present study we analyzed publicly available microarray datasets for fibroblasts undergoing cellular aging in culture, as well as fibroblasts derived from young, middle-age, and old-age individuals, and patients with HGPS. Using GeroScope pathway analysis and drug discovery platform we analyzed the activation states of 65 major cellular signaling pathways. Our analysis reveals that signaling pathway activation states in cells derived from chronologically young patients with HGPS strongly resemble cells taken from normal middle-aged and old individuals. This clearly indicates that HGPS may truly represent accelerated aging, rather than being just a simulacrum. Our data also points to potential pathways that could be targeted to develop drugs and drug combinations for both HGPS and normal aging.

  7. Stromal Fibroblasts from the Interface Zone of Triple Negative Breast Carcinomas Induced Epithelial-Mesenchymal Transition and its Inhibition by Emodin

    PubMed Central

    Wang, Hao-Yu; Hung, Chao-Ming; Lin, Ying-Chao; Ho, Chi-Tang; Way, Tzong-Der

    2017-01-01

    “Triple negative breast cancer” (TNBC) is associated with a higher rate and earlier time of recurrence and worse prognosis after recurrence. In this study, we aimed to examine the crosstalk between fibroblasts and TNBC cells. The fibroblasts were isolated from TNBC patients’ tissue in tumor burden zones, distal normal zones and interface zones. The fibroblasts were indicated as cancer-associated fibroblasts (CAFs), normal zone fibroblasts (NFs) and interface zone fibroblasts (INFs). Our study found that INFs grew significantly faster than NFs and CAFs in vitro. The epithelial BT20 cells cultured with the conditioned medium of INFs (INFs-CM) and CAFs (CAFs-CM) showed more spindle-like shape and cell scattering than cultured with the conditioned medium of NFs (NFs-CM). These results indicated that factors secreted by INFs-CM or CAFs-CM could induce the epithelial-mesenchymal transition (EMT) phenotype in BT20 cells. Using an in vitro co-culture model, INFs or CAFs induced EMT and promoted cancer cell migration in BT20 cells. Interestingly, we found that emodin inhibited INFs-CM or CAFs-CM-induced EMT programming and phenotype in BT20 cells. Previous studies reported that CAFs and INFs-secreted TGF-β promoted human breast cancer cell proliferation, here; our results indicated that TGF-β initiated EMT in BT20 cells. Pretreatment with emodin significantly suppressed the TGF-β-induced EMT and cell migration in BT20 cells. These results suggest that emodin may be used as a novel agent for the treatment of TNBC. PMID:28060811

  8. Radiation Enhancement of Head and Neck Squamous Cell Carcinoma by the Dual PI3K/mTOR Inhibitor PF-05212384

    PubMed Central

    Leiker, Andrew J.; DeGraff, William; Choudhuri, Rajani; Sowers, Anastasia L.; Thetford, Angela; Cook, John A.; Van Waes, Carter; Mitchell, James B.

    2015-01-01

    Purpose Radiation remains a mainstay for the treatment of non-metastatic head and neck squamous cell carcinoma (HNSCC), a malignancy characterized by a high rate of PI3K/mTOR signaling axis activation. We investigated the ATP-competitive dual PI3K/mTOR inhibitor, PF-05212384, as a radiosensitizer in pre-clinical HNSCC models. Experimental Design Extent of radiation enhancement of two HNSCC cell lines (UMSCC1-wtP53, UMSCC46-mtP53) and normal human fibroblast (1522) was assessed by in vitro clonogenic assay with appropriate target inhibition verified by immunoblotting. Radiation induced DNA damage repair was evaluated by γH2AX western blots with mechanism of DNA-DSB repair abrogation investigated by cell cycle analysis, immunoblotting, and RT-PCR. PF-05212384 efficacy in vivo was assessed by UMSCC1 xenograft tumor regrowth delay, xenograft lysate immunoblotting, and tissue section immunohistochemistry. Results PF-05212384 effectively inhibited PI3K and mTOR resulting in significant radiosensitization of exponentially growing and plateau-phase cells with 24 hr treatment following irradiation, and variable radiation enhancement with 24 hr treatment prior to irradiation. Tumor cells radiosensitized to a greater extent than normal human fibroblasts. Post-irradiation PF-05212384 treatment delays γ-H2AX foci resolution. PF-05212384 24 hr exposure resulted in an evident G1/S phase block in p53 competent cells. Fractionated radiation plus IV PF-05212384 synergistically delayed nude-mice bearing UMSCC1 xenograft regrowth, with potential drug efficacy biomarkers identified, including pS6, pAkt, p4EBP1, and Ki67. Conclusions Taken together, our results of significant radiosensitization both in vitro and in vivo validates the PI3K/mTOR axis as a radiation modification target and PF-05212384 as a potential clinical radiation modifier of non-metastatic HNSCC. PMID:25724523

  9. Wound healing potential of adipose tissue stem cell extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, You Kyung; Ban, Jae-Jun; Lee, Mijung

    Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed wasmore » examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. - Highlights: • Topical application of ATSC-Ex results in faster wound closure than normal wound in vivo. • ATSC-Ex enhances dermal fibroblast proliferation, migration and extracellular matrix production. • This study suggests that ATSC-Ex is an effective source to augment wound healing.« less

  10. Putting tumours in context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissell, Mina J.; Radisky, Derek

    2001-10-01

    The interactions between cancer cells and their micro- and macroenvironment create a context that promotes tumor growth and protects it from immune attack. The functional association of cancer cells with their surrounding tissues forms a new 'organ' that changes as malignancy progresses. Investigation of this process might provide new insights into the mechanisms of tumorigenesis and could also lead to new therapeutic targets. Under normal conditions, ORGANS are made up of TISSUES that exchange information with other cell types via cell-cell contact, cytokines and the EXTRACELLULAR MATRIX (ECM). The ECM, which is produced by collaboration between STROMAL fibroblasts and EPITHELIALmore » cells, provides structural scaffolding for cells, as well as contextual information. The endothelial vasculature provides nutrients and oxygen, and cells of the immune system combat pathogens and remove apoptotic cells. Epithelial cells associate into intact, polarized sheets. These tissues communicate through a complex network of interactions: physically, through direct contact or through the intervening ECM, and biochemically, through both soluble and insoluble signalling molecules. In combination, these interactions provide the information that is necessary to maintain cellular differentiation and to create complex tissue structures. Occasionally, the intercellular signals that define the normal context become disrupted. Alterations in epithelial tissues can lead to movement of epithelial sheets and proliferation - for example, after activation of mesenchymal fibroblasts due to wounding.Normally, these conditions are temporary and reversible, but when inflammation is sustained, an escalating feedback loop ensues.Under persistent inflammatory conditions, continual upregulation of enzymes such as matrix metalloproteinases (MMPs) by stromal fibroblasts can disrupt the ECM, and invading immune cells can overproduce factors that promote abnormal proliferation. As this process progresses, the normal organization of the organ is replaced by a functional disorder. If there are pre-existing epithelial cells within this changing context that possess tumorigenic potential, they can start to proliferate. Alternatively, the abnormal interactions might lead to genomic instability within the epithelial cells and the acquisition of tumorigenic potential. The proliferating cancer cells can then interact with their microenvironment and enhance the abnormal interactions. At this point, the tumor has become its own organ, with a distinct context that now defines all its cellular responses. Here, we will examine how the mechanisms that contribute to the normal context also act to suppress developing tumors, how disruption of this context initiates and supports the process of tumorigenicity, and how some cells with a tumorigenic genotype can become phenotypically normal if the context is appropriately manipulated.« less

  11. Matrix Stiffness Corresponding to Strictured Bowel Induces a Fibrogenic Response in Human Colonic Fibroblasts

    PubMed Central

    Johnson, Laura A.; Rodansky, Eva S.; Sauder, Kay L.; Horowitz, Jeffrey C.; Mih, Justin D.; Tschumperlin, Daniel J.; Higgins, Peter D.

    2013-01-01

    Background Crohn’s disease is characterized by repeated cycles of inflammation and mucosal healing which ultimately progress to intestinal fibrosis. This inexorable progression towards fibrosis suggests that fibrosis becomes inflammation-independent and auto-propagative. We hypothesized that matrix stiffness regulates this auto-propagation of intestinal fibrosis. Methods The stiffness of fresh ex vivo samples from normal human small intestine, Crohn’s disease strictures, and the unaffected margin were measured with a microelastometer. Normal human colonic fibroblasts were cultured on physiologically normal or pathologically stiff matrices corresponding to the physiological stiffness of normal or fibrotic bowel. Cellular response was assayed for changes in cell morphology, α-smooth muscle actin (αSMA) staining, and gene expression. Results Microelastometer measurements revealed a significant increase in colonic tissue stiffness between normal human colon and Crohn’s strictures as well as between the stricture and adjacent tissue margin. In Ccd-18co cells grown on stiff matrices corresponding to Crohn’s strictures, cellular proliferation increased. Pathologic stiffness induced a marked change in cell morphology and increased αSMA protein expression. Growth on a stiff matrix induced fibrogenic gene expression, decreased matrix metalloproteinase and pro-inflammatory gene expression, and was associated with nuclear localization of the transcriptional cofactor MRTF-A. Conclusions Matrix stiffness, representative of the pathological stiffness of Crohn’s strictures, activates human colonic fibroblasts to a fibrogenic phenotype. Matrix stiffness affects multiple pathways suggesting the mechanical properties of the cellular environment are critical to fibroblast function and may contribute to autopropagation of intestinal fibrosis in the absence of inflammation, thereby contributing to the intractable intestinal fibrosis characteristic of Crohn’s disease. PMID:23502354

  12. Enhanced Keratinocyte Proliferation and Migration in Co-culture with Fibroblasts

    PubMed Central

    Wang, Zhenxiang; Wang, Ying; Farhangfar, Farhang; Zimmer, Monica; Zhang, Yongxin

    2012-01-01

    Wound healing is primarily controlled by the proliferation and migration of keratinocytes and fibroblasts as well as the complex interactions between these two cell types. To investigate the interactions between keratinocytes and fibroblasts and the effects of direct cell-to-cell contact on the proliferation and migration of keratinocytes, keratinocytes and fibroblasts were stained with different fluorescence dyes and co-cultured with or without transwells. During the early stage (first 5 days) of the culture, the keratinocytes in contact with fibroblasts proliferated significantly faster than those not in contact with fibroblasts, but in the late stage (11th to 15th day), keratinocyte growth slowed down in all cultures unless EGF was added. In addition, keratinocyte migration was enhanced in co-cultures with fibroblasts in direct contact, but not in the transwells. Furthermore, the effects of the fibroblasts on keratinocyte migration and growth at early culture stage correlated with heparin-binding EGF-like growth factor (HB-EGF), IL-1α and TGF-β1 levels in the cultures where the cells were grown in direct contact. These effects were inhibited by anti-HB-EGF, anti-IL-1α and anti-TGF-β1 antibodies and anti-HB-EGF showed the greatest inhibition. Co-culture of keratinocytes and IL-1α and TGF-β1 siRNA-transfected fibroblasts exhibited a significant reduction in HB-EGF production and keratinocyte proliferation. These results suggest that contact with fibroblasts stimulates the migration and proliferation of keratinocytes during wound healing, and that HB-EGF plays a central role in this process and can be up-regulated by IL-1α and TGF-β1, which also regulate keratinocyte proliferation differently during the early and late stage. PMID:22911722

  13. Stimulation of Skin and Wound Fibroblast Migration by Mesenchymal Stem Cells Derived from Normal Donors and Chronic Wound Patients

    PubMed Central

    Rodriguez-Menocal, Luis; Salgado, Marcela; Ford, Dwayne

    2012-01-01

    Chronic wounds continue to be a major cause of morbidity for patients and an economic burden on the health care system. Novel therapeutic approaches to improved wound healing will need, however, to address cellular changes induced by a number of systemic comorbidities seen in chronic wound patients, such as diabetes, chronic renal failure, and arterial or venous insufficiency. These effects likely include impaired inflammatory cell migration, reduced growth factor production, and poor tissue remodeling. The multifunctional properties of bone marrow-derived mesenchymal stem cells (MSCs), including their ability to differentiate into various cell types and capacity to secrete factors important in accelerating healing of cutaneous wounds, have made MSCs a promising agent for tissue repair and regeneration. In this study we have used an in vitro scratch assay procedure incorporating labeled MSCs and fibroblasts derived from normal donors and chronic wound patients in order to characterize the induction of mobilization when these cells are mixed. A modified Boyden chamber assay was also used to examine the effect of soluble factors on fibroblast migration. These studies suggest that MSCs play a role in skin wound closure by affecting dermal fibroblast migration in a dose-dependent manner. Deficiencies were noted, however, in chronic wound patient fibroblasts and MSCs as compared with those derived from normal donors. These findings provide a foundation to develop therapies targeted specifically to the use of bone marrow-derived MSCs in wound healing and may provide insight into why some wounds do not heal. PMID:23197781

  14. Stimulation of skin and wound fibroblast migration by mesenchymal stem cells derived from normal donors and chronic wound patients.

    PubMed

    Rodriguez-Menocal, Luis; Salgado, Marcela; Ford, Dwayne; Van Badiavas, Evangelos

    2012-03-01

    Chronic wounds continue to be a major cause of morbidity for patients and an economic burden on the health care system. Novel therapeutic approaches to improved wound healing will need, however, to address cellular changes induced by a number of systemic comorbidities seen in chronic wound patients, such as diabetes, chronic renal failure, and arterial or venous insufficiency. These effects likely include impaired inflammatory cell migration, reduced growth factor production, and poor tissue remodeling. The multifunctional properties of bone marrow-derived mesenchymal stem cells (MSCs), including their ability to differentiate into various cell types and capacity to secrete factors important in accelerating healing of cutaneous wounds, have made MSCs a promising agent for tissue repair and regeneration. In this study we have used an in vitro scratch assay procedure incorporating labeled MSCs and fibroblasts derived from normal donors and chronic wound patients in order to characterize the induction of mobilization when these cells are mixed. A modified Boyden chamber assay was also used to examine the effect of soluble factors on fibroblast migration. These studies suggest that MSCs play a role in skin wound closure by affecting dermal fibroblast migration in a dose-dependent manner. Deficiencies were noted, however, in chronic wound patient fibroblasts and MSCs as compared with those derived from normal donors. These findings provide a foundation to develop therapies targeted specifically to the use of bone marrow-derived MSCs in wound healing and may provide insight into why some wounds do not heal.

  15. Production of colony-stimulating factor in human dental pulp fibroblasts.

    PubMed

    Sawa, Y; Horie, Y; Yamaoka, Y; Ebata, N; Kim, T; Yoshida, S

    2003-02-01

    Class II major histocompatilibity complex (MHC)-expressing cells are usually distributed in dental pulp, and it was postulated that the colony-stimulating factor (CSF) derived from dental pulp fibroblasts contributes to the migration of class II MHC-expressing cells into pulp tissue. This study aimed to investigate the CSF production of human dental pulp fibroblasts. In pulp tissue sections, granulocyte (G)-CSF was detected from normal teeth, while G-CSF, macrophage (M)-CSF, and granulocyte-macrophage (GM)-CSF were detected from teeth with dentinal caries. In cultured dental pulp fibroblasts, G-CSF was detected by immunostaining, immunoprecipitation, and ELISA, and mRNAs of G-CSF, M-CSF, and GM-CSF were detected by RT-PCR. The dental pulp fibroblasts cultured with TNF-alpha were found to increase the G-CSF expression and to produce M-CSF and GM-CSF. These findings suggest that dental pulp fibroblasts usually produce G-CSF. In the presence of TNF-alpha, dental pulp fibroblast express M-CSF and GM-CSF.

  16. Inhibition of myostatin reverses muscle fibrosis through apoptosis.

    PubMed

    Bo Li, Zhao; Zhang, Jiangyang; Wagner, Kathryn R

    2012-09-01

    Skeletal muscle fibrosis is a defining feature of the muscular dystrophies in which contractile myofibers are replaced by fibroblasts, adipocytes and extracellular matrix. This maladaptive response of muscle to repetitive injury is progressive, self-perpetuating and thus far, has been considered irreversible. We have previously shown that myostatin, a known endogenous modulator of muscle growth, stimulates normal muscle fibroblasts to proliferate. Here, we demonstrate that myostatin also regulates the proliferation of dystrophic muscle fibroblasts, and increases resistance of fibroblasts to apoptosis through Smad and MAPK signaling. Inhibition of myostatin signaling pathways with a soluble activin IIB receptor (ActRIIB.Fc) reduces resistance of muscle fibroblasts to apoptosis in vitro. Systemic administration of ActRIIB.Fc in senescent mdx mice, a model of muscular dystrophy, significantly increases the number of muscle fibroblasts undergoing apoptosis. This leads to the reversal of pre-existing muscle fibrosis as determined by histological, biochemical and radiographical criteria. These results demonstrate that skeletal muscle fibrosis can be pharmacologically reversed through induction of fibroblast apoptosis.

  17. Inhibition of collagen production in scleroderma fibroblast cultures by a connective tissue glycoprotein extracted from normal dermis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maquart, F.X.; Bellon, G.; Cornillet-Stoupy, J.

    1985-08-01

    It was shown in a previous paper that a connective tissue glycoprotein (CTGP) extracted from normal rabbit dermis was able to inhibit total protein and collagen syntheses by normal dermis fibroblast cultures. In the present study, the effects of CTGP on scleroderma fibroblasts were investigated. (/sup 14/C)Proline incorporation into total proteins of the supernatant was not significantly different from that found in controls. By contrast, the amount of collagen, expressed as percentage of total secreted protein, was far higher in scleroderma cultures than in normal ones (14.4% +/- 6.0% vs 4.6% +/- 0.9%). Addition of CTGP to the medium inducedmore » a concentration-dependent inhibition of (/sup 14/C)proline incorporation into proteins from both control and scleroderma cells. In control cultures, no significant decrease of the percentage of collagen was observed, but over 60 micrograms/ml, both cytotoxic effects and inhibition of protein synthesis occurred. In scleroderma cultures, the inhibition was twice as effective on collagen as on noncollagen protein synthesis. The inhibition of collagen secretion was not related either to changes in collagen hydroxylation or to the intracellular catabolism of newly synthesized procollagen.« less

  18. Combined use of bFGF and GDF-5 enhances the healing of medial collateral ligament injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saiga, Kenta; Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp; Yoshida, Aki

    Research highlights: {yields} bFGF/GDF-5 treatment increases cellular proliferation and migration of MCL fibroblasts. {yields} bFGF/GDF-5 hydrogels stimulate the healing of MCL injury in vivo. {yields} bFGF/GDF-5 hydrogels stimulate Col1a1 expression and type I collagen synthesis. {yields} Combined use of bFGF/GDF-5 enhances MCL healing. -- Abstract: Basic fibroblast growth factor (bFGF) and growth and differentiation factor (GDF)-5 stimulate the healing of medial collateral ligament (MCL) injury. However, the effect of isolated and combined use of bFGF/GDF-5 remains still unclear. We investigated cellular proliferation and migration responding to bFGF/GDF-5 using rabbit MCL fibroblasts. Rabbit MCL injury was treated by bFGF and/or GDF-5more » with peptide hydrogels. Gene expression and deposition of collagens in healing tissues were evaluated. bFGF/GDF-5 treatment additively enhanced cell proliferation and migration. bFGF/GDF-5 hydrogels stimulated Col1a1 expression without increasing Col3a1 expression. Combined use of bFGF/GDF-5 stimulated type I collagen deposition and the reorganization of fiber alignment, and induced better morphology of fibroblasts in healing MCLs. Our study indicates that combined use of bFGF/GDF-5 might enhance MCL healing by increasing proliferation and migration of MCL fibroblasts, and by regulating collagen synthesis and connective fiber alignment.« less

  19. miR-146b-5p mediates p16-dependent repression of IL-6 and suppresses paracrine procarcinogenic effects of breast stromal fibroblasts.

    PubMed

    Al-Ansari, Mysoon M; Aboussekhra, Abdelilah

    2015-10-06

    Increasing evidence support the critical roles of active stromal fibroblasts in breast cancer development and spread. However, the mediators and the mechanisms of regulation are still not well defined. We have shown here that the tumor suppressor p16(INK4A) protein inhibits the pro-carcinogenic effects of breast stromal fibroblasts through repressing the expression/secretion of IL-6. Indeed, p16(INK4A) suppresses IL-6 at the mRNA and protein levels. This effect is mediated trough miR-146b-5p, which inhibits IL-6 expression through a specific sequence at the IL-6 3'UTR. In addition, we present clear evidence that miR-146b-5p inhibition is sufficient to transactivate breast stromal fibroblasts, which promote epithelial-to-mesenchymal-transition in breast cancer cells in a paracrine manner. By contrast, ectopic expression of miR-146b-5p in active fibroblasts abrogated their pro-carcinogenic effects. The physiological importance of miR-146b-5p inhibition was revealed by showing that the levels of pre-miR-146b-5p as well as its mature form are reduced in cancer-associated fibroblasts as compared with their normal adjacent counterparts from cancer-free tissues isolated from the same patients. Interestingly, treatment of active breast stromal fibroblasts with curcumin increased the level of the p16(INK4A) coding CDKN2A mRNA and miR-146b-5p and suppressed IL-6, which confirms the repressive effect of these two tumor suppressor molecules on IL-6, and shows the possible "normalization" of cancer-related active fibroblasts. These results show that miR-146b-5p has non-cell-autonomous tumor suppressor function through inhibition of IL-6, suggesting that targeting this microRNA in breast stromal fibroblasts could be of great therapeutic value.

  20. Enhanced chemotherapeutic efficacy of apigenin liposomes in colorectal cancer based on flavone-membrane interactions.

    PubMed

    Banerjee, Kacoli; Banerjee, Shubhadeep; Mandal, Mahitosh

    2017-04-01

    Recent endeavors in exploiting vast array of natural phytochemicals to ameliorate colorectal cancer led us to investigate apigenin, a naturally occurring dietary flavone as a potential chemo-therapeutic agent. The present study focuses on establishing apigenin as a potential chemotherapeutic agent for alleviating colorectal cancer and reports the development of a stable liposomal nanocarrier with high encapsulation of the hydrophobic flavone apigenin for enhanced chemotherapeutic effects. The enhanced pharmacological activity of apigenin has been assigned to its ability to interact and subsequently influence membrane properties which also resulted in optimal yield of a stable, rigidified, non-leaky nano-carrier with ideal release kinetics. Extensive testing of drug and its liposomal counterpart for potential clinical chemotherapeutic applications yielded hemocompatibility and cytocompatibility with normal fibroblast cells while enhanced antineoplastic activity was observed in tumor xenograft model. The increased chemotherapeutic potential of liposomal apigenin highlights the clinical potential of apigenin-based vesicles. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Role of fibroblast-derived factors in the pathogenesis of melasma.

    PubMed

    Byun, J W; Park, I S; Choi, G S; Shin, J

    2016-08-01

    The hyperactive melanocytes present in melasma skin are confined to the epidermis, but epidermal ablation to treat melasma pigmentation may lead to disease recurrence and aggravation. Melanocyte function is regulated by interactions between melanocytes and neighbouring cells such as keratinocytes and fibroblasts. Because melasma skin usually shows dermal changes after exposure to sunlight, we hypothesized that sun-damaged fibroblasts might play a crucial role in the pathogenesis of melasma. In this study, the melanogenic role of primary cultured fibroblasts from human melasma skin was investigated. We explored whether primary cultured fibroblasts from melasma tissue have a melanogenic function on cultured human epidermal melanocytes and artificial skin. The cytokine profile derived from fibroblasts and their effect on the pigmented epidermal equivalents were investigated. Fibroblasts from the melasma lesion and perilesional skin increased melanogenesis in cultured human epidermal melanocytes and in artificial skin. Fibroblasts from the melasma lesion and perilesional skin secreted more nerve growth factor (NGF)-β than those in normal buttock skin, and also increased melanogenesis and the expression level of NGF-β in cultured human epidermal melanocytes and artificial skin. These results suggest that fibroblasts may play a role in melanogenesis and the pathogenesis of melasma. © 2016 British Association of Dermatologists.

  2. [Energy corrective and antioxidative actions of cytoflavin during postischemic period of human dermal fibroblasts in vitro].

    PubMed

    Tiuriaeva, I I; Kuranova, M L; Gonchar, I V; Rozanov, Iu M

    2012-01-01

    The influence of metabolic drug Cytoflavin (CF) with antihypoxic and antioxidative properties on human dermal fibroblasts in a model of ischemia-reoxygenation in vitro was studied. It was revealed that the restoration of ATP synthesis in fibroblasts in the postischemic period was considerably accelerated (in 2.1 times) by the addition of CF to the culture medium. The drug had a cell protective effect of reducing cell mortality during the reoxygenation after ischemia by 2-2.7 times. CF effectively reduced the level of reactive oxygen species (ROS) in fibroblasts after H2O2 treatment which allowed maintaining their survival at the level of control cells. Pretreatment of the cells with CF for one day ensured the maintenance of normal levels of ROS during the investigated time period in the fibroblasts subjected to H2O2 treatment, and reduced H2O2-induced cell death by almost a third compared to control cells. The introduction of CF in culture medium after ischemia showed no influence on Hsp70 synthesis, but led to decrease in GRP78 synthesis, raised after ischemia, to the control level, indicating a resolve of the endoplasmic reticulum (ER) stress and functional normalization of ER.

  3. Homogeneous Inflammatory Gene Profiles Induced in Human Dermal Fibroblasts in Response to the Three Main Species of Borrelia burgdorferi sensu lato

    PubMed Central

    Meddeb, Mariam; Carpentier, Wassila; Cagnard, Nicolas; Nadaud, Sophie; Grillon, Antoine; Barthel, Cathy; De Martino, Sylvie Josiane; Jaulhac, Benoît; Boulanger, Nathalie

    2016-01-01

    In Lyme borreliosis, the skin is the key site for bacterial inoculation by the infected tick and for cutaneous manifestations. We previously showed that different strains of Borrelia burgdorferi sensu stricto isolated from tick and from different clinical stages of the Lyme borreliosis (erythema migrans, and acrodermatitis chronica atrophicans) elicited a very similar transcriptional response in normal human dermal fibroblasts. In this study, using whole transcriptome microarray chips, we aimed to compare the transcriptional response of normal human dermal fibroblasts stimulated by 3 Borrelia burgdorferi sensu lato strains belonging to 3 main pathogenic species (B. afzelii, B. garinii and B. burgdorferi sensu stricto) in order to determine whether “species-related” inflammatory pathways could be identified. The three Borrelia strains tested exhibited similar transcriptional profiles, and no species-specific fingerprint of transcriptional changes in fibroblasts was observed. Conversely, a common core of chemokines/cytokines (CCL2, CXCL1, CXCL2, CXCL6, CXCL10, IL-6, IL-8) and interferon-related genes was stimulated by all the 3 strains. Dermal fibroblasts appear to play a key role in the cutaneous infection with Borrelia, inducing a homogeneous inflammatory response, whichever Borrelia species was involved. PMID:27706261

  4. Transcriptome of Cultured Lung Fibroblasts in Idiopathic Pulmonary Fibrosis: Meta-Analysis of Publically Available Microarray Datasets Reveals Repression of Inflammation and Immunity Pathways.

    PubMed

    Plantier, Laurent; Renaud, Hélène; Respaud, Renaud; Marchand-Adam, Sylvain; Crestani, Bruno

    2016-12-13

    Heritable profibrotic differentiation of lung fibroblasts is a key mechanism of idiopathic pulmonary fibrosis (IPF). Its mechanisms are yet to be fully understood. In this study, individual data from four independent microarray studies comparing the transcriptome of fibroblasts cultured in vitro from normal (total n = 20) and IPF (total n = 20) human lung were compiled for meta-analysis following normalization to z-scores. One hundred and thirteen transcripts were upregulated and 115 were downregulated in IPF fibroblasts using the Significance Analysis of Microrrays algorithm with a false discovery rate of 5%. Downregulated genes were highly enriched for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classes related to inflammation and immunity such as Defense response to virus, Influenza A, tumor necrosis factor (TNF) mediated signaling pathway, interferon-inducible absent in melanoma2 (AIM2) inflammasome as well as Apoptosis. Although upregulated genes were not enriched for any functional class, select factors known to play key roles in lung fibrogenesis were overexpressed in IPF fibroblasts, most notably connective tissue growth factor ( CTGF ) and serum response factor ( SRF ), supporting their role as drivers of IPF. The full data table is available as a supplement.

  5. Different dose rate-dependent responses of human melanoma cells and fibroblasts to low dose fast neutrons.

    PubMed

    Dionet, Claude; Müller-Barthélémy, Melanie; Marceau, Geoffroy; Denis, Jean-Marc; Averbeck, Dietrich; Gueulette, John; Sapin, Vincent; Pereira, Bruno; Tchirkov, Andrei; Chautard, Emmanuel; Verrelle, Pierre

    2016-09-01

    To analyze the dose rate influence in hyper-radiosensitivity (HRS) of human melanoma cells to very low doses of fast neutrons and to compare to the behaviour of normal human skin fibroblasts. We explored different neutron dose rates as well as possible implication of DNA double-strand breaks (DSB), apoptosis, and energy-provider adenosine-triphosphate (ATP) levels during HRS. HRS in melanoma cells appears only at a very low dose rate (VLDR), while a high dose rate (HDR) induces an initial cell-radioresistance (ICRR). HRS does not seem to be due either to DSB or to apoptosis. Both phenomena (HRS and ICRR) appear to be related to ATP availability for triggering cell repair. Fibroblast survival after neutron irradiation is also dose rate-dependent but without HRS. Melanoma cells or fibroblasts exert their own survival behaviour at very low doses of neutrons, suggesting that in some cases there is a differential between cancer and normal cells radiation responses. Only the survival of fibroblasts at HDR fits the linear no-threshold model. This new insight into human cell responses to very low doses of neutrons, concerns natural radiations, surroundings of accelerators, proton-therapy devices, flights at high altitude. Furthermore, ATP inhibitors could increase HRS during high-linear energy transfer (high-LET) irradiation.

  6. Site-Specific Differentiation of Fibroblasts in Normal and Scleroderma Skin

    DTIC Science & Technology

    2008-06-01

    identify the genes involved in 6 out of 10 types of Ehlers – Danlos syndrome , a congenital disease characterized by skin fragility and joint laxity...Similarly, we observed that HOXA13 is induced in toe and foreskin fibroblasts, and mutation of HOXA13 in humans leads to hand–- foot–genital syndrome , a

  7. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression

    PubMed Central

    Liu, Fei; Mih, Justin D.; Shea, Barry S.; Kho, Alvin T.; Sharif, Asma S.; Tager, Andrew M.

    2010-01-01

    Tissue stiffening is a hallmark of fibrotic disorders but has traditionally been regarded as an outcome of fibrosis, not a contributing factor to pathogenesis. In this study, we show that fibrosis induced by bleomycin injury in the murine lung locally increases median tissue stiffness sixfold relative to normal lung parenchyma. Across this pathophysiological stiffness range, cultured lung fibroblasts transition from a surprisingly quiescent state to progressive increases in proliferation and matrix synthesis, accompanied by coordinated decreases in matrix proteolytic gene expression. Increasing matrix stiffness strongly suppresses fibroblast expression of COX-2 (cyclooxygenase-2) and synthesis of prostaglandin E2 (PGE2), an autocrine inhibitor of fibrogenesis. Exogenous PGE2 or an agonist of the prostanoid EP2 receptor completely counteracts the proliferative and matrix synthetic effects caused by increased stiffness. Together, these results demonstrate a dominant role for normal tissue compliance, acting in part through autocrine PGE2, in maintaining fibroblast quiescence and reveal a feedback relationship between matrix stiffening, COX-2 suppression, and fibroblast activation that promotes and amplifies progressive fibrosis. PMID:20733059

  8. Novel signatures of cancer-associated fibroblasts.

    PubMed

    Bozóky, Benedek; Savchenko, Andrii; Csermely, Péter; Korcsmáros, Tamás; Dúl, Zoltán; Pontén, Fredrik; Székely, László; Klein, George

    2013-07-15

    Increasing evidence indicates the importance of the tumor microenvironment, in particular cancer-associated fibroblasts, in cancer development and progression. In our study, we developed a novel, visually based method to identify new immunohistochemical signatures of these fibroblasts. The method employed a protein list based on 759 protein products of genes identified by RNA profiling from our previous study, comparing fibroblasts with differential growth-modulating effect on human cancers cells, and their first neighbors in the human protein interactome. These 2,654 proteins were analyzed in the Human Protein Atlas online database by comparing their immunohistochemical expression patterns in normal versus tumor-associated fibroblasts. Twelve new proteins differentially expressed in cancer-associated fibroblasts were identified (DLG1, BHLHE40, ROCK2, RAB31, AZI2, PKM2, ARHGAP31, ARHGAP26, ITCH, EGLN1, RNF19A and PLOD2), four of them can be connected to the Rho kinase signaling pathway. They were further analyzed in several additional tumor stromata and revealed that the majority showed congruence among the different tumors. Many of them were also positive in normal myofibroblast-like cells. The new signatures can be useful in immunohistochemical analysis of different tumor stromata and may also give us an insight into the pathways activated in them in their true in vivo context. The method itself could be used for other similar analysis to identify proteins expressed in other cell types in tumors and their surrounding microenvironment. Copyright © 2013 UICC.

  9. Decreased Interleukin-20 Expression in Scleroderma Skin Contributes to Cutaneous Fibrosis

    PubMed Central

    Kudo, Hideo; Jinnin, Masatoshi; Asano, Yoshihide; Trojanowska, Maria; Nakayama, Wakana; Inoue, Kuniko; Honda, Noritoshi; Kajihara, Ikko; Makino, Katsunari; Fukushima, Satoshi; Ihn, Hironobu

    2014-01-01

    Objective To clarify the role of interleukin-20 (IL-20) in the regulatory mechanism of extracellular matrix expression and to determine the contribution of IL-20 to the phenotype of systemic sclerosis (SSc). Methods Protein and messenger RNA (mRNA) levels of collagen, Fli-1, IL-20, and IL-20 receptor (IL-20R) were analyzed using polymerase chain reaction (PCR) array, immunoblotting, immunohistochemical staining, enzyme-linked immunosorbent assay, and real-time PCR. Results PCR array revealed that IL-20 decreased gene expression of α2(I) collagen (0.03-fold), Smad3 (0.02-fold), and endoglin (0.05-fold) in cultured normal dermal fibroblasts. Fli-1 protein expression was induced by IL-20 (~2-fold). The inhibition of collagen by IL-20, the induction of Fli-1 by IL-20, and the reduction of Smad3 and endoglin by IL-20 were also observed in SSc fibroblasts. Serum IL-20 levels were reduced only slightly in SSc patients but were significantly decreased in patients with scleroderma spectrum disorders (the prodromal stage of SSc) compared with those in normal subjects (111.3 pg/ml versus 180.4 pg/ml; P < 0.05). On the other hand, IL-20 mRNA expression in SSc skin was decreased compared with that in normal skin (P < 0.05), which may result in the induction of collagen synthesis in SSc dermal fibroblasts. IL-20R was expressed in normal and SSc fibroblasts. Moreover, IL-20 supplementation by injection into the skin reversed skin fibrosis induced by bleomycin in mice (~0.5-fold). Conclusion IL-20 reduces basal collagen transcription via Fli-1 induction, while down-regulation of Smad3 and endoglin may cancel the effect of transforming growth factor β in SSc fibroblasts. To confirm the therapeutic value of IL-20 and IL-20R, their function and expression in vivo should be further studied. PMID:24470401

  10. Decreased interleukin-20 expression in scleroderma skin contributes to cutaneous fibrosis.

    PubMed

    Kudo, Hideo; Jinnin, Masatoshi; Asano, Yoshihide; Trojanowska, Maria; Nakayama, Wakana; Inoue, Kuniko; Honda, Noritoshi; Kajihara, Ikko; Makino, Katsunari; Fukushima, Satoshi; Ihn, Hironobu

    2014-06-01

    To clarify the role of interleukin-20 (IL-20) in the regulatory mechanism of extracellular matrix expression and to determine the contribution of IL-20 to the phenotype of systemic sclerosis (SSc). Protein and messenger RNA (mRNA) levels of collagen, Fli-1, IL-20, and IL-20 receptor (IL-20R) were analyzed using polymerase chain reaction (PCR) array, immunoblotting, immunohistochemical staining, enzyme-linked immunosorbent assay, and real-time PCR. PCR array revealed that IL-20 decreased gene expression of α2(I) collagen (0.03-fold), Smad3 (0.02-fold), and endoglin (0.05-fold) in cultured normal dermal fibroblasts. Fli-1 protein expression was induced by IL-20 (~2-fold). The inhibition of collagen by IL-20, the induction of Fli-1 by IL-20, and the reduction of Smad3 and endoglin by IL-20 were also observed in SSc fibroblasts. Serum IL-20 levels were reduced only slightly in SSc patients but were significantly decreased in patients with scleroderma spectrum disorders (the prodromal stage of SSc) compared with those in normal subjects (111.3 pg/ml versus 180.4 pg/ml; P < 0.05). On the other hand, IL-20 mRNA expression in SSc skin was decreased compared with that in normal skin (P < 0.05), which may result in the induction of collagen synthesis in SSc dermal fibroblasts. IL-20R was expressed in normal and SSc fibroblasts. Moreover, IL-20 supplementation by injection into the skin reversed skin fibrosis induced by bleomycin in mice (~0.5-fold). IL-20 reduces basal collagen transcription via Fli-1 induction, while down-regulation of Smad3 and endoglin may cancel the effect of transforming growth factor β in SSc fibroblasts. To confirm the therapeutic value of IL-20 and IL-20R, their function and expression in vivo should be further studied. Copyright © 2014 by the American College of Rheumatology.

  11. Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Jessup, J. M.; Wolf, D. A.

    1992-01-01

    A new low shear stress microcarrier culture system has been developed at NASA's Johnson Space Center that permits three-dimensional tissue culture. Two established human colon adenocarcinoma cell lines, HT-29, an undifferentiated, and HT-29KM, a stable, moderately differentiated subline of HT-29, were grown in new tissue culture bioreactors called Rotating-Wall Vessels (RWVs). RWVs are used in conjunction with multicellular cocultivation to develop a unique in vitro tissue modeling system. Cells were cultivated on Cytodex-3 microcarrier beads, with and without mixed normal human colonic fibroblasts, which served as the mesenchymal layer. Culture of the tumor lines in the absence of fibroblasts produced spheroidlike growth and minimal differentiation. In contrast, when tumor lines were co-cultivated with normal colonic fibroblasts, initial growth was confined to the fibroblast population until the microcarriers were covered. The tumor cells then commenced proliferation at an accelerated rate, organizing themselves into three-dimensional tissue masses that achieved 1.0- to 1.5-cm diameters. The masses displayed glandular structures, apical and internal glandular microvilli, tight intercellular junctions, desmosomes, cellular polarity, sinusoid development, internalized mucin, and structural organization akin to normal colon crypt development. Differentiated samples were subjected to transmission and scanning electron microscopy and histologic analysis, revealing embryoniclike mesenchymal cells lining the areas around the growth matrices. Necrosis was minimal throughout the tissue masses. These data suggest that the RWV affords a new model for investigation and isolation of growth, regulatory, and structural processes within neoplastic and normal tissue.

  12. Sensitivity of cultured skin fibroblasts from patients with neurofibromatosis to DNA-damaging agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, W.G.; McKenzie, B.; Letourneau, M.A.

    Neurofibromatosis (NF) is an autosomal dominant disorder associated with various constitutional abnormalities as well as a striking predisposition for malignant and nonmalignant neoplasms, both in cells originating in and not originating in the neural crest. We have examined the sensitivity of cultured skin fibroblasts from patients with neurofibromatosis to several types of DNA damage. Fibroblasts in Dulbecco's modified Eagle's medium were plated at 10(2) to 2 X 10(4) cells per 75 cm2 tissue culture plates, and exposed to various doses of gamma radiation (leads to DNA scission), actinomycin D, or mitomycin C. Cells were reincubated for 15 to 40 daysmore » until surviving colonies exhibited greater than 30-50 cells. Plates were then stained with 1% methylene blue and the colonies counted, with surviving fraction determined relative to plating efficiency. Nine skin fibroblast cell strains from normal individuals were studied as controls. One neurofibromatosis (NF) cell strain, SB23, exhibited normal sensitivity to all three DNA-damaging agents studied in early (7-8) and middle (12-13) in vitro passage. Strain GM0622, on the other hand, exhibited normal sensitivity to the three DNA-damaging agents studied at early passage, but showed a significant decrease in survival after exposure to both gamma radiation (D0 = 106 rad) and actinomycin D (D0 = 0.024 mcg/ml) with increasing passage. Strain GM1639 exhibited decreased survival after actinomycin D exposure at early passage (D0 = 0.017 mcg/ml), with normal survival after exposure to gamma radiation and mitomycin C at the same passage.« less

  13. Altered expression of CD63 and exosomes in scleroderma dermal fibroblasts.

    PubMed

    Nakamura, Kayo; Jinnin, Masatoshi; Harada, Miho; Kudo, Hideo; Nakayama, Wakana; Inoue, Kuniko; Ogata, Aki; Kajihara, Ikko; Fukushima, Satoshi; Ihn, Hironobu

    2016-10-01

    Exosomes are small vesicles shed from various cells. They contain proteins, lipids, and nucleic acids, and are regarded as a tool of cell-cell communication. To reveal the putative role of exosomes in systemic sclerosis (SSc), and to elucidate the effect of exosomes on wound healing. The expression of common markers for exosomes (CD63, CD9, and CD81) and type I collagen were examined with real-time PCR, immunohistochemical analysis, ELISA, immunoblotting, and flow cytometry. The effect of serum-derived exosomes on wound healing was tested on full-thickness wounds in the mid-dorsal skin of BALB/c mice. The expression levels of CD63 as well as CD9 and CD81 tended to be increased in SSc dermal fibroblasts compared to normal fibroblasts. Increased exosomes in a cultured media of SSc fibroblasts stimulated the expression levels of type I collagen in normal fibroblasts. As the mechanism, collagen-related microRNA levels in SSc fibroblast-derived exosomes were dysregulated, indicating that both the amount and the content of exosomes were altered in SSc. On the other hand, SSc sera showed significantly decreased exosome levels compared to normal sera. The frequencies of vascular involvements, including skin ulcers or pitting scars, were significantly increased in patients with decreased serum exosome levels. The healing of mice wounds was accelerated by treatment with serum-derived exosomes. Vascular abnormalities in SSc may account for the decreased serum exosome levels by the disturbed transfer of exosomes from the skin tissue to the blood stream. Our study suggests the possibility that SSc patients with vascular involvements have decreased serum exosome levels, which causes the delay of wound healing due to down-regulation of collagen, resulting in higher susceptibility to pitting scars and/or ulcers. Exosome research will lead to a detailed understanding of SSc pathogenesis and new therapeutic approaches. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Low levels of the AhR in chronic obstructive pulmonary disease (COPD)-derived lung cells increases COX-2 protein by altering mRNA stability

    PubMed Central

    Zago, Michela; Sheridan, Jared A.; Traboulsi, Hussein; Hecht, Emelia; Zhang, Yelu; Guerrina, Necola; Matthews, Jason; Nair, Parameswaran; Eidelman, David H.; Hamid, Qutayba

    2017-01-01

    Heightened inflammation, including expression of COX-2, is associated with chronic obstructive pulmonary disease (COPD) pathogenesis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is reduced in COPD-derived lung fibroblasts. The AhR also suppresses COX-2 in response to cigarette smoke, the main risk factor for COPD, by destabilizing the Cox-2 transcript by mechanisms that may involve the regulation of microRNA (miRNA). Whether reduced AhR expression is responsible for heightened COX-2 in COPD is not known. Here, we investigated the expression of COX-2 as well as the expression of miR-146a, a miRNA known to regulate COX-2 levels, in primary lung fibroblasts derived from non-smokers (Normal) and smokers (At Risk) with and without COPD. To confirm the involvement of the AhR, AhR knock-down via siRNA in Normal lung fibroblasts and MLE-12 cells was employed as were A549-AhRko cells. Basal expression of COX-2 protein was higher in COPD lung fibroblasts compared to Normal or Smoker fibroblasts but there was no difference in Cox-2 mRNA. Knockdown of AhR in lung structural cells increased COX-2 protein by stabilizing the Cox-2 transcript. There was less induction of miR-146a in COPD-derived lung fibroblasts but this was not due to the AhR. Instead, we found that RelB, an NF-κB protein, was required for transcriptional induction of both Cox-2 and miR-146a. Therefore, we conclude that the AhR controls COX-2 protein via mRNA stability by a mechanism independent of miR-146a. Low levels of the AhR may therefore contribute to the heightened inflammation common in COPD patients. PMID:28749959

  15. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13–Suppressed Elastin in Airway Fibroblasts in Asthma

    PubMed Central

    Slade, David; Church, Tony D.; Francisco, Dave; Heck, Karissa; Sigmon, R. Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L.; Que, Loretta; Sunday, Mary E.; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert’s resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13–induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13–induced suppression of ELN expression in airway fibroblasts. PMID:26074138

  16. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13-Suppressed Elastin in Airway Fibroblasts in Asthma.

    PubMed

    Ingram, Jennifer L; Slade, David; Church, Tony D; Francisco, Dave; Heck, Karissa; Sigmon, R Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L; Que, Loretta; Sunday, Mary E; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert's resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13-induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13-induced suppression of ELN expression in airway fibroblasts.

  17. Low levels of the AhR in chronic obstructive pulmonary disease (COPD)-derived lung cells increases COX-2 protein by altering mRNA stability.

    PubMed

    Zago, Michela; Sheridan, Jared A; Traboulsi, Hussein; Hecht, Emelia; Zhang, Yelu; Guerrina, Necola; Matthews, Jason; Nair, Parameswaran; Eidelman, David H; Hamid, Qutayba; Baglole, Carolyn J

    2017-01-01

    Heightened inflammation, including expression of COX-2, is associated with chronic obstructive pulmonary disease (COPD) pathogenesis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is reduced in COPD-derived lung fibroblasts. The AhR also suppresses COX-2 in response to cigarette smoke, the main risk factor for COPD, by destabilizing the Cox-2 transcript by mechanisms that may involve the regulation of microRNA (miRNA). Whether reduced AhR expression is responsible for heightened COX-2 in COPD is not known. Here, we investigated the expression of COX-2 as well as the expression of miR-146a, a miRNA known to regulate COX-2 levels, in primary lung fibroblasts derived from non-smokers (Normal) and smokers (At Risk) with and without COPD. To confirm the involvement of the AhR, AhR knock-down via siRNA in Normal lung fibroblasts and MLE-12 cells was employed as were A549-AhRko cells. Basal expression of COX-2 protein was higher in COPD lung fibroblasts compared to Normal or Smoker fibroblasts but there was no difference in Cox-2 mRNA. Knockdown of AhR in lung structural cells increased COX-2 protein by stabilizing the Cox-2 transcript. There was less induction of miR-146a in COPD-derived lung fibroblasts but this was not due to the AhR. Instead, we found that RelB, an NF-κB protein, was required for transcriptional induction of both Cox-2 and miR-146a. Therefore, we conclude that the AhR controls COX-2 protein via mRNA stability by a mechanism independent of miR-146a. Low levels of the AhR may therefore contribute to the heightened inflammation common in COPD patients.

  18. Anti-inflammatory activities of Ophiopogonis Radix on hydrogen peroxide-induced cellular senescence of normal human dermal fibroblasts.

    PubMed

    Kitahiro, Yumi; Koike, Atsushi; Sonoki, Aska; Muto, Mei; Ozaki, Kazuo; Shibano, Makio

    2018-06-30

    Ophiopogonis Radix (Ophiopogon root), which nourishes the yin, has been used in clinical practice to promote fluid secretion and to moisturize the lungs and skin in traditional Chinese and Japanese (Kampo) medicine. To evaluate this traditional medicinal effect, we investigated the anti-chronic inflammatory effect of Radix Ophiopogonis on senescent cells. Conversely, although several phenotypes of Ophiopogon japonicus Ker-Gawler (Liliaceae) are prevalent in Japan and China, we used these Ophiopogon roots by considering them as one crude drug, Ophiopogonis Radix. In this study, it was revealed that there are two chemotypes (Types A and B) in the root of the original plant, O. japonicus. Methylophiopogonanone A (compound 1) and methylophiopogonanone B (compound 2) were isolated as index compounds from Type A and compound 1 and ophiopogonanone A (compound 3) from Type B. In addition, ophiopogonin B (compound 4) was isolated as the main steroidal saponin from both Type A and B. The results indicated that two different methanol extracts (from Types A and B) and the main constituents of O. japonicus (compound 1-4), significantly downregulated the expression of interleukin (IL)-6 and IL-8, which were enhanced by senescent normal human dermal fibroblasts. Moreover, the two different methanol extracts and compounds 1-4 decreased IL-6 production in a strong and concentration-dependent manner by the ELISA method.

  19. Borago officinalis L. attenuates UVB-induced skin photodamage via regulation of AP-1 and Nrf2/ARE pathway in normal human dermal fibroblasts and promotion of collagen synthesis in hairless mice.

    PubMed

    Seo, Seul A; Park, Bom; Hwang, Eunson; Park, Sang-Yong; Yi, Tae-Hoo

    2018-07-01

    Ultraviolet B (UVB) irradiation is regarded as the main cause of skin photodamage. After exposure to UVB irradiation, collagen degradation is accelerated by upregulation of matrix metalloproteinases (MMPs), and collagen synthesis is decreased via downregulation of transforming growth factor (TGF)-β1 signaling. Borago officinalis L. (BO) is an annual herb with medicinal and culinary applications. Although BO has been demonstrated to have antioxidant and anti-inflammatory activities, its potential anti-photoaging effects have not been examined. In this study, we examined the protective effects of BO against skin photodamage in UVB-exposed normal human dermal fibroblasts (NHDFs) in vitro and hairless mice in vivo. BO downregulated the expression of MMP-1, MMP-3, and IL-6, and enhanced TGF-β1 by modulating activator protein (AP-1) and nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling in UVB-irradiated NHDFs. We also found that dietary BO reduced wrinkle formation, epidermal thickness, and erythema in UVB-exposed skin. Moreover, skin hydration and collagen synthesis were improved by dietary BO treatment. Our results demonstrate that BO can be used in functional foods, cosmetic products, and medicines for prevention and treatment of UVB-induced skin photodamage. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Kallikrein-related peptidase 4 induces cancer-associated fibroblast features in prostate-derived stromal cells.

    PubMed

    Kryza, Thomas; Silva, Lakmali M; Bock, Nathalie; Fuhrman-Luck, Ruth A; Stephens, Carson R; Gao, Jin; Samaratunga, Hema; Lawrence, Mitchell G; Hooper, John D; Dong, Ying; Risbridger, Gail P; Clements, Judith A

    2017-10-01

    The reciprocal communication between cancer cells and their microenvironment is critical in cancer progression. Although involvement of cancer-associated fibroblasts (CAF) in cancer progression is long established, the molecular mechanisms leading to differentiation of CAFs from normal fibroblasts are poorly understood. Here, we report that kallikrein-related peptidase-4 (KLK4) promotes CAF differentiation. KLK4 is highly expressed in prostate epithelial cells of premalignant (prostatic intraepithelial neoplasia) and malignant lesions compared to normal prostate epithelia, especially at the peristromal interface. KLK4 induced CAF-like features in the prostate-derived WPMY1 normal stromal cell line, including increased expression of alpha-smooth muscle actin, ESR1 and SFRP1. KLK4 activated protease-activated receptor-1 in WPMY1 cells increasing expression of several factors (FGF1, TAGLN, LOX, IL8, VEGFA) involved in prostate cancer progression. In addition, KLK4 induced WPMY1 cell proliferation and secretome changes, which in turn stimulated HUVEC cell proliferation that could be blocked by a VEGFA antibody. Importantly, the genes dysregulated by KLK4 treatment of WPMY1 cells were also differentially expressed between patient-derived CAFs compared to matched nonmalignant fibroblasts and were further increased by KLK4 treatment. Taken together, we propose that epithelial-derived KLK4 promotes tumour progression by actively promoting CAF differentiation in the prostate stromal microenvironment. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  1. Senescence of immortal human fibroblasts by the introduction of normal human chromosome 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, A.K.; Hubbard, K.; Kaur, G.P.

    1994-06-07

    In these studies the authors show that introduction of a normal human chromosome 6 or 6q can suppress the immortal phenotype of simian virus 40-transformed human fibroblasts (SV/HF). Normal human fibroblasts have a limited life span in culture. Immortal clones of SV/HF displayed nonrandom rearrangements in chromosome 6. Single human chromosomes present in mouse/human monochromosomal hybrids were introduced into SV/HF via microcell fusion and maintained by selection for a dominant selectable marker gpt, previously integrated into the human chromosome. Clones of SV/HF cells bearing chromosome 6 displayed limited potential for cell division and morphological characteristics of senescent cells. The lossmore » of chromosome 6 from the suppressed clones correlated with the reappearance of immortal clones. Introduced chromosome 6 in the senescing cells was distinguished from those of parental cells by analysis for DNA sequences specific for the donor chromosome. The results further show that suppression of immortal phenotype in SV/HF is specific to chromosome 6. Introduction of individual human chromosomes 2, 8, or 19 did not impart cellular senescence in SV/HF. In addition, introduction of chromosome 6 into human glioblastoma cells did not lead to senescence. Based upon these results the authors propose that at least one of the genes (SEN6) for cellular senescence in human fibroblasts is present on the long arm of chromosome 6.« less

  2. Matrix metalloproteinase-9 activates TGF-β and stimulates fibroblast contraction of collagen gels.

    PubMed

    Kobayashi, Tetsu; Kim, HuiJung; Liu, Xiangde; Sugiura, Hisatoshi; Kohyama, Tadashi; Fang, Qiuhong; Wen, Fu-Qiang; Abe, Shinji; Wang, Xingqi; Atkinson, Jeffrey J; Shipley, James M; Senior, Robert M; Rennard, Stephen I

    2014-06-01

    Matrix metalloproteinase-9 (MMP-9) is a matrix-degrading enzyme implicated in many biological processes, including inflammation. It is produced by many cells, including fibroblasts. When cultured in three-dimensional (3D) collagen gels, fibroblasts contract the surrounding matrix, a function that is thought to model the contraction that characterizes both normal wound repair and fibrosis. The current study was designed to evaluate the role of endogenously produced MMP-9 in fibroblast contraction of 3D collagen gels. Fibroblasts from mice lacking expression of MMP-9 and human lung fibroblasts (HFL-1) transfected with MMP-9 small-interfering RNA (siRNA) were used. Fibroblasts were cast into type I collagen gels and floated in culture medium with or without transforming growth factor (TGF)-β1 for 5 days. Gel size was determined daily using an image analysis system. Gels made from MMP-9 siRNA-treated human fibroblasts contracted less than control fibroblasts, as did fibroblasts incubated with a nonspecific MMP inhibitor. Similarly, fibroblasts cultured from MMP-9-deficient mice contracted gels less than did fibroblasts from control mice. Transfection of the MMP-9-deficient murine fibroblasts with a vector expressing murine MMP-9 restored contractile activity to MMP-9-deficient fibroblasts. Inhibition of MMP-9 reduced active TGF-β1 and reduced several TGF-β1-driven responses, including activity of a Smad3 reporter gene and production of fibronectin. Because TGF-β1 also drives fibroblast gel contraction, this suggests the mechanism for MMP-9 regulation of contraction is through the generation of active TGF-β1. This study provides direct evidence that endogenously produced MMP-9 has a role in regulation of tissue contraction of 3D collagen gels mediated by fibroblasts. Copyright © 2014 the American Physiological Society.

  3. Sanfilippo Syndrome: Profound Deficiency of Alpha-Acetylglucosaminidase Activity in Organs and Skin Fibroblasts from Type-B Patients

    PubMed Central

    O'brien, John S.

    1972-01-01

    Cultured skin fibroblasts from two patients with Sanfilippo syndrome, Type B were strikingly deficient in α-acetylglucosaminidase activity (α-2-acetamido-2-deoxy-D-glucoside acetamidodeoxyglucohydrolase, EC 3.2.1.X). A similar deficiency was found in frozen organs from two other patients. A partial deficiency of α-acetylglucosaminidase was found in cultured skin fibroblasts from both parents of one patient. Soluble endogenous inhibitors did not account for the enzyme deficiency. Other lysosomal hydrolases were normal or increased in cultured fibroblasts from patients with this disease. No deficiency of α-acetylglucosaminidase is present in other genetic mucopolysaccharidoses, including Sanfilippo Type A. PMID:4261742

  4. Prostate cancer cells specifically reorganize epithelial cell-fibroblast communication through proteoglycan and junction pathways.

    PubMed

    Suhovskih, Anastasia V; Kashuba, Vladimir I; Klein, George; Grigorieva, Elvira V

    2017-01-02

    Microenvironment and stromal fibroblasts are able to inhibit tumor cell proliferation both through secreted signaling molecules and direct cell-cell interactions but molecular mechanisms of these effects remain unclear. In this study, we investigated a role of cell-cell contact-related molecules (protein ECM components, proteoglycans (PGs) and junction-related molecules) in intercellular communications between the human TERT immortalized fibroblasts (BjTERT fibroblasts) and normal (PNT2) or cancer (LNCaP, PC3, DU145) prostate epithelial cells. It was shown that BjTERT-PNT2 cell coculture resulted in significant decrease of both BjTERT and PNT2 proliferation rates and reorganization of transcriptional activity of cell-cell contact-related genes in both cell types. Immunocytochemical staining revealed redistribution of DCN and LUM in PNT2 cells and significant increase of SDC1 at the intercellular contact zones between BjTERT and PNT2 cells, suggesting active involvement of the PGs in cell-cell contacts and contact inhibition of cell proliferation. Unlike to PNT2 cells, PC3 cells did not respond to BjTERT in terms of PGs expression, moderately increased transcriptional activity of junctions-related genes (especially tight junction) and failed to establish PC3-BjTERT contacts. At the same time, PC3 cells significantly down-regulated junctions-related genes (especially focal adhesions and adherens junctions) in BjTERT fibroblasts resulting in visible preference for homotypic PC3-PC3 over heterotypic PC3-BjTERT contacts and autonomous growth of PC3 clones. Taken together, the results demonstrate that an instructing role of fibroblasts to normal prostate epithelial cells is revoked by cancer cells through deregulation of proteoglycans and junction molecules expression and overall disorganization of fibroblast-cancer cell communication.

  5. The effect of valinomycin in fibroblasts from patients with fatty acid oxidation disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ndukwe Erlingsson, Uzochi Chimdinma; Iacobazzi, Francesco; Department of Basic Medical Sciences, University of Bari, Piazza Giulio Cesare 11, Policlinico, I-70124 Bari

    Highlights: •Valinomycin can cause mitochondrial stress and stimulate fatty acid oxidation. •Cells with VLCAD deficiency fail to increase fatty acid oxidation in response to valinomycin. •Response to valinomycin can help in the diagnosis of VLCAD deficiency. -- Abstract: Disorders of the carnitine cycle and of the beta oxidation spiral impair the ability to obtain energy from fats at time of fasting and stress. This can result in hypoketotic hypoglycemia, cardiomyopathy, cardiac arrhythmia and other chronic medical problems. The in vitro study of fibroblasts from patients with these conditions is impaired by their limited oxidative capacity. Here we evaluate the capacitymore » of valinomycin, a potassium ionophore that increases mitochondrial respiration, to increase the oxidation of fatty acids in cells from patients with inherited fatty acid oxidation defects. The addition of valinomycin to fibroblasts decreased the accumulation of the lipophilic cation tetraphenylphosphonium (TPP{sup +}) at low concentrations due to the dissipation of the mitochondrial membrane potential. At higher doses, valinomycin increased TPP{sup +} accumulation due to the increased potassium permeability of the plasma membrane and subsequent cellular hyperpolarization. The incubation of normal fibroblasts with valinomycin increased [{sup 14}C]-palmitate oxidation (measured as [{sup 14}C]O{sub 2} release) in a dose-dependent manner. By contrast, valinomycin failed to increase palmitate oxidation in fibroblasts from patients with very long chain acyl CoA dehydrogenase (VLCAD) deficiency. This was not observed in fibroblasts from patients heterozygous for this condition. These results indicate that valinomycin can increase fatty acid oxidation in normal fibroblasts and could be useful to differentiate heterozygotes from patients affected with VLCAD deficiency.« less

  6. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudás, József, E-mail: jozsef.dudas@i-med.ac.at; Fullár, Alexandra, E-mail: fullarsz@gmail.com; 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factormore » κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells.« less

  7. Angiogenesis - a crucial step in breast cancer growth, progression and dissemination by Raman imaging

    NASA Astrophysics Data System (ADS)

    Kopeć, Monika; Abramczyk, Halina

    2018-06-01

    Combined micro-Raman imaging and AFM imaging are efficient methods for analyzing human tissue due to their high spatial and spectral resolution as well as sensitivity to subtle chemical, structural and topographical changes. The aim of this study was to determine biochemical composition and mechanical topography around blood vessels in the tumor mass of human breast tissue. Significant alterations of the chemical composition and structural architecture around the blood vessel were found compared to the normal breast tissue. A pronounced increase of collagen-fibroblast-glycocalyx network, as well as enhanced lactic acid, and glycogen activity in patients affected by breast cancer were reported.

  8. Genetics Home Reference: Jackson-Weiss syndrome

    MedlinePlus

    ... People with Jackson-Weiss syndrome usually have normal intelligence and a normal life span. Related Information What ... called fibroblast growth factor receptor 2. Among its multiple functions, this protein signals immature cells to become ...

  9. The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA.

    PubMed Central

    Venema, J; van Hoffen, A; Natarajan, A T; van Zeeland, A A; Mullenders, L H

    1990-01-01

    We have measured removal of pyrimidine dimers in defined DNA sequences in confluent and actively growing normal human and xeroderma pigmentosum complementation group C (XP-C) fibroblasts exposed to 10 J/m2 UV-irradiation. In normal fibroblasts 45% and 90% of the dimers are removed from the transcriptionally active adenosine deaminase (ADA) gene within 4 and 24 hours after irradiation respectively. Equal repair efficiencies are found in fragments located entirely within the transcription unit or partly in the 3' flanking region of the ADA gene. The rate and extent of dimer removal from the dihydrofolate reductase (DHFR) gene is very similar to that of the ADA gene. Repair of the transcriptionally inactive 754 locus is less efficient: 18% and 52% of the dimers are removed within 4 and 24 hours respectively. In spite of the limited overall repair capacity, confluent XP-C fibroblasts efficiently remove dimers from the ADA and DHFR genes: about 90% and 50% within 24 hours respectively. The 3' end of the ADA gene is repaired as efficiently as in normal human fibroblasts, but less efficient repair occurs in DNA fragments located in the DHFR gene and at the 5' end of the ADA gene. Repair of the inactive 754 locus does not exceed the very slow rate of dimer removal from the genome overall. Confluent and actively growing XP-C cells show similar efficiencies of repair of the ADA, DHFR and 754 genes. Our findings suggest the existence of two independently operating pathways directed towards repair of pyrimidine dimers in either active or inactive chromatin. XP-C cells have lost the capacity to repair inactive chromatin, but are still able to repair active chromatin. Images PMID:2308842

  10. Specific glutaryl-CoA dehydrogenating activity is deficient in cultured fibroblasts from glutaric aciduria patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, D.B.; Tanaka, K.

    Patients with glutaric aciduria (GA) have greatly increased urinary excretion of glutarate. Their leukocyte and fibroblast sonicates have deficient ability to produce /sup 14/CO2 from (1,5-/sup 14/C)glutaryl-CoA, an enzymatic process with two sequential reaction steps, dehydrogenation and decarboxylation. In normal individuals, it is not known whether these two reaction steps require one or two enzymes, and currently it is assumed that a single enzyme, glutaryl-CoA dehydrogenase (GDH), carries out these two reactions. Since GA patients also excrete increased amounts of 3-hydroxyglutarate and glutaconate in urine, it was thought that glutaryl-CoA in these patients may be dehydrogenated but not decarboxylated. Wemore » developed a new assay specific for glutaryl-CoA dehydrogenation which measures enzyme-catalyzed tritium release from (2,3,4-3H)glutaryl-CoA, and we studied the glutaryl-CoA dehydrogenating activity in cultured normal human fibroblasts and those from patients with GA. The Michaelis constant (Km) of normal human fibroblast GDH for (2,3,4-3H)glutaryl-CoA was 5.9 microM, and activity was severely inhibited by (methylenecyclopropyl)acetyl-CoA at low concentrations. Sonicates from all five GA fibroblast lines examined showed 2-9% of control glutaryl-CoA dehydrogenating activity, corresponding to the deficient 14CO2 releasing activity. These results indicate either that the conversion of glutaryl-CoA to crotonyl-CoA is accomplished by two enzymes, and patients with GA are deficient in the activity of the first component, or alternatively, that this process is carried out by a single enzyme which is deficient in these patients. It is unlikely that urinary glutaconate and 3-hydroxyglutarate in GA patients are produced via GDH.« less

  11. FANCD2 monoubiquitination and activation by hexavalent chromium [Cr(VI)] exposure

    PubMed Central

    Vilcheck, Susan K.; Ceryak, Susan; O’Brien, Travis J.; Patierno, Steven R.

    2007-01-01

    Fanconi anemia (FA) is a rare autosomal recessive disorder characterized by congenital abnormalities, progressive bone marrow failure, and cancer susceptibility. FA cells are hypersensitive to DNA crosslinking agents. FA is a genetically heterogeneous disease with at least 11 complementation groups. The eight cloned FA proteins interact in a common pathway with established DNA-damage-response proteins, including BRCA1 and ATM. Six FA proteins (A, C, E, F, G, and L) regulate the monoubiquitination of FANCD2 after DNA damage by crosslinking agents, which targets FANCD2 to BRCA1 nuclear foci containing BRCA2 (FANCD1) and RAD51. Some forms of hexavalent chromium [Cr(VI)] are implicated as respiratory carcinogens and induce several types of DNA lesions, including DNA interstrand crosslinks. We have shown that FA-A fibroblasts are hypersensitive to both Cr(VI)-induced apoptosis and clonogenic lethality. Here we show that Cr(VI) treatment induced monoubiquitination of FANCD2 in normal human fibroblasts, providing the first molecular evidence of Cr(VI)-induced activation of the FA pathway. FA-A fibroblasts demonstrated no FANCD2 monoubiquitination, in keeping with the requirement of FA-A for this modification. We also found that Cr(VI) treatment induced significantly more S-phase-dependent DNA double strand breaks (DSBs), as measured by γ-H2AX expression, in FA-A fibroblasts compared to normal cells. However, and notably, DSBs were repaired equally in both normal and FA-A fibroblasts during recovery from Cr(VI) treatment. While previous research on FA has defined the genetic causes of this disease, it is critical in terms of individual risk assessment to address how cells from FA patients respond to genotoxic insult. PMID:16893675

  12. On the mechanism for PPAR agonists to enhance ABCA1 gene expression

    PubMed Central

    Ogata, Masaki; Tsujita, Maki; Hossain, Mohammad Anwar; Akita, Nobukatsu; Gonzalez, Frank J.; Staels, Bart; Suzuki, Shogo; Fukutomi, Tatsuya; Kimura, Genjiro; Yokoyama, Shinji

    2009-01-01

    Expression of ATP binding cassette transporter A1 (ABCA1), a major regulator of high density lipoprotein (HDL) biogenesis, is known to be up-regulated by the transcription factor liver X receptor (LXR) α, and expression is further enhanced by activation of the peroxisome proliferator activated receptors (PPARs). We investigated this complex regulatory network using specific PPAR agonists: four fibrates (fenofibrate, bezafibrate, gemfibrozil and LY518674), a PPAR δ agonist (GW501516) and a PPAR γ agonist (pioglitazone). All of these compounds increased the expression of LXRs, PPARs and ABCA1 mRNAs, and associated apoA-I-mediated lipid release in THP-1 macrophage, WI38 fibroblast and mouse fibroblast. When mouse fibroblasts lacking expression of PPAR α were examined, the effects of fenofibrate and LY518674 were markedly diminished while induction by other ligands were retained. The PPAR α promoter was activated by all of these compounds in an LXR α-dependent manner, and partially in a PPAR α-dependent manner, in mouse fibroblast. The LXR responsive element (LXRE)-luciferase activity was enhanced by all the compounds in an LXR α-dependent manner in mouse fibroblast. This activation was exclusively PPAR α-dependent by fenofibrate and LY518674, but nonexclusively by the others. We conclude that PPARs and LXRs are involved in the regulation of ABCA1 expression and HDL biogenesis in a cooperative signal transduction pathway. PMID:19201410

  13. Vegetable peptones increase production of type I collagen in human fibroblasts by inducing the RSK-CCAAT/enhancer binding protein-β phosphorylation pathway.

    PubMed

    Jung, Eunsun; Cho, Jae Youl; Park, Deokhoon; Kim, Min Hee; Park, Beomseok; Lee, Sang Yeol; Lee, Jongsung

    2015-02-01

    Skin aging appears to be principally attributed to a decrease in type I collagen level and the regeneration ability of dermal fibroblasts. We hypothesized that vegetable peptones promote cell proliferation and production of type I collagen in human dermal fibroblasts. Therefore, we investigated the effects of vegetable peptones on cell proliferation and type I collagen production and their possible mechanisms in human dermal fibroblasts. Vegetable peptones significantly promoted cell proliferation in a concentration-dependent manner. In addition, the human luciferase type I collagen α2 promoter and type I procollagen synthesis assays showed that the vegetable peptones induced type I procollagen production by activating the type I collagen α2 promoter. Moreover, the vegetable peptones activated p90 ribosomal s6 kinase, which was mediated by activating the Raf-p44/42 mitogen-activated protein kinase signaling pathway. Furthermore, the vegetable peptone-induced increase in cell proliferation and type I collagen production decreased upon treatment with the ERK inhibitor PD98059. Taken together, these findings suggest that increased proliferation of human dermal fibroblasts and enhanced production of type I collagen by vegetable peptones occur primarily by inducing the p90 ribosomal s6 kinase-CCAAT/enhancer binding protein β phosphorylation pathway, which is mediated by activating Raf-ERK signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. TNF-alpha and endotoxin increase hypoxia-induced VEGF production by cultured human nasal fibroblasts in synergistic fashion.

    PubMed

    Sun, Dong; Matsune, Shoji; Ohori, Junichiro; Fukuiwa, Tatsuya; Ushikai, Masato; Kurono, Yuichi

    2005-09-01

    Vascular endothelial growth factor (VEGF) promotes angiogenesis and is associated with the invasion and metastasis of malignant tumors. It enhances vascular permeability and is expressed in inflammatory nasal as well as middle-ear mucosa. As the mechanism of VEGF induction during chronic inflammation, such as chronic paranasal sinusitis (CPS) remains to be clarified, we studied the factors regulating the production of VEGF in cultured human nasal fibroblasts and discussed the role of VEGF in the pathogenesis of CPS. We used ELISA to quantify VEGF levels in paranasal sinus effusions, nasal secretions, and serum from patients with CPS. In addition, we cultured human nasal fibroblasts isolated from nasal polyps of CPS patients and studied the effects of hypoxia, TNF-alpha, and endotoxin on their production of VEGF using ELISA and PCR. The VEGF concentration was significantly higher in paranasal sinus effusions than in nasal secretions and serum. Nasal fibroblasts produced high levels of VEGF, when cultured under hypoxic condition and this production was remarkably enhanced in the presence of TNF-alpha or endotoxin. VEGF is locally produced in paranasal sinuses as well as nasal mucosa and its production is increased in patients with CPS. Hypoxia is associated with the production of VEGF by nasal fibroblasts and TNF-alpha and endotoxin may act synergistically to enhance VEGF production in paranasal sinuses under hypoxic condition.

  15. Stromal fibroblasts are associated with collagen IV in scar tissues of alkali-burned and lacerated corneas.

    PubMed

    Ishizaki, M; Shimoda, M; Wakamatsu, K; Ogro, T; Yamanaka, N; Kao, C W; Kao, W W

    1997-04-01

    Corneal wound healing frequently leads to the formation of opaque scar tissue. We examined whether stromal fibroblastic cells of injured corneas express collagen IV and contributes to the formation of a basal lamina-like structure. Rabbits were anesthetized, and central corneal alkali burn (8 mm in diameter; 1 M NaOH, 1 min) or laceration (8 mm long) were produced. The injured corneas, which had healed for 1, 7, 21 and 45 days, were subjected to histological and immunohistochemical studies with goat anti-collagen IV antibodies, using light and electron microscopy, and in situ hybridization with an antisense digoxigenin-labeled riboprobe of collagen alpha 1(IV) mRNA. For comparison, twenty-day-old fetal corneas were subjected to immunohistochemical study and transmission electron microscopy (TEM). TEM examinations revealed that the stromal collagenous matrix was organized in orthogonal lamellae during corneal development, whereas that of alkali-burned cornea, which had healed for 3 weeks, was disorganized. The stroma of twenty-day-old fetal cornea was not labeled by the anti-collagen IV antibodies. In contrast, one week after injury, specific collagen IV immunostaining was detected in the injured stroma. As the healing proceeded (21-45 days), the antibodies reacted with fibroblastic cells and the extracellular matrix of scar tissues located in the anterior portion of alkali-burned corneas, as well as the posterior portion of lacerated corneas. The middle portion of the stromal tissues was weakly labeled by the anti-collagen IV antibodies with the exception of the blood vessel wall. Immuno-electron microscopic study showed that collagen IV and fibronectin were closely associated with the fibroblastic cells. In situ hybridization demonstrated that epithelial and endothelial cells and fibroblastic cells in the wounded corneal stroma and retro-corneal membrane expressed alpha 1(IV) mRNA, whereas in normal corneas the expression of alpha 1(IV) mRNA was limited to epithelial and endothelial cells. The enhanced expression of collagen IV by the fibroblastic cells in the stroma of injured corneas is consistent with the notion that they may contribute to the formation of basal lamina-like structures in injured corneas.

  16. L1 Antibodies Block Lymph Node Fibroblastic Reticular Matrix Remodeling In Vivo

    PubMed Central

    Di Sciullo, Gino; Donahue, Tim; Schachner, Melitta; Bogen, Steven A.

    1998-01-01

    L1 is an immunoglobulin superfamily adhesion molecule highly expressed on neurons and involved in cell motility, neurite outgrowth, axon fasciculation, myelination, and synaptic plasticity. L1 is also expressed by nonneural cells, but its function outside of the nervous system has not been studied extensively. We find that administration of an L1 monoclonal antibody in vivo disrupts the normal remodeling of lymph node reticular matrix during an immune response. Ultrastructural examination reveals that reticular fibroblasts in mice treated with L1 monoclonal antibodies fail to spread and envelop collagen fibers with their cellular processes. The induced defect in the remodeling of the fibroblastic reticular system results in the loss of normal nodal architecture, collapsed cortical sinusoids, and macrophage accumulation in malformed sinuses. Surprisingly, such profound architectural abnormalities have no detectable effects on the primary immune response to protein antigens. PMID:9625755

  17. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes

    PubMed Central

    Zhou, Huanyu; Dickson, Matthew E.; Kim, Min Soo; Bassel-Duby, Rhonda; Olson, Eric N.

    2015-01-01

    Conversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function after myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors [Gata4, Hand2, Mef2c, and Tbx5 (GHMT)], we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process in three different types of fibroblasts (mouse embryo, adult cardiac, and tail tip). Approximately 50% of reprogrammed mouse embryo fibroblasts displayed spontaneous beating after 3 wk of induction by Akt plus GHMT. Furthermore, addition of Akt1 to GHMT evoked a more mature cardiac phenotype for iCMs, as seen by enhanced polynucleation, cellular hypertrophy, gene expression, and metabolic reprogramming. Insulin-like growth factor 1 (IGF1) and phosphoinositol 3-kinase (PI3K) acted upstream of Akt whereas the mitochondrial target of rapamycin complex 1 (mTORC1) and forkhead box o3 (Foxo3a) acted downstream of Akt to influence fibroblast-to-cardiomyocyte reprogramming. These findings provide insights into the molecular basis of cardiac reprogramming and represent an important step toward further application of this technique. PMID:26354121

  18. Effects of cranberry components on human aggressive periodontitis gingival fibroblasts.

    PubMed

    Tipton, D A; Babu, J P; Dabbous, M Kh

    2013-08-01

    Aggressive periodontitis (AgP) causes rapid periodontal breakdown involving AgP gingival fibroblast production of cytokines [i.e. interleukin (IL)-6, a bone metabolism regulator], and matrix metalloproteinase (MMP)-3. Lipopolysaccharide upregulates fibroblast IL-6 and MMP-3, via transcription factors (i.e. NF-κB). Cranberry (Vaccinium macrocarpon) inhibits lipopolysaccharide-stimulated macrophage and normal gingival fibroblast activities, but little is known of its effects on AgP fibroblasts. Objectives of this study are to use AgP fibroblasts, to determine cytotoxicity of cranberry components or periodontopathogen (Fusobacterium nucleatum, Porphyromonas gingivalis) lipopolysaccharide ± cranberry components, and effects of cranberry components on lipopolysaccharide-stimulated NF-κB activation and IL-6 and MMP-3 production. AgP fibroblasts were incubated ≤ 6 d with high molecular weight non-dialyzable material (NDM) (derived from cranberry juice (1-500 μg/mL) or lipopolysaccharide (1 μg/mL) ± NDM. Membrane damage and viability were assessed by enzyme activity released into cell supernatants and activity of a mitochondrial enzyme, respectively. Secreted IL-6 and MMP-3 were measured by ELISA. NF-κB p65 was measured via binding to an oligonucleotide containing the NF-κB consensus site. Data were analyzed using analysis of variance and Scheffe's F procedure for post hoc comparisons. Short-term exposure to NDM, or lipopolysaccharide ± NDM caused no membrane damage. NDM (≤ 100 μg/mL) or lipopolysaccharide ± NDM had no effect on viability ≤ 7 d exposure. NDM (50 μg/mL) inhibited lipopolysaccharide-stimulated p65 (P ≤ 0.003) and constitutive or lipopolysaccharide-stimulated MMP-3 (P ≤ 0.02). NDM increased AgP fibroblast constitutive or lipopolysaccharide-stimulated IL-6 (P ≤ 0.0001), but inhibited normal human gingival fibroblast IL-6 (P ≤ 0.01). Lack of toxicity of low NDM concentrations, and its inhibition of NF-κB and MMP-3, suggest that cranberry components may regulate AgP fibroblast inflammatory responses. Distinct effects of NDM on AgP and gingival fibroblast production of IL-6 (which can have both positive and negative effects on bone metabolism) may reflect phenotypic differences in IL-6 regulation in the two cell types. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis.

    PubMed

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Inhibitory effects of trehalose on fibroblast proliferation and implications for ocular surgery.

    PubMed

    Takeuchi, Kimio; Nakazawa, Mitsuru; Ebina, Yuichi; Sato, Kota; Metoki, Tomomi; Miyagawa, Yasuhiro; Ito, Tadashi

    2010-11-01

    Trehalose is a disaccharide which plays an important role in preserving cells from completely dehydrated circumstances. In this study, we investigated effects of trehalose on proliferative activity of fibroblasts and epithelial cells both in vitro and in vivo. As in vitro assessment, normal human dermal fibroblasts and normal human epidermal keratinocytes were cultured in media containing various concentrations of trehalose. Growth activities of cells were evaluated with MTT assay and diff-quick™ staining. Expressions of vimentin and α smooth muscle actin (α-SMA) changed by trehalose were semiquantitatively measured by Western blot. As an in vivo study, 5% or 10% trehalose was topically instilled onto rabbit eyes after simple conjunctival incision or trabeculectomy. Condition of the surgical wound was evaluated by morphologically and immunohistochemically using isolectin B4 and antibodies specific for vimentin and α-SMA. Intraocular pressures (IOPs) after trabeculectomy were compared between eyes treated with trehalose and 0.04% mitomycin C (MMC). Results obtained by in vitro experiments showed that growth activities of cultured fibroblasts and keratinocytes were inhibited by trehalose in a dose-dependent manner. Fibroblasts were strongly inhibited by trehalose concentrations ≧ 5% of trehalose, whereas keratinocytes were less inhibited compared to fibroblasts. Expressions of vimentin and α-SMA were reduced by trehalose. With in vivo experiments, postoperative application of trehalose resulted in less firm adhesion between conjunctiva and sclera compared to controls. Immunohistochemical studies showed reduced staining of isolectin B4, vimentin and α-SMA in conjunctival wounds treated by topical trehalose. Also, after trabeculectomy, IOP remained in a low range during instillation of topical trehalose solution. We concluded that trehalose has inhibitory effects on proliferation of fibroblasts and vascular tissues, partially due to inhibition of transformation of fibroblasts into myofibroblasts in wound tissues. The present results imply that trehalose can be a potential agent for preventing postoperative fibrous scar formation after ocular surgery such as glaucoma filtration surgery. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Abnormal intermediate filament organization alters mitochondrial motility in giant axonal neuropathy fibroblasts

    PubMed Central

    Lowery, Jason; Jain, Nikhil; Kuczmarski, Edward R.; Mahammad, Saleemulla; Goldman, Anne; Gelfand, Vladimir I.; Opal, Puneet; Goldman, Robert D.

    2016-01-01

    Giant axonal neuropathy (GAN) is a rare disease caused by mutations in the GAN gene, which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types, including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IFs. In this study, we show that both the distribution and motility of mitochondria are altered in GAN fibroblasts and this is attributable to their association with vimentin IF aggregates and bundles. Transient expression of wild-type gigaxonin in GAN fibroblasts reduces the number of IF aggregates and bundles, restoring mitochondrial motility. Conversely, silencing the expression of gigaxonin in control fibroblasts leads to changes in IF organization similar to that of GAN patient fibroblasts and a coincident loss of mitochondrial motility. The inhibition of mitochondrial motility in GAN fibroblasts is not due to a global inhibition of organelle translocation, as lysosome motility is normal. Our findings demonstrate that it is the pathological changes in IF organization that cause the loss of mitochondrial motility. PMID:26700320

  2. Effects on micronuclei formation of 60-Hz electromagnetic field exposure with ionizing radiation, hydrogen peroxide, or c-Myc overexpression.

    PubMed

    Jin, Yeung Bae; Kang, Ga-Young; Lee, Jae Seon; Choi, Jong-Il; Lee, Ju-Woon; Hong, Seung-Cheol; Myung, Sung Ho; Lee, Yun-Sil

    2012-04-01

    Epidemiological studies have demonstrated a possible correlation between exposure to extremely low-frequency magnetic fields (ELF-MF) and cancer. However, this correlation has yet to be definitively confirmed by epidemiological studies. The principal objective of this study was to assess the effects of 60 Hz magnetic fields in a normal cell line system, and particularly in combination with various external factors, via micronucleus (MN) assays. Mouse embryonic fibroblast NIH3T3 cells and human lung fibroblast WI-38 cells were exposed for 4 h to a 60 Hz, 1 mT uniform magnetic field with or without ionizing radiation (IR, 2 Gy), H(2)O(2) (100 μM) and cellular myelocytomatosis oncogene (c-Myc) activation. The results obtained showed no significant differences between the cells exposed to ELF-MF alone and the unexposed cells. Moreover, no synergistic effects were observed when ELF-MF was combined with IR, H(2)O(2), and c-Myc activation. Our results demonstrate that ELF-MF did not enhance MN frequency by IR, H(2)O(2) and c-Myc activation.

  3. Bovine protoporphyria: documentation of autosomal recessive inheritance and comparison with the human disease through measurement of heme synthase activity.

    PubMed Central

    Bloomer, J R; Morton, K O; Reuter, R J; Ruth, G R

    1982-01-01

    Protoporphyria is an autosomal dominant disease in man in which protoporphyrin accumulated because of a defect in heme synthase (ferrochelatase) activity. A disease has been described in cattle that has the same manifestations as does the human disease. We measured heme synthase activity in sonicates of cultured skin fibroblasts and whole liver homogenates from animals with protoporphyria, their unaffected parents, and normal cattle in order to examine the mode of inheritance and compare it with human protoporphyria. The mean activity (+/- SEM) in fibroblasts from the three groups was 2.0 +/- 0.4, 47 +/- 12, and 149 +/- 10 pmol heme formed/mg protein per hr, respectively, consistent with autosomal recessive inheritance. Similarly, the levels of heme synthase activity in livers of the parents were intermediate to those of normal animals and of animals with protoporphyria. When compared with normal human fibroblasts and liver, the specific activity of heme synthase in normal bovine tissue was significantly higher. These studies indicate that manifestations of protoporphyria do not occur in cattle unless the animal is homozygous for the gene defect, whereas in humans, the heterozygous condition is sufficient. This is probably because the specific activity of heme synthase in cells of heterozygous animals is not reduced to a level that significantly alters heme metabolism. PMID:7072720

  4. Functional characterization of TRAP1-like protein involved in modulating fibrotic processes mediated by TGF-β/Smad signaling in hypertrophic scar fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X.; Department of Pediatric Surgery, Shanghai Children’s Medical Center, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127; Chu, J.

    2015-03-15

    The transforming growth factor-β1 (TGF-β)-mediated signaling pathway is believed to be closely associated with wound healing and scar formation, in which TRAP1-like protein (TLP) plays a role in regulating the balance of Smad2 vs. Smad3 signaling. Our previous study revealed the relation between TLP and collagen synthesis in normal human skin fibroblasts. Here, we present a detailed analysis of the effects of TLP on the process of hypertrophic scar formation and contraction. To explore and verify a contribution of TLP to the pathological mechanism of hypertrophic scar fibroblasts (HSFb), we constructed lentiviral vectors that either overexpressed TLP or encoded smallmore » hairpin RNAs (shRNAs) targeting TLP, then we transfected them into HSFb. TLP knockdown in HSFb resulted in reduced levels of cell contraction, type I and type III collagen mRNA transcripts and protein expression, and higher levels of fibronectin (FN) compared to control groups. In addition, knockdown of TLP promoted the phosphorylation of Smad3 but repressed Smad2 and Erk-1/2 phosphorylation in human hypertrophic scar fibroblasts compared to control groups. The reduction of TLP did not interfere with HSF proliferative ability, but exogenous TLP cooperated with TGF-β1 to increase cell viability. Together, our findings demonstrate evidence for a contribution of TLP expression in hypertrophic scar formation and contraction. - Highlights: • TLP acted different roles in the activating of Smad2- and Smad3-dependent signaling. • TLP may induce TGF-β1-mediated collagens expression through Smad signalings and MAPK signaling. • TLP may enhance HSFb contraction by increasing the expression of α-SMA. • Exogenous TLP can cooperate with TGF-β1 to increase cell viability.« less

  5. MiR-124 down-regulation is critical for cancer associated fibroblasts-enhanced tumor growth of oral carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xia, E-mail: dentistlx@163.com; Fan, Qinqiao; Li, Jinyun

    Cancer associated fibroblasts (CAFs) are known to be involved in initiation, progression and metastasis of various cancers. However, the molecular mechanism of how CAFs affects the biological function of oral cancer (OC) has not been fully-addressed. In this study, we demonstrated that miR-124 was downregulated in oral CAFs and oral cancer cells (OCCs) when compared with matched normal fibroblasts (NFs). Hypermethylation in the promoter region of miR-124 genes was accounted for its downregulation. Interestingly, CAFs but not NFs exerted promotion effect on OCCs cell proliferation, migration and tumor growth in CAFs/NFs-OCCs co-culture. Furthermore, we identified Chemokine (C-C motif) ligand 2more » (CCL2) and Interleukin 8 (IL-8) as two direct targets of miR-124. Over-expression of miR-124 in CAFs-OCCs co-culture abrogated CAFs-promoted OCCs cell growth and migration, and this inhibitory effect can be rescued by addition of CCL2 and IL-8. Finally, we showed that restoration of miR-124 expression by lentiviral infection or formulated miR-124 injection inhibited oral tumor growth in vivo suggesting miR-124 rescue could be a potential rationale for therapeutic applications in oral cancer in the future. - Highlights: • miR-124 was downregulated in oral cancer cells and cancer associated fibroblasts. • Hypermethylation in the promoter region was accounted for miR-124 downregulation. • CCL2 and IL-8 are two direct targets of miR-124. • miR-124 rescue could be a potential rationale for oral cancer therapy.« less

  6. Silibinin enhances the repair of ultraviolet B-induced DNA damage by activating p53-dependent nucleotide excision repair mechanism in human dermal fibroblasts

    PubMed Central

    Guillermo-Lagae, Ruth; Deep, Gagan; Ting, Harold; Agarwal, Chapla; Agarwal, Rajesh

    2015-01-01

    Ultraviolet radiation B (UVB) is the main cause of DNA damage in epidermal cells; and if not repaired, this DNA damage leads to skin cancer. In earlier studies, we have reported that natural flavonolignan silibinin exerts strong chemopreventive efficacy against UVB-induced skin damage and carcinogenesis; however mechanistic studies are still being actively pursued. Here, we investigated the role of nucleotide excision repair (NER) pathway in silibinin's efficacy to repair UVB-induced DNA damage. Normal human dermal fibroblasts (NHDFs) were exposed to UVB (1 mJ/cm2) with pre- or post- silibinin (100 μM) treatment, and cyclobutane pyrimidine dimers (CPDs) formation/repair was measured. Results showed that post-UVB silibinin treatment accelerates DNA repair via activating the NER pathway including the expression of XPA (xeroderma pigmentosum complementation group A), XPB, XPC, and XPG. In UVB exposed fibroblasts, silibinin treatment also increased p53 and GADD45α expression; the key regulators of the NER pathway and DNA repair. Consistently, post-UVB silibinin treatment increased the mRNA transcripts of XPA and GADD45α. Importantly, silibinin showed no effect on UVB-induced DNA damage repair in XPA- and XPB-deficient human dermal fibroblasts suggesting their key role in silibinin-mediated DNA damage repair. Moreover, in the presence of pifithrin-α, an inhibitor of p53, the DNA repair efficacy of silibinin was compromised associated with a reduction in XPA and GADD45α transcripts. Together, these findings suggest that silibinin's efficacy against UVB-induced photodamage is primarily by inhibiting NER and p53; and these findings further support silibinin's usage as a potential inexpensive, effective, and non-toxic agent for skin cancer chemoprevention. PMID:26447614

  7. Silibinin enhances the repair of ultraviolet B-induced DNA damage by activating p53-dependent nucleotide excision repair mechanism in human dermal fibroblasts.

    PubMed

    Guillermo-Lagae, Ruth; Deep, Gagan; Ting, Harold; Agarwal, Chapla; Agarwal, Rajesh

    2015-11-24

    Ultraviolet radiation B (UVB) is the main cause of DNA damage in epidermal cells; and if not repaired, this DNA damage leads to skin cancer. In earlier studies, we have reported that natural flavonolignan silibinin exerts strong chemopreventive efficacy against UVB-induced skin damage and carcinogenesis; however mechanistic studies are still being actively pursued. Here, we investigated the role of nucleotide excision repair (NER) pathway in silibinin's efficacy to repair UVB-induced DNA damage. Normal human dermal fibroblasts (NHDFs) were exposed to UVB (1 mJ/cm2) with pre- or post- silibinin (100 μM) treatment, and cyclobutane pyrimidine dimers (CPDs) formation/repair was measured. Results showed that post-UVB silibinin treatment accelerates DNA repair via activating the NER pathway including the expression of XPA (xeroderma pigmentosum complementation group A), XPB, XPC, and XPG. In UVB exposed fibroblasts, silibinin treatment also increased p53 and GADD45α expression; the key regulators of the NER pathway and DNA repair. Consistently, post-UVB silibinin treatment increased the mRNA transcripts of XPA and GADD45α. Importantly, silibinin showed no effect on UVB-induced DNA damage repair in XPA- and XPB-deficient human dermal fibroblasts suggesting their key role in silibinin-mediated DNA damage repair. Moreover, in the presence of pifithrin-α, an inhibitor of p53, the DNA repair efficacy of silibinin was compromised associated with a reduction in XPA and GADD45α transcripts. Together, these findings suggest that silibinin's efficacy against UVB-induced photodamage is primarily by inhibiting NER and p53; and these findings further support silibinin's usage as a potential inexpensive, effective, and non-toxic agent for skin cancer chemoprevention.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horie, Masafumi; Saito, Akira, E-mail: asaitou-tky@umin.ac.jp; Mikami, Yu

    Highlights: Black-Right-Pointing-Pointer We established three patient-paired sets of CAFs and NFs. Black-Right-Pointing-Pointer CAFs and NFs were analyzed using three-dimensional co-culture experiments. Black-Right-Pointing-Pointer CAFs clearly enhanced collagen gel contraction. Black-Right-Pointing-Pointer CAFs showed higher {alpha}-SMA expression than NFs. Black-Right-Pointing-Pointer CAFs were implicated in invasion and differentiation of lung cancer cells. -- Abstract: Lung cancer is the most common cause of cancer-related death worldwide. Stromal cancer-associated fibroblasts (CAFs) play crucial roles in carcinogenesis, proliferation, invasion, and metastasis of non-small cell lung carcinoma, and targeting of CAFs could be a novel strategy for cancer treatment. However, the characteristics of human CAFs still remain tomore » be better defined. In this study, we established patient-matched CAFs and normal fibroblasts (NFs), from tumoral and non-tumoral portions of resected lung tissue from lung cancer patients. CAFs showed higher {alpha}-smooth muscle actin ({alpha}-SMA) expression than NFs, and CAFs clearly enhanced collagen gel contraction. Furthermore, we employed three-dimensional co-culture assay with A549 lung cancer cells, where CAFs were more potent in inducing collagen gel contraction. Hematoxylin and eosin staining of co-cultured collagen gel revealed that CAFs had the potential to increase invasion of A549 cells compared to NFs. These observations provide evidence that lung CAFs have the tumor-promoting capacity distinct from NFs.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Słonina, Dorota, E-mail: z5slonin@cyfronet.pl; Biesaga, Beata; Janecka, Anna

    Purpose: In our previous study, using the micronucleus assay, a low-dose hyper-radiosensitivity (HRS)-like phenomenon was observed for normal fibroblasts of 2 of the 40 cancer patients investigated. In this article we report, for the first time, the survival response of primary fibroblasts from 25 of these patients to low-dose irradiation and answer the question regarding the effect of G2-phase enrichment on HRS elicitation. Methods and Materials: The clonogenic survival of asynchronous as well as G2-phase enriched fibroblast populations was measured. Separation of G2-phase cells and precise cell counting was performed using a fluorescence-activated cell sorter. Sorted and plated cells weremore » irradiated with single doses (0.1-4 Gy) of 6-MV x-rays. For each patient, at least 4 independent experiments were performed, and the induced-repair model was fitted over the whole data set to confirm the presence of HRS effect. Results: The HRS response was demonstrated for the asynchronous and G2-phase enriched cell populations of 4 patients. For the rest of patients, HRS was not defined in either of the 2 fibroblast populations. Thus, G2-phase enrichment had no effect on HRS elicitation. Conclusions: The fact that low-dose hyper-radiosensitivity is not a common effect in normal human fibroblasts implies that HRS may be of little consequence in late-responding connective tissues with regard to radiation fibrosis.« less

  10. SDF-1 in Mammary Fibroblasts of Bovine with Mastitis Induces EMT and Inflammatory Response of Epithelial Cells.

    PubMed

    He, Guiliang; Ma, Mengru; Yang, Wei; Wang, Hao; Zhang, Yong; Gao, Ming-Qing

    2017-01-01

    Fibroblasts constitute the majority of the stromal cells within bovine mammary gland, yet the functional contributions of these cells to mastitis and fibrosis and the mechanism are poorly understood. In this study, we demonstrate that inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis had different expression pattern regarding to several extracellular matrix (ECM) proteins, chemokines and cytokines compared to normal fibroblasts (NFs) from dairy cows during lactation. The INFs induced epithelial-mesenchymal transition (EMT) and inflammatory responses of mammary epithelial cells in a vitro co-culture model. These functional contributions of INFs to normal epithelial cells were mediated through their ability to secrete stromal cell-derived factor 1 (SDF-1). SDF-1 was highly secreted/expressed by INFs, lipopolysaccharide (LPS) -treated NFs, lipoteichoic acid (LTA) -treated NFs, as well as mastitic tissue compared to their counterparts. Exogenous SDF-1 promoted EMT on epithelial cells through activating NF-κB pathway, induced inflammation response and inhibited proliferation of epithelial cells. In addition, SDF-1 was able to induce mastitis and slight fibrosis of mouse mammary gland, which was attenuated by a specific inhibitor of the receptor of SDF-1. Our findings indicate that stromal fibroblasts within mammary glands with mastitis contribute to EMT and inflammatory responses of epithelial cells through the secretion of SDF-1, which could result in the inflammation spread and fibrosis within mammary gland.

  11. Comparison of primary human fibroblasts and keratinocytes with immortalized cell lines regarding their sensitivity to sodium dodecyl sulfate in a neutral red uptake cytotoxicity assay.

    PubMed

    Olschläger, Veronika; Schrader, Andreas; Hockertz, Stefan

    2009-01-01

    Cell lines present a valuable tool for in vitro assessment of skin damage caused by application of cosmeticals or pharmaceuticals. They form a reproducible test system under controllable test conditions and, in many cases, can be used as alternatives to animal testing in order to assess the compatibility of drugs or cosmetics and human skin. Yet, it can not necessarily be assumed that the behavior of cultured cells, when treated with different substances, is exactly consistent with the behavior of cells being part of a live organism. Becoming immortal, cells exhibit changes in genotype and/or phenotype, possibly resulting in modified reactions to external influences. Therefore, to obtain results close to in vivo studies, it seems apparent to use primary cells for testing that have not yet undergone any modifications. To compare the properties of primary fibroblasts (Normal Human Dermal Fibroblasts, NHDF) and primary keratinocytes (Normal Human Epidermal Keratinocytes, NHEK) with those of immortal cell lines (3T3 (ACC 173) Swiss albino mouse fibroblasts and HaCaT (human, adult, low calcium, high temperature, human adult skin keratinocytes) cells), their sensitivities in cytotoxicity assays have been assessed. While both fibroblast cell cultures showed similar sensitivities towards sodium dodecyl sulfate (SDS), primary keratinocytes died at SDS concentrations about three times lower than the immortal HaCaT cells.

  12. Tissue-specific methylation differences and cognitive function in fragile X premutation females

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allingham-Hawkins, D.J.; Babul, R.; Chitayat, D.

    1996-08-09

    Tissue-specific variation in (CGG){sub n} repeat size and methylation status of the FMR1 gene was investigated in 17 female premutation carriers. Minor variation in premutation repeat size among leukocyte, lymphoblast, and fibroblast tissues was noted in some subjects. One subject exhibited a premutation size allele of (CGG){sub 64} in leukocyte and fibroblast tissues by polymerase chain reaction analysis but a normal-size allele of (CGG){sub 46} in lymphoblast cells, suggesting low-level mosaicism in blood and clonality of the lymphoblast cell line. Six subjects exhibited differences in methylation pattern between leukocytes and lymphoblasts but not between leukocytes and fibroblasts, whereas 2 subjectsmore » showed large differences in methylation pattern between leukocytes and fibroblasts. Cognitive function was studied in 14 subjects using the Wechsler Adult Intelligence Scale-Revised. Mean Verbal and Performance IQs were well within the average range as was the mean Full Scale IQ; nevertheless, a trend toward lower Performance IQ compared with Verbal IQ was observed. No significant correlation was apparent between Full Scale IQ and (CGG){sub n} repeat size; however, a significant positive correlation was observed between Full Scale IQ and the proportion of the active X carrying the normal FMR1 allele in fibroblasts but not in leukocytes or lymphoblasts. 24 refs., 1 fig., 2 tabs.« less

  13. Fibroblast migration and proliferation during in vitro wound healing. A quantitative comparison between various growth factors and a low molecular weight blood dialysate used in the clinic to normalize impaired wound healing.

    PubMed

    Schreier, T; Degen, E; Baschong, W

    1993-01-01

    During the formation of granulation tissue in a dermal wound, platelets, monocytes and other cellular blood constituents release various peptide growth factors to stimulate fibroblasts to migrate into the wound site and proliferate, in order to reconstitute the various connective tissue components. The effect on fibroblast migration and proliferation of these growth factors, and of Solcoseryl (HD), a deproteinized fraction of calf blood used to normalize wound granulation and scar tissue formation, was quantified in vitro. The presence of basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF-beta) and hemodialysate (HD) increased the number of cells in the denuded area, i.e., in the "wound space" of an artificially ruptured monolayer of LM-fibroblasts (mouse lung fibroblasts). When cell proliferation was blocked with Mitomycin C, in the first 24 h all factors, i.e., bFGF, PDGF, TGF-beta and HD, promoted cell migration, whereas after 48 h it became obvious that each factor stimulated both migration and proliferation, each in a characteristic way. The effects were significant and more distinct after 48 h, following the order: PDGF (46%) approximately bFGF (87%) > HD (45%) approximately TGF-beta (40%) > control (62%). The relative contributions of migration after inhibiting proliferation are given in brackets. The modulatory activity of HD was localized in its hydrophilic fraction. It was destroyed by acid hydrolysis. Furthermore, this activity could be blocked by protamine sulfate, an inhibitor blocking peptide growth factor receptor binding.

  14. Role of CD248 as a potential severity marker in idiopathic pulmonary fibrosis.

    PubMed

    Bartis, Domokos; Crowley, Louise E; D'Souza, Vijay K; Borthwick, Lee; Fisher, Andrew J; Croft, Adam P; Pongrácz, Judit E; Thompson, Richard; Langman, Gerald; Buckley, Christopher D; Thickett, David R

    2016-04-14

    CD248 or Endosialin is a transmembrane molecule expressed in stromal cells binding to extracellular matrix (ECM) components. It has been previously implicated in kidney fibrosis, rheumatoid arthritis as well as in tumour-stromal interactions. This study investigates the role of CD248 in the pathogenesis of fibrotic diseases in Idiopathic Pulmonary Fibrosis (IPF). CD248 quantitative immunohistochemistry (IHC) was performed on lung samples from 22 IPF patients and its expression was assayed in cultured pulmonary fibroblasts and epithelial cells. Effects of CD248 silencing was evaluated on fibroblast proliferation and myofibroblast differentiation. IHC revealed strong CD248 expression in mesenchymal cells of normal lung structures such as pleura and adventitia but not in epithelium. Fibrotic areas showed markedly stronger staining than unaffected lung tissue. The extent of CD248 staining showed a significant negative correlation to lung function parameters FEV1, FVC, TLC, and TLCO (r2 > 0 · 35, p < 0 · 01). CD248 protein levels were significantly greater in IPF-derived lung fibroblasts vs normal lung fibroblasts (p < 0 · 01) and CD248 silencing significantly reduced the proliferation of lung fibroblasts, but did not affected myofibroblast differentiation. We conclude that CD248 overexpression is possibly involved in the pathogenesis of IPF and it has potential as a disease severity marker. Given that CD248 ligands are collagen type I, IV and fibronectin, we hypothesise that CD248 signalling represents a novel matrix-fibroblast interaction that may be a potential therapeutic target in IPF.

  15. Cathepsin K in Lymphangioleiomyomatosis: LAM Cell-Fibroblast Interactions Enhance Protease Activity by Extracellular Acidification.

    PubMed

    Dongre, Arundhati; Clements, Debbie; Fisher, Andrew J; Johnson, Simon R

    2017-08-01

    Lymphangioleiomyomatosis (LAM) is a rare disease in which LAM cells and fibroblasts form lung nodules and it is hypothesized that LAM nodule-derived proteases cause cyst formation and tissue damage. On protease gene expression profiling in whole lung tissue, cathepsin K gene expression was 40-fold overexpressed in LAM compared with control lung tissue (P ≤ 0.0001). Immunohistochemistry confirmed cathepsin K protein was expressed in LAM but not control lungs. Cathepsin K gene expression and protein and protease activity were detected in LAM-associated fibroblasts but not the LAM cell line 621-101. In lung nodules, cathepsin K immunoreactivity predominantly co-localized with LAM-associated fibroblasts. In vitro, fibroblast extracellular cathepsin K activity was minimal at pH 7.5 but significantly enhanced at pH 7 and 6. 621-101 cells reduced extracellular pH with acidification dependent on 621-101 mechanistic target of rapamycin activity and net hydrogen ion exporters, particularly sodium bicarbonate co-transporters and carbonic anhydrases, which were also expressed in LAM lung tissue. In LAM cell-fibroblast co-cultures, acidification paralleled cathepsin K activity, and both were reduced by sodium bicarbonate co-transporter (P ≤ 0.0001) and carbonic anhydrase inhibitors (P = 0.0021). Our findings suggest that cathepsin K activity is dependent on LAM cell-fibroblast interactions, and inhibitors of extracellular acidification may be potential therapies for LAM. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Gingival Fibroblasts Display Reduced Adhesion and Spreading on Extracellular Matrix: A Possible Basis for Scarless Tissue Repair?

    PubMed Central

    Guo, Fen; Carter, David E.; Mukhopadhyay, Anuradha; Leask, Andrew

    2011-01-01

    Unlike skin, oral gingiva do not scar in response to injury. The basis of this difference is likely to be revealed by comparing the responses of dermal and gingival fibroblasts to fibrogenic stimuli. Previously, we showed that, compared to dermal fibroblasts, gingival fibroblasts are less responsive to the potent pro-fibrotic cytokine TGFβ, due to a reduced production of endothelin-1 (ET-1). In this report, we show that, compared to dermal fibroblasts, human gingival fibroblasts show reduced expression of pro-adhesive mRNAs and proteins including integrins α2 and α4 and focal adhesion kinase (FAK). Consistent with these observations, gingival fibroblasts are less able to adhere to and spread on both fibronectin and type I collagen. Moreover, the enhanced production of ET-1 mRNA and protein in dermal fibroblasts is reduced by the FAK/src inhibitor PP2. Given our previous observations suggesting that fibrotic fibroblasts display elevated adhesive properties, our data suggest that scarring potential may be based, at least in part, on differences in adhesive properties among fibroblasts resident in connective tissue. Controlling adhesive properties may be of benefit in controlling scarring in response to tissue injury. PMID:22073262

  17. Effects of neuropeptides on human lung fibroblast proliferation and chemotaxis.

    PubMed

    Harrison, N K; Dawes, K E; Kwon, O J; Barnes, P J; Laurent, G J; Chung, K F

    1995-02-01

    An increase in subepithelial mesenchymal cells and associated connective tissue is a feature of bronchial asthma. We determined whether neuropeptides could modulate fibroblast activity, particularly with respect to proliferation and chemotaxis. Human lung fibroblasts were cultured with neurokinin A (NKA), substance P (SP), vasoactive intestinal peptide (VIP), and calcitonin-gene-related peptide (CGRP). After 48 h, fibroblast proliferation was measured by a colorimetric assay based on the uptake and subsequent release of methylene blue. The chemotactic response to neuropeptides was determined with the use of a modified Boyden chamber. Both NKA and SP (10(-7)-10(-4) M) stimulated human lung fibroblast proliferation in HFL1 and IMR-90 fibroblasts. VIP and CGRP had no effect on fibroblast proliferation. NKA alone stimulated fibroblast chemotaxis maximally at 10(-10) M. Neutral endopeptidase (NEP) activity of 0.52 and 5.2 pmol/10(6) cells was assayed in IMR-90 and Hs68 fibroblasts, respectively. Phosphoramidon (5 x 10(-6)-10(-5) M), an NEP inhibitor, enhanced fibroblast proliferation in a dose-dependent manner. Thus neuropeptides have the potential to cause activation of mesenchymal cells, and neuropeptide release may contribute to the structural abnormalities observed in asthmatic airways.

  18. Basic Fibroblast Growth Factor Influences Epidermal Homeostasis of Living Skin Equivalents through Affecting Fibroblast Phenotypes and Functions.

    PubMed

    Yang, Lujun; Zhang, Dangui; Wu, Hongjuan; Xie, Sitian; Zhang, Mingjun; Zhang, Bingna; Tang, Shijie

    2018-05-30

    To elucidate the possible mechanisms of how basic fibroblast growth factor (bFGF) influences epidermal homeostasis in a living skin equivalent (LSE) model. Several wound healing-related growth factors were analyzed at protein and mRNA levels for dermal fibroblasts of induced alpha-smooth muscle actin (α-SMA)-positive or α-SMA-negative phenotypes. During culturing an LSE model by seeding normal human keratinocytes on a fibroblast-populated type I collagen gel, bFGF or neutralizing antibody for keratinocyte growth factor (KGF) was added to investigate its effects on fibroblast phenotypes and, subsequently, epidermal homeostasis by histology and immunohistochemistry. The α-SMA-positive phenotype of fibroblasts induced by transforming growth factor beta-1 (TGF-β1) markedly suppressed the expression of KGF and hepatocyte growth factor (HGF), and slightly upregulated vascular endothelial growth factor (VEGF) and TGF-β1 at mRNA and protein levels, compared with α-SMA-negative fibroblasts treated with bFGF. α-SMA expression of fibroblasts at the epidermal-mesenchymal junction of the LSEs was suppressed by the addition of bFGF, and a better-differentiated epidermis was presented. The abrogation of KGF from fibroblasts by the addition of the KGF neutralizing antibody disenabled the LSE culturing system to develop an epidermis. bFGF, through affecting the phenotypes and functions of fibroblasts, especially KGF expression, influenced epidermal homeostasis in an LSE model. © 2018 S. Karger AG, Basel.

  19. Impaired mitochondrial pyruvate importation in a patient and a fetus at risk.

    PubMed

    Brivet, M; Garcia-Cazorla, A; Lyonnet, S; Dumez, Y; Nassogne, M C; Slama, A; Boutron, A; Touati, G; Legrand, A; Saudubray, J M

    2003-03-01

    The patient was the first child of healthy consanguineous parents. She presented at birth with hypotonia, mild facial dysmorphism, periventricular cysts, marked metabolic acidosis, hyperlactacidemia with normal lactate/pyruvate molar ratios, normoglycemia, and normal ammonia. Hyperlactacidemia was severe (5-14 mmol/l) and not corrected with bicarbonate, thiamine (10 mg/d), 2-chloropropionate (100 mg/kg/d) and a ketogenic diet. Pyruvate dehydrogenase (PDHC) activity was normal in lymphocytes and fibroblasts. Functional assays were performed in digitonin-permeabilized fibroblasts to measure oxidation rates from radiolabeled pyruvate and malate. The production of [14C]acetylcarnitine or [14C]citric cycle intermediates derived from [2-14C]pyruvate as well as the release of 14CO(2) from [1-14C]pyruvate was severely impaired, whereas decarboxylation of [U-14C]malate was normal. With increasing concentrations of [1-14C]pyruvate, the patient's fibroblasts behave like control fibroblasts incubated in the presence of alpha-cyano-4-hydroxycinnamate, a specific inhibitor of mitochondrial pyruvate uptake: a progressive increase in 14CO(2) production was observed, likely due to passive diffusion of [1-14C]pyruvate through the mitochondrial membranes. Our results are consistent with a defect of mitochondrial pyruvate transport in the patient. Mutational analysis was precluded as the cDNA sequence of the pyruvate carrier has not been identified as yet in any organism. An affected fetus was recognized in a subsequent dichorionic twin pregnancy using the coupled assay measuring [2-14C]pyruvate oxidation rates on digitonin-permeabilized trophoblasts. After selective feticide, the pregnancy was uncomplicated with delivery at 37w of a healthy female, who is currently 2-month old. Copyright 2003 Elsevier Science (USA)

  20. Notoginsenoside Ft1 Promotes Fibroblast Proliferation via PI3K/Akt/mTOR Signaling Pathway and Benefits Wound Healing in Genetically Diabetic Mice.

    PubMed

    Zhang, Eryun; Gao, Bo; Yang, Li; Wu, Xiaojun; Wang, Zhengtao

    2016-02-01

    Wound healing requires the essential participation of fibroblasts, which is impaired in diabetic foot ulcers (DFU). Notoginsenoside Ft1 (Ft1), a saponin from Panax notoginseng, can enhance platelet aggregation by activating signaling network mediated through P2Y12 and induce proliferation, migration, and tube formation in cultured human umbilical vein endothelial cells. However, whether it can accelerate fibroblast proliferation and benefit wound healing, especially DFU, has not been elucidated. In the present study on human dermal fibroblast HDF-a, Ft1 increased cell proliferation and collagen production via PI3K/Akt/mTOR signaling pathway. On the excisional wound splinting model established on db/db diabetic mouse, topical application of Ft1 significantly shortened the wound closure time by 5.1 days in contrast with phosphate-buffered saline (PBS) treatment (15.8 versus 20.9 days). Meanwhile, Ft1 increased the rate of re-epithelialization and the amount of granulation tissue at day 7 and day 14. The molecule also enhanced mRNA expressions of COL1A1, COL3A1, transforming growth factor (TGF)-β1 and TGF-β3 and fibronectin, the genes that contributed to collagen expression, fibroblast proliferation, and consequent scar formation. Moreover, Ft1 facilitated the neovascularization accompanied with elevated vascular endothelial growth factor, platelet-derived growth factor, and fibroblast growth factor at either mRNA or protein levels and alleviated the inflammation of infiltrated monocytes indicated by reduced tumor necrosis factor-α and interleukin-6 mRNA expressions in the diabetic wounds. Altogether, these results indicated that Ft1 might accelerate diabetic wound healing by orchestrating multiple processes, including promoting fibroblast proliferation, enhancing angiogenesis, and attenuating inflammatory response, which provided a great potential application of it in clinics for patients with DFU. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Effect of hyperthermia on the repair of sublethal radiation damage in normal and membrane fatty acid substituted fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolters, H.; Kelholt, D.; Konings, A.W.

    1987-02-01

    The interaction of heat and X irradiation was studied in normal and polyunsaturated fatty acid (PUFA) substituted mouse fibroblast LM cells. As a result of the substitution the membranes of the PUFA cells were more fluid than the membranes of the normal cells. Three different heat doses were applied (60 min 42 degrees C, 20 min 43 degrees C, and 10 min 44 degrees C) in combination with single or split doses of X rays. Heat radiosensitization was the largest for the 60 min 42 degrees C treatment. Heat radiosensitization and the heat-induced inhibition of the rate of sublethal damagemore » repair were the same for the normal and the PUFA cells. It is concluded from the experiments reported that the processes of hyperthermic inhibition of SLD repair and hyperthermic radiosensitization are independent of membrane fluidity and membrane fatty acid composition.« less

  2. Usp16 contributes to somatic stem cell defects in Down syndrome

    PubMed Central

    Adorno, Maddalena; Sikandar, Shaheen; Mitra, Siddhartha S.; Kuo, Angera; Di Robilant, Benedetta Nicolis; Haro-Acosta, Veronica; Ouadah, Youcef; Quarta, Marco; Rodriguez, Jacqueline; Qian, Dalong; Reddy, Vadiyala M.; Cheshier, Samuel; Garner, Craig C.; Clarke, Michael F.

    2013-01-01

    SUMMARY Down syndrome (DS) results from full or partial trisomy of chromosome 21. However, the consequences of the underlying gene-dosage imbalance on adult tissues remain poorly understood. Here we show that in Ts65Dn mice, trisomic for 132 genes homologous to HSA21, triplication of Usp16 reduces self-renewal of hematopoietic stem cells and expansion of mammary epithelial cells, neural progenitors, and fibroblasts. Moreover, Usp16 is associated with decreased ubiquitination of Cdkn2a and accelerated senescence in Ts65Dn fibroblasts. Usp16 can remove ubiquitin from H2AK119, a critical mark for the maintenance of multiple somatic tissues. Downregulation of Usp16, either by mutation of a single normal USP16 allele or by shRNAs, largely rescues all these defects. Furthermore, in human tissues overexpression of USP16 reduces the expansion of normal fibroblasts and post-natal neural progenitors while downregulation of USP16 partially rescues the proliferation defects of DS fibroblasts. Taken together, these results suggest that USP16 plays an important role in antagonizing the self-renewal and/or senescence pathways in Down syndrome and could serve as an attractive target to ameliorate some of the associated pathologies. PMID:24025767

  3. Rejoining of isochromatid breaks induced by heavy ions in G2-phase normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Durante, M.; Furusawa, Y.; George, K.; Ito, H.; Wu, H.; Cucinotta, F. A.

    2001-01-01

    We reported previously that exposure of normal human fibroblasts in G2 phase of the cell cycle to high-LET radiation produces a much higher frequency of isochromatid breaks than exposure to gamma rays. We concluded that an increase in the production of isochromatid breaks is a signature of initial high-LET radiation-induced G2-phase damage. In this paper, we report the repair kinetics of isochromatid breaks induced by high-LET radiation in normal G2-phase human fibroblasts. Exponentially growing human fibroblasts (AG1522) were irradiated with gamma rays or energetic carbon (290 MeV/nucleon), silicon (490 MeV/nucleon), or iron (200 MeV/nucleon) ions. Prematurely condensed chromosomes were induced by calyculin A after different postirradiation incubation times ranging from 0 to 600 min. Chromosomes were stained with Giemsa, and aberrations were scored in cells at G2 phase. G2-phase fragments, the result of the induction of isochromatid breaks, decreased quickly with incubation time. The curve for the kinetics of the rejoining of chromatid-type breaks showed a slight upward curvature with time after exposure to 440 keV/microm iron particles, probably due to isochromatid-isochromatid break rejoining. The formation of chromatid exchanges after exposure to high-LET radiation therefore appears to be underestimated, because isochromatid-isochromatid exchanges cannot be detected. Increased induction of isochromatid breaks and rejoining of isochromatid breaks affect the overall kinetics of chromatid-type break rejoining after exposure to high-LET radiation.

  4. Impaired Laparotomy Wound Healing in Obese Rats

    PubMed Central

    Xing, Liyu; Culbertson, Eric J.; Wen, Yuan; Robson, Martin C.

    2015-01-01

    Background Obesity increases the risk of laparotomy dehiscence and incisional hernia. The aim of this study was to measure the biological effect of obesity on laparotomy wound healing and the formation of incisional hernias. Methods Normal-weight Sprague–Dawley (SD) and obese Zucker rats were used in an established laparotomy wound healing and incisional ventral hernia model. Mechanical testing was performed on abdominal wall strips collected from laparotomy wounds. Hernia size was measured by digital imaging. Picrosirius staining for collagen isoforms was observed with polarized microscopy. Abdominal wall fibroblasts were cultured to measure collagen matrix remodeling and proliferation. Results Laparotomy wound healing was significantly impaired in obese rats. Mechanical strength was lower than in normal-weight rats. Yield load was reduced in the obese group at all time points. Picrosirius red staining showed increased immature type III collagen content and disorganized type I collagen fibers within laparotomy wounds of obese rats. Wound size was significantly larger in the obese group. Collagen matrix remodeling was impaired with fibroblasts from obese rats, but there was no difference in fibroblast proliferation between the obese and normal-weight groups. Conclusions We observed for the first time that laparotomy wound healing is impaired in obese rats. The recovery of laparotomy wound strength is delayed due to abnormal collagen maturation and remodeling, possibly due to a defect in fibroblast function. Strategies to improve outcomes for laparotomy wound healing in obese patients should include correcting the wound healing defect, possibly with growth factor or cell therapy. PMID:21347822

  5. Nucleotide excision repair modulates the cytotoxic and mutagenic effects of N-n-butyl-N-nitrosourea in cultured mammalian cells as well as in mouse splenocytes in vivo.

    PubMed

    Bol, S A; van Steeg, H; van Oostrom, C T; Tates, A D; Vrieling, H; de Groot, A J; Mullenders, L H; van Zeeland, A A; Jansen, J G

    1999-05-01

    The butylating agent N-n-butyl-N-nitrosourea (BNU) was employed to study the role of nucleotide excision repair (NER) in protecting mammalian cells against the genotoxic effects of monofunctional alkylating agents. The direct acting agent BNU was found to be mutagenic in normal and XPA mouse splenocytes after a single i.p. treatment in vivo. After 25 and 35 mg/kg BNU, but not after 75 mg/ kg, 2- to 3-fold more hprt mutants were detected in splenocytes from XPA mice than from normal mice. Using O6-alkylguanine-DNA alkyltransferase (AGT)-deficient hamster cells, it was found that NER-deficient CHO UV5 cells carrying a mutation in the ERCC-2 gene were 40% more mutable towards lesions induced by BNU when compared with parental NER-proficient CHO AA8 cells. UV5 cells were 1.4-fold more sensitive to the cytotoxic effects of BNU compared with AA8 cells. To investigate whether this increased sensitivity of NER-deficient cells is modulated by AGT activity, cell survival studies were performed in human and mouse primary fibroblasts as well. BNU was 2.7-fold more toxic for mouse XPA fibroblasts compared with normal mouse fibroblasts. Comparable results were found for human fibroblasts. Taken together these data indicate that the role of NER in protecting rodent cells against the mutagenic and cytotoxic effects of the alkylating agent BNU depends on AGT.

  6. Peptide-decorated chitosan derivatives enhance fibroblast adhesion and proliferation in wound healing.

    PubMed

    Patrulea, V; Hirt-Burri, N; Jeannerat, A; Applegate, L A; Ostafe, V; Jordan, O; Borchard, G

    2016-05-20

    RGD peptide sequences are known to regulate cellular activities by interacting with α5β1, αvβ5 and αvβ3 integrin, which contributes to the wound healing process. In this study, RGDC peptide was immobilized onto chitosan derivative 1,6-diaminohexane-O-carboxymethyl-N,N,N-trimethyl chitosan (DAH-CMTMC) to display RGDC-promoting adhesion for enhanced wound healing. The efficiency of N-methylation, O-carboxymethylation and spacer grafting was quantitatively and qualitatively analyzed by (1)H NMR and FTIR, yielding 0.38 degree of substitution for N-methylation and >0.85 for O-carboxymethylation. The glass transition temperatures for chitosan derivatives were also studied. Peptide immobilization was achieved through sulfhydryl groups using sulfosuccinimidyl (4-iodoacetyl)amino-benzoate (sulfo-SIAB method). RGDC immobilized peptide onto DAH-CMTMC was found to be about 15.3 μg/mg of chitosan derivative by amino acid analysis (AAA). The significant increase of human dermal fibroblast (HDF) viability in vitro over 7 days suggests that RGDC-functionalized chitosan may lead to enhanced wound healing (viability >140%). Moreover, bio-adhesion and proliferation assays confirmed that coatings of RGDC-functionalized chitosan derivatives exhibit in vitro wound healing properties by enhancing fibroblast proliferation and adhesion. These results showed that RGDC peptide-functionalized chitosan provides an optimal environment for fibroblast adhesion and proliferation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Bioglass Activated Skin Tissue Engineering Constructs for Wound Healing.

    PubMed

    Yu, Hongfei; Peng, Jinliang; Xu, Yuhong; Chang, Jiang; Li, Haiyan

    2016-01-13

    Wound healing is a complicated process, and fibroblast is a major cell type that participates in the process. Recent studies have shown that bioglass (BG) can stimulate fibroblasts to secrete a multitude of growth factors that are critical for wound healing. Therefore, we hypothesize that BG can stimulate fibroblasts to have a higher bioactivity by secreting more bioactive growth factors and proteins as compared to untreated fibroblasts, and we aim to construct a bioactive skin tissue engineering graft for wound healing by using BG activated fibroblast sheet. Thus, the effects of BG on fibroblast behaviors were studied, and the bioactive skin tissue engineering grafts containing BG activated fibroblasts were applied to repair the full skin lesions on nude mouse. Results showed that BG stimulated fibroblasts to express some critical growth factors and important proteins including vascular endothelial growth factor, basic fibroblast growth factor, epidermal growth factor, collagen I, and fibronectin. In vivo results revealed that fibroblasts in the bioactive skin tissue engineering grafts migrated into wound bed, and the migration ability of fibroblasts was stimulated by BG. In addition, the bioactive BG activated fibroblast skin tissue engineering grafts could largely increase the blood vessel formation, enhance the production of collagen I, and stimulate the differentiation of fibroblasts into myofibroblasts in the wound site, which would finally accelerate wound healing. This study demonstrates that the BG activated skin tissue engineering grafts contain more critical growth factors and extracellular matrix proteins that are beneficial for wound healing as compared to untreated fibroblast cell sheets.

  8. Serum from calorie-restricted animals delays senescence and extends the lifespan of normal human fibroblasts in vitro.

    PubMed

    de Cabo, Rafael; Liu, Lijuan; Ali, Ahmed; Price, Nathan; Zhang, Jing; Wang, Mingyi; Lakatta, Edward; Irusta, Pablo M

    2015-03-01

    The cumulative effects of cellular senescence and cell loss over time in various tissues and organs are considered major contributing factors to the ageing process. In various organisms, caloric restriction (CR) slows ageing and increases lifespan, at least in part, by activating nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases of the sirtuin family. Here, we use an in vitro model of CR to study the effects of this dietary regime on replicative senescence, cellular lifespan and modulation of the SIRT1 signaling pathway in normal human diploid fibroblasts. We found that serum from calorie-restricted animals was able to delay senescence and significantly increase replicative lifespan in these cells, when compared to serum from ad libitum fed animals. These effects correlated with CR-mediated increases in SIRT1 and decreases in p53 expression levels. In addition, we show that manipulation of SIRT1 levels by either over-expression or siRNA-mediated knockdown resulted in delayed and accelerated cellular senescence, respectively. Our results demonstrate that CR can delay senescence and increase replicative lifespan of normal human diploid fibroblasts in vitro and suggest that SIRT1 plays an important role in these processes.

  9. Serum from calorie-restricted animals delays senescence and extends the lifespan of normal human fibroblasts in vitro

    PubMed Central

    Ali, Ahmed; Price, Nathan; Zhang, Jing; Wang, Mingyi; Lakatta, Edward; Irusta, Pablo M.

    2015-01-01

    The cumulative effects of cellular senescence and cell loss over time in various tissues and organs are considered major contributing factors to the ageing process. In various organisms, caloric restriction (CR) slows ageing and increases lifespan, at least in part, by activating nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases of the sirtuin family. Here, we use an in vitro model of CR to study the effects of this dietary regime on replicative senescence, cellular lifespan and modulation of the SIRT1 signaling pathway in normal human diploid fibroblasts. We found that serum from calorie-restricted animals was able to delay senescence and significantly increase replicative lifespan in these cells, when compared to serum from ad libitum fed animals. These effects correlated with CR-mediated increases in SIRT1 and decreases in p53 expression levels. In addition, we show that manipulation of SIRT1 levels by either over-expression or siRNA-mediated knockdown resulted in delayed and accelerated cellular senescence, respectively. Our results demonstrate that CR can delay senescence and increase replicative lifespan of normal human diploid fibroblasts in vitro and suggest that SIRT1 plays an important role in these processes. (185 words). PMID:25855056

  10. Carbon Nanotubes Preserve Normal Phenotypes Under Cancer-Promoting Conditions

    NASA Astrophysics Data System (ADS)

    Wailes, Elizabeth; Levi-Polyachenko, Nicole

    2015-03-01

    Tumor-associated fibroblasts and cancer cells have long been known to create a feedback loop that further stimulates the cancer. While this has been explored from a molecular biology standpoint, little is known about the physical relationship of the cell types even though both sets of cells are known to be mechanosensitive. Indeed, for both fibroblasts and cancer, mechanical signals can make the difference between a normal or pathological cell. To evaluate this relationship and test if it can be manipulated to favor normal cells, atomic force microscopy (AFM) and confocal microscopy was performed on fibroblast and breast cancer cell co-cultures with a collagen gel matrix to simulate the extracellular matrix. Pathological behavior was encouraged through the addition of transforming growth factor beta (TGF- β) . In a separate group, this behavior was discouraged through the doping of the collagen gel with multi-walled carbon nanotubes (MWNT). Significant differences were observed both in the elastic moduli of each cell type and the cancer cells' propensity to migrate through the gel as a model for metastasis. These results shed new light on how cancer progresses and promote the further investigation of nano-mechanical solutions to cancer.

  11. Fibroblast-derived CXCL12/SDF-1α promotes CXCL6 secretion and co-operatively enhances metastatic potential through the PI3K/Akt/mTOR pathway in colon cancer

    PubMed Central

    Ma, Jia-Chi; Sun, Xiao-Wen; Su, He; Chen, Quan; Guo, Tian-Kang; Li, Yuan; Chen, Xiao-Chang; Guo, Jin; Gong, Zhen-Qiang; Zhao, Xiao-Dan; Qi, Jian-Bo

    2017-01-01

    AIM To investigate the underlying mechanism by which CXCL12 and CXCL6 influences the metastatic potential of colon cancer and internal relation of colon cancer and stromal cells. METHODS Western blotting was used to detect the expression of CXCL12 and CXCL6 in colon cancer cells and stromal cells. The co-operative effects of CXCL12 and CXCL6 on proliferation and invasion of colon cancer cells and human umbilical vein endothelial cells (HUVECs) were determined by enzyme-linked immunosorbent assay, and proliferation and invasion assays. The angiogenesis of HUVECs through interaction with cancer cells and stromal cells was examined by angiogenesis assay. We eventually investigated activation of PI3K/Akt/mTOR signaling by CXCL12 involved in the metastatic process of colon cancer. RESULTS CXCL12 was expressed in DLD-1 cancer cells and fibroblasts. The secretion level of CXCL6 by colon cancer cells and HUVECs were significantly promoted by fibroblasts derived from CXCL12. CXCL6 and CXCL2 could significantly enhance HUVEC proliferation and migration (P < 0.01). CXCL6 and CXCL2 enhanced angiogenesis by HUVECs when cultured with fibroblast cells and colon cancer cells (P < 0.01). CXCL12 also enhanced the invasion of colon cancer cells. Stromal cell-derived CXCL12 promoted the secretion level of CXCL6 and co-operatively promoted metastasis of colon carcinoma through activation of the PI3K/Akt/mTOR pathway. CONCLUSION Fibroblast-derived CXCL12 enhanced the CXCL6 secretion of colon cancer cells, and both CXCL12 and CXCL6 co-operatively regulated the metastasis via the PI3K/Akt/mTOR signaling pathway. Blocking this pathway may be a potential anti-metastatic therapeutic target for patients with colon cancer. PMID:28811711

  12. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation

    PubMed Central

    Procopio, Maria-Giuseppina; Laszlo, Csaba; Labban, Dania Al; Kim, Dong Eun; Bordignon, Pino; Jo, Seunghee; Goruppi, Sandro; Menietti, Elena; Ostano, Paola; Ala, Ugo; Provero, Paolo; Hoetzenecker, Wolfram; Neel, Victor; Kilarski, Witek; Swartz, Melody A.; Brisken, Cathrin; Lefort, Karine; Dotto, G. Paolo

    2015-01-01

    Stromal fibroblast senescence has been linked to aging-associated cancer risk. However, density and proliferation of cancer-associated fibroblasts (CAF) are frequently increased. Loss or down-modulation of the Notch effector CSL/RBP-Jκ in dermal fibroblasts is sufficient for CAF activation and ensuing keratinocyte-derived tumors. We report that CSL silencing induces senescence of primary fibroblasts from dermis, oral mucosa, breast and lung. CSL functions in these cells as direct repressor of multiple senescence- and CAF-effector genes. It also physically interacts with p53, repressing its activity. CSL is down-modulated in stromal fibroblasts of premalignant skin actinic keratosis lesions and squamous cell carcinomas (SCC), while p53 expression and function is down-modulated only in the latter, with paracrine FGF signaling as likely culprit. Concomitant loss of CSL and p53 overcomes fibroblast senescence, enhances expression of CAF effectors and promotes stromal and cancer cell expansion. The findings support a CAF activation/stromal co-evolution model under convergent CSL/p53 control. PMID:26302407

  13. Wound Healing Activity of Extracts and Formulations of Aloe vera, Henna, Adiantum capillus-veneris, and Myrrh on Mouse Dermal Fibroblast Cells.

    PubMed

    Negahdari, Samira; Galehdari, Hamid; Kesmati, Mahnaz; Rezaie, Anahita; Shariati, Gholamreza

    2017-01-01

    Among the most important factors in wound healing pathways are transforming growth factor beta1 and vascular endothelial growth factor. Fibroblasts are the main cell in all phases wound closure. In this study, the extracts of plant materials such as Adiantum capillus-veneris , Commiphora molmol , Aloe vera , and henna and one mixture of them were used to treatment of normal mouse skin fibroblasts. Cytotoxic effects of each extract and their mixture were assessed on mouse skin fibroblasts cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. We performed migration assays to assess migration properties of mouse skin fibroblasts cells in response to the extracts. Changes in the gene expression of the Tgf β1 and Vegf-A genes were monitored by real-time polymerase chain reaction. A. capillus-veneris , C. molmol and henna extract improved the expression of Tgfβ1 gene. All used extracts upregulated the expression of Vegf-A gene and promoted the migration of mouse fibroblast cells in vitro . The present study demonstrated that the mentioned herbal extracts might be effective in wound healing, through the improvement in the migration of fibroblast cells and regulating the gene expression of Tgfβ1 and Vegf-A genes in fibroblast cells treated with extracts.

  14. Application of pulsed-magnetic field enhances non-viral gene delivery in primary cells from different origins

    NASA Astrophysics Data System (ADS)

    Kamau Chapman, Sarah W.; Hassa, Paul O.; Koch-Schneidemann, Sabine; von Rechenberg, Brigitte; Hofmann-Amtenbrink, Margarethe; Steitz, Benedikt; Petri-Fink, Alke; Hofmann, Heinrich; Hottiger, Michael O.

    Primary cell lines are more difficult to transfect when compared to immortalized/transformed cell lines, and hence new techniques are required to enhance the transfection efficiency in these cells. We isolated and established primary cultures of synoviocytes, chondrocytes, osteoblasts, melanocytes, macrophages, lung fibroblasts, and embryonic fibroblasts. These cells differed in several properties, and hence were a good representative sample of cells that would be targeted for expression and delivery of therapeutic genes in vivo. The efficiency of gene delivery in all these cells was enhanced using polyethylenimine-coated polyMAG magnetic nanoparticles, and the rates (17-84.2%) surpassed those previously achieved using other methods, especially in cells that are difficult to transfect. The application of permanent and pulsating magnetic fields significantly enhanced the transfection efficiencies in synoviocytes, chondrocytes, osteoblasts, melanocytes and lung fibroblasts, within 5 min of exposure to these magnetic fields. This is an added advantage for future in vivo applications, where rapid gene delivery is required before systemic clearance or filtration of the gene vectors occurs.

  15. The disruption of the epithelial mesenchymal trophic unit in COPD.

    PubMed

    Behzad, Ali R; McDonough, John E; Seyednejad, Nazgol; Hogg, James C; Walker, David C

    2009-12-01

    Progression of COPD is associated with a measurable increase in small airway wall thickness resulting from a repair and remodeling process that involves fibroblasts of the epithelial mesenchymal trophic unit (EMTU). The present study was designed to examine the organization of fibroblasts within the lamina propria of small airways with respect to their contacts with the epithelium and with each other in persons with COPD. Transmission electron microcopy (TEM) and three-dimensional (3D) reconstructions of serial TEM sections were used to estimate the frequency and determine the nature of the contacts between the epithelium and fibroblasts within the EMTU in small airways from 5 controls (smokers with normal lung function), from 6 persons with mild (GOLD-1) and 5 with moderate (GOLD-2) COPD. In airways from control lungs fibroblasts make frequent contact with cytoplasmic extensions of epithelial cells through apertures in the epithelial basal lamina, but the frequency of these fibroblast-epithelial contacts is reduced in both mild and moderate COPD compared to controls (p < 0.01). The 3D reconstructions showed that the cytoplasmic extensions of lamina propria fibroblasts form a reticulum with fibroblast-fibroblast contacts in an airway from a control subject but this reticulum may be reorganized in airways of COPD patients. Development of COPD is associated with significant disruption of the EMTU due to a reduction of contacts between fibroblasts and the epithelium.

  16. Mitochondrial damage and cytoskeleton reorganization in human dermal fibroblasts exposed to artificial visible light similar to screen-emitted light.

    PubMed

    Rascalou, Adeline; Lamartine, Jérôme; Poydenot, Pauline; Demarne, Frédéric; Bechetoille, Nicolas

    2018-05-05

    Artificial visible light is everywhere in modern life. Social communication confronts us with screens of all kinds, and their use is on the rise. We are therefore increasingly exposed to artificial visible light, the effects of which on skin are poorly known. The purpose of this study was to model the artificial visible light emitted by electronic devices and assess its effect on normal human fibroblasts. The spectral irradiance emitted by electronic devices was optically measured and equipment was developed to accurately reproduce such artificial visible light. Effects on normal human fibroblasts were analyzed on human genome microarray-based gene expression analysis. At cellular level, visualization and image analysis were performed on the mitochondrial network and F-actin cytoskeleton. Cell proliferation, ATP release and type I procollagen secretion were also measured. We developed a device consisting of 36 LEDs simultaneously emitting blue, green and red light at distinct wavelengths (450 nm, 525 nm and 625 nm) with narrow spectra and equivalent radiant power for the three colors. A dose of 99 J/cm 2 artificial visible light was selected so as not to induce cell mortality following exposure. Microarray analysis revealed 2984 light-modulated transcripts. Functional annotation of light-responsive genes revealed several enriched functions including, amongst others, the "mitochondria" and "integrin signaling" categories. Selected results were confirmed by real-time quantitative PCR, analyzing 24 genes representing these two categories. Analysis of micro-patterned culture plates showed marked fragmentation of the mitochondrial network and disorganization of the F-actin cytoskeleton following exposure. Functionally, there was considerable impairment of cell growth and spread, ATP release and type I procollagen secretion in exposed fibroblasts. Artificial visible light induces drastic molecular and cellular changes in normal human fibroblasts. This may impede normal cellular functions and contribute to premature skin aging. The present results extend our knowledge of the effects of the low-energy wavelengths that are increasingly used to treat skin disorders. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  17. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts.

    PubMed

    Khamaisi, Mogher; Katagiri, Sayaka; Keenan, Hillary; Park, Kyoungmin; Maeda, Yasutaka; Li, Qian; Qi, Weier; Thomou, Thomas; Eschuk, Danielle; Tellechea, Ana; Veves, Aris; Huang, Chenyu; Orgill, Dennis Paul; Wagers, Amy; King, George L

    2016-03-01

    Abnormal fibroblast function underlies poor wound healing in patients with diabetes; however, the mechanisms that impair wound healing are poorly defined. Here, we evaluated fibroblasts from individuals who had type 1 diabetes (T1D) for 50 years or more (Medalists, n = 26) and from age-matched controls (n = 7). Compared with those from controls, Medalist fibroblasts demonstrated a reduced migration response to insulin, lower VEGF expression, and less phosphorylated AKT (p-AKT), but not p-ERK, activation. Medalist fibroblasts were also functionally less effective at wound closure in nude mice. Activation of the δ isoform of protein kinase C (PKCδ) was increased in postmortem fibroblasts from Medalists, fibroblasts from living T1D subjects, biopsies of active wounds of living T1D subjects, and granulation tissues from mice with streptozotocin-induced diabetes. Diabetes-induced PKCD mRNA expression was related to a 2-fold increase in the mRNA half-life. Pharmacologic inhibition and siRNA-mediated knockdown of PKCδ or expression of a dominant-negative isoform restored insulin signaling of p-AKT and VEGF expression in vitro and improved wound healing in vivo. Additionally, increasing PKCδ expression in control fibroblasts produced the same abnormalities as those seen in Medalist fibroblasts. Our results indicate that persistent PKCδ elevation in fibroblasts from diabetic patients inhibits insulin signaling and function to impair wound healing and suggest PKCδ inhibition as a potential therapy to improve wound healing in diabetic patients.

  18. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study.

    PubMed

    Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart

    2014-03-01

    In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies.

  19. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study*

    PubMed Central

    Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart

    2014-01-01

    In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies. PMID:24599687

  20. Chemical Carcinogen-Induced Changes in tRNA Metabolism in Human Cells.

    DTIC Science & Technology

    1981-11-01

    the resolution and quantitation of modified ucleosides in the urine of cancer patients would not be particularly useful for the cell culture studies...Comparison of nucleic acid catabolism by normal human fibroblasts and fibroblasts transformed with methylazoxymethyl alcohol ( MAMA ),an activated...catabolite in long-term, pulse-chase experiments. However, the kinetics of catabolism differed, in that only the MAMA -transformed cells had generated

  1. Angiogenesis - a crucial step in breast cancer growth, progression and dissemination by Raman imaging.

    PubMed

    Kopeć, Monika; Abramczyk, Halina

    2018-06-05

    Combined micro-Raman imaging and AFM imaging are efficient methods for analyzing human tissue due to their high spatial and spectral resolution as well as sensitivity to subtle chemical, structural and topographical changes. The aim of this study was to determine biochemical composition and mechanical topography around blood vessels in the tumor mass of human breast tissue. Significant alterations of the chemical composition and structural architecture around the blood vessel were found compared to the normal breast tissue. A pronounced increase of collagen-fibroblast-glycocalyx network, as well as enhanced lactic acid, and glycogen activity in patients affected by breast cancer were reported. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Diversity of Interstitial Lung Fibroblasts Is Regulated by Platelet-Derived Growth Factor Receptor α Kinase Activity.

    PubMed

    Green, Jenna; Endale, Mehari; Auer, Herbert; Perl, Anne-Karina T

    2016-04-01

    Epithelial-mesenchymal cell interactions and factors that control normal lung development are key players in lung injury, repair, and fibrosis. A number of studies have investigated the roles and sources of epithelial progenitors during lung regeneration; such information, however, is limited in lung fibroblasts. Thus, understanding the origin, phenotype, and roles of fibroblast progenitors in lung development, repair, and regeneration helps address these limitations. Using a combination of platelet-derived growth factor receptor α-green fluorescent protein (PDGFRα-GFP) reporter mice, microarray, real-time polymerase chain reaction, flow cytometry, and immunofluorescence, we characterized two distinct interstitial resident fibroblasts, myo- and matrix fibroblasts, and identified a role for PDGFRα kinase activity in regulating their activation during lung regeneration. Transcriptional profiling of the two populations revealed a myo- and matrix fibroblast gene signature. Differences in proliferation, smooth muscle actin induction, and lipid content in the two subpopulations of PDGFRα-expressing fibroblasts during alveolar regeneration were observed. Although CD140α(+)CD29(+) cells behaved as myofibroblasts, CD140α(+)CD34(+) appeared as matrix and/or lipofibroblasts. Gain or loss of PDGFRα kinase activity using the inhibitor nilotinib and a dominant-active PDGFRα-D842V mutation revealed that PDGFRα was important for matrix fibroblast differentiation. We demonstrated that PDGFRα signaling promotes alveolar septation by regulating fibroblast activation and matrix fibroblast differentiation, whereas myofibroblast differentiation was largely PDGFRα independent. These studies provide evidence for the phenotypic and functional diversity as well as the extent of specificity of interstitial resident fibroblasts differentiation during regeneration after partial pneumonectomy.

  3. Diversity of Interstitial Lung Fibroblasts Is Regulated by Platelet-Derived Growth Factor Receptor α Kinase Activity

    PubMed Central

    Green, Jenna; Endale, Mehari; Auer, Herbert

    2016-01-01

    Epithelial–mesenchymal cell interactions and factors that control normal lung development are key players in lung injury, repair, and fibrosis. A number of studies have investigated the roles and sources of epithelial progenitors during lung regeneration; such information, however, is limited in lung fibroblasts. Thus, understanding the origin, phenotype, and roles of fibroblast progenitors in lung development, repair, and regeneration helps address these limitations. Using a combination of platelet-derived growth factor receptor α–green fluorescent protein (PDGFRα-GFP) reporter mice, microarray, real-time polymerase chain reaction, flow cytometry, and immunofluorescence, we characterized two distinct interstitial resident fibroblasts, myo- and matrix fibroblasts, and identified a role for PDGFRα kinase activity in regulating their activation during lung regeneration. Transcriptional profiling of the two populations revealed a myo- and matrix fibroblast gene signature. Differences in proliferation, smooth muscle actin induction, and lipid content in the two subpopulations of PDGFRα-expressing fibroblasts during alveolar regeneration were observed. Although CD140α+CD29+ cells behaved as myofibroblasts, CD140α+CD34+ appeared as matrix and/or lipofibroblasts. Gain or loss of PDGFRα kinase activity using the inhibitor nilotinib and a dominant-active PDGFRα-D842V mutation revealed that PDGFRα was important for matrix fibroblast differentiation. We demonstrated that PDGFRα signaling promotes alveolar septation by regulating fibroblast activation and matrix fibroblast differentiation, whereas myofibroblast differentiation was largely PDGFRα independent. These studies provide evidence for the phenotypic and functional diversity as well as the extent of specificity of interstitial resident fibroblasts differentiation during regeneration after partial pneumonectomy. PMID:26414960

  4. Exosomes Facilitate Therapeutic Targeting of Oncogenic Kras in Pancreatic Cancer

    PubMed Central

    Kamerkar, Sushrut; LeBleu, Valerie S.; Sugimoto, Hikaru; Yang, Sujuan; Ruivo, Carolina F.; Melo, Sonia A.; Lee, J. Jack; Kalluri, Raghu

    2017-01-01

    Summary The mutant form of the GTPase KRAS is a key driver of pancreatic cancer but remains a challenging therapeutic target. Exosomes, extracellular vesicles generated by all cells, are naturally present in the blood. Here we demonstrate that enhanced retention of exosomes in circulation, compared to liposomes, is due to CD47 mediated protection of exosomes from phagocytosis by monocytes and macrophages. Exosomes derived from normal fibroblast-like mesenchymal cells were engineered to carry siRNA or shRNA specific to oncogenic KRASG12D (iExosomes), a common mutation in pancreatic cancer. Compared to liposomes, iExosomes target oncogenic Kras with an enhanced efficacy that is dependent on CD47, and is facilitated by macropinocytosis. iExosomes treatment suppressed cancer in multiple mouse models of pancreatic cancer and significantly increased their overall survival. Our results inform on a novel approach for direct and specific targeting of oncogenic Kras in tumors using iExosomes. PMID:28607485

  5. Peroxisome Proliferator Activated Receptor-α/Hypoxia Inducible Factor-1α Interplay Sustains Carbonic Anhydrase IX and Apoliprotein E Expression in Breast Cancer Stem Cells

    PubMed Central

    Papi, Alessio; Storci, Gianluca; Guarnieri, Tiziana; De Carolis, Sabrina; Bertoni, Sara; Avenia, Nicola; Sanguinetti, Alessandro; Sidoni, Angelo; Santini, Donatella; Ceccarelli, Claudio; Taffurelli, Mario; Orlandi, Marina; Bonafé, Massimiliano

    2013-01-01

    Aims Cancer stem cell biology is tightly connected to the regulation of the pro-inflammatory cytokine network. The concept of cancer stem cells “inflammatory addiction” leads to envisage the potential role of anti-inflammatory molecules as new anti-cancer targets. Here we report on the relationship between nuclear receptors activity and the modulation of the pro-inflammatory phenotype in breast cancer stem cells. Methods Breast cancer stem cells were expanded as mammospheres from normal and tumor human breast tissues and from tumorigenic (MCF7) and non tumorigenic (MCF10) human breast cell lines. Mammospheres were exposed to the supernatant of breast tumor and normal mammary gland tissue fibroblasts. Results In mammospheres exposed to the breast tumor fibroblasts supernatant, autocrine tumor necrosis factor-α signalling engenders the functional interplay between peroxisome proliferator activated receptor-α and hypoxia inducible factor-1α (PPARα/HIF1α). The two proteins promote mammospheres formation and enhance each other expression via miRNA130b/miRNA17-5p-dependent mechanism which is antagonized by PPARγ. Further, the PPARα/HIF1α interplay regulates the expression of the pro-inflammatory cytokine interleukin-6, the hypoxia survival factor carbonic anhydrase IX and the plasma lipid carrier apolipoprotein E. Conclusion Our data demonstrate the importance of exploring the role of nuclear receptors (PPARα/PPARγ) in the regulation of pro-inflammatory pathways, with the aim to thwart breast cancer stem cells functioning. PMID:23372804

  6. Functional characterization of cell hybrids generated by induced fusion of primary porcine mesenchymal stem cells with an immortal murine cell line.

    PubMed

    Islam, M Q; Ringe, J; Reichmann, E; Migotti, R; Sittinger, M; da S Meirelles, L; Nardi, N B; Magnusson, P; Islam, K

    2006-10-01

    Bone marrow mesenchymal stem cells (MSC) integrate into various organs and contribute to the regeneration of diverse tissues. However, the mechanistic basis of the plasticity of MSC is not fully understood. The change of cell fate has been suggested to occur through cell fusion. We have generated hybrid cell lines by polyethylene-glycol-mediated cell fusion of primary porcine MSC with the immortal murine fibroblast cell line F7, a derivative of the GM05267 cell line. The hybrid cell lines display fibroblastic morphology and proliferate like immortal cells. They contain tetraploid to hexaploid porcine chromosomes accompanied by hypo-diploid murine chromosomes. Interestingly, many hybrid cell lines also express high levels of tissue-nonspecific alkaline phosphatase, which is considered to be a marker of undifferentiated embryonic stem cells. All tested hybrid cell lines retain osteogenic differentiation, a few of them also retain adipogenic potential, but none retain chondrogenic differentiation. Conditioned media from hybrid cells enhance the proliferation of both early-passage and late-passage porcine MSC, indicating that the hybrid cells secrete diffusible growth stimulatory factors. Murine F7 cells thus have the unique property of generating immortal cell hybrids containing unusually high numbers of chromosomes derived from normal cells. These hybrid cells can be employed in various studies to improve our understanding of regenerative biology. This is the first report, to our knowledge, describing the generation of experimentally induced cell hybrids by using normal primary MSC.

  7. Early-onset Evans syndrome, immunodeficiency, and premature immunosenescence associated with tripeptidyl-peptidase II deficiency

    PubMed Central

    Stepensky, Polina; Rensing-Ehl, Anne; Gather, Ruth; Revel-Vilk, Shoshana; Fischer, Ute; Nabhani, Schafiq; Beier, Fabian; Brümmendorf, Tim H.; Fuchs, Sebastian; Zenke, Simon; Firat, Elke; Pessach, Vered Molho; Borkhardt, Arndt; Rakhmanov, Mirzokhid; Keller, Bärbel; Warnatz, Klaus; Eibel, Hermann; Niedermann, Gabriele; Elpeleg, Orly

    2015-01-01

    Autoimmune cytopenia is a frequent manifestation of primary immunodeficiencies. Two siblings presented with Evans syndrome, viral infections, and progressive leukopenia. DNA available from one patient showed a homozygous frameshift mutation in tripeptidyl peptidase II (TPP2) abolishing protein expression. TPP2 is a serine exopeptidase involved in extralysosomal peptide degradation. Its deficiency in mice activates cell death programs and premature senescence. Similar to cells from naïve, uninfected TPP2-deficient mice, patient cells showed increased major histocompatibility complex I expression and most CD8+ T-cells had a senescent CCR7-CD127−CD28−CD57+ phenotype with poor proliferative responses and enhanced staurosporine-induced apoptosis. T-cells showed increased expression of the effector molecules perforin and interferon-γ with high expression of the transcription factor T-bet. Age-associated B-cells with a CD21− CD11c+ phenotype expressing T-bet were increased in humans and mice, combined with antinuclear antibodies. Moreover, markers of senescence were also present in human and murine TPP2-deficient fibroblasts. Telomere lengths were normal in patient fibroblasts and granulocytes, and low normal in lymphocytes, which were compatible with activation of stress-induced rather than replicative senescence programs. TPP2 deficiency is the first primary immunodeficiency linking premature immunosenescence to severe autoimmunity. Determination of senescent lymphocytes should be part of the diagnostic evaluation of children with refractory multilineage cytopenias. PMID:25414442

  8. MAPK regulation of IL-4/IL-13 receptors contributes to the synergistic increase in CCL11/eotaxin-1 in response to TGF-β1 and IL-13 in human airway fibroblasts.

    PubMed

    Zhou, Xiuxia; Hu, Haizhen; Balzar, Silvana; Trudeau, John B; Wenzel, Sally E

    2012-06-15

    CCL11/eotaxin-1 is a potent eosinophilic CC chemokine expressed by primary human fibroblasts. The combination of TGF-β1 and IL-13 synergistically increases CCL11 expression, but the mechanisms behind the synergy are unclear. To address this, human airway fibroblast cultures from normal and asthmatic subjects were exposed to IL-13 alone or TGF-β1 plus IL-13. Transcriptional (nuclear run-on) and posttranscriptional (mRNA stability) assays confirmed that transcriptional regulation is critical for synergistic expression of CCL11. TGF-β1 plus IL-13 synergistically increased STAT-6 phosphorylation, nuclear translocation, and binding to the CCL11 promoter as compared with IL-13 alone. STAT-6 small interfering RNA significantly knocked down both STAT-6 mRNA expression and phosphorylation and inhibited CCL11 mRNA and protein expression. Regulation of the IL-4Rα complex by TGF-β1 augmented IL-13 signaling by dampening IL-13Rα2 expression, overcoming IL-13's autoregulation of its pathway and enhancing the expression of CCL11. Our data suggest that TGF-β1 induced activation of the MEK/ERK pathway reduces IL-13Rα2 expression induced by IL-13. Thus, TGF-β1, a pleiotropic cytokine upregulated in asthmatic airways, can augment eosinophilic inflammation by interfering with IL-13's negative feedback autoregulatory loop under MEK/ERK-dependent conditions.

  9. Effects of combined pulse electromagnetic field stimulation plus glutamine on the healing of colonic anastomosis in rats.

    PubMed

    Girgin, Sadullah; Gedik, Ercan; Ozturk, Hayrettin; Akpolat, Veysi; Akbulut, Veysi; Kale, Ebru; Buyukbayram, Huseyin; Celik, Salih

    2009-04-01

    An experimental study was designed to investigate the effect of combined pulse electromagnetic field (PEMF) stimulation plus glutamine administration on colonic anastomosis. Anastomosis of the left colon was performed in 28 rats, which were divided into four groups; Group 1: normal resection anastomosis plus oral 50 mg/kg/day glutamine; Group 2: normal resection anastomosis plus PEMF stimulation plus oral 50 mg/kg/day glutamine; Group 3: normal resection anastomosis plus PEMF stimulation; Group 4: normal resection anastomosis. On the seventh postoperative day, the animals were killed and the bursting pressure and tissue hydroxyproline concentration of the anastomosis were analyzed and compared. The mean anastomotic bursting pressure in Group 2 was significantly higher than in Groups 1 and 4. On the other hand, the mean anastomotic bursting pressure in Group 1 was significantly higher than in Group 4. The collagen deposition and the fibroblast infiltration were significantly increased on the seventh day in Group 3 compared the other groups. On the other hand, Groups 1 and 2 had higher scores for collagen deposition and fibroblast infiltration than Group 4. In conclusion, burst pressures, hydroxyproline, and histologic features (fibroblast infiltration and collagen deposition) were improved in the PEMF group, and both PEMF and glutamine-enriched nutrition provide a significant gain in the strength of colonic anastomoses in rats.

  10. Halloysite and chitosan oligosaccharide nanocomposite for wound healing.

    PubMed

    Sandri, Giuseppina; Aguzzi, Carola; Rossi, Silvia; Bonferoni, Maria Cristina; Bruni, Giovanna; Boselli, Cinzia; Cornaglia, Antonia Icaro; Riva, Federica; Viseras, Cesar; Caramella, Carla; Ferrari, Franca

    2017-07-15

    Halloysite is a natural nanotubular clay mineral (HNTs, Halloysite Nano Tubes) chemically identical to kaolinite and, due to its good biocompatibility, is an attractive nanomaterial for a vast range of biological applications. Chitosan oligosaccharides are homo- or heterooligomers of N-acetylglucosamine and D-glucosamine, that accelerate wound healing by enhancing the functions of inflammatory and repairing cells. The aim of the work was the development of a nanocomposite based on HNTs and chitosan oligosaccharides, to be used as pour powder to enhance healing in the treatment of chronic wounds. A 1:0.05 wt ratio HTNs/chitosan oligosaccharide nanocomposite was obtained by simply stirring the HTNs powder in a 1% w/w aqueous chitosan oligosaccharide solution and was formed by spontaneous ionic interaction resulting in 98.6% w/w HTNs and 1.4% w/w chitosan oligosaccharide composition. Advanced electron microscopy techniques were considered to confirm the structure of the hybrid nanotubes. Both HTNs and HTNs/chitosan oligosaccharide nanocomposite showed good in vitro biocompatibility with normal human dermal fibroblasts up to 300μg/ml concentration and enhanced in vitro fibroblast motility, promoting both proliferation and migration. The HTNs/chitosan oligosaccharide nanocomposite and the two components separately were tested for healing capacity in a murine (rat) model. HTNs/chitosan oligosaccharide allowed better skin reepithelization and reorganization than HNTs or chitosan oligosaccharide separately. The results suggest to develop the nanocomposite as a medical device for wound healing. The present work is focused on the development of halloysite and chitosan oligosaccharide nanocomposite for wound healing. It considers a therapeutic option for difficult to heal skin lesions and burns. The significance of the research considers two fundamental aspects: the first one is related to the development of a self-assembled nanocomposite, formed by spontaneous ionic interaction, while the second one is related to the possibility to find an effective treatment for cutaneous non healing lesions. The characterization of this hybrid system involves a multidisciplinary approach considering integrated techniques of solid state investigation and advanced electron microscopies, and in vitro/in vivo models to understand biocompatibility and proliferation properties (enhancement of in vitro fibroblast motility, proliferation and migration, and of in vivo burn healing), to understand safety and effectiveness of the developed nanocomposite. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. [Primary culture and characteristics of colorectal cancer-associated fibroblasts].

    PubMed

    Wen, Huan; Nie, Qianqian; Jiang, Zhinong; Deng, Hong

    2015-10-01

    To compare the biological characteristics of colorectal cancer associated fibroblasts (CAFs) with normal fibroblasts (NFs). CAFs and NFs were isolated from fresh specimens of colorectal cancer and their paired normal colon tissue and cultured by tissue explant method. Light microscopy, quantitative polymerase chain reaction (qPCR), Western blot, immunofluorescence microscopy, electron microscopy and flow cytometry were used to identify isolated fibroblasts and to explore their characteristics of activation and growth. Primary colorectal CAFs and NFs were isolated and cultured successfully. NFs showed spindled morphology and were arranged in interlacing or spiral bundles. CAFs were polygonal or spindle, but were fatter than NFs. They were distributed randomly and arranged irregularly, and had obvious actin expression. CAFs and NFs both expressed fibronectin, but not E-cadherin, CD31 and caldesmon. qPCR showed that CAFs expressed more fibroblast activation protein (FAP) and less fibroblast specific protein 1 (FSP1) than that of NFs. There was no difference in the expression of α-SMA between NFs and CAFs by Western blot. α-SMA was bundled in parallel to the long axis of the cell by immunofluorescence. By electron microscopy, CAFs but not NFs showed dense myofilament that was arranged regularly. Flow cytometry showed that the percentage of S- and G2-phase in CAFs were significantly lower than that in NFs. mRNA expression of transforming growth factor β1, stromal derived factor 1 (SDF-1) and platelet derived growth factor (PDGF)-D in CAFs were lower while that for PDGFC was higher than that in NFs. That indicated the proliferation of CAFs was inhibited and the secretion of some cytokines was different when compared with NFs. CAFs show differences with NFs in morphology, characteristics of activation and secretion of some cytokines. The proliferation of CAFs is down regulated as compared with NFs.

  12. Different patterns of nuclear and mitochondrial penetration by the G3 PAMAM dendrimer and its biotin–pyridoxal bioconjugate BC-PAMAM in normal and cancer cells in vitro

    PubMed Central

    Uram, Łukasz; Szuster, Magdalena; Filipowicz, Aleksandra; Gargasz, Krzysztof; Wołowiec, Stanisław; Wałajtys-Rode, Elżbieta

    2015-01-01

    The intracellular localization and colocalization of a fluorescently labeled G3 amine-terminated cationic polyamidoamine (PAMAM) dendrimer and its biotin–pyridoxal (BC-PAMAM) bioconjugate were investigated in a concentration-dependent manner in normal human fibroblast (BJ) and squamous epithelial carcinoma (SCC-15) cell lines. After 24 hours treatment, both cell lines revealed different patterns of intracellular dendrimer accumulation depending on their cytotoxic effects. Cancer cells exhibited much higher (20-fold) tolerance for native PAMAM treatment than fibroblasts, whereas BC-PAMAM was significantly toxic only for fibroblasts at 50 µM concentration. Fibroblasts accumulated the native and bioconjugated dendrimers in a concentration-dependent manner at nontoxic range of concentration, with significantly lower bioconjugate loading. After reaching the cytotoxicity level, fluorescein isothiocyanate-PAMAM accumulation remains at high, comparable level. In cancer cells, native PAMAM loading at higher, but not cytotoxic concentrations, was kept at constant level with a sharp increase at toxic concentration. Mander’s coefficient calculated for fibroblasts and cancer cells confirmed more efficient native PAMAM penetration as compared to BC-PAMAM. Significant differences in nuclear dendrimer penetration were observed for both cell lines. In cancer cells, PAMAM signals amounted to ~25%–35% of the total nuclei area at all investigated concentrations, with lower level (15%–25%) observed for BC-PAMAM. In fibroblasts, the dendrimer nuclear signal amounted to 15% at nontoxic and up to 70% at toxic concentrations, whereas BC-PAMAM remained at a lower concentration-dependent level (0.3%–20%). Mitochondrial localization of PAMAM and BC-PAMAM revealed similar patterns in both cell lines, depending on the extracellular dendrimer concentration, and presented significantly lower signals from BC-PAMAM, which correlated well with the cytotoxicity. PMID:26379435

  13. Targeting of TAM Receptors Ameliorates Fibrotic Mechanisms in Idiopathic Pulmonary Fibrosis.

    PubMed

    Espindola, Milena S; Habiel, David M; Narayanan, Rohan; Jones, Isabelle; Coelho, Ana L; Murray, Lynne A; Jiang, Dianhua; Noble, Paul W; Hogaboam, Cory M

    2018-06-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant lung remodeling, which progressively abolishes lung function in an RTK (receptor tyrosine kinase)-dependent manner. Gas6 (growth arrest-specific 6) ligand, Tyro3 (TYRO3 protein tyrosine kinase 3), and Axl (anexelekto) RTK expression and activity are increased in IPF. To determine if targeting these RTK pathways would inhibit fibroblast activation and the development of pulmonary fibrosis. Quantitative genomic, proteomic, and functional analyses were used to determine Gas6/TAM (Tyro3, Axl, and Mertk [MER proto-oncogene, tyrosine kinase]) RTK expression and activation in tissues and fibroblasts from normal and IPF lungs. The profibrotic impact of these RTK pathways were also examined in bleomycin-induced pulmonary fibrosis and in SCID/Bg mice that developed pulmonary fibrosis after the intravenous administration of primary IPF fibroblasts. Gas6, Axl, and Tyro3 were increased in both rapidly and slowly progressive IPF compared with normal lung samples and fibroblasts. Targeting these pathways with either specific antibodies directed at Gas6 or Axl, or with small-molecule TAM inhibitors indicated that the small molecule-mediated targeting approach was more efficacious in both in vitro and in vivo studies. Specifically, the TAM receptor inhibitor R428 (also known as BGB324) significantly inhibited the synthetic, migratory, and proliferative properties of IPF fibroblasts compared with the other Gas6/TAM receptor targeting agents. Finally, loss of Gas6 expression decreased lung fibrotic responses to bleomycin and treatment with R428 inhibited pulmonary fibrosis in humanized SCID/Bg mice. Gas6/TAM receptor activity contributes to the activation of pulmonary fibroblasts in IPF, suggesting that targeting this RTK pathway might be an effective antifibrotic strategy in this disease.

  14. The adipokine adiponectin has potent anti-fibrotic effects mediated via adenosine monophosphate-activated protein kinase: novel target for fibrosis therapy

    PubMed Central

    2012-01-01

    Introduction Fibrosis in scleroderma is associated with collagen deposition and myofibroblast accumulation. Peroxisome proliferator activated receptor gamma (PPAR-γ), a master regulator of adipogenesis, inhibits profibrotic responses induced by transforming growth factor-ß (TGF-β), and its expression is impaired in scleroderma. The roles of adiponectin, a PPAR-γ regulated pleiotropic adipokine, in regulating the response of fibroblasts and in mediating the effects of PPAR-γ are unknown. Methods Regulation of fibrotic gene expression and TGF-ß signaling by adiponectin and adenosine monophosphate protein-activated (AMP) kinase agonists were examined in normal fibroblasts in monolayer cultures and in three-dimensional skin equivalents. AdipoR1/2 expression on skin fibroblasts was determined by real-time quantitative PCR. Results Adiponectin, an adipokine directly regulated by PPAR-γ, acts as a potent anti-fibrotic signal in normal and scleroderma fibroblasts that abrogates the stimulatory effects of diverse fibrotic stimuli and reduces elevated collagen gene expression in scleroderma fibroblasts. Adiponectin responses are mediated via AMP kinase, a fuel-sensing cellular enzyme that is necessary and sufficient for down-regulation of fibrotic genes by blocking canonical Smad signaling. Moreover, we demonstrate that endogenous adiponectin accounts, at least in part, for the anti-fibrotic effects exerted by ligands of PPAR-γ. Conclusions These findings reveal a novel link between cellular energy metabolism and extracellular matrix homeostasis converging on AMP kinase. Since the levels of adiponectin as well as its receptor are impaired in scleroderma patients with progressive fibrosis, the present results suggest a potential role for defective adiponectin expression or function in progressive fibrogenesis in scleroderma and other chronic fibrosing conditions. Restoring the adiponectin signaling axis in fibroblasts might, therefore, represent a novel pharmacological approach to controlling fibrosis. PMID:23092446

  15. Expression of WNT5A in Idiopathic Pulmonary Fibrosis and Its Control by TGF-β and WNT7B in Human Lung Fibroblasts.

    PubMed

    Newman, Donna R; Sills, W Shane; Hanrahan, Katherine; Ziegler, Amanda; Tidd, Kathleen McGinnis; Cook, Elizabeth; Sannes, Philip L

    2016-02-01

    The wingless (Wnt) family of signaling ligands contributes significantly to lung development and is highly expressed in patients with usual interstitial pneumonia (UIP). We sought to define the cellular distribution of Wnt5A in the lung tissue of patients with idiopathic pulmonary fibrosis (IPF) and the signaling ligands that control its expression in human lung fibroblasts and IPF myofibroblasts. Tissue sections from 40 patients diagnosed with IPF or UIP were probed for the immunolocalization of Wnt5A. Further, isolated lung fibroblasts from normal or IPF human lungs, adenovirally transduced for the overexpression or silencing of Wnt7B or treated with TGF-β1 or its inhibitor, were analyzed for Wnt5A protein expression. Wnt5A was expressed in IPF lungs by airway and alveolar epithelium, smooth muscle cells, endothelium, and myofibroblasts of fibroblastic foci and throughout the interstitium. Forced overexpression of Wnt7B with or without TGF-β1 treatment significantly increased Wnt5A protein expression in normal human smooth muscle cells and fibroblasts but not in IPF myofibroblasts where Wnt5A was already highly expressed. The results demonstrate a wide distribution of Wnt5A expression in cells of the IPF lung and reveal that it is significantly increased by Wnt7B and TGF-β1, which, in combination, could represent key signaling pathways that modulate the pathogenesis of IPF. © 2016 The Histochemical Society.

  16. Colorectal cancer cell-derived exosomes containing miR-10b regulate fibroblast cells via the PI3K/Akt pathway.

    PubMed

    Dai, Guangyao; Yao, Xiaoguang; Zhang, Yubin; Gu, Jianbin; Geng, Yunfeng; Xue, Fei; Zhang, Jingcheng

    2018-04-01

    Cancer-associated fibroblasts (CAFs) contribute to the proliferation of colorectal cancer(CRC) cells. However, the mechanism by which CAFs develop in the tumor microenvironment remains unknown. Exosomes may be involved in activating CAFs. Using a miRNA expression profiling array, we determined the miRNA expression profile of secretory exosomes in CRC cells and then identified potential miRNAs with significant differential expression compared to normal cells via enrichment analysis. Predicted targets of candidate miRNAs were then assessed via bioinformatics analysis. Realtime qPCR, western blot, and cell cycle analyses were performed to evaluate the role of candidate exosomal miRNAs. Luciferase reporter assays were applied to confirm whether candidate exosomal miRNAs control target pathway expression. A CRC xenograft mouse model was constructed to evaluate tumor growth in vivo. Exosomes from CRC cells contained significantly higher levels of miR-10b than did exosomes from normal colorectal epithelial cells. Moreover, exosomes containing miR-10b were transferred to fibroblasts. Bioinformatics analysis identified PIK3CA, as a potential target of miR-10b. Luciferase reporter assays confirmed that miR-10b directly inhibited PIK3CA expression. Co-culturing fibroblasts with exosomes containing miR-10b significantly suppressed PIK3CA expression and decreased PI3K/Akt/mTOR pathway activity. Finally, exosomes containing miR-10b reduced fibroblast proliferation but promoted expression of TGF-β and SM α-actin, suggesting that exosomal miR-10b may activate fibroblasts to become CAFs that express myofibroblast markers. These activated fibroblasts were able to promote CRC growth in vitro and in vivo. CRC-derived exosomes actively promote disease progression by modulating surrounding stromal cells, which subsequently acquire features of CAFs. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  17. Lysine hydroxylation of collagen in a fibroblast cell culture system

    NASA Technical Reports Server (NTRS)

    Uzawa, Katsuhiro; Yeowell, Heather N.; Yamamoto, Kazushi; Mochida, Yoshiyuki; Tanzawa, Hideki; Yamauchi, Mitsuo

    2003-01-01

    The lysine (Lys) hydroxylation pattern of type I collagen produced by human fibroblasts in culture was analyzed and compared. Fibroblasts were cultured from normal human skin (NSF), keloid (KDF), fetal skin (FDF), and skin tissues of Ehlers-Danlos syndrome type VIA and VIB patients (EDS-VIA and -VIB). The type I collagen alpha chains with or without non-helical telopeptides were purified from the insoluble matrix and analyzed. In comparison with NSFs, KDF and FDF showed significantly higher Lys hydroxylation, particularly in the telopeptide domains of both alpha chains. Both EDS-VIA and -VIB showed markedly lower Lys hydroxylation in the helical domains of both alpha chains whereas that in the telopeptides was comparable with those of NSFs. A similar profile was observed in the tissue sample of the EDS-VIB patient. These results demonstrate that the Lys hydroxylation pattern is domain-specific within the collagen molecule and that this method is useful to characterize the cell phenotypes in normal/pathological connective tissues.

  18. The synthetic purine reversine selectively induces cell death of cancer cells.

    PubMed

    Piccoli, Marco; Palazzolo, Giacomo; Conforti, Erika; Lamorte, Giuseppe; Papini, Nadia; Creo, Pasquale; Fania, Chiara; Scaringi, Raffaella; Bergante, Sonia; Tringali, Cristina; Roncoroni, Leda; Mazzoleni, Stefania; Doneda, Luisa; Galli, Rossella; Venerando, Bruno; Tettamanti, Guido; Gelfi, Cecilia; Anastasia, Luigi

    2012-10-01

    The synthetic purine reversine has been shown to possess a dual activity as it promotes the de-differentiation of adult cells, including fibroblasts, into stem-cell-like progenitors, but it also induces cell growth arrest and ultimately cell death of cancer cells, suggesting its possible application as an anti-cancer agent. Aim of this study was to investigate the mechanism underneath reversine selectivity in inducing cell death of cancer cells by a comparative analysis of its effects on several tumor cells and normal dermal fibroblasts. We found that reversine is lethal for all cancer cells studied as it induces cell endoreplication, a process that malignant cells cannot effectively oppose due to aberrations in cell cycle checkpoints. On the other hand, normal cells, like dermal fibroblasts, can control reversine activity by blocking the cell cycle, entering a reversible quiescent state. However, they can be induced to become sensitive to the molecule when key cell cycle proteins, e.g., p53, are silenced. Copyright © 2012 Wiley Periodicals, Inc.

  19. Properties of murine embryonic stem cells maintained on human foreskin fibroblasts without LIF.

    PubMed

    Meng, G L; Zur Nieden, N I; Liu, S Y; Cormier, J T; Kallos, M S; Rancourt, D E

    2008-04-01

    In embryonic stem (ES) cells, leukemia inhibitory factor (LIF)/STAT3, wnt and nodal/activin signaling are mainly active to control pluripotency during expansion. To maintain pluripotency, ES cells are typically cultured on feeder cells of varying origins. Murine ES cells are commonly cultured on murine embryonic fibroblasts (MEFs), which senesce early and must be frequently prepared. This process is laborious and leads to batch variation presenting a challenge for high-throughput ES cell expansion. Although some cell lines can be sustained by exogenous LIF, this method is costly. We present here a novel and inexpensive culture method for expanding murine ES cells on human foreskin fibroblast (HFF) feeders. After 20 passages on HFFs without LIF, ES cell lines showed normal expression levels of pluripotency markers, maintained a normal karyotype and retained the ability to contribute to the germline. As HFFs do not senesce for at least 62 passages, they present a vast supply of feeders. Copyright 2007 Wiley-Liss, Inc.

  20. Primary mouse lung fibroblasts help macrophages to tackle Mycobacterium tuberculosis more efficiently and differentiate into myofibroblasts up on bacterial stimulation.

    PubMed

    Verma, Subash Chand; Agarwal, Pooja; Krishnan, Manju Y

    2016-03-01

    Keeping with their classical role in wound healing, fibroblasts of the lung take part in the resolution of tubercular granulomas. They are totally absent in nascent granulomas, but surround necrotizing granulomas, and are the majority of cells in healed granulomas. Lung fibroblasts may become infected with Mycobacterium tuberculosis (Mtb). Two previous studies suggested an immunomodulatory effect of fibroblasts on infected macrophages. In the present study, we looked at the role of primary mouse lung fibroblasts on naive or activated mouse bone marrow macrophages infected with Mtb and the effect of infection on fibroblast properties. We observed that with fibroblasts in the vicinity, infected naive macrophages restricted the bacterial growth, while activated macrophages turned more bactericidal with concomitant increase in nitrite production. Neutralizing IL-1α in fibroblast supernatant reduced the nitrite production by infected macrophages. Secretion of IL-6 and MCP-1 was down-regulated, while TNF-α was up-regulated in infected naive macrophages. In infected activated macrophages, the secretion of IL-6 was up-regulated, while that of MCP-1 and TNF-α was unaffected. The 'fibroblast effects' were enhanced when the fibroblasts too were infected. Mtb induced IL-1 secretion and pro-fibrotic responses by fibroblasts. Mtb-induced myofibroblast conversion was blocked by rapamycin suggesting cell signalling via mTOR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Modulation of DNA damage response and induction of apoptosis mediates synergism between doxorubicin and a new imidazopyridine derivative in breast and lung cancer cells.

    PubMed

    El-Awady, Raafat A; Semreen, Mohammad H; Saber-Ayad, Maha M; Cyprian, Farhan; Menon, Varsha; Al-Tel, Taleb H

    2016-01-01

    DNA damage response machinery (DDR) is an attractive target of cancer therapy. Modulation of DDR network may alter the response of cancer cells to DNA damaging anticancer drugs such as doxorubicin. The aim of the present study is to investigate the effects of a newly developed imidazopyridine (IAZP) derivative on the DDR after induction of DNA damage in cancer cells by doxorubicin. Cytotoxicity sulphrhodamine-B assay showed a weak anti-proliferative effect of IAZP alone on six cancer cell lines (MCF7, A549, A549DOX11, HepG2, HeLa and M8) and a normal fibroblast strain. Combination of IAZP with doxorubicin resulted in synergism in lung (A549) and breast (MCF7) cancer cells but neither in the other cancer cell lines nor in normal fibroblasts. Molecular studies revealed that synergism is mediated by modulation of DNA damage response and induction of apoptosis. Using constant-field gel electrophoresis and immunofluorescence detection of γ-H2AX foci, IAZP was shown to inhibit the repair of doxorubicin-induced DNA damage in A549 and MCF7 cells. Immunoblot analysis showed that IAZP suppresses the phosphorylation of the ataxia lelangiectasia and Rad3 related (ATR) protein, which is an important player in the response of cancer cells to chemotherapy-induced DNA damage. Moreover, IAZP augmented the doxorubicin-induced degradation of p21, activation of p53, CDK2, caspase 3/7 and phosphorylation of Rb protein. These effects enhanced doxorubicin-induced apoptosis in both cell lines. Our results indicate that IAZP is a promising agent that may enhance the cytotoxic effects of doxorubicin on some cancer cells through targeting the DDR. It is a preliminary step toward the clinical application of IAZP in combination with anticancer drugs and opens the avenue for the development of compounds targeting the DDR pathway that might improve the therapeutic index of anticancer drugs and enhance their cure rate. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The potentiation by caffeine of X-ray damage to cultured human skin fibroblasts from normal subjects and ataxia-telangiectasia patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furcinitti, P.S.

    1983-07-01

    Caffeine was found to potentiate X-ray-induced killing of human diploid fibroblasts from a normal subject and an ataxia-telangiectasia (AT) patient when it was present at 2 mM concentration for 30 to 66 hr postirradiation. The dose-modifying factor for caffeine-treated normal cells had an average value of 1.26 +/- 0.13 which did not vary significantly with treatment time or X-ray dose. The dose-modifying factor for caffeine-treated AT cells was 1.12 +/- 0.12 at 30 hr, rose to 1.66 +/- 0.17 at 41 hr, and decreased to 1.31 +/- 0.13 at 66 hr. Thus no clear difference was observed between these twomore » cell strains' susceptibility to postirradiation caffeine treatment.« less

  3. Potentiation by caffeine of x-ray damage to cultured human skin fibroblasts from normal subjects and ataxia-telangiectasia patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furcinitti, P.S.

    1983-07-01

    Caffeine was found to potentiate x-ray-induced killing of human diploid fibroblasts from a normal subject and an ataxia-telangiectasia (AT) patient when it was present at 2 mM concentration for 30 to 66 h postirradiation. The dose-modifying factor for caffeine-treated normal cells had an average value of 1.26 +- 0.13 which did not vary significantly with treatment time or x-ray dose. The dose-modifying factor for caffeine-treated AT cells was 1.12 +- 0.12 at 30 h, rose to 1.66 +- 0.17 at 41 h, and decreased to 1.31 +- 0.13 at 66 h. Thus no clear difference was observed between these twomore » cell strains' susceptibility to postirradiation caffeine treatment.« less

  4. Culture, characteristics and chromosome complement of Siberian tiger fibroblasts for nuclear transfer.

    PubMed

    Song, Jimei; Hua, Song; Song, Kai; Zhang, Yong

    2007-01-01

    Tiger (Panthera tigris Linnaeus, 1758) is a characteristic species of Asia, which is in severe danger. Siberian tiger (Panthera tigris altaica) is the largest one of the five existent tiger subspecies. It is extremely endangered. One new way for tiger protection and rescue is to study interspecies cloning. But there is few research data about Siberian tiger. In this study, we cultured Siberian tiger fibroblasts in vitro, analyzed their biological characteristics, chromosomes, and cell cycles, to provide not only nuclear donors with good morphology, normal biological characteristics, and chromosome quantity for tiger interspecies cloning, but also reliable data for further studying Siberian tiger. The results indicated that Siberian tiger ear fibroblasts can be successfully obtained by tissue culture either with or without overnight cold digestion, the cultured cells were typical fibroblasts with normal morphology, growth curve, and chromosome quantity; G0/G1 percentage increased and S percentage decreased with the confluence of cells. G0/G1 and S stage rate was significantly different between 40-50% and 80-90%, 95-100% confluence; there is no distinct difference between 80-90% and 95-100% confluence. The cells at the same density (80-90% confluence) were treated with or without 0.5% serum starving, GO/G1 rate of the former was higher than the latter, but the difference was not significant. GO/G1 proportion of 95-100% confluence was slightly higher than serum starving (80-90% confluence), but no significant difference. Therefore, the Siberian tiger fibroblasts we cultured in vitro can be used as donor cells, and the donor cells do not need to be treated with normal serum starvation during nuclear transfer; if we will just consider the rate of the G0/G1 stage cells, serum starvation can be replaced by confluence inhibition when cultured cells were more than 80-90% confluence.

  5. Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression.

    PubMed

    Beacham, Dorothy A; Cukierman, Edna

    2005-10-01

    During tumorigenesis, reciprocal changes in stromal fibroblasts and tumor cells induce changes to the neoplastic microenvironmental landscape. In stromagenesis, both the complex network of bi-directional stromal fibroblastic signaling pathways and the stromal extracellular matrix are modified. The presence of a 'primed' stroma during the early, reversible stage of tumorigenesis is optimal for stromal-directed therapeutic intervention. Three-dimensional (3D) cell culture systems have been developed that mimic the in vivo microenvironment. These systems provide unique experimental tools to identify early alterations in stromagenesis that are supportive of tumor progression with the ultimate goal of blocking neoplastic permissiveness and restoring normal phenotypes.

  6. 8,12;8,20-diepoxy-8,14-secopregnane glycosides from roots of Asclepias tuberosa and their effect on proliferation of human skin fibroblasts.

    PubMed

    Warashina, Tsutomu; Umehara, Kaoru; Miyase, Toshio; Noro, Tadataka

    2011-10-01

    A pregnane glycoside fraction from the roots of Asclepias tuberosa L. caused normal human skin fibroblasts to proliferate. This fraction contained 21 pregnane glycosides whose structures were established using NMR spectroscopic analysis and chemical evidence. The aglycones of most of these compounds were identified as 8,12;8,20-diepoxy-8,14-secopregnanes, such as tuberogenin or 5,6-didehydrotuberogenin, the same aglycones as constituents of the aerial parts of this plant. Some of these compounds also caused proliferation of skin fibroblasts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Bioenergetic Approaches and Inflammation of MPTP Toxicity

    DTIC Science & Technology

    2011-09-01

    out a large number of studies, which showed that there were indeed significant protective effects. In particular, we were able to show that CoQ ...the Nrf2/ARE pathway. We demonstrated that these compounds can induce antioxidant enzymes in normal fibroblasts, however, the ability to induce thee...2 enzymes glutathione·c transferase, NADPH quinone oxidoreductase and heme·oxygenase was blocked in fibroblasts knocked out for Nrf2/ARE. We

  8. Proinflammatory Effects of Diesel Exhaust Nanoparticles on Scleroderma Skin Cells

    PubMed Central

    Mastrofrancesco, A.; Alfè, M.; Rosato, E.; Gargiulo, V.; Beatrice, C.; Di Blasio, G.; Zhang, B.; Su, D. S.; Picardo, M.; Fiorito, S.

    2014-01-01

    Autoimmune diseases are complex disorders of unknown etiology thought to result from interactions between genetic and environmental factors. We aimed to verify whether environmental pollution from diesel engine exhaust nanoparticulate (DEP) of actually operating vehicles could play a role in the development of a rare immune-mediated disease, systemic sclerosis (SSc), in which the pathogenetic role of environment has been highlighted. The effects of carbon-based nanoparticulate collected at the exhaust of newer (Euro 5) and older (Euro 4) diesel engines on SSc skin keratinocytes and fibroblasts were evaluated in vitro by assessing the mRNA expression of inflammatory cytokines (IL-1α, IL-6, IL-8, and TNF-α) and fibroblast chemical mediators (metalloproteases 2, 3, 7, 9, and 12; collagen types I and III; VEGF). DEP was shown to stimulate cytokine gene expression at a higher extent in SSc keratinocytes versus normal cells. Moreover, the mRNA gene expression of all MMPs, collagen types, and VEGF genes was significantly higher in untreated SSc fibroblasts versus controls. Euro 5 particle exposure increased the mRNA expression of MMP-2, -7, and -9 in SSc fibroblasts in a dose dependent manner and only at the highest concentration in normal cells. We suggest that environmental DEP could trigger the development of SSc acting on genetically hyperreactive cell systems. PMID:24982919

  9. Zoledronic acid impairs stromal reactivity by inhibiting M2-macrophages polarization and prostate cancer-associated fibroblasts.

    PubMed

    Comito, Giuseppina; Pons Segura, Coral; Taddei, Maria Letizia; Lanciotti, Michele; Serni, Sergio; Morandi, Andrea; Chiarugi, Paola; Giannoni, Elisa

    2017-01-03

    Zoledronic acid (ZA) is a biphosphonate used for osteoporosis treatment and also proved to be effective to reduce the pain induced by bone metastases when used as adjuvant therapy in solid cancers. However, it has been recently proposed that ZA could have direct anti-tumour effects, although the molecular mechanism is unknown. We herein unravel a novel anti-tumour activity of ZA in prostate cancer (PCa), by targeting the pro-tumorigenic properties of both stromal and immune cells. Particularly, we demonstrate that ZA impairs PCa-induced M2-macrophages polarization, reducing their pro-invasive effect on tumour cells and their pro-angiogenic features. Crucially, ZA administration reverts cancer associated fibroblasts (CAFs) activation by targeting the mevalonate pathway and RhoA geranyl-geranylation, thereby impairing smooth muscle actin-α fibers organization, a prerequisite of fibroblast activation. Moreover, ZA prevents the M2 macrophages-mediated activation of normal fibroblast, highlighting the broad efficacy of this drug on tumour microenvironment. These results are confirmed in a metastatic xenograft PCa mouse model in which ZA-induced stromal normalization impairs cancer-stromal cells crosstalk, resulting in a significant reduction of primary tumour growth and metastases. Overall these findings reinforce the efficacy of ZA as a potential therapeutic approach to reduce cancer aggressiveness, by abrogating the supportive role of tumour microenvironment.

  10. 9-AAA inhibits growth and induces apoptosis in human melanoma A375 and rat prostate adenocarcinoma AT-2 and Mat-LyLu cell lines but does not affect the growth and viability of normal fibroblasts.

    PubMed

    Korohoda, Włodzimierz; Hapek, Anna; Pietrzak, Monika; Ryszawy, Damian; Madeja, Zbigniew

    2016-11-01

    The present study found that, similarly to 5-fluorouracil, low concentrations (1-10 µM) of 9-aminoacridine (9-AAA) inhibited the growth of the two rat prostate cancer AT-2 and Mat-LyLu cell lines and the human melanoma A375 cell line. However, at the same concentrations, 9-AAA had no effect on the growth and apoptosis of normal human skin fibroblasts (HSFs). The differences between the cellular responses of the AT-2 and Mat-LyLu cell lines, which differ in malignancy, were found to be relatively small compared with the differences between normal HSFs and the cancer cell lines. Visible effects on the cell growth and survival of tumor cell lines were observed after 24-48 h of treatment with 9-AAA, and increased over time. The inhibition of cancer cell growth was found to be due to the gradually increasing number of cells dying by apoptosis, which was observed using two methods, direct counting and FlowSight analysis. Simultaneously, cell motile activity decreased to the same degree in cancer and normal cells within the first 8 h of incubation in the presence of 9-AAA. The results presented in the current study suggest that short-lasting tests for potential anticancer substances can be insufficient; which may result in cell type-dependent differences in the responses of cells to tested compounds that act with a delay being overlooked. The observed differences in responses between normal human fibroblasts and cancer cells to 9-AAA show the requirement for additional studies to be performed simultaneously on differently reacting cancer and normal cells, to determine the molecular mechanisms responsible for these differences.

  11. [Ultrastructural observation of tendonization of artificial tendon 109HH in rabbit].

    PubMed

    Liu, L; Cao, Q; Xiao, H

    1995-09-01

    Ten New Zealand rabbits were divided into 5 groups at random. Calcaneal tendons were cut bilaterally, then atificial tendon 109HH was used to connect the two ends of the cut tendon. Ultrastructural changes of control group and experimental groups at 2, 6, 12, 28 weeks after section were observed. The results showed that fibroblast proliferated and a lot of ribosome and RER appeared in plasm during 2 approximately 6 weeks, indicating artificial tendon caused fibroblast proliferation. During this period, fibroblast over synthesized collagenous protein and the synthesis of collagenous fibers peaked. During 12-28 weeks, the number of fibroblasts and the synthesis of collagenous protein decreased. Finally, fibroblasts became inactive tendon cells. With the formation of new tendons, the artificial tendens were degradated and absorbed, and disappeared after 12 weeks. The new tendon fibers became thicker and had the correct direction through reconstruction. The structure and function of new tendons could be restored to be consistent with normal values.

  12. Rho A and the Rho kinase pathway regulate fibroblast contraction: Enhanced contraction in constitutively active Rho A fibroblast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobe, Koji, E-mail: kojinobe@pharm.showa-u.ac.jp; Nobe, Hiromi; Department of Physical Therapy, Bunkyo-Gakuin University

    Research highlights: {yields} Mechanisms of fibroblast cell contraction in collagen matrix. {yields} Assessed an isometric force development using 3D-reconstituted-fibroblast fiber. {yields} Constitutively active Rho A induced the over-contraction of fibroblast cells. {yields} Rho A and Rho kinase pathway has a central role in fibroblast cell contraction. -- Abstract: Fibroblast cells play a central role in the proliferation phase of wound healing processes, contributing to force development. The intracellular signaling pathways regulating this non-muscle contraction are only partially understood. To study the relations between Rho A and contractile responses, constitutively active Rho A (CA-Rho A) fibroblast cells were reconstituted into fibersmore » and the effects of calf serum (CS) on isometric force were studied. CS-induced force in CA-Rho A fibroblast fibers was twice as large as that in wild type (NIH 3T3) fibroblast fibers. During this response, the translocation of Rho A from the cytosol to the membrane was detected by Rho A activity assays and Western blot analysis. Pre-treatment with a Rho specific inhibitor (C3-exoenzyme) suppressed translocation as well as contraction. These results indicate that Rho A activation is essential for fibroblast contraction. The Rho kinase inhibitor ( (Y27632)) inhibited both NIH 3T3 and CA-Rho A fibroblast fiber contractions. Activation of Rho A is thus directly coupled with Rho kinase activity. We conclude that the translocation of Rho A from the cytosol to the membrane and the Rho kinase pathway can regulate wound healing processes mediated by fibroblast contraction.« less

  13. Interaction between head and neck squamous cell carcinoma cells and fibroblasts in the biosynthesis of PGE2

    PubMed Central

    Alcolea, Sonia; Antón, Rosa; Camacho, Mercedes; Soler, Marta; Alfranca, Arantzazu; Avilés-Jurado, Francesc-Xavier; Redondo, Juan-Miguel; Quer, Miquel; León, Xavier; Vila, Luis

    2012-01-01

    Prostaglandin (PG)E2 is relevant in tumor biology, and interactions between tumor and stroma cells dramatically influence tumor progression. We tested the hypothesis that cross-talk between head and neck squamous cell carcinoma (HNSCC) cells and fibroblasts could substantially enhance PGE2 biosynthesis. We observed an enhanced production of PGE2 in cocultures of HNSCC cell lines and fibroblasts, which was consistent with an upregulation of COX-2 and microsomal PGE-synthase-1 (mPGES-1) in fibroblasts. In cultured endothelial cells, medium from fibroblasts treated with tumor cell-conditioned medium induced in vitro angiogenesis, and in tumor cell induced migration and proliferation, these effects were sensitive to PGs inhibition. Proteomic analysis shows that tumor cells released IL-1, and tumor cell-induced COX-2 and mPGES-1 were suppressed by the IL-1-receptor antagonist. IL-1α levels were higher than those of IL-1β in the tumor cell-conditioning medium and in the secretion from samples obtained from 20 patients with HNSCC. Fractionation of tumor cell-conditioning media indicated that tumor cells secreted mature and unprocessed forms of IL-1. Our results support the concept that tumor-associated fibroblasts are a relevant source of PGE2 in the tumor mass. Because mPGES-1 seems to be essential for a substantial biosynthesis of PGE2, these findings also strengthen the concept that mPGES-1 may be \\a target for therapeutic intervention in patients with HNSCC. PMID:22308510

  14. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, M.N.M.; School of Life and Health Science, Aston University, Aston Triangle, Birmingham, B4 7EJ; Wright, K.T.

    2010-04-15

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditionsmore » significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-{beta}1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.« less

  15. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays.

    PubMed

    Walter, M N M; Wright, K T; Fuller, H R; MacNeil, S; Johnson, W E B

    2010-04-15

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-beta1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix. Copyright 2010 Elsevier Inc. All rights reserved.

  16. miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence.

    PubMed

    Cui, Huachun; Ge, Jing; Xie, Na; Banerjee, Sami; Zhou, Yong; Antony, Veena B; Thannickal, Victor J; Liu, Gang

    2017-02-01

    Cellular senescence has been implicated in diverse pathologies. However, there is conflicting evidence regarding the role of this process in tissue fibrosis. Although dysregulation of microRNAs is a key mechanism in the pathogenesis of lung fibrosis, it is unclear whether microRNAs function by regulating cellular senescence in the disease. In this study, we found that miR-34a demonstrated greater expression in the lungs of patients with idiopathic pulmonary fibrosis and in mice with experimental pulmonary fibrosis, with its primary localization in lung fibroblasts. More importantly, miR-34a was up-regulated significantly in both human and mouse lung myofibroblasts. We found that mice with miR-34a ablation developed more severe pulmonary fibrosis than did wild-type animals after fibrotic lung injury. Mechanistically, we found that miR-34a induced a senescent phenotype in lung fibroblasts because this microRNA increased senescence-associated β-galactosidase activity, enhanced expression of senescence markers, and decreased cell proliferative capacities. Consistently, we found that primary lung fibroblasts from fibrotic lungs of miR-34a-deficient mice had a diminished senescent phenotype and enhanced resistance to apoptosis as compared with those from wild-type animals. We also identified multiple miR-34a targets that likely mediated its activities in inducing senescence in lung fibroblasts. In conclusion, our data suggest that miR-34a functions through a negative feedback mechanism to restrain fibrotic response in the lungs by promoting senescence of pulmonary fibroblasts.

  17. Oncogenes induce the cancer-associated fibroblast phenotype

    PubMed Central

    Lisanti, Michael P; Martinez-Outschoorn, Ubaldo E; Sotgia, Federica

    2013-01-01

    Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and “glycolytic reprogramming” in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is “mirrored” by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating “metabolic symbiosis” and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting “fibroblast addiction” in primary and metastatic tumor cells may expose a critical Achilles’ heel, leading to disease regression in both sporadic and familial cancers. PMID:23860382

  18. Hypoxia induces pulmonary fibroblast proliferation through NFAT signaling.

    PubMed

    Senavirathna, Lakmini Kumari; Huang, Chaoqun; Yang, Xiaoyun; Munteanu, Maria Cristina; Sathiaseelan, Roshini; Xu, Dao; Henke, Craig A; Liu, Lin

    2018-02-09

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and typically fatal lung disease with a very low survival rate. Excess accumulation of fibroblasts, myofibroblasts and extracellular matrix creates hypoxic conditions within the lungs, causing asphyxiation. Hypoxia is, therefore, one of the prominent features of IPF. However, there have been few studies concerning the effects of hypoxia on pulmonary fibroblasts. In this study, we investigated the molecular mechanisms of hypoxia-induced lung fibroblast proliferation. Hypoxia increased the proliferation of normal human pulmonary fibroblasts and IPF fibroblasts after exposure for 3-6 days. Cell cycle analysis demonstrated that hypoxia promoted the G1/S phase transition. Hypoxia downregulated cyclin D1 and A2 levels, while it upregulated cyclin E1 protein levels. However, hypoxia had no effect on the protein expression levels of cyclin-dependent kinase 2, 4, and 6. Chemical inhibition of hypoxia-inducible factor (HIF)-2 reduced hypoxia-induced fibroblast proliferation. Moreover, silencing of Nuclear Factor Activated T cell (NFAT) c2 attenuated the hypoxia-mediated fibroblasts proliferation. Hypoxia also induced the nuclear translocation of NFATc2, as determined by immunofluorescence staining. NFAT reporter assays showed that hypoxia-induced NFAT signaling activation is dependent on HIF-2, but not HIF-1. Furthermore, the inhibition or silencing of HIF-2, but not HIF-1, reduced the hypoxia-mediated NFATc2 nuclear translocation. Our studies suggest that hypoxia induces the proliferation of human pulmonary fibroblasts through NFAT signaling and HIF-2.

  19. Effect of brief exposure to mitomycin C on cultured human nasal mucosa fibroblasts.

    PubMed

    Hu, D; Sires, B S; Tong, D C; Royack, G A; Oda, D

    2000-03-01

    To observe the effect of mitomycin C (MMC) on cultured human nasal mucosa fibroblasts. Cultured human nasal mucosa fibroblasts were exposed to MMC (0.1-0.4 mg/ml) for 1 to 5 minutes. The viability of the fibroblasts was determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay; DNA fragmentation (apoptosis) by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL); apoptotic percentage by flow cytometry; and morphology by light microscopy. A portion of the fibroblasts survived the mitomycin treatment and showed evidence of regrowth within 2 to 3 days. These cells reached confluence in 5 to 7 days. The inhibition rates by MTT assay of 0.4 mg/ml MMC for 5-minute exposures was 31.3%. Dose-response effect was noted with the lower concentrations and shorter exposure times where the inhibition rates were lower (but not significantly so). DNA fragmentation was observed in fibroblasts 24 hours after MMC exposure (0.4 mg/ml) for 5 minutes compared with normal control. The apoptotic rate of fibroblasts treated by 0.4 mg/ml MMC was significantly higher than the control (p < 0.05). Short MMC exposure times have a variable cytotoxic effect and inhibit proliferation of cultured nasal mucosa fibroblasts. MMC also can induce apoptosis with a 5-minute exposure time. Therefore, it is possible that MMC has a complex effect in dacryocystorhinostomy.

  20. Increased fibroblast density in actinic cheilitis: association with tryptase-positive mast cells, actinic elastosis and epithelial p53 and COX-2 expression.

    PubMed

    Rojas, Isolde G; Boza, Yadira V; Spencer, Maria Loreto; Flores, Maritza; Martínez, Alejandra

    2012-01-01

    Actinic cheilitis (AC) is characterized by epithelial and connective tissue alterations caused by ultraviolet sunlight overexposure known as photodamage. Fibroblasts have been linked to photodamage and tumor progression during skin carcinogenesis; however, their role in early lip carcinogenesis remains unknown. The aim of this study was to assess the density of fibroblasts in AC and normal lip (NL) samples and determine their association with markers of lip photodamage. Fibroblasts, mast cells, p53, COX-2, and elastin were detected in NL (n = 20) and AC (n = 28) biopsies using immunohistochemistry/histochemistry. Mast cell and fibroblast density and epithelial p53 and COX-2 expression scores were then obtained. Elastosis was scored 1-4 according to elastin fiber density and tortuosity. Fibroblasts, mast cells, p53, COX-2, and elastosis were increased in AC as compared to NL (P < 0.001). Multivariate analysis showed an association between fibroblast and mast cell density at the papillary and reticular areas of AC and NL (P < 0.05). Papillary fibroblast density was also associated with epithelial p53 and COX-2 expression (P < 0.05). Increased fibroblast density, both papillary and reticular, was found in the high elastosis group (scores 3-4) as compared to the low elastosis group (scores 1-2) (P < 0.01). Increased reticular mast cell density was detected only in the high elastosis group (P < 0.01). Fibroblasts are increased in AC, and they are associated with mast cell density, epithelial p53 and COX-2 expression, and actinic elastosis. Therefore, fibroblasts may contribute to lip photodamage and could be considered useful markers of early lip carcinogenesis. © 2011 John Wiley & Sons A/S.

  1. Unfolded protein response regulation in keloid cells.

    PubMed

    Butler, Paris D; Wang, Zhen; Ly, Daphne P; Longaker, Michael T; Koong, Albert C; Yang, George P

    2011-05-01

    Keloids are a common form of pathologic wound healing characterized by excessive production of extracellular matrix. The unfolded protein response (UPR) is a cellular response to hypoxia, a component of the wound microenvironment, capable of protecting cells from the effects of over-accumulation of misfolded proteins. Since keloids have hypersecretion of extracellular matrix, we hypothesized that keloid fibroblasts (KFs) may have enhanced activation of the UPR compared with normal fibroblasts (NFs). KFs and NFs were placed in a hypoxia chamber for 0, 24, and 48h. We also used tunicamycin to specifically up-regulate the UPR. UPR activation was assayed by PCR for xbp-1 splicing and by immunoblotting with specific antibodies for the three UPR transducers. Nuclear localization of XBP-1 protein in KFs was confirmed by immunofluorescence. There is increased activation of XBP-1 protein in KFs compared with NFs following exposure to hypoxia. Pancreatic ER kinase (PERK) and ATF-6, two other pathways activated by the UPR, show comparable activation between KFs and NFs. We confirmed that there is enhanced activation of XBP-1 by demonstrating increased nuclear localization of XBP-1 using immunofluorescence. In contrast to our initial hypothesis that keloids would have broad activation of the UPR, we demonstrate here that there is a specific up-regulation of one facet of the UPR response. This may represent a specific molecular defect in KFs compared with NFs, and also suggests modulation of the UPR can be used in wound healing therapy. Published by Elsevier Inc.

  2. Morphological study of tooth development in podoplanin-deficient mice.

    PubMed

    Takara, Kenyo; Maruo, Naoki; Oka, Kyoko; Kaji, Chiaki; Hatakeyama, Yuji; Sawa, Naruhiko; Kato, Yukinari; Yamashita, Junro; Kojima, Hiroshi; Sawa, Yoshihiko

    2017-01-01

    Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  3. Enhancement of scleral macromolecular permeability with prostaglandins.

    PubMed Central

    Weinreb, R N

    2001-01-01

    PURPOSE: It is proposed that the sclera is a metabolically active and pharmacologically responsive tissue. These studies were undertaken to determine whether prostaglandin exposure can enhance scleral permeability to high-molecular-weight substances. METHODS: Topical prostaglandin F2 alpha (PGF2 alpha) was administered to monkeys to determine if this altered the amount of scleral matrix metalloproteinases (MMPs). Experiments also were performed to determine whether the prostaglandin F (FP) receptor and gene transcripts are expressed in normal human sclera. Permeability of organ-cultured human sclera following prostaglandin exposure then was studied and the amount of MMP released into the medium measured. Finally, the permeability of human sclera to basic fibroblast growth factor (FGF-2) was determined following prostaglandin exposure. RESULTS: Topical prostaglandin administration that reduced scleral collagen also increased scleral MMP-1, MMP-2, and MMP-3 by 63 +/- 35%, 267 +/- 210%, and 729 +/- 500%, respectively. FP receptor protein was localized in scleral fibroblasts, and FP receptor gene transcript was identified in sclera. Exposure to prostaglandin F2 alpha, 17-phenyltrinor, PGF2 alpha, or latanoprost acid increased scleral permeability by up to 124%, 183%, or 213%, respectively. In these cultures, MMP-1, MMP-2, and MMP-3 were increased by up to 37%, 267%, and 96%, respectively. Finally, transscleral absorption of FGF-2 was increased by up to 126% with scleral exposure to latanoprost. CONCLUSIONS: These studies demonstrate that the sclera is metabolically active and pharmacologically responsive to prostaglandins. Further, they demonstrate the feasibility of cotreatment with prostaglandin to enhance transscleral delivery of peptides, such as growth factors and high-molecular-weight substances, to the posterior segment of the eye. PMID:11797317

  4. 3D-fibroblast tissues constructed by a cell-coat technology enhance tight-junction formation of human colon epithelial cells.

    PubMed

    Matsusaki, Michiya; Hikimoto, Daichi; Nishiguchi, Akihiro; Kadowaki, Koji; Ohura, Kayoko; Imai, Teruko; Akashi, Mitsuru

    2015-02-13

    Caco-2, human colon carcinoma cell line, has been widely used as a model system for intestinal epithelial permeability because Caco-2 cells express tight-junctions, microvilli, and a number of enzymes and transporters characteristic of enterocytes. However, the functional differentiation and polarization of Caco-2 cells to express sufficient tight-junctions (a barrier) usually takes over 21 days in culture. This may be due to the cell culture environment, for example inflammation induced by plastic petri dishes. Three-dimensional (3D) sufficient cell microenvironments similar to in vivo natural conditions (proteins and cells), will promote rapid differentiation and higher functional expression of tight junctions. Herein we report for the first time an enhancement in tight-junction formation by 3D-cultures of Caco-2 cells on monolayered (1L) and eight layered (8L) normal human dermal fibroblasts (NHDF). Trans epithelial electric resistance (TEER) of Caco-2 cells was enhanced in the 3D-cultures, especially 8L-NHDF tissues, depending on culture times and only 10 days was enough to reach the same TEER value of Caco-2 monolayers after a 21 day incubation. Relative mRNA expression of tight-junction proteins of Caco-2 cells on 3D-cultures showed higher values than those in monolayer structures. Transporter gene expression patterns of Caco-2 cells on 3D-constructs were almost the same as those of Caco-2 monolayers, suggesting that there was no effect of 3D-cultures on transporter protein expression. The expression correlation between carboxylesterase 1 and 2 in 3D-cultures represented similar trends with human small intestines. The results of this study clearly represent a valuable application of 3D-Caco-2 tissues for pharmaceutical applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Interaction between the estrogen receptor and fibroblast growth factor receptor pathways in non-small cell lung cancer.

    PubMed

    Siegfried, Jill M; Farooqui, Mariya; Rothenberger, Natalie J; Dacic, Sanja; Stabile, Laura P

    2017-04-11

    The estrogen receptor (ER) promotes non-small cell lung cancer (NSCLC) proliferation. Since fibroblast growth factors (FGFs) are known regulators of stem cell markers in ER positive breast cancer, we investigated whether a link between the ER, FGFs, and stem cell markers exists in NSCLC. In lung preneoplasias and adenomas of tobacco carcinogen exposed mice, the anti-estrogen fulvestrant and/or the aromatase inhibitor anastrozole blocked FGF2 and FGF9 secretion, and reduced expression of the stem cell markers SOX2 and nanog. Mice administered β-estradiol during carcinogen exposure showed increased FGF2, FGF9, SOX2, and Nanog expression in airway preneoplasias. In normal FGFR1 copy number NSCLC cell lines, multiple FGFR receptors were expressed and secreted several FGFs. β-estradiol caused enhanced FGF2 release, which was blocked by fulvestrant. Upon co-inhibition of ER and FGFRs using fulvestrant and the pan-FGFR inhibitor AZD4547, phosphorylation of FRS2, the FGFR docking protein, was maximally reduced, and enhanced anti-proliferative effects were observed. Combined AZD4547 and fulvestrant enhanced lung tumor xenograft growth inhibition and decreased Ki67 and stem cell marker expression. To verify a link between ERβ, the predominant ER in NSCLC, and FGFR signaling in patient tumors, mRNA analysis was performed comparing high versus low ERβ expressing tumors. The top differentially expressed genes in high ERβ tumors involved FGF signaling and human embryonic stem cell pluripotency. These results suggest interaction between the ER and FGFR pathways in NSCLC promotes a stem-like state. Combined FGFR and ER inhibition may increase the efficacy of FGFR inhibitors for NSCLC patients lacking FGFR genetic alterations.

  6. Pulsatile perfusion bioreactor for cardiac tissue engineering.

    PubMed

    Brown, Melissa A; Iyer, Rohin K; Radisic, Milica

    2008-01-01

    Cardiovascular disease is the number one cause of mortality in North America. Cardiac tissue engineering aims to engineer a contractile patch of physiological thickness to use in surgical repair of diseased heart tissue. We previously reported that perfusion of engineered cardiac constructs resulted in improved tissue assembly. Because heart tissues respond to mechanical stimuli in vitro and experience rhythmic mechanical forces during contraction in vivo, we hypothesized that provision of pulsatile interstitial medium flow to an engineered cardiac patch would result in enhanced tissue assembly by way of mechanical conditioning and improved mass transport. Thus, we constructed a novel perfusion bioreactor capable of providing pulsatile fluid flow at physiologically relevant shear stresses and flow rates. Pulsatile perfusion (PP) was achieved by incorporation of a normally closed solenoid pinch valve into the perfusion loop and was carried out at a frequency of 1 Hz and a flow rate of 1.50 mL/min (PP) or 0.32 mL/min (PP-LF). Nonpulsatile flow at 1.50 mL/min (NP) or 0.32 mL/min (NP-LF) served as controls. Static controls were cultivated in well plates. The main experimental groups were seeded with cells enriched for cardiomyocytes by one preplating step (64% cardiac Troponin I+, 34% prolyl-4-hydroxylase+), whereas pure cardiac fibroblasts and cells enriched for cardiomyocytes by two preplating steps (81% cardiac Troponin I+, 16% prolyl-4-hydroxylase+) served as controls. Cultivation under pulsatile flow had beneficial effects on contractile properties. Specifically, the excitation threshold was significantly lower in the PP condition (pulsatile perfusion at 1.50 mL/min) than in the Static control, and the contraction amplitude was the highest; whereas high maximum capture rate was observed for the PP-LF conditions (pulsatile perfusion at 0.32 mL/min). The enhanced hypertrophy index observed for the PP-LF group was consistent with the highest cellular length and diameter in this group. Within the same cultivation groups (Static, NP-LF, PP-LF, PP, and NP) there were no significant differences in the diameter between fibroblasts and cardiomyocytes, although cardiomyocytes were significantly more elongated than fibroblasts under PP-LF conditions. Cultivation of control cell populations resulted in noncontractile constructs when cardiac fibroblasts were used (as expected) and no overall improvement in functional properties when two steps of preplating were used to enrich for cardiomyocytes in comparison with only one step of preplating.

  7. Selection of transduced CD34+ progenitors and enzymatic correction of cells from Gaucher patients, with bicistronic vectors.

    PubMed Central

    Migita, M; Medin, J A; Pawliuk, R; Jacobson, S; Nagle, J W; Anderson, S; Amiri, M; Humphries, R K; Karlsson, S

    1995-01-01

    The gene transfer efficiency of human hematopoietic stem cells is still inadequate for efficient gene therapy of most disorders. To overcome this problem, a selectable retroviral vector system for gene therapy has been developed for gene therapy of Gaucher disease. We constructed a bicistronic retroviral vector containing the human glucocerebrosidase (GC) cDNA and the human small cell surface antigen CD24 (243 bp). Expression of both cDNAs was controlled by the long terminal repeat enhancer/promoter of the Molony murine leukemia virus. The CD24 selectable marker was placed downstream of the GC cDNA and its translation was enhanced by inclusion of the long 5' untranslated region of encephalomyocarditis virus internal ribosomal entry site. Virus-producing GP+envAM12 cells were created by multiple supernatant transductions to create vector producer cells. The vector LGEC has a high titer and can drive expression of GC and the cell surface antigen CD24 simultaneously in transduced NIH 3T3 cells and Gaucher skin fibroblasts. These transduced cells have been successfully separated from untransduced cells by fluorescence-activated cell sorting, based on cell surface expression of CD24. Transduced and sorted NIH 3T3 cells showed higher GC enzyme activity than the unsorted population, demonstrating coordinated expression of both genes. Fibroblasts from Gaucher patients were transduced and sorted for CD24 expression, and GC enzyme activity was measured. The transduced sorted Gaucher fibroblasts had a marked increase in enzyme activity (149%) compared with virgin Gaucher fibroblasts (17% of normal GC enzyme activity). Efficient transduction of CD34+ hematopoietic progenitors (20-40%) was accomplished and fluorescence-activated cell sorted CD24(+)-expressing progenitors generated colonies, all of which (100%) were vector positive. The sorted, CD24-expressing progenitors generated erythroid burst-forming units, colony-forming units (CFU)-granulocyte, CFU-macrophage, CFU-granulocyte/macrophage, and CFU-mix hematopoietic colonies, demonstrating their ability to differentiate into these myeloid lineages in vitro. The transduced, sorted progenitors raised the GC enzyme levels in their progeny cells manyfold compared with untransduced CD34+ progenitors. Collectively, this demonstrates the development of high titer, selectable bicistronic vectors that allow isolation of transduced hematopoietic progenitors and cells that have been metabolically corrected. Images Fig. 2 Fig. 3 PMID:8618847

  8. The Initiator Methionine tRNA Drives Secretion of Type II Collagen from Stromal Fibroblasts to Promote Tumor Growth and Angiogenesis

    PubMed Central

    Clarke, Cassie J.; Berg, Tracy J.; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L.; Vermeulen, Peter B.; Foo, Shane; Kostaras, Eleftherios; Jones, J. Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R.; Norman, Jim C.

    2016-01-01

    Summary Expression of the initiator methionine tRNA (tRNAiMet) is deregulated in cancer. Despite this fact, it is not currently known how tRNAiMet expression levels influence tumor progression. We have found that tRNAiMet expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAiMet in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAiMet contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAiMet gene (2+tRNAiMet mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAiMet mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAiMet mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAiMet significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAiMet-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAiMet-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAiMet mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAiMet levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis. PMID:26948875

  9. The Initiator Methionine tRNA Drives Secretion of Type II Collagen from Stromal Fibroblasts to Promote Tumor Growth and Angiogenesis.

    PubMed

    Clarke, Cassie J; Berg, Tracy J; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L; Vermeulen, Peter B; Foo, Shane; Kostaras, Eleftherios; Jones, J Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R; Norman, Jim C

    2016-03-21

    Expression of the initiator methionine tRNA (tRNAi(Met)) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi(Met) expression levels influence tumor progression. We have found that tRNAi(Met) expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi(Met) in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi(Met) contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi(Met) gene (2+tRNAi(Met) mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi(Met) mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi(Met) mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi(Met) significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi(Met)-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi(Met)-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi(Met) mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi(Met) levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Correction of glucocerebrosidase deficiency after retroviral-mediated gene transfer into hematopoietic progenitor cells from patients with Gaucher disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, J.K.; Correll, P.H.; Perry, L.K.

    1990-03-01

    Retroviral gene transfer has been used successfully to correct the glucocerebrosidase (GCase) deficiency in primary hematopoietic cells from patients with Gaucher disease. For this model of somatic gene therapy, the authors developed a high-titer, amphotropic retroviral vector designated NTG in which the human GCase gene was driven by the mutant polyoma virus enhancer/herpesvirus thymidine kinase gene (tk) promoter (Py{sup +}/Htk). NTG normalized GCase activity in transduced Gaucher fibroblasts and efficiently infected human monocytic and erythroleukemic cell lines. RNA blot-hybridization (Northern blot) analysis of these hemaptopoietic cell lines showed unexpectedly high-level expression from the Moloney murine leukemia virus long terminal repeatmore » (Mo-MLV LTR) and levels of Py{sup +}/Htk enhancer/promoter-initiated human GCase RNA that approximated endogenous GCase RNA levels. Furthermore, NTG efficiently infected human hematopoietic progenitor cells. Detection of the provirus in approximately one-third of NTG-infected progenitor colonies that had not been selected in G418-containing medium indicates that relative resistance to G418 underestimated the actual gene transfer efficiency. Northern blot analysis of NTG-infected, progenitor-derived cells showed expression from both the Mo-MLV LTR and the Py{sup +}/Htk enhancer/promoter. NTG-transduced hematopoietic progenitor cells from patients with Gaucher disease generated progeny in which GCase activity has been normalized.« less

  11. Peptide Regulation of Skin Fibroblast Functions during Their Aging In Vitro.

    PubMed

    Lin'kova, N S; Drobintseva, A O; Orlova, O A; Kuznetsova, E P; Polyakova, V O; Kvetnoy, I M; Khavinson, V Kh

    2016-05-01

    The effect peptides KE, KED, AED and AEDG on proliferation (Ki-67), regeneration and aging (CD98hc), apoptosis (caspase-3), and extracellular matrix remodeling (MMP-9) in skin fibroblasts during their aging in culture were studied by immunofluorescent confocal microscopy. All studied peptides inhibited MMP-9 synthesis that increases during aging of skin fibroblasts and enhanced the expression of Ki-67 and CD98hc that are less intensively synthesized during cell aging. Peptides AED and AEDG suppressed caspase-dependent apoptosis that increases during aging of cell cultures.

  12. Pig cloning by microinjection of fetal fibroblast nuclei.

    PubMed

    Onishi, A; Iwamoto, M; Akita, T; Mikawa, S; Takeda, K; Awata, T; Hanada, H; Perry, A C

    2000-08-18

    Pig cloning will have a marked impact on the optimization of meat production and xenotransplantation. To clone pigs from differentiated cells, we microinjected the nuclei of porcine (Sus scrofa) fetal fibroblasts into enucleated oocytes, and development was induced by electroactivation. The transfer of 110 cloned embryos to four surrogate mothers produced an apparently normal female piglet. The clonal provenance of the piglet was indicated by her coat color and confirmed by DNA microsatellite analysis.

  13. Allele-specific siRNA knockdown as a personalized treatment strategy for vascular Ehlers-Danlos syndrome in human fibroblasts.

    PubMed

    Müller, Gerd A; Hansen, Uwe; Xu, Zhi; Griswold, Benjamin; Talan, Mark I; McDonnell, Nazli B; Briest, Wilfried

    2012-02-01

    The vascular type of the Ehlers-Danlos syndrome (vEDS) is caused by dominant-negative mutations in the procollagen type III (COL3A1) gene. Patients with this autosomal dominant disorder have a shortened life expectancy due to complications from ruptured vessels or hollow organs. We tested the effectiveness of allele-specific RNA interference (RNAi) to reduce the mutated phenotype in fibroblasts. Small-interfering RNAs (siRNAs) discriminating between wild-type and mutant COL3A1 allele were identified by a luciferase reporter gene assay and in primary fibroblasts from a normal donor and a patient with vEDS. The best discriminative siRNA with the mutation at position 10 resulted in >90% silencing of the mutant allele without affecting the wild-type allele. Transmission and immunogold electron microscopy of extracted extracellular matrices from untreated fibroblasts of the patient with vEDS revealed structurally abnormal fibrils. After siRNA treatment, collagen fibrils became similar to fibrils from fibroblasts of normal and COL3A1 haploinsufficient donors. In addition, it was shown that expression of mutated COL3A1 activates the unfolded protein response and that reduction of the amount of mutated protein by siRNA reduces cellular stress. Taken together, the results provide evidence that allele-specific siRNAs are able to reduce negative effects of mutated COL3A1 proteins. Thus, the application of allele-specific RNAi may be a promising direction for future personalized therapies to reduce the severity of vEDS.

  14. Hypersensitivity of skin fibroblasts from basal cell nevus syndrome patients to killing by ultraviolet B but not by ultraviolet C radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Applegate, L.A.; Goldberg, L.H.; Ley, R.D.

    Basal cell nevus syndrome (BCNS) is an autosomal dominant genetic disorder in which the afflicted individuals are extremely susceptible to sunlight-induced skin cancers, particularly basal cell carcinomas. However, the cellular and molecular basis for BCNS is unknown. To ascertain whether there is any relationship between genetic predisposition to skin cancer and increased sensitivity of somatic cells from BCNS patients to killing by UV radiation, we exposed skin fibroblasts established from unexposed skin biopsies of several BCNS and age- and sex-matched normal individuals to either UV-B (280-320 nm) or UV-C (254 nm) radiation and determined their survival. The results indicated thatmore » skin fibroblasts from BCNS patients were hypersensitive to killing by UV-B but not UV-C radiation as compared to skin fibroblasts from normal individuals. DNA repair studies indicated that the increased sensitivity of BCNS skin fibroblasts to killing by UV-B radiation was not due to a defect in the excision repair of pyrimidine dimers. These results indicate that there is an association between hypersensitivity of somatic cells to killing by UV-B radiation and the genetic predisposition to skin cancer in BCNS patients. In addition, these results suggest that DNA lesions (and repair processes) other than the pyrimidine dimer are also involved in the pathogenesis of sunlight-induced skin cancers in BCNS patients. More important, the UV-B sensitivity assay described here may be used as a diagnostic tool to identify presymptomatic individuals with BCNS.« less

  15. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo

    Highlights: Black-Right-Pointing-Pointer We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. Black-Right-Pointing-Pointer YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. Black-Right-Pointing-Pointer There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. Black-Right-Pointing-Pointer The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. Black-Right-Pointing-Pointer The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin,more » respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the {beta}1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate peptide for the treatment of skin aging and wrinkles.« less

  16. Outgrowth of fibroblast cells from goat skin explants in three different culture media and the establishment of cell lines.

    PubMed

    Singh, Mahipal; Sharma, Anil K

    2011-02-01

    Three different commercially available media, known to support human and porcine-specific fibroblast cultures, were tested for their growth potential on goat skin explants. Although outgrowth of fibroblasts was observed in all media tested, irrespective of breed, porcine-specific media exhibited higher rate of growth. Using this media, three fibroblast cell lines (GSF289, GSF737, and GSF2010) from ear skin explants of normal healthy dairy goats of Kiko and Saanen breed were successfully established in culture. Liquid nitrogen stocks of these frozen cells had a viability rate of 96.2% in in vitro cultures. These cells were morphologically indistinguishable from the cell stocks prior to freezing. Analysis of the growth of a fifth passage culture revealed an 'S' shaped growth curve with a population doubling time of 25 h. The cell lines were found negative for microbial, fungal, and mycoplasma contaminations. These goat skin fibroblast lines and the simple method of their isolation and freezing with high rate of viability will provide additional tools to study molecular mechanisms that regulate fibroblast function and for genetic manipulation of small ruminants.

  17. Cryptic MCAT enhancer regulation in fibroblasts and smooth muscle cells. Suppression of TEF-1 mediated activation by the single-stranded DNA-binding proteins, Pur alpha, Pur beta, and MSY1.

    PubMed

    Carlini, Leslie E; Getz, Michael J; Strauch, Arthur R; Kelm, Robert J

    2002-03-08

    An asymmetric polypurine-polypyrimidine cis-element located in the 5' region of the mouse vascular smooth muscle alpha-actin gene serves as a binding site for multiple proteins with specific affinity for either single- or double-stranded DNA. Here, we test the hypothesis that single-stranded DNA-binding proteins are responsible for preventing a cryptic MCAT enhancer centered within this element from cooperating with a nearby serum response factor-interacting CArG motif to trans-activate the minimal promoter in fibroblasts and smooth muscle cells. DNA binding studies revealed that the core MCAT sequence mediates binding of transcription enhancer factor-1 to the double-stranded polypurine-polypyrimidine element while flanking nucleotides account for interaction of Pur alpha and Pur beta with the purine-rich strand and MSY1 with the complementary pyrimidine-rich strand. Mutations that selectively impaired high affinity single-stranded DNA binding by fibroblast or smooth muscle cell-derived Pur alpha, Pur beta, and MSY1 in vitro, released the cryptic MCAT enhancer from repression in transfected cells. Additional experiments indicated that Pur alpha, Pur beta, and MSY1 also interact specifically, albeit weakly, with double-stranded DNA and with transcription enhancer factor-1. These results are consistent with two plausible models of cryptic MCAT enhancer regulation by Pur alpha, Pur beta, and MSY1 involving either competitive single-stranded DNA binding or masking of MCAT-bound transcription enhancer factor-1.

  18. Idiopathic pulmonary fibrosis fibroblasts become resistant to Fas ligand-dependent apoptosis via the alteration of decoy receptor 3.

    PubMed

    Im, Jintaek; Kim, Kyutae; Hergert, Polla; Nho, Richard Seonghun

    2016-09-01

    Idiopathic pulmonary fibrosis (IPF) is an irreversible lethal lung disease with an unknown etiology. IPF patients' lung fibroblasts express inappropriately high Akt activity, protecting them in response to an apoptosis-inducing type I collagen matrix. FasL, a ligand for Fas, is known to be increased in the lung tissues of patients with IPF, implicated with the progression of IPF. Expression of Decoy Receptor3 (DcR3), which binds to FasL, thereby subsequently suppressing the FasL-Fas-dependent apoptotic pathway, is frequently altered in various human disease. However, the role of DcR3 in IPF fibroblasts in regulating their viability has not been examined. We found that enhanced DcR3 expression exists in the majority of IPF fibroblasts on collagen matrices, resulting in the protection of IPF fibroblasts from FasL-induced apoptosis. Abnormally high Akt activity suppresses GSK-3β function, thereby accumulating the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) in the nucleus, increasing DcR3 expression in IPF fibroblasts. This alteration protects IPF cells from FasL-induced apoptosis on collagen. However, the inhibition of Akt or NFATc1 decreases DcR3 mRNA and protein levels, which sensitizes IPF fibroblasts to FasL-mediated apoptosis. Furthermore, enhanced DcR3 and NFATc1 expression is mainly present in myofibroblasts in the fibroblastic foci of lung tissues derived from IPF patients. Our results showed that when IPF cells interact with collagen matrix, aberrantly activated Akt increases DcR3 expression via GSK-3β-NFATc1 and protects IPF cells from the FasL-dependent apoptotic pathway. These findings suggest that the inhibition of DcR3 function may be an effective approach for sensitizing IPF fibroblasts in response to FasL, limiting the progression of lung fibrosis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. Cytoprotective Effect of Peptide Sedatin, an Agonist of μ/δ-Opioid Receptors, on Primary Culture of Pulmonary Fibroblasts of Albino Rats under Conditions of Oxidative Stress.

    PubMed

    Sazonova, E N; Samarina, E Yu; Lebed'ko, O A; Maltseva, I M; Timoshin, S S

    2016-05-01

    We studied the effects of a synthetic analogue of dermorphin peptide sedatin on DNA synthesis, nucleolar apparatus, and parameters of free radical oxidation in the primary culture of pulmonary fibroblasts under conditions of oxidative stress. Oxidative stress significantly enhanced production of superoxide anion radical in the culture, sufficiently inhibited DNA synthesis in fibroblasts, and reduced the size of cell nuclei and parameters of the nucleolar apparatus. Sedatin prevented accumulation of free radical oxidation products and changes in karyometry parameters induced by oxidative stress. The peptide completely eliminated changes in the parameters of fibroblast nucleolar apparatus and abolished the inhibitory effect of oxidative stress on the number of DNA-synthesizing cells. Pretreatment with non-selective opioid receptor antagonist naloxone hydrochloride partially abolished the effects of sedatin in the primary culture of pulmonary fibroblasts.

  20. Epidermal regulation of dermal fibroblast activity.

    PubMed

    Garner, W L

    1998-07-01

    Although the association between delayed burn wound healing and subsequent hypertrophic scar formation is well-established, the mechanism for this relationship is unknown. Unhealed burn wounds lack an epidermis, suggesting a possible regulatory role for the epidermis in controlling dermal fibroblast matrix synthesis. Therefore, we examined the effect of epidermal cells and media conditioned by epidermal cells on fibroblast collagen synthesis and replication. Purified fibroblast and keratinocyte cell strains were developed from discarded normal adult human skin. Conditioned media were created by incubation of cytokine-free and serum-free medium with either confluent fibroblast or keratinocyte cultures for 18 hours (n = 3). Nearly confluent fibroblast cultures were exposed for 48 hours to graded concentrations of either unconditioned medium (control), conditioned medium, or varying numbers of keratinocytes. Replication was quantified by the incorporation of 3H-thymidine. Collagen synthesis was measured by the incorporation of 3H-proline into collagenase-sensitive protein. Data were compared using analysis of variance (ANOVA) and linear regression. Keratinocyte conditioned medium induced a significant increase in replication (n = 3) (p = 0.004) and a decrease in collagen synthesis (n = 6) (p < 0.001). In contrast, neither fibroblast conditioned medium nor control medium had an effect on fibroblast replication or collagen synthesis. Co-culture of fibroblast with a graded number of keratinocytes similarly decreased collagen synthesis (n = 6) (p < 0.001). Dermal fibroblast collagen synthesis appears to be regulated by a soluble keratinocyte product. This result suggests a mechanism for the clinical observation that unhealed burn wounds, which lack the epidermis, demonstrate excess collagen production and scar. Clinical strategies to decrease hypertrophic scar should include an attempt at early wound closure with skin grafting or the application of cultured epithelial autografts.

  1. A Novel DDB2-ATM Feedback Loop Regulates Human Cytomegalovirus Replication

    PubMed Central

    E, Xiaofei; Savidis, George; Chin, Christopher R.; Wang, Shixia; Lu, Shan; Brass, Abraham L.

    2014-01-01

    Human cytomegalovirus (HCMV) genome replication requires host DNA damage responses (DDRs) and raises the possibility that DNA repair pathways may influence viral replication. We report here that a nucleotide excision repair (NER)-associated-factor is required for efficient HCMV DNA replication. Mutations in genes encoding NER factors are associated with xeroderma pigmentosum (XP). One of the XP complementation groups, XPE, involves mutation in ddb2, which encodes DNA damage binding protein 2 (DDB2). Infectious progeny virus production was reduced by >2 logs in XPE fibroblasts compared to levels in normal fibroblasts. The levels of immediate early (IE) (IE2), early (E) (pp65), and early/late (E/L) (gB55) proteins were decreased in XPE cells. These replication defects were rescued by infection with a retrovirus expressing DDB2 cDNA. Similar patterns of reduced viral gene expression and progeny virus production were also observed in normal fibroblasts that were depleted for DDB2 by RNA interference (RNAi). Mature replication compartments (RCs) were nearly absent in XPE cells, and there were 1.5- to 2.0-log reductions in viral DNA loads in infected XPE cells relative to those in normal fibroblasts. The expression of viral genes (UL122, UL44, UL54, UL55, and UL84) affected by DDB2 status was also sensitive to a viral DNA replication inhibitor, phosphonoacetic acid (PAA), suggesting that DDB2 affects gene expression upstream of or events associated with the initiation of DNA replication. Finally, a novel, infection-associated feedback loop between DDB2 and ataxia telangiectasia mutated (ATM) was observed in infected cells. Together, these results demonstrate that DDB2 and a DDB2-ATM feedback loop influence HCMV replication. PMID:24335308

  2. Establishment of human induced pluripotent stem cell lines from normal fibroblast TIG-1.

    PubMed

    Kumazaki, Tsutomu; Kurata, Sayaka; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko

    2011-06-01

    Normal human cells have a replicative life span and therefore senesce. Usually, normal human cell strains are differentiated cells and reach a terminally differentiated state after a number of cell divisions. At present, definitive differences are not known between replicative senescence and terminal differentiation. TIG-1 is a human fibroblast strain established from fetal lung and has been used extensively in studies of cellular senescence, and numerous data were accumulated at the molecular level. Recently, a method for generating induced pluripotent stem cells (iPSCs) was developed. Using the method, we introduced four reprogramming genes to TIG-1 fibroblasts and succeeded in isolating colonies that had embryonic stem cell (ESC)-like morphologies. They showed alkaline phosphatase activity and expressed ESC markers, as shown by immunostaining of OCT4, SOX2, SSEA4, and TRA-1-81 as well as reverse-transcription polymerase chain reaction (RT-PCR) for OCT4 and NANOG transcripts. Thus, we succeeded in establishing iPSC clones from TIG-1. The iPSC clones could differentiate to cells originated from all three germ-cell layers, as shown by RT-PCR, for messenger RNA (mRNA) expression of α-fetoprotein (endoderm), MSX1 (mesoderm) and microtubule-associated protein 2 (ectoderm), and by immunostaining for α-fetoprotein (endoderm), α-smooth muscle actin (mesoderm), and β-III-tubulin (ectoderm). The iPSCs formed teratoma containing the structures developed from all three germ-cell layers in severe combined immune-deficiency mice. Thus, by comparing the aging process of parental TIG-1 cells and the differentiation process of iPSC-derived fibrocytes to fibroblasts, we can reveal the exact differences in processes between senescence and terminal differentiation.

  3. Down-Regulation of Myeloid Cell Leukemia 1 by Epigallocatechin-3-Gallate Sensitizes Rheumatoid Arthritis Synovial Fibroblasts to Tumor Necrosis Factor α–Induced Apoptosis

    PubMed Central

    Ahmed, Salahuddin; Silverman, Matthew D.; Marotte, Hubert; Kwan, Kevin; Matuszczak, Natalie; Koch, Alisa E.

    2010-01-01

    Objective Overexpression of the antiapoptotic protein myeloid cell leukemia 1 (Mcl-1) in rheumatoid arthritis (RA) synovial fibroblasts is a major cause of their resistance to tumor necrosis factor α (TNFα)–induced apoptosis. This study was undertaken to evaluate the efficacy of epigallocatechin-3-gallate (EGCG) in down-regulating Mcl-1 expression and its mechanism of RA synovial fibroblast sensitization to TNFα-induced apoptosis. Methods EGCG effects on cultured RA synovial fibroblast cell morphology, proliferation, and viability over 72 hours were determined by microscopy and a fluorescent cell enumeration assay. Caspase 3 activity was determined by a colorimetric assay. Western blotting was used to evaluate the apoptosis mediators poly(ADP-ribose) polymerase (PARP), Mcl-1, Bcl-2, Akt, and nuclear translocation of NF-κB. Results In RA synovial fibroblasts, EGCG (5–50 μM) inhibited constitutive and TNFα-induced Mcl-1 protein expression in a concentration- and time-dependent manner (P < 0.05). Importantly, EGCG specifically abrogated Mcl-1 expression in RA synovial fibroblasts and affected Mcl-1 expression to a lesser extent in osteoarthritis and normal synovial fibroblasts or endothelial cells. Inhibition of Mcl-1 by EGCG triggered caspase 3 activity in RA synovial fibroblasts, which was mediated via down-regulation of the TNFα-induced Akt and NF-κB pathways. Caspase 3 activation by EGCG also suppressed RA synovial fibroblast growth, and this effect was mimicked by Akt and NF-κB inhibitors. Interestingly, Mcl-1 degradation by EGCG sensitized RA synovial fibroblasts to TNFα-induced PARP cleavage and apoptotic cell death. Conclusion Our findings indicate that EGCG itself induces apoptosis and further sensitizes RA synovial fibroblasts to TNFα-induced apoptosis by specifically blocking Mcl-1 expression and, hence, may be of promising adjunct therapeutic value in regulating the invasive growth of synovial fibroblasts in RA. PMID:19404960

  4. Dermal fibroblasts from acute inflamed atopic dermatitis lesions display increased eotaxin/CCL11 responsiveness to interleukin-4 stimulation.

    PubMed

    Gahr, N; Fölster-Holst, R; Weichenthal, M; Christophers, E; Schröder, J-M; Bartels, J

    2011-03-01

    The presence of eosinophils and/or eosinophil-derived products in the dermis is characteristic for involved skin of patients with atopic dermatitis and contributes to the observed tissue injury. CCL11 is a potent chemoattractant and activator of human eosinophils and interleukin (IL)-4 is a potent inducer of CCL11 expression in dermal fibroblasts. As increased fibroblast CCL11 expression may explain eosinophilic infiltration of involved skin areas in atopic dermatitis, we asked whether dermal fibroblasts from atopic patients differ from fibroblasts of healthy individuals in their ability to express CCL11. We compared IL-4-induced CCL11 mRNA expression using reverse transcription-polymerase chain reaction from cultured dermal fibroblasts derived from biopsies of chronic lesional and acute lesional atopic skin as well as from skin biopsies derived from normal skin of healthy donors. Considerable variability in IL-4-induced relative CCL11 mRNA expression was detected in fibroblasts derived from biopsies of different individuals. The lowest median IL-4 concentration inducing half maximal CCL11 mRNA expression (EC(50)) was found in fibroblasts derived from acute inflamed atopic lesions. Inducibility of CCL11 in dermal fibroblasts upon stimulation with Th2 cytokines explains the tissue eosinophilia observed in the presence of Th2 cytokines and the localization of eosinophils to the dermis. Decreased EC(50) values of IL-4-induced CCL11 expression in fibroblasts from acute inflamed atopic skin lesions indicates increased IL-4 responsiveness in these lesions and further substantiates the special role for IL-4-induced dermal fibroblast CCL11 expression in acute lesions. Variable CCL11 expression in fibroblasts from different patients with atopic dermatitis indicates heterogeneity of factors determining atopic phenotype in atopic dermatitis. © 2011 The Authors. BJD © 2011 British Association of Dermatologists.

  5. Re-engineering the Pancreas Tumor Microenvironment: A “Regenerative Program” Hacked

    PubMed Central

    Evan, Gerard I.; Hah, Nasun; Littlewood, Trevor D.; Sodir, Nicole M.; Vidal, Tania Campos; Downes, Michael; Evans, Ronald M.

    2017-01-01

    The “hallmarks” of pancreatic ductal adenocarcinoma (PDAC) include proliferative, invasive and metastatic tumor cells and an associated dense desmoplasia comprised of fibroblasts, pancreatic stellate cells, extracellular matrix and immune cells. The oncogenically-activated pancreatic epithelium and its associated stroma are obligatorily interdependent, with the resulting inflammatory and immune-suppressive microenvironment contributing greatly to the evolution and maintenance of PDAC. The peculiar pancreas-specific tumor phenotype is a consequence of oncogenes hacking the resident pancreas regenerative program, a tissue specific repair mechanism regulated by discrete super enhancer networks. Defined as genomic regions containing clusters of multiple enhancers, super enhancers play pivotal roles in cell/tissue specification, identity and maintenance. Hence, interfering with such super enhancer driven repair networks should exert a disproportionately disruptive effect on tumor versus normal pancreatic tissue. Novel drugs that directly or indirectly inhibit processes regulating epigenetic status and integrity, including those driven by histone deacetylases, histone methyltransferase and hydroxylases, DNA methyltransferases, various metabolic enzymes, and bromodomain and extra-terminal motif proteins (BETs) have shown the feasibility of disrupting super enhancer-dependent transcription in treating multiple tumor types, including PDAC. The idea that pancreatic adenocarcinomas rely on embedded super enhancer transcriptional mechanism suggests a vulnerability that can be potentially targeted as novel therapies for this intractable disease. PMID:28373363

  6. DK phocomelia phenotype (von Voss-Cherstvoy syndrome) caused by somatic mosaicism for del(13q).

    PubMed

    Bamforth, J S; Lin, C C

    1997-12-31

    DK phocomelia (von Voss-Cherstvoy syndrome) is a rare condition characterized by radial ray defects, occipital encephalocoele, and urogenital abnormalities. Lubinsky et al. [1994: Am J Med Genet 52:272-278] pointed out similarities between this and the del(13q) syndrome. To date, all reported cases of DK phocomelia have been apparently normal chromosomally. We report on a case of DK phocomelia in which the proposita had normal lymphocyte chromosomes, but was mosaic in fibroblasts for del(13)(q12). Fibroblast chromosomes studies on other cases of DK phocomelia have not been reported: this raises the possibility that some cases of DK phocomelia may be somatic mosaics for del(13)(q12).

  7. In Vitro Modeling of Repetitive Motion Injury and Myofascial Release

    PubMed Central

    Meltzer, Kate R.; Cao, Thanh V.; Schad, Joseph F.; King, Hollis; Stoll, Scott T.; Standley, Paul R.

    2010-01-01

    Objective In this study we modeled repetitive motion strain (RMS) and myofascial release (MFR) in vitro to investigate possible cellular and molecular mechanisms to potentially explain the immediate clinical outcomes associated with RMS and MFR. Method Cultured human fibroblasts were strained with 8 hours RMS, 60 seconds MFR and combined treatment; RMS+MFR. Fibroblasts were immediately sampled upon cessation of strain and evaluated for cell morphology, cytokine secretions, proliferation, apoptosis, and potential changes to intracellular signaling molecules. Results RMS induced fibroblast elongation of lameopodia, cellular decentralization, reduction of cell to cell contact and significant decreases in cell area to perimeter ratios compared to all other experimental groups (p<0.0001). Cellular proliferation indicated no change among any treatment group; however RMS resulted in a significant increase in apoptosis rate (p<0.05) along with increases in death-associated protein kinase (DAPK) and focal adhesion kinase (FAK) phosphorylation by 74% and 58% respectively, when compared to control. These responses were not observed in the MFR and RMS+MFR group. Of the twenty cytokines measured there was a significant increase in GRO secretion in the RMS+MFR group when compared to control and MFR alone. Conclusion Our modeled injury (RMS) appropriately displayed enhanced apoptosis activity and loss of intercellular integrity that is consistent with pro-apoptotic DAPK2 and FAK signaling. Treatment with MFR following RMS resulted in normalization in apoptotic rate and cell morphology both consistent with changes observed in DAPK2. These in vitro studies build upon the cellular evidence base needed to fully explain clinical efficacy of manual manipulative therapies. PMID:20226363

  8. Cancer-associated fibroblasts promote cancer cell growth through a miR-7-RASSF2-PAR-4 axis in the tumor microenvironment

    PubMed Central

    Yan, Ming; Li, Rongrong; Chen, Gang; Zhang, Jianjun; Chen, Wantao

    2017-01-01

    Cancer-associated fibroblasts (CAFs), a major component of cancer stroma, play an important role in cancer progression but little is known about how CAFs affect tumorigenesis and development. MicroRNAs (miRNAs) are small non-coding RNAs that can negatively regulate target mRNA expression at post-transcriptional levels. In head and neck cancer (HNC), our analysis of miRNA arrays showed that miR-7, miR-196 and miR-335 were significantly up-regulated in CAFs when compared with their paired normal fibroblasts (NFs). FAP, α-SMA and FSP, specific markers of CAFs, were significantly expressed in CAFs. Functionally, exogenous expression of miR-7 in NFs induced a functional conversion of NFs into CAFs. In contrast, inhibition of miR-7 expression in CAFs could induce a functional conversion of CAFs into NFs. Our study demonstrated that overexpression of miR-7 in NFs significantly increased the migration activity and growth rates of cancer cells in co-culture experiments. Mechanistically, we confirmed that the RASSF2-PAR-4 axis was mainly responsible for miR-7 functions in CAFs using bioinformatics methods. Overexpression of miR-7 in CAFs led to down-regulation of RASSF2, which dramatically decreased the secretion of PAR-4 from CAFs and then enhanced the proliferation and migration of the co-cultured cancer cells. Thus, these results reveal that the inactivation of the RASSF2-PAR-4 axis controlled by miR-7 may be a novel strategy for gene therapy in HNCs. PMID:27901488

  9. MAPK Regulation of IL-4/-13 Receptors Contributes to the Synergistic Increase in CCL11/Eotaxin-1 in Response to TGF-β1 and IL-13 in Human Airway Fibroblasts

    PubMed Central

    Zhou, Xiuxia; Hu, Haizhen; Balzar, Silvana; Trudeau, John B.; Wenzel, Sally E.

    2012-01-01

    CCL11/eotaxin-1 is a potent eosinophilic CC chemokine expressed by primary human fibroblasts. The combination of TGF-β1 and IL-13 synergistically increases CCL11 expression, but the mechanisms behind the synergy are unclear. To address this, human airway fibroblast cultures from normal and asthmatic subjects were exposed to IL-13 alone or TGF-β1 plus IL-13. Transcriptional (nuclear run-on) and post-transcriptional (mRNA stability) assays confirmed that transcriptional regulation is critical for synergistic expression of CCL11. TGF-β1 plus IL-13 synergistically increased STAT-6 phosphorylation, nuclear translocation and binding to the CCL11 promoter as compared to IL-13 alone. STAT-6 siRNA significantly knocked down both STAT-6 mRNA expression and phosphorylation, and inhibited CCL11 mRNA and protein expression. Regulation of the IL-4 receptor α (IL-4Rα) complex by TGF-β1 augmented IL-13 signaling by dampening IL-13 receptor α2 (IL-13Rα2) expression, overcoming IL-13's autoregulation of its pathway and enhancing the expression of CCL11. Our data suggest that TGF-β1 induced activation of the MEK-ERK pathway reduces IL-13Rα2 expression induced by IL-13. Thus, TGF-β1, a pleiotropic cytokine upregulated in asthmatic airways, can augment eosinophilic inflammation by interfering with IL-13's negative feedback autoregulatory loop under MEK/ERK dependent conditions. PMID:22573806

  10. Non-immunologic enhancement and regression of self-healing squamous cell carcinoma (keratoacanthoma)--ground substance and inflammation.

    PubMed

    Stone, O J

    1988-06-01

    Keratoacanthomas have many characteristics of squamous cell carcinoma and in the past were interpreted as squamous cell carcinomas. It is now known that these lesions spontaneously resolve if left untreated. In man the lesions occur on sunlight damaged areas or areas exposed to tar. Many of the experimental cancers of animals produced by topical carcinogens are keratoacanthomas. Ultraviolet light and tar are known to damage fibroblast and ground substance viscosity. It has recently been proposed that anything that decreases ground substance viscosity would encourage the spread of tumors, by weakening tissue resistance. The rapidly growing keratoacanthoma produces invasive pressure and moves into deeper, less damaged dermis. An inflammatory reaction occurs in the depth of the lesion and a very characteristic granulocytic response occurs. Granulocytes release connective tissue active peptides which stimulate fibroblast and ground substance formation. The fibroblast proliferation is followed by fibrosis and the shrinking and disappearance of the tumor. The characteristic pustule that spurts granulocytes into the depth of the tumor has been experimentally blocked by hyaluronidase and other substances that damage ground substance viscosity. Edema is essential to produce this inflammatory reaction. However, this inflammatory phenomenon occurs vigorously in keratoacanthoma. It is proposed that a keratoacanthoma is a tumor that does not produce hyaluronidase or other substances that decrease ground substance viscosity. It is a deviant cell that can only move through areas of decreased ground substance viscosity. When it reaches tissues of normal viscosity edema and an inflammatory reaction occurs.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Exome sequencing coupled with mRNA analysis identifies NDUFAF6 as a Leigh gene.

    PubMed

    Bianciardi, Laura; Imperatore, Valentina; Fernandez-Vizarra, Erika; Lopomo, Angela; Falabella, Micol; Furini, Simone; Galluzzi, Paolo; Grosso, Salvatore; Zeviani, Massimo; Renieri, Alessandra; Mari, Francesca; Frullanti, Elisa

    2016-11-01

    We report here the case of a young male who started to show verbal fluency disturbance, clumsiness and gait anomalies at the age of 3.5years and presented bilateral striatal necrosis. Clinically, the diagnosis was compatible with Leigh syndrome but the underlying molecular defect remained elusive even after exome analysis using autosomal/X-linked recessive or de novo models. Dosage of respiratory chain activity on fibroblasts, but not in muscle, underlined a deficit in complex I. Re-analysis of heterozygous probably pathogenic variants, inherited from one healthy parent, identified the p.Ala178Pro in NDUFAF6, a complex I assembly factor. RNA analysis showed an almost mono-allelic expression of the mutated allele in blood and fibroblasts and puromycin treatment on cultured fibroblasts did not lead to the rescue of the maternal allele expression, not supporting the involvement of nonsense-mediated RNA decay mechanism. Complementation assay underlined a recovery of complex I activity after transduction of the wild-type gene. Since the second mutation was not detected and promoter methylation analysis resulted normal, we hypothesized a non-exonic event in the maternal allele affecting a regulatory element that, in conjunction with the paternal mutation, leads to the autosomal recessive disorder and the different allele expression in various tissues. This paper confirms NDUFAF6 as a genuine morbid gene and proposes the coupling of exome sequencing with mRNA analysis as a method useful for enhancing the exome sequencing detection rate when the simple application of classical inheritance models fails. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Inhibition of Survivin Influences the Biological Activities of Canine Histiocytic Sarcoma Cell Lines

    PubMed Central

    Hoshino, Yuki; Hosoya, Kenji; Okumura, Masahiro

    2013-01-01

    Canine histiocytic sarcoma (CHS) is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS. PMID:24260303

  13. Telomere attrition and genomic instability in xeroderma pigmentosum type-b deficient fibroblasts under oxidative stress

    PubMed Central

    Ting, Aloysius Poh Leong; Low, Grace Kah Mun; Gopalakrishnan, Kalpana; Hande, M Prakash

    2010-01-01

    Abstract Xeroderma pigmentosum B (XPB/ERCC3/p89) is an ATP-dependent 3′→5′ directed DNA helicase involved in basal RNA transcription and the nucleotide excision repair (NER) pathway. While the role of NER in alleviating oxidative DNA damage has been acknowledged it remains poorly understood. To study the involvement of XPB in repair of oxidative DNA damage, we utilized primary fibroblasts from a patient suffering from XP with Cockayne syndrome and hydrogen peroxide (H2O2) to induce oxidative stress. Mutant cells retained higher viability and cell cycle dysfunction after H2O2 exposure. Cytokinesis blocked micronucleus assay revealed increased genome instability induced by H2O2. Single cell gel electrophoresis (comet) assay showed that the missense mutation caused a reduced repair capacity for oxidative DNA damage. Mutant fibroblasts also displayed decreased population doubling rate, increased telomere attrition rate and early emergence of senescent characteristics under chronic low dose exposure to H2O2. Fibroblasts from a heterozygous individual displayed intermediate traits in some assays and normal traits in others, indicating possible copy number dependence. The results show that a deficiency in functional XPB paradoxically renders cells more sensitive to the genotoxic effects of oxidative stress while reducing the cytotoxic effects. These findings have implications in the mechanisms of DNA repair, mutagenesis and carcinogenesis and ageing in normal physiological systems. PMID:19840190

  14. Processing of alkylcobalamins in mammalian cells: a role for the MMACHC (cblC) gene product

    PubMed Central

    Hannibal, Luciana; Kim, Jihoe; Brasch, Nicola E.; Wang, Sihe; Rosenblatt, David S.; Banerjee, Ruma; Jacobsen, Donald W.

    2009-01-01

    The MMACHC gene product of the cblC complementation group, referred to as the cblC protein, catalyzes the in vitro and in vivo decyanation of cyanocobalamin (vitamin B12). We hypothesized that the cblC protein would also catalyze the dealkylation of newly internalized methylcobalamin (MeCbl) and 5′-deoxyadenosylcobalamin (AdoCbl), the naturally occurring alkylcobalamins that are present in the diet. The hypothesis was tested in cultured endothelial cells using [57Co]-AdoCbl and MeCbl analogs consisting of [57Co]-labeled straight-chain alkylcobalamins ranging from C2 (ethylcobalamin) to C6 (hexylcobalamin). [57Co]-AdoCbl was converted to [57Co]-MeCbl by cultured bovine aortic endothelial cells, suggesting that a dealkylation process likely involving the cblC protein removed the 5′-deoxyadenosyl alkyl group. Surprisingly, all of the straight-chain alkylcobalamins served as substrates for the biosynthesis of both AdoCbl and MeCbl. Dealkylation was then assessed in normal skin fibroblasts and fibroblasts derived from 3 patients with mutations in the MMACHC gene. While normal skin fibroblasts readily converted [57Co]-propylcobalamin to [57Co]-AdoCbl and [57Co]-MeCbl, there was little or no conversion in cblC mutant fibroblasts. These studies suggest that the CblC protein is responsible for early processing of both CNCbl (decyanation) and alkylcobalamins (dealkylation) in mammalian cells. PMID:19447654

  15. Processing of alkylcobalamins in mammalian cells: A role for the MMACHC (cblC) gene product.

    PubMed

    Hannibal, Luciana; Kim, Jihoe; Brasch, Nicola E; Wang, Sihe; Rosenblatt, David S; Banerjee, Ruma; Jacobsen, Donald W

    2009-08-01

    The MMACHC gene product of the cblC complementation group, referred to as the cblC protein, catalyzes the in vitro and in vivo decyanation of cyanocobalamin (vitamin B(12)). We hypothesized that the cblC protein would also catalyze the dealkylation of newly internalized methylcobalamin (MeCbl) and 5'-deoxyadenosylcobalamin (AdoCbl), the naturally occurring alkylcobalamins that are present in the diet. The hypothesis was tested in cultured endothelial cells using [(57)Co]-AdoCbl and MeCbl analogs consisting of [(57)Co]-labeled straight-chain alkylcobalamins ranging from C2 (ethylcobalamin) to C6 (hexylcobalamin). [(57)Co]-AdoCbl was converted to [(57)Co]-MeCbl by cultured bovine aortic endothelial cells, suggesting that a dealkylation process likely involving the cblC protein removed the 5'-deoxyadenosyl alkyl group. Surprisingly, all of the straight-chain alkylcobalamins served as substrates for the biosynthesis of both AdoCbl and MeCbl. Dealkylation was then assessed in normal skin fibroblasts and fibroblasts derived from three patients with mutations in the MMACHC gene. While normal skin fibroblasts readily converted [(57)Co]-propylcobalamin to [(57)Co]-AdoCbl and [(57)Co]-MeCbl, there was little or no conversion in cblC mutant fibroblasts. These studies suggest that the CblC protein is responsible for early processing of both CNCbl (decyanation) and alkylcobalamins (dealkylation) in mammalian cells.

  16. Zoledronic acid impairs stromal reactivity by inhibiting M2-macrophages polarization and prostate cancer-associated fibroblasts

    PubMed Central

    Comito, Giuseppina; Segura, Coral Pons; Taddei, Maria Letizia; Lanciotti, Michele; Serni, Sergio; Morandi, Andrea; Chiarugi, Paola; Giannoni, Elisa

    2017-01-01

    Zoledronic acid (ZA) is a biphosphonate used for osteoporosis treatment and also proved to be effective to reduce the pain induced by bone metastases when used as adjuvant therapy in solid cancers. However, it has been recently proposed that ZA could have direct anti-tumour effects, although the molecular mechanism is unknown. We herein unravel a novel anti-tumour activity of ZA in prostate cancer (PCa), by targeting the pro-tumorigenic properties of both stromal and immune cells. Particularly, we demonstrate that ZA impairs PCa-induced M2-macrophages polarization, reducing their pro-invasive effect on tumour cells and their pro-angiogenic features. Crucially, ZA administration reverts cancer associated fibroblasts (CAFs) activation by targeting the mevalonate pathway and RhoA geranyl-geranylation, thereby impairing smooth muscle actin-α fibers organization, a prerequisite of fibroblast activation. Moreover, ZA prevents the M2 macrophages-mediated activation of normal fibroblast, highlighting the broad efficacy of this drug on tumour microenvironment. These results are confirmed in a metastatic xenograft PCa mouse model in which ZA-induced stromal normalization impairs cancer-stromal cells crosstalk, resulting in a significant reduction of primary tumour growth and metastases. Overall these findings reinforce the efficacy of ZA as a potential therapeutic approach to reduce cancer aggressiveness, by abrogating the supportive role of tumour microenvironment. PMID:27223431

  17. Psoralidin, a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.

    PubMed

    Yang, Hee Jung; Youn, HyeSook; Seong, Ki Moon; Yun, Young Ju; Kim, Wanyeon; Kim, Young Ha; Lee, Ji Young; Kim, Cha Soon; Jin, Young-Woo; Youn, BuHyun

    2011-09-01

    Radiotherapy is the most significant non-surgical cure for the elimination of tumor, however it is restricted by two major problems: radioresistance and normal tissue damage. Efficiency improvement on radiotherapy is demanded to achieve cancer treatment. We focused on radiation-induced normal cell damage, and are concerned about inflammation reported to act as a main limiting factor in the radiotherapy. Psoralidin, a coumestan derivative isolated from the seed of Psoralea corylifolia, has been studied for anti-cancer and anti-bacterial properties. However, little is known regarding its effects on IR-induced pulmonary inflammation. The aim of this study is to investigate mechanisms of IR-induced inflammation and to examine therapeutic mechanisms of psoralidin in human normal lung fibroblasts and mice. Here, we demonstrated that IR-induced ROS activated cyclooxygenases-2 (COX-2) and 5-lipoxygenase (5-LOX) pathway in HFL-1 and MRC-5 cells. Psoralidin inhibited the IR-induced COX-2 expression and PGE(2) production through regulation of PI3K/Akt and NF-κB pathway. Also, psoralidin blocked IR-induced LTB(4) production, and it was due to direct interaction of psoralidin and 5-lipoxygenase activating protein (FLAP) in 5-LOX pathway. IR-induced fibroblast migration was notably attenuated in the presence of psoralidin. Moreover, in vivo results from mouse lung indicate that psoralidin suppresses IR-induced expression of pro-inflammatory cytokines (TNF-α, TGF-β, IL-6 and IL-1 α/β) and ICAM-1. Taken together, our findings reveal a regulatory mechanism of IR-induced pulmonary inflammation in human normal lung fibroblast and mice, and suggest that psoralidin may be useful as a potential lead compound for development of a better radiopreventive agent against radiation-induced normal tissue injury. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Pathways of sphingomyelin metabolism in cultured fibroblasts from normal and sphingomyelin lipidosis subjects.

    PubMed

    Spence, M W; Clarke, J T; Cook, H W

    1983-07-25

    The metabolism of endogenous sphingomyelin labeled with 32P or [methyl-3H]choline and of exogenous [choline-methyl-3H], [32P]-, or [N-acyl-1-14C]sphingomyelin was studied in normal and Niemann-Pick Type A (NP-A) cultured fibroblasts. Despite a greater than 96% decrease in lysosomal sphingomyelinase activity in the NP-A cells, they were able to degrade endogenously produced [32P]- or [methyl-3H]sphingomyelin at normal or near normal rates. Exogenous [methyl-3H]-, [methyl-3H, 32P]-, and [methyl-3H, N-acyl-1-14C] sphingomyelin was taken up intact by normal and NP-A cells, with NP-A cells accumulating 4-8 times more lipid. By 20 h, 50% of the control cell-associated 3H and 32P was recovered in lecithin, and the ratio of activities (3H/32P) indicated most of the phosphorylcholine derived from sphingomyelin had been transferred intact. By comparison in NP-A cells, after a 40-h incubation only 20% of the labeled phosphorylcholine derived from sphingomyelin was recovered in lecithin. With both cell lines, 20 to 50 times more sphingomyelin was hydrolyzed than was taken up by the cells; the reaction products in the medium were ceramide and a mixture of water-soluble compounds such as phosphorylcholine and choline. These results indicate that there are at least two metabolic pathways for sphingomyelin modification in cultured fibroblasts in addition to degradation by the lysosomal acid sphingomyelinase. One route is hydrolysis by a cellular sphingomyelinase. The second is the hydrolysis and/or transfer of phosphorylcholine from sphingomyelin and results in the synthesis of lecithin.

  19. Effect of human vascular endothelial growth factor gene transfer on endogenous vascular endothelial growth factor mRNA expression in a rat fibroblast and osteoblast culture model.

    PubMed

    Li, Ru; Li, Claire H; Nauth, Aaron; McKee, Michael D; Schemitsch, Emil H

    2010-09-01

    Vascular endothelial growth factor (VEGF) plays an important role in promoting angiogenesis and osteogenesis during fracture repair. Our previous studies have shown that cell-based VEGF gene therapy enhances bone healing of a rabbit tibia segmental bone defect in vivo. The aim of this project was to examine the effect of exogenous human VEGF on the endogenous rat VEGF messenger RNA (mRNA) expression in a cell-based gene transfer model. Rat fibroblasts and osteoblasts were harvested from the dermal tissue and periosteum, respectively, of Fisher 344 rats. The cells were then cultured and transfected with pcDNA-human VEGF using Superfect reagent (Qiagen). Four experimental groups were created: 1) fibroblast-VEGF; 2) osteoblast-VEGF; 3) nontransfected fibroblast controls; and 4) nontransfected osteoblast controls. The cultured cells were harvested at 1, 3, and 7 days after the gene transfection. The total mRNA was extracted (Trizol; Invitrogen); both human VEGF and rat VEGF mRNA were measured by reverse transcriptase-polymerase chain reaction and quantified by VisionWorksLS. The human VEGF165 mRNA was detected by reverse transcriptase-polymerase chain reaction from transfected fibroblasts and osteoblasts at 1, 3, and 7 days after gene transfection. The human VEGF165 levels peaked at Day 1 and then gradually reduced expression in both transfected fibroblasts and osteoblasts. Two endogenous rat VEGF isoforms were detected in this cell culture model: rat VEGF120 and rat VEGF164. We compared the rat VEGF120 and rat VEGF164 expression level of the fibroblasts or osteoblasts that were transfected with human VEGF165, with nontransfected control cells. Both the transfected fibroblasts and osteoblasts showed greater expression of rat VEGF164 than nontransfected controls at Day 1 (peak level) and Day 3, but not at Day 7. The expression of rat VEGF120 was lower in transfected fibroblasts, but higher in transfected osteoblasts, than the relevant control groups at any time point after transfection. In addition, human VEGF gene transfection increased osteoblast cell proliferation after 3 days. These in vitro results suggest that cell-based human VEGF gene therapy is not only effective at causing human VEGF expression, but also enhances endogenous rat VEGF mRNA expression in both fibroblasts and osteoblasts, particularly the rat VEGF164 isoform.

  20. Influence of the interaction between nodal fibroblast and breast cancer cells on gene expression

    PubMed Central

    Santos, Rosângela Portilho Costa; Benvenuti, Ticiana Thomazine; Honda, Suzana Terumi; Del Valle, Paulo Roberto; Katayama, Maria Lucia Hirata; Brentani, Helena Paula; Carraro, Dirce Maria; Rozenchan, Patrícia Bortman; Brentani, Maria Mitzi; de Lyra, Eduardo Carneiro; Torres, César Henrique; Salzgeber, Marcia Batista; Kaiano, Jane Haruko Lima; Góes, João Carlos Sampaio

    2010-01-01

    Our aim was to evaluate the interaction between breast cancer cells and nodal fibroblasts, by means of their gene expression profile. Fibroblast primary cultures were established from negative and positive lymph nodes from breast cancer patients and a similar gene expression pattern was identified, following cell culture. Fibroblasts and breast cancer cells (MDA-MB231, MDA-MB435, and MCF7) were cultured alone or co-cultured separated by a porous membrane (which allows passage of soluble factors) for comparison. Each breast cancer lineage exerted a particular effect on fibroblasts viability and transcriptional profile. However, fibroblasts from positive and negative nodes had a parallel transcriptional behavior when co-cultured with a specific breast cancer cell line. The effects of nodal fibroblasts on breast cancer cells were also investigated. MDA MB-231 cells viability and migration were enhanced by the presence of fibroblasts and accordingly, MDA-MB435 and MCF7 cells viability followed a similar pattern. MDA-MB231 gene expression profile, as evaluated by cDNA microarray, was influenced by the fibroblasts presence, and HNMT, COMT, FN3K, and SOD2 were confirmed downregulated in MDA-MB231 co-cultured cells with fibroblasts from both negative and positive nodes, in a new series of RT-PCR assays. In summary, transcriptional changes induced in breast cancer cells by fibroblasts from positive as well as negative nodes are very much alike in a specific lineage. However, fibroblasts effects are distinct in each one of the breast cancer lineages, suggesting that the inter-relationships between stromal and malignant cells are dependent on the intrinsic subtype of the tumor. Electronic supplementary material The online version of this article (doi:10.1007/s13277-010-0108-7) contains supplementary material, which is available to authorized users. PMID:20820980

  1. Influence of the interaction between nodal fibroblast and breast cancer cells on gene expression.

    PubMed

    Santos, Rosângela Portilho Costa; Benvenuti, Ticiana Thomazine; Honda, Suzana Terumi; Del Valle, Paulo Roberto; Katayama, Maria Lucia Hirata; Brentani, Helena Paula; Carraro, Dirce Maria; Rozenchan, Patrícia Bortman; Brentani, Maria Mitzi; de Lyra, Eduardo Carneiro; Torres, César Henrique; Salzgeber, Marcia Batista; Kaiano, Jane Haruko Lima; Góes, João Carlos Sampaio; Folgueira, Maria Aparecida Azevedo Koike

    2011-02-01

    Our aim was to evaluate the interaction between breast cancer cells and nodal fibroblasts, by means of their gene expression profile. Fibroblast primary cultures were established from negative and positive lymph nodes from breast cancer patients and a similar gene expression pattern was identified, following cell culture. Fibroblasts and breast cancer cells (MDA-MB231, MDA-MB435, and MCF7) were cultured alone or co-cultured separated by a porous membrane (which allows passage of soluble factors) for comparison. Each breast cancer lineage exerted a particular effect on fibroblasts viability and transcriptional profile. However, fibroblasts from positive and negative nodes had a parallel transcriptional behavior when co-cultured with a specific breast cancer cell line. The effects of nodal fibroblasts on breast cancer cells were also investigated. MDA MB-231 cells viability and migration were enhanced by the presence of fibroblasts and accordingly, MDA-MB435 and MCF7 cells viability followed a similar pattern. MDA-MB231 gene expression profile, as evaluated by cDNA microarray, was influenced by the fibroblasts presence, and HNMT, COMT, FN3K, and SOD2 were confirmed downregulated in MDA-MB231 co-cultured cells with fibroblasts from both negative and positive nodes, in a new series of RT-PCR assays. In summary, transcriptional changes induced in breast cancer cells by fibroblasts from positive as well as negative nodes are very much alike in a specific lineage. However, fibroblasts effects are distinct in each one of the breast cancer lineages, suggesting that the inter-relationships between stromal and malignant cells are dependent on the intrinsic subtype of the tumor.

  2. The CC chemokine eotaxin/CCL11 has a selective profibrogenic effect on human lung fibroblasts.

    PubMed

    Puxeddu, Ilaria; Bader, Reem; Piliponsky, Adrian Martin; Reich, Reuven; Levi-Schaffer, Francesca; Berkman, Neville

    2006-01-01

    Eotaxin/CCL11 plays an important role in asthma. It acts through the chemokine receptor CCR3 expressed on hematopoietic and nonhematopoietic cells in the lung. To determine whether eotaxin/CCL11 modulates lung and bronchial fibroblast properties and thereby might contribute to airway remodeling. CCR3 expression was characterized on a lung fibroblast line (MRC-5; flow cytometry, fluorescent microscopy, RT-PCR, and Northern blotting), on primary bronchial fibroblasts (flow cytometry), and on fibroblasts in human lung tissue (confocal laser microscopy). The effects of eotaxin/CCL11 on lung fibroblast migration (Boyden chamber), proliferation (tritiated thymidine incorporation), alpha-smooth muscle actin expression (ELISA), 3-dimensional collagen gel contraction (floating gel), pro-alpha1(I) collagen mRNA (Northern blotting), total collagen synthesis (tritiated proline incorporation), matrix metalloproteinase activity (gelatin zymography), and TGF-beta(1) release (ELISA) were evaluated. The contribution of eotaxin/CCL11/CCR3 binding on lung fibroblasts was also investigated by neutralizing experiments. CCR3 is constitutively expressed in cultured lung and primary bronchial fibroblasts and colocalizes with specific surface markers for human fibroblasts in lung tissue. Eotaxin/CCL11 selectively modulates fibroblast activities by increasing their proliferation, matrix metalloproteinase 2 activity, and collagen synthesis but not their differentiation into myofibroblasts, contractility in collagen gel, or TGF-beta(1) release. Eotaxin/CCL11 enhances migration of lung fibroblasts in response to nonspecific chemoattractants, and this effect is completely inhibited by anti-CCR3-neutralizing antibodies. These data demonstrate that eotaxin/CCL11 has a direct and selective profibrogenic effect on lung and bronchial fibroblasts, providing a novel mechanism whereby eotaxin/CCL11 can participate in airway remodeling in asthma.

  3. Endothelin-1 stimulates colon cancer adjacent fibroblasts.

    PubMed

    Knowles, Jonathan P; Shi-Wen, Xu; Haque, Samer-ul; Bhalla, Ashish; Dashwood, Michael R; Yang, Shiyu; Taylor, Irving; Winslet, Marc C; Abraham, David J; Loizidou, Marilena

    2012-03-15

    Endothelin-1 (ET-1) is produced by and stimulates colorectal cancer cells. Fibroblasts produce tumour stroma required for cancer development. We investigated whether ET-1 stimulated processes involved in tumour stroma production by colonic fibroblasts. Primary human fibroblasts, isolated from normal tissues adjacent to colon cancers, were cultured with or without ET-1 and its antagonists. Cellular proliferation, migration and contraction were measured. Expression of enzymes involved in tumour stroma development and alterations in gene transcription were determined by Western blotting and genome microarrays. ET-1 stimulated proliferation, contraction and migration (p < 0.01 v control) and the expression of matrix degrading enzymes TIMP-1 and MMP-2, but not MMP-3. ET-1 upregulated genes for profibrotic growth factors and receptors, signalling molecules, actin modulators and extracellular matrix components. ET-1 stimulated colonic fibroblast cellular processes in vitro that are involved in developing tumour stroma. Upregulated genes were consistent with these processes. By acting as a strong stimulus for tumour stroma creation, ET-1 is proposed as a target for adjuvant cancer therapy. Copyright © 2011 UICC.

  4. A Role for Fibroblasts in Mediating the Effects of Tobacco-Induced Epithelial Cell Growth and Invasion

    PubMed Central

    Coppe, Jean-Philippe; Boysen, Megan; Ho Sun, Chung; Wong, Brian J.F.; Kang, Mo K.; Park, No-Hee; Desprez, Pierre-Yves; Campisi, Judith; Krtolica, Ana

    2009-01-01

    Cigarette smoke and smokeless tobacco extracts contain multiple carcinogenic compounds, but little is known about the mechanisms by which tumors develop and progress upon chronic exposure to carcinogens such as those present in tobacco products. Here, we examine the effects of smokeless tobacco extracts on human oral fibroblasts. We show that smokeless tobacco extracts elevated the levels of intracellular reactive oxygen, oxidative DNA damage, and DNA double-strand breaks in a dose-dependent manner. Extended exposure to extracts induced fibroblasts to undergo a senescence-like growth arrest, with striking accompanying changes in the secretory phenotype. Using cocultures of smokeless tobacco extracts–exposed fibroblasts and immortalized but nontumorigenic keratinocytes, we further show that factors secreted by extracts-modified fibroblasts increase the proliferation and invasiveness of partially transformed epithelial cells, but not their normal counterparts. In addition, smokeless tobacco extracts–exposed fibroblasts caused partially transformed keratinocytes to lose the expression of E-cadherin and ZO-1, as well as involucrin, changes that are indicative of compromised epithelial function and commonly associated with malignant progression. Together, our results suggest that fibroblasts may contribute to tumorigenesis indirectly by increasing epithelial cell aggressiveness. Thus, tobacco may not only initiate mutagenic changes in epithelial cells but also promote the growth and invasion of mutant cells by creating a procarcinogenic stromal environment. PMID:18644973

  5. Thalidomide inhibits adipogenesis of orbital fibroblasts in Graves' ophthalmopathy.

    PubMed

    Zhang, Chu; Zhang, Xianfeng; Ma, Lizhen; Peng, Fengying; Huang, Jiao; Han, Hui

    2012-04-01

    The expansion of orbital adipose tissue is a main pathophysiology of Graves' ophthalmopathy (GO), which is an inflammatory autoimmune disease in the orbital region. The effects of immunosuppressive drugs on adipogenesis of orbital fibroblasts have not been determined. Thalidomide, as an immunosuppressive drug, has recently been used in the therapy of many autoimmune diseases. In this study, we analyzed the effects of thalidomide on adipogenesis and found that adipocyte differentiation from preadipocytes in the orbital region was enhanced, which was demonstrated by enhanced expression of peroxisome proliferator activated receptor γ (PPARγ), ap2, and thyroid-stimulating hormone receptor (TSHR). The expression of inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin 6 (IL-6) was also increased in GO. Thalidomide dose-dependently inhibited adipogenesis of 3T3-L1 preadipocytes and orbital fibroblasts from GO patients. Along with the inhibited adipogenesis, the expression of TSHR, TNFα, and IL-6 was also down-regulated. We discovered that the mechanism for thalidomide inhibiting adipogenesis was the down-regulation of PPARγ, rather than C/EBPβ and C/EBPδ. We suggest that, besides its canonical anti-TNFα effect, thalidomide plays a role in inhibiting adipogenesis of orbital fibroblasts in GO patients.

  6. Peripheral Blood Mononuclear Cells Enhance the Anabolic Effects of Platelet-Rich Plasma on Anterior Cruciate Ligament Fibroblasts

    PubMed Central

    Yoshida, Ryu; Murray, Martha M.

    2012-01-01

    Use of platelet-rich plasma (PRP) has shown promise in various orthopaedic applications, including treatment of anterior cruciate ligament (ACL) injuries. However, various components of blood, including peripheral blood mononuclear cells (PBMCs), are removed in the process of making PRP. It is yet unknown whether these PBMCs have a positive or negative effect on fibroblast behavior. To begin to define the effect of PBMCs on ACL fibroblasts, ACL fibroblasts were cultured on three-dimensional collagen scaffolds for 14 days with and without PBMCs. ACL fibroblasts exposed to PBMCs showed increased type I and type III procollagen gene expression, collagen protein expression, and cell proliferation when the cells were cultured in the presence of platelets and plasma. However, addition of PBMCs to cells cultured without the presence of platelets had no effect. The increase in collagen gene and protein expression was accompanied by an increase in IL-6 expression by the PBMCs with exposure to the platelets. Our results suggest that the interaction between platelets and PBMCs leads to an IL-6 mediated increase in collagen expression by ACL fibroblasts. PMID:22767425

  7. A Study of Parameters Affecting Fibroblast Morphology in Response to an Applied Mechanical Force

    NASA Technical Reports Server (NTRS)

    Grymes, Rosalind A.; Sawyer, Christine

    1994-01-01

    A precisely controlled stretch/relaxation regimen (20% elongation at 6.6 cycles/min) was applied to normal human fetal, neonatal and aged dermal fibroblasts cultured on flexible membranes. Culture conditions included poly (NH2) or collagen type I coated substrate membranes; control cultures were grown on the same pliable material in the absence of applied stretch. Direct observation and immunofluorescence analyses revealed a progressive change in cell body orientation limited to the stretched dermal fibroblast cultures. Monolayers gradually (over 4 days) acquired a symmetric, radial distribution equivalent to the biaxial array of the applied force. At high seeding density, alignment was inhibited in the fetal cell cultures. This cell strain required collagen type I coating for optimal attachment to the flexible membrane, preferring growth in three-dimensional cell 'balls' on the poly(NH2) coated substrate. Neonatal cells also required the collagen type I coating, but both neonatal and aged dermal fibroblasts aligned efficiently at all seeding densities examined. The randomly oriented neonatal cells on the unstretched control membranes spontaneously detached at confluence, as a single cell sheet. Their aligned counterparts did not detach until the applied stretch stimulus was removed. Low concentrations of cytochalasin D (62.5 ng/ml) disrupted the stretch-related alignment response. Rhodamine phalloidin staining visualized fewer actin stress fibers in stretched, aligned cells than in controls. Both intercellular interactions and cytoskeletal integrity mediate the response to mechanical strain. Normal rabbit corneal stroma fibroblasts (NRC) were also analyzed, and failed to orient under these conditions. This cell type may require a different regimen, or a longer time period, to demonstrate alignment behavior. Supported by NASA Space Biology RTOP 199-40-22 and the NASA-ARC Director's Discretionary Fund.

  8. Identification of sirtuin 1 as a promising therapeutic target for hypertrophic scars

    PubMed Central

    Bai, Xiao‐Zhi; Liu, Jia‐Qi; Yang, Long‐Long; Fan, Lei; He, Ting; Su, Lin‐Lin; Shi, Ji‐Hong; Tang, Chao‐Wu

    2016-01-01

    Background and Purpose Sirtuin1 (SIRT1), the founding member of mammalian class III histone deacetylases, is reported to be a drug target involved in fibrotic diseases. However, whether it is an effective drug target in hypertrophic scar treatment is still not known. Experimental Approach In the present study, we observed that SIRT1 localized to both the epidermis and the dermis of skin tissues by immunohistochemistry. After knock‐down of SIRT1 by shRNA or up‐regulating SIRT1 by resveratrol, the expression of α‐SMA, Col1 and Col3 in fibroblasts were detected by western blots. A mouse excision wound healing model was used to observe the changes in collagen fibre associated with the different expression levels of SIRT1. Key Results SIRT1 expression was inhibited in hypertrophic scar tissue. The down‐regulation of SIRT1 resulted in an increased expression of α‐SMA, Col1 and Col3 in hypertrophic scar‐derived fibroblasts. In contrast, the up‐regulation of SIRT1 not only inhibited the expression of α‐SMA, Col1 and Col3 in hypertrophic scar‐derived fibroblasts but also blocked the activation of TGFβ1‐induced normal skin‐derived fibroblasts. In the mouse model of wound healing, the deletion of SIRT1 resulted in denser collagen fibres and a more disordered structure, whereas resveratrol treatment led to a more organized and thinner collagen fibre, which was similar to that observed during normal wound healing. Conclusions and Implications The results revealed that SIRT1 negatively regulates TGFβ1‐induced fibroblast activation and inhibits excessive scar formation and is, therefore, a promising drug target for hypertrophic scar formation. PMID:26891034

  9. Mitomycin C induces apoptosis in cultured corneal fibroblasts derived from type II granular corneal dystrophy corneas.

    PubMed

    Kim, Tae-im; Choi, Seung-il; Lee, Hyung Keun; Cho, Young Jae; Kim, Eung Kweon

    2008-06-30

    The present study investigated the effect of mitomycin C (MMC) on cell viability, apoptosis, and transforming growth factor beta-induced protein (TGFBIp) expression in cultured normal corneal fibroblasts and heterozygote or homozygote granular corneal dystrophy type II (GCD II) corneal fibroblasts. Keratocytes were obtained from normal cornea or from heterozygote or homozygote GCD II patients after lamellar or penetrating keratoplasty. To measure cell viability, corneal fibroblasts were incubated with 0.02% MMC for 3 h, 6 h, and 24 h or with 0%, 0.01%, 0.02%, and 0.04% MMC for 24 h and then tested using lactate dehydrogenase (LDH) and 3-[4,5-demethylthiazol-2,5-diphenyl-2H-tetrazolium bromide] (MTT) assays. To measure apoptosis, cells were analyzed by FACS analysis and annexin V staining. Bcl-xL, Bax, and TGFBI mRNA expression was measured using reverse transcription polymerase chain reaction (RT-PCR) assays. Cellular and media levels of TGFBIp protein were measured by immunoblotting. MTT and LDH assays showed that MMC reduced cell viability in all three cell types in a dose-dependent and time-dependent manner (p<0.05). FACS analysis and annexin V staining showed that MMC caused apoptosis with GCD II homozygote cells being most affected. RT-PCR analysis showed that MMC decreased Bcl-xL mRNA expression and increased Bax mRNA expression in all cell types. RT-PCR and immunoblotting analysis showed that MMC reduced TGFBI mRNA levels and cellular and media TGFBIp protein levels in all cell types. MMC induced apoptosis, and the effects of MMC were greatest in GCD II homozygote cells. MMC also reduced the production of TGFBIp in all three types of corneal fibroblasts. These findings may explain the additional therapeutic effect of MMC in GCD II patients.

  10. Altered prostate epithelial development in mice lacking the androgen receptor in stromal fibroblasts.

    PubMed

    Yu, Shengqiang; Yeh, Chiuan-Ren; Niu, Yuanjie; Chang, Hong-Chiang; Tsai, Yu-Chieh; Moses, Harold L; Shyr, Chih-Rong; Chang, Chawnshang; Yeh, Shuyuan

    2012-03-01

    Androgens and the androgen receptor (AR) play important roles in the development of male urogenital organs. We previously found that mice with total AR knockout (ARKO) and epithelial ARKO failed to develop normal prostate with loss of differentiation. We have recently knocked out AR gene in smooth muscle cells and found the reduced luminal infolding and IGF-1 production in the mouse prostate. However, AR roles of stromal fibroblasts in prostate development remain unclear. To further probe the stromal fibroblast AR roles in prostate development, we generated tissue-selective knockout mice with the AR gene deleted in stromal fibroblasts (FSP-ARKO). We also used primary culture stromal cells to confirm the in vivo data and investigate mechanisms related to prostate development. The results showed cellular alterations in the FSP-ARKO mouse prostate with decreased epithelial proliferation, increased apoptosis, and decreased collagen composition. Further mechanistic studies demonstrated that FSP-ARKO mice have defects in the expression of prostate stromal growth factors. To further confirm these in vivo findings, we prepared primary cultured mouse prostate stromal cells and found knocking down the stromal AR could result in growth retardation of prostate stromal cells and co-cultured prostate epithelial cells, as well as decrease of some stromal growth factors. Our FSP-ARKO mice not only provide the first in vivo evidence in Cre-loxP knockout system for the requirement of stromal fibroblast AR to maintain the normal development of the prostate, but may also suggest the selective knockdown of stromal AR might become a potential therapeutic approach to battle prostate hyperplasia and cancer. Copyright © 2011 Wiley Periodicals, Inc.

  11. Cancer-associated fibroblasts regulate keratinocyte cell-cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer.

    PubMed

    Cirillo, N; Hassona, Y; Celentano, A; Lim, K P; Manchella, S; Parkinson, E K; Prime, S S

    2017-01-01

    The interrelationship between malignant epithelium and the underlying stroma is of fundamental importance in tumour development and progression. In the present study, we used cancer-associated fibroblasts (CAFs) derived from genetically unstable oral squamous cell carcinomas (GU-OSCC), tumours that are characterized by the loss of genes such as TP53 and p16 INK4A and with extensive loss of heterozygosity, together with CAFs from their more genetically stable (GS) counterparts that have wild-type TP53 and p16 INK4A and minimal loss of heterozygosity (GS-OSCC). Using a systems biology approach to interpret the genome-wide transcriptional profile of the CAFs, we show that transforming growth factor-β (TGF-β) family members not only had biological relevance in silico but also distinguished GU-OSCC-derived CAFs from GS-OSCC CAFs and fibroblasts from normal oral mucosa. In view of the close association between TGF-β family members, we examined the expression of TGF-β1 and TGF-β2 in the different fibroblast subtypes and showed increased levels of active TGF-β1 and TGF-β2 in CAFs from GU-OSCC. CAFs from GU-OSCC, but not GS-OSCC or normal fibroblasts, induced epithelial-mesenchymal transition and down-regulated a broad spectrum of cell adhesion molecules resulting in epithelial dis-cohesion and invasion of target keratinocytes in vitro in a TGF-β-dependent manner. The results demonstrate that the TGF-β family of cytokines secreted by CAFs derived from genotype-specific oral cancer (GU-OSCC) promote, at least in part, the malignant phenotype by weakening intercellular epithelial adhesion. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Three-Dimensional In Vitro Skin and Skin Cancer Models Based on Human Fibroblast-Derived Matrix.

    PubMed

    Berning, Manuel; Prätzel-Wunder, Silke; Bickenbach, Jackie R; Boukamp, Petra

    2015-09-01

    Three-dimensional in vitro skin and skin cancer models help to dissect epidermal-dermal and tumor-stroma interactions. In the model presented here, normal human dermal fibroblasts isolated from adult skin self-assembled into dermal equivalents with their specific fibroblast-derived matrix (fdmDE) over 4 weeks. The fdmDE represented a complex human extracellular matrix that was stabilized by its own heterogeneous collagen fiber meshwork, largely resembling a human dermal in vivo architecture. Complemented with normal human epidermal keratinocytes, the skin equivalent (fdmSE) thereof favored the establishment of a well-stratified and differentiated epidermis and importantly allowed epidermal regeneration in vitro for at least 24 weeks. Moreover, the fdmDE could be used to study the features of cutaneous skin cancer. Complementing fdmDE with HaCaT cells in different stages of malignancy or tumor-derived cutaneous squamous cell carcinoma cell lines, the resulting skin cancer equivalents (fdmSCEs) recapitulated the respective degree of tumorigenicity. In addition, the fdmSCE invasion phenotypes correlated with their individual degree of tissue organization, disturbance in basement membrane organization, and presence of matrix metalloproteinases. Together, fdmDE-based models are well suited for long-term regeneration of normal human epidermis and, as they recapitulate tumor-specific growth, differentiation, and invasion profiles of cutaneous skin cancer cells, also provide an excellent human in vitro skin cancer model.

  13. Production of Fibronectin by the Human Alveolar Macrophage: Mechanism for the Recruitment of Fibroblasts to Sites of Tissue Injury in Interstitial Lung Diseases

    NASA Astrophysics Data System (ADS)

    Rennard, Stephen I.; Hunninghake, Gary W.; Bitterman, Peter B.; Crystal, Ronald G.

    1981-11-01

    Because cells of the mononuclear phagocyte system are known to produce fibronectin and because alveolar macrophages are activated in many interstitial lung diseases, the present study was designed to evaluate a role for the alveolar macrophage as a source of the increased levels of fibronectin found in the lower respiratory tract in interstitial lung diseases and to determine if such fibronectin might contribute to the development of the fibrosis found in these disorders by being a chemoattractant for human lung fibroblasts. Production of fibronectin by human alveolar macrophages obtained by bronchoalveolar lavage and maintained in short-term culture in serum-free conditions was demonstrated; de novo synthesis was confirmed by the incorporation of [14C]proline. This fibronectin had a monomer molecular weight of 220,000 and was antigenically similar to plasma fibronectin. Macrophages from patients with idiopathic pulmonary fibrosis produced fibronectin at a rate 20 times higher than did normal macrophages; macrophages from patients with pulmonary sarcoidosis produced fibronectin at 10 times the normal rate. Macrophages from 6 of 10 patients with various other interstitial disorders produced fibronectin at rates greater than the rate of highest normal control. Human alveolar macrophage fibronectin was chemotactic for human lung fibroblasts, suggesting a functional role for this fibronectin in the derangement of the alveolar structures that is characteristic of these disorders.

  14. Stromal matrix metalloproteinase 2 regulates collagen expression and promotes the outgrowth of experimental metastases.

    PubMed

    Bates, Andreia L; Pickup, Michael W; Hallett, Miranda A; Dozier, E Ashley; Thomas, Stacy; Fingleton, Barbara

    2015-04-01

    Breast cancer survival rates decrease from 99% for patients with local disease to 25% for those with distant metastases. Matrix metalloproteinases (MMPs), including MMP2, are associated with metastatic progression. We found that loss of host MMP2 reduces the proliferation of experimental metastases in the lungs and identified fibroblasts in tumour-bearing lungs as the major source of MMP2. In vitro, spheroidal mammary tumour growth was increased by co-culture with control fibroblasts isolated from tumour-bearing lungs, but not when fibroblasts with stable Mmp2 knockdown were used. This result prompted us to assess whether MMP2 was responsible for a tumour-proliferative, activated fibroblast phenotype. To test this, we evaluated: (a) fibroblasts from wild-type tumour-bearing lungs, with or without shRNA-mediated MMP2 knockdown; and (b) normal, quiescent fibroblasts isolated from either WT or Mmp2(-/-) mice. Quantitative PCR revealed that Mmp2 knockdown attenuated expression of two markers of activation (α-smooth muscle actin and vimentin), but there was minimal expression in quiescent WT or Mmp2(-/-) fibroblasts, as expected. Placing quiescent fibroblasts under activating conditions led to increases in activation-associated transcripts in WT but not Mmp2(-/-) fibroblasts. Additionally, Mmp2 knockdown fibroblasts showed significantly decreased expression of the matrix transcripts collagen I, collagen IV and fibronectin. Addition of active TGFβ was sufficient to rescue the MMP2-dependent collagen I and IV expression, while MMP2-induced collagen expression was blocked by the addition of TGFβ1-neutralizing antibody. Gene expression data in stromal cells of human breast cancers reveal that MMP2 expression is also positively correlated with activation and matrix transcripts. Thus, we present a model whereby MMP2 production in tumour fibroblasts is important for TGFβ1 activity and subsequent activation of fibroblasts to a matrix-producing, proliferation-supportive phenotype. Overall, our results reveal a previously undefined role for MMP2 in metastatic outgrowth mediated by fibroblasts, and extend the mechanisms by which MMPs contribute to tumour progression. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  15. Persistent tumor necrosis factor signaling in normal human fibroblasts prevents the complete resynthesis of I kappa B-alpha.

    PubMed

    Poppers, D M; Schwenger, P; Vilcek, J

    2000-09-22

    Transcription factor NF-kappa B is normally sequestered in the cytoplasm, complexed with I kappa B inhibitory proteins. Tumor necrosis factor (TNF) and interleukin-1 induce I kappa B-alpha phosphorylation, leading to I kappa B-alpha degradation and translocation of NF-kappa B to the nucleus where it activates genes important in inflammatory and immune responses. TNF and interleukin-1 actions are typically terminated by desensitization, and I kappa B-alpha reappearance normally occurs within 30-60 min. We found that in normal human FS-4 fibroblasts maintained in the presence of TNF, I kappa B-alpha protein failed to return to base-line levels for up to 15 h. Removal of TNF at any time during the 15-h period resulted in complete I kappa B-alpha resynthesis, suggesting that I kappa B-alpha reappearance was prevented by continued TNF signaling. Long term exposure of FS-4 fibroblasts to TNF led to a persistent presence of I kappa B-alpha mRNA, sustained I kappa B kinase activation, continuous proteasome-mediated degradation of I kappa B-alpha, and sustained nuclear localization of NF-kappa B. Continuous exposure of FS-4 cells to TNF did not lead to a sustained activation of p38 or ERK mitogen-activated protein kinases, suggesting that not all TNF-induced signaling pathways are persistently activated. These findings challenge the notion that all cytokine-mediated signals are rapidly terminated by desensitization and illustrate the need to elucidate the process of deactivation of TNF-induced signaling.

  16. A novel two-step procedure to expand Sca-1+ cells clonally

    PubMed Central

    Tang, Yao Liang; Shen, Leping; Qian, Keping; Phillips, M. Ian

    2007-01-01

    Resident cardiac stem cells (CSCs) are characterized by their capacity to self-renew in culture, and are multi-potent for forming normal cell types in hearts. CSCs were originally isolated directly from enzymatically digested hearts using stem cell markers. However, long exposure to enzymatic digestion can affect the integrity of stem cell markers on the cell surface, and also compromise stem cell function. Alternatively resident CSCs can migrate from tissue explant and form cardiospheres in culture. However, fibroblast contamination can easily occur during CSC culture. To avoid these problems, we developed a two-step procedure by growing the cells before selecting the Sca1+ cells and culturing in cardiac fibroblast conditioned medium, they avoid fibroblast overgrowth. PMID:17577582

  17. Histamine Promotes the Release of Interleukin-6 via the H1R/p38 and NF-κB Pathways in Nasal Fibroblasts.

    PubMed

    Park, Il-Ho; Um, Ji-Young; Cho, Jung-Sun; Lee, Seung Hoon; Lee, Sang Hag; Lee, Heung-Man

    2014-11-01

    Based on the close relationship between histamine and interleukin 6 (IL-6), we hypothesized that histamine may regulate the production of cytokines, such as IL-6, during allergic inflammation. Here, we examined the role of histamine in IL-6 production and histamine receptor activity in nasal fibroblasts, along with the mechanisms underlying these effects. Experiments were performed using nasal fibroblasts from 8 normal patients. RT-PCR was used to identify the major histamine receptors expressed in nasal fibroblasts. Fibroblasts were then treated with histamine with or without histamine-receptor antagonists, and monitored for IL-6 production using an ELISA. Four potential downstream signaling molecules, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and NF-κB, were evaluated by Western blot, and a luciferase reporter assay. Elevated expression was seen for all histamine receptors, with IL-6 protein levels increasing significantly following histamine stimulation. Among the histamine-receptor specific antagonists, only the H1R antagonist significantly decreased IL-6 production in histamine-stimulated nasal fibroblasts. Histamine increased the expression level of phosphorylated p38 (pp38), pERK, and pJNK, as well as NF-κB induction. The H1R antagonist actively suppressed pp38 and NF-κB expression in histamine-induced nasal fibroblasts, but not pERK and pJNK. The p38 inhibitor strongly attenuated IL-6 production in histamine-stimulated nasal fibroblasts. The data presented here suggest that antihistamines may be involved in the regulation of cytokines, such as IL-6, due to the role of histamine as an inflammatory mediator in nasal fibroblasts.

  18. Progranulin Overproduction Due to Fli-1 Deficiency Contributes to the Resistance of Dermal Fibroblasts to Tumor Necrosis Factor in Systemic Sclerosis.

    PubMed

    Ichimura, Yohei; Asano, Yoshihide; Akamata, Kaname; Noda, Shinji; Taniguchi, Takashi; Takahashi, Takehiro; Toyama, Tetsuo; Tada, Yayoi; Sugaya, Makoto; Sato, Shinichi; Kadono, Takafumi

    2015-12-01

    Progranulin is a growth factor that is active in wound repair and is an antagonist of tumor necrosis factor (TNF) receptors, regulating fibroblast activation, angiogenesis, and inflammation. Because long-standing activation of gene programs related to wound healing is a hallmark of systemic sclerosis (SSc), we sought to investigate the role of progranulin in SSc. Progranulin expression levels in human and murine skin samples were determined by immunohistochemical analysis and quantitative reverse transcription-polymerase chain reaction. The role of progranulin in fibroblast activation was examined using a gene-silencing technique. Progranulin levels in serum obtained from 60 patients with SSc and 16 healthy control subjects were determined by enzyme-linked immunosorbent assay. Progranulin expression was increased in SSc dermal fibroblasts compared with normal dermal fibroblasts, both in vivo and in vitro. Transcription factor Fli-1, a deficiency of which is involved in the activation of SSc dermal fibroblasts, served as a potent repressor of the progranulin gene, and Fli-1(+/-) mice and bleomycin-treated wild-type mice exhibited up-regulated expression of progranulin in dermal fibroblasts. SSc dermal fibroblasts were resistant to the antifibrotic effect of TNF, but this resistance was reversed by gene silencing of progranulin. Serum progranulin levels were elevated in patients with early diffuse cutaneous SSc (dcSSc), especially in those with inflammatory skin symptoms, and were positively correlated with the C-reactive protein level. Progranulin overproduction due to Fli-1 deficiency may contribute to the constitutive activation of SSc dermal fibroblasts by antagonizing the antifibrotic effect of TNF. Progranulin may also be involved in the inflammatory process associated with progressive skin sclerosis in early dcSSc. © 2015, American College of Rheumatology.

  19. Tubule-Derived Wnts Are Required for Fibroblast Activation and Kidney Fibrosis.

    PubMed

    Zhou, Dong; Fu, Haiyan; Zhang, Lu; Zhang, Ke; Min, Yali; Xiao, Liangxiang; Lin, Lin; Bastacky, Sheldon I; Liu, Youhua

    2017-08-01

    Cell-cell communication via Wnt ligands is necessary in regulating embryonic development and has been implicated in CKD. Because Wnt ligands are ubiquitously expressed, the exact cellular source of the Wnts involved in CKD remains undefined. To address this issue, we generated two conditional knockout mouse lines in which Wntless (Wls), a dedicated cargo receptor that is obligatory for Wnt secretion, was selectively ablated in tubular epithelial cells or interstitial fibroblasts. Blockade of Wnt secretion by genetic deletion of Wls in renal tubules markedly inhibited myofibroblast activation and reduced renal fibrosis after unilateral ureteral obstruction. This effect associated with decreased activation of β -catenin and downstream gene expression and preserved tubular epithelial integrity. In contrast, fibroblast-specific deletion of Wls exhibited little effect on the severity of renal fibrosis after obstructive or ischemia-reperfusion injury. In vitro , incubation of normal rat kidney fibroblasts with tubule-derived Wnts promoted fibroblast proliferation and activation. Furthermore, compared with kidney specimens from patients without CKD, biopsy specimens from patients with CKD also displayed increased expression of multiple Wnt proteins, predominantly in renal tubular epithelium. These results illustrate that tubule-derived Wnts have an essential role in promoting fibroblast activation and kidney fibrosis via epithelial-mesenchymal communication. Copyright © 2017 by the American Society of Nephrology.

  20. Rapamycin reduces fibroblast proliferation without causing quiescence and induces STAT5A/B-mediated cytokine production

    PubMed Central

    Gillespie, Zoe E; MacKay, Kimberly; Sander, Michelle; Trost, Brett; Dawicki, Wojciech; Wickramarathna, Aruna; Gordon, John; Eramian, Mark; Kill, Ian R; Bridger, Joanna M; Kusalik, Anthony; Mitchell, Jennifer A; Eskiw, Christopher H

    2015-01-01

    Rapamycin is a well-known inhibitor of the Target of Rapamycin (TOR) signaling cascade; however, the impact of this drug on global genome function and organization in normal primary cells is poorly understood. To explore this impact, we treated primary human foreskin fibroblasts with rapamycin and observed a decrease in cell proliferation without causing cell death. Upon rapamycin treatment chromosomes 18 and 10 were repositioned to a location similar to that of fibroblasts induced into quiescence by serum reduction. Although similar changes in positioning occurred, comparative transcriptome analyses demonstrated significant divergence in gene expression patterns between rapamycin-treated and quiescence-induced fibroblasts. Rapamycin treatment induced the upregulation of cytokine genes, including those from the Interleukin (IL)-6 signaling network, such as IL-8 and the Leukemia Inhibitory Factor (LIF), while quiescent fibroblasts demonstrated up-regulation of genes involved in the complement and coagulation cascade. In addition, genes significantly up-regulated by rapamycin treatment demonstrated increased promoter occupancy of the transcription factor Signal Transducer and Activator of Transcription 5A/B (STAT5A/B). In summary, we demonstrated that the treatment of fibroblasts with rapamycin decreased proliferation, caused chromosome territory repositioning and induced STAT5A/B-mediated changes in gene expression enriched for cytokines. PMID:26652669

  1. Distinct function of estrogen receptor α in smooth muscle and fibroblast cells in prostate development.

    PubMed

    Vitkus, Spencer; Yeh, Chiuan-Ren; Lin, Hsiu-Hsia; Hsu, Iawen; Yu, Jiangzhou; Chen, Ming; Yeh, Shuyuan

    2013-01-01

    Estrogen signaling, through estrogen receptor (ER)α, has been shown to cause hypertrophy in the prostate. Our recent report has shown that epithelial ERα knockout (KO) will not affect the normal prostate development or homeostasis. However, it remains unclear whether ERα in different types of stromal cells has distinct roles in prostate development. This study proposed to elucidate how KO of ERα in the stromal smooth muscle or fibroblast cells may interrupt cross talk between prostate stromal and epithelial cells. Smooth muscle ERαKO (smERαKO) mice showed decreased glandular infolding with the proximal area exhibiting a significant decrease. Fibroblast ERαKO mouse prostates did not exhibit this phenotype but showed a decrease in the number of ductal tips. Additionally, the amount of collagen observed in the basement membrane was reduced in smERαKO prostates. Interestingly, these phenotypes were found to be mutually exclusive among smERαKO or fibroblast ERαKO mice. Compound KO of ERα in both fibroblast and smooth muscle showed combined phenotypes from each of the single KO. Further mechanistic studies showed that IGF-I and epidermal growth factor were down-regulated in prostate smooth muscle PS-1 cells lacking ERα. Together, our results indicate the distinct functions of fibroblast vs. smERα in prostate development.

  2. Orlistat and antisense-miRNA-loaded PLGA-PEG nanoparticles for enhanced triple negative breast cancer therapy

    PubMed Central

    Bhargava-Shah, Aarohi; Foygel, Kira; Devulapally, Rammohan; Paulmurugan, Ramasamy

    2016-01-01

    Background: This study explores the use of hydrophilic poly(ethylene glycol)-conjugated poly(lactic-co-glycolic acid) nanoparticles (PLGA-PEG-NPs) as delivery system to improve the antitumor effect of antiobesity drug orlistat for triple-negative breast cancer (TNBC) therapy by improving its bioavailability. Materials & methods: PLGA-PEG-NPs were synthesized by emulsion-diffusion-evaporation method, and the experiments were conducted in vitro in MDA-MB-231 and SKBr3 TNBC and normal breast fibroblast cells. Results: Delivery of orlistat via PLGA-PEG-NPs reduced its IC50 compared with free orlistat. Combined treatment of orlistat-loaded NPs and doxorubicin or antisense-miR-21-loaded NPs significantly enhanced apoptotic effect compared with independent doxorubicin, anti-miR-21-loaded NPs, orlistat-loaded NPs or free orlistat treatments. Conclusion: We demonstrate that orlistat in combination with antisense-miR-21 or current chemotherapy holds great promise as a novel and versatile treatment agent for TNBC. PMID:26787319

  3. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins.

    PubMed

    Maric, Martina; Haugo, Alison C; Dauer, William; Johnson, David; Roller, Richard J

    2014-07-01

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.

    PubMed

    Kamerkar, Sushrut; LeBleu, Valerie S; Sugimoto, Hikaru; Yang, Sujuan; Ruivo, Carolina F; Melo, Sonia A; Lee, J Jack; Kalluri, Raghu

    2017-06-22

    The mutant form of the GTPase KRAS is a key driver of pancreatic cancer but remains a challenging therapeutic target. Exosomes are extracellular vesicles generated by all cells, and are naturally present in the blood. Here we show that enhanced retention of exosomes, compared to liposomes, in the circulation of mice is likely due to CD47-mediated protection of exosomes from phagocytosis by monocytes and macrophages. Exosomes derived from normal fibroblast-like mesenchymal cells were engineered to carry short interfering RNA or short hairpin RNA specific to oncogenic Kras G12D , a common mutation in pancreatic cancer. Compared to liposomes, the engineered exosomes (known as iExosomes) target oncogenic KRAS with an enhanced efficacy that is dependent on CD47, and is facilitated by macropinocytosis. Treatment with iExosomes suppressed cancer in multiple mouse models of pancreatic cancer and significantly increased overall survival. Our results demonstrate an approach for direct and specific targeting of oncogenic KRAS in tumours using iExosomes.

  5. SIRT-1 regulates TGF-β-induced dermal fibroblast migration via modulation of Cyr61 expression.

    PubMed

    Kwon, Eun-Jeong; Park, Eun-Jung; Yu, Hyeran; Huh, Jung-Sik; Kim, Jinseok; Cho, Moonjae

    2018-05-01

    SIRT1 is a NAD-dependent protein deacetylase that participates in cellular regulation. The increased migration of fibroblasts is an important phenotype in fibroblast activation. The role of SIRT1 in cell migration remains controversial as to whether SIRT1 acts as an activator or suppressor of cell migration. Therefore, we have established the role of SIRT1 in the migration of human dermal fibroblasts and explored targets of SIRT1 during dermal fibroblast migration. SIRT1 and Cyr61 were expressed in human dermal fibroblasts and the stimulation with TGF-β further induced their expression. Treatment with resveratrol (RSV), a SIRT1 agonist, or overexpression of SIRT1 also promoted the expression Cyr61 in human dermal fibroblasts, whereas the inhibition of SIRT1 activity by nicotinamide or knockdown of SIRT1 decreased the level of Cyr61, as well as TGF-β or RSV-induced Cyr61 expression. Blocking of ERK signaling by PD98509 reduced the expression of Cyr61 induced by TGF-β or RSV. TGF-β, RSV, or SIRT1 overexpression enhanced β-catenin as well as Cyr61 expression. This stimulation was reduced by the Wnt inhibitor XAV939. RSV increased migration and nicotinamide attenuated RSV-induced migration of human dermal fibroblasts. Furthermore, SIRT1 overexpression promoted cell migration, whereas blocking Cyr61 attenuated SIRT1-stimulated migration of human dermal fibroblasts. SIRT1 increased cell migration by stimulating Cyr61 expression and the ERK and Wnt/β-catenin signaling. SIRT1-induced Cyr61 activity is very important for human dermal fibroblasts migration.

  6. Prostate stromal cells express the progesterone receptor to control cancer cell mobility.

    PubMed

    Yu, Yue; Lee, Jennifer Suehyun; Xie, Ning; Li, Estelle; Hurtado-Coll, Antonio; Fazli, Ladan; Cox, Michael; Plymate, Stephen; Gleave, Martin; Dong, Xuesen

    2014-01-01

    Reciprocal interactions between epithelium and stroma play vital roles for prostate cancer development and progression. Enhanced secretions of cytokines and growth factors by cancer associated fibroblasts in prostate tumors create a favorable microenvironment for cancer cells to grow and metastasize. Our previous work showed that the progesterone receptor (PR) was expressed specifically in prostate stromal fibroblasts and smooth muscle cells. However, the expression levels of PR and its impact to tumor microenvironment in prostate tumors are poorly understood. Immunohistochemistry assays are applied to human prostate tissue biopsies. Cell migration, invasion and proliferation assays are performed using human prostate cells. Real-time PCR and ELISA are applied to measure gene expression at molecular levels. Immunohistochemistry assays showed that PR protein levels were decreased in cancer associated stroma when compared with paired normal prostate stroma. Using in vitro prostate stromal cell models, we showed that conditioned media collected from PR positive stromal cells inhibited prostate cancer cell migration and invasion, but had minor suppressive impacts on cancer cell proliferation. PR suppressed the secretion of stromal derived factor-1 (SDF-1) and interlukin-6 (IL-6) by stromal cells independent to PR ligands. Blocking PR expression by siRNA or supplementation of exogenous SDF-1 or IL-6 to conditioned media from PR positive stromal cells counteracted the inhibitory effects of PR to cancer cell migration and invasion. Decreased expression of the PR in cancer associated stroma may contribute to the elevated SDF-1 and IL-6 levels in prostate tumors and enhance prostate tumor progression.

  7. Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets.

    PubMed

    Wöhrle, Simon; Henninger, Christine; Bonny, Olivier; Thuery, Anne; Beluch, Noemie; Hynes, Nancy E; Guagnano, Vito; Sellers, William R; Hofmann, Francesco; Kneissel, Michaela; Graus Porta, Diana

    2013-04-01

    Fibroblast growth factor 23 (FGF23) is a circulating factor secreted by osteocytes that is essential for phosphate homeostasis. In kidney proximal tubular cells FGF23 inhibits phosphate reabsorption and leads to decreased synthesis and enhanced catabolism of 1,25-dihydroxyvitamin D3 (1,25[OH]2 D3 ). Excess levels of FGF23 cause renal phosphate wasting and suppression of circulating 1,25(OH)2 D3 levels and are associated with several hereditary hypophosphatemic disorders with skeletal abnormalities, including X-linked hypophosphatemic rickets (XLH) and autosomal recessive hypophosphatemic rickets (ARHR). Currently, therapeutic approaches to these diseases are limited to treatment with activated vitamin D analogues and phosphate supplementation, often merely resulting in partial correction of the skeletal aberrations. In this study, we evaluate the use of FGFR inhibitors for the treatment of FGF23-mediated hypophosphatemic disorders using NVP-BGJ398, a novel selective, pan-specific FGFR inhibitor currently in Phase I clinical trials for cancer therapy. In two different hypophosphatemic mouse models, Hyp and Dmp1-null mice, resembling the human diseases XLH and ARHR, we find that pharmacological inhibition of FGFRs efficiently abrogates aberrant FGF23 signaling and normalizes the hypophosphatemic and hypocalcemic conditions of these mice. Correspondingly, long-term FGFR inhibition in Hyp mice leads to enhanced bone growth, increased mineralization, and reorganization of the disturbed growth plate structure. We therefore propose NVP-BGJ398 treatment as a novel approach for the therapy of FGF23-mediated hypophosphatemic diseases. Copyright © 2013 American Society for Bone and Mineral Research.

  8. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    PubMed

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  9. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    PubMed Central

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  10. Evaluation of tissue engineered models of the oral mucosa to investigate oral candidiasis.

    PubMed

    Yadev, Nishant P; Murdoch, Craig; Saville, Stephen P; Thornhill, Martin H

    2011-06-01

    Candida albicans is a commensal organism that can be isolated from the majority of healthy individuals. However, in certain susceptible individuals C. albicans can become pathogenic leading to the mucocutaneous infection; oral candidiasis. Murine models and in vitro monolayer cultures have generated some data on the likely virulence and host factors that contribute to oral candidiasis but these models have limitations. Recently, tissue engineered oral mucosal models have been developed to mimic the normal oral mucosa but little information is available on their true representation. In this study, we assessed the histological features of three different tissue engineered oral mucosal models compared to the normal oral mucosa and analysed both cell damage and cytokine release following infection with C. albicans. Models comprised of normal oral keratinocytes and a fibroblast-containing matrix displayed more similar immunohistological and proliferation characteristics to normal mucosa, compared to models composed of an oral carcinoma cell line. Although all models were invaded and damaged by C. albicans in a similar manner, the cytokine response was much more pronounced in models containing normal keratinocytes. These data suggest that models based on normal keratinocytes atop a fibroblast-containing connective tissue will significantly aid in dissecting the molecular pathogenesis of oral candidiasis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Rapid Anastomosis of Endothelial Progenitor Cell–Derived Vessels with Host Vasculature Is Promoted by a High Density of Cotransplanted Fibroblasts

    PubMed Central

    Chen, Xiaofang; Aledia, Anna S.; Popson, Stephanie A.; Him, Linda; Hughes, Christopher C.W.

    2010-01-01

    To ensure survival of engineered implantable tissues thicker than approximately 2–3 mm, convection of nutrients and waste products to enhance the rate of transport will be required. Creating a network of vessels in vitro, before implantation (prevascularization), is one potential strategy to achieve this aim. In this study, we developed three-dimensional engineered vessel networks in vitro by coculture of endothelial cells (ECs) and fibroblasts in a fibrin gel for 7 days. Vessels formed by cord blood endothelial progenitor cell–derived ECs (EPC-ECs) in the presence of a high density of fibroblasts created an interconnected tubular network within 4 days, compared with 5–7 days in the presence of a low density of fibroblasts. Vessels derived from human umbilical vein ECs (HUVECs) in vitro showed similar kinetics. Implantation of the prevascularized tissues into immune-compromised mice, however, revealed a dramatic difference in the ability of EPC-ECs and HUVECs to form anastomoses with the host vasculature. Vascular beds derived from EPC-ECs were perfused within 1 day of implantation, whereas no HUVEC vessels were perfused at day 1. Further, while almost 90% of EPC-EC–derived vascular beds were perfused at day 3, only one-third of HUVEC-derived vascular beds were perfused. In both cases, a high density of fibroblasts accelerated anastomosis by 2–3 days. We conclude that both EPC-ECs and a high density of fibroblasts significantly accelerate the rate of functional anastomosis, and that prevascularizing an engineered tissue may be an effective strategy to enhance convective transport of nutrients in vivo. PMID:19737050

  12. FLAX OIL FROM TRANSGENIC LINUM USITATISSIMUM SELECTIVELY INHIBITS IN VITRO PROLIFERATION OF HUMAN CANCER CELL LINES.

    PubMed

    Gebarowski, Tomasz; Gebczak, Katarzyna; Wiatrak, Benita; Kulma, Anna; Pelc, Katarzyna; Czuj, Tadeusz; Szopa, Jan; Gasiorowski, Kazimierz

    2017-03-01

    Emulsions made of oils from transgenic flaxseeds significantly decreased in vitro proliferation of six tested human cancer cell lines in 48-h cultures, as assessed with the standard sulforhodamine assay. However, the emulsions also increased proliferation rate of normal human dermal fibroblasts and, to a lower extend, of keratinocytes. Both inhibition of in vitro proliferation of human cancer cell lines and stimulation of proliferation of normal dermal fibroblasts and keratinocytes were especially strong with the emulsion type B and with emulsion type M. Oils from seeds of transgenic flax type B and M should be considered as valuable adjunct to standard cytostatic therapy of human cancers and also could be applied to improve the treatment of skin lesions in wound healing.

  13. Evaluation of genistein ability to modulate CTGF mRNA/protein expression, genes expression of TGFβ isoforms and expression of selected genes regulating cell cycle in keloid fibroblasts in vitro.

    PubMed

    Jurzak, Magdalena; Adamczyk, Katarzyna; Antończak, Paweł; Garncarczyk, Agnieszka; Kuśmierz, Dariusz; Latocha, Małgorzata

    2014-01-01

    Keloids are characterized by overgrowth of connective tissue in the skin that arises as a consequence of abnormal wound healing. Normal wound healing is regulated by a complex set of interactions within a network of profibrotic and antifibrotic cytokines that regulate new extracellular matrix (ECM) synthesis and remodeling. These proteins include transforming growth factor β (TGFβ) isoforms and connective tissue growth factor (CTGF). TGFβ1 stimulates fibroblasts to synthesize and contract ECM and acts as a central mediator of profibrotic response. CTGF is induced by TGFβ1 and is considered a downstream mediator of TGFβ1action in fibroblasts. CTGF plays a crucial role in keloid pathogenesis by promoting prolonged collagen synthesis and deposition and as a consequence sustained fibrotic response. During keloids formation, besides imbalanced ECM synthesis and degradation, fibroblast proliferation and it's resistance to apoptosis is observed. Key genes that may play a role in keloid formation and growth involve: suppressor gene p53.,cyclin-depend- ent kinase inhibitor CDKN1A (p21) and BCL2 family genes: antiapoptotic BCL-2 and proapoptotic BAX. Genistein (4',5,7-trihydroxyisoflavone) exhibits multidirectional biological action. The concentration of genistein is relatively high in soybean. Genistein has been shown as effective antioxidant and chemopreventive agent. Genistein can bind to estrogen receptors (ERs) and modulate estrogen action due to its structure similarity to human estrogens. Genistein also inhibits transcription factors NFκB. Akt and AP-l signaling pathways, that are important for cytokines expression and cell proliferation, differentiation, survival and apoptosis. The aim of the study was to investigate genistein as a potential inhibitor of CTGF and TGFβ1, β2 and β3 isoforms expression and a potential regulator of p53. CDKN1A(p21), BAX and BCL-2 expression in normal fibroblasts and fibroblasts derived from keloids cultured in vitro. Real time RT-QPCR was used to estimate transcription level of selected genes in normal and keloid fibroblasts treated with genistein. Secreted/cell-associated CTGF protein was evaluated in cell growth's medium by ELISA. Total protein quantification was evaluated by fluorimetric assay in cells llsates (Quant-iT TM Protein Assay Kit). It was found that TGFβ1, β2 and β3 genes expression are decreased by genistein. Genistein suppresses the expression of CTGF mRNA and CTGF protein in a concentration dependent manner, p53 and p21 genes expression are modulated by genistein in concentration dependent manner. The agent also modulates BAX/BCL-2 ratio in examined cells in vitro.

  14. FSP1+ fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells

    PubMed Central

    Sun, Lina; Sun, Chenming; Liang, Zhanfeng; Li, Hongran; Chen, Lin; Luo, Haiying; Zhang, Hongmei; Ding, Pengbo; Sun, Xiaoning; Qin, Zhihai; Zhao, Yong

    2015-01-01

    Thymic epithelial cells (TECs) form a 3-dimentional network supporting thymocyte development and maturation. Besides epithelium and thymocytes, heterogeneous fibroblasts are essential components in maintaining thymic microenvironments. However, thymic fibroblast characteristics, development and function remain to be determined. We herein found that thymic non-hematopoietic CD45-FSP1+ cells represent a unique Fibroblast specific protein 1 (FSP1)—fibroblast-derived cell subset. Deletion of these cells in FSP1-TK transgenic mice caused thymus atrophy due to the loss of TECs, especially mature medullary TECs (MHCIIhigh, CD80+ and Aire+). In a cyclophosphamide-induced thymus injury and regeneration model, lack of non-hematopoietic CD45-FSP1+ fibroblast subpopulation significantly delayed thymus regeneration. In fact, thymic FSP1+ fibroblasts released more IL-6, FGF7 and FSP1 in the culture medium than their FSP1- counterparts. Further experiments showed that the FSP1 protein could directly enhance the proliferation and maturation of TECs in the in vitro culture systems. FSP1 knockout mice had significantly smaller thymus size and less TECs than their control. Collectively, our studies reveal that thymic CD45-FSP1+ cells are a subpopulation of fibroblasts, which is crucial for the maintenance and regeneration of TECs especially medullary TECs through providing IL-6, FGF7 and FSP1. PMID:26445893

  15. Epithelial atrophy in oral submucous fibrosis is mediated by copper (II) and arecoline of areca nut

    PubMed Central

    Khan, Imran; Pant, Ila; Narra, Sivakrishna; Radhesh, Rekha; Ranganathan, Kannan; Rao, Somanahalli Girish; Kondaiah, Paturu

    2015-01-01

    Exposure of oral cavity to areca nut is associated with several pathological conditions including oral submucous fibrosis (OSF). Histopathologically OSF is characterized by epithelial atrophy, chronic inflammation, juxtaepithelial hyalinization, leading to fibrosis of submucosal tissue and affects 0.5% of the population in the Indian subcontinent. As the molecular mechanisms leading to atrophied epithelium and fibrosis are poorly understood, we studied areca nut actions on human keratinocyte and gingival fibroblast cells. Areca nut water extract (ANW) was cytotoxic to epithelial cells and had a pro-proliferative effect on fibroblasts. This opposite effect of ANW on epithelial and fibroblast cells was intriguing but reflects the OSF histopathology such as epithelial atrophy and proliferation of fibroblasts. We demonstrate that the pro-proliferative effects of ANW on fibroblasts are dependent on insulin-like growth factor signalling while the cytotoxic effects on keratinocytes are dependent on the generation of reactive oxygen species. Treatment of keratinocytes with arecoline which is a component of ANW along with copper resulted in enhanced cytotoxicity which becomes comparable to IC50 of ANW. Furthermore, studies using cyclic voltammetry, mass spectrometry and plasmid cleavage assay suggested that the presence of arecoline increases oxidation reduction potential of copper leading to enhanced cleavage of DNA which could generate an apoptotic response. Terminal deoxynucleotidyl transferase dUTP Nick End Labeling assay and Ki-67 index of OSF tissue sections suggested epithelial apoptosis, which could be responsible for the atrophy of OSF epithelium. PMID:26248978

  16. Influence of Ionizing Radiation on Stromal-Epithelial Intercellular Communication in Esophageal Carcinogenesis

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Kalabis, Jiri; Rustgi, Anil K.; Cucinotta, Francis A.; Huff, Janice L.

    2010-01-01

    Esophageal cancer is the 6th leading cause of cancer death worldwide. Its development is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. An association with ionizing radiation exposure is revealed by the high excess relative risk for squamous cell carcinoma of the esophagus observed in the survivors of the atomic bomb detonations in Japan. It is also seen as a secondary malignancy in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely curable. The stromal microenvironment plays an essential role in the maintenance and modulation of normal epithelial cell growth and differentiation and cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibroblasts (Okawa et al., Genes & Dev. 2007. 21: 2788-2803). We examined how radiation treatment of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. Chemotactic and haptotactic migration of epithelial cells stimulated by conditioned media from irradiated fibroblasts was measured using assays conducted in Transwell cell culture chambers. Our results using low LET radiation showed a dose-dependent increase in migration of epithelial cells when exposed to conditioned media from irradiated vs. non-irradiated fibroblasts. We also observed enhanced invasion through a basement membrane simulant. To identify chemotactic proteins secreted by irradiated stromal fibroblasts, we used antibody capture cytokine arrays and have identified several proteins as candidates. Increased secretion of these factors by irradiated fibroblasts was confirmed using ELISA. We are currently analyzing the contribution of these individual factors on epithelial migration and invasion, as well as their influence on cell survival and DNA repair. Studies using high-LET radiation will help determine radiation quality effects on these processes. These results should further our understanding of the mechanisms by which radiation impacts the tissue microenvironment and how it influences cancer development processes.

  17. Methionine restriction inhibits chemically-induced malignant transformation in the BALB/c 3T3 cell transformation assay.

    PubMed

    Nicken, Petra; Empl, Michael T; Gerhard, Daniel; Hausmann, Julia; Steinberg, Pablo

    2016-09-01

    High consumption of red meat entails a higher risk of developing colorectal cancer. Methionine, which is more frequently a component of animal proteins, and folic acid are members of the one carbon cycle and as such important players in DNA methylation and cancer development. Therefore, dietary modifications involving altered methionine and folic acid content might inhibit colon cancer development. In the present study, the BALB/c 3T3 cell transformation assay was used to investigate whether methionine and folic acid are able to influence the malignant transformation of mouse fibroblasts after treatment with the known tumour initiator 3-methylcholanthrene. Three different methionine concentrations (representing a -40%, a "normal" and a +40% cell culture medium concentration, respectively) and two different folic acid concentrations (6 and 20 μM) were thereby investigated. Methionine restriction led to a decrease of type III foci, while enhancement of both methionine and folic acid did not significantly increase the cell transformation rate. Interestingly, the focus-lowering effect of methionine was only significant in conjunction with an elevated folic acid concentration. In summary, we conclude that the malignant transformation of mouse fibroblasts is influenced by methionine levels and that methionine restriction could be a possible approach to reduce cancer development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Molecular and clinical significance of fibroblast growth factor 2 (FGF2 /bFGF) in malignancies of solid and hematological cancers for personalized therapies

    PubMed Central

    Akl, Mohamed R.; Nagpal, Poonam; Ayoub, Nehad M.; Tai, Betty; Prabhu, Sathyen A.; Capac, Catherine M.; Gliksman, Matthew; Goy, Andre; Suh, K. Stephen

    2016-01-01

    Fibroblast growth factor (FGF) signaling is essential for normal and cancer biology. Mammalian FGF family members participate in multiple signaling pathways by binding to heparan sulfate and FGF receptors (FGFR) with varying affinities. FGF2 is the prototype member of the FGF family and interacts with its receptor to mediate receptor dimerization, phosphorylation, and activation of signaling pathways, such as Ras-MAPK and PI3K pathways. Excessive mitogenic signaling through the FGF/FGFR axis may induce carcinogenic effects by promoting cancer progression and increasing the angiogenic potential, which can lead to metastatic tumor phenotypes. Dysregulated FGF/FGFR signaling is associated with aggressive cancer phenotypes, enhanced chemotherapy resistance and poor clinical outcomes. In vitro experimental settings have indicated that extracellular FGF2 affects proliferation, drug sensitivity, and apoptosis of cancer cells. Therapeutically targeting FGF2 and FGFR has been extensively assessed in multiple preclinical studies and numerous drugs and treatment options have been tested in clinical trials. Diagnostic assays are used to quantify FGF2, FGFRs, and downstream signaling molecules to better select a target patient population for higher efficacy of cancer therapies. This review focuses on the prognostic significance of FGF2 in cancer with emphasis on therapeutic intervention strategies for solid and hematological malignancies. PMID:27007053

  19. Down's syndrome fibroblasts exhibit enhanced inositol uptake.

    PubMed Central

    Fruen, B R; Lester, B R

    1990-01-01

    The inositol metabolism of Down's syndrome (DS, trisomy 21) skin fibroblasts was examined. We report that DS cells accumulated [3H]inositol 2-3-fold faster than did other aneuploid or diploid controls. In contrast, trisomy 21 did not affect the uptake of choline, serine or glucose. Kinetic analysis demonstrated an increased maximal velocity of high-affinity, Na(+)-dependent, inositol transport, consistent with the expression of higher numbers of transporters by DS cells. Enhanced uptake was accompanied by a proportional increase in the incorporation of radiolabelled inositol into phospholipid. We suggest that an imbalance of inositol metabolism may contribute to plasma membrane abnormalities characteristic of DS cells. Images Fig. 4. PMID:2144418

  20. High mobility group box protein 1 in complex with lipopolysaccharide or IL-1 promotes an increased inflammatory phenotype in synovial fibroblasts

    PubMed Central

    2011-01-01

    Introduction In addition to its direct proinflammatory activity, extracellular high mobility group box protein 1 (HMGB1) can strongly enhance the cytokine response evoked by other proinflammatory molecules, such as lipopolysaccharide (LPS), CpG-DNA and IL-1β, through the formation of complexes. Extracellular HMGB1 is abundant in arthritic joint tissue where it is suggested to promote inflammation as intra-articular injections of HMGB1 induce synovitis in mice and HMGB1 neutralizing therapy suppresses development of experimental arthritis. The aim of this study was to determine whether HMGB1 in complex with LPS, interleukin (IL)-1α or IL-1β has enhancing effects on the production of proinflammatory mediators by rheumatoid arthritis synovial fibroblasts (RASF) and osteoarthritis synovial fibroblasts (OASF). Furthermore, we examined the toll-like receptor (TLR) 4 and IL-1RI requirement for the cytokine-enhancing effects of the investigated HMGB1-ligand complexes. Methods Synovial fibroblasts obtained from rheumatoid arthritis (RA) and osteoarthritis (OA) patients were stimulated with HMGB1 alone or in complex with LPS, IL-1α or IL-1β. Tumour necrosis factor (TNF) production was determined by enzyme-linked immunospot assay (ELISPOT) assessment. Levels of IL-10, IL-1-β, IL-6 and IL-8 were measured using Cytokine Bead Array and matrix metalloproteinase (MMP) 3 production was determined by ELISA. Results Stimulation with HMGB1 in complex with LPS, IL-1α or IL-1β enhanced production of TNF, IL-6 and IL-8. HMGB1 in complex with IL-1β increased MMP production from both RASF and OASF. The cytokine production was inhibited by specific receptor blockade using detoxified LPS or IL-1 receptor antagonist, indicating that the synergistic effects were mediated through the partner ligand-reciprocal receptors TLR4 and IL-1RI, respectively. Conclusions HMGB1 in complex with LPS, IL-1α or IL-1β boosted proinflammatory cytokine- and MMP production in synovial fibroblasts from RA and OA patients. A mechanism for the pathogenic role of HMGB1 in arthritis could thus be through enhancement of inflammatory and destructive mechanisms induced by other proinflammatory mediators present in the arthritic joint. PMID:21871094

  1. Pentadecapeptide BPC 157 enhances the growth hormone receptor expression in tendon fibroblasts.

    PubMed

    Chang, Chung-Hsun; Tsai, Wen-Chung; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2014-11-19

    BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  2. Emmprin, released as a microvesicle in epithelioid sarcoma, interacts with fibroblasts.

    PubMed

    Aoki, Mikiko; Koga, Kaori; Hamasaki, Makoto; Egawa, Nagayasu; Nabeshima, Kazuki

    2017-06-01

    Emmprin (extracellular matrix metalloproteinase inducer, CD147) is a glycosylated transmembrane protein, consisting of two immunoglobulin domains, that stimulates the production of matrix metalloproteinases (MMPs) by tumor-associated fibroblasts. These effects play important roles in tumor invasion and metastasis. However, the precise mechanisms by which emmprin acts on fibroblasts have not been fully elucidated, especially in sarcoma cells. Previously, we demonstrated that emmprin, expressed in conditioned medium collected from the epithelioid sarcoma cell line (FU-EPS-1), stimulates MMP-2 production via interactions with fibroblasts. In this study, we used microvesicles derived from sarcoma cells, and determined whether emmprin exists in the microvesicles, which enhance the production of MMP-2 via fibroblasts. Microvesicles released from FU-EPS-1 cells were shown to contain full-length emmprin, identified as a 45-kDa protein characterized by polylactosamine glycosylation. Microvesicles collected from FU-EPS-1 cells transfected with emmprin-specific siRNA or transduced with shRNA displayed significantly reduced MMP-2 production by fibroblasts compared with those from control-transfected cells. Our findings show that emmprin is released through microvesicle shedding in sarcoma cells, and emmprin in microvesicles regulates MMP-2 production by influencing the activity of fibroblasts located at sites distant from the tumor cells.

  3. Effects of continuous wave and fractionated diode laser on human fibroblast cancer and dermal normal cells by zinc phthalocyanine in photodynamic therapy: A comparative study.

    PubMed

    Navaeipour, Farzaneh; Afsharan, Hadi; Tajalli, Habib; Mollabashi, Mahmood; Ranjbari, Farideh; Montaseri, Azadeh; Rashidi, Mohammad-Reza

    2016-08-01

    In this experimental study, cancer and normal cells behavior during an in vitro photodynamic therapy (PDT) under exposure of continuous wave (CW) and fractionated mode of laser with different irradiation power and time intervals was compared and investigated. At the first, human fibroblast cancer cell line (SW 872) and human dermal normal (HFFF2) cell line were incubated with different concentrations of zinc phthalocyanine (ZnPc), as a PDT drug. The cells, then, were irradiated with a 675nm diode laser and the cell viability was evaluated using MTT assay. Under optimized conditions, the viability of the cancer cells was eventually reduced to 3.23% and 13.17%, and that of normal cells was decreased to 20.83% and 36.23% using CW and fractionated diode lasers, respectively. In general, the ratio of ZnPc LD50 values for the normal cells to the cancer cells with CW laser was much higher than that of the fractionated laser. Subsequently, cancer cells in comparison with normal ones were found to be more sensitive toward the photodynamic damage induced by ZnPc. In addition, treatment with CW laser was found to be more effective against the cancer cells with a lower toxicity to the normal cells compared with the fractionated diode laser. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. In vitro co-culture of human skin keratinocytes and fibroblasts on a biocompatible and biodegradable scaffold.

    PubMed

    Pajoum Shariati, Seyed Ramin; Shokrgozar, Mohammad Ali; Vossoughi, Manouchehr; Eslamifar, Ali

    2009-07-01

    Extensive full-thickness burns require replacement of both epidermis and dermis. In designing skin replacements, the goal has been to re-create this model and make a product which has both essential components. In the present study, we developed procedures for establishing confluent, stratified layers of cultured human keratinocytes on the surface of modified collagen-chitosan scaffold that contains fibroblasts. The culture methods for propagation of keratinocytes and fibroblasts isolated from human neonatal foreskin were developed. The growth and proliferation of normal human keratinocytes were evaluated in serum-free (keratinocyte growth medium) and our modified medium. Characterization of human keratinocytes was determined by using pan-keratin and anti-involucrin monoclonal antibodies. For fabrication of relevant biodegradable and biocompatible collagen-chitosan porous scaffold with improved biostability, modified method of freeze-gelation was used. In generating organotypic co-cultures, epidermal keratinocytes were plated onto the upper surface of scaffold containing embedded fibroblasts. The results showed that the growth of isolated human skin fibroblasts and keratinocytes in our modified medium was more than that in the serum-free medium. The different evaluations of collagen-chitosan scaffold showed that it is relevant to growth of cells (fibroblast and keratinocyte) and has a good flexibility in manipulation of the living skin equivalents. These findings indicate that the integration of collagen-chitosan scaffold with co-cultured keratinocyte and fibroblast in vitro provides a potential source of living skin for grafting in vivo.

  5. Cardiac Fibroblast: The Renaissance Cell

    PubMed Central

    Souders, Colby A.; Bowers, Stephanie L.K.; Baudino, Troy A.

    2012-01-01

    The permanent cellular constituents of the heart include cardiac fibroblasts, myocytes, endothelial cells and vascular smooth muscle cells. Previous studies have demonstrated that there are undulating changes in cardiac cell populations during embryonic development, through neonatal development and into the adult. Transient cell populations include lymphocytes, mast cells and macrophages, which can interact with these permanent cell types to affect cardiac function. It has also been observed that there are marked differences in the makeup of the cardiac cell populations depending on the species, which may be important when examining myocardial remodeling. Current dogma states that the fibroblast makes up the largest cell population of the heart; however, this appears to vary for different species, especially mice. Cardiac fibroblasts play a critical role in maintaining normal cardiac function, as well as in cardiac remodeling during pathological conditions such as myocardial infarct and hypertension. These cells have numerous functions, including synthesis and deposition of extracellular matrix, cell-cell communication with myocytes, cell-cell signaling with other fibroblasts, as well as with endothelial cells. These contacts affect the electrophysiological properties, secretion of growth factors and cytokines, as well as potentiating blood vessel formation. While a plethora of information is known about several of these processes, relatively little is understood about fibroblasts and their role in angiogenesis during development or cardiac remodeling. In this review we provide insight into the various properties of cardiac fibroblasts that helps illustrate their importance in maintaining proper cardiac function, as well as their critical role in the remodeling heart. PMID:19959782

  6. Fibroblasts from patients with hereditary cutaneous malignant melanoma are abnormally sensitive to the mutagenic effect of simulated sunlight and 4-nitroquinoline 1-oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, J.N.; Greene, M.H.; Corner, R.C.

    Because of a possible etiologic link between mutations and carcinogenesis, the authors compared fibroblasts derived from skin biopsies of several patients with hereditary cutaneous malignant melanoma and the dysplastic nevus syndrome for sensitivity to the mutagenic and/or cytotoxic effect of broad-spectrum simulated sunlight and of a UV mimetic carcinogen, 4-nitroquinoline 1-oxide (4NQO). The genetic marker was resistant to 6-thioguanine; loss of colony-forming ability was the assay for cytotoxicity. All five strains tested were more sensitive than normal to the killing effect of 4NQO (slopes of survival curves were 2- to 3-fold steeper), but only one strain was hypersensitive to killingmore » by Sun Lamp radiation. Two strains were tested for mutagenicity. The response of each to the mutagenic action of these agents corresponded to its response to cell killing. Both strains were hypermutable after exposure to 4NQO, but only one showed a higher than normal frequency of mutants induced by simulated sunlight. The finding that nonmalignant fibroblasts from patients with a hereditary variant of malignant fibroblasts from patients with a hereditary variant of malignant melanoma are abnormally susceptible to carcinogen-induced mutations suggests that hypersensitivity to mutagens contributes to risk of melanoma in patients. It also supports the somatic cell mutation hypothesis for the origin of cancer. 46 references, 3 figures.« less

  7. Reprogramming of Normal Fibroblasts into Cancer-Associated Fibroblasts by miRNAs-Mediated CCL2/VEGFA Signaling

    PubMed Central

    Shen, Hua; Yu, Xiaobo; Yang, Fengming; Zhang, Zhihua; Shen, Jianxin; Sun, Jin; Choksi, Swati; Jitkaew, Siriporn; Shu, Yongqian

    2016-01-01

    Cancer-associated fibroblasts (CAFs), the most common constituent of the tumor stoma, are known to promote tumor initiation, progression and metastasis. However, the mechanism of how cancer cells transform normal fibroblasts (NFs) into CAFs is largely unknown. In this study, we determined the contribution of miRNAs in the transformation of NFs into CAFs. We found that miR-1 and miR-206 were down-regulated, whereas miR-31 was up-regulated in lung CAFs when compared with matched NFs. Importantly, modifying the expression of these three deregulated miRNAs induced a functional conversion of NFs into CAFs and vice versa. When the miRNA-reprogrammed NFs and CAFs were co-cultured with lung cancer cells (LCCs), a similar pattern of cytokine expression profiling were observed between two groups. Using a combination of cytokine expression profiling and miRNAs algorithms, we identified VEGFA/CCL2 and FOXO3a as direct targets of miR-1, miR-206 and miR-31, respectively. Importantly, systemic delivery of anti-VEGFA/CCL2 or pre-miR-1, pre-miR-206 and anti-miR-31 significantly inhibited tumor angiogenesis, TAMs accumulation, tumor growth and lung metastasis. Our results show that miRNAs-mediated FOXO3a/VEGF/CCL2 signaling plays a prominent role in LCCs-mediated NFs into CAFs, which may have clinical implications for providing novel biomarker(s) and potential therapeutic target(s) of lung cancer in the future. PMID:27541266

  8. Early superoxide dismutase alterations during SV40-transformation of human fibroblasts.

    PubMed

    Bravard, A; Hoffschir, F; Sabatier, L; Ricoul, M; Pinton, A; Cassingena, R; Estrade, S; Luccioni, C; Dutrillaux, B

    1992-11-11

    The expression of superoxide dismutases (SOD) 1 and 2 was studied in 4 clones of human fibroblasts after their infection by simian virus 40 (SV40), in parallel with the alterations of chromosomes 21 and chromosome 6q arms, carrying the genes that encode for SOD1 and SOD2 respectively. For all clones, a similar scheme with 2 main phases was observed for both chromosome and SOD variations. The first phase, defined as the pre-crisis phase, was characterized by chromosomal instability, but maintenance of normal numbers of chromosome 6q arms and chromosomes 21. The level of SOD2 mRNA was high, while SOD2 activity and immunoreactive protein were low. SOD1 protein and activity were decreased. In the second phase, defined as the post-crisis phase, the accumulation of clonal chromosomal rearrangements led to the loss of 6q arms, while the number of chromosomes 21 remained normal. SOD2 mRNA level was decreased and SOD2 immunoreactive protein and activity remained low. SOD1 protein and activity increased with passages, reaching values similar to those of control cells at late passages. As in established SV40-transformed human fibroblast cell lines, good correlation was found between SOD2 activity and the relative number of 6q arms. These results allow us to reconstruct the sequence of events leading to the decrease of SOD2, a possible tumor-suppressor gene, during the process of SV40-transformation of human fibroblasts.

  9. Familial polyposis coli: no evidence for increased sensitivity to mitomycin C.

    PubMed Central

    Mazzullo, H A; Attwood, J; Delhanty, J D

    1988-01-01

    Spontaneous chromosome instability is well established for the dominantly inherited cancer prone condition, familial polyposis coli (FPC), but conflicting results have been obtained regarding sensitivity to mitomycin C (MMC). We have investigated cell survival in fibroblasts and the induction of sister chromatid exchanges and chromosome damage in lymphocytes and fibroblasts after MMC treatment. We can find no evidence for a differential response of FPC cells as measured by any of these parameters, although individual FPC fibroblast cultures did show an enhanced chromosomal response. Overall, the FPC mutation does not appear to result in defective DNA repair in response to MMC. PMID:2835481

  10. The growth of human fibroblasts and A431 epidermoid carcinoma cells on gamma-irradiated human amnion collagen substrata.

    PubMed

    Liu, B; Harrell, R; Lamb, D J; Dresden, M H; Spira, M

    1989-10-15

    Human fibroblasts and A431 human epidermoid carcinoma cells were cultured on gamma-irradiated human amnion collagen as well as on plastic dishes and non-irradiated collagen coated dishes. The morphology, attachment, growth and short-term cytotoxicity of these culture conditions have been determined. Both irradiated and non-irradiated amnion collagen enhanced the attachment and proliferation of fibroblasts as compared to the plastic dishes. No differences in these properties were observed for A431 cells cultured on irradiated collagen when compared with culture on non-irradiated collagen substrates. Cytotoxicity assays showed that irradiated and non-irradiated collagens were not cytotoxic for either fibroblasts or A431 cells. The results demonstrated that amnion collagen irradiated at doses of 0.25-2.0 Mrads is optimal for cell growth.

  11. GROWTH REGULATION IN ROUS SARCOMA VIRUS INFECTED CHICKEN EMBRYO FIBROBLASTS: THE ROLE OF THE src GENE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parry, G.; Bartholomew, J.A.; Blssell, M.J.

    1980-07-01

    We report here a study of the mechanisms leading to loss of growth control in chicken embryo fibroblasts transformed by Rous sarcoma virus (RSV). We have been particularly concerned with the role of the src gene in this process, and have used RSV mutants temperature sensitive (ts) for transformation to investigate the nature of the growth regulatory lesion. The two principal findings were (1) the stationary phase of the cell cycle (G{sub 1}) in chick embryo fibroblasts seems to have two distinct regulatory compartments (using the terminology of Brooks et al. we refer to these as 'Q' and 'A' states).more » When rendered stationary at 41.5 C by serum deprivation, normal cells enter a Q state, but cells infected with the ts-mutant occupy an A state. (2) Whereas normal cells can occupy either state depending on culture conditions, the ts-infected cells, at 41.5 C, do not seem to enter Q even though a known src gene product, a kinase, is reported to be inactive at this temperature. We discuss the possibility that viral factors other than the active src protein kinase influence growth control in infected cultures.« less

  12. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts

    PubMed Central

    Doi, Akiko; Park, In-Hyun; Wen, Bo; Murakami, Peter; Aryee, Martin J; Irizarry, Rafael; Herb, Brian; Ladd-Acosta, Christine; Rho, Junsung; Loewer, Sabine; Miller, Justine; Schlaeger, Thorsten; Daley, George Q; Feinberg, Andrew P

    2010-01-01

    Induced pluripotent stem (iPS) cells are derived by epigenetic reprogramming, but their DNA methylation patterns have not yet been analyzed on a genome-wide scale. Here, we find substantial hypermethylation and hypomethylation of cytosine-phosphate-guanine (CpG) island shores in nine human iPS cell lines as compared to their parental fibroblasts. The differentially methylated regions (DMRs) in the reprogrammed cells (denoted R-DMRs) were significantly enriched in tissue-specific (T-DMRs; 2.6-fold, P < 10−4) and cancer-specific DMRs (C-DMRs; 3.6-fold, P < 10−4). Notably, even though the iPS cells are derived from fibroblasts, their R-DMRs can distinguish between normal brain, liver and spleen cells and between colon cancer and normal colon cells. Thus, many DMRs are broadly involved in tissue differentiation, epigenetic reprogramming and cancer. We observed colocalization of hypomethylated R-DMRs with hypermethylated C-DMRs and bivalent chromatin marks, and colocalization of hypermethylated R-DMRs with hypomethylated C-DMRs and the absence of bivalent marks, suggesting two mechanisms for epigenetic reprogramming in iPS cells and cancer. PMID:19881528

  13. The myofibroblast, multiple origins for major roles in normal and pathological tissue repair

    PubMed Central

    2012-01-01

    Myofibroblasts differentiate, invade and repair injured tissues by secreting and organizing the extracellular matrix and by developing contractile forces. When tissues are damaged, tissue homeostasis must be re-established, and repair mechanisms have to rapidly provide harmonious mechanical tissue organization, a process essentially supported by (myo)fibroblasts. Under physiological conditions, the secretory and contractile activities of myofibroblasts are terminated when the repair is complete (scar formation) but the functionality of the tissue is only rarely perfectly restored. At the end of the normal repair process, myofibroblasts disappear by apoptosis but in pathological situations, myofibroblasts likely remain leading to excessive scarring. Myofibroblasts originate from different precursor cells, the major contribution being from local recruitment of connective tissue fibroblasts. However, local mesenchymal stem cells, bone marrow-derived mesenchymal stem cells and cells derived from an epithelial-mesenchymal transition process, may represent alternative sources of myofibroblasts when local fibroblasts are not able to satisfy the requirement for these cells during repair. These diverse cell types probably contribute to the appearance of myofibroblast subpopulations which show specific biological properties and which are important to understand in order to develop new therapeutic strategies for treatment of fibrotic and scarring diseases. PMID:23259712

  14. P-glycoprotein Mediates Postoperative Peritoneal Adhesion Formation by Enhancing Phosphorylation of the Chloride Channel-3

    PubMed Central

    Deng, Lulu; Li, Qin; Lin, Guixian; Huang, Dan; Zeng, Xuxin; Wang, Xinwei; Li, Ping; Jin, Xiaobao; Zhang, Haifeng; Li, Chunmei; Chen, Lixin; Wang, Liwei; Huang, Shulin; Shao, Hongwei; Xu, Bin; Mao, Jianwen

    2016-01-01

    P-glycoprotein (P-gp) is encoded by the multidrug resistance (MDR1) gene and is well studied as a multi-drug resistance transporter. Peritoneal adhesion formation following abdominal surgery remains an important clinical problem. Here, we found that P-gp was highly expressed in human adhesion fibroblasts and promoted peritoneal adhesion formation in a rodent model. Knockdown of P-gp expression by intraperitoneal injection of MDR1-targeted siRNA significantly reduced both the peritoneal adhesion development rate and adhesion grades. Additionally, we found that operative injury up-regulated P-gp expression in peritoneal fibroblasts through the TGF-β1/Smad signaling pathway and histone H3 acetylation. The overexpression of P-gp accelerated migration and proliferation of fibroblasts via volume-activated Cl- current and cell volume regulation by enhancing phosphorylation of the chloride channel-3. Therefore, P-gp plays a critical role in postoperative peritoneal adhesion formation and may be a valuable therapeutic target for preventing the formation of peritoneal adhesions. PMID:26877779

  15. Regulation by basic fibroblast growth factor of glycosaminoglycan biosynthesis in cultured vascular endothelial cells.

    PubMed

    Kaji, T; Hiraga, S; Ohkawara, S; Inada, M; Yamamoto, C; Kozuka, H; Koizumi, F

    1995-05-01

    The alteration of glycosaminoglycans (GAGs) in cultured bovine aortic endothelial cells after exposure to basic fibroblast growth factor (bFGF) was investigated. It was found that the incorporation of [3H]glucosamine into GAGs was markedly increased by bFGF in both the cell layer and the conditioned medium; however, that of [35S]sulfate was not changed by the growth factor. These results indicated that bFGF enhanced the sugar-chain formation but did not affect their sulfation in endothelial GAG production. Similar changes were observed in either bovine aortic smooth-muscle cells and human fibroblastic IMR-90 cells to greater and lesser degrees, respectively. Characterization of GAGs in the endothelial cell layer and the conditioned medium revealed that bFGF enhanced both heparan sulfate and the other GAGs to a similar degree. The present data suggest that bFGF may be involved in the regulation of the blood coagulation system via altering GAGs of the vascular tissue when the endothelium was damaged.

  16. Cadherin-23 Mediates Heterotypic Cell-Cell Adhesion between Breast Cancer Epithelial Cells and Fibroblasts

    PubMed Central

    Apostolopoulou, Maria; Ligon, Lee

    2012-01-01

    In the early stages of breast cancer metastasis, epithelial cells penetrate the basement membrane and invade the surrounding stroma, where they encounter fibroblasts. Paracrine signaling between fibroblasts and epithelial tumor cells contributes to the metastatic cascade, but little is known about the role of adhesive contacts between these two cell types in metastasis. Here we show that MCF-7 breast cancer epithelial cells and normal breast fibroblasts form heterotypic adhesions when grown together in co-culture, as evidenced by adhesion assays. PCR and immunoblotting show that both cell types express multiple members of the cadherin superfamily, including the atypical cadherin, cadherin-23, when grown in isolation and in co-culture. Immunocytochemistry experiments show that cadherin-23 localizes to homotypic adhesions between MCF-7 cells and also to heterotypic adhesions between the epithelial cells and fibroblasts, and antibody inhibition and RNAi experiments show that cadherin-23 plays a role in mediating these adhesive interactions. Finally, we show that cadherin-23 is upregulated in breast cancer tissue samples, and we hypothesize that heterotypic adhesions mediated by this atypical cadherin may play a role in the early stages of metastasis. PMID:22413011

  17. Heat Shock Protein 90 Inhibitor Decreases Collagen Synthesis of Keloid Fibroblasts and Attenuates the Extracellular Matrix on the Keloid Spheroid Model.

    PubMed

    Lee, Won Jai; Lee, Ju Hee; Ahn, Hyo Min; Song, Seung Yong; Kim, Yong Oock; Lew, Dae Hyun; Yun, Chae-Ok

    2015-09-01

    The 90-kDa heat-shock protein (heat-shock protein 90) is an abundant cytosolic chaperone, and inhibition of heat-shock protein 90 by 17-allylamino-17-demethoxygeldanamycin (17-AAG) compromises transforming growth factor (TGF)-β-mediated transcriptional responses by enhancing TGF-β receptor I and II degradation, thus preventing Smad2/3 activation. In this study, the authors evaluated whether heat-shock protein 90 regulates TGF-β signaling in the pathogenesis and treatment of keloids. Keloid fibroblasts were treated with 17-AAG (10 μM), and mRNA levels of collagen types I and III were determined by real-time reverse- transcriptase polymerase chain reaction. Also, secreted TGF-β1 was assessed by enzyme-linked immunosorbent assay. The effect of 17-AAG on protein levels of Smad2/3 complex was determined by Western blot analysis. In addition, in 17-AAG-treated keloid spheroids, the collagen deposition and expression of major extracellular matrix proteins were investigated by means of Masson trichrome staining and immunohistochemistry. The authors found that heat-shock protein 90 is overexpressed in human keloid tissue compared with adjacent normal tissue, and 17-AAG decreased mRNA levels of type I collagen, secreted TGF-ß1, and Smad2/3 complex protein expression in keloid fibroblasts. Masson trichrome staining revealed that collagen deposition was decreased in 17-AAG-treated keloid spheroids, and immunohistochemical analysis showed that expression of collagen types I and III, elastin, and fibronectin was markedly decreased in 17-AAG-treated keloid spheroids. These results suggest that the antifibrotic action of heat-shock protein 90 inhibitors such as 17-AAG may have therapeutic effects on keloids.

  18. Genetics Home Reference: Crouzon syndrome

    MedlinePlus

    ... People with Crouzon syndrome are usually of normal intelligence. Related Information What does it mean if a ... called fibroblast growth factor receptor 2. Among its multiple functions, this protein signals immature cells to become ...

  19. Metabolites of Hypoxic Cardiomyocytes Induce the Migration of Cardiac Fibroblasts.

    PubMed

    Shi, Huairui; Zhang, Xuehong; He, Zekun; Wu, Zhiyong; Rao, Liya; Li, Yushu

    2017-01-01

    The migration of cardiac fibroblasts to the infarct region plays a major role in the repair process after myocardial necrosis or damage. However, few studies investigated whether early hypoxia in cardiomyocytes induces the migration of cardiac fibroblasts. The purpose of this study was to assess the role of metabolites of early hypoxic cardiomyocytes in the induction of cardiac fibroblast migration. Neonatal rat heart tissue was digested with a mixture of trypsin and collagenase at an appropriate ratio. Cardiomyocytes and cardiac fibroblasts were cultured via differential adhesion. The cardiomyocyte cultures were subjected to hypoxia for 2, 4, 6, 8, 10, and 12 h. The supernatants of the cardiomyocyte cultures were collected to determine the differences in cardiac fibroblast migration induced by hypoxic cardiomyocyte metabolites at various time points using a Transwell apparatus. Meanwhile, ELISA was performed to measure TNF-α, IL-1β and TGF-β expression levels in the cardiomyocyte metabolites at various time points. The metabolites of hypoxic cardiomyocytes significantly induced the migration of cardiac fibroblasts. The induction of cardiac fibroblast migration was significantly enhanced by cardiomyocyte metabolites in comparison to the control after 2, 4, and 6 h of hypoxia, and the effect was most significant after 2 h. The expression levels of TNF-α, IL-1β, IL-6, and TGF-β were substantially increased in the metabolites of cardiomyocytes, and neutralization with anti-TNF-α and anti-IL-1β antibodies markedly reduced the induction of cardiac fibroblast migration by the metabolites of hypoxic cardiomyocytes. The metabolites of early hypoxic cardiomyocytes can induce the migration of cardiac fibroblasts, and TNF-α and IL-1β may act as the initial chemotactic inducers. © 2017 The Author(s) Published by S. Karger AG, Basel.

  20. Engineering bioartificial tracheal tissue using hybrid fibroblast-mesenchymal stem cell cultures in collagen hydrogels.

    PubMed

    Naito, Hiroshi; Tojo, Takashi; Kimura, Michitaka; Dohi, Yoshiko; Zimmermann, Wolfram-Hubertus; Eschenhagen, Thomas; Taniguchi, Shigeki

    2011-02-01

    We aimed at providing the first in vitro and in vivo proof-of-concept for a novel tracheal tissue engineering technology. We hypothesized that bioartificial trachea (BT) could be generated from fibroblast and collagen hydrogels, mechanically supported by osteogenically-induced mesenchymal stem cells (MSC) in ring-shaped 3D-hydrogel cultures, and applied in an experimental model of rat trachea injury. Tube-shaped tissue was constructed from mixtures of rat fibroblasts and collagen in custom-made casting molds. The tissue was characterized histologically and mechanically. Ring-shaped tissue was constructed from mixtures of rat MSCs and collagen and fused to the tissue-engineered tubes to function as reinforcement. Stiffness of the biological reinforcement was enhanced by induction of osteogeneic differentiation in MSCs. Osteogenic differentiation was evaluated by assessment of osteocalcin (OC) secretion, quantification of calcium (Ca) deposit, and mechanical testing. Finally, BT was implanted to bridge a surgically-induced tracheal defect. A three-layer tubular tissue structure composed of an interconnected network of fibroblasts was constructed. Tissue collapse was prevented by the placement of MSC-containing ring-shaped tissue reinforcement around the tubular constructs. Osteogenic induction resulted in high OC secretion, high Ca deposit, and enhanced construct stiffness. Ultimately, when BT was implanted, recipient rats were able to breathe spontaneously.

  1. Magnetic Beads Enhance Adhesion of NIH 3T3 Fibroblasts: A Proof-of-Principle In Vitro Study for Implant-Mediated Long-Term Drug Delivery to the Inner Ear

    PubMed Central

    Aliuos, Pooyan; Schulze, Jennifer; Schomaker, Markus; Reuter, Günter; Stolle, Stefan R. O.; Werner, Darja; Ripken, Tammo; Lenarz, Thomas; Warnecke, Athanasia

    2016-01-01

    Introduction Long-term drug delivery to the inner ear may be achieved by functionalizing cochlear implant (CI) electrodes with cells providing neuroprotective factors. However, effective strategies in order to coat implant surfaces with cells need to be developed. Our vision is to make benefit of electromagnetic field attracting forces generated by CI electrodes to bind BDNF-secreting cells that are labelled with magnetic beads (MB) onto the electrode surfaces. Thus, the effect of MB-labelling on cell viability and BDNF production were investigated. Materials and Methods Murine NIH 3T3 fibroblasts—genetically modified to produce BDNF—were labelled with MB. Results Atomic force and bright field microscopy illustrated the internalization of MB by fibroblasts after 24 h of cultivation. Labelling cells with MB did not expose cytotoxic effects on fibroblasts and allowed adhesion on magnetic surfaces with sufficient BDNF release. Discussion Our data demonstrate a novel approach for mediating enhanced long-term adhesion of BDNF-secreting fibroblasts on model electrode surfaces for cell-based drug delivery applications in vitro and in vivo. This therapeutic strategy, once transferred to cells suitable for clinical application, may allow the biological modifications of CI surfaces with cells releasing neurotrophic or other factors of interest. PMID:26918945

  2. Small molecule receptor tyrosine kinase inhibitor of platelet-derived growth factor signaling (SU9518) modifies radiation response in fibroblasts and endothelial cells

    PubMed Central

    Li, Minglun; Ping, Gong; Plathow, Christian; Trinh, Thuy; Lipson, Kenneth E; Hauser, Kai; Krempien, Robert; Debus, Juergen; Abdollahi, Amir; Huber, Peter E

    2006-01-01

    Background Several small receptor tyrosine kinase inhibitors (RTKI) have entered clinical cancer trials alone and in combination with radiotherapy or chemotherapy. The inhibitory spectrum of these compounds is often not restricted to a single target. For example Imatinib/Gleevec (primarily a bcr/abl kinase inhibitor) or SU11248 (mainly a VEGFR inhibitor) are also potent inhibitors of PDGFR and other kinases. We showed previously that PDGF signaling inhibition attenuates radiation-induced lung fibrosis in a mouse model. Here we investigate effects of SU9518, a PDGFR inhibitor combined with ionizing radiation in human primary fibroblasts and endothelial cells in vitro, with a view on utilizing RTKI for antifibrotic therapy. Methods Protein levels of PDGFR-α/-β and phosphorylated PDGFR in fibroblasts were analyzed using western and immunocytochemistry assays. Functional proliferation and clonogenic assays were performed (i) to assess PDGFR-mediated survival and proliferation in fibroblasts and endothelial cells after SU9518 (small molecule inhibitor of PDGF receptor tyrosine kinase); (ii) to test the potency und selectivity of the PDGF RTK inhibitor after stimulation with PDGF isoforms (-AB, -AA, -BB) and VEGF+bFGF. In order to simulate in vivo conditions and to understand the role of radiation-induced paracrine PDGF secretion, co-culture models consisting of fibroblasts and endothelial cells were employed. Results In fibroblasts, radiation markedly activated PDGF signaling as detected by enhanced PDGFR phosphorylation which was potently inhibited by SU9518. In fibroblast clonogenic assay, SU9518 reduced PDGF stimulated fibroblast survival by 57%. Likewise, SU9518 potently inhibited fibroblast and endothelial cell proliferation. In the co-culture model, radiation of endothelial cells and fibroblast cells substantially stimulated proliferation of non irradiated fibroblasts and vice versa. Importantly, the RTK inhibitor significantly inhibited this paracrine radiation-induced fibroblast and endothelial cell activation. Conclusion Radiation-induced autocrine and paracrine PDGF signaling plays an important role in fibroblast and endothelial cell proliferation. SU9518, a PDGFR tyrosine kinase inhibitor, reduces radiation-induced fibroblast and endothelial cell activation. This may explain therapeutic anticancer effects of Imatinib/Gleevec, and at the same time it could open a way of attenuating radiation-induced fibrosis. PMID:16556328

  3. Re-engineering the Pancreas Tumor Microenvironment: A "Regenerative Program" Hacked.

    PubMed

    Evan, Gerard I; Hah, Nasun; Littlewood, Trevor D; Sodir, Nicole M; Campos, Tania; Downes, Michael; Evans, Ronald M

    2017-04-01

    The "hallmarks" of pancreatic ductal adenocarcinoma (PDAC) include proliferative, invasive, and metastatic tumor cells and an associated dense desmoplasia comprised of fibroblasts, pancreatic stellate cells, extracellular matrix, and immune cells. The oncogenically activated pancreatic epithelium and its associated stroma are obligatorily interdependent, with the resulting inflammatory and immunosuppressive microenvironment contributing greatly to the evolution and maintenance of PDAC. The peculiar pancreas-specific tumor phenotype is a consequence of oncogenes hacking the resident pancreas regenerative program, a tissue-specific repair mechanism regulated by discrete super enhancer networks. Defined as genomic regions containing clusters of multiple enhancers, super enhancers play pivotal roles in cell/tissue specification, identity, and maintenance. Hence, interfering with such super enhancer-driven repair networks should exert a disproportionately disruptive effect on tumor versus normal pancreatic tissue. Novel drugs that directly or indirectly inhibit processes regulating epigenetic status and integrity, including those driven by histone deacetylases, histone methyltransferase and hydroxylases, DNA methyltransferases, various metabolic enzymes, and bromodomain and extraterminal motif proteins, have shown the feasibility of disrupting super enhancer-dependent transcription in treating multiple tumor types, including PDAC. The idea that pancreatic adenocarcinomas rely on embedded super enhancer transcriptional mechanisms suggests a vulnerability that can be potentially targeted as novel therapies for this intractable disease. Clin Cancer Res; 23(7); 1647-55. ©2017 AACR See all articles in this CCR Focus section, "Pancreatic Cancer: Challenge and Inspiration." ©2017 American Association for Cancer Research.

  4. Influence of beam shape on in-vitro cellular transformations in human skin fibroblasts

    NASA Astrophysics Data System (ADS)

    Mthunzi, Patience; Forbes, Andrew; Hawkins, Denise; Abrahamse, Heidi; Karsten, Aletta E.

    2005-08-01

    A variety of strategies have been utilised for prevention and treatment of chronic wounds such as leg ulcers, diabetic foot ulcers and pressure sores1. Low Level Laser Therapy (LLLT) has been reported to be an invaluable tool in the enhancement of wound healing through stimulating cell proliferation, accelerating collagen synthesis and increasing ATP synthesis in mitochondria to name but a few2. This study focused on an in-vitro analysis of the cellular responses induced by treatment with three different laser beam profiles namely, the Gaussian (G), Super Gaussian (SG) and Truncated Gaussian (TG), on normal wounded irradiated (WI) and wounded non-irradiated (WNI) human skin fibroblast cells (WS1), to test their influence in wound healing at 632.8 nm using a helium neon (HeNe) laser. For each beam profile, measurements were made using average energy densities over the sample ranging from 0.2 to 1 J, with single exposures on normal wounded cells. The cells were subjected to different post irradiation incubation periods, ranging from 0 to 24 hours to evaluate the duration (time) dependent effects resulting from laser irradiation. The promoted cellular alterations were measured by increase in cell viability, cell proliferation and cytotoxicity. The results obtained showed that treatment with the G compared to the SG and TG beams resulted in a marked increase in cell viability and proliferation. The data also showed that when cells undergo laser irradiation some cellular processes are driven by the peak energy density rather than the energy of the laser beam. We show that there exist threshold values for damage, and suggest optimal operating regimes for laser based wound healing.

  5. Induced pluripotent stem cell models of Zellweger spectrum disorder show impaired peroxisome assembly and cell type-specific lipid abnormalities.

    PubMed

    Wang, Xiao-Ming; Yik, Wing Yan; Zhang, Peilin; Lu, Wange; Huang, Ning; Kim, Bo Ram; Shibata, Darryl; Zitting, Madison; Chow, Robert H; Moser, Ann B; Steinberg, Steven J; Hacia, Joseph G

    2015-08-29

    Zellweger spectrum disorder (PBD-ZSD) is a disease continuum caused by mutations in a subset of PEX genes required for normal peroxisome assembly and function. They highlight the importance of peroxisomes in the development and functions of the central nervous system, liver, and other organs. To date, the underlying bases for the cell-type specificity of disease are not fully elucidated. Primary skin fibroblasts from seven PBD-ZSD patients with biallelic PEX1, PEX10, PEX12, or PEX26 mutations and three healthy donors were transduced with retroviral vectors expressing Yamanaka reprogramming factors. Candidate induced pluripotent stem cells (iPSCs) were subject to global gene expression, DNA methylation, copy number variation, genotyping, in vitro differentiation and teratoma formation assays. Confirmed iPSCs were differentiated into neural progenitor cells (NPCs), neurons, oligodendrocyte precursor cells (OPCs), and hepatocyte-like cell cultures with peroxisome assembly evaluated by microscopy. Saturated very long chain fatty acid (sVLCFA) and plasmalogen levels were determined in primary fibroblasts and their derivatives. iPSCs were derived from seven PBD-ZSD patient-derived fibroblasts with mild to severe peroxisome assembly defects. Although patient and control skin fibroblasts had similar gene expression profiles, genes related to mitochondrial functions and organelle cross-talk were differentially expressed among corresponding iPSCs. Mitochondrial DNA levels were consistent among patient and control fibroblasts, but varied among all iPSCs. Relative to matching controls, sVLCFA levels were elevated in patient-derived fibroblasts, reduced in patient-derived iPSCs, and not significantly different in patient-derived NPCs. All cell types derived from donors with biallelic null mutations in a PEX gene showed plasmalogen deficiencies. Reporter gene assays compatible with high content screening (HCS) indicated patient-derived OPC and hepatocyte-like cell cultures had impaired peroxisome assembly. Normal peroxisome activity levels are not required for cellular reprogramming of skin fibroblasts. Patient iPSC gene expression profiles were consistent with hypotheses highlighting the role of altered mitochondrial activities and organelle cross-talk in PBD-ZSD pathogenesis. sVLCFA abnormalities dramatically differed among patient cell types, similar to observations made in iPSC models of X-linked adrenoleukodystrophy. We propose that iPSCs could assist investigations into the cell type-specificity of peroxisomal activities, toxicology studies, and in HCS for targeted therapies for peroxisome-related disorders.

  6. Peptide promotes overcoming of the division limit in human somatic cell.

    PubMed

    Khavinson, V Kh; Bondarev, I E; Butyugov, A A; Smirnova, T D

    2004-05-01

    We previously showed that treatment of normal human diploid cells with Epithalon (Ala-Glu-Asp-Gly) induced expression of telomerase catalytic subunit, its enzymatic activity, and elongation of telomeres. Here we studied the effect of this peptide on proliferative potential of human fetal fibroblasts. Primary pulmonary fibroblasts derived from a 24-week fetus lost the proliferative potential at the 34th passage. The mean size of telomeres in these cells was appreciably lower than during early passages (passage 10). Addition of Epithalon to aging cells in culture induced elongation of telomeres to the size comparable to their length during early passages. Peptide-treated cells with elongated telomeres made 10 extra divisions (44 passages) in comparison with the control and continued dividing. Hence, Epithalon prolonged the vital cycle of normal human cells due to overcoming the Heyflick limit.

  7. The Roles of Fibroblast Growth Factor (FGF)-23, α-Klotho and Furin Protease in Calcium and Phosphate Homeostasis : A Mini-Review.

    PubMed

    Mattoo, Roshan L

    2014-01-01

    The roles of calcitonin, parathormone and calcitriol in the regulation of plasma calcium and phosphate are well-established. However, in autosomal-dominant hypophosphatemic rickety patients, studies have revealed normal plasma levels of calcium, associated with normal thyroid and parathyroid functions, but decreased levels of phosphate and calcitriol despite adequate reserves of vitamin D. Also, in tumoral calcinosis, persistent hyperphosphatemia with increased levels of 1,25(OH)2D3 have been observed. These studies indicate the involvement of factors other than the ones already known. The first decade of this century/millennium has led to the discovery of the involvement of fibroblast growth factor-23, furin protease and α-klotho in the homeostasis of calcium and phosphate, which is the subject of this mini-review.

  8. Impairment of hypoxia-induced HIF-1α signaling in keratinocytes and fibroblasts by sulfur mustard is counteracted by a selective PHD-2 inhibitor.

    PubMed

    Deppe, Janina; Popp, Tanja; Egea, Virginia; Steinritz, Dirk; Schmidt, Annette; Thiermann, Horst; Weber, Christian; Ries, Christian

    2016-05-01

    Skin exposure to sulfur mustard (SM) provokes long-term complications in wound healing. Similar to chronic wounds, SM-induced skin lesions are associated with low levels of oxygen in the wound tissue. Normally, skin cells respond to hypoxia by stabilization of the transcription factor hypoxia-inducible factor 1 alpha (HIF-1α). HIF-1α modulates expression of genes including VEGFA, BNIP3, and MMP2 that control processes such as angiogenesis, growth, and extracellular proteolysis essential for proper wound healing. The results of our studies revealed that exposure of primary normal human epidermal keratinocytes (NHEK) and primary normal human dermal fibroblasts (NHDF) to SM significantly impaired hypoxia-induced HIF-1α stabilization and target gene expression in these cells. Addition of a selective inhibitor of the oxygen-sensitive prolyl hydroxylase domain-containing protein 2 (PHD-2), IOX2, fully recovered HIF-1α stability, nuclear translocation, and target gene expression in NHEK and NHDF. Moreover, functional studies using a scratch wound assay demonstrated that the application of IOX2 efficiently counteracted SM-mediated deficiencies in monolayer regeneration under hypoxic conditions in NHEK and NHDF. Our findings describe a pathomechanism by which SM negatively affects hypoxia-stimulated HIF-1α signaling in keratinocytes and fibroblasts and thus possibly contributes to delayed wound healing in SM-injured patients that could be treated with PHD-2 inhibitors.

  9. Expression of Pleiotrophin in the Prostate is Androgen Regulated and it Functions as an Autocrine Regulator of Mesenchyme and Cancer Associated Fibroblasts and as a Paracrine Regulator of Epithelia

    PubMed Central

    Orr, Brigid; Vanpoucke, Griet; Grace, O Cathal; Smith, Lee; Anderson, Richard A; Riddick, Antony CP; Franco, Omar E; Hayward, Simon W; Thomson, Axel A

    2011-01-01

    BACKGROUND Androgens and paracrine signaling from mesenchyme/stroma regulate development and disease of the prostate, and gene profiling studies of inductive prostate mesenchyme have identified candidate molecules such as pleiotrophin (Ptn). METHODS Ptn transcripts and protein were localized by in situ and immunohistochemistry and Ptn mRNA was quantitated by Northern blot and qRT-PCR. Ptn function was examined by addition of hPTN protein to rat ventral prostate organ cultures, primary human fetal prostate fibroblasts, prostate cancer associated fibroblasts, and BPH1 epithelia. RESULTS During development, Ptn transcripts and protein were expressed in ventral mesenchymal pad (VMP) and prostatic mesenchyme. Ptn was localized to mesenchyme surrounding ductal epithelial tips undergoing branching morphogenesis, and was located on the surface of epithelia. hPTN protein stimulated branching morphogenesis and stromal and epithelial proliferation, when added to rat VP cultures, and also stimulated growth of fetal human prostate fibroblasts, prostate cancer associated fibroblasts, and BPH1 epithelia. PTN mRNA was enriched in patient-matched normal prostate fibroblasts versus prostate cancer associated fibroblasts. PTN also showed male enriched expression in fetal human male urethra versus female, and between wt male and ARKO male mice. Transcripts for PTN were upregulated by testosterone in fetal human prostate fibroblasts and organ cultures of female rat VMP. Ptn protein was increased by testosterone in organ cultures of female rat VMP and in rat male urethra compared to female. CONCLUSIONS Our data suggest that in the prostate Ptn functions as a regulator of both mesenchymal and epithelial proliferation, and that androgens regulate Ptn levels. Prostate 71:305–317, 2011. © 2010 Wiley-Liss, Inc. PMID:20812209

  10. IL-11 facilitates a novel connection between RA joint fibroblasts and endothelial cells.

    PubMed

    Elshabrawy, Hatem A; Volin, Michael V; Essani, Abdul B; Chen, Zhenlong; McInnes, Iain B; Van Raemdonck, Katrien; Palasiewicz, Karol; Arami, Shiva; Gonzalez, Mark; Ashour, Hossam M; Kim, Seung-Jae; Zhou, Guofei; Fox, David A; Shahrara, Shiva

    2018-05-01

    IL-11 has been detected in inflamed joints; however, its role in the pathogenesis of arthritis is not yet clear. Studies were conducted to characterize the expression and functional significance of IL-11 and IL-11Rα in rheumatoid arthritis (RA). IL-11 levels were elevated in RA synovial fluid (SF) compared to osteoarthritis (OA) SF and plasma from RA, OA and normal individuals (NLs). Morphologic studies established that IL-11 was detected in lining fibroblasts and macrophages in addition to sublining endothelial cells and macrophages at higher levels in RA compared to NL synovial tissues. Since IL-11Rα was exclusively expressed in RA fibroblasts and endothelial cells, macrophages were not involved in IL-11 effector function. Ligation of IL-11 to IL-11Rα strongly provoked fibroblast infiltration into RA joint, while cell proliferation was unaffected by this process. Secretion of IL-8 and VEGF from IL-11 activated RA fibroblasts was responsible for the indirect effect of IL-11 on endothelial cell transmigration and tube formation. Moreover, IL-11 blockade impaired RA SF capacity to elicit endothelial cell transmigration and tube formation. We conclude that IL-11 binding to endothelial IL-11Rα can directly induce RA angiogenesis. In addition, secretion of proangiogenic factors from migrating fibroblasts potentiated by IL-11 can indirectly contribute to RA neovascularization.

  11. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) promotes lung fibroblast proliferation, survival and differentiation to myofibroblasts.

    PubMed

    Hasaneen, Nadia A; Cao, Jian; Pulkoski-Gross, Ashleigh; Zucker, Stanley; Foda, Hussein D

    2016-02-17

    Idiopathic pulmonary fibrosis (IPF) is a chronic progressively fatal disease. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) is a glycosylated transmembrane protein that induces the expression of some matrix metalloproteinase (MMP) in neighboring stromal cells through direct epithelial-stromal interactions. EMMPRIN is highly expressed in type II alveolar epithelial cells at the edges of the fibrotic areas in IPF lung sections. However, the exact role of EMMPRIN in IPF is unknown. To determine if EMMPRIN contributes to lung fibroblast proliferation, resistance to apoptosis, and differentiation to myofibroblasts, normal Human lung fibroblasts (NHLF) transiently transfected with either EMMPRIN/GFP or GFP were treated with TGF- β1 from 0 to 10 ng/ml for 48 h and examined for cell proliferation (thymidine incorporation), apoptosis (FACS analysis and Cell Death Detection ELISA assay), cell migration (Modified Boyden chamber) and differentiation to myofibroblasts using Western blot for α-smooth actin of cell lysates. The effect of EMMPRIN inhibition on NHLF proliferation, apoptosis, migration and differentiation to myofibroblasts after TGF- β1 treatment was examined using EMMPRIN blocking antibody. We examined the mechanism by which EMMPRIN induces its effects on fibroblasts by studying the β-catenin/canonical Wnt signaling pathway using Wnt luciferase reporter assays and Western blot for total and phosphorylated β-catenin. Human lung fibroblasts overexpressing EMMPRIN had a significant increase in cell proliferation and migration compared to control fibroblasts. Furthermore, EMMPRIN promoted lung fibroblasts resistance to apoptosis. Lung fibroblasts overexpressing EMMPRIN showed a significantly increased expression of α- smooth muscle actin, a marker of differentiation to myofibroblasts compared to control cells. TGF-β1 increased the expression of EMMPRIN in lung fibroblasts in a dose-dependent manner. Attenuation of EMMPRIN expression with the use of an EMMPRIN blocking antibody markedly inhibited TGF-β1 induced proliferation, migration, and differentiation of fibroblasts to myofibroblasts. EMMPRIN overexpression in lung fibroblasts was found to induce an increase in TOPFLASH luciferase reporter activity when compared with control fibroblasts. These findings indicate that TGF-β1 induces the release of EMMPRIN that activates β-catenin/canonical Wnt signaling pathway. EMMPRIN overexpression induces an anti-apoptotic and pro-fibrotic phenotype in lung fibroblasts that may contribute to the persistent fibro-proliferative state seen in IPF.

  12. MicroRNA-146a governs fibroblast activation and joint pathology in arthritis.

    PubMed

    Saferding, Victoria; Puchner, Antonia; Goncalves-Alves, Eliana; Hofmann, Melanie; Bonelli, Michael; Brunner, Julia S; Sahin, Emine; Niederreiter, Birgit; Hayer, Silvia; Kiener, Hans P; Einwallner, Elisa; Nehmar, Ramzi; Carapito, Raphael; Georgel, Philippe; Koenders, Marije I; Boldin, Mark; Schabbauer, Gernot; Kurowska-Stolarska, Mariola; Steiner, Günter; Smolen, Josef S; Redlich, Kurt; Blüml, Stephan

    2017-08-01

    Synovial fibroblasts are key cells orchestrating the inflammatory response in arthritis. Here we demonstrate that loss of miR-146a, a key epigenetic regulator of the innate immune response, leads to increased joint destruction in a TNF-driven model of arthritis by specifically regulating the behavior of synovial fibroblasts. Absence of miR-146a in synovial fibroblasts display a highly deregulated gene expression pattern and enhanced proliferation in vitro and in vivo. Deficiency of miR-146a induces deregulation of tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6) in synovial fibroblasts, leading to increased proliferation. In addition, loss of miR-146a shifts the metabolic state of fibroblasts towards glycolysis and augments the ability of synovial fibroblasts to support the generation of osteoclasts by controlling the balance of osteoclastogenic regulatory factors receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG). Bone marrow transplantation experiments confirmed the importance of miR-146a in the radioresistant mesenchymal compartment for the control of arthritis severity, in particular for inflammatory joint destruction. This study therefore identifies microRNA-146a as an important local epigenetic regulator of the inflammatory response in arthritis. It is a central element of an anti-inflammatory feedback loop in resident synovial fibroblasts, who are orchestrating the inflammatory response in chronic arthritis. MiR-146a restricts their activation, thereby preventing excessive tissue damage during arthritis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The Success of Thread-embedding Therapy in Generating Hair Re-growth in Mice Points to Its Possibly Having a Similar Effect in Humans

    PubMed Central

    Shin, Hyun Jong; Lee, Dong-Jin; Kwon, Kang; Seo, Hyung-Sik; Jeong, Han-Sol; Lee, Ji-Yeon; Ha, Ki-Tae; Lee, Chang-Hyun; Jang, Yong-Suk; Lee, Byung-Wook; Kim, Byung Joo; Jung, Myeong-Ho

    2015-01-01

    Objectives: Recently, thread-embedding therapy (TET) has been widely applied in Korean medicine for cosmetic purposes such as reducing skin wrinkles. An inserted thread was reported to have induced continuous stimulation, followed by support for connective tissue regeneration. However, the potential role of TET in hairgrowth has not yet been reported. Methods: We designed this study to evaluate whether TET has a hair-growth-promoting effect. C57 black 6 (C57BL/6) mice were divided into three groups: normal saline-treated, minoxidil-treated, and thread-embedded groups. Normal saline or 5% minoxidil was topically sprayed on the dorsal skin of the mice once a day for 16 days. Medical threads were embedded into the dorsal skin of the mice in a single application. Hair growth activity was evaluated by using dermoscopic and microscopic observations. Sections of the dorsal skin were stained with hematoxylin and eosin. Expressions of bromodeoxyuridine (BrdU), proliferating cell nuclear antigen (PCNA), fibroblast growth factor-7 (FGF-7), and fibroblast growth factor-5 (FGF-5) were detected by using immunohistochemical staining. A reverse transcription-polymerase chain reaction (RT-PCR) analysis was adopted to measure the messenger RNA (mRNA) expressions of FGF-7 and FGF-5. Results: TET enhanced anagen development in the hair follicles of C57BL/6 mice. The expressions of BrdU and PCNA, both of which imply active cellular proliferation, were increased by using TET. Moreover, TET increased the expression of FGF-7, an anagen-inducing growth factor, while decreasing the expression of FGF-5, an anagen-cessation growth factor, both at the protein and the mRNA levels. Conclusion: TET enhanced hair re-growth in C57BL/6 mice. TET regulated the expressions of anagen-associated growth factors and activated the proliferation of hair follicular cells in depilated skin lesions. Considering its long-lasting effect, TET may be a good alternative therapeutic for the treatment of alopecia. PMID:26998386

  14. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.

    PubMed

    Wu, Shaohua; Duan, Bin; Qin, Xiaohong; Butcher, Jonathan T

    2017-03-15

    Regeneration and repair of injured or diseased heart valves remains a clinical challenge. Tissue engineering provides a promising treatment approach to facilitate living heart valve repair and regeneration. Three-dimensional (3D) biomimetic scaffolds that possess heterogeneous and anisotropic features that approximate those of native heart valve tissue are beneficial to the successful in vitro development of tissue engineered heart valves (TEHV). Here we report the development and characterization of a novel composite scaffold consisting of nano- and micro-scale fibrous woven fabrics and 3D hydrogels by using textile techniques combined with bioactive hydrogel formation. Embedded nano-micro fibrous scaffolds within hydrogel enhanced mechanical strength and physical structural anisotropy of the composite scaffold (similar to native aortic valve leaflets) and also reduced its compaction. We determined that the composite scaffolds supported the growth of human aortic valve interstitial cells (HAVIC), balanced the remodeling of heart valve ECM against shrinkage, and maintained better physiological fibroblastic phenotype in both normal and diseased HAVIC over single materials. These fabricated composite scaffolds enable the engineering of a living heart valve graft with improved anisotropic structure and tissue biomechanics important for maintaining valve cell phenotypes. Heart valve-related disease is an important clinical problem, with over 300,000 surgical repairs performed annually. Tissue engineering offers a promising strategy for heart valve repair and regeneration. In this study, we developed and tissue engineered living nano-micro fibrous woven fabric/hydrogel composite scaffolds by using textile technique combined with bioactive hydrogel formation. The novelty of our technique is that the composite scaffolds can mimic physical structure anisotropy and the mechanical strength of natural aortic valve leaflet. Moreover, the composite scaffolds prevented the matrix shrinkage, which is major problem that causes the failure of TEHV, and better maintained physiological fibroblastic phenotype in both normal and diseased HAVIC. This work marks the first report of a combination composite scaffold using 3D hydrogel enhanced by nano-micro fibrous woven fabric, and represents a promising tissue engineering strategy to treat heart valve injury. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Chromosome Aberrations in Normal and Ataxia-Telangiectasia Cells Exposed to Heavy Ions

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Ito, H.; Liu, C.; Shigematsu, N.; George, K.; Cucinotta, F. A.

    2007-01-01

    Although cells derived from Ataxia Telangiectasia (AT) patients are known to exhibit abnormal responses to ionizing radiations, its underlying mechanism still remains unclear. Previously, the authors reported that at the same gamma-irradiation dose AT cells show higher frequencies of misrepair and deletions compared to normal human fibroblast cells. In this study, we investigated the effects of heavy ions beams on chromosomal aberrations in normal and AT cells. Normal and AT fibroblast cells arrested at G0/G1 phase were irradiated with 2 Gy of X-rays, 490 MeV/u Silicon (LET 55 keV/m), 500 MeV/u Iron (LET 185 keV/m) and 200 MeV/u Iron (LET 440 keV/m) particles, and then cells were allowed to repair for 24 hours at 37 degrees before subculture. Calyculin-A induced PCC method was employed to collect G2/M chromosomes and whole DNA probes 1 and 3 were used to analyze chromosomal aberrations such as color-junctions, deletions, simple exchanges (incomplete and reciprocal exanges) and complex-type exchanges. The percentages of aberrant cells were higher when normal and AT cells were exposed to heavy ions compared to X-rays, and had a tendency to increase with increasing LET up to 185 keV/m and then decreased at 440 keV/m. When the frequency of color-junctions per cell was compared after X-ray exposure, AT cells had around three times higher frequency of color-junctions (mis-rejoining) than normal cells. However, at 185 keV/m there was no difference in the frequency of color-junctions between two cell lines. It was also found that the frequency of simple exchanges per cell was almost constant in AT cells regardless LET levels, but it was LET dependent for normal cells. Interestingly, the frequency of simple exchanges was higher for AT cells when it was compared at 185 keV/m but AT cells had more complex-type exchanges at the same LET levels. Heavy ions are more efficient in inducing chromosome aberrations in normal and AT cells compared to X-rays, and the aberration types between normal and AT fibroblast appeared different probably due to difference in the ATM gene function.

  16. GROWTH REGULATION IN RSV INFECTED CHECKEN EMBRYO FIBROBLASTS: THE ROLE OF THE src GENE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parry, G.; Bartholomew, J.C.; Bissell, M.J.

    1980-03-01

    The relationship between growth regulation and cell transformation has been studied in many cultured cell lines transformed by a range of oncogenic agents. The main conclusion derived from these investigations is that the nature of the growth regulatory lesion in transformed cells is a function of the agent used to induce transformation. For example, when 3T3 fibroblasts are rendered stationary by serum deprivation, normal cells accumulate in G{sub 1} but SV40 transformed cells are arrested at all stages of the cell cycle. In contrast, 3T3 cells transformed with Rous sarcoma virus B77, accumulate in G{sub 1} upon serum deprivation. Thismore » is also true when mouse sarcoma virus (MSV) is used as the transforming agent. MSV-transformed cells accumulate in G{sub 1}, just as do normal cells. In this letter we report a detailed study of the mechanisms leading to loss of growth control in chicken embryo fibroblasts transformed by Rous sarcoma virus (RSV). We have been particularly concerned with the role of the src gene in the process, and have used RSV mutants temperature sensitive (ts) for transformation to investigate the nature of the growth regulatory lesion. Two principal findings have emerged: (a) the stationary phase of the cell cycle (G{sub 1}) in chick embryo fibroblasts has two distinct compartments, (for simplicity referred to as G{sub 1} and G{sub 0} states), (b) when rendered stationary at 41.5{sup o} by serum deprivation, normal cells enter a G{sub 0}-like state, but cells infected with the ts-mutant occupy a G{sub 1} state, even though a known src gene product, a kinase, should be inactive at this temperature. The possibility is discussed that viral factors other than the active src protein kinase influence growth control.« less

  17. The Expression of AQP1 IS Modified in Lung of Patients With Idiopathic Pulmonary Fibrosis: Addressing a Possible New Target.

    PubMed

    Galán-Cobo, Ana; Arellano-Orden, Elena; Sánchez Silva, Rocío; López-Campos, José Luis; Gutiérrez Rivera, César; Gómez Izquierdo, Lourdes; Suárez-Luna, Nela; Molina-Molina, María; Rodríguez Portal, José A; Echevarría, Miriam

    2018-01-01

    Activation of the epithelial-mesenchymal transition process (EMT) by which alveolar cells in human lung tissue undergo differentiation giving rise to a mesenchymal phenotype (fibroblast/miofibroblasts) has been well recognized as a key element in the origin of idiopathic pulmonary fibrosis (IPF). Here we analyzed expression of AQP1 in lung biopsies of patients diagnosed with IPF, and compared it to biopsies derived from patients with diverse lung pneumonies, such as hypersensitivity pneumonitis, sarcoidosis or normal lungs. Immunostaining for AQP1 showed a clear increment of AQP1 localized in the alveolar epithelium in biopsies from IPF patients alone. Moreover, to examine the possible participation of AQP1 in the pathophysiology of IPF, we evaluated its role in the pro-fibrotic transformation induced by transforming growth factor (TGF-β) in vitro . Human alveolar epithelial cells (A549), and fibroblasts derived from an IPF patient (LL29), or fibroblasts from healthy normal lung tissue (MRC-5), were treated with TGF-β, and levels of expression of AQP1, as well as those of E-cadherin, vimentin, α-SMA and collagen were analyzed by RT-qPCR, western blot and immunohistochemistry. An increase of AQP1 mRNA and protein after TGF-β treatment (4-72h) was observed either in A549 or IPF fibroblast-LL29 but not in MRC-5 fibroblasts. A gradual reduction of E-cadherin, and increased expression of vimentin, with no changes in α-SMA levels were observed in A549. Whereas in LL29 and MRC-5, TGF-β1 elicited a large production of collagen and α-SMA that was significantly greater in IPF fibroblast-LL29. Changes observed are consistent with activation of EMT by TGF-β, but whether modifications in AQP1 expression are responsible or independent events occurring at the same time is still unknown. Our results suggest that AQP1 plays a role in the pro-fibrotic TGF-β action and contributes to the etiology and pathophysiology of IPF. Understanding AQP1's role will help us comprehend the fate of this disease.

  18. Breast fibroblasts in both cancer and normal tissues induce phenotypic transformation of breast cancer stem cells: a preliminary study

    PubMed Central

    Xi, Chunfang; Liu, Mingwei; Sun, Haichen; Liu, Shuang; Song, Lei

    2018-01-01

    Background Breast cancer stem cells (BCSCs) are associated with the invasion of breast cancer. In recent years, studies have demonstrated different phenotypes among BCSCs. Furthermore, BCSCs of diverse phenotypes are present at different tumour sites and different histological stages. Fibroblasts are involved in the phenotypic transformation of BCSCs. Cancer-associated fibroblasts (CAFs) participate in the induction of epithelial–mesenchymal transition, thereby promoting the acquisition of stem cell characteristics, but little is known about the role of normal fibroblasts (NFs) in the phenotypic transformation of BCSCs or about the effect of CAFs and NFs on BCSC phenotypes. Methods A total of six pairs of primary CAFs and NFs were isolated from surgical samples of breast cancer patients and subjected to morphological, immunohistochemical, cell invasion and proteomics analyses. After establishing a cell culture system with conditioned medium from CAFs and NFs, we used the mammosphere formation assay to explore the effect of CAFs and NFs on the self-renewal ability of BCSCs. The effect of CAFs and NFs on the phenotypic differentiation of BCSCs was further analysed by flow cytometry and immunofluorescence. Results The isolated CAFs and NFs did not show significant differences in cell morphology or alpha-smooth muscle actin (α-SMA) expression, but cell invasion and proteomics analyses demonstrated heterogeneity among these fibroblasts. Both CAFs and NFs could promote the generation of BCSCs, but CAFs displayed a greater ability than NFs in promoting mammosphere formation. Conditioned medium from CAFs increased the proportion of aldehyde dehydrogenase-1 positive (ALDH1+) BCSCs, but conditioned medium from NFs was more likely to promote the generation of CD44+CD24− BCSCs from MCF-7 cells. Discussion This study validated the heterogeneity among CAFs and NFs and expanded on the conclusion that fibroblasts promote the generation of cancer stem cells. Our results particularly emphasized the effect of NFs on the phenotypic transformation of BCSCs. In addition, this study further highlighted the roles of CAFs and NFs in the induction of different phenotypes in BCSCs. PMID:29780673

  19. Breast fibroblasts in both cancer and normal tissues induce phenotypic transformation of breast cancer stem cells: a preliminary study.

    PubMed

    Wang, Bixiao; Xi, Chunfang; Liu, Mingwei; Sun, Haichen; Liu, Shuang; Song, Lei; Kang, Hua

    2018-01-01

    Breast cancer stem cells (BCSCs) are associated with the invasion of breast cancer. In recent years, studies have demonstrated different phenotypes among BCSCs. Furthermore, BCSCs of diverse phenotypes are present at different tumour sites and different histological stages. Fibroblasts are involved in the phenotypic transformation of BCSCs. Cancer-associated fibroblasts (CAFs) participate in the induction of epithelial-mesenchymal transition, thereby promoting the acquisition of stem cell characteristics, but little is known about the role of normal fibroblasts (NFs) in the phenotypic transformation of BCSCs or about the effect of CAFs and NFs on BCSC phenotypes. A total of six pairs of primary CAFs and NFs were isolated from surgical samples of breast cancer patients and subjected to morphological, immunohistochemical, cell invasion and proteomics analyses. After establishing a cell culture system with conditioned medium from CAFs and NFs, we used the mammosphere formation assay to explore the effect of CAFs and NFs on the self-renewal ability of BCSCs. The effect of CAFs and NFs on the phenotypic differentiation of BCSCs was further analysed by flow cytometry and immunofluorescence. The isolated CAFs and NFs did not show significant differences in cell morphology or alpha-smooth muscle actin (α-SMA) expression, but cell invasion and proteomics analyses demonstrated heterogeneity among these fibroblasts. Both CAFs and NFs could promote the generation of BCSCs, but CAFs displayed a greater ability than NFs in promoting mammosphere formation. Conditioned medium from CAFs increased the proportion of aldehyde dehydrogenase-1 positive (ALDH1 + ) BCSCs, but conditioned medium from NFs was more likely to promote the generation of CD44 + CD24 - BCSCs from MCF-7 cells. This study validated the heterogeneity among CAFs and NFs and expanded on the conclusion that fibroblasts promote the generation of cancer stem cells. Our results particularly emphasized the effect of NFs on the phenotypic transformation of BCSCs. In addition, this study further highlighted the roles of CAFs and NFs in the induction of different phenotypes in BCSCs.

  20. Mechanical phenotype of cancer cells: cell softening and loss of stiffness sensing.

    PubMed

    Lin, Hsi-Hui; Lin, Hsiu-Kuan; Lin, I-Hsuan; Chiou, Yu-Wei; Chen, Horn-Wei; Liu, Ching-Yi; Harn, Hans I-Chen; Chiu, Wen-Tai; Wang, Yang-Kao; Shen, Meng-Ru; Tang, Ming-Jer

    2015-08-28

    The stiffness sensing ability is required to respond to the stiffness of the matrix. Here we determined whether normal cells and cancer cells display distinct mechanical phenotypes. Cancer cells were softer than their normal counterparts, regardless of the type of cancer (breast, bladder, cervix, pancreas, or Ha-RasV12-transformed cells). When cultured on matrices of varying stiffness, low stiffness decreased proliferation in normal cells, while cancer cells and transformed cells lost this response. Thus, cancer cells undergo a change in their mechanical phenotype that includes cell softening and loss of stiffness sensing. Caveolin-1, which is suppressed in many tumor cells and in oncogene-transformed cells, regulates the mechanical phenotype. Caveolin-1-upregulated RhoA activity and Y397FAK phosphorylation directed actin cap formation, which was positively correlated with cell elasticity and stiffness sensing in fibroblasts. Ha-RasV12-induced transformation and changes in the mechanical phenotypes were reversed by re-expression of caveolin-1 and mimicked by the suppression of caveolin-1 in normal fibroblasts. This is the first study to describe this novel role for caveolin-1, linking mechanical phenotype to cell transformation. Furthermore, mechanical characteristics may serve as biomarkers for cell transformation.

  1. Neutrality of the canonical NF-kappaB-dependent pathway for human and murine cytomegalovirus transcription and replication in vitro.

    PubMed

    Benedict, Chris A; Angulo, Ana; Patterson, Ginelle; Ha, Sukwon; Huang, Huang; Messerle, Martin; Ware, Carl F; Ghazal, Peter

    2004-01-01

    Cytomegalovirus (CMV) is known to rapidly induce activation of nuclear factor kappaB (NF-kappaB) after infection of fibroblast and macrophage cells. NF-kappaB response elements are present in the enhancer region of the CMV major immediate-early promoter (MIEP), and activity of the MIEP is strongly upregulated by NF-kappaB in transient-transfection assays. Here we investigate whether the NF-kappaB-dependent pathway is required for initiating or potentiating human and murine CMV replication in vitro. We show that expression of a dominant negative mutant of the inhibitor of NF-kappaB-alpha (IkappaBalphaM) does not alter the replication kinetics of human or mouse CMV in cultured cells. In addition, mouse embryo fibroblasts genetically deficient for p65/RelA actually showed elevated levels of MCMV replication. Mutation of all NF-kappaB response elements within the enhancer of the MIEP in a recombinant mouse CMV containing the human MIEP (hMCMV-ES), which we have previously shown to replicate in murine fibroblasts with kinetics equivalent to that of wild-type mouse CMV, did not negatively affect replication in fibroblasts. Taken together, these data show that, for CMV replication in cultured fibroblasts activation of the canonical NF-kappaB pathway and binding of NF-kappaB to the MIEP are dispensable, and in the case of p65 may even interfere, thus uncovering a previously unrecognized level of complexity in the host regulatory network governing MIE gene expression in the context of a viral infection.

  2. Gaucher disease: Physical, kinetic and immunologic investigations of human and canine acid. beta. -glucosidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabbro, D.E.

    1988-01-01

    Kinetic and immunologic techniques were developed to investigate the nature of the acid {beta}-glucosidase ({beta}-Glc) defects which results in human and canine Gaucher disease (GD). Two new affinity columns, using the potent inhibitors of {beta}-Glc (N-alkyl-deoxynojirimycins) as affinity ligands, were synthesized and methods were developed to obtain homogeneous {beta}-Glc from normal human placenta. Polyclonal and monoclonal (representing 14 different epitopes from 18 clones) antibodies were produced to the pure normal {beta}-Glc. Monospecific polyclonal IgG and tritiated-bromo-conduritol B epoxide (({sup 3}H)Br-CBE), a specific covalent active site directed inhibitor of {beta}-Glc, were used to quantitate the functional catalytic sites in normal andmore » Type 1 Ashkenazi Jewish GD (AJGD) enzyme preparations: The k{sub cat} values for several new substrates with the mutant enzymes from spleen were about 1.5-fold less than the respective normal enzyme, indicating a nearly normal catalytic capacity of the mutant enzymes. Immunoblotting studies with polyclonal or several monoclonal antibodies indicated three molecular forms of {beta}-Glc (M{sub r} = 67,000, 62,000 to 65,000 and 58,000) in fibroblast extracts from normals and Type 1 AJGD patients. In comparison, only one form of cross-reacting immunologic material (CRIM) was detected in fibroblast extracts from Types 2 and 3 or several non-Jewish Type 1 GD patients.« less

  3. Limbal Fibroblasts Maintain Normal Phenotype in 3D RAFT Tissue Equivalents Suggesting Potential for Safe Clinical Use in Treatment of Ocular Surface Failure.

    PubMed

    Massie, Isobel; Dale, Sarah B; Daniels, Julie T

    2015-06-01

    Limbal epithelial stem cell deficiency can cause blindness, but transplantation of these cells on a carrier such as human amniotic membrane can restore vision. Unfortunately, clinical graft manufacture using amnion can be inconsistent. Therefore, we have developed an alternative substrate, Real Architecture for 3D Tissue (RAFT), which supports human limbal epithelial cells (hLE) expansion. Epithelial organization is improved when human limbal fibroblasts (hLF) are incorporated into RAFT tissue equivalent (TE). However, hLF have the potential to transdifferentiate into a pro-scarring cell type, which would be incompatible with therapeutic transplantation. The aim of this work was to assess the scarring phenotype of hLF in RAFT TEs in hLE+ and hLE- RAFT TEs and in nonairlifted and airlifted RAFT TEs. Diseased fibroblasts (dFib) isolated from the fibrotic conjunctivae of ocular mucous membrane pemphigoid (Oc-MMP) patients were used as a pro-scarring positive control against which hLF were compared using surrogate scarring parameters: matrix metalloproteinase (MMP) activity, de novo collagen synthesis, α-smooth muscle actin (α-SMA) expression, and transforming growth factor-β (TGF-β) secretion. Normal hLF and dFib maintained different phenotypes in RAFT TE. MMP-2 and -9 activity, de novo collagen synthesis, and α-SMA expression were all increased in dFib cf. normal hLF RAFT TEs, although TGF-β1 secretion did not differ between normal hLF and dFib RAFT TEs. Normal hLF do not progress toward a scarring-like phenotype during culture in RAFT TEs and, therefore, may be safe to include in therapeutic RAFT TE, where they can support hLE, although in vivo work is required to confirm this. dFib RAFT TEs (used in this study as a positive control) may be useful toward the development of an ex vivo disease model of Oc-MMP.

  4. Limbal Fibroblasts Maintain Normal Phenotype in 3D RAFT Tissue Equivalents Suggesting Potential for Safe Clinical Use in Treatment of Ocular Surface Failure

    PubMed Central

    Dale, Sarah B.; Daniels, Julie T.

    2015-01-01

    Limbal epithelial stem cell deficiency can cause blindness, but transplantation of these cells on a carrier such as human amniotic membrane can restore vision. Unfortunately, clinical graft manufacture using amnion can be inconsistent. Therefore, we have developed an alternative substrate, Real Architecture for 3D Tissue (RAFT), which supports human limbal epithelial cells (hLE) expansion. Epithelial organization is improved when human limbal fibroblasts (hLF) are incorporated into RAFT tissue equivalent (TE). However, hLF have the potential to transdifferentiate into a pro-scarring cell type, which would be incompatible with therapeutic transplantation. The aim of this work was to assess the scarring phenotype of hLF in RAFT TEs in hLE+ and hLE− RAFT TEs and in nonairlifted and airlifted RAFT TEs. Diseased fibroblasts (dFib) isolated from the fibrotic conjunctivae of ocular mucous membrane pemphigoid (Oc-MMP) patients were used as a pro-scarring positive control against which hLF were compared using surrogate scarring parameters: matrix metalloproteinase (MMP) activity, de novo collagen synthesis, α-smooth muscle actin (α-SMA) expression, and transforming growth factor-β (TGF-β) secretion. Normal hLF and dFib maintained different phenotypes in RAFT TE. MMP-2 and -9 activity, de novo collagen synthesis, and α-SMA expression were all increased in dFib cf. normal hLF RAFT TEs, although TGF-β1 secretion did not differ between normal hLF and dFib RAFT TEs. Normal hLF do not progress toward a scarring-like phenotype during culture in RAFT TEs and, therefore, may be safe to include in therapeutic RAFT TE, where they can support hLE, although in vivo work is required to confirm this. dFib RAFT TEs (used in this study as a positive control) may be useful toward the development of an ex vivo disease model of Oc-MMP. PMID:25380529

  5. Effect of in vitro gingival fibroblast seeding on the in vivo incorporation of acellular dermal matrix allografts in dogs.

    PubMed

    Novaes, Arthur B; Marchesan, Julie Teresa; Macedo, Guilherme O; Palioto, Daniela B

    2007-02-01

    Acellular dermal matrix allograft (ADMA) has been used in various periodontal procedures with successful results. Because ADMA has no blood vessels or cells, slower healing and incorporation are observed compared to a subepithelial connective tissue graft. Fibroblasts accelerate the healing process by regulation of matrix deposition and synthesis of a variety of growth factors. Thus, the objective of this study was to evaluate histologically if gingival fibroblasts affect healing and incorporation of ADMA in dogs when used as a subepithelial allograft. Gingival fibroblasts were established from explant culture from the connective tissue of keratinized gingiva collected from the maxilla of seven mongrel dogs. ADMA was seeded with gingival fibroblasts and transferred to dogs. Surgery was performed bilaterally, and the regions were divided into two groups: ADMA+F (ADMA containing fibroblasts) and ADMA (ADMA only). Biopsies were performed after 2, 4, and 8 weeks of healing. The quantity of blood vessels was significantly higher in the ADMA+F group at 2 weeks of healing (Kruskal-Wallis; P <0.05). There was no statistical difference (P >0.05) in the number of cell layers, epithelial area, or inflammatory infiltrate between the two groups at any stage of healing. The enhanced vascularization in vivo in early stages supports the important role of fibroblasts in improving graft performance and wound healing of cultured graft substitutes.

  6. C/EBPα Expression is Partially Regulated by C/EBPβ in Response to DNA Damage and C/EBPα Deficient Fibroblasts Display an Impaired G1 Checkpoint

    PubMed Central

    Ranjan, Rakesh; Thompson, Elizabeth A.; Yoon, Kyungsil; Smart, Robert C.

    2009-01-01

    We observed that C/EBPα is highly inducible in primary fibroblasts by DNA damaging agents that induce strand breaks, alkylate and crosslink DNA as well as those that produce bulky DNA lesions. Fibroblasts deficient in C/EBPα (C/EBPα-/-) display an impaired G1 checkpoint as evidenced by inappropriate entry into S-phase in response to DNA damage and these cells also display an enhanced G1 to S transition in response to mitogens. The induction of C/EBPα by DNA damage in fibroblasts does not require p53. EMSA analysis of nuclear extracts prepared from UVB- and MNNG-treated fibroblasts revealed increased binding of C/EBPβ to a C/EBP consensus sequence and ChIP analysis revealed increased C/EBPβ binding to the C/EBPα promoter. To determine whether C/EBPβ has a role in the regulation of C/EBPα we treated C/EBPβ-/- fibroblasts with UVB or MNNG. We observed C/EBPα induction was impaired in both UVB- and MNNG- treated C/EBPβ-/- fibroblasts. Our study reveals a novel role for C/EBPβ in the regulation of C/EBPα in response to DNA damage and provides definitive genetic evidence that C/EBPα has a critical role in the DNA damage G1 checkpoint. PMID:19581927

  7. Reduced Cx43 expression triggers increased fibrosis due to enhanced fibroblast activity.

    PubMed

    Jansen, John A; van Veen, Toon A B; de Jong, Sanne; van der Nagel, Roel; van Stuijvenberg, Leonie; Driessen, Helen; Labzowski, Ronald; Oefner, Carolin M; Bosch, Astrid A; Nguyen, Tri Q; Goldschmeding, Roel; Vos, Marc A; de Bakker, Jacques M T; van Rijen, Harold V M

    2012-04-01

    Arrhythmogenic ventricular remodeling is hallmarked by both reduced gap junction expression and increased collagen deposition. We hypothesized that reduced connexin43 (Cx43) expression is responsible for enhanced fibrosis in the remodeled heart, resulting in an arrhythmogenic substrate. Therefore, we investigated the effect of normal or reduced Cx43 expression on the formation of fibrosis in a physiological (aging) and pathophysiological (transverse aortic constriction [TAC]) mouse model. The Cx43(fl/fl) and Cx43(CreER(T)/fl) mice were aged 18 to 21 months or, at the age of 3 months, either TAC or sham operated and euthanized after 16 weeks. Epicardial activation mapping of the right and left ventricles was performed on Langendorff perfused hearts. Sustained ventricular arrhythmias were induced in 0 of 11 aged Cx43(fl/fl) and 10 of 15 Cx43(Cre-ER(T)/fl) mice (P<0.01). Cx43 expression was reduced by half in aged Cx43(CreER(T)/fl) compared with aged Cx43(fl/fl) mice, whereas collagen deposition was significantly increased from 1.1±0.2% to 7.4±1.3%. Aged Cx43(CreER(T)/fl) mice with arrhythmias had significantly higher levels of fibrosis and conduction heterogeneity than aged Cx43(CreER(T)/fl) mice without arrhythmias. The TAC operation significantly increased fibrosis in control compared with sham (4.0±1.2% versus 0.4±0.06%), but this increase was significantly higher in Cx43(CreER(T)/fl) mice (10.8±1.4%). Discoidin domain receptor 2 expression was unchanged, but procollagen peptide I and III expression and collagen type 1α2 mRNA levels were higher in TAC-operated Cx43HZ mice. Reduced cellular coupling results in more excessive collagen deposition during aging or pressure overload in mice due to enhanced fibroblast activity, leading to increased conduction in homogeneity and proarrhythmia.

  8. Antiproliferative effect of methanolic extraction of tualang honey on human keloid fibroblasts

    PubMed Central

    2011-01-01

    Background Keloid is a type of scar which extends beyond the boundaries of the original wound. It can spread to the surrounding skin by invasion. The use of Tualang honey is a possible approach for keloid treatment. The objective of this study was to determine the antiproliferative effect of methanolic extraction of Tualang honey to primary human keloid fibroblasts and to identify the volatile compounds in methanol extraction of Tualang honey. Methods Crude Tualang honey was extracted with methanol and then dried using rota vapor to remove remaining methanol from honey. Normal and keloid fibroblasts were verified and treated with the extracted honey. Cell proliferation was tested with [3-(4,5-dimethylthiazol-2-yi)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] (MTS) assay. Extraction of Tualang honey using methanol was carried out and the extracted samples were analysed using gas chromatography-mass spectrometry (GC-MS). The result was analysed using SPSS and tested with Kruskal-Wallis and Mann-Whitney tests. Results Methanolic extraction of honey has positive anti proliferative effect on keloid fibroblasts in a dose-dependent manner. The presence of fatty acids such as palmitic acid, stearic acid, oleic acid, linoleic acid and octadecanoic acid may contribute to the anti-proliferative effect in keloid fibroblasts. Conclusions The methanolic honey extraction has an antiproliferative effect on keloid fibroblasts and a range of volatile compounds has been identified from Tualang honey. The antiproliferative effect of keloid fibroblasts towards Tualang honey may involve cell signaling pathway. Identifying other volatile compounds from different organic solvents should be carried out in future. PMID:21943200

  9. In Vivo Evaluation of the Biocompatibility of Surface Modified Hemodialysis Polysulfone Hollow Fibers in Rat

    PubMed Central

    Sabale, Siddharth S.; Kadam, Dattatray P.; Sarkate, Laxman B.; Bellare, Jayesh R.

    2011-01-01

    Polysulfone (Psf) hollow fiber membranes (HFMs) have been widely used in blood purification but their biocompatibility remains a concern. To enhance their biocompatibility, Psf/TPGS (d-α-tocopheryl polyethylene glycol 1000 succinate) composite HFMs and 2-methacryloyloxyethyl phosphorylcholine (MPC) coated Psf HFMs have been prepared. They have been evaluated for in vivo biocompatibility and graft acceptance and compared with sham and commercial membranes by intra-peritoneal implantation in rats at day 7 and 21. Normal body weights, tissue formation and angiogenesis indicate acceptance of implants by the animals. Hematological observations show presence of post-surgical stress which subsides over time. Serum biochemistry results reveal normal organ function and elevated liver ALP levels at day 21. Histological studies exhibit fibroblast recruitment cells, angiogenesis and collagen deposition at the implant surface indicating new tissue formation. Immuno-histochemistry studies show non-activation of MHC molecules signifying biocompatibilty. Additionally, Psf/TPGS exhibit most favorable tissue response as compared with other HFMs making them the material of choice for HFM preparation for hemodialysis applications. PMID:22046236

  10. Collagen and the myocardium: fibrillar structure, biosynthesis and degradation in relation to hypertrophy and its regression.

    PubMed

    Eghbali, M; Weber, K T

    1990-07-17

    The extracellular matrix of the myocardium contains an elaborate structural matrix composed mainly of fibrillar types I and III collagen. This matrix is responsible for the support and alignment of myocytes and capillaries. Because of its alignment, location, configuration and tensile strength, relative to cardiac myocytes, the collagen matrix represents a major determinant of myocardial stiffness. Cardiac fibroblasts, not myocytes, contain the mRNA for these fibrillar collagens. In the hypertrophic remodeling of the myocardium that accompanies arterial hypertension, a progressive structural and biochemical remodeling of the matrix follows enhanced collagen gene expression. The resultant significant accumulation of collagen in the interstitium and around intramyocardial coronary arteries, or interstitial and perivascular fibrosis, represents a pathologic remodeling of the myocardium that compromises this normally efficient pump. This report reviews the structural nature, biosynthesis and degradation of collagen in the normal and hypertrophied myocardium. It suggests that interstitial heart disease, or the disproportionate growth of the extracellular matrix relative to myocyte hypertrophy, is an entity that merits greater understanding, particularly the factors regulating types I and III collagen gene expression and their degradation.

  11. Wnt/β-catenin signaling enhances osteoblastogenic differentiation from human periodontal ligament fibroblasts.

    PubMed

    Heo, Jung Sun; Lee, Seung-Youp; Lee, Jeong-Chae

    2010-11-01

    Wnt/β-catenin signaling has been known to influence bone formation and homeostasis. In this study, we investigated the canonical Wnt signaling regulation of osteogenic differentiation from periodontal ligament (PDL) fibroblasts. Stimulating PDL fibroblasts with lithium chloride (LiCl), a canonical Wnt activator, significantly increased mineralized nodule and alkaline phosphatase (ALP) activity in a time- and dose-dependent manner. LiCl up-regulated protein expression of osteogenic transcription factors, including the runt-related gene 2, Msx2, and Osterix 2, in the PDL fibroblasts. Treatment of these cells with LiCl also increased the mRNA levels of ALP, FosB, and Fra1 in a dose-dependent manner. Blockage of canonical Wnt signaling by treating the cells with DKK1 inhibited Wnt1-stimulated mRNA expression of these osteogenic factors. Furthermore, pretreatment with DKK1 reduced the ALP activity and matrix mineralization stimulated by Wnt1. Collectively, these results suggest that canonical Wnt signaling leads to the differentiation of PDL fibroblasts into osteogenic lineage with the attendant stimulation of osteogenic transcription factors.

  12. Extracellular ATP drives breast cancer cell migration and metastasis via S100A4 production by cancer cells and fibroblasts.

    PubMed

    Liu, Ying; Geng, Yue-Hang; Yang, Hui; Yang, Han; Zhou, Yan-Ting; Zhang, Hong-Quan; Tian, Xin-Xia; Fang, Wei-Gang

    2018-05-04

    Our previous work has demonstrated that extracellular ATP is an important pro-invasive factor, and in this study, we tapped into a possible mechanism involved. We discovered that ATP could upregulate both the intracellular expression and secretion of S100A4 in breast cancer cells and fibroblasts. Apart from stimulating breast cancer cell motility via intracellular S100A4, ATP enhanced the ability of breast cancer cells to transform fibroblasts into cancer-associated fibroblast (CAF)-like cells, which in turn secreted S100A4 to further promote cancer cell motility. Both apyrase and niclosamide treatments could inhibit metastasis of inoculated tumors to lung, liver and kidney in mice model, and CAFs from these treated tumors exhibited weakened migration-stimulating capacity for breast cancer cells. Collectively, our data indicate that extracellular ATP promotes the interactions between breast cancer cells and fibroblasts, which work collaboratively via production of S100A4 to exacerbate breast cancer metastasis. Copyright © 2018. Published by Elsevier B.V.

  13. The XPO1 inhibitor Selinexor inhibits translation and enhances the radiosensitivity of glioblastoma cells grown in vitro and in vivo.

    PubMed

    Wahba, Amy; Rath, Barbara H; O'Neill, John W; Camphausen, Kevin; Tofilon, Philip J

    2018-06-04

    Analysis of the radiation-induced translatome of glioblastoma stem-like cells (GSCs) identified an interacting network in which XPO1 serves as a major hub protein. To determine whether this nuclear export protein provides a target for radiosensitization, we defined the effects of the clinically relevant XPO1 inhibitor Selinexor on the radiosensitivity of glioblastoma cells. As determined by clonogenic survival analysis, Selinexor enhanced the radiosensitivity of GSCs but not normal fibroblast cell lines. Based on γH2AX foci and neutral comet analyses, Selinexor inhibited the repair of radiation-induced DNA double strand breaks in GSCs suggesting that the Selinexor-induced radiosensitization is mediated by an inhibition of DNA repair. Consistent with a role for XPO1 in the nuclear to cytoplasm export of rRNA, Selinexor reduced 5S and 18S rRNA nuclear export in GSCs, which was accompanied by a decrease in gene translation efficiency, as determined from polysome profiles, as well as in protein synthesis. In contrast, rRNA nuclear export and protein synthesis were not reduced in normal cells treated with Selinexor. Orthotopic xenografts initiated from a GSC line were then used to define the in vivo response to Selinexor and radiation. Treatment of mice bearing orthotopic xenografts with Selinexor decreased tumor translational efficiency as determined from polysome profiles. Although Selinexor treatment alone had no effect on the survival of mice with brain tumors, it significantly enhanced the radiation-induced prolongation of survival. These results indicate that Selinexor enhances the radiosensitivity of glioblastoma cells and suggest that this effect involves a global inhibition of gene translation. Copyright ©2018, American Association for Cancer Research.

  14. Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment: RAS and NFκB target stromal MCT4.

    PubMed

    Martinez-Outschoorn, Ubaldo E; Curry, Joseph M; Ko, Ying-Hui; Lin, Zhao; Tuluc, Madalina; Cognetti, David; Birbe, Ruth C; Pribitkin, Edmund; Bombonati, Alessandro; Pestell, Richard G; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P

    2013-08-15

    Here, we developed a model system to evaluate the metabolic effects of oncogene(s) on the host microenvironment. A matched set of "normal" and oncogenically transformed epithelial cell lines were co-cultured with human fibroblasts, to determine the "bystander" effects of oncogenes on stromal cells. ROS production and glucose uptake were measured by FACS analysis. In addition, expression of a panel of metabolic protein biomarkers (Caveolin-1, MCT1, and MCT4) was analyzed in parallel. Interestingly, oncogene activation in cancer cells was sufficient to induce the metabolic reprogramming of cancer-associated fibroblasts toward glycolysis, via oxidative stress. Evidence for "metabolic symbiosis" between oxidative cancer cells and glycolytic fibroblasts was provided by MCT1/4 immunostaining. As such, oncogenes drive the establishment of a stromal-epithelial "lactate-shuttle", to fuel the anabolic growth of cancer cells. Similar results were obtained with two divergent oncogenes (RAS and NFκB), indicating that ROS production and inflammation metabolically converge on the tumor stroma, driving glycolysis and upregulation of MCT4. These findings make stromal MCT4 an attractive target for new drug discovery, as MCT4 is a shared endpoint for the metabolic effects of many oncogenic stimuli. Thus, diverse oncogenes stimulate a common metabolic response in the tumor stroma. Conversely, we also show that fibroblasts protect cancer cells against oncogenic stress and senescence by reducing ROS production in tumor cells. Ras-transformed cells were also able to metabolically reprogram normal adjacent epithelia, indicating that cancer cells can use either fibroblasts or epithelial cells as "partners" for metabolic symbiosis. The antioxidant N-acetyl-cysteine (NAC) selectively halted mitochondrial biogenesis in Ras-transformed cells, but not in normal epithelia. NAC also blocked stromal induction of MCT4, indicating that NAC effectively functions as an "MCT4 inhibitor". Taken together, our data provide new strategies for achieving more effective anticancer therapy. We conclude that oncogenes enable cancer cells to behave as selfish "metabolic parasites", like foreign organisms (bacteria, fungi, viruses). Thus, we should consider treating cancer like an infectious disease, with new classes of metabolically targeted "antibiotics" to selectively starve cancer cells. Our results provide new support for the "seed and soil" hypothesis, which was first proposed in 1889 by the English surgeon, Stephen Paget.

  15. Esterification of all-trans-retinol in normal human epithelial cell strains and carcinoma lines from oral cavity, skin and breast: reduced expression of lecithin:retinol acyltransferase in carcinoma lines.

    PubMed

    Guo, X; Ruiz, A; Rando, R R; Bok, D; Gudas, L J

    2000-11-01

    When exogenous [(3)H]retinol (vitamin A) was added to culture medium, normal human epithelial cells from the oral cavity, skin, lung and breast took up and esterified essentially all of the [(3)H]retinol within a few hours. As shown by [(3)H]retinol pulse-chase experiments, normal epithelial cells then slowly hydrolyzed the [(3)H]retinyl esters to [(3)H]retinol, some of which was then oxidized to [(3)H]retinoic acid (RA) over a period of several days. In contrast, cultured normal human fibroblasts and human umbilical vein endothelial cells (HUVEC) did not esterify significant amounts of [(3)H]retinol; this lack of [(3)H]retinol esterification was correlated with a lack of expression of lecithin:retinol acyltransferase (LRAT) transcripts in normal fibroblast and HUVEC strains. These results indicate that normal, differentiated cell types differ in their ability to esterify retinol. Human carcinoma cells (neoplastically transformed epithelial cells) of the oral cavity, skin and breast did not esterify much [(3)H]retinol and showed greatly reduced LRAT expression. Transcripts of the neutral, bile salt-independent retinyl ester hydrolase and the bile salt-dependent retinyl ester hydrolase were undetectable in all of the normal cell types, including the epithelial cells. These experiments suggest that retinoid-deficiency in the tumor cells could develop because of the lack of retinyl esters, a storage form of retinol.

  16. Bi-directional signaling: Extracellular Matrix and Integrin Regulation of Breast Tumor Progression

    PubMed Central

    Gehler, Scott; Ponik, Suzanne M.; Riching, Kristin M; Keely, Patricia J.

    2016-01-01

    Cell transformation and tumor progression involves a common set of acquired capabilities, including increased proliferation, failure of cell death, self-sufficiency in growth, angiogenesis, and tumor cell invasion and metastasis (1). The stromal environment consists of many cell types, including fibroblasts, macrophages, and endothelial cells, in addition to various extracellular matrix (ECM) proteins that function to support normal tissue maintenance, but have also been implicated in tumor progression (2). Both the chemical and mechanical properties of the ECM have been shown to influence normal and malignant cell behavior. For instance, mesenchymal stem cells differentiate into specific lineages that are dependent on matrix stiffness (3), while tumor cells undergo changes in cell behavior and gene expression in response to matrix stiffness (4). ECM remodeling is implicated in tumor progression and includes changes in both the chemical and mechanical properties of the ECM (5) that can be a result of 1.) increased deposition of stromal ECM, 2.) enhanced contraction of ECM fibrils, and 3.) altered collagen alignment and ECM stiffness. In addition, remodeling of the ECM may alter whether tumor cells employ proteolytic degradation mechanisms during invasion and metastasis. Tumor cells respond to such changes in ECM remodeling through altered intracellular signaling and cell cycle control that lead to enhanced proliferation, loss of normal tissue architecture, and local tumor cell migration and invasion into the surrounding stromal tissue (6). This review will focus on the bi-directional interplay between the mechanical properties of the ECM and changes in integrin-mediated signal transduction events in an effort to elucidate cell behaviors during tumor progression. PMID:23582036

  17. Mice that lack the angiogenesis inhibitor, thrombospondin 2, mount an altered foreign body reaction characterized by increased vascularity

    PubMed Central

    Kyriakides, Themis R.; Leach, Kathleen J.; Hoffman, Allan S.; Ratner, Buddy D.; Bornstein, Paul

    1999-01-01

    Disruption of the thrombospondin 2 gene (Thbs2) in mice results in a complex phenotype characterized chiefly by abnormalities in fibroblasts, connective tissues, and blood vessels. Consideration of this phenotype suggested to us that the foreign body reaction (FBR) might be altered in thrombospondin 2 (TSP2)-null mice. To investigate the participation of TSP2 in the FBR, polydimethylsiloxane (PDMS) and oxidized PDMS (ox-PDMS) disks were implanted in TSP2-null and control mice. Growth of TSP2-null and control skin fibroblasts in vitro also was evaluated on both types of disks. Normal fibroblasts grew as a monolayer on both surfaces, but attachment of the cells to ox-PDMS was weak and sensitive to movement. TSP2-null fibroblasts grew as aggregates on both surfaces, and their attachment was further compromised on ox-PDMS. After a 4-week implantation period, both types of PDMS elicited a similar FBR with a collagenous capsule in both TSP2-null and control mice. However, strikingly, the collagenous capsule that formed in TSP2-null mice was highly vascularized and thicker than that formed in normal mice. In addition, abnormally shaped collagen fibers were observed in capsules from mutant mice. These observations indicate that the presence or absence of an extracellular matrix component, TSP2, can influence the nature of the FBR, in particular its vascularity. The expression of TSP2 therefore could represent a molecular target for local inhibitory measures when vascularization of the tissue surrounding an implanted device is desired. PMID:10200282

  18. Increased Lymphatic Vessel Length Is Associated With the Fibroblast Reticulum and Disease Severity in Usual Interstitial Pneumonia and Nonspecific Interstitial Pneumonia

    PubMed Central

    Cosgrove, Gregory P.; Janssen, William J.; Huie, Tristan J.; Burnham, Ellen L.; Heinz, David E.; Curran-Everett, Douglas; Sahin, Hakan; Schwarz, Marvin I.; Cool, Carlyne D.; Groshong, Steve D.; Geraci, Mark W.; Tuder, Rubin M.; Hyde, Dallas M.; Henson, Peter M.

    2012-01-01

    Background: Lymphangiogenesis responds to tissue injury as a key component of normal wound healing. The development of fibrosis in the idiopathic interstitial pneumonias may result from abnormal wound healing in response to injury. We hypothesize that increased lymphatic vessel (LV) length, a marker of lymphangiogenesis, is associated with parenchymal components of the fibroblast reticulum (organizing collagen, fibrotic collagen, and fibroblast foci), and its extent correlates with disease severity. Methods: We assessed stereologically the parenchymal structure of fibrotic lungs and its associated lymphatic network, which was highlighted immunohistochemically in age-matched samples of usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP) with FVC < 80%, COPD with a Global Initiative for Obstructive Lung Disease stage 0, and normal control lungs. Results: LV length density, as opposed to vessel volume density, was found to be associated with organizing and fibrotic collagen density (P < .0001). Length density of LVs and the volume density of organizing and fibrotic collagen were significantly associated with severity of both % FVC (P < .001) and diffusing capacity of the lung for carbon monoxide (P < .001). Conclusions: Severity of disease in UIP and NSIP is associated with increased LV length and is strongly associated with components of the fibroblast reticulum, namely organizing and fibrotic collagen, which supports a pathogenic role of LVs in these two diseases. Furthermore, the absence of definable differences between UIP and NSIP suggests that LVs are a unifying mechanism for the development of fibrosis in these fibrotic lung diseases. PMID:22797508

  19. An innovative strategy to clone positive modifier genes of defects caused by mtDNA mutations: MRPS18C as suppressor gene of m.3946G>A mutation in MT-ND1 gene.

    PubMed

    Rodríguez-García, María Elena; Cotrina-Vinagre, Francisco Javier; Carnicero-Rodríguez, Patricia; Martínez-Azorín, Francisco

    2017-07-01

    We have developed a new functional complementation approach to clone modifier genes which overexpression is able to suppress the biochemical defects caused by mtDNA mutations (suppressor genes). This strategy consists in transferring human genes into respiratory chain-deficient fibroblasts, followed by a metabolic selection in a highly selective medium. We used a normalized expression cDNA library in an episomal vector (pREP4) to transfect the fibroblasts, and a medium with glutamine and devoid of any carbohydrate source to select metabolically. Growing the patient's fibroblasts in this selective medium, the deficient cells rapidly disappear unless they are rescued by the cDNA of a suppressor gene. The use of an episomal vector allows us to carry out several rounds of transfection/selection (cyclical phenotypic rescue) to enrich the rescue with true clones of suppressor genes. Using fibroblasts from a patient with epileptic encephalopathy with the m.3946G>A (p.E214K) mutation in the MT-ND1 gene, several candidate genes were identified and one of them was characterized functionally. Thus, overexpression of MRPS18C gene (that encode for bS18m protein) suppressed the molecular defects produced by this mtDNA mutation, recovering the complex I activity and reducing the ROS produced by this complex to normal levels. We suggest that modulation of bS18m expression may be an effective therapeutic strategy for the patients with this mutation.

  20. Absence of fibroblast growth factor 2 promotes oligodendroglial repopulation of demyelinated white matter.

    PubMed

    Armstrong, Regina C; Le, Tuan Q; Frost, Emma E; Borke, Rosemary C; Vana, Adam C

    2002-10-01

    This study takes advantage of fibroblast growth factor 2 (FGF2) knock-out mice to determine the contribution of FGF2 to the regeneration of oligodendrocytes in the adult CNS. The role of FGF2 during spontaneous remyelination was examined using two complementary mouse models of experimental demyelination. The murine hepatitis virus strain A59 (MHV-A59) model produces focal areas of spinal cord demyelination with inflammation. The cuprizone neurotoxicant model causes extensive corpus callosum demyelination without a lymphocytic cell response. In both models, FGF2 expression is upregulated in areas of demyelination in wild-type mice. Surprisingly, in both models, oligodendrocyte repopulation of demyelinated white matter was significantly increased in FGF2 -/- mice compared with wild-type mice and even surpassed the oligodendrocyte density of nonlesioned mice. This dramatic result indicated that the absence of FGF2 promoted oligodendrocyte regeneration, possibly by enhancing oligodendrocyte progenitor proliferation and/or differentiation. FGF2 -/- and +/+ mice had similar oligodendrocyte progenitor densities in normal adult CNS, as well as similar progenitor proliferation and accumulation during demyelination. To directly analyze progenitor differentiation, glial cultures from spinal cords of wild-type mice undergoing remyelination after MHV-A59 demyelination were treated for 3 d with either exogenous FGF2 or an FGF2 neutralizing antibody. Elevating FGF2 favored progenitor proliferation, whereas attenuating endogenous FGF2 activity promoted the differentiation of progenitors into oligodendrocytes. These in vitro results are consistent with enhanced progenitor differentiation in FGF2 -/- mice. These studies demonstrate that the FGF2 genotype regulates oligodendrocyte regeneration and that FGF2 appears to inhibit oligodendrocyte lineage differentiation during remyelination.

  1. CREG1 enhances p16INK4a-induced cellular senescence

    PubMed Central

    Moolmuang, Benchamart

    2011-01-01

    Cellular senescence is an irreversible growth arrest that is activated in normal cells upon shortening of telomere and other cellular stresses. Bypassing cellular senescence is a necessary step for cells to become immortal during oncogenic transformation. During the spontaneous immortalization of Li-Fraumeni Syndrome (LFS) fibroblasts, we found that CREG1 (Cellular Repressor of E1A-stimulated Genes 1) expression was decreased during immortalization and increased in senescence. Moreover, we found that repression of CREG1 expression occurs via an epigenetic mechanism, promoter DNA methylation. Ectopic expression of CREG1 in the immortal LFS cell lines decreases cell proliferation but does not directly induce senescence. We confirmed this in osteosarcoma and fibrosarcoma cancer cell lines, cancers commonly seen in Li-Fraumeni Syndrome. In addition, we found that p16INK4a is also downregulated in immortal cells and that coexpression of CREG1 and p16INK4a, an inhibitor of CDK4/6 and Rb phosphorylation, has a greater effect than either CREG1 and p16INK4a alone to reduce cell growth, induce cell cycle arrest and cellular senescence in immortal LFS fibroblasts, osteosarcoma and fibrosarcoma cell lines. Moreover, cooperation of CREG1 and p16INK4a inhibits the expression of cyclin A and cyclin B by inhibiting promoter activity, thereby decreasing mRNA and protein levels; these proteins are required for S-phase entry and G2/M transition. In conclusion, this is the first evidence to demonstrate that CREG1 enhances p16INK4a-induced senescence by transcriptional repression of cell cycle-regulated genes. PMID:21263217

  2. Decreased fibrous encapsulation and enhanced osseointegration in vitro by decorin-modified titanium surface.

    PubMed

    He, Ronghan; Lu, Yunxiang; Ren, Jianhua; Wang, Zhe; Huang, Junqi; Zhu, Lei; Wang, Kun

    2017-07-01

    Orthopedic implants, using materials such as titanium, are extensively used in clinical surgeries. Despite its popularity, titanium is still inadequate to reliable osseointegration due to aseptic loosing. Fibrous encapsulation on the titanium implant interface prevents osseointegration and leads to the loosing of orthopedic implant. In this study, decorin was loaded on titanium surface by polydopamine film to examine fibrous encapsulation inhibition and bone growth acceleration. The coating of decorin was evaluated by X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. Quantitative analysis showed increased decorin coating on titanium surface when decorin in the loading solution increases. To test the effect of decorin modification, fibroblast and osteoblast cultures were utilized in vitro. The results showed that the functions of fibroblasts (proliferation, migration and collagen synthesis) were significantly attenuated on the decorin-modified surfaces and this anti-fibrous effect could be due to fibrotic gene suppression by decorin. In contrast, osteoblastic activities, such as calcium deposition and alkaline phosphatase (ALP) activity, were enhanced by the modified decorin. These results suggest that decorin coating on titanium surface inhibited proliferation and function of fibroblasts and improved that of osteoblasts. Therefore, this study is potentially useful for enhancing orthopedic implant. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Differential regulation of a fibroblast growth factor-binding protein during skin carcinogenesis and wound healing.

    PubMed

    Kurtz, Andreas; Aigner, Achim; Cabal-Manzano, Rafael H; Butler, Robert E; Hood, Dozier R; Sessions, Roy B; Czubayko, Frank; Wellstein, Anton

    2004-01-01

    The initiation of premalignant lesions is associated with subtle cellular and gene expression changes. Here we describe a severe combined immunodeficiency mouse xenograft model with human adult skin and compare chemical carcinogenesis and wound healing. We focus on a secreted binding protein for fibroblast growth factors (FGF-BP) that enhances the activity of locally stored FGFs and is expressed at high levels in human epithelial cancers. Carcinogen treatment of murine skin induced papilloma within 6 weeks, whereas the human skin grafts displayed no obvious macroscopic alterations. Microscopic studies of the human skin, however, showed p53-positive keratinocytes in the epidermis, increased angiogenesis in the dermis of the treated skin, enhanced proliferation of keratinocytes in the basal layer, and an increase of FGF-BP protein and mRNA expression. In contrast, after surgical wounding of human skin grafts or of mouse skin, FGF-BP expression was upregulated within a few hours and returned to control levels after 2 days with wound closure. Enhanced motility of cultured keratinocytes and dermal fibroblasts by FGF-BP supports a role in wound healing. We conclude that adult human skin xenografts can be used to identify early molecular events during malignant transformation as well as transient changes during wound healing.

  4. Site-specific mesenchymal control of inflammatory pain to yeast challenge in vulvodynia afflicted and pain-free women

    PubMed Central

    Foster, David C.; Falsetta, Megan L.; Woeller, Collynn F.; Pollock, Stephen J.; Song, Kunchang; Bonham, Adrienne; Haidaris, Constantine G.; Stodgell, Chris J.; Messing, Susan P.; Iadarola, Michael; Phipps, Richard P.

    2015-01-01

    Fibroblast strains were derived from two regions of the lower genital tract of localized provoked vulvodynia (LPV) cases and pain-free controls. Sixteen strains were derived from four cases and four controls, age and race matched, following pre-sampling mechanical pain threshold assessments. Strains were challenged with six separate stimuli: live yeast species (C. albicans, C. glabrata, C. tropicalis, and S. cerevisiae), yeast extract (zymosan), or inactive vehicle. Production of prostaglandin E2 (PGE2) and interleukin-6 (IL-6) were pro-inflammatory response measures. Highest IL-6 and PGE2 occurred with vestibular strains following C. albicans, C. glabrata, and zymosan challenges, resulting in the ability to significantly predict IL-6 and PGE2 production by genital tract location. Following C. albicans and C. glabrata challenge of all sixteen fibroblast strains, adjusting for dual sampling of subjects, PGE2 and IL-6 production significantly predicted the pre-sampling pain threshold from the genital tract site of sampling. At the same location of pain assessment and fibroblast sampling, in situ immunohistochemical (IHC)(+) fibroblasts for IL-6 and Cox-2 were quantified microscopically. The correlation between IL-6 production and IL-6 IHC(+) was statistically significant yet biological significance is unknown because of the small number of IHC(+) IL-6 fibroblasts identified. A low fibroblast IL-6 IHC(+) count may result from most IL-6 produced by fibroblasts existing in a secreted, extracellular state. Enhanced, site-specific, innate immune responsiveness to yeast pathogens by fibroblasts may be an early step in LPV pathogenesis. Fibroblast strain testing may offer an attractive/objective marker of LPV pathology in women with vulvodynia of inflammatory origin. PMID:25679469

  5. Fetal Fibroblasts and Keratinocytes with Immunosuppressive Properties for Allogeneic Cell-Based Wound Therapy

    PubMed Central

    Zuliani, Thomas; Saiagh, Soraya; Knol, Anne-Chantal; Esbelin, Julie; Dréno, Brigitte

    2013-01-01

    Fetal skin heals rapidly without scar formation early in gestation, conferring to fetal skin cells a high and unique potential for tissue regeneration and scar management. In this study, we investigated the possibility of using fetal fibroblasts and keratinocytes to stimulate wound repair and regeneration for further allogeneic cell-based therapy development. From a single fetal skin sample, two clinical batches of keratinocytes and fibroblasts were manufactured and characterized. Tolerogenic properties of the fetal cells were investigated by allogeneic PBMC proliferation tests. In addition, the potential advantage of fibroblasts/keratinocytes co-application for wound healing stimulation has been examined in co-culture experiments with in vitro scratch assays and a multiplex cytokines array system. Based on keratin 14 and prolyl-4-hydroxylase expression analyses, purity of both clinical batches was found to be above 98% and neither melanocytes nor Langerhans cells could be detected. Both cell types demonstrated strong immunosuppressive properties as shown by the dramatic decrease in allogeneic PBMC proliferation when co-cultured with fibroblasts and/or keratinocytes. We further showed that the indoleamine 2,3 dioxygenase (IDO) activity is required for the immunoregulatory activity of fetal skin cells. Co-cultures experiments have also revealed that fibroblasts-keratinocytes interactions strongly enhanced fetal cells secretion of HGF, GM-CSF, IL-8 and to a lesser extent VEGF-A. Accordingly, in the in vitro scratch assays the fetal fibroblasts and keratinocytes co-culture accelerated the scratch closure compared to fibroblast or keratinocyte mono-cultures. In conclusion, our data suggest that the combination of fetal keratinocytes and fibroblasts could be of particular interest for the development of a new allogeneic skin substitute with immunomodulatory activity, acting as a reservoir for wound healing growth factors. PMID:23894651

  6. γ-H2AX formation in response to interstrand crosslinks requires XPF in human cells

    PubMed Central

    Mogi, Seiki; Oh, Dennis H.

    2009-01-01

    To further define the molecular mechanisms involved in processing interstrand crosslinks, we monitored the formation of phosphorylated histone H2AX (γ-H2AX), which is generated in chromatin near double strand break sites, following DNA damage in normal and repair-deficient human cells. Following treatment with a psoralen derivative and ultraviolet A radiation doses that produce significant numbers of crosslinks, γ-H2AX levels in nucleotide excision repair-deficient XP-A fibroblasts (XP12RO-SV) increased to levels that were twice those observed in normal control GM637 fibroblasts. A partial XPA revertant cell line (XP129) that is proficient in crosslink removal, exhibited reduced γ-H2AX levels that were intermediate between those of GM637 and XP-A cells. XP-F fibroblasts (XP2YO-SV and XP3YO) that are also repair-deficient exhibited γ-H2AX levels below even control fibroblasts following treatment with psoralen and ultraviolet A radiation. Similarly, another crosslinking agent, mitomycin C, did not induce γ-H2AX in XP-F cells, although it did induce equivalent levels of γ-H2AX in XPA and control GM637 cells. Ectopic expression of XPF in XP-F fibroblasts restored γ-H2AX induction following treatment with crosslinking agents. Angelicin, a furocoumarin which forms only monoadducts and not crosslinks following ultraviolet A radiation, as well as ultraviolet C radiation, resulted only in weak induction of γ-H2AX in all cells, suggesting that the double strand breaks observed with psoralen and ultraviolet A treatment result preferentially following crosslink formation. These results indicate that XPF is required to form γ-H2AX and likely double strand breaks in response to interstrand crosslinks in human cells. Furthermore, XPA may be important to allow psoralen interstrand crosslinks to be processed without forming a double strand break intermediate. PMID:16678501

  7. Mitomycin C induces apoptosis in cultured corneal fibroblasts derived from type II granular corneal dystrophy corneas

    PubMed Central

    Choi, Seung-il; Lee, Hyung Keun; Cho, Young Jae

    2008-01-01

    Purpose The present study investigated the effect of mitomycin C (MMC) on cell viability, apoptosis, and transforming growth factor beta-induced protein (TGFBIp) expression in cultured normal corneal fibroblasts and heterozygote or homozygote granular corneal dystrophy type II (GCD II) corneal fibroblasts. Methods Keratocytes were obtained from normal cornea or from heterozygote or homozygote GCD II patients after lamellar or penetrating keratoplasty. To measure cell viability, corneal fibroblasts were incubated with 0.02% MMC for 3 h, 6 h, and 24 h or with 0%, 0.01%, 0.02%, and 0.04% MMC for 24 h and then tested using lactate dehydrogenase (LDH) and 3-[4,5-demethylthiazol-2,5-diphenyl-2H-tetrazolium bromide] (MTT) assays. To measure apoptosis, cells were analyzed by FACS analysis and annexin V staining. Bcl-xL, Bax, and TGFBI mRNA expression was measured using reverse transcription polymerase chain reaction (RT–PCR) assays. Cellular and media levels of TGFBIp protein were measured by immunoblotting. Results MTT and LDH assays showed that MMC reduced cell viability in all three cell types in a dose-dependent and time-dependent manner (p<0.05). FACS analysis and annexin V staining showed that MMC caused apoptosis with GCD II homozygote cells being most affected. RT–PCR analysis showed that MMC decreased Bcl-xL mRNA expression and increased Bax mRNA expression in all cell types. RT–PCR and immunoblotting analysis showed that MMC reduced TGFBI mRNA levels and cellular and media TGFBIp protein levels in all cell types. Conclusions MMC induced apoptosis, and the effects of MMC were greatest in GCD II homozygote cells. MMC also reduced the production of TGFBIp in all three types of corneal fibroblasts. These findings may explain the additional therapeutic effect of MMC in GCD II patients. PMID:18615204

  8. Live fate-mapping of joint-associated fibroblasts visualizes expansion of cell contributions during zebrafish fin regeneration.

    PubMed

    Tornini, Valerie A; Thompson, John D; Allen, Raymond L; Poss, Kenneth D

    2017-08-15

    The blastema is a mass of progenitor cells responsible for regeneration of amputated salamander limbs and fish fins. Previous studies have indicated that resident cell sources producing the blastema contribute lineage-restricted progeny to regenerating tissue. However, these studies have labeled general cell types rather than granular cell subpopulations, and they do not explain the developmental transitions that must occur for distal structures to arise from cells with proximal identities in the appendage stump. Here, we find that regulatory sequences of tph1b , which encodes an enzyme that synthesizes serotonin, mark a subpopulation of fibroblast-like cells restricted to the joints of uninjured adult zebrafish fins. Amputation stimulates serotonin production in regenerating fin fibroblasts, yet targeted tph1b mutations abrogating this response do not disrupt fin regeneration. In uninjured animals, tph1b -expressing cells contribute fibroblast progeny that remain restricted to joints throughout life. By contrast, upon amputation, tph1b + joint cells give rise to fibroblasts that distribute across the entire lengths of regenerating fin rays. Our experiments visualize and quantify how incorporation into an appendage blastema broadens the progeny contributions of a cellular subpopulation that normally has proximodistal restrictions. © 2017. Published by The Company of Biologists Ltd.

  9. Cytotoxicity of four denture adhesives on human gingival fibroblast cells.

    PubMed

    Lee, Yoon; Ahn, Jin-Soo; Yi, Young-Ah; Chung, Shin-Hye; Yoo, Yeon-Jee; Ju, Sung-Won; Hwang, Ji-Yun; Seo, Deog-Gyu

    2015-02-01

    The purpose of this study was to compare the cytotoxicity of four denture adhesives on human gingival fibroblast cells. Immortalized human gingival fibroblasts were cultured with one of four different denture adhesives, Polident, Protefix, Staydent or Denfix-A, which was placed in insert dishes (10% w/v concentration) for 48 h. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and flow cytometric apoptosis assay were used to evaluate cell viability and apoptosis rates. The fibroblasts were also examined under a scanning electron microscope. The MTT assay showed that all denture adhesives resulted in a significantly lower cell viability compared to the control cells propagated in normal culture medium (p < 0.05), with Staydent demonstrating the lowest cell viability. According to the flow cytometric apoptosis assay, Staydent and Protefix showed significantly higher apoptosis rates than the control group (p < 0.05), whereas Polident and Denfix-A did not demonstrate any significant differences (p > 0.05). Staydent showed the highest apoptosis rate. Scanning electron microscopy showed that the cells of the Staydent group underwent cytoplasmic membrane shrinkage, with cell free areas containing residual fragments of the membrane of dead cells. The four denture adhesives evaluated in this study imparted cytotoxic effects on human gingival fibroblast cells. Staydent showed the highest toxicity.

  10. Trehalose Reverses Cell Malfunction in Fibroblasts from Normal and Huntington's Disease Patients Caused by Proteosome Inhibition

    PubMed Central

    Fernandez-Estevez, Maria Angeles; Casarejos, Maria Jose; López Sendon, Jose; Garcia Caldentey, Juan; Ruiz, Carolina; Gomez, Ana; Perucho, Juan; de Yebenes, Justo García; Mena, Maria Angeles

    2014-01-01

    Huntington's disease (HD) is a neurodegenerative disorder characterized by progressive motor, cognitive and psychiatric deficits, associated with predominant loss of striatal neurons and is caused by polyglutamine expansion in the huntingtin protein. Mutant huntingtin protein and its fragments are resistant to protein degradation and produce a blockade of the ubiquitin proteasome system (UPS). In HD models, the proteasome inhibitor epoxomicin aggravates protein accumulation and the inductor of autophagy, trehalose, diminishes it. We have investigated the effects of epoxomicin and trehalose in skin fibroblasts of control and HD patients. Untreated HD fibroblasts have increased the levels of ubiquitinized proteins and higher levels of reactive oxygen species (ROS), huntingtin and the autophagy marker LAMP2A. Baseline replication rates were higher in HD than in controls fibroblasts but that was reverted after 12 passages. Epoxomicin increases the activated caspase-3, HSP70, huntingtin, ubiquitinated proteins and ROS levels in both HD and controls. Treatment with trehalose counteracts the increase in ROS, ubiquitinated proteins, huntingtin and activated caspase-3 levels induced by epoxomicin, and also increases the LC3 levels more in HD fibroblast than controls. These results suggest that trehalose could revert protein processing abnormalities in patients with Huntington's Disease. PMID:24587280

  11. Plasminogen activator: analysis of enzyme induction by ultraviolet irradiation mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskin, R.; Reich, E.; Dixon, K.

    1981-10-01

    Ultraviolet irradiation mapping techniques have previously been used to study the organization of eucaryotic gene classes and transcription units. We used the same method to probe some regulatory phenomena observed in the induction of plasminogen activator (PA) biosynthesis: PA synthesis in chicken embryo fibroblasts is induced by tumor-promoting phorbol esters and by retinoic acid; furthermore, PA induction by phorbol esters is synergistic with transformation, being 10- to 20-fold greater in virus-transformed cells than in normal cells. We found that the ultraviolet irradiation inactivation cross sections for PA induction by phorbol esters and by retinoate differed significantly, suggesting that these agentsmore » induce PA biosynthesis by different mechanisms. On the other hand, the ultraviolet irradiation sensitivity of phorbol ester induction in normal chicken embryo fibroblasts was the same as in transformed cells, indicating that the synergism of transformation and phorbol esters is probably not due to different pathways of PA induction.« less

  12. Fertile offspring from sterile sex chromosome trisomic mice§

    PubMed Central

    Hirota, Takayuki; Ohta, Hiroshi; Powell, Benjamin E.; Mahadevaiah, Shantha K.; Ojarikre, Obah A.; Saitou, Mitinori; Turner, James M. A.

    2017-01-01

    Having the correct number of chromosomes is vital for normal development and health. Sex chromosome trisomy (SCT) affects 0.1% of the human population and is associated with infertility. We show that during reprogramming to induced pluripotent stem cells (iPSC), fibroblasts from sterile trisomic XXY and XYY mice lose the extra sex chromosome, by a phenomenon we term trisomy-biased chromosome loss (TCL). Resulting euploid XY iPSCs can be differentiated into the male germ cell lineage and functional sperm that can be used in intracytoplasmic sperm injection to produce chromosomally normal, fertile offspring. Sex chromosome loss is comparatively infrequent during mouse XX and XY iPSC generation. TCL also applies to other chromosomes, generating euploid iPSCs from cells of a Down syndrome mouse model. It can also create euploid iPSCs from human trisomic patient fibroblasts. The findings have relevance to overcoming infertility and other trisomic phenotypes. PMID:28818972

  13. Telomerase-mediated life-span extension of human primary fibroblasts by human artificial chromosome (HAC) vector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shitara, Shingo; Kakeda, Minoru; Nagata, Keiko

    2008-05-09

    Telomerase-mediated life-span extension enables the expansion of normal cells without malignant transformation, and thus has been thought to be useful in cell therapies. Currently, integrating vectors including the retrovirus are used for human telomerase reverse transcriptase (hTERT)-mediated expansion of normal cells; however, the use of these vectors potentially causes unexpected insertional mutagenesis and/or activation of oncogenes. Here, we established normal human fibroblast (hPF) clones retaining non-integrating human artificial chromosome (HAC) vectors harboring the hTERT expression cassette. In hTERT-HAC/hPF clones, we observed the telomerase activity and the suppression of senescent-associated SA-{beta}-galactosidase activity. Furthermore, the hTERT-HAC/hPF clones continued growing beyond 120 daysmore » after cloning, whereas the hPF clones retaining the silent hTERT-HAC senesced within 70 days. Thus, hTERT-HAC-mediated episomal expression of hTERT allows the extension of the life-span of human primary cells, implying that gene delivery by non-integrating HAC vectors can be used to control cellular proliferative capacity of primary cultured cells.« less

  14. A gene involved in control of human cellular senescence on human chromosome 1q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensler, P.J.; Pereira-Smith, O.M.; Annab, L.A.

    1994-04-01

    Normal cells in culture exhibit limited division potential and have been used as a model for cellular senescence. In contrast, tumor-derived or carcinogen- or virus-transformed cells are capable of indefinite division. Fusion of normal human diploid fibroblasts with immortal human cells yielded hybrids having limited life spans, indicating that cellular senescence was dominant. Fusions of various immortal human cell lines with each other led to the identification of four complementation groups for indefinite division. The purpose of this study was to determine whether human chromosome 1 could complement the recessive immortal defect of human cell lines assigned to one ofmore » the four complementation groups. Using microcell fusion, the authors introduced a single normal human chromosome 1 into immortal human cell lines representing the complementation groups and determined that it caused loss of proliferative potential of an osteosarcoma-derived cell line (TE85), a cytomegalovirus-transformed lung fibroblast cell line (CMV-Mj-HEL-1), and a Ki-ras[sup +]-transformed derivative of TE85 (143B TK[sup [minus

  15. Thyrotropin-releasing hormone and its analogs accelerate wound healing.

    PubMed

    Nie, Chunlei; Yang, Daping; Liu, Nan; Dong, Deli; Xu, Jin; Zhang, Jiewu

    2014-06-15

    Thyrotropin-releasing hormone (TRH) is a classical hormone that controls thyroid hormone production in the anterior pituitary gland. However, recent evidence suggested that TRH is expressed in nonhypothalamic tissues such as epidermal keratinocytes and dermal fibroblasts, but its function is not clear. This study aimed to investigate the effects of TRH and its analogs on wound healing and explore the underlying mechanisms. A stented excisional wound model was established, and the wound healing among vehicle control, TRH, and TRH analog taltirelin treatment groups was evaluated by macroscopic and histologic analyses. Primary fibroblasts were isolated from rat dermis and treated with vehicle control, TRH or taltirelin, cell migration, and proliferation were examined by scratch migration assay, MTT, and 5-ethynyl-2'- deoxyuridine (EdU) assay. The expression of α-Smooth muscle actin in fibroblasts was detected by Western blot and immunocytochemical analysis. TRH or taltirelin-treated wounds exhibited accelerated wound healing with enhanced granulation tissue formation and increased re-epithelialization and tissue formation. Furthermore, TRH or taltirelin promoted the migration and proliferation of fibroblasts and induced the expression of α-Smooth muscle actin in fibroblasts. TRH is important in upregulating the phenotypes of dermal fibroblasts and plays a role in accelerating wound healing. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Small molecular antioxidants effectively protect from PUVA-induced oxidative stress responses underlying fibroblast senescence and photoaging.

    PubMed

    Briganti, Stefania; Wlaschek, Meinhard; Hinrichs, Christina; Bellei, Barbara; Flori, Enrica; Treiber, Nicolai; Iben, Sebastian; Picardo, Mauro; Scharffetter-Kochanek, Karin

    2008-09-01

    Exposure of human fibroblasts to 8-methoxypsoralen plus ultraviolet-A irradiation (PUVA) results in stress-induced cellular senescence in fibroblasts. We here studied the role of the antioxidant defense system in the accumulation of reactive oxygen species (ROS) and the effect of the antioxidants alpha-tocopherol, N-acetylcysteine, and alpha-lipoic acid on PUVA-induced cellular senescence. PUVA treatment induced an immediate and increasing generation of intracellular ROS. Supplementation of PUVA-treated fibroblasts with alpha-tocopherol (alpha-Toc), N-acetylcysteine (NAC), or alpha-lipoic acid (alpha-LA) abrogated the increased ROS generation and rescued fibroblasts from the ROS-dependent changes into the cellular senescence phenotype, such as cytoplasmic enlargement, enhanced expression of senescence-associated-beta-galactosidase and matrix-metalloproteinase-1, hallmarks of photoaging and intrinsic aging. PUVA treatment disrupted the integrity of cellular membranes and impaired homeostasis and function of the cellular antioxidant system with a significant decrease in glutathione and hydrogen peroxide-detoxifying enzymes activities. Supplementation with NAC, alpha-LA, and alpha-Toc counteracted these changes. Our data provide causal evidence that (i) oxidative stress due to an imbalance in the overall cellular antioxidant capacity contributes to the induction and maintenance of the PUVA-induced fibroblast senescence and that (ii) low molecular antioxidants protect effectively against these deleterious alterations.

  17. Cleavage of Type I Collagen by Fibroblast Activation Protein-α Enhances Class A Scavenger Receptor Mediated Macrophage Adhesion

    PubMed Central

    Mazur, Anna; Holthoff, Emily; Vadali, Shanthi; Kelly, Thomas; Post, Steven R.

    2016-01-01

    Pathophysiological conditions such as fibrosis, inflammation, and tumor progression are associated with modification of the extracellular matrix (ECM). These modifications create ligands that differentially interact with cells to promote responses that drive pathological processes. Within the tumor stroma, fibroblasts are activated and increase the expression of type I collagen. In addition, activated fibroblasts specifically express fibroblast activation protein-α (FAP), a post-prolyl peptidase. Although FAP reportedly cleaves type I collagen and contributes to tumor progression, the specific pathophysiologic role of FAP is not clear. In this study, the possibility that FAP-mediated cleavage of type I collagen modulates macrophage interaction with collagen was examined using macrophage adhesion assays. Our results demonstrate that FAP selectively cleaves type I collagen resulting in increased macrophage adhesion. Increased macrophage adhesion to FAP-cleaved collagen was not affected by inhibiting integrin-mediated interactions, but was abolished in macrophages lacking the class A scavenger receptor (SR-A/CD204). Further, SR-A expressing macrophages localize with activated fibroblasts in breast tumors of MMTV-PyMT mice. Together, these results demonstrate that FAP-cleaved collagen is a substrate for SR-A-dependent macrophage adhesion, and suggest that by modifying the ECM, FAP plays a novel role in mediating communication between activated fibroblasts and macrophages. PMID:26934296

  18. TSPAN12 is a critical factor for cancer–fibroblast cell contact-mediated cancer invasion

    PubMed Central

    Otomo, Ryo; Otsubo, Chihiro; Matsushima-Hibiya, Yuko; Miyazaki, Makoto; Tashiro, Fumio; Ichikawa, Hitoshi; Kohno, Takashi; Ochiya, Takahiro; Yokota, Jun; Nakagama, Hitoshi; Taya, Yoichi; Enari, Masato

    2014-01-01

    Communication between cancer cells and their microenvironment controls cancer progression. Although the tumor suppressor p53 functions in a cell-autonomous manner, it has also recently been shown to function in a non–cell-autonomous fashion. Although functional defects have been reported in p53 in stromal cells surrounding cancer, including mutations in the p53 gene and decreased p53 expression, the role of p53 in stromal cells during cancer progression remains unclear. We herein show that the expression of α-smooth muscle actin (α-SMA), a marker of cancer-associated fibroblasts (CAFs), was increased by the ablation of p53 in lung fibroblasts. CAFs enhanced the invasion and proliferation of lung cancer cells when cocultured with p53-depleted fibroblasts and required contact between cancer and stromal cells. A comprehensive analysis using a DNA chip revealed that tetraspanin 12 (TSPAN12), which belongs to the tetraspanin protein family, was derepressed by p53 knockdown. TSPAN12 knockdown in p53-depleted fibroblasts inhibited cancer cell proliferation and invasion elicited by coculturing with p53-depleted fibroblasts in vitro, and inhibited tumor growth in vivo. It also decreased CXC chemokine ligand 6 (CXCL6) secretion through the β-catenin signaling pathway, suggesting that cancer cell contact with TSPAN12 in fibroblasts transduced β-catenin signaling into fibroblasts, leading to the secretion of CXCL6 to efficiently promote invasion. These results suggest that stroma-derived p53 plays a pivotal role in epithelial cancer progression and that TSPAN12 and CXCL6 are potential targets for lung cancer therapy. PMID:25512506

  19. Restoring functional neurofibromin by protein transduction.

    PubMed

    Mellert, K; Lechner, S; Lüdeke, M; Lamla, M; Möller, P; Kemkemer, R; Scheffzek, K; Kaufmann, D

    2018-04-18

    In Neurofibromatosis 1 (NF1) germ line loss of function mutations result in reduction of cellular neurofibromin content (NF1+/-, NF1 haploinsufficiency). The Ras-GAP neurofibromin is a very large cytoplasmic protein (2818 AA, 319 kDa) involved in the RAS-MAPK pathway. Aside from regulation of proliferation, it is involved in mechanosensoric of cells. We investigated neurofibromin replacement in cultured human fibroblasts showing reduced amount of neurofibromin. Full length neurofibromin was produced recombinantly in insect cells and purified. Protein transduction into cultured fibroblasts was performed employing cell penetrating peptides along with photochemical internalization. This combination of transduction strategies ensures the intracellular uptake and the translocation to the cytoplasm of neurofibromin. The transduced neurofibromin is functional, indicated by functional rescue of reduced mechanosensoric blindness and reduced RasGAP activity in cultured fibroblasts of NF1 patients or normal fibroblasts treated by NF1 siRNA. Our study shows that recombinant neurofibromin is able to revert cellular effects of NF1 haploinsuffiency in vitro, indicating a use of protein transduction into cells as a potential treatment strategy for the monogenic disease NF1.

  20. Chromatid repulsion associated with Roberts/SC phocomelia syndrome is reduced in malignant cells and not expressed in interspecies somatic-cell hybrids.

    PubMed Central

    Krassikoff, N E; Cowan, J M; Parry, D M; Francke, U

    1986-01-01

    Different cell types from a female patient with Roberts/SC phocomelia syndrome were evaluated quantitatively for the presence of repulsion of heterochromatin and satellite regions of mitotic chromosomes. Whereas EBV-transformed lymphoblasts from an established cell line revealed these phenomena at frequencies equal to those in PHA-stimulated lymphocytes and cultured skin fibroblasts, aneuploid cells from a metastatic melanoma displayed them at 50% lower frequency. Cocultivation of the patient's fibroblasts with either an immortal Chinese hamster cell line or with a human male fibroblast strain carrying a t(4;6)(p14;q21) translocation showed that the phenomenon was not corrected or induced by a diffusible factor or by cell-to-cell contact. In each experiment, only the patient's metaphase spreads revealed chromatid repulsion. In fusion hybrids between the patient's fibroblasts and an established Chinese hamster cell line, the human chromosomes behaved perfectly normally, suggesting that the gene product which is missing or mutant in Roberts/SC phocomelia syndrome is supplied by the Chinese hamster genome. Images Fig. 1 Fig. 2 Fig. 3 PMID:3788975

Top