Enhancing pilot situational awareness of the airport surface movement area
NASA Technical Reports Server (NTRS)
Jones, D. R.; Young, S. D.
1994-01-01
Two studies are being conducted to address airport surface movement area safety and capacity issues by providing enhanced situational awareness information to pilots. One study focuses on obtaining pilot opinion of the Runway Status Light System (RSLS). This system has been designed to reduce the likelihood of runway incursions by informing pilots when a runway is occupied. The second study is a flight demonstration of an rate integrated system consisting of an electronic moving map in the cockpit and display of the aircraft identification to the controller. Taxi route and hold warning information will be sent to the aircraft data link for display on the electronic moving map. This paper describes the plans for the two studies.
Improved acoustic levitation apparatus
NASA Technical Reports Server (NTRS)
Berge, L. H.; Johnson, J. L.; Oran, W. A.; Reiss, D. A.
1980-01-01
Concave driver and reflector enhance and shape levitation forces in acoustic resonance system. Single-mode standing-wave pattern is focused by ring element situated between driver and reflector. Concave surfaces increase levitating forces up to factor of 6 as opposed to conventional flat surfaces, making it possible to suspend heavier objects.
Flight Deck Display Technologies for 4DT and Surface Equivalent Visual Operations
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Jones, Denis R.; Shelton, Kevin J.; Arthur, Jarvis J., III; Bailey, Randall E.; Allamandola, Angela S.; Foyle, David C.; Hooey, Becky L.
2009-01-01
NASA research is focused on flight deck display technologies that may significantly enhance situation awareness, enable new operating concepts, and reduce the potential for incidents/accidents for terminal area and surface operations. The display technologies include surface map, head-up, and head-worn displays; 4DT guidance algorithms; synthetic and enhanced vision technologies; and terminal maneuvering area traffic conflict detection and alerting systems. This work is critical to ensure that the flight deck interface technologies and the role of the human participants can support the full realization of the Next Generation Air Transportation System (NextGen) and its novel operating concepts.
Functional surfaces for tribological applications: inspiration and design
NASA Astrophysics Data System (ADS)
Abdel-Aal, Hisham A.
2016-12-01
Surface texturing has been recognized as a method for enhancing the tribological properties of surfaces for many years. Adding a controlled texture to one of two faces in relative motion can have many positive effects, such as reduction of friction and wear and increase in load capacity. To date, the true potential of texturing has not been realized not because of the lack of enabling texturing technologies but because of the severe lack of detailed information about the mechanistic functional details of texturing in a tribological situation. Experimental as well as theoretical analysis of textured surfaces define important metrics for performance evaluation. These metrics represent the interaction between geometry of the texturing element and surface topology. To date, there is no agreement on the optimal values that should be implemented given a particular surface. More importantly, a well-defined methodology for the generation of deterministic textures of optimized designs virtually does not exist. Nature, on the other hand, offers many examples of efficient texturing strategies (geometries and topologies) specifically applied to mitigate frictional effects in a variety of situations. Studying these examples may advance the technology of surface engineering. This paper therefore, provides a comparative review of surface texturing that manifest viable synergy between tribology and biology. We attempt to provide successful emerging examples where borrowing from nature has inspired viable surface solutions that address difficult tribological problems both in dry and lubricated contact situations.
Enhanced vision flight deck technology for commercial aircraft low-visibility surface operations
NASA Astrophysics Data System (ADS)
Arthur, Jarvis J.; Norman, R. M.; Kramer, Lynda J.; Prinzel, Lawerence J.; Ellis, Kyle K.; Harrison, Stephanie J.; Comstock, J. R.
2013-05-01
NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) airfield during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and minification effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.
Enhanced Vision Flight Deck Technology for Commercial Aircraft Low-Visibility Surface Operations
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Norman, R. Michael; Kramer, Lynda J.; Prinzel, Lawrence J., III; Ellis, Kyle K. E.; Harrison, Stephanie J.; Comstock, J. Ray
2013-01-01
NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) air field during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and mini cation effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.
On the Regulation of the Pacific Warm Pool Temperature
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chou, Sue-Hsien; Chan, Pui-King; Lau, William K. M. (Technical Monitor)
2002-01-01
In the tropical western Pacific, regions of the highest sea surface temperature (SST) and the largest cloud cover are found to have the largest surface heating, primarily due to the weak evaporative cooling associated with weak winds. This situation is in variance with the suggestions that the temperature in the Pacific warm pool is regulated either by the reduced solar heating due to an enhanced cloudiness or by the enhanced evaporative cooling due to an elevated SST. It is clear that an enhanced surface heating in an enhanced convection region is not sustainable and must be interrupted by variations in large-scale atmospheric circulation. As the deep convective regions shift away from regions of high SST due primarily to seasonal variation and secondarily to interannual variation of the large-scale atmospheric and oceanic circulation, both trade wind and evaporative cooling in the high SST region increase, leading to a reduction in SST. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds in the primary factor that prevent the warm pool SST from increasing to a value much higher than what is observed.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, Jarvis J., III
2005-01-01
Research was conducted onboard a Gulfstream G-V aircraft to evaluate integrated Synthetic Vision System concepts during flight tests over a 6-week period at the Wallops Flight Facility and Reno/Tahoe International Airport. The NASA Synthetic Vision System incorporates database integrity monitoring, runway incursion prevention alerting, surface maps, enhanced vision sensors, and advanced pathway guidance and synthetic terrain presentation. The paper details the goals and objectives of the flight test with a focus on the situation awareness benefits of integrating synthetic vision system enabling technologies for commercial aircraft.
A synoptic climatology for forest fires in the NE US and future implications for GCM simulations
Yan Qing; Ronald Sabo; Yiqiang Wu; J.Y. Zhu
1994-01-01
We studied surface-pressure patterns corresponding to reduced precipitation, high evaporation potential, and enhanced forest-fire danger for West Virginia, which experienced extensive forest-fire damage in November 1987. From five years of daily weather maps we identified eight weather patterns that describe distinctive flow situations throughout the year. Map patterns...
[TLC-FT-SERS study on ingredients of Isrhynchophylline].
Wang, Yuan; Wang, Song-ying; Zhao, Yi-xue; Ren, Gui-fen; Zi, Feng-lan
2002-02-01
A new method for analysing the ingredients of Isrhynchophylline in Uncaria Rhynchophylla Jacks by thin layer chromatography (TLC) and the surface-enhanced Raman spectroscopy (SERS) is reported in this paper. The results show that the characteristic spectra bands of Isrhynchophylline situated at the thin layer with the amount of sample about 2.5 micrograms were obtained. The difference between SERS and solid spectra was found. Great enhancement of the 1,615 cm-1 spectral band was abstained. Molecule was absorbed in surface silver sol by pi electrons in phenyl and by pair of electrons in N together. An absorption model of Isrhynchophylline and silver sol was proposed. This method can be used to analyse the chemical ingredients with high sensitivity.
Retrieval of Ice Cloud Properties Using Variable Phase Functions
NASA Astrophysics Data System (ADS)
Heck, Patrick W.; Minnis, Patrick; Yang, Ping; Chang, Fu-Lung; Palikonda, Rabindra; Arduini, Robert F.; Sun-Mack, Sunny
2009-03-01
An enhancement to NASA Langley's Visible Infrared Solar-infrared Split-window Technique (VISST) is developed to identify and account for situations when errors are induced by using smooth ice crystals. The retrieval scheme incorporates new ice cloud phase functions that utilize hexagonal crystals with roughened surfaces. In some situations, cloud optical depths are reduced, hence, cloud height is increased. Cloud effective particle size also changes with the roughened ice crystal models which results in varied effects on the calculation of ice water path. Once validated and expanded, the new approach will be integrated in the CERES MODIS algorithm and real-time retrievals at Langley.
Fluorescence quenching near small metal nanoparticles.
Pustovit, V N; Shahbazyan, T V
2012-05-28
We develop a microscopic model for fluorescence of a molecule (or semiconductor quantum dot) near a small metal nanoparticle. When a molecule is situated close to metal surface, its fluorescence is quenched due to energy transfer to the metal. We perform quantum-mechanical calculations of energy transfer rates for nanometer-sized Au nanoparticles and find that nonlocal and quantum-size effects significantly enhance dissipation in metal as compared to those predicted by semiclassical electromagnetic models. However, the dependence of transfer rates on molecule's distance to metal nanoparticle surface, d, is significantly weaker than the d(-4) behavior for flat metal surface with a sharp boundary predicted by previous calculations within random phase approximation.
Synthetic and Enhanced Vision System for Altair Lunar Lander
NASA Technical Reports Server (NTRS)
Prinzell, Lawrence J., III; Kramer, Lynda J.; Norman, Robert M.; Arthur, Jarvis J., III; Williams, Steven P.; Shelton, Kevin J.; Bailey, Randall E.
2009-01-01
Past research has demonstrated the substantial potential of synthetic and enhanced vision (SV, EV) for aviation (e.g., Prinzel & Wickens, 2009). These augmented visual-based technologies have been shown to significantly enhance situation awareness, reduce workload, enhance aviation safety (e.g., reduced propensity for controlled flight -into-terrain accidents/incidents), and promote flight path control precision. The issues that drove the design and development of synthetic and enhanced vision have commonalities to other application domains; most notably, during entry, descent, and landing on the moon and other planetary surfaces. NASA has extended SV/EV technology for use in planetary exploration vehicles, such as the Altair Lunar Lander. This paper describes an Altair Lunar Lander SV/EV concept and associated research demonstrating the safety benefits of these technologies.
Applying an AR Technique to Enhance Situated Heritage Learning in a Ubiquitous Learning Environment
ERIC Educational Resources Information Center
Chang, Yi Hsing; Liu, Jen-ch'iang
2013-01-01
Since AR can display 3D materials and learner motivation is enhanced in a situated learning environment, this study explores the learning effectiveness of learners when combining AR technology and the situation learning theory. Based on the concept of embedding the characteristics of augmented reality and situated learning into a real situation to…
Study of UV cloud modification factors in Southern Patagonia
NASA Astrophysics Data System (ADS)
Wolfram, Elian A.; Orte, Facundo; Salvador, Jacobo; Quiroga, Jonathan; D'Elia, Raúl; Antón, Manuel; Alados-Arboledas, Lucas; Quel, Eduardo
2017-02-01
Anthropogenic perturbation of the ozone layer has induced change in the amount of UV radiation that reaches the Earth's surface, mainly through the Antarctic ozone hole, making the ozone and ultraviolet (UV) radiation two important issues in the study of Earth atmosphere in the scientific community. Also the clouds have been identified as the main modulator of UV amount in short time scales and produce the main source of uncertainty in the projection of surface UV level as consequence of projected ozone recovery. While clouds can decrease direct radiation, they can produce an increase in the diffuse component, and as consequence the surface UV radiation may be higher than an equivalent clear sky scenario for several minutes. In particular this situation can be important when low ozone column and partially cloud cover skies happen simultaneously. These situations happen frequently in southern Patagonia, where the CEILAP Lidar Division has established the Atmospheric Observatory of Southern Patagonia, an atmospheric remote sensing site near the city of Río Gallegos (51°55'S, 69°14'W). In this paper, the impact of clouds over the UV radiation is investigated by the use of ground based measurements from the passive remote sensing instruments operating at this site, mainly of broad and moderate narrow band filter radiometers. We analyzed the UV Index obtained from a multiband filter radiometer GUV-541 (UVI) [Biospherical Inc.] installed in the Observatorio Atmosférico de la Patagonia Austral, Río Gallegos, since 2005. Cloud modification factors (CMF, ratio between the measured UV radiation in a cloudy sky and the simulated radiation under cloud-free conditions) are evaluated for the study site. The database used in this work covers the period 2005-2012 for spring and summer seasons, when the ozone hole can affect these subpolar regions. CMF higher than 1 are found during spring and summer time, when lower total ozone columns, higher solar elevations and high cloud cover occur simultaneously, producing extreme erythemal irradiance at ground surface. Enhancements as high as 25% were registered. The maximum duration of the enhancement was around 30 minute. This produces dangerous sunbathing situations for the Río Gallegos citizen.
IEEE Solid-State Sensors Workshop Held in Hilton Head Island, South Carolina, on 2-5 June 1986
1987-06-01
from photonic to electronic energy due to a lack of optical switches. An active The ...to guage parts or been freedom from electrical noise. determine if the cutting tool is present. frmeetiaro In almost all situations there is a high ...surface, stripped from the prism, resulting in a The system is further enhanced if a spoiler loss of energy at the detector. With the is used
Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements
NASA Technical Reports Server (NTRS)
Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl (Compiler); Guo, Ten-Huei
2014-01-01
The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.
Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements
NASA Technical Reports Server (NTRS)
Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl; Guo, Ten-Huei
2015-01-01
The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.
Image processing for flight crew enhanced situation awareness
NASA Technical Reports Server (NTRS)
Roberts, Barry
1993-01-01
This presentation describes the image processing work that is being performed for the Enhanced Situational Awareness System (ESAS) application. Specifically, the presented work supports the Enhanced Vision System (EVS) component of ESAS.
NASA Technical Reports Server (NTRS)
Avis, L. M.
1976-01-01
Tensor methods are used to express the continuum equations of motion in general curvilinear, moving, and deforming coordinate systems. The space-time tensor formulation is applicable to situations in which, for example, the boundaries move and deform. Placing a coordinate surface on such a boundary simplifies the boundary condition treatment. The space-time tensor formulation is also applicable to coordinate systems with coordinate surfaces defined as surfaces of constant pressure, density, temperature, or any other scalar continuum field function. The vanishing of the function gradient components along the coordinate surfaces may simplify the set of governing equations. In numerical integration of the equations of motion, the freedom of motion of the coordinate surfaces provides a potential for enhanced resolution of the continuum field function. An example problem of an incompressible, inviscid fluid with a top free surface is considered, where the surfaces of constant pressure (including the top free surface) are coordinate surfaces.
The soiling of materials in the ambient atmosphere
NASA Astrophysics Data System (ADS)
Hamilton, R. S.; Mansfield, T. A.
Models describing the rate of soiling of exposed surfaces due to the deposition and accumulation of particulate matter from the atmosphere are reviewed. Samples of white painted wood were exposed for 110 days in the ambient atmosphere. Separate samples were sheltered and unsheltered from rainfall. Reflectance was measured daily. Results are compared with recently published studies in the U.S.A. (samples in the ambient atmosphere) and the U.K. (samples in a road tunnel). Experimental soiling rates were compared with predicted values. Existing models were satisfactory for predicting soiling in a tunnel but underestimated soiling in an ambient situation; a revised formulation is proposed for this situation. Rainfall generally produced a cleaning effect but redistribution of washed-off material could produce enhanced soiling.
Airport Traffic Conflict Detection and Resolution Algorithm Evaluation
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Chartrand, Ryan C.; Wilson, Sara R.; Commo, Sean A.; Ballard, Kathryn M.; Otero, Sharon D.; Barker, Glover D.
2016-01-01
Two conflict detection and resolution (CD&R) algorithms for the terminal maneuvering area (TMA) were evaluated in a fast-time batch simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. One CD&R algorithm, developed at NASA, was designed to enhance surface situation awareness and provide cockpit alerts of potential conflicts during runway, taxi, and low altitude air-to-air operations. The second algorithm, Enhanced Traffic Situation Awareness on the Airport Surface with Indications and Alerts (SURF IA), was designed to increase flight crew awareness of the runway environment and facilitate an appropriate and timely response to potential conflict situations. The purpose of the study was to evaluate the performance of the aircraft-based CD&R algorithms during various runway, taxiway, and low altitude scenarios, multiple levels of CD&R system equipage, and various levels of horizontal position accuracy. Algorithm performance was assessed through various metrics including the collision rate, nuisance and missed alert rate, and alert toggling rate. The data suggests that, in general, alert toggling, nuisance and missed alerts, and unnecessary maneuvering occurred more frequently as the position accuracy was reduced. Collision avoidance was more effective when all of the aircraft were equipped with CD&R and maneuvered to avoid a collision after an alert was issued. In order to reduce the number of unwanted (nuisance) alerts when taxiing across a runway, a buffer is needed between the hold line and the alerting zone so alerts are not generated when an aircraft is behind the hold line. All of the results support RTCA horizontal position accuracy requirements for performing a CD&R function to reduce the likelihood and severity of runway incursions and collisions.
Implication of Culture: User Roles in Information Fusion for Enhanced Situational Understanding
2009-07-01
situational understanding through assessment of the environment to determine a coherent state of affairs. The information is integrated with knowledge to...Implication of Culture: User Roles in Information Fusion for Enhanced Situational Understanding Erik Blasch Air Force Research Lab 2241...enhanced tacit knowledge understanding by (1) display fusion for data presentation (e.g. cultural segmentation), (2) interactive fusion to allow the
Electrophoresis of a polarizable charged colloid with hydrophobic surface: A numerical study
NASA Astrophysics Data System (ADS)
Bhattacharyya, Somnath; Majee, Partha Sarathi
2017-04-01
We consider the electrophoresis of a charged colloid for a generalized situation in which the particle is considered to be polarizable and the surface exhibits hydrophobicity. The dielectric polarization of the particle creates a nonlinear dependence of the electrophoretic velocity on the applied electric field, and the core hydrophobicity amplifies the fluid convection in the Debye layer. Thus, a linear analysis is no longer applicable for this situation. The present analysis is based on the numerical solution of the nonlinear electrokinetic equations based on the Navier-Stokes-Nernst-Planck-Poisson equations coupled with the Laplace equation for the electric field within the dielectric particle. The hydrophobicity of the particle may influence its electric polarization by enhancing the convective transport of ions. The nonlinear effects, such as double-layer polarization and relaxation, are also influenced by the hydrophobicity of the particle surface. The present results compare well for a lower range of the applied electric field and surface charge density with the existing results for a perfectly dielectric particle with a hydrophobic surface based on the first-order perturbation analysis due to Khair and Squires [Phys. Fluids 21, 042001 (2009), 10.1063/1.3116664]. Dielectric polarization creates a reduction in particle electrophoretic velocity, and its impact is strong for a moderate range of Debye length. A quantitative measure of the nonlinear effects is demonstrated by comparing the electrophoretic velocity with an existing linear model.
Runway Incursion Prevention for General Aviation Operations
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Prinzel, Lawrence J., III
2006-01-01
A Runway Incursion Prevention System (RIPS) and additional incursion detection algorithm were adapted for general aviation operations and evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in the fall of 2005. RIPS has been designed to enhance surface situation awareness and provide cockpit alerts of potential runway conflicts in order to prevent runway incidents while also improving operational capability. The purpose of the study was to evaluate the airborne incursion detection algorithms and associated alerting and airport surface display concepts for general aviation operations. This paper gives an overview of the system, simulation study, and test results.
Runway Incursion Prevention System for General Aviation Operations
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Prinzel III, Lawrence J.
2006-01-01
A Runway Incursion Prevention System (RIPS) and additional incursion detection algorithm were adapted for general aviation operations and evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in the fall of 2005. RIPS has been designed to enhance surface situation awareness and provide cockpit alerts of potential runway conflicts in order to prevent runway incidents while also improving operational capability. The purpose of the study was to evaluate the airborne incursion detection algorithms and associated alerting and airport surface display concepts for general aviation operations. This paper gives an overview of the system, simulation study, and test results.
Relationship-Enhancing Communication Skills in Prime-Time Family-Oriented Situation Comedies.
ERIC Educational Resources Information Center
Aust, Charles F.
Television situation comedies have been criticized for their portrayal of dysfunctional family behavior. An exploratory content analysis study assessed the extent of relationship-enhancing communication skills in family-oriented, prime-time situation comedies, a genre frequently targeted for both scorn and praise. Three episodes each of five shows…
Synthetic Vision Enhanced Surface Operations With Head-Worn Display for Commercial Aircraft
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Shelton, Kevin J.; Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Norman, R. M.
2007-01-01
Experiments and flight tests have shown that airport surface operations can be enhanced by using synthetic vision and associated technologies, employed on a Head-Up Display (HUD) and head-down display electronic moving maps (EMM). Although HUD applications have shown the greatest potential operational improvements, the research noted that two major limitations during ground operations were its monochrome form and limited, fixed field-of-regard. A potential solution to these limitations may be the application of advanced Head Worn Displays (HWDs) particularly during low-visibility operations wherein surface movement is substantially limited because of the impaired vision of pilots and air traffic controllers. The paper describes the results of ground simulation experiments conducted at the NASA Langley Research Center. The results of the experiments showed that the fully integrated HWD concept provided significantly improved path performance compared to using paper charts alone. When comparing the HWD and HUD concepts, there were no statistically-significant differences in path performance or subjective ratings of situation awareness and workload. Implications and directions for future research are described.
The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle
NASA Astrophysics Data System (ADS)
Khair, Aditya S.; Squires, Todd M.
2009-04-01
Recent theoretical studies have suggested a significant enhancement in electro-osmotic flows over hydrodynamically slipping surfaces, and experiments have indeed measured O(1) enhancements. In this paper, we investigate whether an equivalent effect occurs in the electrophoretic motion of a colloidal particle whose surface exhibits hydrodynamic slip. To this end, we compute the electrophoretic mobility of a uniformly charged spherical particle with slip length λ as a function of the zeta (or surface) potential of the particle ζ and diffuse-layer thickness κ-1. In the case of a thick diffuse layer, κa ≪1 (where a is the particle size), simple arguments show that slip does lead to an O(1) enhancement in the mobility, owing to the reduced viscous drag on the particle. On the other hand, for a thin-diffuse layer κa ≫1, the situation is more complicated. A detailed asymptotic analysis, following the method of O'Brien [J. Colloid Interface Sci. 92, 204 (1983)], reveals that an O(κλ) increase in the mobility occurs at low-to-moderate zeta potentials (with ζ measured on the scale of thermal voltage kBT /e≈25 mV). However, as ζ is further increased, the mobility decreases and ultimately becomes independent of the slip length—the enhancement is lost—which is due to the importance of nonuniform surface conduction within the thin-diffuse layer, at large ζ and large, but finite, κa. Our asymptotic calculations for thick and thin-diffuse layers are corroborated and bridged by computation of the mobility from the numerical solution of the full electrokinetic equations (using the method of O'Brien and White [J. Chem. Soc., Faraday Trans. 2 74, 1607 (1978)]). In summary, then, we demonstrate that hydrodynamic slip can indeed produce an enhancement in the electrophoretic mobility; however, such enhancements will not be as dramatic as the previously studied κa →∞ limit would suggest. Importantly, this conclusion applies not only to electrophoresis but also to electro-osmosis over highly charged surfaces, wherein any inhomogeneities (e.g., due to curvature, roughness, charge patterning, or a variation in slip length) will drive nonuniform surface conduction, which prevents the significant slip-driven flow enhancements predicted for a uniform highly charged surface.
Synthetic Vision Enhanced Surface Operations and Flight Procedures Rehearsal Tool
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Williams, Steven P.; Kramer, Lynda J.
2006-01-01
Limited visibility has been cited as predominant causal factor for both Controlled-Flight-Into-Terrain (CFIT) and runway incursion accidents. NASA is conducting research and development of Synthetic Vision Systems (SVS) technologies which may potentially mitigate low visibility conditions as a causal factor to these accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. Two experimental evaluation studies were performed to determine the efficacy of two concepts: 1) head-worn display application of SVS technology to enhance transport aircraft surface operations, and 2) three-dimensional SVS electronic flight bag display concept for flight plan preview, mission rehearsal and controller-pilot data link communications interface of flight procedures. In the surface operation study, pilots evaluated two display devices and four display modes during taxi under unlimited and CAT II visibility conditions. In the mission rehearsal study, pilots flew approaches and departures in an operationally-challenged airport environment, including CFIT scenarios. Performance using the SVS concepts was compared to traditional baseline displays with paper charts only or EFB information. In general, the studies evince the significant situation awareness and enhanced operational capabilities afforded from these advanced SVS display concepts. The experimental results and conclusions from these studies are discussed along with future directions.
2017-06-01
able. If the autopilot is engaged on the INAV controlling solution side and the CDI source is changed to set up for the approach , the NAV mode...release. Distribution is unlimited. PROOF-OF-CONCEPT PART-TASK TRAINER TO ENHANCE SITUATION AWARENESS FOR INSTRUMENT APPROACH PROCEDURES IN AVIATION...CONCEPT PART-TASK TRAINER TO ENHANCE SITUATION AWARENESS FOR INSTRUMENT APPROACH PROCEDURES IN AVIATION DOMAIN 5. FUNDING NUMBERS 6. AUTHOR(S
Increased dose near the skin due to electromagnetic surface beacon transponder.
Ahn, Kang-Hyun; Manger, Ryan; Halpern, Howard J; Aydogan, Bulent
2015-05-08
The purpose of this study was to evaluate the increased dose near the skin from an electromagnetic surface beacon transponder, which is used for localization and tracking organ motion. The bolus effect due to the copper coil surface beacon was evaluated with radiographic film measurements and Monte Carlo simulations. Various beam incidence angles were evaluated for both 6 MV and 18 MV experimentally. We performed simulations using a general-purpose Monte Carlo code MCNPX (Monte Carlo N-Particle) to supplement the experimental data. We modeled the surface beacon geometry using the actual mass of the glass vial and copper coil placed in its L-shaped polyethylene terephthalate tubing casing. Film dosimetry measured factors of 2.2 and 3.0 enhancement in the surface dose for normally incident 6 MV and 18 MV beams, respectively. Although surface dose further increased with incidence angle, the relative contribution from the bolus effect was reduced at the oblique incidence. The enhancement factors were 1.5 and 1.8 for 6 MV and 18 MV, respectively, at an incidence angle of 60°. Monte Carlo simulation confirmed the experimental results and indicated that the epidermal skin dose can reach approximately 50% of the dose at dmax at normal incidence. The overall effect could be acceptable considering the skin dose enhancement is confined to a small area (~ 1 cm2), and can be further reduced by using an opposite beam technique. Further clinical studies are justified in order to study the dosimetric benefit versus possible cosmetic effects of the surface beacon. One such clinical situation would be intact breast radiation therapy, especially large-breasted women.
Simulator Evaluation of Runway Incursion Prevention Technology for General Aviation Operations
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Prinzel, Lawrence J., III
2011-01-01
A Runway Incursion Prevention System (RIPS) has been designed under previous research to enhance airport surface operations situation awareness and provide cockpit alerts of potential runway conflict, during transport aircraft category operations, in order to prevent runway incidents while also improving operations capability. This study investigated an adaptation of RIPS for low-end general aviation operations using a fixed-based simulator at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC). The purpose of the study was to evaluate modified RIPS aircraft-based incursion detection algorithms and associated alerting and airport surface display concepts for low-end general aviation operations. This paper gives an overview of the system, simulation study, and test results.
Runway Incursion Prevention System Simulation Evaluation
NASA Technical Reports Server (NTRS)
Jones, Denise R.
2002-01-01
A Runway Incursion Prevention System (RIPS) was evaluated in a full mission simulation study at the NASA Langley Research center in March 2002. RIPS integrates airborne and ground-based technologies to provide (1) enhanced surface situational awareness to avoid blunders and (2) alerts of runway conflicts in order to prevent runway incidents while also improving operational capability. A series of test runs was conducted in a high fidelity simulator. The purpose of the study was to evaluate the RIPS airborne incursion detection algorithms and associated alerting and airport surface display concepts. Eight commercial airline crews participated as test subjects completing 467 test runs. This paper gives an overview of the RIPS, simulation study, and test results.
In Situ Carbon Dioxide and Methane Measurements from a Tower Network in Los Angeles
NASA Astrophysics Data System (ADS)
Verhulst, K. R.; Karion, A.; Kim, J.; Sloop, C.; Salameh, P.; Yadav, V.; Mueller, K.; Pongetti, T.; Newman, S.; Wong, C.; Hopkins, F. M.; Rao, P.; Miller, J. B.; Keeling, R. F.; Weiss, R. F.; Miller, C. E.; Duren, R. M.; Andrews, A. E.
2016-12-01
Urbanization has concentrated a significant fraction of the world's anthropogenic greenhouse gas (GHG) emissions into a relatively small fraction of the earth's land surface. Concern about rising GHG levels has motivated many nations to begin regulating and/or mitigating emissions, motivating the need for robust, consistent, traceable GHG observation methods in complex urban domains. The Los Angeles Megacity Carbon Project involves continuous and flask sampling of GHGs, trace gases, and isotopes at surface sites situated throughout the greater Los Angeles (LA) area. There are three signals of interest for utilizing urban GHG measurements in local or regional inverse modeling studies: (1) changes in the measured mole fraction at one location within a 24-hour period, (2) gradients in the measured mole fraction between locations within the surface measurement network, (3) local enhancements, or the difference between a measurement at one location and an inferred local "background" mole fraction. We report CO2 and CH4 measurements collected from eleven wavelength-scanned cavity ring-down analyzers (Picarro, Inc.). All sites use an internally consistent sampling protocol and calibration strategy. We show that the LA observation sites exhibit significant GHG enhancements relative to background, with evidence of systematic diurnal, weekly, and monthly variability. In Los Angeles, the "ideal" background sampling location could vary substantially depending on the time of year and local meteorology. Use of a single site for background determination may not be sufficient for reliable determination of GHG enhancements. We estimate the total uncertainty in the enhancement and examine how the choice of background influences the GHG enhancement signal. Uncertainty in GHG enhancements will ultimately translate into uncertainty in the fluxes derived from inverse modeling studies. In future work, the LA surface observations will be incorporated into an inverse-modeling framework to provide "top down," spatially-resolved GHG flux estimates, constrained by observations, for comparison with inventory-based ("bottom-up") estimates.
NASA Astrophysics Data System (ADS)
Dupont, E.; Menut, L.; Carissimo, B.; Pelon, J.; Flamant, P.
The ECLAP experiment has been performed during the winter of 1995 in order to study the influence of the urban area of Paris on the vertical structure and diurnal evolution of the atmospheric boundary layer, in situations favourable to intense urban heat island and pollution increase. One urban site and one rural site have been instrumented with sodars, lidars and surface measurements. Additional radiosondes, 100 m masts and Eiffel Tower data were also collected. This paper gives a general overview of this experiment, and presents results of the analysis of four selected days, characterized by various wind directions and temperature inversion strengths. This analysis, which consists in a comparison between data obtained in the two sites, has been focused on three parameters of importance to the ABL dynamics: the standard deviation of vertical velocity, the surface sensible heat flux, and the boundary layer height. The vertical component of turbulence is shown to be enhanced by the urban area, the amplitude of this effect strongly depending on the meteorological situation. The sensible heat flux in Paris is generally found larger than in the rural suburbs. The most frequent differences range from 25-65 W m -2, corresponding to relative differences of 20-60%. The difference of unstable boundary layer height between both sites are most of the time less than 100 m. However, sodar and temperature data show that the urban influence is enhanced during night-time and transitions between stable and unstable regimes.
NASA Astrophysics Data System (ADS)
Dusek, J.; Kottapalli, A. G. P.; Woo, M. E.; Asadnia, M.; Miao, J.; Lang, J. H.; Triantafyllou, M. S.
2013-01-01
The lateral line found on most species of fish is a sensory organ without analog in humans. Using sensory feedback from the lateral line, fish are able to track prey, school, avoid obstacles, and detect vortical flow structures. Composed of both a superficial component, and a component contained within canals beneath the fish’s skin, the lateral line acts in a similar fashion to an array of differential pressure sensors. In an effort to enhance the situational and environmental awareness of marine vehicles, lateral-line-inspired pressure sensor arrays were developed to mimic the enhanced sensory capabilities observed in fish. Three flexible and waterproof pressure sensor arrays were fabricated for use as a surface-mounted ‘smart skin’ on marine vehicles. Two of the sensor arrays were based around the use of commercially available piezoresistive sensor dies, with innovative packaging schemes to allow for flexibility and underwater operation. The sensor arrays employed liquid crystal polymer and flexible printed circuit board substrates with metallic circuits and silicone encapsulation. The third sensor array employed a novel nanocomposite material set that allowed for the fabrication of a completely flexible sensor array. All three sensors were surface mounted on the curved hull of an autonomous kayak vehicle, and tested in both pool and reservoir environments. Results demonstrated that all three sensors were operational while deployed on the autonomous vehicle, and provided an accurate means for monitoring the vehicle dynamics.
Simulation-based evaluation of an in-vehicle smart situation awareness enhancement system.
Gregoriades, Andreas; Sutcliffe, Alistair
2018-07-01
Situation awareness (SA) constitutes a critical factor in road safety, strongly related to accidents. This paper describes the evaluation of a proposed SA enhancement system (SAES) that exploits augmented reality through a head-up display (HUD). Two SAES designs were evaluation (information rich vs. minimal information) using a custom-made simulator and the Situation Awareness Global Assessment Technique with performance and EEG measures. The paper describes the process of assessing the SA of drivers using the SAES, through a series of experiments with participants in a Cave Automatic Virtual Environment. The effectiveness of the SAES was tested in a within-group research design. The results showed that the information rich (radar-style display) was superior to the minimal (arrow hazard indicator) design and that both SAES improved drivers' SA and performance compared to the control (no HUD) design. Practitioner Summary: Even though driver situation awareness is considered as one of the leading causes of road accidents, little has been done to enhance it. The current study demonstrates the positive effect of a proposed situation awareness enhancement system on driver situation awareness, through an experiment using virtual prototyping in a simulator.
Development and Applications of Porous Tantalum Trabecular Metal Enhanced Titanium Dental Implants
Bencharit, Sompop; Byrd, Warren C.; Altarawneh, Sandra; Hosseini, Bashir; Leong, Austin; Reside, Glenn; Morelli, Thiago; Offenbacher, Steven
2013-01-01
Statement of Problem Porous tantalum trabecular metal has recently been incorporated in titanium dental implants as a new form of implant surface enhancement. However, there is little information on the applications of this material in implant dentistry. Methods We, therefore review the current literature on the basic science and clinical uses of this material. Results Porous tantalum metal is used to improve the contact between osseous structure and dental implants; and therefore presumably facilitate osseointegration. Success of porous tantalum metal in orthopedic implants led to the incorporation of porous tantalum metal in the design of root-from endosseous titanium implants. The porous tantalum three-dimensional enhancement of titanium dental implant surface allows for combining bone ongrowth together with bone ingrowth, or osseoincorporation. While little is known about the biological aspect of the porous tantalum in the oral cavity, there seems to be several possible advantages of this implant design. This article reviews the biological aspects of porous tantalum enhanced titanium dental implants, in particular the effects of anatomical consideration and oral environment to implant designs. Conclusions We propose here possible clinical situations and applications for this type of dental implant. Advantages and disadvantages of the implants as well as needed future clinical studies are discussed. PMID:23527899
Fracture surface analysis in composite and titanium bonding
NASA Technical Reports Server (NTRS)
Devilbiss, T. A.; Wightman, J. P.
1985-01-01
To understand the mechanical properties of fiber-reinforced composite materials, it is necessary to understand the mechanical properties of the matrix materials and of the reinforcing fibers. Another factor that can affect the mechanical properties of a composite material is the interaction between the fiber and the matrix. In general, composites with strong fiber matrix bonding will give higher modulus, lower toughness composites. Composites with weak bonding will have a lower modulus and more ductility. The situation becomes a bit more complex when all possibilities are examined. To be considered are the following: the properties of the surface layer on the fiber, the interactive forces between polymer and matrix, the surface roughness and porosity of the fiber, and the morphology of the matrix polymer at the fiber surface. In practice, the surface of the fibers is treated to enhance the mechanical properties of a composite. These treatments include anodization, acid etching, high temperature oxidation, and plasma oxidation, to name a few. The goal is to be able to predict the surface properties of carbon fibers treated in various ways, and then to relate surface properties to fiber matrix bonding.
Predicting supramolecular self-assembly on reconstructed metal surfaces
NASA Astrophysics Data System (ADS)
Roussel, Thomas J.; Barrena, Esther; Ocal, Carmen; Faraudo, Jordi
2014-06-01
The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern.The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern. GA image adapted from refs: (a) Phys. Chem. Chem. Phys., 2001, 3, 3399-3404, with permission from the PCCP Owner Societies, and (b) J. Phys. Chem. C, 2008, 112 (18), 7168-7172, reprinted with permission from the American Chemical Society, copyright © 2008.
Directed-Assembly of Carbon Nanotubes on Soft Substrates for Flexible Biosensor Array
NASA Astrophysics Data System (ADS)
Lee, Hyoung Woo; Koh, Juntae; Lee, Byung Yang; Kim, Tae Hyun; Lee, Joohyung; Hong, Seunghun; Yi, Mihye; Jhon, Young Min
2009-03-01
We developed a method to selectively assemble and align carbon nanotubes (CNTs) on soft substrates for flexible biosensors. In this strategy, thin oxide layer was deposited on soft substrates via low temperature plasma enhanced chemical vapor deposition, and linker-free assembly process was applied onto the oxide surface where the assembly of carbon nanotubes was guided by methyl-terminated molecular patterns on the oxide surface. The electrical characterization of the fabricated CNT devices exhibited typical p-type gating effect and 1/f noise behavior. The bare oxide regions near CNTs were functionalized with glutamate oxidase to fabricate selective biosensors to detect two forms of glutamate substances existing in different situations: L-glutamic acid, a neuro-transmitting material, and monosodium glutamate, a food additive.
NASA Astrophysics Data System (ADS)
Peinsipp-Byma, E.; Geisler, Jürgen; Bader, Thomas
2009-05-01
System concepts for network enabled image-based ISR (intelligence, surveillance, reconnaissance) is the major mission of Fraunhofer IITB's applied research in the area of defence and security solutions. For the TechDemo08 as part of the NATO CNAD POW Defence against terrorism Fraunhofer IITB advanced a new multi display concept to handle the shear amount and high complexity of ISR data acquired by networked, distributed surveillance systems with the objective to support the generation of a common situation picture. Amount and Complexity of ISR data demands an innovative man-machine interface concept for humans to deal with it. The IITB's concept is the Digital Map & Situation Surface. This concept offers to the user a coherent multi display environment combining a horizontal surface for the situation overview from the bird's eye view, an attached vertical display for collateral information and so-called foveatablets as personalized magic lenses in order to obtain high resolved and role-specific information about a focused areaof- interest and to interact with it. In the context of TechDemo08 the Digital Map & Situation Surface served as workspace for team-based situation visualization and analysis. Multiple sea- and landside surveillance components were connected to the system.
Advanced Gas Sensors Using SERS-Activated Waveguides
NASA Astrophysics Data System (ADS)
Lascola, Robert; McWhorter, Scott; Murph, Simona Hunyadi
2010-08-01
This contribution describes progress towards the development and testing of a functionalized capillary that will provide detection of low-concentration gas-phase analytes through SERS. Measurement inside a waveguide allows interrogation of a large surface area, potentially overcoming the short distance dependence of the SERS effect. The possible use of Raman spectroscopy for gas detection is attractive for IR-inactive molecules or scenarios where infrared technology is inconvenient. However, the weakness of Raman scattering limits the use of the technique to situations where low detection limits are not required or large gas pressures are present. With surface-enhanced Raman spectroscopy (SERS), signal enhancements of 106 are often claimed, and higher values are seen in specific instances. However, most of the examples of SERS analysis are on liquid-phase samples, where the molecular density is high, usually combined with some sort of sample concentration at the surface. Neither of these factors is present in gas-phase samples. Because the laser is focused to a small point in the typical experimental setup, and the spatial extent of the effect above the surface is small (microns), the excitation volume is miniscule. Thus, exceptionally large enhancements are required to generate a signal comparable to that obtained by conventional Raman measurements. A reflective waveguide offers a way to increase the interaction volume of the laser with a SERS-modified surface. The use of a waveguide to enhance classical Raman measurements was recently demonstrated by S.M. Angel and coworkers, who obtained 12- to 30-fold sensitivity improvements for nonabsorbing gases (CO2, CH4) with a silvered capillary (no SERS enhancement). Shi et al.. demonstrated 10-to 100-fold enhancement of aqueous Rhodamine 6G in a capillary coated with silver nanoparticles. They observed enhancements of 10- to 100-fold compared to direct sampling, but this relied on a "double substrate", which required non-specific interactions between the surface coating and additional nanoparticles suspended in solution to which the analyte had been coupled. Clearly, for a gas sensor, such a scheme is not feasible, and in any event the reliance on the random configuration of the nanoparticles and the analyte is not expected to lead to efficient enhancement. Here, we report the creation of capillary coatings of self-assembled, aggregated high aspect ratio metallic nanoparticles (e.g. rod, wires) with a solution-phase technique. Self-assembly offers the possibility for a high density of SERS hot spots, which are often observed at the junction of adjacent particles. Shaped nanoparticles also enhance self-assembled deposition, and allow further control of the optical properties of the coating through manipulation of the morphology. SERS enhancements for gases are reported relative to mirrored capillaries and free-space measurements.
Influence of Transient Atmospheric Circulation on the Surface Heating of the Pacific Warm Pool
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chou, Shu-Hsien; Chan, Pui-King
2003-01-01
Analyses of data on clouds, winds, and surface heat fluxes show that the transient behavior of basin-wide large-scale circulation has a significant influence on the warm pool sea surface temperature (SST). Trade winds converge to regions of the highest SST in the equatorial western Pacific. These regions have the largest cloud cover and smallest wind speed. Both surface solar heating and evaporative cooling are weak. The reduced evaporative cooling due to weakened winds exceeds the reduced solar heating due to enhanced cloudiness. The result is a maximum surface heating in the strong convective and high SST regions. Data also show that the maximum surface heating in strong convective regions is interrupted by transient atmospheric and oceanic circulation. Due to the seasonal variation of the insolation at the top of the atmosphere, trade winds and clouds also experience seasonal variations. Regions of high SST and low-level convergence follow the Sun, where the surface heating is a maximum. As the Sun moves away from a convective region, the strong trade winds set in, and the evaporative cooling enhances, resulting in a net cooling of the surface. During an El Nino, the maximum SST and convective region shifts eastward from the maritime continent to the equatorial central Pacific. Following the eastward shift of the maximum SST, the region of maximum cloudiness and surface heating also shift eastward. As the atmospheric and oceanic circulation returns to normal situations, the trade winds increase and the surface heating decreases. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds is one of the major factors that modulate the SST distribution of the Pacific warm pool.
Peng, Jingguang; Zhao, Yan; Chen, Di; Li, Kiade; Lu, Wei; Yan, Biao
2016-01-01
Powder metallurgy (PM) components are widely used in the auto industry due to the advantage of net-shape forming, low cost, and high efficiency. Still, usage of PM components is limited in the auto industry when encountering rigorous situations, like heavy load, due to lower strength, hardness, wear resistance, and other properties compared to wrought components due to the existence of massive pores in the PM components. In this study, through combining the powder metallurgy process and rolling process, the pores in the PM components were decreased and a homogenous densified layer was formed on the surface, which resulted in the enhancement of the strength, hardness, wear resistance, and other properties, which can expand its range of application. In this paper, we study the impact of different rolling feeds on the performance of the components’ surfaces. We found that with the increase of the rolling feed, the depth of the densified layer increased. PMID:28773970
Rheem, Sungsue; Rheem, Insoo; Oh, Sejong
2017-01-01
Response surface methodology (RSM) is a useful set of statistical techniques for modeling and optimizing responses in research studies of food science. In the analysis of response surface data, a second-order polynomial regression model is usually used. However, sometimes we encounter situations where the fit of the second-order model is poor. If the model fitted to the data has a poor fit including a lack of fit, the modeling and optimization results might not be accurate. In such a case, using a fullest balanced model, which has no lack of fit, can fix such problem, enhancing the accuracy of the response surface modeling and optimization. This article presents how to develop and use such a model for the better modeling and optimizing of the response through an illustrative re-analysis of a dataset in Park et al. (2014) published in the Korean Journal for Food Science of Animal Resources .
Peng, Jingguang; Zhao, Yan; Chen, Di; Li, Kiade; Lu, Wei; Yan, Biao
2016-10-19
Powder metallurgy (PM) components are widely used in the auto industry due to the advantage of net-shape forming, low cost, and high efficiency. Still, usage of PM components is limited in the auto industry when encountering rigorous situations, like heavy load, due to lower strength, hardness, wear resistance, and other properties compared to wrought components due to the existence of massive pores in the PM components. In this study, through combining the powder metallurgy process and rolling process, the pores in the PM components were decreased and a homogenous densified layer was formed on the surface, which resulted in the enhancement of the strength, hardness, wear resistance, and other properties, which can expand its range of application. In this paper, we study the impact of different rolling feeds on the performance of the components' surfaces. We found that with the increase of the rolling feed, the depth of the densified layer increased.
The importance of dissolved salts to the in vivo efficacy of antifreeze proteins.
Evans, Robert P; Hobbs, Rod S; Goddard, Sally V; Fletcher, Garth L
2007-11-01
Antifreeze proteins (AFP) and antifreeze glycoproteins (AFGP) lower the freezing point of marine fish plasma non-colligatively by specifically adsorbing to certain surfaces of ice crystals, modifying their structure and inhibiting further growth. While the freezing point is lowered, the melting point is unaltered and the difference between the two is termed thermal hysteresis (TH). In pure water, the level of TH is directly related to the intrinsic activity of the specific AF(G)P in solution and to their concentration. Results of this study indicate that when AF(G)P are dissolved in salt solutions, such as NaCl, encompassing the range they could encounter in nature, there is a synergistic enhancement of basal TH that is positively related to the salt concentration. This enhancement is likely a result of the hydration shell surrounding the dissolved ions and, as a consequence, reducing freezable water. A secondary reason for the enhancement is that the salt could be influencing the hydration shell surrounding the AF(G)P, increasing their solubility and thus the protein surface area available to adsorb to the ice/water interface. The former hypothesis for the salt enhanced TH has implications for the in vivo function of AF(G)P, particularly at the seawater/external epithelia (gills, skin, stomach) interface. The latter hypothesis is likely only relevant to in vitro situations where freeze dried protein is dissolved in low salt solutions.
Directed assembly of carbon nanotubes on soft substrates for use as a flexible biosensor array.
Koh, Juntae; Yi, Mihye; Yang Lee, Byung; Kim, Tae Hyun; Lee, Joohyung; Jhon, Young Min; Hong, Seunghun
2008-12-17
We have developed a method to selectively assemble and align carbon nanotubes (CNTs) on soft substrates for use as flexible biosensors. In this strategy, a thin oxide layer was deposited on soft substrates via low temperature plasma enhanced chemical vapor deposition, and a linker-free assembly process was applied on the oxide surface where the assembly of carbon nanotubes was guided by methyl-terminated molecular patterns on the oxide surface. The electrical characterization of the fabricated CNT devices exhibited a typical p-type gating effect and 1/f noise behavior. The bare oxide regions near CNTs were functionalized with glutamate oxidase to fabricate selective biosensors to detect two forms of glutamate substances existing in different situations: L-glutamic acid, a neurotransmitting material, and monosodium glutamate, a food additive.
Modeling Learner Situation Awareness in Collaborative Mobile Web 2.0 Learning
ERIC Educational Resources Information Center
Norman, Helmi; Nordin, Norazah; Din, Rosseni; Ally, Mohamed
2016-01-01
The concept of situation awareness is essential in enhancing collaborative learning. Learners require information from different awareness aspects to deduce a learning situation for decision-making. Designing learning environments that assist learners to understand situation awareness via monitoring actions and reaction of other learners has been…
SMAP Data Assimilation at NASA SPoRT
NASA Technical Reports Server (NTRS)
Blankenship, Clay B.; Case, Jonathan L.; Zavodsky, Bradley T.
2016-01-01
The NASA Short-Term Prediction Research and Transition (SPoRT) Center maintains a near-real- time run of the Noah Land Surface Model within the Land Information System (LIS) at 3-km resolution. Soil moisture products from this model are used by several NOAA/National Weather Service Weather Forecast Offices for flood and drought situational awareness. We have implemented assimilation of soil moisture retrievals from the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active/ Passive (SMAP) satellites, and are now evaluating the SMAP assimilation. The SMAP-enhanced LIS product is planned for public release by October 2016.
Head-Worn Display Concepts for Surface Operations for Commerical Aircraft
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Bailey, Randall E.; Shelton, Kevin J.; Williams, Steven P.; Kramer, Lynda J.; Norman, Robert M.
2008-01-01
Experiments and flight tests have shown that a Head-Up Display (HUD) and a head-down electronic moving map (EMM) can be enhanced with Synthetic Vision for airport surface operations. While great success in ground operations was demonstrated with a HUD, the research noted that two major HUD limitations during ground operations were its monochrome form and limited, fixed field-of-regard. A potential solution to these limitations found with HUDs may be emerging with Head Worn Displays (HWDs). HWDs are small display devices that may be worn without significant encumbrance to the user. By coupling the HWD with a head tracker, unlimited field-of-regard may be realized. The results of three ground simulation experiments conducted at NASA Langley Research Center are summarized. The experiments evaluated the efficacy of head-worn display applications of Synthetic Vision and Enhanced Vision technology to improve transport aircraft surface operations. The results of the experiments showed that the fully integrated HWD provided greater pilot performance with respect to staying on the path compared to using paper charts alone. Further, when comparing the HWD with the HUD concept, there were no differences in path performance. In addition, the HWD and HUD concepts were rated via paired-comparisons the same in terms of situation awareness and workload.
Technology-Enhanced Learning Environments to Solve Performance Problems: A Case of a Korean Company
ERIC Educational Resources Information Center
Kim, Min Kyu
2010-01-01
This is a case describing how technology enhanced learning environments can be used to improve employees' competence development. For this purpose, specific problematic situations in a Korean insurance company are portrayed. These situations demonstrate that everyday life in a workplace provides opportunities for learning and performance…
A novel enhanced diffusion sampler for collecting gaseous pollutants without air agitation.
Pan, Xuelian; Zhuo, Shaojie; Zhong, Qirui; Chen, Yuanchen; Du, Wei; Cheng, Hefa; Wang, Xilong; Zeng, Eddy Y; Xing, Baoshan; Tao, Shu
2018-03-06
A novel enhanced diffusion sampler for collecting gaseous phase polycyclic aromatic hydrocarbons (PAHs) without air agitation is proposed. The diffusion of target compounds into a sampling chamber is facilitated by continuously purging through a closed-loop flow to create a large concentration difference between the ambient air and the air in the sampling chamber. A glass-fiber filter-based prototype was developed. It was demonstrated that the device could collect gaseous PAHs at a much higher rate (1.6 ± 1.4 L/min) than regular passive samplers, while the ambient air is not agitated. The prototype was also tested in both the laboratory and field for characterizing the concentration gradients over a short distance from the soil surface. The sampler has potential to be applied in other similar situations to characterize the concentration profiles of other chemicals.
Chen, Xueye; Liu, Bo; Wu, Qiang; Zhu, Zhichao; Zhu, Jingtao; Gu, Mu; Chen, Hong; Liu, Jinliang; Chen, Liang; Ouyang, Xiaoping
2018-04-30
Plastic scintillators are widely used in various radiation measurement systems. However, detection efficiency and signal-to-noise are limited due to the total internal reflection, especially for weak signal detection situations. In the present investigation, large-area photonic crystals consisting of an array of periodic truncated cone holes were prepared based on hot embossing technology aiming at coupling with the surface of plastic scintillator to improve the light extraction efficiency and directionality control. The experimental results show that a maximum enhancement of 64% at 25° emergence angle along Γ-M orientation and a maximum enhancement of 58% at 20° emergence angle along Γ-K orientation were obtained. The proposed fabrication method of photonic crystal scintillator can avoid complicated pattern transfer processes used in most traditional methods, leading to a simple, economical method for large-area preparation. The photonic crystal scintillator demonstrated in this work is of great value for practical applications of nuclear radiation detection.
Kitayama, S; Markus, H R; Matsumoto, H; Norasakkunkit, V
1997-06-01
A collective constructionist theory of the self proposes that many psychological processes, including enhancement of the self (pervasive in the United States) and criticism and subsequent improvement of the self (widespread in Japan), result from and support the very ways in which social acts and situations are collectively defined and subjectively experienced in the respective cultural contexts. In support of the theory, 2 studies showed, first, that American situations are relatively conducive to self-enhancement and American people are relatively likely to engage in self-enhancement and, second, that Japanese situations are relatively conducive to self-criticism and Japanese people are relatively likely to engage in self-criticism. Implications are discussed for the collective construction of psychological processes implicated in the self and, more generally, for the mutual constitution of culture and the self.
Runway Incursion Prevention System Testing at the Wallops Flight Facility
NASA Technical Reports Server (NTRS)
Jones, Denise R.
2005-01-01
A Runway Incursion Prevention System (RIPS) integrated with a Synthetic Vision System concept (SVS) was tested at the Reno/Tahoe International Airport (RNO) and Wallops Flight Facility (WAL) in the summer of 2004. RIPS provides enhanced surface situational awareness and alerts of runway conflicts in order to prevent runway incidents while also improving operational capability. A series of test runs was conducted using a Gulfstream-V (G-V) aircraft as the test platform and a NASA test aircraft and a NASA test van as incurring traffic. The purpose of the study, from the RIPS perspective, was to evaluate the RIPS airborne incursion detection algorithms and associated alerting and airport surface display concepts, focusing on crossing runway incursion scenarios. This paper gives an overview of the RIPS, WAL flight test activities, and WAL test results.
Giant plasmonic energy and momentum transfer on the nanoscale
NASA Astrophysics Data System (ADS)
Durach, Maxim
We have developed a general theory of the plasmonic enhancement of many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. It is shown that this interaction has a resonant nature. We have also demonstrated that renormalized interaction is a long-ranged interaction whose intensity is considerably increased compared to bare Coulomb interaction over the entire region near the plasmonic nanostructure. We illustrate this theory by re-deriving the mirror charge potential near a metal sphere as well as the quasistatic potential behind the so-called perfect lens at the surface plasmon (SP) frequency. The dressed interaction for an important example of a metal--dielectric nanoshell is also explicitly calculated and analyzed. The renormalization and plasmonic enhancement of the Coulomb interaction is a universal effect, which affects a wide range of many-body phenomena in the vicinity of metal nanostructures: chemical reactions, scattering between charge carriers, exciton formation, Auger recombination, carrier multiplication, etc. We have described the nanoplasmonic-enhanced Forster resonant energy transfer (FRET) between quantum dots near a metal nanoshell. It is shown that this process is very efficient near high-aspect-ratio nanoshells. We have also obtained a general expression for the force exerted by an electromagnetic field on an extended polarizable object. This expression is applicable to a wide range of situations important for nanotechnology. Most importantly, this result is of fundamental importance for processes involving interaction of nanoplasmonic fields with metal electrons. Using the obtained expression for the force, we have described a giant surface-plasmon-induced drag-effect rectification (SPIDER), which exists under conditions of the extreme nanoplasmonic confinement. Under realistic conditions in nanowires, this giant SPIDER generates rectified THz potential differences up to 10V and extremely strong electric fields up to 105--10 6 V/cm. It can serve as a powerful nanoscale source of THz radiation. The giant SPIDER opens up a new field of ultraintense THz nanooptics with wide potential applications in nanotechnology and nanoscience, including microelectronics, nanoplasmonics, and biomedicine. Additionally, the SPIDER is an ultrafast effect whose bandwidth for nanometric wires is 20 THz, which allows for detection of femtosecond pulses on the nanoscale. INDEX WORDS: Nanoplasmonics, Nanoplasmonic renormalization of Coulomb interaction, Surface-plasmon enhanced Forster energy transfer (FRET), Surface-plasmon-induced drag-effect rectification (SPIDER), Nanotechnology, Plasmonics on the nanoscale, Localized surface plasmons (LSPs), Surface plasmon polaritons (SPPs)
Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi
2016-11-01
Bioremediation of polycyclic aromatic hydrocarbons (PAHs) is extremely challenging when they coexist with heavy metals. This constrain has led to adsorption-based techniques that help immobilize the metals and reduce toxicity. However, the adsorbents can also non-selectively bind the organic compounds, which reduces their bioavailability. In this study we developed a surface-engineered organoclay (Arquad ® 2HT-75-bentonite-palmitic acid) which enhanced bacterial proliferation and adsorbed cadmium, but elevated phenanthrene bioavailability. Adsorption models of single and binary solutes revealed that the raw bentonite adsorbed cadmium and phenanthrene non-selectively at the same binding sites and sequestrated phenanthrene. In contrast, cadmium selectively bound to the deprotonated state of carboxyl groups in the organoclay and phenanthrene on the outer surface of the adsorbent led to a microbially congenial microenvironment with a higher phenanthrene bioavailability. This study provided valuable information which would be highly important for developing a novel clay-modulated bioremediation technology for cleaning up PAHs under mixed-contaminated situations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hedberg, Y; Wang, X; Hedberg, J; Lundin, M; Blomberg, E; Wallinder, I Odnevall
2013-04-01
Implantation using stainless steels (SS) is an example where an understanding of protein-induced metal release from SS is important when assessing potential toxicological risks. Here, the protein-induced metal release was investigated for austenitic (AISI 304, 310, and 316L), ferritic (AISI 430), and duplex (AISI 2205) grades in a phosphate buffered saline (PBS, pH 7.4) solution containing either bovine serum albumin (BSA) or lysozyme (LSZ). The results show that both BSA and LSZ induce a significant enrichment of chromium in the surface oxide of all stainless steel grades. Both proteins induced an enhanced extent of released iron, chromium, nickel and manganese, very significant in the case of BSA (up to 40-fold increase), whereas both proteins reduced the corrosion resistance of SS, with the reverse situation for iron metal (reduced corrosion rates and reduced metal release in the presence of proteins). A full monolayer coverage is necessary to induce the effects observed.
Flight Demonstration of Integrated Airport Surface Technologies for Increased Capacity and Safety
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Young, Steven D.; Wills, Robert W.; Smith, Kathryn A.; Shipman, Floyd S.; Bryant, Wayne H.; Eckhardt, Dave E., Jr.
1998-01-01
A flight demonstration was conducted to address airport surface movement area capacity and safety issues by providing pilots with enhanced situational awareness information. The demonstration presented an integration of several technologies to government and industry representatives. These technologies consisted of an electronic moving map display in the cockpit, a Differential Global Positioning system (DGPS) receiver, a high speed very high frequency (VHF) data link, an Airport Surface Detection Equipment (ASDE-3) radar, and the Airport Movement Area Safety System (AMASS). Aircraft identification was presented to an air traffic controller on an AMASS display. The onboard electronic map included the display of taxi routes, hold instructions, and clearances, which were sent to the aircraft via data link by the controller. The map also displayed the positions of other traffic and warning information, which were sent to the aircraft automatically from the ASDE-3/AMASS system. This paper describes the flight demonstration in detail, along with test results.
NASA Technical Reports Server (NTRS)
Chaky, R. C.; Inouye, G. T.
1985-01-01
Charging of spacecraft surfaces by the environmental plasma can result in differential potentials between metallic structure and adjacent dielectric surfaces in which the relative polarity of the voltage stress is either negative dielectric/positive metal or negative metal/positive dielectric. Negative metal/positive dielectric is a stress condition that may arise if relatively large areas of spacecraft surface metals are shadowed from solar UV and/or if the UV intensity is reduced as in the situation in which the spacecraft is entering into or leaving eclipse. The results of experimental studies of negative metal/positive dielectric systems are given. Information is given on: enhanced electron emission I-V curves; e(3) corona noise vs e(3) steady-state current; the localized nature of e(3) and negative metal arc discharge currents; negative metal arc discharges at stress thresholds below 1 kilovolt; negative metal arc discharge characteristics; dependence of blowoff arc discharge current on spacecraft capacitance to space (linear dimension); and damage to second surface mirrors due to negative metal arcs.
ERIC Educational Resources Information Center
Panichpongsapak, Ratthasart; Tesaputa, Kowat; Sri-ampai, Anan
2016-01-01
The aims of this research were: (1) to study the factors and indicators to enhance curriculum and learning management competency of private primary school teachers; (2) to study current situations and desirable situations and techniques; (3) to develop a program; and (4) to study the effects of a program. The study comprised 4 phases: Phase…
DOT National Transportation Integrated Search
1995-11-01
A study was conducted to test the effect on airport surface situational awareness of GPS derived position information : depicted on a prototypical electronic taxi chart display. The effect of position error and position uncertainty : symbology were a...
Surface Map Traffic Intent Displays and Net-Centric Data-link Communications for NextGen
NASA Technical Reports Server (NTRS)
Shelton, Kevin J.; Prinzel, Lawrence J., III; Jones, Denise R.; Allamandola, Angela S.; Arthur, Jarvis J., III; Bailey, Randall E.
2009-01-01
By 2025, U.S. air traffic is predicted to increase three fold and may strain the current air traffic management system, which may not be able to accommodate this growth. In response to this challenge, a revolutionary new concept has been proposed for U.S. aviation operations, termed the Next Generation Air Transportation System or "NextGen". Many key capabilities are being identified to enable NextGen, including the use of data-link communications. Because NextGen represents a radically different approach to air traffic management and requires a dramatic shift in the tasks, roles, and responsibilities for the flight deck, there are numerous research issues and challenges that must be overcome to ensure a safe, sustainable air transportation system. Flight deck display and crew-vehicle interaction concepts are being developed that proactively investigate and overcome potential technology and safety barriers that might otherwise constrain the full realization of NextGen. The paper describes simulation research, conducted at National Aeronautics and Space Administration (NASA) Langley Research Center, examining data-link communications and traffic intent data during envisioned four-dimensional trajectory (4DT)-based and equivalent visual (EV) surface operations. Overall, the results suggest that controller pilot data-link communications (CPDLC) with the use of mandatory pilot read-back of all clearances significantly enhanced situation awareness for 4DT and EV surface operations. The depiction of graphical traffic state and intent information on the surface map display further enhanced off-nominal detection and pilot qualitative reports of safety and awareness.
Collision Avoidance for Airport Traffic Simulation Evaluation
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Prinzel, Lawrence J., III; Shelton, Kevin J.; Bailey, Randall E.; Otero, Sharon D.; Barker, Glover D.
2010-01-01
A Collision Avoidance for Airport Traffic (CAAT) concept for the airport Terminal Maneuvering Area (TMA) was evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. CAAT is being designed to enhance surface situation awareness and provide cockpit alerts of potential conflicts during runway, taxi, and low altitude air-to-air operations. The purpose of the study was to evaluate pilot reaction to conflict events in the TMA near the airport, different alert timings for various scenarios, alerting display concepts, and directive alerting concepts. This paper gives an overview of the conflict detection and resolution (CD&R) concept, simulation study, and test results
Collision Avoidance for Airport Traffic Concept Evaluation
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Prinzel, Lawrence J., III; Otero, Sharon D.; Barker, Glover D.
2009-01-01
An initial Collision Avoidance for Airport Traffic (CAAT) concept for the Terminal Maneuvering Area (TMA) was evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. CAAT is being designed to enhance surface situation awareness and provide cockpit alerts of potential conflicts during runway, taxi, and low altitude air-to-air operations. The purpose of the study was to evaluate the initial concept for an aircraft-based method of conflict detection and resolution (CD&R) in the TMA focusing on conflict detection algorithms and alerting display concepts. This paper gives an overview of the CD&R concept, simulation study, and test results.
DOT National Transportation Integrated Search
1996-01-01
An integrated cockpit display suite, the T-NASA (Taxiway Navigation and : Situation Awareness) system, is under development for NASA's Terminal Area : Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) : program. This system ha...
NASA Technical Reports Server (NTRS)
Waight, Kenneth T., III; Zack, John W.; Karyampudi, V. Mohan
1989-01-01
Initial simulations of the June 28, 1986 Cooperative Huntsville Meteorological Experiment case illustrate the need for mesoscale moisture information in a summertime situation in which deep convection is organized by weak large scale forcing. A methodology is presented for enhancing the initial moisture field from a combination of IR satellite imagery, surface-based cloud observations, and manually digitized radar data. The Mesoscale Atmospheric Simulation Model is utilized to simulate the events of June 28-29. This procedure insures that areas known to have precipitation at the time of initialization will be nearly saturated on the grid scale, which should decrease the time needed by the model to produce the observed Bonnie (a relatively weak hurricane that moved on shore two days before) convection. This method will also result in an initial distribution of model cloudiness (transmissivity) that is very similar to that of the IR satellite image.
Infrared polarimetric sensing of oil on water
NASA Astrophysics Data System (ADS)
Chenault, David B.; Vaden, Justin P.; Mitchell, Douglas A.; DeMicco, Erik D.
2016-10-01
Infrared polarimetry is an emerging sensing modality that offers the potential for significantly enhanced contrast in situations where conventional thermal imaging falls short. Polarimetric imagery leverages the different polarization signatures that result from material differences, surface roughness quality, and geometry that are frequently different from those features that lead to thermal signatures. Imaging of the polarization in a scene can lead to enhanced understanding, particularly when materials in a scene are at thermal equilibrium. Polaris Sensor Technologies has measured the polarization signatures of oil on water in a number of different scenarios and has shown significant improvement in detection through the contrast improvement offered by polarimetry. The sensing improvement offers the promise of automated detection of oil spills and leaks for routine monitoring and accidents with the added benefit of being able to continue monitoring at night. In this paper, we describe the instrumentation, and the results of several measurement exercises in both controlled and uncontrolled conditions.
Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Asghar, Saleem
2017-01-01
This study investigates the mixed convection flow of Jeffrey liquid by an impermeable inclined stretching cylinder. Thermal radiation and non-uniform heat source/sink are considered. The convective boundary conditions at surface are imposed. Nonlinear expressions of momentum, energy and concentration are transformed into dimensionless systems. Convergent homotopic solutions of the governing systems are worked out by employing homotopic procedure. Impact of physical variables on the velocity, temperature and concentration distributions are sketched and discussed. Numerical computations for skin friction coefficient, local Nusselt and Sherwood numbers are carried out. It is concluded that velocity field enhances for Deborah number while reverse situation is observed regarding ratio of relaxation to retardation times. Temperature and heat transfer rate are enhanced via larger thermal Biot number. Effect of Schmidt number on the concentration and local Sherwood number is quite reverse.
Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Asghar, Saleem
2017-01-01
This study investigates the mixed convection flow of Jeffrey liquid by an impermeable inclined stretching cylinder. Thermal radiation and non-uniform heat source/sink are considered. The convective boundary conditions at surface are imposed. Nonlinear expressions of momentum, energy and concentration are transformed into dimensionless systems. Convergent homotopic solutions of the governing systems are worked out by employing homotopic procedure. Impact of physical variables on the velocity, temperature and concentration distributions are sketched and discussed. Numerical computations for skin friction coefficient, local Nusselt and Sherwood numbers are carried out. It is concluded that velocity field enhances for Deborah number while reverse situation is observed regarding ratio of relaxation to retardation times. Temperature and heat transfer rate are enhanced via larger thermal Biot number. Effect of Schmidt number on the concentration and local Sherwood number is quite reverse. PMID:28441392
Application of Multihop Relay for Performance Enhancement of AeroMACS Networks
NASA Technical Reports Server (NTRS)
Kamali, Behnam; Wilson, Jeffrey D.; Kerczewski, Robert J.
2012-01-01
A new transmission technology, based on IEEE 802.16-2009 (WiMAX), is currently being developed for airport surface communications. A C-band spectrum allocation at 5091-5150 MHz has been created by ITU to carry this application. The proposed technology, known as AeroMACS, will be used to support fixed and mobile ground to ground applications and services. This article proposes and demonstrates that IEEE 802.16j-amendment-based WiMAX is most feasible for AeroMACS applications. This amendment introduces multihop relay as an optional deployment that may be used to provide additional coverage and/or enhance the capacity of the network. Particular airport surface radio coverage situations for which IEEE 802.16-2009-WiMAX provides resolutions that are inefficient, costly, or excessively power consuming are discussed. In all these cases, it is argued that 16j technology offers a much better alternative. A major concern about deployment of AeroMACS is interference to co-allocated applications such as the Mobile Satellite Service (MSS) feeder link. Our initial simulation results suggest that no additional interference to MSS feeder link is caused by deployment of IEEE 802.16j-based AeroMACS.
Application of Multihop Relay for Performance Enhancement of AeroMACS Networks
NASA Technical Reports Server (NTRS)
Kamali, Behnam; Wilson, Jeffrey D.; Kerczewski, Robert J.
2012-01-01
A new transmission technology, based on IEEE 802.16-2009 (WiMAX), is currently being developed for airport surface communications. A C-band spectrum allocation at 5091 to 5150 MHz has been created by International Telecommunications Union (ITU) to carry this application. The proposed technology, known as AeroMACS, will be used to support fixed and mobile ground to ground applications and services. This article proposes and demonstrates that IEEE 802.16j-amendment-based WiMAX is most feasible for AeroMACS applications. This amendment introduces multihop relay as an optional deployment that may be used to provide additional coverage and/or enhance the capacity of the network. Particular airport surface radio coverage situations for which IEEE 802.16-2009-WiMAX provides resolutions that are inefficient, costly, or excessively power consuming are discussed. In all these cases, it is argued that 16j technology offers a much better alternative. A major concern about deployment of AeroMACS is interference to co-allocated applications such as the Mobile Satellite Service (MSS) feeder link. Our initial simulation results suggest that no additional interference to MSS feeder link is caused by deployment of IEEE 802.16j-based AeroMACS.
A Risk Management Architecture for Emergency Integrated Aircraft Control
NASA Technical Reports Server (NTRS)
McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.
2011-01-01
Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.
ERIC Educational Resources Information Center
Jutasong, Chanokpon; Sirisuthi, Chaiyut; Phusri-on, Songsak
2016-01-01
The objectives of this research are: 1) to study factors and indicators, 2) to study current situations, desirable situations and techniques, 3) to develop the Program, and 4) to study the effect of Program. It comprised 4 phases: (1) studying the factors and indicators; (2) studying the current situations, desirable situations and techniques; (3)…
Systematic review of effectiveness of situated e-learning on medical and nursing education.
Feng, Jui-Ying; Chang, Yi-Ting; Chang, Hsin-Yi; Erdley, William Scott; Lin, Chyi-Her; Chang, Ying-Ju
2013-08-01
Because of the complexity of clinical situations, traditional didactic education is limited in providing opportunity for student-patient interaction. Situated e-learning can enhance learners' knowledge and associated abilities through a variety of activities. Healthcare providers who interact with virtual patients in designed situations may avoid unnecessary risks and encounters with real patients. However, the effectiveness of situated e-learning is inconsistent. The purpose of this study is to determine the effectiveness of situated e-learning in prelicensure and postlicensure medical and nursing education. Literature databases of PubMed, Medline, CINAHL, ERIC, and Cochrane Library were searched. The study eligibility criteria included articles published in English, which examined the effectiveness of situated e-learning on the outcomes of knowledge and performance for clinicians or students in medicine and nursing. Effect sizes were calculated with 95% confidence intervals. Fourteen articles were included for meta-analysis. Situated e-learning could effectively enhance learners' knowledge and performance when the control group received no training. Compared to traditional learning, the effectiveness of situated e-learning on performance diminished but still remained significant whereas the effect become insignificant on knowledge. The subgroup analyses indicate the situated e-learning program significantly improved students' clinical performance but not for clinicians. Situated e-learning is an effective method to improve novice learners' performance. The effect of situated e-learning on the improvement of cognitive ability is limited when compared to traditional learning. Situated e-learning is a useful adjunct to traditional learning for medical and nursing students. © 2013 Sigma Theta Tau International.
Development of a fieldable rugged TATP surface-enhanced Raman spectroscopy sensor
NASA Astrophysics Data System (ADS)
Spencer, Kevin M.; Clauson, Susan L.; Sylvia, James M.
2011-06-01
Surface-enhanced Raman spectroscopy (SERS) has repeatedly been shown to be capable of single molecule detection in laboratory controlled environments. However, superior detection of desired compounds in complex situations requires optimization of factors in addition to sensitivity. For example, SERS sensors are metals with surface roughness in the nm scale. This metallic roughness scale may not adsorb the analyte of interest but instead cause a catalytic reaction unless stabilization is designed into the sensor interface. In addition, the SERS sensor needs to be engineered sensitive only to the desired analyte(s) or a small subset of analytes; detection of every analyte would saturate the sensor and make data interpretation untenable. Finally, the SERS sensor has to be a preferable adsorption site in passive sampling applications, whether vapor or liquid. In this paper, EIC Laboratories will discuss modifications to SERS sensors that increase the likelihood of detection of the analyte of interest. We will then demonstrate data collected for TATP, a compound that rapidly decomposes and is undetected on standard silver SERS sensors. With the modified SERS sensor, ROC curves for room temperature TATP vapor detection, detection of TATP in a non equilibrium vapor environment in 30 s, detection of TATP on a sensor exposed to a ventilation duct, and detection of TATP in the presence of fuel components were all created and will be presented herein.
Flight demonstration of integrated airport surface automation concepts
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Young, Steven D.
1995-01-01
A flight demonstration was conducted to address airport surface movement area capacity issues by providing pilots with enhanced situational awareness information. The demonstration showed an integration of several technologies to government and industry representatives. These technologies consisted of an electronic moving map display in the cockpit, a Differential Global Positioning System (DGPS) receiver, a high speed VHF data link, an ASDE-3 radar, and the Airport Movement Area Safety System (AMASS). Aircraft identification was presented to an air traffic controller on AMASS. The onboard electronic map included the display of taxi routes, hold instructions, and clearances, which were sent to the aircraft via data link by the controller. The map also displayed the positions of other traffic and warning information, which were sent to the aircraft automatically from the ASDE-3/AMASS system. This paper describes the flight demonstration in detail, along with preliminary results.
Mission Composeable C2 in DIL Information Environments Using Widgets and App Stores
2013-06-01
C2). Warfighters increasingly have access to integrated mobile devices to enhance their situational awareness. The Department of Defense and the...for agile command and control (C2). Warfighters increasingly have access to integrated mobile devices to enhance their situational awareness. The...This need has been partially addressed in the civilian world with the increasing use of mobile technology through which a company’s leadership can
Ubiquitous English Learning System with Dynamic Personalized Guidance of Learning Portfolio
ERIC Educational Resources Information Center
Wu, Ting-Ting; Sung, Tien-Wen; Huang, Yueh-Min; Yang, Chu-Sing; Yang, Jin-Tan
2011-01-01
Situated learning has been recognized as an effective approach in enhancing learning impressions and experiences for students. Can we take advantage of situated learning in helping students who are not English native speakers to read English articles more effective? Can the effectiveness of situated learning be further promoted by individual…
Using Situational Interest to Enhance Individual Interest and Science-Related Behaviours
ERIC Educational Resources Information Center
Palmer, David; Dixon, Jeanette; Archer, Jennifer
2017-01-01
Situational interest is a relatively transient reaction to highly stimulating factors in the immediate environment, whereas individual interest is a relatively long-term preference for a particular subject or activity. It has been proposed that regular experiences of situational interest in a subject may eventually lead to the development of…
ERIC Educational Resources Information Center
Kacmar, K. Michele; Carlson, Dawn S.; Bratton, Virginia K.
2004-01-01
This study examined both situational and dispositional antecedents of four ingratiatory behaviors: other-enhancing, opinion conformity, favor rendering, and self-promotion. The two situational variables (i.e., role ambiguity and leader-member exchange) and the four dispositional variables (i.e., self-esteem, need for power, job involvement, and…
Enhanced stability of Janus nanoparticles by covalent cross-linking of surface ligands.
Song, Yang; Klivansky, Liana M; Liu, Yi; Chen, Shaowei
2011-12-06
A mercapto derivative of diacetylene was used as the hydrophilic ligand to prepare Janus nanoparticles by using hydrophobic hexanethiolate-protected gold (AuC6, diameter 5 nm) nanoparticles as the starting materials. The amphiphilic surface characters of the Janus nanoparticles were verified by contact angle measurements, as compared to those of the bulk-exchange counterparts where the two types of ligands were distributed rather homogeneously on the nanoparticle surface. Dynamic light scattering studies showed that the Janus nanoparticles formed stable superstructures in various solvent media that were significantly larger than those by the bulk-exchange counterparts. This was ascribed to the amphiphilic characters of the Janus nanoparticles that rendered the particles to behave analogously to conventional surfactant molecules. Notably, because of the close proximity of the diacetylene moieties on the Janus nanoparticle surface, exposure to UV irradiation led to effective covalent cross-linking between the diacetylene moieties of neighboring ligands, as manifested in UV-vis and fluorescence measurements where the emission characteristics of dimers and trimers of diacetylene were rather well-defined, in addition to the monomeric emission. In contrast, for bulk-exchange nanoparticles, no trimer emission could be identified, and the intensity of dimer emission was markedly lower (though the intensity increased with increasing diacetylene coverage on the particle surface) under the otherwise identical experimental conditions. This is largely because the diacetylene ligands were distributed on the entire particle surface, and it was difficult to find a large number of ligands situated closely so that the stringent topochemical principles for the polymerization of diacetylene derivatives could be met. Importantly, the cross-linked Janus nanoparticles were found to exhibit marked enhancement of the structural integrity, which was attributable to the impeded surface diffusion of the thiol ligands on the nanoparticle surface, as manifested in fluorescence measurements of aged nanoparticles. © 2011 American Chemical Society
Atmospheric boundary layer response to sea surface temperatures during the SEMAPHORE experiment
NASA Astrophysics Data System (ADS)
Giordani, Hervé; Planton, Serge; Benech, Bruno; Kwon, Byung-Hyuk
1998-10-01
The sensitivity of the marine atmospheric boundary layer (MABL) subjected to sea surface temperatures (SST) during the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment in 1993 has been studied. Atmospheric analyses produced by the Action de Recherche, Petite Echelle, Grande Echelle (ARPEGE) operational model at the French meteorological weather service assimilated data sets collected between October 7 and November 17, 1993, merged with the Global Telecommunication System (GTS) data. Analyses were validated against independent data from aircraft instruments collected along a section crossing the Azores oceanic front, not assimilated into the model. The responses of the mean MABL in the aircraft cross section to changes in SST gradients of about 1°C/100 km were the presence of an atmospheric front with horizontal gradients of 1°C/100 km and an increase of the wind intensity from the cold to the warm side during an anticyclonic synoptic situation. The study of the spatiotemporal characteristics of the MABL shows that during 3 days of an anticyclonic synoptic situation the SST is remarkably stationary because it is principally controlled by the Azores ocean current, which has a timescale of about 10 days. However, the temperature and the wind in the MABL are influenced by the prevailing atmospheric conditions. The ocean does not appear to react to the surface atmospheric forcing on the timescale of 3 days, whereas the atmospheric structures are modified by local and synoptic-scale advection. The MABL response appears to be much quicker than that of the SSTs. The correlation between the wind and the thermal structure in the MABL is dominated by the ageostrophic and not by the geostrophic component. In particular, the enhancement of the wind on either side of the SST front is mainly due to the ageostrophic component. Although the surface heat fluxes are not the only cause of ageostrophy, the surface buoyancy flux Qb appears to be an important local source.
NASA Technical Reports Server (NTRS)
Wang, Zhousen; Schaaf, Crystal B.; Strahler, Alan H.; Chopping, Mark J.; Roman, Miguel O.; Shuai, Yanmin; Woodcock, Curtis E.; Hollinger, David Y.; Fitzjarrald, David R.
2013-01-01
This study assesses the Moderate-resolution Imaging Spectroradiometer (MODIS) BRDF/albedo 8 day standard product and products from the daily Direct Broadcast BRDF/albedo algorithm, and shows that these products agree well with ground-based albedo measurements during the more difficult periods of vegetation dormancy and snow cover. Cropland, grassland, deciduous and coniferous forests are considered. Using an integrated validation strategy, analyses of the representativeness of the surface heterogeneity under both dormant and snow-covered situations are performed to decide whether direct comparisons between ground measurements and 500-m satellite observations can be made or whether finer spatial resolution airborne or spaceborne data are required to scale the results at each location. Landsat Enhanced Thematic Mapper Plus (ETM +) data are used to generate finer scale representations of albedo at each location to fully link ground data with satellite data. In general, results indicate the root mean square errors (RMSEs) are less than 0.030 over spatially representative sites of agriculture/grassland during the dormant periods and less than 0.050 during the snow-covered periods for MCD43A albedo products. For forest, the RMSEs are less than 0.020 during the dormant period and 0.025 during the snow-covered periods. However, a daily retrieval strategy is necessary to capture ephemeral snow events or rapidly changing situations such as the spring snow melt.
Autonomous mobile platform for enhanced situational awareness in Mass Casualty Incidents.
Yang, Dongyi; Schafer, James; Wang, Sili; Ganz, Aura
2014-01-01
To enhance the efficiency of the search and rescue process of a Mass Casualty Incident, we introduce a low cost autonomous mobile platform. The mobile platform motion is controlled by an Android Smartphone mounted on a robot. The pictures and video captured by the Smartphone camera can significantly enhance the situational awareness of the incident commander leading to a more efficient search and rescue process. Moreover, the active RFID readers mounted on the mobile platform can improve the localization accuracy of victims in the disaster site in areas where the paramedics are not present, reducing the triage and evacuation time.
Surfactants for Bubble Removal against Buoyancy
Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi
2016-01-01
The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications. PMID:26743179
Ensuring the Environmental and Industrial Safety in Solid Mineral Deposit Surface Mining
NASA Astrophysics Data System (ADS)
Trubetskoy, Kliment; Rylnikova, Marina; Esina, Ekaterina
2017-11-01
The growing environmental pressure of mineral deposit surface mining and severization of industrial safety requirements dictate the necessity of refining the regulatory framework governing safe and efficient development of underground resources. The applicable regulatory documentation governing the procedure of ore open-pit wall and bench stability design for the stage of pit reaching its final boundary was issued several decades ago. Over recent decades, mining and geomechanical conditions have changed significantly in surface mining operations, numerous new software packages and computer developments have appeared, opportunities of experimental methods of source data collection and processing, grounding of the permissible parameters of open pit walls have changed dramatically, and, thus, methods of risk assessment have been perfected [10-13]. IPKON RAS, with the support of the Federal Service for Environmental Supervision, assumed the role of the initiator of the project for the development of Federal norms and regulations of industrial safety "Rules for ensuring the stability of walls and benches of open pits, open-cast mines and spoil banks", which contribute to the improvement of economic efficiency and safety of mineral deposit surface mining and enhancement of the competitiveness of Russian mines at the international level that is very important in the current situation.
Surfactants for Bubble Removal against Buoyancy
NASA Astrophysics Data System (ADS)
Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi
2016-01-01
The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications.
Features of microscopic pedestrian movement in a panic situation based on cellular automata model
NASA Astrophysics Data System (ADS)
Ibrahim, Najihah; Hassan, Fadratul Hafinaz
2017-10-01
Pedestrian movement is the one of the subset for the crowd management under simulation objective. During panic situation, pedestrian usually will create a microscopic movement that lead towards the self-organization. During self-organizing, the behavioral and physical factors had caused the mass effect on the pedestrian movement. The basic CA model will create a movement path for each pedestrian over a time step. However, due to the factors immerge, the CA model needs some enhancement that will establish a real simulation state. Hence, this concept paper will discuss on the enhanced features of CA model for microscopic pedestrian movement during panic situation for a better pedestrian simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sung, W; Jung, S; Ye, S
Purpose: The aim of this study is to apply Monte Carlo simulations to investigate the nanoparticle dose enhancement for Auger therapy. Methods: Two nanoparticle fabrications were considered: nanoshell and nanosphere. In the first step, a single nanoparticle was irradiated with Auger emitters. The electrons were scored in a phase space at the outer surface of the nanoparticle with Geant4-Penelope. In the second step, the previously recorded phase space was used as a source and placed at the center of a cell-size water phantom. The nanoscale dose was evaluated in water around the nanoparticle with Geant4-DNA. The dose enhancement factor (DEF)more » is defined as the ratio of doses with and without nanoparticles. The nanoparticles were replaced by corresponding water nanoparticle with the same size and volume source which represents typical situation of Auger emitters without nanoparticle. Various sizes/materials of nanoparticles and isotopes were considered. Results: Nanoshell - Microscopic dose was increased up to 130% at 20 – 100 nm distances from the surface of Au-{sup 125}I nanoshell. However, dose at less than 20 nm distance was reduced due to absorbed low energy electrons in gold nanoshell. The amounts and regions of the dose enhancement were dependent on nanoshell size, materials, and isotopes. Nanosphere - The increased amounts of electrons up to 300% and reduced average energy with nanosphere were observed compared with water nanoparticle. We observed localized dose enhancement (up to a factor 3.6) in the immediate vicinity (< 50 nm) of Au-{sup 125} I nanosphere. The dose enhancement patterns vary according to nanosphere sizes and isotopes. Conclusion: We conclude that Auger therapy with nanoparticles can lead to change of electron energy spectrum and dose enhancements at certain range. The dose enhancement patterns vary according to nanoparticle sizes, materials, and isotopes. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP: Ministry of Science, ICT and Future Planning) (No. NRF-2013M2B2B1075776)« less
Situation awareness in air traffic control : enhanced displays for advanced operations
DOT National Transportation Integrated Search
2000-01-01
Future changes in the National Airspace System indicate a self-separation operational concept. This study examined the Air Traffic : Control Specialists ability to maintain situation awareness and provide needed monitoring and separation functions...
Unique CAD/CAM three-quarter crown restoration of a central incisor: a case report.
Goldberg, Marvin B; Siegel, Sharon C; Rezakani, Niloufar
2013-07-01
Computer-aided design and computer-aided manufacturing (CAD/CAM) dentistry has been in use for more than 2 decades. Recent improvements in this technology have made CAD/CAM restorations a viable alternative for routine dental care. This technology is being taught in dental schools to prepare students for contemporary dental practice and is particularly useful in unique restorative situations that allow conservation of tooth structure. This case report describes the restoration of a central incisor that was previously restored with an unesthetic three-quarter gold crown. The tooth exhibited recurrent caries and an unaffected labial wall of supported enamel. A CAD/CAM three-quarter crown was planned to conserve tooth structure. After preparation, the tooth was scanned for a CAD/CAM crown in order to fabricate a ceramic restoration, which was then milled and bonded, producing an esthetic result. Typically, in cases of esthetic enhancement, a labial laminate restoration is fabricated, but in this situation, a different approach was necessary to make a design for the lingual surface of an anterior tooth.
ERIC Educational Resources Information Center
Hwang, Wu-Yuin; Chen, Hong-Ren; Chen, Nian-Shing; Lin, Li-Kai; Chen, Jin-Wen
2018-01-01
Education research has shown that reflective study can efficiently enhance learning, and the acquisition of knowledge and skills from real-life situations has become a focus of interest for scholars. The knowledge-learning model based on verbal instruction, used in traditional classrooms, does not make use of real-life situations that encourage…
NASA Astrophysics Data System (ADS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Williams, Steven P.; Bailey, Randall E.; Shelton, Kevin J.; Norman, R. Mike
2011-06-01
NASA is researching innovative technologies for the Next Generation Air Transportation System (NextGen) to provide a "Better-Than-Visual" (BTV) capability as adjunct to "Equivalent Visual Operations" (EVO); that is, airport throughputs equivalent to that normally achieved during Visual Flight Rules (VFR) operations rates with equivalent and better safety in all weather and visibility conditions including Instrument Meteorological Conditions (IMC). These new technologies build on proven flight deck systems and leverage synthetic and enhanced vision systems. Two piloted simulation studies were conducted to access the use of a Head-Worn Display (HWD) with head tracking for synthetic and enhanced vision systems concepts. The first experiment evaluated the use a HWD for equivalent visual operations to San Francisco International Airport (airport identifier: KSFO) compared to a visual concept and a head-down display concept. A second experiment evaluated symbology variations under different visibility conditions using a HWD during taxi operations at Chicago O'Hare airport (airport identifier: KORD). Two experiments were conducted, one in a simulated San Francisco airport (KSFO) approach operation and the other, in simulated Chicago O'Hare surface operations, evaluating enhanced/synthetic vision and head-worn display technologies for NextGen operations. While flying a closely-spaced parallel approach to KSFO, pilots rated the HWD, under low-visibility conditions, equivalent to the out-the-window condition, under unlimited visibility, in terms of situational awareness (SA) and mental workload compared to a head-down enhanced vision system. There were no differences between the 3 display concepts in terms of traffic spacing and distance and the pilot decision-making to land or go-around. For the KORD experiment, the visibility condition was not a factor in pilot's rating of clutter effects from symbology. Several concepts for enhanced implementations of an unlimited field-of-regard BTV concept for low-visibility surface operations were determined to be equivalent in pilot ratings of efficacy and usability.
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzell, Lawrence J.; Williams, Steven P.; Bailey, Randall E.; Shelton, Kevin J.; Norman, R. Mike
2011-01-01
NASA is researching innovative technologies for the Next Generation Air Transportation System (NextGen) to provide a "Better-Than-Visual" (BTV) capability as adjunct to "Equivalent Visual Operations" (EVO); that is, airport throughputs equivalent to that normally achieved during Visual Flight Rules (VFR) operations rates with equivalent and better safety in all weather and visibility conditions including Instrument Meteorological Conditions (IMC). These new technologies build on proven flight deck systems and leverage synthetic and enhanced vision systems. Two piloted simulation studies were conducted to access the use of a Head-Worn Display (HWD) with head tracking for synthetic and enhanced vision systems concepts. The first experiment evaluated the use a HWD for equivalent visual operations to San Francisco International Airport (airport identifier: KSFO) compared to a visual concept and a head-down display concept. A second experiment evaluated symbology variations under different visibility conditions using a HWD during taxi operations at Chicago O'Hare airport (airport identifier: KORD). Two experiments were conducted, one in a simulated San Francisco airport (KSFO) approach operation and the other, in simulated Chicago O'Hare surface operations, evaluating enhanced/synthetic vision and head-worn display technologies for NextGen operations. While flying a closely-spaced parallel approach to KSFO, pilots rated the HWD, under low-visibility conditions, equivalent to the out-the-window condition, under unlimited visibility, in terms of situational awareness (SA) and mental workload compared to a head-down enhanced vision system. There were no differences between the 3 display concepts in terms of traffic spacing and distance and the pilot decision-making to land or go-around. For the KORD experiment, the visibility condition was not a factor in pilot's rating of clutter effects from symbology. Several concepts for enhanced implementations of an unlimited field-of-regard BTV concept for low-visibility surface operations were determined to be equivalent in pilot ratings of efficacy and usability.
Learning Situations in Nursing Education: A Concept Analysis.
Shahsavari, Hooman; Zare, Zahra; Parsa-Yekta, Zohreh; Griffiths, Pauline; Vaismoradi, Mojtaba
2018-02-01
The nursing student requires opportunities to learn within authentic contexts so as to enable safe and competent practice. One strategy to facilitate such learning is the creation of learning situations. A lack of studies on the learning situation in nursing and other health care fields has resulted in insufficient knowledge of the characteristics of the learning situation, its antecedents, and consequences. Nurse educators need to have comprehensive and practical knowledge of the definition and characteristics of the learning situation so as to enable their students to achieve enhanced learning outcomes. The aim of this study was to clarify the concept of the learning situation as it relates to the education of nurses and improve understanding of its characteristics, antecedents, and consequences. The Bonis method of concept analysis, as derived from the Rodgers' evolutionary method, provided the framework for analysis. Data collection and analysis were undertaken in two phases: "interdisciplinary" and "intra-disciplinary." The data source was a search of the literature, encompassing nursing and allied health care professions, published from 1975 to 2016. No agreement on the conceptual phenomenon was discovered in the international literature. The concept of a learning situation was used generally in two ways and thus classified into the themes of: "formal/informal learning situation" and "biologic/nonbiologic learning situation." Antecedents to the creation of a learning situation included personal and environmental factors. The characteristics of a learning situation were described in terms of being complex, dynamic, and offering potential and effective learning opportunities. Consequences of the learning situation included enhancement of the students' learning, professionalization, and socialization into the professional role. The nurse educator, when considering the application of the concept of a learning situation in their educational planning, must acknowledge that the application of this concept will include the student's clinical learning experiences. More studies are required to determine factors influencing the creation of a successful learning situation from the perspectives of nurse educators and nursing students, clinical nurses and patients.
Innovative smart micro sensors for Army weaponry applications
NASA Astrophysics Data System (ADS)
Ruffin, Paul B.; Brantley, Christina; Edwards, Eugene
2008-03-01
Micro sensors offer the potential solution to cost, size, and weight issues associated with smart networked sensor systems designed for environmental/missile health monitoring and rocket out-gassing/fuel leak detection, as well as situational awareness on the battlefield. In collaboration with the University of Arkansas (Fayetteville), University of Alabama (Tuscaloosa and Birmingham), Alabama A&M University (Normal), and Streamline Automation (Huntsville, AL), scientists and engineers at the Army Aviation & Missile Research, Development, and Engineering Center (AMRDEC) are investigating several nano-based technologies to solve the problem of sensing extremely small levels of toxic gases associated with both chemical warfare agents (in air and liquids) and potential rocket motor leaks. Innovative techniques are being devised to adapt voltammetry, which is a well established technique for the detection and quantification of substances dissolved in liquids, to low-cost micro sensors for detecting airborne chemical agents and potential missile propellant leakages. In addition, a surface enhanced Raman scattering (SERS) technique, which enhances Raman scattered light by excitation of surface plasmons on nanoporous metal surfaces (nanospheres), is being investigated to develop novel smart sensors for the detection of chemical agents (including rocket motor out-gassing) and potential detection of home-made explosive devices. In this paper, results are delineated that are associated with experimental studies, which are conducted for the aforementioned cases and for several other nano-based technology approaches. The design challenges of each micro sensor technology approach are discussed. Finally, a comparative analysis of the various innovative micro-sensor techniques is provided.
Surface operations usability study utilizing Capstone phase I avionics : quick look report
DOT National Transportation Integrated Search
2000-10-07
Evaluate usability, suitability and acceptability of of the surface moving map implemented within Capstone Phase 1 Avionics for surface operations : Task 1: Airport Surface Situational Awareness (ASSA) : Task 2: Surface-Final Approach Runway Occupanc...
Development of a Vision-Based Situational Awareness Capability for Unmanned Surface Vessels
2017-09-01
used to provide an SA capability for USVs. This thesis addresses the following research questions: (1) Can a computer vision– based technique be...BLANK 51 VI. CONCLUSION AND RECOMMENDATIONS A. CONCLUSION This research demonstrated the feasibility of using a computer vision– based ...VISION- BASED SITUATIONAL AWARENESS CAPABILITY FOR UNMANNED SURFACE VESSELS by Ying Jie Benjemin Toh September 2017 Thesis Advisor: Oleg
Situation Awareness Information Requirements for Commercial Airline Pilots
NASA Technical Reports Server (NTRS)
Endsley, Mica R.; Farley, Todd C.; Jones, William M.; Midkiff, Alan H.; Hansman, R. John
1998-01-01
Situation awareness is presented as a fundamental requirement for good airmanship, forming the basis for pilot decision making and performance. To develop a better understanding of the role of situation awareness in flying, an analysis was performed to determine the specific situation awareness information requirements for commercial aircraft pilots. This was conducted as a goal-directed task analysis in which pilots' major goals, subgoals, decisions, and associated situation awareness information requirements were delineated based on elicitation from experienced commercial airline pilots. A determination of the major situation awareness information requirements for visual and instrument flight was developed from this analysis, providing a foundation for future system development which seeks to enhance pilot situation awareness and provide a basis for the development of situation awareness measures for commercial flight.
2016-08-17
Research Laboratory AFRL /RVSV Space Vehicles Directorate 3550 Aberdeen Ave, SE 11. SPONSOR/MONITOR’S REPORT Kirtland AFB, NM 87117-5776 NUMBER(S) AFRL -RV...1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSV/Richard S. Erwin 1 cy... AFRL -RV-PS- AFRL -RV-PS- TR-2016-0114 TR-2016-0114 SPECIALIZED FINITE SET STATISTICS (FISST)- BASED ESTIMATION METHODS TO ENHANCE SPACE SITUATIONAL
Cockpit Displays for Enhancing Terminal-Area Situational Awareness and Runway Safety
NASA Technical Reports Server (NTRS)
Hyer, Paul V.; Otero, Sharon; Jones, Denise R. (Technical Monitor)
2007-01-01
HUD and PFD displays have been developed to enhance situational awareness and improve runway safety. These displays were designed to seamlessly transition through all phases of flight providing guidance and information to the pilot. This report describes the background of the Langley Research Center (LaRC) HUD and PFD work, the steps required to integrate the displays with those of other LaRC programs, the display characteristics of the several operational modes and the transitional logic governing the transition between displays.
NASA Technical Reports Server (NTRS)
Arteaga, Ricardo A. (Inventor)
2016-01-01
The present invention proposes an automatic dependent surveillance broadcast (ADS-B) architecture and process, in which priority aircraft and ADS-B IN traffic information are included in the transmission of data through the telemetry communications to a remote ground control station. The present invention further proposes methods for displaying general aviation traffic information in three and/or four dimension trajectories using an industry standard Earth browser for increased situation awareness and enhanced visual acquisition of traffic for conflict detection. The present invention enable the applications of enhanced visual acquisition of traffic, traffic alerts, and en-route and terminal surveillance used to augment pilot situational awareness through ADS-B IN display and information in three or four dimensions for self-separation awareness.
Giannona, Suna; Firkowska, Izabela; Rojas-Chapana, José; Giersig, Michael
2007-01-01
In this study, we describe the spatial organization of CAL-72 osteoblast-like cells on arrays of vertically aligned multi-walled carbon nanotubes (VACNTs). It was observed that, unlike cell growth on non-patterned surfaces, the cell attachment and spreading process on VACNTs was significantly enhanced. Additionally, since carbon nanotubes are known to possess resilient mechanical properties and are chemically stable, the effect of periodic arrays of VACNTs on CAL-72 osteoblast-like cells was also studied. The periodicity and alignment of VACNTs considerably influenced growth, shape and orientation of the cells by steering toward the nanopattern. This situation is of great interest for the potential application of VACNTs in bone bioenginnering. This data provides evidence that CAL-72 osteoblast-like cells can sense physical features at the nanoscale. These results give a fascinating insight into the ways in which cell growth can be influenced by man-made nanostructures and could provide a framework for achieving controlled cell guidance with controlled organization and special physical properties.
Open microwave cavity for use in a Purcell enhancement cooling scheme.
Evetts, N; Martens, I; Bizzotto, D; Longuevergne, D; Hardy, W N
2016-10-01
A microwave cavity is described which can be used to cool lepton plasmas for potential use in synthesis of antihydrogen. The cooling scheme is an incarnation of the Purcell effect: when plasmas are coupled to a microwave cavity, the plasma cooling rate is resonantly enhanced through increased spontaneous emission of cyclotron radiation. The cavity forms a three electrode section of a Penning-Malmberg trap and has a bulged cylindrical geometry with open ends aligned with the magnetic trapping axis. This allows plasmas to be injected and removed from the cavity without the need for moving parts while maintaining high quality factors for resonant modes. The cavity includes unique surface preparations for adjusting the cavity quality factor and achieving anti-static shielding using thin layers of nichrome and colloidal graphite, respectively. Geometric design considerations for a cavity with strong cooling power and low equilibrium plasma temperatures are discussed. Cavities of this weak-bulge design will be applicable to many situations where an open geometry is required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buongiorno, Jacopo; Hu, Lin-wen
2009-07-31
Nanofluids are colloidal dispersions of nanoparticles in water. Many studies have reported very significant enhancement (up to 200%) of the Critical Heat Flux (CHF) in pool boiling of nanofluids (You et al. 2003, Vassallo et al. 2004, Bang and Chang 2005, Kim et al. 2006, Kim et al. 2007). These observations have generated considerable interest in nanofluids as potential coolants for more compact and efficient thermal management systems. Potential Light Water Reactor applications include the primary coolant, safety systems and severe accident management strategies, as reported in other papers (Buongiorno et al. 2008 and 2009). However, the situation of interestmore » in reactor applications is often flow boiling, for which no nanofluid data have been reported so far. In this project we investigated the potential of nanofluids to enhance CHF in flow boiling. Subcooled flow boiling heat transfer and CHF experiments were performed with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water (≤ 0.1 % by volume) at atmospheric pressure. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient (HTC) are similar (within ±20%). The HTC increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. The CHF tests were conducted at 0.1 MPa and at three different mass fluxes (1500, 2000, 2500 kg/m2s) under subcooled conditions. The maximum CHF enhancement was 53%, 53% and 38% for alumina, zinc oxide and diamond, respectively, always obtained at the highest mass flux. A post-mortem analysis of the boiling surface reveals that its morphology is altered by deposition of the particles during nanofluids boiling. A confocal-microscopy-based examination of the test section revealed that nanoparticles deposition not only changes the number of micro-cavities on the surface, but also the surface wettability. A simple model was used to estimate the ensuing nucleation site density changes, but no definitive correlation between the nucleation site density and the heat transfer coefficient data could be found. Wettability of the surface was substantially increased for heater coupons boiled in alumina and zinc oxide nanofluids, and such wettability increase seems to correlate reasonably well with the observed marked CHF enhancement for the respective nanofluids. Interpretation of the experimental data was conducted in light of the governing surface parameters (surface area, contact angle, roughness, thermal conductivity) and existing models. It was found that no single parameter could explain the observed HTC or CHF phenomena.« less
NASA Astrophysics Data System (ADS)
Radenac, Marie-Hélène; Léger, Fabien; Messié, Monique; Dutrieux, Pierre; Menkes, Christophe; Eldin, Gérard
2016-04-01
Satellite observations of wind, sea level and derived currents, sea surface temperature (SST), and chlorophyll are used to expand our understanding of the physical and biological variability of the ocean surface north of New Guinea. Based on scarce cruise and mooring data, previous studies differentiated a trade wind situation (austral winter) when the New Guinea Coastal Current (NGCC) flows northwestward and a northwest monsoon situation (austral summer) when a coastal upwelling develops and the NGCC reverses. This circulation pattern is confirmed by satellite observations, except in Vitiaz Strait where the surface northwestward flow persists. We find that intraseasonal and seasonal time scale variations explain most of the variance north of New Guinea. SST and chlorophyll variabilities are mainly driven by two processes: penetration of Solomon Sea waters and coastal upwelling. In the trade wind situation, the NGCC transports cold Solomon Sea waters through Vitiaz Strait in a narrow vein hugging the coast. Coastal upwelling is generated in westerly wind situations (westerly wind event, northwest monsoon). Highly productive coastal waters are advected toward the equator and, during some westerly wind events, toward the eastern part of the warm pool. During El Niño, coastal upwelling events and northward penetration of Solomon Sea waters combine to influence SST and chlorophyll anomalies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yi, E-mail: yig057@ucsd.edu; Galperin, Michael, E-mail: migalperin@ucsd.edu; Nitzan, Abraham, E-mail: nitzan@post.tau.ac.il
Within a generic model we analyze the Stokes linewidth in surface enhanced Raman scattering (SERS) from molecules embedded as bridges in molecular junctions. We identify four main contributions to the off-resonant Stokes signal and show that under zero voltage bias (a situation pertaining also to standard SERS experiments) and at low bias junctions only one of these contributions is pronounced. The linewidth of this component is determined by the molecular vibrational relaxation rate, which is dominated by interactions with the essentially bosonic thermal environment when the relevant molecular electronic energy is far from the metal(s) Fermi energy(ies). It increases whenmore » the molecular electronic level is close to the metal Fermi level so that an additional vibrational relaxation channel due to electron-hole (eh) exciton in the molecule opens. Other contributions to the Raman signal, of considerably broader linewidths, can become important at larger junction bias.« less
Optical resonance analysis of reflected long period fiber gratings with metal film overlay
NASA Astrophysics Data System (ADS)
Zhang, Guiju; Cao, Bing; Wang, Chinua; Zhao, Minfu
2008-11-01
We present the experimental results of a novel single-ended reflecting surface plasma resonance (SPR) based long period fiber grating (LPFG) sensor. A long period fiber grating sensing device is properly designed and fabricated with a pulsed CO2 laser writing system. Different nm-thick thin metal films are deposited on the fiber cladding and the fiber end facet for the excitation of surface plasma waves (SPWs) and the reflection of the transmission spectrum of the LPFG with doubled interaction between metal-dielectric interfaces of the fiber to enhance the SPW of the all-fiber SPR-LPFG sensing system. Different thin metal films with different thicknesses are investigated. The effect of the excited SPW transmission along the fiber cladding-metal interface with silver and aluminum films is observed. It is found that different thicknesses of the metal overlay show different resonant behaviors in terms of resonance peak situation, bandwidth and energy loss. Within a certain range, thinner metal film shows narrower bandwidth and deeper peak loss.
Modelling unsaturated/saturated flow in weathered profiles
NASA Astrophysics Data System (ADS)
Ireson, A. M.; Ali, M. A.; Van Der Kamp, G.
2016-12-01
Vertical weathering profiles are a common feature of many geological materials, where the fracture or macropore porosity decreases progressively below the ground surface. The weathered near surface zone (WNSZ) has an enhanced storage and permeability. When the water table is deep, the WNSZ can act to buffer recharge. When the water table is shallow, intersecting the WNSZ, transmissivity and lateral saturated flow, increase with increasing water table elevation. Such a situation exists in the glacial till dominated landscapes of the Canadian prairies, effectively resulting in dynamic patterns of subsurface connectivity. Using dual permeability hydraulic properties with vertically scaled macroporosity, we show how the WNSZ can be represented in models. The resulting model can be more parsimonious than an equivalent model with two or more discrete layers, and more physically realistic. We implement our model in PARFLOW-CLM, and apply the model to a field site in the Canadian prairies. We are able to convincingly simulate shallow groundwater dynamics, and spatio-temporal patterns of groundwater connectivity.
Enhancing astronaut performance using sensorimotor adaptability training
Bloomberg, Jacob J.; Peters, Brian T.; Cohen, Helen S.; Mulavara, Ajitkumar P.
2015-01-01
Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments—enhancing their ability to “learn to learn.” We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts. PMID:26441561
Enhancing astronaut performance using sensorimotor adaptability training.
Bloomberg, Jacob J; Peters, Brian T; Cohen, Helen S; Mulavara, Ajitkumar P
2015-01-01
Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments-enhancing their ability to "learn to learn." We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts.
Taché, Alex; Gan, Lu; Deporter, Douglas; Pilliar, Robert M
2004-01-01
The effect of adding a thin sol-gel-formed calcium phosphate (CaP) coating to sintered porous-surfaced titanium alloy (Ti-6Al-4V) implants on rates of initial bone ingrowth was investigated. Control implants (as manufactured) and similar implants with sol-gel CaP coatings were randomly placed in distal femoral rabbit condyles (1 implant/leg). After healing for 6, 9, 12, and 16 days, 8 of 10 rabbits in each time group were assessed for maximum implant pullout force (N) and interface stiffness (N/mm). Selected extracted implants also were examined by secondary electron imaging to characterize affected surfaces. The implants of the remaining 2 rabbits in each group were examined by backscattered scanning electron microscopy (BSEM). Significantly greater pullout forces and interface stiffness were found for CaP-coated implants at 6 and 9 days. At 6 days, BSEM revealed bone ingrowth on CaP-coated implants but not on control implants. Secondary electron imaging and BSEM observations also suggested greater bone ingrowth with CaP-coated porous implants at 9, 12, and 16 days. Sol-gel-formed CaP surface films significantly enhance rates of bone ingrowth into sintered porous-surfaced implants. This surface treatment may have a number of clinical benefits, including shortening the period prior to functional loading of such implants and improving treatment outcomes in situations of poor bone quality and/or quantity. (More than 50 references).
Enhancing Evacuation Plans with a Situation Awareness System Based on End-User Knowledge Provision
Morales, Augusto; Alcarria, Ramon; Martin, Diego; Robles, Tomas
2014-01-01
Recent disasters have shown that having clearly defined preventive procedures and decisions is a critical component that minimizes evacuation hazards and ensures a rapid and successful evolution of evacuation plans. In this context, we present our Situation-Aware System for enhancing Evacuation Plans (SASEP) system, which allows creating end-user business rules that technically support the specific events, conditions and actions related to evacuation plans. An experimental validation was carried out where 32 people faced a simulated emergency situation, 16 of them using SASEP and the other 16 using a legacy system based on static signs. From the results obtained, we compare both techniques and discuss in which situations SASEP offers a better evacuation route option, confirming that it is highly valuable when there is a threat in the evacuation route. In addition, a study about user satisfaction using both systems is presented showing in which cases the systems are assessed as satisfactory, relevant and not frustrating. PMID:24961212
Appreciative inquiry in medical education.
Sandars, John; Murdoch-Eaton, Deborah
2017-02-01
The practice of medicine, and also medical education, typically adopts a problem-solving approach to identify "what is going wrong" with a situation. However, an alternative is Appreciative Inquiry (AI), which adopts a positive and strengths-based approach to identify "what is going well" with a situation. The AI approach can be used for the development and enhancement of the potential of both individuals and organizations. An essential aspect of the AI approach is the generative process, in which a new situation is envisioned and both individual and collective strengths are mobilized to make changes to achieve the valued future situation. The AI approach has been widely used in the world of business and general education, but is has an exciting potential for medical education, including curriculum development, faculty development, supporting learners through academic advising and mentoring, but also for enhancing the teaching and learning of both individuals and groups. This AMEE Guide describes the core principles of AI and their practical application in medical education.
Enhancing evacuation plans with a situation awareness system based on end-user knowledge provision.
Morales, Augusto; Alcarria, Ramon; Martin, Diego; Robles, Tomas
2014-06-24
Recent disasters have shown that having clearly defined preventive procedures and decisions is a critical component that minimizes evacuation hazards and ensures a rapid and successful evolution of evacuation plans. In this context, we present our Situation-Aware System for enhancing Evacuation Plans (SASEP) system, which allows creating end-user business rules that technically support the specific events, conditions and actions related to evacuation plans. An experimental validation was carried out where 32 people faced a simulated emergency situation, 16 of them using SASEP and the other 16 using a legacy system based on static signs. From the results obtained, we compare both techniques and discuss in which situations SASEP offers a better evacuation route option, confirming that it is highly valuable when there is a threat in the evacuation route. In addition, a study about user satisfaction using both systems is presented showing in which cases the systems are assessed as satisfactory, relevant and not frustrating.
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Shelton, Kevin J.; Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Norman, Robert M.
2007-01-01
Experiments and flight tests have shown that a Head-Up Display (HUD) and a head-down, electronic moving map (EMM) can be enhanced with Synthetic Vision for airport surface operations. While great success in ground operations was demonstrated with a HUD, the research noted that two major HUD limitations during ground operations were their monochrome form and limited, fixed field of regard. A potential solution to these limitations found with HUDs may be emerging Head Worn Displays (HWDs). HWDs are small, lightweight full color display devices that may be worn without significant encumbrance to the user. By coupling the HWD with a head tracker, unlimited field-of-regard may be realized for commercial aviation applications. In the proposed paper, the results of two ground simulation experiments conducted at NASA Langley are summarized. The experiments evaluated the efficacy of head-worn display applications of Synthetic Vision and Enhanced Vision technology to enhance transport aircraft surface operations. The two studies tested a combined six display concepts: (1) paper charts with existing cockpit displays, (2) baseline consisting of existing cockpit displays including a Class III electronic flight bag display of the airport surface; (3) an advanced baseline that also included displayed traffic and routing information, (4) a modified version of a HUD and EMM display demonstrated in previous research; (5) an unlimited field-of-regard, full color, head-tracked HWD with a conformal 3-D synthetic vision surface view; and (6) a fully integrated HWD concept. The fully integrated HWD concept is a head-tracked, color, unlimited field-of-regard concept that provides a 3-D conformal synthetic view of the airport surface integrated with advanced taxi route clearance, taxi precision guidance, and data-link capability. The results of the experiments showed that the fully integrated HWD provided greater path performance compared to using paper charts alone. Further, when comparing the HWD with the HUD concept, there were no differences in path performance. In addition, the HWD and HUD concepts were rated via paired-comparisons the same in terms of situational awareness and workload. However, there were over twice as many taxi incursion events with the HUD than the HWD.
Implementation of Enhanced Propulsion Control Modes for Emergency Flight Operation
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Chin, Jeffrey C.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2011-01-01
Aircraft engines can be effective actuators to help pilots avert or recover from emergency situations. Emergency control modes are being developed to enhance the engines performance to increase the probability of recovery under these circumstances. This paper discusses a proposed implementation of an architecture that requests emergency propulsion control modes, allowing the engines to deliver additional performance in emergency situations while still ensuring a specified safety level. In order to determine the appropriate level of engine performance enhancement, information regarding the current emergency scenario (including severity) and current engine health must be known. This enables the engine to operate beyond its nominal range while minimizing overall risk to the aircraft. In this architecture, the flight controller is responsible for determining the severity of the event and the level of engine risk that is acceptable, while the engine controller is responsible for delivering the desired performance within the specified risk range. A control mode selector specifies an appropriate situation-specific enhanced mode, which the engine controller then implements. The enhanced control modes described in this paper provide additional engine thrust or response capabilities through the modification of gains, limits, and the control algorithm, but increase the risk of engine failure. The modifications made to the engine controller to enable the use of the enhanced control modes are described, as are the interaction between the various subsystems and importantly, the interaction between the flight controller/pilot and the propulsion control system. Simulation results demonstrate how the system responds to requests for enhanced operation and the corresponding increase in performance.
NASA Astrophysics Data System (ADS)
Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.
2011-10-01
Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation.
NASA Astrophysics Data System (ADS)
Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.
2011-11-01
Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation.
Effects of radiation on the leach rates of vitrified radioactive waste
NASA Astrophysics Data System (ADS)
Burns, W. G.; Hughes, A. E.; Marples, J. A. C.; Nelson, R. S.; Stoneham, A. M.
1982-06-01
This report reviews the possible effects of both radiation damage to the glass and of radiolysis of the leachant on the leaching behaviour of vitrified radioactive waste. It has been stimulated particularly by recent papers, which have suggested that the leach rates of glasses will be enhanced by large factors after a 'critical' dose of radiation from alpha decays. These experiments have been conducted at highly accelerated rates using ion beams. The relationship between these experiments and the situation in vitrified waste has been assessed, taking into account the fact that experiments using alpha emitters incorporated in the glass have failed to find significantly enhanced leach rates after doses about five times larger than those equivalent to this 'critical' dose. It is concluded that these differences are observed partly because the ion beam experiments are carried out at such high dose rates that some recovery effects important at lower rates do not come into play. In the case of experiments with 2 keV argon ions, surface effects other than genuine radiation damage must be taken into account. In practice, if water has penetrated the canister, vitrified waste will be irradiated in the presence of the leaching solution. Enhancements of the leach rate due to the transient effects of radiation in the solid are shown to be completely negligible. The effects of radiolysis of the leaching solution and of any air in contact with the solution have also been considered in some detail and related to recent experiments by McVay and Pederson. It is shown that these radiolysis effects will not lead to any situations requiring special precautions in practice, although changes in surface leach rate by small factors can be expected under some circumstances. Any effect of irradiation on leach rates must be seen in the context of a waste repository. Along with other studies we hold the view that the rate of loss of material will be limited by the access of water to the repository, and will therefore depend on the effective saturation solubility of the glass in the leachant, not on the leach rate as usually determined in laboratory tests. Radiation damage is not expected to change the saturation solubility by more than a factor of two or three.
NASA Astrophysics Data System (ADS)
Gao, Wenli; Feng, Bo; Ni, Yuxiang; Yang, Yongli; Lu, Xiong; Weng, Jie
2010-11-01
Titanium and its alloys are frequently used as surgical implants in load bearing situations, such as hip prostheses and dental implants, owing to their biocompatibility, mechanical and physical properties. In this paper, a layer-by-layer (LBL) self-assembly technique, based on the polyelectrolyte-mediated electrostatic adsorption of poly-L-lysine (PLL) and DNA, was used to the formation of multilayer on titanium surfaces. Then bovine serum albumin (BSA) adsorption and biomimetic mineralization of modified surfaces were studied. The chemical composition and wettability of assembled substrates were investigated by X-ray photoelectron spectroscopy (XPS), fluorescence microscopy and water contact angle measurement, respectively. The XPS analysis indicated that the layers were assembled successfully through electrostatic attractions. The measurement with ultraviolet (UV) spectrophotometer revealed that the LBL films enhanced ability of BSA adsorption onto titanium. The adsorption quantity of BSA on the surface terminated with PLL was higher than that of the surface terminated with DNA, and the samples of TiOH/P/D/P absorbed BSA most. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that samples of assembled PLL or/and DNA had better bioactivity in inducing HA formation. Thus the assembling of PLL and DNA onto the surface of titanium in turn via a layer-by-layer self-assembly technology can improve the bioactivity of titanium.
Nonlinear interaction and wave breaking with a submerged porous structure
NASA Astrophysics Data System (ADS)
Hsieh, Chih-Min; Sau, Amalendu; Hwang, Robert R.; Yang, W. C.
2016-12-01
Numerical simulations are performed to investigate interactive velocity, streamline, turbulent kinetic energy, and vorticity perturbations in the near-field of a submerged offshore porous triangular structure, as Stokes waves of different heights pass through. The wave-structure interaction and free-surface breaking for the investigated flow situations are established based on solutions of 2D Reynolds Averaged Navier-Stokes equations in a Cartesian grid in combination with K-ɛ turbulent closure and the volume of fluid methodology. The accuracy and stability of the adopted model are ascertained by extensive comparisons of computed data with the existing experimental and theoretical findings and through efficient predictions of the internal physical kinetics. Simulations unfold "clockwise" and "anticlockwise" rotation of fluid below the trough and the crest of the viscous waves, and the penetrated wave energy creates systematic flow perturbation in the porous body. The interfacial growths of the turbulent kinetic energy and the vorticity appear phenomenal, around the apex of the immersed structure, and enhanced significantly following wave breaking. Different values of porosity parameter and two non-porous cases have been examined in combination with varied incident wave height to reveal/analyze the nonlinear flow behavior in regard to local spectral amplification and phase-plane signatures. The evolution of leading harmonics of the undulating free-surface and the vertical velocity exhibits dominating roles of the first and the second modes in inducing the nonlinearity in the post-breaking near-field that penetrates well below the surface layer. The study further suggests the existence of a critical porosity that can substantially enhance the wave-shoaling and interface breaking.
Effect of atmospheric electricity on dry deposition of airborne particles from atmosphere
NASA Astrophysics Data System (ADS)
Tammet, H.; Kimmel, V.; Israelsson, S.
The electric mechanism of dry deposition is well known in the case of unattached radon daughter clusters that are unipolar charged and of high mobility. The problematic role of the electric forces in deposition of aerosol particles is theoretically examined by comparing the fluxes of particles carried by different deposition mechanisms in a model situation. The electric mechanism of deposition appears essential for particles of diameter 10-200 nm in conditions of low wind speed. The electric flux of fine particles can be dominant on the tips of leaves and needles even in a moderate atmospheric electric field of a few hundred V m -1 measured over the plane ground surface. The electric deposition is enhanced under thunderclouds and high voltage power lines. Strong wind suppresses the relative role of the electric deposition when compared with aerodynamic deposition. When compared with diffusion deposition the electric deposition appears less uniform: the precipitation particulate matter on the tips of leaves and especially on needles of top branches of conifer trees is much more intensive than on the ground surface and electrically shielded surfaces of plants. The knowledge of deposition geometry could improve our understanding of air pollution damage to plants.
Optical monitoring of film pollution on sea surface
NASA Astrophysics Data System (ADS)
Pavlov, Andrey; Konstantinov, Oleg; Shmirko, Konstantin
2017-11-01
The organic films form a brightness contrast on the sea surface. It makes possible to use cheap simple and miniature systems for video monitoring of pollution of coastal marine areas by oil products in the bunkering of ships, emergency situations at oil terminals, gas and oil pipelines, hydrocarbon production platforms on the shelf, etc.1-16 A panoramic video system with a polarization filter on the lens, located at an altitude of 90 m above sea level, can provide effective control of the water area within a radius of 7 kilometers,17-19 and modern photogrammetry technologies allow not only to register the fact of pollution and get a portrait of the offender, but also with a high Spatial and temporal resolution to estimate the dimensions and trace the dynamics of movement and transformation of the film in a geographic coordinate system. Of particular relevance is the optical method of controlling the pollution of the sea surface at the present time with the development of unmanned aerial vehicles that are already equipped with video cameras and require only a minor upgrade of their video system to enhance the contrast of images of organic films.
Enhancing Access to Situational Vocabulary by Leveraging Geographic Context
ERIC Educational Resources Information Center
Patel, Rupal; Radhakrishnan, Rajiv
2007-01-01
Users of augmentative and alternative communication (AAC) aids could benefit from novel methods for accelerating access to contextually relevant vocabulary. This paper describes our initial efforts toward improving access to situational vocabulary through the use of geographic context to predict vocabulary. A corpus of spoken data produced by one…
Use of Mobile Video to Enhance Situational Awareness in HA/DR Missions
2012-09-01
challenges . Although many definitions have been proposed so far, Mica R. Endsley describes “situational awareness” as: [T]he perception of the...Player, QuickTime, Flash Player, VLC Media Player, HTML 5 Video and DivX Web Player. This feature helps overcome a usual handicap that developers
Asymmetrical Role-Taking: Comparing Battered and Non-battered Women.
ERIC Educational Resources Information Center
Forte, James A.; And Others
1996-01-01
Tests Frank's model of oppressive situations and asymmetric role-taking in a survey of 66 battered women and 80 nonbattered women. Battered women's social situations were characterized by powerlessness, social isolation, and economic dependency. Develops the value of this theoretical approach with its emphasis on enhancing women's power base and…
Strengthening Collaborative Leadership for Thai Primary School Administrators
ERIC Educational Resources Information Center
Samriangjit, Prapaporn; Tesaputa, Kowat; Somprach, Kanokorn
2016-01-01
The objectives of this research were: 1) to investigate the elements and indicators of collaborative leadership of primary school administrators, 2) to explore the existing situation and required situation of collaborative leadership of primary school administrators, 3) to develop a program to enhance collaborative leadership of primary school…
Design of Multimedia Situational Awareness Training for Pilots.
ERIC Educational Resources Information Center
Homan, Willem J.
1998-01-01
A recent development in aviation is the personal computer aviation training device (PC-ATD). This article provides an overview of instructional multimedia for pilot training, specifically for enhancing situational awareness (SA), a state in which a pilot's perceptions match reality. Discusses how PC-based trainers can be used to familiarize pilots…
Yu, Ye; He, Jianjun; Zhao, Suping; Liu, Na; Chen, Jinbei; Mao, Hongjun; Wu, Lin
2016-11-01
Since 1999 Chinese government has made great effort to reforest the south and north mountains surrounding urban Lanzhou - a city located in a river valley, Northwestern China. Until 2009 obvious land use change occurred, with 69.2% of the reforested area been changed from grasslands, croplands, barren or sparsely vegetated land to closed shrublands and 20.6% from closed shrublands, grasslands, and croplands to forests. Reforestation changes land-surface properties, with possible impact on the evolution of atmospheric variables. To understand to what extent the local meteorology and environment could be affected by reforestation in winter, and through what processes, two sets of simulations were conducted using the Weather Research and Forecasting model (WRF) and the FLEXible PARTicle (FLEXPART) dispersion model for a control case with high-resolution remotely sensed land cover data for 2009 and a scenario assuming no reforestation since 1999. Results suggested that the changes in albedo, surface exchange coefficient and surface soil heat conductivity related to reforestation led to the changes in surface net radiation and surface energy partitioning, which in turn affected the meteorological fields and enhanced the mountain-valley wind circulation. Replacement of shrublands and grassland with forest in the south mountain through reforestation play a dominant role in the enhancement of mountain-valley wind circulation. Reforestation increased the amount of air exchanged between the valley and the outside during the day, with the largest hourly increase of 10% on calm weather days and a monthly mean hourly increase of 2% for the study period (Dec. 2009). Reforestation affected the spatial distribution of pollutants and slightly improved the urban air quality, especially in the eastern valley. Results from this study provide useful information for future urban air quality management and reforestation plan, and some experience for cities with similar situations in the world. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Weiwei; Qi, Hui; Wang, Baogang; Wang, Qiyu; Wei, Shuting; Zhang, Xiaolin; Wang, Ying; Zhang, Lei; Cui, Xiaoqiang
2018-01-24
A disposable needle-type of hybrid electrode was prepared from a core of stainless steel needle whose surface was modified with a 3D nanoporous gold/NiCo 2 O 4 nanowall hybrid structure for electrochemical non-enzymatic glucose detection. This hybrid electrode, best operated at 0.45 V (vs. SCE) in solutions of pH 13 has a linear response in the 0.01 to 21 mM glucose concentration range, a response time of <1 s, and a 1 μM detection limit (at an S/N ratio of 3). The remarkable enhancement compared to the solid gold/NiCo 2 O 4 and stainless steel/NiCo 2 O 4 hybrid electrodes in electrochemical performance is assumed to originate from the good electrical conductivity and large surface area of the hybrid electrode, which enhance the transport of mass and charge during electrochemical reactions. This biosensor was also applied to real sample analysis with little interferences. The electrode is disposable and considered to be a promising tool for non-enzymatic sensing of glucose in a variety of practical situations. Graphical abstract Ultrathin NiCo 2 O 4 nanowalls supported on nanoporous gold that is coated on a stainless steel needle was fabricated for sensitive non-enzymatic amperometric sensing of glucose.
Objective evaluation of situation awareness for dynamic decision makers in teleoperations
NASA Technical Reports Server (NTRS)
Endsley, Mica R.
1991-01-01
Situation awareness, a current mental mode of the environment, is critical to the ability of operators to perform complex and dynamic tasks. This should be particularly true for teleoperators, who are separated from the situation they need to be aware of. The design of the man-machine interface must be guided by the goal of maintaining and enhancing situation awareness. The objective of this work has been to build a foundation upon which research in the area can proceed. A model of dynamic human decision making which is inclusive of situation awareness will be presented, along with a definition of situation awareness. A method for measuring situation awareness will also be presented as a tool for evaluating design concepts. The Situation Awareness Global Assessment Technique (SAGAT) is an objective measure of situation awareness originally developed for the fighter cockpit environment. The results of SAGAT validation efforts will be presented. Implications of this research for teleoperators and other operators of dynamic systems will be discussed.
Sensor supported pilot assistance for helicopter flight in DVE
NASA Astrophysics Data System (ADS)
Waanders, Tim; Münsterer, T.; Kress, M.
2013-05-01
Helicopter operations at low altitude are to this day only performed under VFR conditions in which safe piloting of the aircraft relies on the pilot's visual perception of the outside environment. However, there are situations in which a deterioration of visibility conditions may cause the pilot to lose important visual cues thereby increasing workload and compromising flight safety and mission effectiveness. This paper reports on a pilot assistance system for all phases of flight which is intended to: • Provide navigational support and mission management • Support landings/take-offs in unknown environment and in DVE • Enhance situational awareness in DVE • Provide obstacle and terrain surface detection and warning • Provide upload, sensor based update and download of database information for debriefing and later missions. The system comprises a digital terrain and obstacle database, tactical information, flight plan management combined with an active 3D sensor enabling the above mentioned functionalities. To support pilots during operations in DVE, an intuitive 3D/2D cueing through both head-up and head-down means is proposed to retain situational awareness. This paper further describes the system concept and will elaborate on results of simulator trials in which the functionality was evaluated by operational pilots in realistic and demanding scenarios such as a SAR mission to be performed in mountainous area under different visual conditions. The objective of the simulator trials was to evaluate the functional integration and HMI definition for the NH90 Tactical Transport Helicopter.
NASA Astrophysics Data System (ADS)
Sowanto; Kusumah, Y. S.
2018-05-01
This research was conducted based on the problem of a lack of students’ mathematical representation ability as well as self-efficacy in accomplishing mathematical tasks. To overcome this problem, this research used situation-based learning (SBL) assisted by geometer’s sketchpad program (GSP). This research investigated students’ improvement of mathematical representation ability who were taught under situation-based learning (SBL) assisted by geometer’s sketchpad program (GSP) and regular method that viewed from the whole students’ prior knowledge (high, average, and low level). In addition, this research investigated the difference of students’ self-efficacy after learning was given. This research belongs to quasi experiment research using non-equivalent control group design with purposive sampling. The result of this research showed that students’ enhancement in their mathematical representation ability taught under SBL assisted by GSP was better than the regular method. Also, there was no interaction between learning methods and students prior knowledge in student’ enhancement of mathematical representation ability. There was significant difference of students’ enhancement of mathematical representation ability taught under SBL assisted by GSP viewed from students’ prior knowledge. Furthermore, there was no significant difference in terms of self-efficacy between those who were taught by SBL assisted by GSP with the regular method.
Arousal Enhanced Memory Retention Is Eliminated Following Temporal Lobe Resection
ERIC Educational Resources Information Center
Ahs, Fredrik; Kumlien, Eva; Fredrikson, Mats
2010-01-01
The amygdala, situated in the anterior medial temporal lobe (MTL), is involved in the emotional enhancement of memory. The present study evaluated whether anterior MTL-resections attenuated arousal induced memory enhancement for pictures. Also, the effect of MTL-resections on response latencies at retrieval was assessed. Thirty-one patients with…
Heterogeneous propellant internal ballistics: criticism and regeneration
NASA Astrophysics Data System (ADS)
Glick, R. L.
2011-10-01
Although heterogeneous propellant and its innately nondeterministic, chemically discrete morphology dominates applications, ballisticcharacterization deterministic time-mean burning rate and acoustic admittance measures' absence of explicit, nondeterministic information requires homogeneous propellant with a smooth, uniformly regressing burning surface: inadequate boundary conditions for heterogeneous propellant grained applications. The past age overcame this dichotomy with one-dimensional (1D) models and empirical knowledge from numerous, adequately supported motor developments and supplementary experiments. However, current cost and risk constraints inhibit this approach. Moreover, its fundamental science approach is more sensitive to incomplete boundary condition information (garbage-in still equals garbage-out) and more is expected. This work critiques this situation and sketches a path forward based on enhanced ballistic and motor characterizations in the workplace and approximate model and apparatus developments mentored by CSAR DNS capabilities (or equivalent).
Exploiting evanescent-wave amplification for subwavelength low-contrast particle detection
NASA Astrophysics Data System (ADS)
Roy, S.; Pereira, S. F.; Urbach, H. P.; Wei, Xukang; El Gawhary, O.
2017-07-01
The classical problem of subwavelength particle detection on a flat surface is especially challenging when the refractive index of the particle is close to that of the substrate. We demonstrate a method to improve the detection ability several times for such a situation, by enhancing the "forbidden" evanescent waves in the substrate using the principle of super-resolution with evanescent waves amplification. The working mechanism of the system and experimental validation from a design with a thin single dielectric layer is presented. The resulting system is a simple but complete example of evanescent-wave generation, amplification, and the consequent modulation of the far field. This principle can have far reaching impact in the field of particle detection in several applications ranging from contamination control to interferometric scattering microscopy for biological samples.
Sergiienko, Sergii; Moor, Kamila; Gudun, Kristina; Yelemessova, Zarina; Bukasov, Rostislav
2017-02-08
We used a combination of Raman microscopy, AFM and TEM to quantify the influence of dimerization on the surface enhanced Raman spectroscopy (SERS) signal for gold and silver nanoparticles (NPs) modified with Raman reporters and situated on gold, silver, and aluminum films and a silicon wafer. The overall increases in the mean SERS enhancement factor (EF) upon dimerization (up by 43% on average) and trimerisation (up by 96% on average) of AuNPs and AgNPs on the studied metal films are within a factor of two, which is moderate when compared to most theoretical models. However, the maximum ratio of EFs for some dimers to the mean EF of monomers can be as high as 5.5 for AgNPs on a gold substrate. In contrast, for dimerization and trimerization of gold and silver NPs on silicon, the mean EF increases by 1-2 orders of magnitude relative to the mean EF of single NPs. Therefore, hot spots in the interparticle gap between gold nanoparticles rather than hot spots between Au nanoparticles and the substrate dominate SERS enhancement for dimers and trimers on a silicon substrate. However, Raman labeled noble metal nanoparticles on plasmonic metal films generate on average SERS enhancement of the same order of magnitude for both types of hot spot zones (e.g. NP/NP and NP/metal film).
Expertise for Teaching Biology Situated in the Context of Genetic Testing
ERIC Educational Resources Information Center
van der Zande, Paul; Akkerman, Sanne F.; Brekelmans, Mieke; Waarlo, Arend Jan; Vermunt, Jan D.
2012-01-01
Contemporary genomics research will impact the daily practice of biology teachers who want to teach up-to-date genetics in secondary education. This article reports on a research project aimed at enhancing biology teachers' expertise for teaching genetics situated in the context of genetic testing. The increasing body of scientific knowledge…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Siyuan; Hwang, Youngdeok; Khabibrakhmanov, Ildar
With increasing penetration of solar and wind energy to the total energy supply mix, the pressing need for accurate energy forecasting has become well-recognized. Here we report the development of a machine-learning based model blending approach for statistically combining multiple meteorological models for improving the accuracy of solar/wind power forecast. Importantly, we demonstrate that in addition to parameters to be predicted (such as solar irradiance and power), including additional atmospheric state parameters which collectively define weather situations as machine learning input provides further enhanced accuracy for the blended result. Functional analysis of variance shows that the error of individual modelmore » has substantial dependence on the weather situation. The machine-learning approach effectively reduces such situation dependent error thus produces more accurate results compared to conventional multi-model ensemble approaches based on simplistic equally or unequally weighted model averaging. Validation over an extended period of time results show over 30% improvement in solar irradiance/power forecast accuracy compared to forecasts based on the best individual model.« less
Inverted organic electronic and optoelectronic devices
NASA Astrophysics Data System (ADS)
Small, Cephas E.
The research and development of organic electronics for commercial application has received much attention due to the unique properties of organic semiconductors and the potential for low-cost high-throughput manufacturing. For improved large-scale processing compatibility and enhanced device stability, an inverted geometry has been employed for devices such as organic light emitting diodes and organic photovoltaic cells. These improvements are attributed to the added flexibility to incorporate more air-stable materials into the inverted device geometry. However, early work on organic electronic devices with an inverted geometry typically showed reduced device performance compared to devices with a conventional structure. In the case of organic light emitting diodes, inverted devices typically show high operating voltages due to insufficient carrier injection. Here, a method for enhancing hole injection in inverted organic electronic devices is presented. By incorporating an electron accepting interlayer into the inverted device, a substantial enhancement in hole injection efficiency was observed as compared to conventional devices. Through a detailed carrier injection study, it is determined that the injection efficiency enhancements in the inverted devices are due to enhanced charge transfer at the electron acceptor/organic semiconductor interface. A similar situation is observed for organic photovoltaic cells, in which devices with an inverted geometry show limited carrier extraction in early studies. In this work, enhanced carrier extraction is demonstrated for inverted polymer solar cells using a surface-modified ZnO-polymer composite electron-transporting layer. The insulating polymer in the composite layer inhibited aggregation of the ZnO nanoparticles, while the surface-modification of the composite interlayer improved the electronic coupling with the photoactive layer. As a result, inverted polymer solar cells with power conversion efficiencies of over 8% were obtained. To further study carrier extraction in inverted polymer solar cells, the active layer thickness dependence of the efficiency was investigated. For devices with active layer thickness < 200 nm, power conversion efficiencies over 8% was obtained. This result is important for demonstrating improved large-scale processing compatibility. Above 200 nm, significant reduction in cell efficiency were observed. A detailed study of the loss processes that contributed to the reduction in efficiency for thick-film devices are presented.
Improving Situation Awareness with the Android Team Awareness Kit (ATAK)
2015-04-01
fluid user experience and enhanced data sharing. 19 6.2.2 Esri Esri is a US-based company that sells geospatial information systems and data services...field, Situational Awareness (SA) needs to be conveyed in a de- centralized manner to the users at the edge of the network as well as at operations...that ATAK has built-in, and the ways it is being used by a variety of military, homeland security, and law enforcement users . Keywords: situational
Ofan, Renana H.; Rubin, Nava
2014-01-01
Social anxiety is the intense fear of negative evaluation by others, and it emerges uniquely from a social situation. Given its social origin, we asked whether an anxiety-inducing social situation could enhance the processing of faces linked to the situational threat. While past research has focused on how individual differences in social anxiety relate to face processing, we tested the effect of manipulated social anxiety in the context of anxiety about appearing racially prejudiced in front of a peer. Visual processing of faces was indexed by the N170 component of the event-related potential. Participants viewed faces of Black and White males, along with nonfaces, either in private or while being monitored by the experimenter for signs of prejudice in a ‘public’ condition. Results revealed a difference in the N170 response to Black and Whites faces that emerged only in the public condition and only among participants high in dispositional social anxiety. These results provide new evidence that anxiety arising from the social situation modulates the earliest stages of face processing in a way that is specific to a social threat, and they shed new light on how anxiety effects on perception may contribute to the regulation of intergroup responses. PMID:23709354
Past- and present-day Madden-Julian Oscillation in CNRM-CM5
NASA Astrophysics Data System (ADS)
Song, Eun-Ji; Seo, Kyong-Hwan
2016-04-01
Madden-Julian Oscillation (MJO) in the past (nineteenth century) and present day (twentieth century) is examined using preindustrial and historical experiments of Centre National de Recherches Météorologiques-Coupled Models, version 5 (CNRM-CM5) in Coupled Model Intercomparison Project Phase 5 (CMIP5). The present-day MJO is stronger than the past MJO by 33% and it is ~10% more frequent. In particular, the MJO phases 4-7 signifying deep convection situated over the Maritime continent and western Pacific (WP) are considerably enhanced. These changes are due mainly to greenhouse gas forcing with little impact from nature forcing. Dynamical mechanisms for this change are investigated. A peculiar strengthening of MJO over WP comes from increased basic-state sea surface temperature (SST) over the Central Pacific (CP) and EP. The increase in precipitation over WP results from both the response to enhanced SST over CP and the inverted Walker circulation induced by the EP and CP SST increase. The latter causes a pair of anticyclonic Rossby waves straddling the equator, leading to moisture convergence over WP.
NASA Astrophysics Data System (ADS)
Jakub, Fabian; Mayer, Bernhard
2017-11-01
The formation of shallow cumulus cloud streets was historically attributed primarily to dynamics. Here, we focus on the interaction between radiatively induced surface heterogeneities and the resulting patterns in the flow. Our results suggest that solar radiative heating has the potential to organize clouds perpendicular to the sun's incidence angle. To quantify the extent of organization, we performed a high-resolution large-eddy simulation (LES) parameter study. We varied the horizontal wind speed, the surface heat capacity, the solar zenith and azimuth angles, and radiative transfer parameterizations (1-D and 3-D). As a quantitative measure we introduce a simple algorithm that provides a scalar quantity for the degree of organization and the alignment. We find that, even in the absence of a horizontal wind, 3-D radiative transfer produces cloud streets perpendicular to the sun's incident direction, whereas the 1-D approximation or constant surface fluxes produce randomly positioned circular clouds. Our reasoning for the enhancement or reduction of organization is the geometric position of the cloud's shadow and its corresponding surface fluxes. Furthermore, when increasing horizontal wind speeds to 5 or 10 m s-1, we observe the development of dynamically induced cloud streets. If, in addition, solar radiation illuminates the surface beneath the cloud, i.e., when the sun is positioned orthogonally to the mean wind field and the solar zenith angle is larger than 20°, the cloud-radiative feedback has the potential to significantly enhance the tendency to organize in cloud streets. In contrast, in the case of the 1-D approximation (or overhead sun), the tendency to organize is weaker or even prohibited because the shadow is cast directly beneath the cloud. In a land-surface-type situation, we find the organization of convection happening on a timescale of half an hour. The radiative feedback, which creates surface heterogeneities, is generally diminished for large surface heat capacities. We therefore expect radiative feedbacks to be strongest over land surfaces and weaker over the ocean. Given the results of this study we expect that simulations including shallow cumulus convection will have difficulties producing cloud streets if they employ 1-D radiative transfer solvers or may need unrealistically high wind speeds to excite cloud street organization.
Montemayor, Raymond; Ranganathan, Chitra
2012-01-01
Using hypothetical vignettes, 152 parents of children 10-17 years old living in Chennai, India, made attributions about whether the origins of 2 positive and 2 negative behaviors performed by their own child or another child were due to the child's personality or the situation, or to parenting or nonparenting influences based on the frequency, intensity, and cross-situational consistency of the behavior. Parents attributed the positive behaviors of all children to the personality of the child and to parenting. Parents attributed negative behavior of their own children to situational influences and nonparenting effects, but attributed the negative behavior of other children to their personality and to parenting, a pattern that enhances and reinforces parent self-esteem. Results were discussed in terms of the self-serving bias and the actor-observer bias, cognitive distortions that protect and enhance parents' views of themselves and their children.
Cue-enhancement as a function of task-set.
DOT National Transportation Integrated Search
1967-08-01
Under flight conditions, as well as in other situations, judgments of the distances between objects may depend upon a variety of possible cues. In this study, the hypothesis was tested that the intention to use a particular cue relation would enhance...
The Effects of Enhanced Informed Consent in a Pro-Life Pregnancy Counseling Center.
ERIC Educational Resources Information Center
Mardirosian, Kathryn; And Others
1990-01-01
Investigated effects of enhanced informed consent condition on attitudes of female clients (n=60) toward a counselor, counseling situation, and decision making in a pro-life pregnancy center. Results suggest enhanced consent did not lead to increased or decreased decisions to abort nor to differential attitudes toward counselor or setting.…
NASA Astrophysics Data System (ADS)
Hillaire-Marcel, C.; de Vernal, A.
A multi-proxy approach was developed to document secular to millenial changes of potential density in surface, mesopelagic, and bottom waters of the Labrador Sea, thus allowing to reconstruct situations when winter convection with intermediate or deep water formation occurred in the basin. This approach relies on dinocyst-transfer functions providing estimates of sea-surface temperature and salinity that are used to calibrate past-relationships between oxygen 18 contents in calcite and potential density gradients. The oxygen isotope compositions of epipelagic (Globigerina bul- loides), deeper-dwelling (Neogloboquadrina pachyderma, left coiling), and benthic (Uvigerina peregrina and Cibicides wuellerstorfi) foraminifera, then allow to extrap- olate density gradients between the corresponding water layers. This approach has been tested in surface sediments in reference to modern hydrographic conditions at several sites from the NW North Atlantic, then used to reconstruct past conditions from high resolution studies of cores raised from the southern Greenland Rise (off Cape Farewell). Results indicate that the modern-like regime established during the early Holocene and full developed after 7 ka only. It is marked by weak density gradi- ents between the surface and intermediate water masses, allowing winter convection down to a lower pycnocline between intermediate and deep-water masses, thus the formation of intermediate Labrador Sea Water (LSW). Contrasting with the middle to late Holocene situation, since the last interglacial and throughout the last climatic cycle, a single and dense water mass seems to have occupied the water column below a generally low-density surface water layer, thus preventing deep convection. There- fore, the production of LSW seems to be feature specific to the present interglacial interval that could soon cease to exist, due to global warming, as suggested by recent ocean model experiments and by the fact that it never occurred during the last inter- glacial. We think that the mechanism for the eventual shut-down in LSW formation involves an enhanced freshwater export from the Arctic into the Labrador Sea, as a consequence of both an enhanced hydrological cycle in a warmer mean climate, and a lesser sea-ice extend in the Canadian Arctic Archipelago. Both the last interglacial and the Holocene depict large amplitude millenial oscillations in surface water conditions and in density gradients with the underlying water mass. During the last 11 ka, six 1 of these oscillations are recorded, and those that occurred since ca. 7 ka BP probably resulted in large amplitude changes in LSW-production rate. These oscillations pos- sibly correspond to the Holocene "pervasive millennial cycle" observed by Bond and others in a few North Atlantic records. We hypothesize that they are related to sea ice conditions in the Arctic Ocean and to the relative routing of outflowing freshwaters through either the Canadian Arctic Archipelago or Fram Strait, into the North Atlantic. These oscillations would probably maintain after an eventual collapse of LSW forma- tion, as suggested by the last interglacial reconstructions, but their impact on future thermohaline circulation in the North Atlantic is unclear. 2
Social anxiety, reasons for drinking, and college students.
Norberg, Melissa M; Norton, Alice R; Olivier, Jake; Zvolensky, Michael J
2010-12-01
Recent research suggests that social anxiety may be associated with higher rates of alcohol problems in women, yet may be associated with lower levels of drinking in men. The current study investigated putative mechanisms that may underlie potential gender differences in the social anxiety-alcohol relationship. One hundred and eighteen college students (61.0% women) completed an interview assessing drinking behaviors and questionnaires measuring social anxiety, drinking motives, and drinking situations. Although college men and women both reported similar frequencies of drinking in positive situations and to enhance positive emotions, women reported drinking more often in negative situations and to cope with aversive emotions than men. Mediated moderation analyses suggested that women with social anxiety may be at greater risk of encountering adverse consequences because of their likelihood to drink to conform or to cope with the aversive affect they experience in negative situations. Conversely, when men experience high rates of adverse consequences, it may be due to drinking greater quantities of alcohol in positive situations. Highly socially anxious college men may drink less alcohol and experience fewer adverse consequences than their nonanxious or mildly anxious counterparts because they may find themselves in positive situations and drinking to enhance positive feelings less often, potentially due to avoidant behavior. These findings may help to explain why social anxiety serves as a potential risk factor for alcohol-related problems for college women, but a protective factor for college men. Copyright © 2010. Published by Elsevier Ltd.
Vulnerabilities, Stressors, and Adaptations in Situationally Violent Relationships
ERIC Educational Resources Information Center
Stith, Sandra M.; Amanor-Boadu, Yvonne; Miller, Marjorie Strachman; Menhusen, Erin; Morgan, Carla; Few-Demo, April
2011-01-01
Very little research has examined the dynamics within couple relationships that may lead to situational couple violence (SCV; M. P. Johnson, 2006a; K. H. Rosen, S. M. Stith, A. L. Few, K. L. Daly, & D. R. Tritt, 2005). To enhance understanding of these dynamics, we conducted a qualitative analysis of interviews with 11 couples previously…
2012-09-01
meaning. Information (Know-what): The interpretation of a sequence of elements or in this example, ingredients such as flour , water, sugar, spices, and...the current situation. In addition, obtaining expertise from external specialty sources enriches knowledge and enhances the ability to take action
The Impact of Learning Task Design on Students' Situational Interest in Physical Education
ERIC Educational Resources Information Center
Roure, Cédric; Pasco, Denis
2018-01-01
Purpose: Based on the framework of interest, studies have shown that teachers can enhance students' situational interest (SI) by manipulating the components of learning tasks. The purpose of this study was to examine the impact of learning task design on students' SI in physical education (PE). Method: The participants were 167 secondary school…
ERIC Educational Resources Information Center
Alani, Ramoni Ayobami; Okunola, Phillips Olaide; Subair, Sikiru Omotayo
2010-01-01
Motivating learners in university depends largely on those services, processes and procedures whose primary purpose is to enhance and maintain learners' physical, social, intellectual and emotional well-being. This study examined the situation of welfare services in the context of university education vis-a-vis students' perceived motivation to…
Multilayer Mg-Stainless Steel Sheets, Microstructure, and Mechanical Properties
NASA Astrophysics Data System (ADS)
Inoue, Junya; Sadeghi, Alireza; Kyokuta, Nobuhiko; Ohmori, Toshinori; Koseki, Toshihiko
2017-05-01
Different multilayer Mg AZ31 and SS304L steel sheet combinations were prepared with different volume fractions of Mg. Isolated stress-strain curves of the Mg layers showed significant improvements in the strength and elongation of multilayer samples. Results indicated that in the most extreme situation with the lowest Mg volume fraction ( V f = 0.39), the ultimate strength was increased by 25 pct to 370 MPa and the elongation was improved by 70 pct to 0.34. Investigation of the fracture surface showed that failure occurs by the coalescence of cracks close to the interface region. The improved strength of the multilayer samples was due to the combined effect of surface crack prevention by the steel layer and the higher work-hardening rate caused by the possible increased activity of non-basal systems. It is suggested that the stronger work-hardening behavior and the enhanced activity of non-basal systems in the multilayer samples were due to the formation of new stress components in the transverse direction. The larger the volume fraction of steel in the multilayer, the longer the distance remaining unstrained before the UTS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coulter, R.L.; Klazura, J.; Lesht, B.M.
The Argonne Boundary Layer Experiments (ABLE) facility, located in south central Kansas, east of Wichita, is devoted primarily to investigations of and within the planetary boundary layer (PBL), including the dynamics of the mixed layer during both day and night; effects of varying land use and landform; the interactive role of precipitation, runoff, and soil moisture; storm development; and energy budgets on scales of 10 to 100 km. With an expected lifetime of 10--15 years, the facility is well situated to observe the effects of gradual urbanization on PBL dynamics and structure as the Wichita urban area expands to themore » east and several small municipalities located within the study area expand. Combining the continuous measurements of ABLE with (1) ancillary continuous measurements of, for example, the Atmospheric Radiation Measurement (ARM) program and the Global Energy Water Cycle Experiment (GEWEX) programs and with (2) shorter, more intensive studies within ABLE, such as the Cooperative Atmosphere Surface Exchange Studies (CASES) Program, allows hypothesized features of urbanization, including heat island effects, precipitation enhancement, and modification of the surface energy budget partitioning, to be studied.« less
NASA Astrophysics Data System (ADS)
Vernaleken, Christoph; Mihalic, Lamir; Güttler, Mathias; Klingauf, Uwe
2006-05-01
Increasing traffic density on the aerodrome surface due to the continuous worldwide growth in the number of flight operations does not only cause capacity and efficiency problems, but also increases the risk of serious incidents and accidents on the airport movement area. Of these, Runway Incursions are the by far most safety-critical. In fact, the worst-ever accident in civil aviation, the collision of two Boeing B747s on Tenerife in 1977 with 583 fatalities, was caused by a Runway Incursion. Therefore, various Runway Safety programs have recently been initiated around the globe, often focusing on ground-based measures such as improved surveillance. However, as a lack of flight crew situational awareness is a key causal factor in many Runway Incursion incidents and accidents, there is a strong need for an onboard solution, which should be capable of interacting cooperatively with ground-based ATM systems, such as A-SMGCS where available. This paper defines the concept of preventive and reactive Runway Incursion avoidance and describes a Surface Movement Awareness & Alerting System (SMAAS) designed to alert the flight crew if they are at risk of infringing a runway. Both the SVS flight deck displays and the corresponding alerting algorithms utilize an ED 99A/RTCA DO-272A compliant aerodrome database, as well as airport operational, traffic and clearance data received via ADS-B or other data links, respectively. The displays provide the crew with enhanced positional, operational, clearance and traffic awareness, and they are used to visualize alerts. A future enhancement of the system will provide intelligent alerting for conflicts caused by surrounding traffic.
Hautamäki, Mikko P; Aho, Allan J; Alander, Pasi; Rekola, Jami; Gunn, Jarmo; Strandberg, Niko; Vallittu, Pekka K
2008-08-01
Polymer technology has provided solutions for filling of bone defects in situations where there may be technical or biological complications with autografts, allografts, and metal prostheses. We present an experimental study on segmental bone defect reconstruction using a polymethylmethacrylate-(PMMA-) based bulk polymer implant prosthesis. We concentrated on osteoconductivity and surface characteristics. A critical size segment defect of the rabbit tibia in 19 animals aged 18-24 weeks was reconstructed with a surface porous glass fiber-reinforced (SPF) prosthesis made of polymethylmethacrylate (PMMA). The biomechanical properties of SPF implant material were previously adjusted technically to mimic the properties of normal cortical bone. A plain PMMA implant with no porosity or fiber reinforcement was used as a control. Radiology, histomorphometry, and scanning electron microscopy (SEM) were used for analysis of bone growth into the prosthesis during incorporation. The radiographic and histological incorporation model showed good host bone contact, and strong formation of new bone as double cortex. Histomorphometric evaluation showed that the bone contact index (BCI) at the posterior surface interface was higher with the SPF implant than for the control. The total appositional bone growth over the posterior surface (area %) was also stronger for the SPF implant than for controls. Both bone growth into the porous surface and the BCI results were related to the quality, coverage, and regularity of the microstructure of the porous surface. Porous surface structure enhanced appositional bone growth onto the SPF implant. Under load-bearing conditions the implant appears to function like an osteoconductive prosthesis, which enables direct mobilization and rapid return to full weight bearing.
Levontin, Liat; Bardi, Anat
2018-04-01
Research has neglected the utility of pro-social goals within achievement situations. In this article, four studies demonstrate that amity goal orientation, promoting mutual success of oneself together with others, enhances the utility of mastery goal orientation. We demonstrate this in longitudinally predicting performance (Studies 1 and 2) and in maintaining motivation after a disappointing performance (Studies 3 and 4). The studies demonstrate the same interaction effect in academic and in work achievement contexts. Specifically, whereas amity goal orientation did not predict achievement on its own, it enhanced the positive effect of mastery goal orientation. Together, these studies establish the importance of amity goal orientation while also advancing our understanding of the effects of other achievement goal orientations. We suggest future directions in examining the utility of amity goals in other contexts.
The Effects of Shared Information on Pilot-Controller Situation Awareness And Re-Route Negotiation
NASA Technical Reports Server (NTRS)
Farley, Todd C.; Hansman, R. John; Endsley, Mica R.; Amonlirdviman, Keith
1999-01-01
The effect of shared information is assessed in terms of pilot-controller negotiating behavior and shared situation awareness. Pilot goals and situation awareness requirements are developed and compared against those of air traffic controllers to identify areas of common and competing interest. An exploratory, part-task simulator experiment is described which evaluates the extent to which shared information may lead pilots and controllers to cooperate or compete when negotiating route amendments. Results are presented which indicate that shared information enhances situation awareness and can engender more collaborative interaction between pilots and air traffic controllers. Furthermore, the value of providing controllers with a good-quality weather overlay on their plan view displays is demonstrated. Observed improvements in situation awareness and separation assurance are discussed.
A Sensemaking Perspective on Situation Awareness in Power Grid Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Schur, Anne; Paget, Mia L.
2008-07-21
With increasing complexity and interconnectivity of the electric power grid, the scope and complexity of grid operations continues to grow. New paradigms are needed to guide research to improve operations by enhancing situation awareness of operators. Research on human factors/situation awareness is described within a taxonomy of tools and approaches that address different levels of cognitive processing. While user interface features and visualization approaches represent the predominant focus of human factors studies of situation awareness, this paper argues that a complementary level, sensemaking, deserves further consideration by designers of decision support systems for power grid operations. A sensemaking perspective onmore » situation aware-ness may reveal new insights that complement ongoing human factors research, where the focus of the investigation of errors is to understand why the decision makers experienced the situation the way they did, or why what they saw made sense to them at the time.« less
Polyimide-Clay Composite Materials for Space Application
NASA Technical Reports Server (NTRS)
Orwoll, Robert A.; Connell, John W. (Technical Monitor)
2005-01-01
The introduction of nanometer-sized clay particles into a polyimide matrix has been shown to enhance the physical properties of specific polymer systems. The clay comprises large stacked platelets of the oxides of aluminum and silicon. These sheets have long dimensions on the order of tenths of a micrometer and thicknesses of several nanometers. Homogeneous dispersion of the clay platelets in the polymer matrix is necessary to achieve those enhancements in polymer properties. Natural montmorillonite with the empirical formula Na0.33Mg0.33Al1.67(OH)2(Si4O10) contains exchangeable inorganic cations. The clay lamellae stack together with the positive sodium ions situated between the surfaces of the individual sheets to balance negatively charged oxygen atoms that are on the surfaces of the sheets. These surface charges contribute to strong electrostatic forces which hold the sheets together tightly. Exfoliation can be accomplished only with unusual measures. In preparing clay nanocomposites, we have taken two steps to try to reduce these interlamellar forces in order to promote the separation (exfoliation) of the sheets and the dispersion of the individual clay particles throughout the organic polymer matrix. In the first step, some of the surface Na(+) ions are replaced with Li(+) ions. Unlike sodium cations, the lithium cations migrate into the interior of the lamellae when the system is heated. Their departure from the surface reduces the surface charge and therefore the attractive forces between the sheets. The loss of alkali metal cations from the surface can be measured as the cation exchange capacity (CEC) of the clay. For example, we found that the CEC of montmorillonite clay was reduced by almost two thirds by treating it with lithium ions and heating to 250 C for 24 hr. Lesser heating has a smaller effect on the CEC. X-ray diffraction measurements show that the d-spacing decreased from ca. 1.34 to 0.97 nm, apparently a consequence of a collapse of the clay layers. We observed that the d-spacing can be varied by altering the heat treatment. In the second part of our effort to reduce the interlamellar forces, the remaining inorganic surface cations were replaced by the trimethylphenylammonium ion (TMPA), the biphenyltrimethylammonium ion (BTMA), or the tetraphenylphosphonium ion (TPP).
Airspace Technology Demonstration 2 (ATD-2) Phase 1 Concept of Use (ConUse)
NASA Technical Reports Server (NTRS)
Jung, Yoon; Engelland, Shawn; Capps, Richard; Coppenbarger, Rich; Hooey, Becky; Sharma, Shivanjli; Stevens, Lindsay; Verma, Savita; Lohr, Gary; Chevalley, Eric;
2018-01-01
This document presents an operational Concept of Use (ConUse) for the Phase 1 Baseline Integrated Arrival, Departure, and Surface (IADS) prototype system of NASA's Airspace Technology Demonstration 2 (ATD-2) sub-project, which began demonstration in 2017 at Charlotte Douglas International Airport (CLT). NASA is developing the IADS system under the ATD-2 sub-project in coordination with the Federal Aviation Administration (FAA) and aviation industry partners. The primary goal of ATD-2 sub-project is to improve the predictability and the operational efficiency of the air traffic system in metroplex environments, through the enhancement, development, and integration of the nation's most advanced and sophisticated arrival, departure, and surface prediction, scheduling, and management systems. The ATD-2 effort is a five-year research activity through 2020. The initial phase of the ATD-2 sub-project, which is the focus of this document, will demonstrate the Phase 1 Baseline IADS capability at CLT in 2017. The Phase 1 Baseline IADS capabilities of the ATD-2 sub-project consists of: (a) Strategic and tactical surface scheduling to improve efficiency and predictability of airport surface operations, (b) Tactical departure scheduling to enhance merging of departures into overhead traffic streams via accurate predictions of takeoff times and automated coordination between the Airport Traffic Control Tower (ATCT, or Tower) and the Air Route Traffic Control Center (ARTCC, or Center), (c) Improvements in departure surface demand predictions in Time Based Flow Management (TBFM), (d) A prototype Electronic Flight Data (EFD) system provided by the FAA via the Terminal Flight Data Manager (TFDM) early implementation effort, and (e) Improved situational awareness and demand predictions through integration with the Traffic Flow Management System (TFMS), TBFM, and TFDM (3Ts) for electronic data integration and exchange, and an on-screen dashboard displaying pertinent analytics in real-time. The surface scheduling and metering element of the capability is consistent with the Surface CDM Concept of Operations published in 2014 by the FAA Surface Operations Directorate.1 Upon successful demonstration of the Phase 1 Baseline IADS capability, follow-on demonstrations of the matured IADS traffic management capabilities will be conducted in the 2018-2020 timeframe. At the end of each phase of the demonstrations, NASA will transfer the ATD-2 sub-project technology to the FAA and industry partners.
Enhancing Students' Socialization: Key Elements. ERIC Digest.
ERIC Educational Resources Information Center
Brophy, Jere
Coping with students who display social adjustment problems can be frustrating. However, teachers can take actions toward minimizing classroom conflicts by socializing students into a classroom environment conducive to learning. Modeling prosocial behavior is the most basic element for enhancing student socialization. In situations in which…
Solute transport across the articular surface of injured cartilage.
Chin, Hooi Chuan; Moeini, Mohammad; Quinn, Thomas M
2013-07-15
Solute transport through extracellular matrix (ECM) is important to physiology and contrast agent-based clinical imaging of articular cartilage. Mechanical injury is likely to have important effects on solute transport since it involves alteration of ECM structure. Therefore it is of interest to characterize effects of mechanical injury on solute transport in cartilage. Using cartilage explants injured by an established mechanical compression protocol, effective partition coefficients and diffusivities of solutes for transport across the articular surface were measured. A range of fluorescent solutes (fluorescein isothiocyanate, 4 and 40kDa dextrans, insulin, and chondroitin sulfate) and an X-ray contrast agent (sodium iodide) were used. Mechanical injury was associated with a significant increase in effective diffusivity versus uninjured explants for all solutes studied. On the other hand, mechanical injury had no effects on effective partition coefficients for most solutes tested, except for 40kDa dextran and chondroitin sulfate where small but significant changes in effective partition coefficient were observed in injured explants. Findings highlight enhanced diffusive transport across the articular surface of injured cartilage, which may have important implications for injury and repair situations. Results also support development of non-equilibrium methods for identification of focal cartilage lesions by contrast agent-based clinical imaging. Copyright © 2013 Elsevier Inc. All rights reserved.
SURF IA Conflict Detection and Resolution Algorithm Evaluation
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Chartrand, Ryan C.; Wilson, Sara R.; Commo, Sean A.; Barker, Glover D.
2012-01-01
The Enhanced Traffic Situational Awareness on the Airport Surface with Indications and Alerts (SURF IA) algorithm was evaluated in a fast-time batch simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. SURF IA is designed to increase flight crew situation awareness of the runway environment and facilitate an appropriate and timely response to potential conflict situations. The purpose of the study was to evaluate the performance of the SURF IA algorithm under various runway scenarios, multiple levels of conflict detection and resolution (CD&R) system equipage, and various levels of horizontal position accuracy. This paper gives an overview of the SURF IA concept, simulation study, and results. Runway incursions are a serious aviation safety hazard. As such, the FAA is committed to reducing the severity, number, and rate of runway incursions by implementing a combination of guidance, education, outreach, training, technology, infrastructure, and risk identification and mitigation initiatives [1]. Progress has been made in reducing the number of serious incursions - from a high of 67 in Fiscal Year (FY) 2000 to 6 in FY2010. However, the rate of all incursions has risen steadily over recent years - from a rate of 12.3 incursions per million operations in FY2005 to a rate of 18.9 incursions per million operations in FY2010 [1, 2]. The National Transportation Safety Board (NTSB) also considers runway incursions to be a serious aviation safety hazard, listing runway incursion prevention as one of their most wanted transportation safety improvements [3]. The NTSB recommends that immediate warning of probable collisions/incursions be given directly to flight crews in the cockpit [4].
ERIC Educational Resources Information Center
Durik, Amanda M.; Harackiewicz, Judith M.
2007-01-01
Individual interest was examined as a moderator of effects of situational factors designed to catch and hold task interest. In Study 1, 96 college students learned a math technique with materials enhanced with collative features (catch) versus not. Catch promoted motivation among participants with low individual interest in math (IIM) but hampered…
The development of a virtual camera system for astronaut-rover planetary exploration.
Platt, Donald W; Boy, Guy A
2012-01-01
A virtual assistant is being developed for use by astronauts as they use rovers to explore the surface of other planets. This interactive database, called the Virtual Camera (VC), is an interactive database that allows the user to have better situational awareness for exploration. It can be used for training, data analysis and augmentation of actual surface exploration. This paper describes the development efforts and Human-Computer Interaction considerations for implementing a first-generation VC on a tablet mobile computer device. Scenarios for use will be presented. Evaluation and success criteria such as efficiency in terms of processing time and precision situational awareness, learnability, usability, and robustness will also be presented. Initial testing and the impact of HCI design considerations of manipulation and improvement in situational awareness using a prototype VC will be discussed.
De Bleye, C; Dumont, E; Dispas, A; Hubert, C; Sacré, P-Y; Netchacovitch, L; De Muyt, B; Kevers, C; Dommes, J; Hubert, Ph; Ziemons, E
2016-11-01
A new application of surface-enhanced Raman scattering (SERS) in the field of plant material analysis is proposed in this study. The aim was to monitor the release of anatabine by methyl jasmonate (MeJa) elicited Bright Yellow-2 (BY-2) cells. Gold nanoparticles (AuNps) were used as SERS substrate. The first step was to study the SERS activity of anatabine in a complex matrix comprising the culture medium and BY-2 cells. The second step was the calibration. This one was successfully performed directly in the culture medium in order to take into account the matrix effect, by spiking the medium with different concentrations of anatabine, leading to solutions ranging from 250 to 5000µgL(-1). A univariate analysis was performed, the intensity of a band situated at 1028cm(-1), related to anatabine, was plotted against the anatabine concentration. A linear relationship was observed with a R(2) of 0.9951. During the monitoring study, after the MeJa elicitation, samples were collected from the culture medium containing BY-2 cells at 0, 24h, 48h, 72h and 96h and were analysed using SERS. Finally, the amount of anatabine released in the culture medium was determined using the response function, reaching a plateau after 72h of 82µg of anatabine released/g of fresh weight (FW) MeJa elicited BY-2 cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Using Situational Interest to Enhance Individual Interest and Science-Related Behaviours
NASA Astrophysics Data System (ADS)
Palmer, David; Dixon, Jeanette; Archer, Jennifer
2017-08-01
Situational interest is a relatively transient reaction to highly stimulating factors in the immediate environment, whereas individual interest is a relatively long-term preference for a particular subject or activity. It has been proposed that regular experiences of situational interest in a subject may eventually lead to the development of individual interest in that subject. Importantly, this should also result in an increase in behaviours related to that domain. For example, a student who develops an individual interest in science would be expected to spend more time on science-related activities such as reading about science, talking with other people about science, or watching science shows on TV. However, the extent to which this does happen has not yet been established. The purposes of this study were to find out whether regular experiences of situational interest in science classes can enhance individual interest in science and whether there is an associated increase in science-related activities. The participants were primary teacher education students who were enrolled in a semester-length science course. Data were collected using a survey, an interest inventory, open-ended questionnaires and interviews. It was found that regular experiences of situational interest during the course were associated with positive changes in individual interest in science and increased participation in science-related activities. These changes remained relatively stable over a delay period of 10 months after the end of the course.
Global distribution of bedrock exposures on Mars using THEMIS high-resolution thermal inertia
Edwards, C.S.; Bandfield, J.L.; Christensen, P.R.; Fergason, R.L.
2009-01-01
We investigate high thermal inertia surfaces using the Mars Odyssey Thermal Emission Imaging System (THEMIS) nighttime temperature images (100 m/pixel spatial sampling). For this study, we interpret any pixel in a THEMIS image with a thermal inertia over 1200 J m-2 K-1 s-1/2 as "bedrock" which represents either in situ rock exposures or rock-dominated surfaces. Three distinct morphologies, ranked from most to least common, are associated with these high thermal inertia surfaces: (1) valley and crater walls associated with mass wasting and high surface slope angles; (2) floors of craters with diameters >25 km and containing melt or volcanics associated with larger, high-energy impacts; and (3) intercrater surfaces with compositions significantly more mafic than the surrounding regolith. In general, bedrock instances on Mars occur as small exposures (less than several square kilometers) situated in lower-albedo (<0.18), moderate to high thermal inertia (>350 J m-2 K-1 s-1/2), and relatively dust-free (dust cover index <0.95) regions; however, there are instances that do not follow these generalizations. Most instances are concentrated in the southern highlands, with very few located at high latitudes (poleward of 45oN and 58oS), suggesting enhanced mechanical breakdown probably associated with permafrost. Overall, Mars has very little exposed bedrock with only 960 instances identified from 75oS to 75oN with likely <3500 km2 exposed, representing???1% of the total surface area. These data indicate that Mars has likely undergone large-scale surface processing and reworking, both chemically and mechanically, either destroying or masking a majority of the bedrock exposures on the planet. Copyright 2009 by the American Geophysical Union.
An Automatic Cloud Mask Algorithm Based on Time Series of MODIS Measurements
NASA Technical Reports Server (NTRS)
Lyapustin, Alexei; Wang, Yujie; Frey, R.
2008-01-01
Quality of aerosol retrievals and atmospheric correction depends strongly on accuracy of the cloud mask (CM) algorithm. The heritage CM algorithms developed for AVHRR and MODIS use the latest sensor measurements of spectral reflectance and brightness temperature and perform processing at the pixel level. The algorithms are threshold-based and empirically tuned. They don't explicitly address the classical problem of cloud search, wherein the baseline clear-skies scene is defined for comparison. Here, we report on a new CM algorithm which explicitly builds and maintains a reference clear-skies image of the surface (refcm) using a time series of MODIS measurements. The new algorithm, developed as part of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm for MODIS, relies on fact that clear-skies images of the same surface area have a common textural pattern, defined by the surface topography, boundaries of rivers and lakes, distribution of soils and vegetation etc. This pattern changes slowly given the daily rate of global Earth observations, whereas clouds introduce high-frequency random disturbances. Under clear skies, consecutive gridded images of the same surface area have a high covariance, whereas in presence of clouds covariance is usually low. This idea is central to initialization of refcm which is used to derive cloud mask in combination with spectral and brightness temperature tests. The refcm is continuously updated with the latest clear-skies MODIS measurements, thus adapting to seasonal and rapid surface changes. The algorithm is enhanced by an internal dynamic land-water-snow classification coupled with a surface change mask. An initial comparison shows that the new algorithm offers the potential to perform better than the MODIS MOD35 cloud mask in situations where the land surface is changing rapidly, and over Earth regions covered by snow and ice.
Desire for penile girth enhancement and the effects of the self-injection of hyaluronic Acid gel.
Coskuner, Enis Rauf; Canter, Halil Ibrahim
2012-07-01
Penile girth enhancement is a controversial subject but demands for enhancement are increasing steadily. Although various fillers have been widely used for soft tissue augmentation, there is no reliable material for this particular situation. Here we report a case of an acute hypersensitivity reaction in a man after his first self-injection of a filler material, which, he claimed, was hyaluronic acid gel for penile girth enhancement and glans penis augmentation.
Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates
Jackson, J. B.; Halas, N. J.
2004-01-01
Au and Ag nanoshells are investigated as substrates for surface-enhanced Raman scattering (SERS). We find that SERS enhancements on nanoshell films are dramatically different from those observed on colloidal aggregates, specifically that the Raman enhancement follows the plasmon resonance of the individual nanoparticles. Comparative finite difference time domain calculations of fields at the surface of smooth and roughened nanoshells reveal that surface roughness contributes only slightly to the total enhancement. SERS enhancements as large as 2.5 × 1010 on Ag nanoshell films for the nonresonant molecule p-mercaptoaniline are measured. PMID:15608058
Applying Bayesian belief networks in rapid response situations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, William L; Deborah, Leishman, A.; Van Eeckhout, Edward
2008-01-01
The authors have developed an enhanced Bayesian analysis tool called the Integrated Knowledge Engine (IKE) for monitoring and surveillance. The enhancements are suited for Rapid Response Situations where decisions must be made based on uncertain and incomplete evidence from many diverse and heterogeneous sources. The enhancements extend the probabilistic results of the traditional Bayesian analysis by (1) better quantifying uncertainty arising from model parameter uncertainty and uncertain evidence, (2) optimizing the collection of evidence to reach conclusions more quickly, and (3) allowing the analyst to determine the influence of the remaining evidence that cannot be obtained in the time allowed.more » These extended features give the analyst and decision maker a better comprehension of the adequacy of the acquired evidence and hence the quality of the hurried decisions. They also describe two example systems where the above features are highlighted.« less
Wedge cutting of mild steel by CO 2 laser and cut-quality assessment in relation to normal cutting
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Karatas, C.; Uslan, I.; Keles, O.; Usta, Y.; Yilbas, Z.; Ahsan, M.
2008-10-01
In some applications, laser cutting of wedge surfaces cannot be avoided in sheet metal processing and the quality of the end product defines the applicability of the laser-cutting process in such situations. In the present study, CO 2 laser cutting of the wedge surfaces as well as normal surfaces (normal to laser beam axis) is considered and the end product quality is assessed using the international standards for thermal cutting. The cut surfaces are examined by the optical microscopy and geometric features of the cut edges such as out of flatness and dross height are measured from the micrographs. A neural network is introduced to classify the striation patterns of the cut surfaces. It is found that the dross height and out of flatness are influenced significantly by the laser output power, particularly for wedge-cutting situation. Moreover, the cut quality improves at certain value of the laser power intensity.
Maltese, Simona; Baumert, Anna; Knab, Nadine; Schmitt, Manfred
2013-01-01
Interpretational tendencies in ambiguous situations were investigated as causal mechanisms of altruistic compensation. We used a training procedure to induce a tendency to interpret one's own advantages as unjustified. In a subsequent mixed-game, participants had to decide whether to invest their own money to compensate a victim of a norm violation. The amount of one's own resources invested as an altruistic compensation was enhanced after the training procedure compared to controls. These findings suggest that interpretational patterns with regard to injustice determine prosocial behavior. The training procedure offers a potential intervention strategy for enhancing altruistic compensation in bystander situations in which people must invest their own resources to restore justice. PMID:24391614
Practical Steps for Using Interdisciplinary Educational Research to Enhance Cultural Awareness
ERIC Educational Resources Information Center
CohenMiller, A. S.; Faucher, Carole; Hernández-Torrano, Daniel; Brown Hajdukova, Eva
2017-01-01
This article adds to the dialogue on multidisciplinary and interdisciplinary research, providing definitions and practical steps for using interdisciplinary educational research to enhance cultural awareness. Informed by a research study conducted by seven primary researchers situated in the U.K. and Kazakhstan, along with local partners, we…
Development of Program to Enhance Strategic Leadership of Secondary School Administrators
ERIC Educational Resources Information Center
Chatchawaphun, Pimpisa; Julsuwan, Suwat; Srisa-ard, Boonchom
2016-01-01
This research aimed to 1) study principles, attributes and skills needed for secondary school administrators, 2) investigate current situations, desirable conditions and needs for strategic secondary school administrators, 3) develop a strategic secondary school administrator enhancement program, and 4) explore the efficiency level of the…
Fluvial Sediments as GeoArchives in the Tsauchab Valley, Namibia
NASA Astrophysics Data System (ADS)
Völkel, Jörg; Bens, Oliver; Eden, Marie; Heine, Klaus; Hürkamp, Kerstin
2015-04-01
Understanding the history of how humans have interacted with the landscape can help clarify the options for managing our increasingly interconnected global system. In consequence of changing climate, major regional impacts on the human habitat is expected and must be addressed in modern land-use planning and management strategies which in turn has to rely on a diligent assessment of the nature of possible impacts on regional environments. In warm arid and semi-arid climatic zones, land use can result in landscape degradation, leading to enhanced activity of earth surface processes. Climatic changes can also be instrumental in producing landscape and ecosystem changes, similar to earth surface processes brought about by land-use change. However, predictions of the future behaviour of complex geo/bio-systems are limited, because these are open systems. Apart from modelling a promising approach to better understand the processes of environment responses is to learn lessons from past variability, i.e. searching for 'palaeo-analogue' situations. These are time intervals in the past with boundary conditions (e.g. sea-level changes, atmospheric circulation patterns) more similar to future scenarios than to the present day situation. Signals of these past climate and ecosystem changes are stored in a variety of natural continental and marine archives (sediments, biogens). These geoarchives have the potential for providing researchers with high-resolution data for the reconstruction of palaeo-ecosystems and their dynamics. The influence of key forcing variables and their effects extracted from the geoarchives will be cross-checked in order to validate and adjust models of present and future processes. This knowledge will help justify and calibrate prognostic scenarios in order to deliver proxy-data for southern-hemisphere records. - The project "GeoArchives" is funded by BMBF within the SPACES-Program.
Niobium pentoxide: a promising surface-enhanced Raman scattering active semiconductor substrate
NASA Astrophysics Data System (ADS)
Shan, Yufeng; Zheng, Zhihui; Liu, Jianjun; Yang, Yong; Li, Zhiyuan; Huang, Zhengren; Jiang, Dongliang
2017-03-01
Surface-enhanced Raman scattering technique, as a powerful tool to identify the molecular species, has been severely restricted to the noble metals. The surface-enhanced Raman scattering substrates based on semiconductors would overcome the shortcomings of metal substrates and promote development of surface-enhanced Raman scattering technique in surface science, spectroscopy, and biomedicine studies. However, the detection sensitivity and enhancement effects of semiconductor substrates are suffering from their weak activities. In this work, a semiconductor based on Nb2O5 is reported as a new candidate for highly sensitive surface-enhanced Raman scattering detection of dye molecules. The largest enhancement factor value greater than 107 was observed with the laser excitation at 633 and 780 nm for methylene blue detection. As far as literature review shows, this is in the rank of the highest sensitivity among semiconductor materials; even comparable to the metal nanostructure substrates with "hot spots". The impressive surface-enhanced Raman scattering activities can be attributed to the chemical enhancement dominated by the photo-induced charge transfer, as well as the electromagnetic enhancement, which have been supported by the density-functional-theory and finite element method calculation results. The chemisorption of dye on Nb2O5 creates a new highest occupied molecular orbital and lowest unoccupied molecular orbital contributed by both fragments in the molecule-Nb2O5 system, which makes the charge transfer more feasible with longer excitation wavelength. In addition, the electromagnetic enhancement mechanism also accounts for two orders of magnitude enhancement in the overall enhancement factor value. This work has revealed Nb2O5 nanoparticles as a new semiconductor surface-enhanced Raman scattering substrate that is able to replace noble metals and shows great potentials applied in the fields of biology related.
Advanced consequence management program: challenges and recent real-world implementations
NASA Astrophysics Data System (ADS)
Graser, Tom; Barber, K. S.; Williams, Bob; Saghir, Feras; Henry, Kurt A.
2002-08-01
The Enhanced Consequence Management, Planning and Support System (ENCOMPASS) was developed under DARPA's Advanced Consequence Management program to assist decision-makers operating in crisis situations such as terrorist attacks using conventional and unconventional weapons and natural disasters. ENCOMPASS provides the tools for first responders, incident commanders, and officials at all levels to share vital information and consequently, plan and execute a coordinated response to incidents of varying complexity and size. ENCOMPASS offers custom configuration of components with capabilities ranging from map-based situation assessment, situation-based response checklists, casualty tracking, and epidemiological surveillance. Developing and deploying such a comprehensive system posed significant challenges for DARPA program management, due to an inherently complex domain, a broad spectrum of customer sites and skill sets, an often inhospitable runtime environment, demanding development-to-deployment transition requirements, and a technically diverse and geographically distributed development team. This paper introduces ENCOMPASS and explores these challenges, followed by an outline of selected ENCOMPASS deployments, demonstrating how ENCOMPASS can enhance consequence management in a variety real world contexts.
ERIC Educational Resources Information Center
Sullivan, Terri N.; Helms, Sarah W.; Bettencourt, Amie F.; Sutherland, Kevin; Lotze, Geri M.; Mays, Sally; Wright, Stephen; Farrell, Albert D.
2012-01-01
To enhance the positive adjustment of youths with high incidence disabilities, a better understanding of the factors that influence their use of effective responses in challenging situations is needed. In this qualitative study, adolescents described individual and peer factors that would influence their use of effective nonviolent or aggressive…
Team Cappadocia Design for MAGIC 2010 (The ASELSAN Team)
2010-11-01
Also in another screen, OCU displays tactical information using 3D Geographical Information System (GIS) for enhanced situational awareness. OCU...number of local textural features such as mean and standard deviation of image intensity and gradient, Zernike moments, Haralick features...information for situational awareness on the 3D GIS tactical map and the other monitor is used for UGV status monitoring, command and control. Tactical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeda, Koji; Sasaki, S.; Kumai, M.
Due to the massive earthquake and tsunami on March 11, 2011, and the following severe accident at the Fukushima Daiichi Nuclear Power Plant, concrete surfaces within the reactor buildings were exposed to radioactive liquid and vapor phase contaminants. In order to clarify the situation of this contamination in the reactor buildings of Units 1, 2 and 3, selected samples were transported to the Fuels Monitoring Facility in the Oarai Engineering Center of JAEA where they were subjected to analyses to determine the surface radionuclide concentrations and to characterize the radionuclide distributions in the samples. In particular, penetration of radiocesium inmore » the surface coatings layer and sub-surface concrete was evaluated. The analysis results indicate that the situation of contamination in the building of Unit 2 was different from others, and the protective surface coatings on the concrete floors provided significant protection against radionuclide penetration. The localized penetration of contamination in the concrete floors was found to be confined within a millimeter of the surface of the coating layer of some millimeters. (authors)« less
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Parrish, Russell V.; Bailey, Randall E.
2004-01-01
In commercial aviation, over 30-percent of all fatal accidents worldwide are categorized as Controlled Flight Into Terrain (CFIT) accidents, where a fully functioning airplane is inadvertently flown into the ground. The major hypothesis for a simulation experiment conducted at NASA Langley Research Center was that a Primary Flight Display (PFD) with synthetic terrain will improve pilots ability to detect and avoid potential CFITs compared to conventional instrumentation. All display conditions, including the baseline, contained a Terrain Awareness and Warning System (TAWS) and Vertical Situation Display (VSD) enhanced Navigation Display (ND). Each pilot flew twenty-two approach departure maneuvers in Instrument Meteorological Conditions (IMC) to the terrain challenged Eagle County Regional Airport (EGE) in Colorado. For the final run, flight guidance cues were altered such that the departure path went into terrain. All pilots with a synthetic vision system (SVS) PFD (twelve of sixteen pilots) noticed and avoided the potential CFIT situation. The four pilots who flew the anomaly with the conventional baseline PFD configuration (which included a TAWS and VSD enhanced ND) had a CFIT event. Additionally, all the SVS display concepts enhanced the pilot s situational awareness, decreased workload and improved flight technical error (FTE) compared to the baseline configuration.
Enhancing situational interest in pediatrics.
Beck, Gary L; Finken, David A; Stoolman, Sharon R
2012-01-01
Individual interest, something that persists regardless of the situation, and situational interest, finding personal value in an educational context, have not been studied in medical student education. To determine if individualized case discussions enhance interest in pediatric medicine. During the 2008/2009 academic year, 88 clerkship students participated in clinical case discussions. At orientation, students completed an Interest in Pediatrics (IIP) questionnaire, responding 1 = strongly disagree to 5 = strongly agree. Intervention and control groups were randomly assigned. The intervention group personalized cases to students' medical specialty interests. The control group discussed the case presentation. Groups met twice during the 8-week clerkships, completing a post-IIP at the end of the clerkship. Intervention group interest increased from pre-IIP, mean = 3.64, to post-IIP, mean = 4.22 (z = -2.994, p < 0.05, r = -0.44). On post-IIP, application of pediatric medicine increased for both groups; the intervention group was most significant from pre-IIP, mean = 1.09, to post-IIP, mean = 4.33 (z = -6.038, p < 0.05, r = -0.88). Enhanced interest in pediatrics from the intervention group indicates that creating a learning environment personally relevant to students' careers facilitates interest to learn.
Enhanced Oceanic Situational Awareness for the North Atlantic Corridor
NASA Technical Reports Server (NTRS)
Welch, Bryan; Greenfield, Israel
2004-01-01
Air traffic control (ATC) mandated, aircraft separations over the oceans, impose a limitation of traffic capacity for a given corridor. The separations result from a lack of acceptable situational awareness over oceans where radar position updates are not available. This study considers the use of Automatic Dependent Surveillance (ADS) data transmitted over a commercial satellite communications system as an approach to provide ATC with the needed situational awareness and thusly allow for reduced aircraft separations. Traffic loading from a specific day are used as a benchmark against which to compare several approaches for coordinating data transmissions from aircraft to the satellites.
Desire for Penile Girth Enhancement and the Effects of the Self-Injection of Hyaluronic Acid Gel
Coskuner, Enis Rauf; Canter, Halil Ibrahim
2012-01-01
Penile girth enhancement is a controversial subject but demands for enhancement are increasing steadily. Although various fillers have been widely used for soft tissue augmentation, there is no reliable material for this particular situation. Here we report a case of an acute hypersensitivity reaction in a man after his first self-injection of a filler material, which, he claimed, was hyaluronic acid gel for penile girth enhancement and glans penis augmentation. PMID:23112518
Brown, Rebecca C; Plener, Paul L; Groen, Georg; Neff, Dominik; Bonenberger, Martina; Abler, Birgit
2017-01-01
Non-suicidal self-injury (NSSI) is a symptom of borderline personality disorder (BPD). However, NSSI often occurs independently of BPD. Altered neural processing of social exclusion has been shown in adolescents with NSSI and adults with BPD with additional alterations during social inclusion in BPD patients. Aims of this study were to investigate differences in neural processing of social inclusion and exclusion situations between adolescents with NSSI and young adults with BPD and NSSI. Using fMRI, neural processing of positive and negative social situations (paradigm: "Cyberball") was explored. Participants were 14 adolescents with NSSI, but without BPD (M age = 15.4; SD = 1.9), 15 adults with BPD and NSSI (M age = 23.3; SD = 4.1), as well as 15 healthy adolescents (M age = 14.5; SD = 1.7), and 16 healthy adults (M age = 23.2; SD = 4.4). Behavioral results showed enhanced feelings of social exclusion in both patient groups as compared to healthy controls but only the NSSI group showed enhanced activation during social exclusion versus inclusion compared to the other groups. While both NSSI and BPD groups showed enhanced activation in the ventral anterior cingulate cortex during social exclusion as compared to their age-matched controls, enhanced activation during social inclusion as compared to a passive watching condition was mainly observed in the BPD group in the dorsolateral and dorsomedial prefrontal cortex, and the anterior insula. While neural processing of social exclusion was pronounced in adolescents with NSSI, BPD patients also showed increased activity in a per se positive social situation. These results might point toward a higher responsiveness to social exclusion in adolescents with NSSI, which might then develop into a generalized increased sensitivity to all kinds of social situations in adults with BPD.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR ABANDONED MINE LAND... mitigate emergency situations or extreme danger situations arising from past mining practices and begin... Indian tribe and the Bureau of Indian Affairs office having jurisdiction over the Indian lands. (d) If a...
Next-generation Surface Enhanced Raman Scattering (SERS) Substrates for Hazard Detection
2012-09-01
Next-generation Surface Enhanced Raman Scattering (SERS) Substrates for Hazard Detection by Mikella E. Farrell, Ellen L. Holthoff and Paul M...Surface Enhanced Raman Scattering (SERS) Substrates for Hazard Detection Mikella E. Farrell, Ellen L. Holthoff and Paul M. Pellegrino Sensors and...DD-MM-YYYY) September 2012 2. REPORT TYPE Reprint 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Next-generation Surface Enhanced Raman
JPRS Report, Science & Technology, Japan, 4th International Conference on Langmuir-Blodgett Films
1989-08-23
Toshiba-cho, Saiwai-ku, Kawasaki, 210 Japan Surface enhanced resonance Raman scattering (SERRS) from a Langmuir-Blodgett monolayer of 4’-n...4000 cm" . These results show that the spectra are affected by the enhancement due to resonance Raman scattering . The dependence of SERRS intensity...enhanced adsorption is one of the surface enhanced processes such as the surface enhanced Raman scattering (SERS) and the enhanced fluorescence. There
Salemink, Elske; Wiers, Reinout W
2014-03-01
Although studies on explicit alcohol cognitions have identified positive and negative reinforcing drinking motives that are differentially related to drinking indices, such a distinction has received less attention in studies on implicit cognitions. An alcohol-related Word-Sentence Association Task was used to assess implicit alcohol-related memory associations in positive and negative affect situations in 92 participants. Results revealed that enhancement motives were specifically associated with the endorsement of alcohol words in positive affect situations and coping motives were associated with the endorsement of alcohol words in negative affect situations. Furthermore, alcohol associations in positive affect situations predicted prospective alcohol use and number of binges, depending on levels of working memory capacity. The current findings shed more light on the underpinnings of alcohol use and suggest that implicit memory processes and working memory capacity might be important targets for intervention.
NASA Astrophysics Data System (ADS)
Guo, Wei; Wu, Jian; Wang, Chunyan; Zhang, Tian; Chen, Tao
2018-05-01
Silver nanomaterials have remarkable application in biomedical detection due to their unique surface plasmon resonance (SPR) characteristics. It can be used for surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF). Current research elaborates a technique for improvement of SYBR Green I detection obtained from surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) by silver nanoparticles with the average size about 70 nm. Primarily, SYBR Green I is an important fluorescent dye used in polymerase chain reaction (PCR). It is found that both Raman and fluorescence can be used for detection of this dye. Furthermore, the enhanced efficiency of the Raman and fluorescence by SERS and SEF is observed in this study, the enhancement factor for Raman signals is 3.2 × 103, and the fluorescence intensity bincreased two times by SEF. The quantitative detection of SYBR Green I by SERS and SEF can be achieved. The present work can be used to improve the detection of SYBR Green I by SERS and SEF. It would also be employed for high-sensitive detection of other materials in the future.
An Enhanced Smoke Detection Using MODIS Measurements
NASA Astrophysics Data System (ADS)
Xie, Y.; Qu, J.; Xiong, X.; Hao, X.; Wang, W.; Wang, L.
2005-12-01
Smoke emitted from wildfire fires or prescribed fires is one of the major pollutions that pose a risk to human health and affect the air quality significantly. The remote sensing technique has been demonstrated as an efficient approach for detecting and tracing smoke plume. As a mixture pollutant, smoke does not have stable spectral signature because of diversified component mixing levels in different situation, but it has some particular characteristics different from others such as cloud, soil, water and so on. In earlier studies, we have already developed a multi-threshold algorithm to detect smoke in the eastern United States by combining both MODIS reflective solar bands and thermal emissive bands measurements. In order to apply out approach to global scale, we have enhanced the smoke detection algorithm by taking the land surface type into account. Smoke pixels will be output as well as the confidence in the quality of product in final result. In addition, smoke detection is also helpful to fire detection. With current fire detection algorithm, some small and cool fires can not be detected. However, understanding the features and spread direction of smoke can provide us a potential way to identify these fires.
ERIC Educational Resources Information Center
Matuk, Camillia F.; Linn, Marcia C.; Eylon, Bat-Sheva
2015-01-01
Teachers' involvement in curriculum design is essential for sustaining the relevance of technology-enhanced learning materials. Customizing--making small adjustments to tailor given materials to particular situations and settings--is one design activity in which busy teachers can feasibly engage. Research indicates that customizations based…
How a Personal Development Program Enhances Social Connection and Mobilises Women in the Community
ERIC Educational Resources Information Center
Spry, Nandila; Marchant, Teresa
2014-01-01
Gender equity and the empowerment of women is a significant international issue. Successful adult education programs are vital to enhance women's situation. Lessons learned from a personal development program provided for thousands of women are analysed. The program is conducted by community service providers in Australia and internationally, with…
What Teachers Need to Know about Augmented Reality Enhanced Learning Environments
ERIC Educational Resources Information Center
Wasko, Christopher
2013-01-01
Augmented reality (AR) enhanced learning environments have been designed to teach a variety of subjects by having learners act like professionals in the field as opposed to students in a classroom. The environments, grounded in constructivist and situated learning theories, place students in a meaningful, non-classroom environment and force them…
NASA Astrophysics Data System (ADS)
Kindt, J. H.; Thurner, P. J.; Lauer, M. E.; Bosma, B. L.; Schitter, G.; Fantner, G. E.; Izumi, M.; Weaver, J. C.; Morse, D. E.; Hansma, P. K.
2007-04-01
The topography of freshly fractured bovine and human bone surfaces was determined by the use of atomic force microscopy (AFM). Fracture surfaces from both kinds of samples exhibited complex landscapes formed by hydroxyapatite mineral platelets with lateral dimensions ranging from ~90 nm × 60 nm to ~20 nm × 20 nm. Novel AFM techniques were used to study these fracture surfaces during various chemical treatments. Significant topographical changes were observed following exposure to aqueous solutions of ethylenediaminetetraacetic acid (EDTA) or highly concentrated sodium fluoride (NaF). Both treatments resulted in the apparent loss of the hydroxyapatite mineral platelets on a timescale of a few seconds. Collagen fibrils situated beneath the overlying mineral platelets were clearly exposed and could be resolved with high spatial resolution in the acquired AFM images. Time-dependent mass loss experiments revealed that the applied agents (NaF or EDTA) had very different resulting effects. Despite the fact that the two treatments exhibited nearly identical results following examination by AFM, bulk bone samples treated with EDTA exhibited a ~70% mass loss after 72 h, whereas for the NaF-treated samples, the mass loss was only of the order of ~10%. These results support those obtained from previous mechanical testing experiments, suggesting that enhanced formation of superficial fluoroapatite dramatically weakens the protein-hydroxyapatite interfaces. Additionally, we discovered that treatment with aqueous solutions of NaF resulted in the effective extraction of noncollagenous proteins from bone powder.
NASA Astrophysics Data System (ADS)
Dijk, Judith; van Eekeren, Adam W. M.; Toet, Alexander; den Hollander, Richard J. M.; Schutte, Klamer; van Heijningen, Ad W. P.; Bijl, Piet
2013-04-01
For many military operations, situational awareness is of great importance. During night conditions, this situational awareness can be improved using both analog and digital image-intensified cameras. The quality of image intensifiers is a topic of interest. One of the differences between a digital and analog system is noise behavior. For digital image intensifiers, the noise behavior is not as good as for analog image intensifiers, but it can be improved using noise-reduction techniques. In this paper, the improvement using temporal noise reduction and local adaptive contrast enhancement is shown and quantitatively evaluated by subjective measurement of the conspicuity and triangle orientation discrimination (TOD). The results of the conspicuity and TOD experiments are consistent with each other. The highest improvement is found for a low-clutter environment; for medium- and high-clutter environments, the improvement is less. This can be explained by the fact that image enhancement increases contrast of all image details, irrespective of whether they are targets or clutter. For low-clutter image enhancement, target conspicuity and target detection improvement will be largest, since there are not many distracting elements.
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Busquets, Anthony M.
2000-01-01
A simulation experiment was performed to assess situation awareness (SA) and workload of pilots while monitoring simulated autoland operations in Instrument Meteorological Conditions with three advanced display concepts: two enhanced electronic flight information system (EFIS)-type display concepts and one totally synthetic, integrated pictorial display concept. Each concept incorporated sensor-derived wireframe runway and iconic depictions of sensor-detected traffic in different locations on the display media. Various scenarios, involving conflicting traffic situation assessments, main display failures, and navigation/autopilot system errors, were used to assess the pilots' SA and workload during autoland approaches with the display concepts. From the results, for each scenario, the integrated pictorial display concept provided the pilots with statistically equivalent or substantially improved SA over the other display concepts. In addition to increased SA, subjective rankings indicated that the pictorial concept offered reductions in overall pilot workload (in both mean ranking and spread) over the two enhanced EFIS-type display concepts. Out of the display concepts flown, the pilots ranked the pictorial concept as the display that was easiest to use to maintain situational awareness, to monitor an autoland approach, to interpret information from the runway and obstacle detecting sensor systems, and to make the decision to go around.
[Leadership Experience of Clinical Nurses: Applying Focus Group Interviews].
Lee, Byoung Sook; Eo, Yong Sook; Lee, Mi Aie
2015-10-01
The purpose of this study was to understand and describe the leadership experience of clinical nurses. During 2014, data were collected using focus group interviews. Three focus group interviews were held with a total of 20 clinical nurses participating. All interviews were recorded as they were spoken and transcribed and data were analyzed using qualitative content analysis. Fifteen categories emerged from the five main themes. 1) Thoughts on the leadership category: to lead others, to cope with problem situations adequately and to serve as a shield against difficulties. 2) Situations requiring leadership: situation that requires correct judgement, coping and situations that need coordination and cooperation. 3-1) Leadership behaviors: other-oriented approach and self-oriented approach. 3-2) Leadership behavior consequences: relevant compensation and unfair termination. 4-1) Facilitators of leadership: confidence and passion for nursing and external support and resources. 4-2) Barriers to leadership: non-supportive organization culture and deficiency in own leadership competencies. 5) Strategies of leadership development: strengthen leadership through self-development and organizational leadership development. In conclusion, the results indicate that it is necessary to enhance clinical nurses' leadership role in healthcare. Enhancement can be achieved through leadership programs focused on enlarging leadership experience, constant self-development, leadership training, and development of leadership competencies suited to the nursing environment.
Plasmon enhanced terahertz emission from single layer graphene.
Bahk, Young-Mi; Ramakrishnan, Gopakumar; Choi, Jongho; Song, Hyelynn; Choi, Geunchang; Kim, Yong Hyup; Ahn, Kwang Jun; Kim, Dai-Sik; Planken, Paul C M
2014-09-23
We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.
Antibiofilm agents: A new perspective for antimicrobial strategy.
Li, Xi-Hui; Lee, Joon-Hee
2017-10-01
Biofilms are complex microbial architectures that attach to surfaces and encase microorganisms in a matrix composed of self-produced hydrated extracellular polymeric substances (EPSs). In biofilms, microorganisms become much more resistant to antimicrobial treatments, harsh environmental conditions, and host immunity. Biofilm formation by microbial pathogens greatly enhances survival in hosts and causes chronic infections that result in persistent inflammation and tissue damages. Currently, it is believed over 80% of chronic infectious diseases are mediated by biofilms, and it is known that conventional antibiotic medications are inadequate at eradicating these biofilm-mediated infections. This situation demands new strategies for biofilm-associated infections, and currently, researchers focus on the development of antibiofilm agents that are specific to biofilms, but are nontoxic, because it is believed that this prevents the development of drug resistance. Here, we review the most promising antibiofilm agents undergoing intensive research and development.
NASA Technical Reports Server (NTRS)
Hermance, J. F. (Principal Investigator)
1981-01-01
Model simulations show that induction in a spherical Earth by distant magnetospheric sources can contribute magnetic field fluctuations at MAGSAT altitudes which are 30 to 40 percent of the external field amplitudes. When the characteristic dimensions (e.g. depth of penetration, etc) of a particular situations are small compared with the Earth's radius, the Earth can be approximated by a plane horizontal half space. In this case, electromagnetic energy is reflected with close to 100 percent efficiency from the Earth's surface. This implies that the total horizontal field is twice the source field when the source is above the satellite, but is reduced to values which are much smaller than the source field when the source is below the satellite. This latter effect tends to enhance the signature of gross electrical discontinuities in the lithosphere when observed at satellite altitudes.
Schortgen, F
2012-11-01
Fever is a common symptom of sepsis usually believed to predict better survival. Experimental data suggest that body temperature elevation may slow micro-organism growth and enhance host immune responses. In patients with sepsis, however, the high energy cost of fever may exacerbate the life-threatening situation. Fever control is widely used in the ICU, mainly in patients with infections. The efficacy of antipyretic drugs in lowering body temperature remains uncertain, however, and all antipyretics have well known adverse effects. Surface cooling methods are efficient but require sedation to avoid the harmful effects of shivering. A recent controlled trial in patients with septic shock suggests that external cooling for fever control may diminish vasopressor requirements and improve early survival. In this review, we examine the benefits and risks of fever and of controlled normothermia. The fever control modalities that provide the best risk/benefit ratio in sepsis are discussed.
Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture
Ditengou, Franck A.; Müller, Anna; Rosenkranz, Maaria; Felten, Judith; Lasok, Hanna; van Doorn, Maja Miloradovic; Legué, Valerie; Palme, Klaus; Schnitzler, Jörg-Peter; Polle, Andrea
2015-01-01
The mutualistic association of roots with ectomycorrhizal fungi promotes plant health and is a hallmark of boreal and temperate forests worldwide. In the pre-colonization phase, before direct contact, lateral root (LR) production is massively stimulated, yet little is known about the signals exchanged during this step. Here, we identify sesquiterpenes (SQTs) as biologically active agents emitted by Laccaria bicolor while interacting with Populus or Arabidopsis. We show that inhibition of fungal SQT production by lovastatin strongly reduces LR proliferation and that (–)-thujopsene, a low-abundance SQT, is sufficient to stimulate LR formation in the absence of the fungus. Further, we show that the ectomycorrhizal ascomycote, Cenococcum geophilum, which cannot synthesize SQTs, does not promote LRs. We propose that the LR-promoting SQT signal creates a win-win situation by enhancing the root surface area for plant nutrient uptake and by improving fungal access to plant-derived carbon via root exudates. PMID:25703994
2013-04-01
Characterization of Next Generation Commercial Surface Enhanced Raman Scattering Substrates with a 633- and 785-nm System by Mikella E...Surface Enhanced Raman Scattering Substrates with a 633- and 785-nm System Mikella E. Farrell, Dimitra N. Stratis-Cullum, and Paul M. Pellegrino...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Characterization of Next Generation Commercial Surface Enhanced Raman Scattering Substrates with a
Advances in Surface-Enhanced Fluorescence
Lakowicz, Joseph R.; Geddes, Chris D.; Gryczynski, Ignacy; Malicka, Joanna; Gryczynski, Zygmunt; Aslan, Kadir; Lukomska, Joanna; Matveeva, Evgenia; Zhang, Jian; Badugu, Ramachandram; Huang, Jun
2009-01-01
We report recent achievements in metal-enhanced fluorescence from our laboratory. Several fluorophore systems have been studied on metal particle-coated surfaces and in colloid suspensions. In particular, we describe a distance dependent enhancement on silver island films (SIFs), release of self-quenching of fluorescence near silver particles, and the applications of fluorescence enhancement near metalized surfaces to bioassays. We discuss a number of methods for various shaped silver particle deposition on surfaces. PMID:15617385
Teeth and bones: applications of surface science to dental materials and related biomaterials
NASA Astrophysics Data System (ADS)
Jones, F. H.
2001-05-01
Recent years have seen a considerable upsurge in publications concerning the surface structure and chemistry of materials with biological or biomedical applications. Within the body, gas-solid interactions become relatively less significant and solid-liquid or solid-solid interfaces dominate, providing new challenges for the surface scientist. The current paper aims to provide a timely review of the use of surface analysis and modification techniques within the biomaterials field. A broad overview of applications in a number of related areas is given with particular attention focusing on those materials commonly encountered in dentistry and oral or maxillofacial implantology. Several specific issues of current interest are discussed. The interaction between synthetic and natural solids, both in the oral environment and elsewhere in the body is important in terms of adhesion, related stresses and strains and ultimately the longevity of a dental restoration, biomedical implant, or indeed the surrounding tissue. Exposure to body fluids, of course, can also affect stability, leading to the degradation or corrosion of materials within the body. Whilst this could potentially be harmful, e.g., if cytotoxic elements are released, it may alternatively provide a route to the preferential release of beneficial substances. Furthermore, in some cases, the controlled disintegration of a biomaterial is desirable, allowing the removal of an implant, e.g., without the need for further surgery. The presence of cells in the immediate bioenvironment additionally complicates the situation. A considerable amount of current research activity is targeted at the development of coatings or surface treatments to encourage tissue growth. If this is to be achieved by stimulating enhanced cell productivity, determination of the relationship between cell function and surface composition is essential.
The Role of the Situation Model for Rereading Benefits in Korean-German Bilinguals.
Shin, Hong Im; Wippich, Werner
2016-10-01
This study examines whether rereading effects transfer across two different languages at the passage level. Fluent Korean-German bilinguals read passages twice either in the same language or a different language, and passages shared either words or situations. The dependent measure was the overall reading time for the second passage reading. Repetition effects were found only for passages in which situation models were preserved, although the translation altered the surface form and the textbase, demonstrating that the situation model plays an important role in bilingual repetition effects and that the context-dependent model Raney (Psychon Bull Rev 10:15-28, 2003) provides a theoretically meaningful guide for explaining rereading effects.
The Civil Air Patrol's role in medical countermeasure distribution in Michigan.
Hankinson, Jennifer Lixey; Chamberlain, Kerry; Doctor, Suzanne M; Macqueen, Mary
2011-12-01
Michigan's unique geological features and highly variable climatic conditions make distribution of medical countermeasures during a public health emergency situation very challenging. To enhance distribution during these situations, the Civil Air Patrol (CAP) has agreed to support the state of Michigan by transporting life-saving medical countermeasures to remote areas of the state. The Michigan Strategic National Stockpile (MISNS) program has successfully developed, exercised, and enhanced its partnership with the CAP to include distribution of federally provided Strategic National Stockpile (SNS) assets. The CAP has proven to be a reliable and valuable partner, as well as a cost-effective and time-efficient means of transporting vital resources during a public health emergency. © Mary Ann Liebert, Inc.
Fabrication of multi-functional silicon surface by direct laser writing
NASA Astrophysics Data System (ADS)
Verma, Ashwani Kumar; Soni, R. K.
2018-05-01
We present a simple, quick and one-step methodology based on nano-second laser direct writing for the fabrication of micro-nanostructures on silicon surface. The fabricated surfaces suppress the optical reflection by multiple reflection due to light trapping effect to a much lower value than polished silicon surface. These textured surfaces offer high enhancement ability after gold nanoparticle deposition and then explored for Surface Enhanced Raman Scattering (SERS) for specific molecular detection. The effect of laser scanning line interval on optical reflection and SERS signal enhancement ability was also investigated. Our results indicate that low optical reflection substrates exhibit uniform SERS enhancement with enhancement factor of the order of 106. Furthermore, this methodology provide an alternative approach for cost-effective large area fabrication with good control over feature size.
Omar, Omar; Simonsson, Hanna; Palmquist, Anders; Thomsen, Peter
2016-01-01
Osseointegrated implants inserted in the temporal bone are a vital component of bone-anchored hearing systems (BAHS). Despite low implant failure levels, early loading protocols and simplified procedures necessitate the application of implants which promote bone formation, bone bonding and biomechanical stability. Here, screw-shaped, commercially pure titanium implants were selectively laser ablated within the thread valley using an Nd:YAG laser to produce a microtopography with a superimposed nanotexture and a thickened surface oxide layer. State-of-the-art machined implants served as controls. After eight weeks’ implantation in rabbit tibiae, resonance frequency analysis (RFA) values increased from insertion to retrieval for both implant types, while removal torque (RTQ) measurements showed 153% higher biomechanical anchorage of the laser-modified implants. Comparably high bone area (BA) and bone-implant contact (BIC) were recorded for both implant types but with distinctly different failure patterns following biomechanical testing. Fracture lines appeared within the bone ~30–50 μm from the laser-modified surface, while separation occurred at the bone-implant interface for the machined surface. Strong correlations were found between RTQ and BIC and between RFA at retrieval and BA. In the endosteal threads, where all the bone had formed de novo, the extracellular matrix composition, the mineralised bone area and osteocyte densities were comparable for the two types of implant. Using resin cast etching, osteocyte canaliculi were observed directly approaching the laser-modified implant surface. Transmission electron microscopy showed canaliculi in close proximity to the laser-modified surface, in addition to a highly ordered arrangement of collagen fibrils aligned parallel to the implant surface contour. It is concluded that the physico-chemical surface properties of laser-modified surfaces (thicker oxide, micro- and nanoscale texture) promote bone bonding which may be of benefit in situations where large demands are imposed on biomechanically stable interfaces, such as in early loading and in compromised conditions. PMID:27299883
Free convection in the Matian atmosphere
NASA Technical Reports Server (NTRS)
Clow, G. D.; Haberle, R. M.
1990-01-01
The 'free convective' regime for the Martian atmospheric boundary layer (ABL) was investigated. This state occurs when the mean windspeed at the top of the ABL drops below some critical value U(sub c) and positive buoyant forces are present. Such forces can arise either from vertical temperature or water vapor gradients across the atmospheric surface layer. During free convection, buoyant forces drive narrow plumes that ascend to the inversion height with a return circulation consisting of broad slower-moving downdraughts. Horizontal pressure, temperature, windspeed, and water vapor fluctuations resulting form this circulation pattern can be quite large adjacent to the ground (within the surface layer). The local turbulent fluctuations cause non-zero mean surface stresses, sensible heat fluxes, and latent heat fluxes, even when the mean regional windspeed is zero. Although motions above the surface layer are insensitive to the nature of the surface, the sensible and latent heat fluxes are primarily controlled by processes within the interfacial sublayer immediately adjacent to the ground during free convection. Thus the distinction between aerodynamically smooth and rough airflow within the interfacial sublayer is more important than for the more typical situation where the mean regional windspeed is greater than U(sub c). Buoyant forces associated with water vapor gradients are particularly large on Mars at low pressures and high temperatures when the surface relative humidity is 100 percent, enhancing the likelihood of free convection under these conditions. On this basis, Ingersol postulated the evaporative heat losses from an icy surface on Mars at 237 K and current pressures would exceed the available net radiative flux at the surface, thus prohibiting ice from melting at low atmospheric pressures. Schumann has developed equations describing the horizontal fluctuations and mean vertical gradients occurring during free convection. Schumann's model was generalized to include convection driven by water vapor gradients and to include the effects of circulation above both aerodynamically smooth and rough surfaces.
SRS in the single molecule limit (Conference Presentation)
NASA Astrophysics Data System (ADS)
Potma, Eric O.; Crampton, Kevin T.; Fast, Alexander; Apkarian, Vartkess A.
2017-02-01
We present combined surface-enhanced stimulated Raman scattering (SE-SRS) and surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS) measurements on individual plasmonic antennas dressed with bipyridyl-ethylene molecules. By carefully optimizing the conditions for performing SE-SRS experiments, we have obtained stable and reproducible molecular surface-enhanced SRS spectra from single nano-antennas. Using surface-enhanced Raman scattering (SERS) and transmission electron microscopy of the same antennas, we confirm that the observed SE-SRS signals originate from only one or a few molecules. We highlight the physics of surface enhancement in the context of coherent Raman scattering and derive sensitivity parameters under the relevant conditions. The implications of single molecule SRS measurements are discussed.
Matsuzaki, Hidenori; Kumagai-Takei, Naoko; Lee, Suni; Maeda, Megumi; Sada, Nagisa; Hatayama, Tamayo; Yamamoto, Shoko; Ikeda, Miho; Yoshitome, Kei; Min, Yu; Nishimura, Yasumitsu; Otsuki, Takemi
2017-06-09
The immunological effects of asbestos exposure on various lymphocytes such as the regulatory T cell (Treg), responder CD4+ T helper cell (Tresp), CD8+ cytotoxic T lymphocytes (CTL), and natural killer (NK) cells were investigated. Results show that asbestos exposure impairs antitumor immunity through enhancement of regulatory T cell function and volume, reduction of CXCR3 chemokine receptor in responder CD4+ T helper cells, and impairment of the killing activities of CD8+ cytotoxic T lymphocytes (CTL) and NK cells. These findings were used to explore biological markers associated with asbestos exposure and asbestos-induced cancers and suggested the usefulness of serum/plasma IL-10 and TGF-β, surface CXCR3 expression in Tresp, the secreting potential of IFN-γ in Tresp, intracellular perforin level in CTL, and surface expression NKp46 in NK cells. Although other unexplored cytokines in serum/plasma and molecules in these immunological cells, including Th17, should be investigated by experimental procedures in addition to a comprehensive analysis of screening methods, biomarkers based on immunological alterations may be helpful in clinical situations to screen the high-risk population exposed to asbestos and susceptible to asbestos-related cancers such as mesothelioma.
Grohmann, Constanze; Henze, Miriam Judith; Nørgaard, Thomas; Gorb, Stanislav N
2015-06-22
Insects have developed different structures to adhere to surfaces. Most common are smooth and hairy attachment pads, while nubby pads have also been described for representatives of Mantophasmatodea, Phasmida and Plecoptera. Here we report on the unusual combination of nubby and smooth tarsal attachment structures in the !nara cricket Acanthoproctus diadematus. Their three proximal tarsal pads (euplantulae) have a nubby surface, whereas the most distal euplantula is rather smooth with a hexagonal ground pattern resembling that described for the great green bush-cricket Tettigonia viridissima. This is, to our knowledge, the first report on nubby euplantulae in Orthoptera and the co-occurrence of nubby and smooth euplantulae on a single tarsus in a polyneopteran species. When adhering upside down to a horizontal glass plate, A. diadematus attaches its nubby euplantulae less often, compared to situations in which the animal is hanging upright or head down on a vertical plate. We discuss possible reasons for this kind of clinging behaviour, such as morphological constrains, the different role of normal and shear forces in attachment enhancement of the nubby and smooth pads, ease of the detachment process, and adaptations to walking on cylindrical substrates.
Grohmann, Constanze; Henze, Miriam Judith; Nørgaard, Thomas; Gorb, Stanislav N.
2015-01-01
Insects have developed different structures to adhere to surfaces. Most common are smooth and hairy attachment pads, while nubby pads have also been described for representatives of Mantophasmatodea, Phasmida and Plecoptera. Here we report on the unusual combination of nubby and smooth tarsal attachment structures in the !nara cricket Acanthoproctus diadematus. Their three proximal tarsal pads (euplantulae) have a nubby surface, whereas the most distal euplantula is rather smooth with a hexagonal ground pattern resembling that described for the great green bush-cricket Tettigonia viridissima. This is, to our knowledge, the first report on nubby euplantulae in Orthoptera and the co-occurrence of nubby and smooth euplantulae on a single tarsus in a polyneopteran species. When adhering upside down to a horizontal glass plate, A. diadematus attaches its nubby euplantulae less often, compared to situations in which the animal is hanging upright or head down on a vertical plate. We discuss possible reasons for this kind of clinging behaviour, such as morphological constrains, the different role of normal and shear forces in attachment enhancement of the nubby and smooth pads, ease of the detachment process, and adaptations to walking on cylindrical substrates. PMID:26213740
Satellite Observations of Tropospheric Chemistry
NASA Technical Reports Server (NTRS)
Singh, Hanwant B.; Jacob, Daniel J.; Hipskind, R. Stephen (Technical Monitor)
2001-01-01
The troposphere is an essential component of the earth's life support system as well as the gateway for the exchange of chemicals between different geochemical reservoirs of the earth. The chemistry of the troposphere is sensitive to perturbation from a wide range of natural phenomena and human activities. The societal concern has been greatly enhanced in recent decades due to ever increasing pressures of population growth and industrialization. Chemical changes within the troposphere control a vast array of processes that impact human health, the biosphere, and climate. A main goal of tropospheric chemistry research is to measure and understand the response of atmospheric composition to natural and anthropogenic perturbations, and to develop the capability to predict future change. Atmospheric chemistry measurements are extremely challenging due to the low concentrations of critical species and the vast scales over which the observations must be made. Available tropospheric data are mainly from surface sites and aircraft missions. Because of the limited temporal extent of aircraft observations, we have very limited information on tropospheric composition above the surface. This situation can be contrasted to the stratosphere, where satellites have provided critical and detailed chemical data on the global distribution of key trace gases.
NASA Astrophysics Data System (ADS)
Keefe, Steffanie H.; Daniels, Joan S. (Thullen); Runkel, Robert L.; Wass, Roland D.; Stiles, Eric A.; Barber, Larry B.
2010-11-01
A series of tracer experiments were conducted biannually at the start and end of the vegetation growing season in a surface flow wastewater treatment wetland located near Phoenix, AZ. Tracer experiments were conducted prior to and following reconfiguration and replanting of a 1.2 ha treatment wetland from its original design of alternating shallow and deep zones to incorporate hummocks (shallow planting beds situated perpendicular to flow). Tracer test data were analyzed using analysis of moments and the one-dimensional transport with inflow and storage numerical model to evaluate the effects of the seasonal vegetation growth cycle and hummocks on solute transport. Following reconfiguration, vegetation coverage was relatively small, and minor changes in spatial distribution influenced wetland hydraulics. During start-up conditions, the wetland underwent an acclimation period characterized by small vegetation coverage and large transport cross-sectional areas. At the start of the growing season, new growth of emergent vegetation enhanced hydraulic performance. At the end of the growing season, senescing vegetation created short-circuiting. Wetland hydrodynamics were associated with high volumetric efficiencies and velocity heterogeneities. The hummock design resulted in breakthrough curves characterized by multiple secondary tracer peaks indicative of varied flow paths created by bottom topography.
Tantalum implanted entangled porous titanium promotes surface osseointegration and bone ingrowth
NASA Astrophysics Data System (ADS)
Wang, Qi; Qiao, Yuqin; Cheng, Mengqi; Jiang, Guofeng; He, Guo; Chen, Yunsu; Zhang, Xianlong; Liu, Xuanyong
2016-05-01
Porous Ti is considered to be an ideal graft material in orthopaedic and dental surgeries due to its similar spatial structures and mechanical properties to cancellous bone. In this work, to overcome the bioinertia of Ti, Ta-implanted entangled porous titanium (EPT) was constructed by plasma immersion ion implantation & deposition (PIII&D) method. Ca-implanted and unimplanted EPTs were investigated as control groups. Although no difference was found in surface topography and mechanical performances, both Ca- and Ta-implanted groups had better effects in promoting MG-63 cell viability, proliferation, differentiation, and mineralization than those of unimplanted group. The expression of osteogenic-related markers examined by qRT-PCR and western blotting was upregulated in Ca- and Ta-implanted groups. Moreover, Ta-implanted EPT group could reach a higher level of these effects than that of Ca-implanted group. Enhanced osseointegration of both Ca- and Ta-implanted EPT implants was demonstrated through in vivo experiments, including micro-CT evaluation, push-out test, sequential fluorescent labeling and histological observation. However, the Ta-implanted group possessed more stable and continuous osteogenic activity. Our results suggest that Ta-implanted EPT can be developed as one of the highly efficient graft material for bone reconstruction situations.
Keefe, Steffanie H.; Daniels, Joan S.; Runkel, Robert L.; Wass, Roland D.; Stiles, Eric A.; Barber, Larry B.
2010-01-01
A series of tracer experiments were conducted biannually at the start and end of the vegetation growing season in a surface flow wastewater treatment wetland located near Phoenix, AZ. Tracer experiments were conducted prior to and following reconfiguration and replanting of a 1.2 ha treatment wetland from its original design of alternating shallow and deep zones to incorporate hummocks (shallow planting beds situated perpendicular to flow). Tracer test data were analyzed using analysis of moments and the one‐dimensional transport with inflow and storage numerical model to evaluate the effects of the seasonal vegetation growth cycle and hummocks on solute transport. Following reconfiguration, vegetation coverage was relatively small, and minor changes in spatial distribution influenced wetland hydraulics. During start‐up conditions, the wetland underwent an acclimation period characterized by small vegetation coverage and large transport cross‐sectional areas. At the start of the growing season, new growth of emergent vegetation enhanced hydraulic performance. At the end of the growing season, senescing vegetation created short‐circuiting. Wetland hydrodynamics were associated with high volumetric efficiencies and velocity heterogeneities. The hummock design resulted in breakthrough curves characterized by multiple secondary tracer peaks indicative of varied flow paths created by bottom topography.
NASA Astrophysics Data System (ADS)
Ageev, Vladimir P.; Konov, Vitalii I.; Krechetov, A. I.
1990-08-01
An analysis is made of the photoemission of electrons in gases when the surface of a solid is subjected to high-intensity ultraviolet laser radiation which does not cause surface heating. Various situations are considered in which generation of high local electric fields and of a dense cloud of charged particles near the surface may alter and even determine the mechanism of laser-stimulated processes on surfaces of solids.
High-order-harmonic generation from Rydberg atoms driven by plasmon-enhanced laser fields
NASA Astrophysics Data System (ADS)
Tikman, Y.; Yavuz, I.; Ciappina, M. F.; Chacón, A.; Altun, Z.; Lewenstein, M.
2016-02-01
We theoretically investigate high-order-harmonic generation (HHG) in Rydberg atoms driven by spatially inhomogeneous laser fields, induced, for instance, by plasmonic enhancement. It is well known that the laser intensity should exceed a certain threshold in order to stimulate HHG when noble gas atoms in their ground state are used as an active medium. One way to enhance the coherent light coming from a conventional laser oscillator is to take advantage of the amplification obtained by the so-called surface plasmon polaritons, created when a low-intensity laser field is focused onto a metallic nanostructure. The main limitation of this scheme is the low damage threshold of the materials employed in the nanostructure engineering. In this work we propose the use of Rydberg atoms, driven by spatially inhomogeneous, plasmon-enhanced laser fields, for HHG. We exhaustively discuss the behavior and efficiency of these systems in the generation of coherent harmonic emission. Toward this aim we numerically solve the time-dependent Schrödinger equation for an atom, with an electron initially in a highly excited n th Rydberg state, located in the vicinity of a metallic nanostructure. In this zone the electric field changes spatially on scales relevant for the dynamics of the laser-ionized electron. We first use a one-dimensional model to investigate systematically the phenomena. We then employ a more realistic situation, in which the interaction of a plasmon-enhanced laser field with a three-dimensional hydrogen atom is modeled. We discuss the scaling of the relevant input parameters with the principal quantum number n of the Rydberg state in question and demonstrate that harmonic emission can be achieved from Rydberg atoms well below the damage threshold, thus without deterioration of the geometry and properties of the metallic nanostructure.
Enhanced multifunctional paint for detection of radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, Joseph C.; Moses, Edward Ira; Rubenchik, Alexander M.
An enhanced multifunctional paint apparatus, systems, and methods for detecting radiation on a surface include providing scintillation particles; providing an enhance neutron absorptive material; providing a binder; combining the scintillation particles, the enhance neutron absorptive material, and the binder creating a multifunctional paint; applying the multifunctional paint to the surface; and monitoring the surface for detecting radiation.
Sun, Yinghui; Liu, Kai; Miao, Jiao; Wang, Zheyao; Tian, Baozhong; Zhang, Lina; Li, Qunqing; Fan, Shoushan; Jiang, Kaili
2010-05-12
Surface-enhanced Raman scattering (SERS) has attracted wide attention because it can enhance normally weak Raman signal by several orders of magnitude and facilitate the sensitive detection of molecules. Conventional SERS substrates are constructed by placing metal nanoparticles on a planar surface. Here we show that, if the planar surface was substituted by a unique nanoporous surface, the enhancement effect can be dramatically improved. The nanoporous surface can be easily fabricated in batches and at low costs by cross stacking superaligned carbon nanotube films. The as-prepared transparent and freestanding SERS substrate is capable of detecting ambient trinitrotoluene vapor, showing much higher Raman enhancement than ordinary planar substrates because of the extremely large surface area and the unique zero-dimensional at one-dimensional nanostructure. These results not only provide a new approach to ultrasensitive SERS substrates, but also are helpful for improving the fundamental understanding of SERS phenomena.
Pustovit, Vitaliy N; Shahbazyan, Tigran V
2006-06-01
We study finite-size effects in surface-enhanced Raman scattering (SERS) from molecules adsorbed on small metal particles. Within an electromagnetic description of SERS, the enhancement of the Raman signal originates from the local field of the surface plasmon resonance in a nanoparticle. With decreasing particle sizes, this enhancement is reduced due to the size-dependent Landau damping of the surface plasmon. We show that, in small noble-metal particles, the reduction of interband screening in the surface layer leads to an additional increase in the local field acting on a molecule close to the metal surface. The overall size dependence of Raman signal enhancement is determined by the interplay between Landau damping and underscreening effects. Our calculations, based on a two-region model, show that the role of the surface layer increases for smaller nanoparticle sizes due to a larger volume fraction of the underscreened region.
Sun, Yu; Caravella, Alessio
2016-01-01
This study proposed a facile method to detect metalloporphyrin-based coordination polymer particles (Z-CPPs) in aqueous solution by modified surface-enhanced Raman scattering (SERS). The SERS-active particles are photodeposited on the surface of Z-CPPs, offering an enhanced Raman signal for the trace detection of Z-CPPs.
Compromises produced by the dialectic between self-verification and self-enhancement.
Morling, B; Epstein, S
1997-12-01
Three studies of people's reactions to evaluative feedback demonstrated that the dialectic between self-enhancement and self-verification results in compromises between these 2 motives, as hypothesized in cognitive-experiential self-theory. The demonstration was facilitated by 2 procedural improvements: Enhancement and verification were established by calibrating evaluative feedback against self appraisals, and degree of enhancement and of verification were varied along a continuum, rather than categorically. There was also support for the hypotheses that processing in an intuitive-experiential mode favors enhancement and processing in an analytical-rational mode favors verification in the kinds of situations investigated.
Enhancing BEM simulations of a stalled wind turbine using a 3D correction model
NASA Astrophysics Data System (ADS)
Bangga, Galih; Hutomo, Go; Syawitri, Taurista; Kusumadewi, Tri; Oktavia, Winda; Sabila, Ahmad; Setiadi, Herlambang; Faisal, Muhamad; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus; Bumi, Ilmi
2018-03-01
Nowadays wind turbine rotors are usually employed with pitch control mechanisms to avoid deep stall conditions. Despite that, wind turbines often operate under pitch fault situation causing massive flow separation to occur. Pure Blade Element Momentum (BEM) approaches are not designed for this situation and inaccurate load predictions are already expected. In the present studies, BEM predictions are improved through the inclusion of a stall delay model for a wind turbine rotor operating under pitch fault situation of -2.3° towards stall. The accuracy of the stall delay model is assessed by comparing the results with available Computational Fluid Dynamics (CFD) simulations data.
NASA Astrophysics Data System (ADS)
Brax, Christoffer; Niklasson, Lars
2009-05-01
Maritime Domain Awareness is important for both civilian and military applications. An important part of MDA is detection of unusual vessel activities such as piracy, smuggling, poaching, collisions, etc. Today's interconnected sensorsystems provide us with huge amounts of information over large geographical areas which can make the operators reach their cognitive capacity and start to miss important events. We propose and agent-based situation management system that automatically analyse sensor information to detect unusual activity and anomalies. The system combines knowledge-based detection with data-driven anomaly detection. The system is evaluated using information from both radar and AIS sensors.
Approximate stresses in 2-D flat elastic contact fretting problems
NASA Astrophysics Data System (ADS)
Urban, Michael Rene
Fatigue results from the cyclic loading of a solid body. If the body subject to fatigue is in contact with another body and relative sliding motion occurs between these two bodies, then rubbing surface damage can accelerate fatigue failure. The acceleration of fatigue failure is especially important if the relative motion between the two bodies results in surface damage without excessive surface removal via wear. The situation just described is referred to as fretting fatigue. Understanding of fretting fatigue is greatly enhanced if the stress state associated with fretting can be characterized. For Hertzian contact, this can readily be done. Unfortunately, simple stress formulae are not available for flat body contact. The primary result of the present research is the development of a new, reasonably accurate, approximate closed form expression for 2-dimensional contact stresses which has been verified using finite element modeling. This expression is also combined with fracture mechanics to provide a simple method of determining when a crack is long enough to no longer be affected by the contact stress field. Lower bounds on fatigue life can then easily be calculated using fracture mechanics. This closed form expression can also be used to calculate crack propagation within the contact stress field. The problem of determining the cycles required to generate an initial crack and what to choose as an initial crack size is unresolved as it is in non-fretting fatigue.
Anitua, E; Muruzabal, F; de la Fuente, M; Riestra, A; Merayo-Lloves, J; Orive, G
2016-10-01
Ocular graft versus host disease (oGVHD) is part of a systemic inflammatory disease that usually affects ocular surface tissues manifesting as a dry eye syndrome. Current treatments provide unsatisfactory results. Blood-derived products, like plasma rich in growth factors (PRGF) emerge as a potential therapy for this disease. The purpose of this study was to evaluate the tissue regeneration and anti-inflammatory capability of PRGF, an autologous platelet enriched plasma eye-drop, compared to autologous serum (AS) obtained from oGVHD patients on ocular surface cells cultured in a pro-inflammatory environment. PRGF and AS were obtained from four GVHD patients. Cell proliferation and inflammation markers, intercellular adhesion molecule-1 (ICAM-1) and cyclooxygenase-2 (COX-2), were measured in corneal and conjunctival fibroblastic cells cultured under pro-inflammatory conditions and after treatment with PRGF or AS eye drops. Moreover, cell proliferation increased after treatment with PRGF and AS, though this enhancement in the case of keratocytes was significantly higher with PRGF. PRGF eye drops showed a significant reduction of both inflammatory markers with respect to the initial inflammatory situation and to the AS treatment. Our results concluded that PRGF exerts more potent regenerative and anti-inflammatory effects than autologous serum on ocular surface fibroblasts treated with pro-inflammatory IL-1β and TNFα. Copyright © 2016 Elsevier Ltd. All rights reserved.
Size-dependent Young’s modulus in ZnO nanowires with strong surface atomic bonds
NASA Astrophysics Data System (ADS)
Fan, Shiwen; Bi, Sheng; Li, Qikun; Guo, Qinglei; Liu, Junshan; Ouyang, Zhongliang; Jiang, Chengming; Song, Jinhui
2018-03-01
The mechanical properties of size-dependent nanowires are important in nano-electro-mechanical systems (NEMSs), and have attracted much research interest. Characterization of the size effect of nanowires in atmosphere directly to broaden their practical application instead of just in high vacuum situations, as reported previously, is desperately needed. In this study, we systematically studied the Young’s modulus of vertical ZnO nanowires in atmosphere. The diameters ranged from 48 nm to 239 nm with a resonance method using non-contact atomic force microscopy. The values of Young’s modulus in atmosphere present extremely strong increasing tendency with decreasing diameter of nanowire due to stronger surface atomic bonds compared with that in vacuum. A core-shell model for nanowires is proposed to explore the Young’s modulus enhancement in atmosphere, which is correlated with atoms of oxygen occurring near the nanowire surface. The modified model is more accurate for analyzing the mechanical behavior of nanowires in atmosphere compared with the model in vacuum. Furthermore, it is possible to use this characterization method to measure the size-related elastic properties of similar wire-sharp nanomaterials in atmosphere and estimate the corresponding mechanical behavior. The study of the size-dependent Young’s modulus in ZnO nanowires in atmosphere will improve the understanding of the mechanical properties of nanomaterials as well as providing guidance for applications in NEMSs, nanogenerators, biosensors and other related areas.
Enhancing Perception in Ethical Decision Making: A Method to Address Ill-Defined Training Domains
2010-08-01
revolution in the ethics of warfare. Albany, NY: State University of New York Press. Craik , F.I., & Lockhart , R.S. (1972). Levels of processing ...trainees in meeting their shared training objectives. In this way, the Army can draw together the individual level interpretive processes with the...interpret their situation in a personally meaningful way (cf. Craik & Lockhart , 1972). There are many complexities present in a training situation
Spontaneous formation of non-uniform double helices for elastic rods under torsion
NASA Astrophysics Data System (ADS)
Li, Hongyuan; Zhao, Shumin; Xia, Minggang; He, Siyu; Yang, Qifan; Yan, Yuming; Zhao, Hanqiao
2017-02-01
The spontaneous formation of double helices for filaments under torsion is common and significant. For example, the research on the supercoiling of DNA is helpful for understanding the replication and transcription of DNA. Similar double helices can appear in carbon nanotube yarns, cables, telephone wires and so forth. We noticed that non-uniform double helices can be produced due to the surface friction induced by the self-contact. Therefore an ideal model was presented to investigate the formation of double helices for elastic rods under torque. A general equilibrium condition which is valid for both the smooth surface and the rough surface situations is derived by using the variational method. By adding further constraints, the smooth and rough surface situations are investigated in detail respectively. Additionally, the model showed that the specific process of how to twist and slack the rod can determine the surface friction and hence influence the configuration of the double helix formed by rods with rough surfaces. Based on this principle, a method of manufacturing double helices with designed configurations was proposed and demonstrated. Finally, experiments were performed to verify the model and the results agreed well with the theory.
Near-infrared squaraine dyes for fluorescence enhanced surface assay
Matveeva, Evgenia G.; Terpetschnig, Ewald A.; Stevens, Megan; Patsenker, Leonid; Kolosova, Olga S.; Gryczynski, Zygmunt; Gryczynski, Ignacy
2009-01-01
Commercially available, near-infrared fluorescent squaraine dyes (Seta-635 and Seta-670) were covalently bound to antibodies and employed insurface enhanced immunoassay. From fluorescence intensity and lifetime changes determined for a surface which had been coated with silver nanoparticles as well as a non-coated glass surface, both labelled compounds exhibited a 15 to 20-fold enhancement of fluorescence on the silver coated surface compared to that achieved on the non-coated surface. In addition, the fluorescence lifetime changes drastically for both labels in the case of silver-coated surfaces. The fluorescence signal enhancement obtained for the two dyes was greater than that previously recorded for Rhodamine Red-X and AlexaFluor-647 labels. PMID:20046935
Tsai, William; Lau, Anna S; Niles, Andrea N; Coello, Jordan; Lieberman, Matthew D; Ko, Ahra C; Hur, Christopher; Stanton, Annette L
2015-10-01
The current study examined whether writing content related to self-enhancing (viz., downward social comparison and situational attributions) and self-improving (viz., upward social comparison and persistence) motivations were differentially related to expressive writing outcomes among 17 Asian American and 17 European American participants. Content analysis of the essays revealed no significant cultural group differences in the likelihood of engaging in self-enhancing versus self-improving reflections on negative personal experiences. However, cultural group differences were apparent in the relation between self-motivation processes and changes in anxiety and depressive symptoms at 3-month follow-up. Among European Americans, writing that reflected downward social comparison predicted positive outcomes, whereas persistence writing themes were related to poorer outcomes. For Asian Americans, writing about persistence was related to positive outcomes, whereas downward social comparison and situational attributions predicted poorer outcomes. Findings provide evidence suggesting culturally distinct mechanisms for the effects of expressive disclosure. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Hasan, Sanah; Tarazi, Hamadeh M Khier; Halim Hilal, Dana Abdel
2017-05-01
Objective. To assess student communication and patient management skill with introduction of Arabic and use of simulated patient assessments to a communication and counseling course. Design. Five, 3-hour tutorials (clinical skill laboratory) were added to the course covering: listening and empathic responding, non-verbal communications, interviewing skills, assertiveness, counseling in special situations: conflict, anger, worry or rushed situations, and professional decision making. Arabic content was introduced to the course to enhance Arabic communications and competence among students. Simulated patient assessment was used to evaluate student skills. Students' feedback about course changes was evaluated. Assessment. The course now covers a wider content and Arabic language. Students' scores were similar in the assessment and other assessments within the course and between Arabic and English groups. Students favorably rated the changes in the course and provided constructive feedback on content usefulness and adequacy. Conclusion. Expanding the course to include Arabic language and content and simulated patient assessments enhanced student communication skills.
Tarazi, Hamadeh (M. Khier); Halim Hilal, Dana Abdel
2017-01-01
Objective. To assess student communication and patient management skill with introduction of Arabic and use of simulated patient assessments to a communication and counseling course. Design. Five, 3-hour tutorials (clinical skill laboratory) were added to the course covering: listening and empathic responding, non-verbal communications, interviewing skills, assertiveness, counseling in special situations: conflict, anger, worry or rushed situations, and professional decision making. Arabic content was introduced to the course to enhance Arabic communications and competence among students. Simulated patient assessment was used to evaluate student skills. Students’ feedback about course changes was evaluated. Assessment. The course now covers a wider content and Arabic language. Students’ scores were similar in the assessment and other assessments within the course and between Arabic and English groups. Students favorably rated the changes in the course and provided constructive feedback on content usefulness and adequacy. Conclusion. Expanding the course to include Arabic language and content and simulated patient assessments enhanced student communication skills. PMID:28630517
Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan
2014-07-22
Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.
Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan
2015-07-14
Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.
Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan
2015-11-03
Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.
Mihic, Ljiljana; Wells, Samantha; Graham, Kathryn; Tremblay, Paul F; Demers, Andrée
2009-03-01
Situational drinking motives (i.e., motives specific to the drinking situation) as well as respondent-level drinking motives (i.e., usual drinking motives across drinking situations) were examined in terms of their relations with aggression experienced by university students. Secondary, multi-level analyses were conducted on the Canadian Campus Survey (CCS), a national survey of 40 Canadian universities conducted between March 1 and April 30, 2004 (N=6,282). For their three most recent drinking events, students reported their motive for drinking (i.e., situational motive) and whether they had an argument/fight. Respondent-level drinking motives were computed by averaging motives across drinking events. Drinking to cope at the situational-level increased the likelihood of aggression. Respondent-level enhancement motives also increased the risk of aggression. Aesthetic motives were important at both situational and respondent levels decreasing the risk for alcohol-related aggression. Gender did not moderate these relations. These results suggest that prevention programming might benefit from a focus on altering drinking motives, or their underlying causes, in order to reduce alcohol-related aggression among young adults.
A principled approach to the measurement of situation awareness in commercial aviation
NASA Technical Reports Server (NTRS)
Tenney, Yvette J.; Adams, Marilyn Jager; Pew, Richard W.; Huggins, A. W. F.; Rogers, William H.
1992-01-01
The issue of how to support situation awareness among crews of modern commercial aircraft is becoming especially important with the introduction of automation in the form of sophisticated flight management computers and expert systems designed to assist the crew. In this paper, cognitive theories are discussed that have relevance for the definition and measurement of situation awareness. These theories suggest that comprehension of the flow of events is an active process that is limited by the modularity of attention and memory constraints, but can be enhanced by expert knowledge and strategies. Three implications of this perspective for assessing and improving situation awareness are considered: (1) Scenario variations are proposed that tax awareness by placing demands on attention; (2) Experimental tasks and probes are described for assessing the cognitive processes that underlie situation awareness; and (3) The use of computer-based human performance models to augment the measures of situation awareness derived from performance data is explored. Finally, two potential example applications of the proposed assessment techniques are described, one concerning spatial awareness using wide field of view displays and the other emphasizing fault management in aircraft systems.
Bare and protected sputtered-noble-metal films for surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Talaga, David; Bonhommeau, Sébastien
2014-11-01
Sputtered silver and gold films with different surface morphologies have been prepared and coated with a benzenethiol self-assembled monolayer. Rough noble metal films showed strong Raman features assigned to adsorbed benzenethiol molecules upon irradiation over a wide energy range in the visible spectrum, which disclosed the occurrence of a significant surface-enhanced Raman scattering with maximal enhancement factors as high as 6 × 106. In addition, the adsorption of ethanethiol onto silver surfaces hinders their corrosion over days while preserving mostly intact enhancement properties of naked silver. This study may be applied to develop stable and efficient metalized probes for tip-enhanced Raman spectroscopy.
Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials
NASA Astrophysics Data System (ADS)
Ding, Song-Yuan; Yi, Jun; Li, Jian-Feng; Ren, Bin; Wu, De-Yin; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun
2016-06-01
Since 2000, there has been an explosion of activity in the field of plasmon-enhanced Raman spectroscopy (PERS), including surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). In this Review, we explore the mechanism of PERS and discuss PERS hotspots — nanoscale regions with a strongly enhanced local electromagnetic field — that allow trace-molecule detection, biomolecule analysis and surface characterization of various materials. In particular, we discuss a new generation of hotspots that are generated from hybrid structures combining PERS-active nanostructures and probe materials, which feature a strong local electromagnetic field on the surface of the probe material. Enhancement of surface Raman signals up to five orders of magnitude can be obtained from materials that are weakly SERS active or SERS inactive. We provide a detailed overview of future research directions in the field of PERS, focusing on new PERS-active nanomaterials and nanostructures and the broad application prospect for materials science and technology.
High Performance Computing Software Applications for Space Situational Awareness
NASA Astrophysics Data System (ADS)
Giuliano, C.; Schumacher, P.; Matson, C.; Chun, F.; Duncan, B.; Borelli, K.; Desonia, R.; Gusciora, G.; Roe, K.
The High Performance Computing Software Applications Institute for Space Situational Awareness (HSAI-SSA) has completed its first full year of applications development. The emphasis of our work in this first year was in improving space surveillance sensor models and image enhancement software. These applications are the Space Surveillance Network Analysis Model (SSNAM), the Air Force Space Fence simulation (SimFence), and physically constrained iterative de-convolution (PCID) image enhancement software tool. Specifically, we have demonstrated order of magnitude speed-up in those codes running on the latest Cray XD-1 Linux supercomputer (Hoku) at the Maui High Performance Computing Center. The software applications improvements that HSAI-SSA has made, has had significant impact to the warfighter and has fundamentally changed the role of high performance computing in SSA.
Chiu, Rong-Shi Paul; Hasz, Wayne Charles; Johnson, Robert Alan; Lee, Ching-Pang; Abuaf, Nesim
2002-01-01
An annular turbine shroud separates a hot gas path from a cooling plenum containing a cooling medium. Bumps are cast in the surface on the cooling side of the shroud. A surface coating overlies the cooling side surface of the shroud, including the bumps, and contains cooling enhancement material. The surface area ratio of the cooling side of the shroud with the bumps and coating is in excess of a surface area ratio of the cooling side surface with bumps without the coating to afford increased heat transfer across the element relative to the heat transfer across the element without the coating.
Connor, Joseph P; Troendle, Karen
2007-08-01
This article applies two well-known management and leadership models-Theory X and Theory Y, and Situational Leadership-to dental education. Theory X and Theory Y explain how assumptions may shape the behaviors of dental educators and lead to the development of "cop" and "coach" teaching styles. The Situational Leadership Model helps the educator to identify the teaching behaviors that are appropriate in a given situation to assist students as they move from beginner to advanced status. Together, these models provide a conceptual reference to assist in the understanding of the behaviors of both students and faculty and remind us to apply discretion in the education of our students. The implications of these models for assessing and enhancing the educational environment in dental school are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, A; Schoenfeld, A; Poppinga, D
Purpose: The quantification of the relative surface dose enhancement in dependence on the angle of incidence and the atomic number Z of the surface material. Methods: Experiments were performed with slabs made of aluminum, titanium, copper, silver, dental gold and lead. The metal slabs with equal sizes of 1.0×8.0×8.8mm{sup 3} were embedded in an Octavius 4D phantom (PTW Freiburg, Germany). Radiochromic EBT3 films were used to measure the surface dose for angles of incidence ranging from 0° to 90°. The setup with the metals slabs at the isocenter was irradiated with acceleration voltages of 6MV and 10MV. Water reference measurementsmore » were taken under equal conditions. Results: The surface dose enhancement is highest for angles of incidence below 30° and drops significantly for higher. The surface dose enhancement produced by lead and dental gold at 6MV showed a peak of 65%. At 90°, the surface dose enhancement dropped to 15% for both materials. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 32%, 22% and 12% at 0°, respectively. At an angle of incidence of 80°, the values dropped to 22%, 18%, 12% und 6%. The values for 10MV were very similar. Lead and dental gold showed peaks of 65% und 60%. Their values dropped to 18% at an angle of 90°. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 30%, 20% and 8% at 0°. At 80° the values dropped to 30%, 20%, 12% and 5%. A dependence of the magnitude of the surface dose enhancement on the atomic number of the surface material can be seen, which is in consistence with literature. Conclusion: The results show that the surface dose enhancements near implant materials with high Z-values should be taken into consideration in radio therapy, even when the angle of incidence is flat.« less
Cockpit weather information needs
NASA Technical Reports Server (NTRS)
Scanlon, Charles H.
1992-01-01
The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along the route can be accomplished prior to pilot acceptance of the clearance. An ongoing multiphase test series is planned for testing and modifying the graphical weather system. Preliminary data shows that the nine test subjects considered the graphical presentation to be much better than their current weather information source for situation awareness, flight safety, and reroute decision making.
Bekker, Marrie H J; Croon, Marcel A; van Balkom, Esther G A; Vermee, Jennifer B G
2008-06-01
Autonomy-connectedness is the capacity for being on one's own as well as for satisfactorily engaging in interpersonal relationships. Associations have been shown between autonomy-connectedness components (self-awareness, sensitivity to others, and the capacity for managing new situations) and various indices of psychopathology. Both in a theoretical sense as well as for enhancing treatment and prevention, it is relevant to identify which factors most powerfully predict individual differences in autonomy-connectedness: body awareness, alexithymia, or assertiveness. The present study examined this question in a clinical sample of women who were diagnosed as having autonomy problems (N=52) and in a female nonclinical community sample (N=59). In line with expectations, assertiveness was a strong predictor of (all three components of) autonomy-connectedness, as was emotionalizing, one of the alexithymia-components, but the latter in an opposite direction than we had expected: the higher an individual's ability to emotionalize was, the less self-aware and capable to manage new situations that person was, and the more sensitive to others. Cognitive alexithymia contributed to self-awareness as well as to the capacity for managing new situations, and one of the components of body awareness appeared to predict capacity for managing new situations. Our results indicate that assertiveness training and the enhancement of emotion regulation are important elements of autonomy-connectedness targeted interventions. (c) 2008 Wiley Periodicals, Inc.
Lee, Haeok; Fawcett, Jacqueline; Yang, Jin Hyang; Hann, Hie-Won
2012-12-01
The purpose of this article is to explain the evolution of a situation-specific theory developed to enhance understanding of health-related behaviors of Korean Americans (KAs) who have or are at risk for a chronic hepatitis B virus (HBV) infection. The situation-specific theory evolved from an integration of the Network Episode Model, studies of health-related behaviors of people with HBV infection, and our studies of and practice experiences with Asian American individuals with HBV infection. The major concepts of the theory are sociocultural context, social network, individual-level factors, illness experience, and health-related behaviors. The major propositions of the theory are that sociocultural context, social network, and individual-level factors influence the illness experience, and that sociocultural context, social network, individual-level factors, and the illness experience influence health-related behaviors of KAs who have or are at risk for HBV infection. This situation-specific theory represents a translation of abstract concepts into clinical reality. The theory is an explanation of correlates of health-related HBV behaviors of KAs. The next step is to develop and test the effectiveness of a nursing intervention designed to promote behaviors that will enhance the health of KAs who have or are at risk for HBV infection, and that takes into account sociocultural context, social network, individual-level factors, and illness experience. © 2012 Sigma Theta Tau International.
Training Inference Making Skills Using a Situation Model Approach Improves Reading Comprehension
Bos, Lisanne T.; De Koning, Bjorn B.; Wassenburg, Stephanie I.; van der Schoot, Menno
2016-01-01
This study aimed to enhance third and fourth graders’ text comprehension at the situation model level. Therefore, we tested a reading strategy training developed to target inference making skills, which are widely considered to be pivotal to situation model construction. The training was grounded in contemporary literature on situation model-based inference making and addressed the source (text-based versus knowledge-based), type (necessary versus unnecessary for (re-)establishing coherence), and depth of an inference (making single lexical inferences versus combining multiple lexical inferences), as well as the type of searching strategy (forward versus backward). Results indicated that, compared to a control group (n = 51), children who followed the experimental training (n = 67) improved their inference making skills supportive to situation model construction. Importantly, our training also resulted in increased levels of general reading comprehension and motivation. In sum, this study showed that a ‘level of text representation’-approach can provide a useful framework to teach inference making skills to third and fourth graders. PMID:26913014
ERIC Educational Resources Information Center
Reshmad'sa, Laveena; Vijayakumari, S. N.
2017-01-01
This study aimed at investigating the effect of Kolb's Experiential Learning Strategy on enhancing the pedagogical skills of pre-service teachers of secondary school level. Kolb's Experiential Learning is a method of acquiring knowledge, skills, and experiences by creating situation to gain first hand experiences. According to Kolb optimal…
ERIC Educational Resources Information Center
Martin, Andrew J.; Durksen, Tracy L.; Williamson, Derek; Kiss, Julia; Ginns, Paul
2016-01-01
Informal learning settings such as museums have been identified as opportunities to enhance students' knowledge and motivation in science and to optimize the connection between science and everyday life. The present study assessed the role of a self-paced science education program (situated in a medical science museum) in enhancing students'…
ERIC Educational Resources Information Center
Asghar, Mandy; Rowe, Nick
2018-01-01
Service learning is an experiential pedagogic approach that is predicated on students learning in authentic situations. It is often problem-orientated and provides opportunities for community engagement in ways that enhance a student's capacity as a socially aware individual. There is evidence that such learning opportunities can enhance personal…
Using a modification of the classic Drama Triangle to enhance pastoral care.
Hasty, C
2001-01-01
Describes the Drama Triangle of Victim-Persecutor-Rescuer conceptual model and suggests helpful ways to use it in order to understand and intervene in the difficult situations often encountered by pastors, pastoral counselors, and chaplains. Attempts to join this conceptual model to a theological understanding of persons to deepen self-examination, ground pastoral identity, and enhance pastoral competence.
NASA Astrophysics Data System (ADS)
Gen, Masao; Chan, Chak K.
2017-11-01
We present electrospray surface-enhanced Raman spectroscopy (ES-SERS) as a new approach to measuring the surface chemical compositions of atmospherically relevant particles. The surface-sensitive SERS is realized by electrospraying Ag nanoparticle aerosols over analyte particles. Spectral features at v(SO42-), v(C-H) and v(O-H) modes were observed from the normal Raman and SERS measurements of laboratory-generated supermicron particles of ammonium sulfate (AS), AS mixed with succinic acid (AS / SA) and AS mixed with sucrose (AS / sucrose). SERS measurements showed strong interaction (or chemisorption) between Ag nanoparticles and surface aqueous sulfate [SO42-] with [SO42-]AS / sucrose > [SO42-]AS / SA > [SO42-]AS. Enhanced spectra of the solid AS and AS / SA particles revealed the formation of surface-adsorbed water on their surfaces at 60 % relative humidity. These observations of surface aqueous sulfate and adsorbed water demonstrate a possible role of surface-adsorbed water in facilitating the dissolution of sulfate from the bulk phase into its water layer(s). Submicron ambient aerosol particles collected in Hong Kong exhibited non-enhanced features of black carbon and enhanced features of sulfate and organic matter (carbonyl group), indicating an enrichment of sulfate and organic matter on the particle surface.
Coercivity Enhancement in Exchange Biased Bilayers
NASA Astrophysics Data System (ADS)
Leighton, C.
2001-03-01
The well-known enhancement in coercivity in ferromagnet / antiferromagnet bilayers has been studied in the model epitaxial system MnF2 / Fe. We have investigated how the coercivity depends on temperature, cooling field, layer thickness and interfacial disorder. In all cases a typical enhancement is observed on cooling below the Neel temperature of the antiferromagnet. However, for the case of positively exchange biased layers we observe an extra coercivity enhancement which occurs when the interface is deliberately driven to a situation of maximum magnetic frustration(C. Leighton, J. Nogues, B.J. Jonsson-Akerman and I.K. Schuller, Phys. Rev. Lett. 84 3466 (2000)). This situation is controlled by the magnitude of the cooling field, giving us an external parameter through which we can vary the coercivity. We propose a model where a frustrated interface provides local energy minima which effectively pin domain walls leading to an increase in coercivity. We further examine the ferromagnet thickness dependence of the effect as a probe of the coercive mechanisms(Z. Li and S. Zhang, Phys. Rev. B61 R14897 (2000) ; S. Zhang et al J. Mag. Mag. Mat. 198-199 468 (1999)). Work supported by the US DoE and the NSF.
ERIC Educational Resources Information Center
Khan, Sameen Ahmed
2010-01-01
Spherometers are instruments designed to measure the radius of curvature of spherical surfaces. They are particularly useful in situations where only a portion of the spherical surface is available, for example, for measuring the radii of curvature of spherical lenses. A spherometer can be easily modified so that it can also be used to measure the…
This study considers the performance of 7 of the Weather Research and Forecast model boundary-layer (BL) parameterization schemes in a complex...schemes performed best. The surface parameters, planetary BL structure, and vertical profiles are important for US Army Research Laboratory
Wang, Shu; Zheng, Hui; Liu, Shuhua; Miao, Yucong; Li, Jing
2016-01-01
The wheat production in midland China is under serious threat by frequent Dry-Hot Wind (DHW) episodes with high temperature, low moisture and specific wind as well as intensive heat transfer and evapotranspiration. The numerical simulations of these episodes are important for monitoring grain yield and estimating agricultural water demand. However, uncertainties still remain despite that enormous experiments and modeling studies have been conducted concerning this issue, due to either inaccurate synoptic situation derived from mesoscale weather models or unrealistic parameterizations of stomatal physiology in land surface models. Hereby, we investigated the synoptic characteristics of DHW with widely-used mesoscale model Weather Research and Forecasting (WRF) and the effects of leaf physiology on surface evapotranspiration by comparing two land surface models: The Noah land surface model, and Peking University Land Model (PKULM) with stomata processes included. Results show that the WRF model could well replicate the synoptic situations of DHW. Two types of DHW were identified: (1) prevailing heated dry wind stream forces the formation of DHW along with intense sensible heating and (2) dry adiabatic processes overflowing mountains. Under both situations, the PKULM can reasonably model the stomatal closure phenomena, which significantly decreases both evapotranspiration and net ecosystem exchange of canopy, while these phenomena cannot be resolved in the Noah simulations. Therefore, our findings suggest that the WRF-PKULM coupled method may be a more reliable tool to investigate and forecast DHW as well as be instructive to crop models.
Zheng, Hui; Liu, Shuhua; Miao, Yucong; Li, Jing
2016-01-01
The wheat production in midland China is under serious threat by frequent Dry-Hot Wind (DHW) episodes with high temperature, low moisture and specific wind as well as intensive heat transfer and evapotranspiration. The numerical simulations of these episodes are important for monitoring grain yield and estimating agricultural water demand. However, uncertainties still remain despite that enormous experiments and modeling studies have been conducted concerning this issue, due to either inaccurate synoptic situation derived from mesoscale weather models or unrealistic parameterizations of stomatal physiology in land surface models. Hereby, we investigated the synoptic characteristics of DHW with widely-used mesoscale model Weather Research and Forecasting (WRF) and the effects of leaf physiology on surface evapotranspiration by comparing two land surface models: The Noah land surface model, and Peking University Land Model (PKULM) with stomata processes included. Results show that the WRF model could well replicate the synoptic situations of DHW. Two types of DHW were identified: (1) prevailing heated dry wind stream forces the formation of DHW along with intense sensible heating and (2) dry adiabatic processes overflowing mountains. Under both situations, the PKULM can reasonably model the stomatal closure phenomena, which significantly decreases both evapotranspiration and net ecosystem exchange of canopy, while these phenomena cannot be resolved in the Noah simulations. Therefore, our findings suggest that the WRF-PKULM coupled method may be a more reliable tool to investigate and forecast DHW as well as be instructive to crop models. PMID:27648943
NASA Astrophysics Data System (ADS)
Urquijo, Julia; De Stefano, Lucia
2015-04-01
Irrigation farmers play a key role in water management at all levels and their role becomes even more relevant during droughts, when water systems are under increased pressure. The analysis of farmers' drought perception and of their strategies to reduce vulnerability can contribute to better understand their behavior and concerns, and to better inform decision-making regarding drought management at different scales. This study focuses on the analysis of perception of and response to drought of surface and groundwater irrigation farmers in two areas of the Jucar River Basin (Spain). The results show that the dependence on surface water or groundwater for irrigation highly influences farmers' perception of drought. For surface water farmers, non-climatic factors (e.g. level of reservoirs or impacts on production) are used to describe drought situations more often that precipitation shortfalls, while groundwater irrigators barely feel affected by rainfall variability. Local strategies are highly adapted to local conditions and usually require collective agreements to coordinate individual actions and make them effective. The vulnerability factors differ depending on the source of water used to support irrigation, e.g. being water quality and the cost of water reasons of concern for groundwater farmers while irrigators using surface water are concerned with temporal water shortages and the economic viability of their agricultural activity. The analysis of how farmers relate to and face drought appears also to catch the main water management issues in the River Basin. The results of the study highlight that local knowledge can inform policy makers on the way farmers cope with drought and it can also support decision-making in enhancing drought and water resource management.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Blakenship, Clay B.; Zavodsky, Bradley T.
2014-01-01
As part of the NASA Soil Moisture Active Passive (SMAP) Early Adopter (EA) program, the NASA Shortterm Prediction Research and Transition (SPoRT) Center has implemented a data assimilation (DA) routine into the NASA Land Information System (LIS) for soil moisture retrievals from the European Space Agency's Soil Moisture Ocean Salinity (SMOS) satellite. The SMAP EA program promotes application-driven research to provide a fundamental understanding of how SMAP data products will be used to improve decision-making at operational agencies. SPoRT has partnered with select NOAA/NWS Weather Forecast Offices (WFOs) that use output from a real-time regional configuration of LIS, without soil moisture DA, to initialize local numerical weather prediction (NWP) models and enhance situational awareness. Improvements to local NWP with the current LIS have been demonstrated; however, a better representation of the land surface through assimilation of SMOS (and eventually SMAP) retrievals is expected to lead to further model improvement, particularly during warm-season months. SPoRT will collaborate with select WFOs to assess the impact of soil moisture DA on operational forecast situations. Assimilation of the legacy SMOS instrument data provides an opportunity to develop expertise in preparation for using SMAP data products shortly after the scheduled launch on 5 November 2014. SMOS contains a passive L-band radiometer that is used to retrieve surface soil moisture at 35-km resolution with an accuracy of 0.04 cu cm cm (exp -3). SMAP will feature a comparable passive L-band instrument in conjunction with a 3-km resolution active radar component of slightly degraded accuracy. A combined radar-radiometer product will offer unprecedented global coverage of soil moisture at high spatial resolution (9 km) for hydrometeorological applications, balancing the resolution and accuracy of the active and passive instruments, respectively. The LIS software framework manages land surface model (LSM) simulations and includes an Ensemble Kalman Filter for conducting land surface DA. SPoRT has added a module to read, quality-control and bias-correct swaths of Level II SMOS soil moisture retrievals prior to assimilation within LIS. The impact of SMOS DA is being tested using the Noah LSM. Experiments are being conducted to examine the impacts of SMOS soil moisture DA on the resulting LISNoah fields and subsequent NWP simulations using the Weather Research and Forecasting (WRF) model initialized with LIS-Noah output. LIS-Noah soil moisture will be validated against in situ observations from Texas A&M's North American Soil Moisture Database to reveal the impact and possible improvement in soil moisture trends through DA. WRF model NWP case studies will test the impacts of DA on the simulated near-surface and boundary-layer environments, and precipitation during both quiescent and disturbed weather scenarios. Emphasis will be placed on cases with large analysis increments, especially due to contributions from regional irrigation patterns that are not represented by precipitation input in the baseline LIS-Noah run. This poster presentation will describe the soil moisture DA methodology and highlight LIS-Noah and WRF simulation results with and without assimilation.
Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas
Fromm, David P.; Kinkhabwala, Anika; Schuck, P. James; Moerner, W. E.; Sundaramurthy, Arvind; Kino, Gordon S.
2006-01-01
Single metallic bowtie nanoantennas provide a controllable environment for surface-enhanced Raman scattering (SERS) of adsorbed molecules. Bowties have experimentally measured electromagnetic enhancements, enabling estimation of chemical enhancement for both the bulk and the few-molecule regime. Strong fluctuations of selected Raman lines imply that a small number of p-mercaptoaniline molecules on a single bowtie show chemical enhancement >107, much larger than previously believed, likely due to charge transfer between the Au surface and the molecule. This chemical sensitivity of SERS has significant implications for ultra-sensitive detection of single molecules. PMID:16483189
NASA Astrophysics Data System (ADS)
Hendriks, Rob F. A.; van den Akker, Jan J. A.
2017-04-01
Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather conditions and for two extreme climate scenarios of the Royal Netherlands Meteorological Institute. In this study the model results of one of the pilot studies are presented. The case study 'de Krimpenerwaard' is situated in the peat area in the "Green Heart" between the major cities of Amsterdam, The Hague, Rotterdam and Utrecht. Model results show a halving of soil subsidence, a strong increase of water recharge but a lower increase of water discharge, and generally small to moderate effects on nutrient loading , all depending (strongly) on meteorological conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molak, A., E-mail: andrzej.molak@us.edu.pl; Pilch, M.
2016-05-28
Sodium niobate crystals doped with manganese ions, Na(NbMn)O{sub 3}, were annealed in a nitrogen N{sub 2} flow at 600, 670, and 930 K. It was verified that simultaneous doping with Mn ions and annealing in nitrogen enhanced the photocatalytic features of sodium niobate. The transmission in the ultraviolet-visible range was measured at room temperature. The absorbance edge is in the range from 3.4 to 2.3 eV. The optical band gap E{sub gap} = 1.2–1.3 eV was evaluated using the Tauc relation. Crystals annealed at 670 K and 930 K exhibited an additional shift of the absorption edge of ∼20–40 nm toward longer wavelengths. The optical energy gap narrowedmore » as a result of the superimposed effect of Mn and N co-doping. The x-ray photoelectron spectroscopy test showed that N ions incorporated into the surface layer. The valence band consisted of O 2p states hybridized with Nb 4d, Mn 3d, and N 2s states. The disorder detected in the surroundings of Nb and O ions decreased due to annealing. The binding energy of oxygen ions situated within the surface layer was E{sub B} ≈ 531 eV. The other contributions were assigned to molecular contamination. The contribution centered at 535.5 eV vanished after annealing at 600 K and 670 K. The contribution centered at 534 eV vanished after annealing at 930 K. The N{sub 2} annealing partly removed carbonates from the surfaces of the samples. In the 480–950 K range, the electric conductivity activation energy, E{sub a} = 0.7–1.2 eV, was comparable with the optical E{sub gap}. The electric permittivity showed dispersion in the 0.1–800 kHz range that corresponds to the occurrence of defects.« less
NASA Astrophysics Data System (ADS)
Wolf-Grosse, Tobias; Esau, Igor; Reuder, Joachim
2017-06-01
Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s-1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water body acted as a barrier for the horizontal transport of air pollutants from the largest street in the valley and along the valley bottom, transporting them vertically instead and hence diluting them. We found that the stable stratification accumulates the street-level pollution from the transport corridor in shallow air pockets near the surface. The polluted air pockets are transported by the local recirculations to other less polluted areas with only slow dilution. This combination of relatively long distance and complex transport paths together with weak dispersion is not sufficiently resolved in classical air pollution models. The findings have important implications for the air quality predictions over urban areas. Any prediction not resolving these, or similar local dynamic features, might not be able to correctly simulate the dispersion of pollutants in cities.
Mahmoud, Mahmoud A
2013-05-28
Enhancements of the Raman signal by the newly prepared gold-palladium and gold-platinum double-shell hollow nanoparticles were examined and compared with those using gold nanocages (AuNCs). The surface-enhanced Raman spectra (SERS) of thiophenol adsorbed on the surface of AuNCs assembled into a Langmuir-Blodgett monolayer were 10-fold stronger than AuNCs with an inner Pt or Pd shell. The chemical and electromagnetic enhancement mechanisms for these hollow nanoparticles were further proved by comparing the Raman enhancement of nitrothiophenol and nitrotoulene. Nitrothiophenol binds to the surface of the nanoparticles by covalent interaction, and Raman enhancement by both the two mechanisms is possible, while nitrotoulene does not form any chemical bond with the surface of the nanoparticles and hence no chemical enhancement is expected. Based on discrete dipole approximation (DDA) calculations and the experimental SERS results, AuNCs introduced a high electromagnetic enhancement, while the nanocages with inner Pt or Pd shell have a strong chemical enhancement. The optical measurements of the localized surface plasmon resonance (LSPR) of the nanocages with an outer Au shell and an inner Pt or Pd shell were found, experimentally and theoretically, to be broad compared with AuNCs. The possible reason could be due to the decrease of the coherence time of Au oscillated free electrons and fast damping of the plasmon energy. This agreed well with the fact that a Pt or Pd inner nanoshell decreases the electromagnetic field of the outer Au nanoshell while increasing the SERS chemical enhancement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schindeler, Aaron; Little, David G.; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney
2005-12-16
Bisphosphonates are potent inhibitors of osteoclast-mediated bone resorption. Recent interest has centered on the effects of bisphosphonates on osteoblasts. Chronic dosing of osteoblasts with solubilized bisphosphonates has been reported to enhance osteogenesis and mineralization in vitro. However, this methodology poorly reflects the in vivo situation, where free bisphosphonate becomes rapidly bound to mineralized bone surfaces. To establish a more clinically relevant cell culture model, we cultured bone cells on calcium phosphate coated quartz discs pre-treated with the potent nitrogen-containing bisphosphonate, zoledronic acid (ZA). Binding studies utilizing [{sup 14}C]-labeled ZA confirmed that the bisphosphonate bound in a concentration-dependent manner over themore » 1-50 {mu}M dose range. When grown on ZA-treated discs, the viability of bone-marrow derived osteoclasts was greatly reduced, while the viability and mineralization of the osteoblastic MC3T3-E1 cell line were largely unaffected. This suggests that only bone resorbing cells are affected by bound bisphosphonate. However, this system does not account for transient exposure to unbound bisphosphonate in the hours following a clinical dosing. To model this event, we transiently treated osteoblasts with ZA in the absence of a calcified surface. Osteoblasts proved highly resistant to all transitory treatment regimes, even when utilizing ZA concentrations that prevented mineralization and/or induced cell death when dosed chronically. This study represents a pharmacologically more relevant approach to modeling bisphosphonate treatment on cultured bone cells and implies that bisphosphonate therapies may not directly affect osteoblasts at bone surfaces.« less
NASA Astrophysics Data System (ADS)
Wang, Weiwang; Li, Shengtao; Min, Daomin
2016-04-01
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al2O3 nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al2O3 nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and the strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al2O3 nanodielectrics is improved.
[Present situation and prospect of enhanced recovery after surgery in pancreatic surgery].
Feng, Mengyu; Zhang, Taiping; Zhao, Yupei
2017-05-25
Enhanced recovery after surgery is a multimodal perioperative strategy according to the evidence-based medicine and multidisciplinary collaboration, aiming to improve the restoration of functional capacity after surgery by reducing surgical stress, optimal control of pain, early oral diet and early mobilization. Compared with other sub-specialty in general surgery, pancreatic surgery is characterized by complex disease, highly difficult procedure and more postoperative complications. Accordingly, pancreatic surgery shares a slow development in enhanced recovery after surgery. In this review, the feasibility, safety, application progress, prospect and controversy of enhanced recovery after surgery in pancreatic surgery are discussed.
2013-01-01
Mater. Chem. C 2013, 1, 426−431. (20) Pazos -Perez, N.; Ni, W. H.; Schweikart, A .; Alvarez-Puebla, R. A .; Fery, A .; Liz-Marzan, L. M. Highly Uniform... A Look at the Origin and Magnitude of the Chemical Contribution to the Enhancement Mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory...Evanston, Illinois 60208-3113, United States *S Supporting Information ABSTRACT: Normal and surface-enhanced Raman spectra for a set of substituted
Size-dependent surface-enhanced Raman scattering of sodium benzoate on Silver nanoparticles
NASA Astrophysics Data System (ADS)
Badr, Y.; Mahmoud, M. A.
2005-07-01
The absorption spectrum of silver nanoparticles (Ag NPs) with different size and the transmission electron microscopy (TEM) was recorded. Surface-enhanced Raman scattering (SERS) spectra of Sodium Benzoate (SB) adsorbed on Ag NPs with different particle size were studied. The carboxylic group bands were enhanced as the particle size decreases due to the chemisorption of SB on the Ag NPs through it in which the carboxyl group was perpendicular to the surface and the benzene ring parallel to the surface; the SB bands were enhanced as the coverage density of Ag NPs increased.
NASA Astrophysics Data System (ADS)
Magdi, Sara; Swillam, Mohamed A.
2017-02-01
The efficiencies of thin film amorphous silicon (a-Si) solar cells are restricted by the small thickness required for efficient carrier collection. This thickness limitations result in poor light absorption. In this work, broadband absorption enhancement is theoretically achieved in a-Si solar cells by using nanostructured back electrode along with surface texturing. The back electrode is formed of Au nanogratings and the surface texturing consists of Si nanocones. The results were then compared to random texturing surfaces. Three dimensional finite difference time domain (FDTD) simulations are used to design and optimize the structure. The Au nanogratings achieved absorption enhancement in the long wavelengths due to sunlight coupling to surface plasmon polaritons (SPP) modes. High absorption enhancement was achieved at short wavelengths due to the decreased reflection and enhanced scattering inside the a-Si absorbing layer. Optimizations have been performed to obtain the optimal geometrical parameters for both the nanogratings and the periodic texturing. In addition, an enhancement factor (i.e. absorbed power in nanostructured device/absorbed power in reference device) was calculated to evaluate the enhancement obtained due to the incorporation of each nanostructure.
Sahu, Nabaprakash; Lakshmi, Namratha; Azhagarasan, N.S.; Agnihotri, Yoshaskam; Rajan, Manoj; Hariharan, Ramasubramanian
2014-01-01
Background: In cement-retained implant-supported restoration it is important to gain adequate retention of definitive restoration as well as retrievability of prosthesis. The surface of the abutment, alloy of the restoration and the type of cement used influences the retention of the restoration. There is a need to analyze the influence of surface modifications of abutments on the retentive capabilities of provisional implant cements. Purpose of study: To compare the effect of implant abutment surface modifications on retention of implant-supported restoration cemented with polymer based cement. Materials and method: Thirty solid titanium implant abutments (ADIN), 8mm height, were divided into 3 groups. Ten abutments with retentive grooves (Group I) as supplied by the manufacturer, Ten abutments milled to 20 taper circumferentially (Group II), and Ten abutments milled and air-abraded with 110 μm aluminum oxide (Group III) were used in this study. Ni-Cr coping were casted for each abutment and polymer based cement was used to secure them to the respective abutments. Using a universal testing machine at a crosshead speed of 0.5 cm/minute, tensile bond strength was recorded (N). Results: Mean tensile bond strength of Group I, II and III were found to be 408.3, 159.9 and 743.8 Newton respectively. The values were statistically different from each other (p<0.001). Conclusion: Abutments with milled and sandblasted surface provide the highest retention followed by abutments with retentive grooves and then by abutments with milled surface when cast copings were cemented to implant abutments with polymer based cement. Clinical implications: Retention of restoration depends on the surface of the abutment as well as the luting agents used. Incorporation of retentive grooves or particle abrasion can enhance retention especially in situation of short clinical crown. PMID:24596785
Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning
Iris C. Anderson; Joel S. Levine; Mark A. Poth; Philip J. Riggan
1988-01-01
Recent measurements indicate significantly enhanced biogenic soil emissions of both nitric oxide (NO) and nitrous oxide (N2O) following surface burning. These enhanced fluxes persisted for at least 6 months following the burn. Simultaneous measurements indicate enhanced levels of...
Photoelectric charging of partially sunlit dielectric surfaces in space
NASA Technical Reports Server (NTRS)
De, B. R.; Criswell, D. R.
1977-01-01
Sunlight-shadow effects may substantially alter the charging situation for a dielectric surface. The sunlight-shadow boundary tends to be the site of intense multipole electric fields. Charges on a sunlit dielectric surface have a finite effective mobility. The charge distribution tends to resemble that on a conducting surface. A boundary between a conducting and a dielectric surface may not represent a conductivity discontinuity when this boundary is sunlit; charges may migrate at a nontrivial rate across the boundary. A contracting or expanding sunlit area may experience a supercharging.
Numerical treatment of free surface problems in ferrohydrodynamics
NASA Astrophysics Data System (ADS)
Lavrova, O.; Matthies, G.; Mitkova, T.; Polevikov, V.; Tobiska, L.
2006-09-01
The numerical treatment of free surface problems in ferrohydrodynamics is considered. Starting from the general model, special attention is paid to field-surface and flow-surface interactions. Since in some situations these feedback interactions can be partly or even fully neglected, simpler models can be derived. The application of such models to the numerical simulation of dissipative systems, rotary shaft seals, equilibrium shapes of ferrofluid drops, and pattern formation in the normal-field instability of ferrofluid layers is given. Our numerical strategy is able to recover solitary surface patterns which were discovered recently in experiments.
Better know when (not) to think twice: how social power impacts prefactual thought.
Scholl, Annika; Sassenberg, Kai
2015-02-01
Before approaching situations, individuals frequently imagine "what would happen, if . . . ." Such prefactual thought can promote confidence and facilitate behavior preparation when the upcoming situation can benefit from forethought, but it also delays action. The present research tested how social power predicts prefactual thought when its benefits are clear versus ambiguous. Power enhances flexible behavior adaptation and action tendencies-presumably without much forethought. We therefore proposed that power diminishes prefactual thought, unless the situation suggests that such thought is adaptive (i.e., could benefit performance). Power-holders indeed generated less prefactuals than the powerless (Experiments 1 and 2), but only if benefits for performance were ambiguous rather than clear (Experiment 3). These findings indicate that social context factors related to confidence affect prefactual thought, and that power-holders' flexible adaptation to the situation sometimes elicits inaction (i.e., prefactual thought) rather than spontaneous action. © 2014 by the Society for Personality and Social Psychology, Inc.
Detecting Analogies Unconsciously
Reber, Thomas P.; Luechinger, Roger; Boesiger, Peter; Henke, Katharina
2014-01-01
Analogies may arise from the conscious detection of similarities between a present and a past situation. In this functional magnetic resonance imaging study, we tested whether young volunteers would detect analogies unconsciously between a current supraliminal (visible) and a past subliminal (invisible) situation. The subliminal encoding of the past situation precludes awareness of analogy detection in the current situation. First, participants encoded subliminal pairs of unrelated words in either one or nine encoding trials. Later, they judged the semantic fit of supraliminally presented new words that either retained a previously encoded semantic relation (“analog”) or not (“broken analog”). Words in analogs versus broken analogs were judged closer semantically, which indicates unconscious analogy detection. Hippocampal activity associated with subliminal encoding correlated with the behavioral measure of unconscious analogy detection. Analogs versus broken analogs were processed with reduced prefrontal but enhanced medial temporal activity. We conclude that analogous episodes can be detected even unconsciously drawing on the episodic memory network. PMID:24478656
Hostile attribution biases for relationally provocative situations and event-related potentials.
Godleski, Stephanie A; Ostrov, Jamie M; Houston, Rebecca J; Schlienz, Nicolas J
2010-04-01
This exploratory study investigates how hostile attribution biases for relationally provocative situations may be related to neurocognitive processing using the P300 event-related potential. Participants were 112 (45 women) emerging adults enrolled in a large, public university in upstate New York. Participants completed self-report measures on relational aggression and hostile attribution biases and performed an auditory perseveration task to elicit the P300. It was found that hostile attribution biases for relational provocation situations was associated with a larger P300 amplitude above and beyond the role of hostile attribution biases for instrumental situations, relational aggression, and gender. Larger P300 amplitude is interpreted to reflect greater allocation of cognitive resources or enhanced "attending" to salient stimuli. Implications for methodological approaches to studying aggression and hostile attribution biases and for theory are discussed, as well as implications for the fields of developmental psychology and psychopathology. Copyright 2010 Elsevier B.V. All rights reserved.
Chiral surface waves for enhanced circular dichroism
NASA Astrophysics Data System (ADS)
Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo
2017-06-01
We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by more than two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.
NASA Astrophysics Data System (ADS)
Imgrunt, J.; Chakanga, K.; von Maydell, K.; Teubner, U.
2017-12-01
Due to their low thickness, thin-film solar cells usually suffer from poor light absorption. To improve this situation, light-management is necessary. Within the present work, in order to enhance light coupling, an ultra-short-pulse laser is used for texturing substrates. Here commercially available multi component soda lime glass substrates are patterned with a dot grid at ambient air pressure with 150 fs pulses, centered at a wavelength of 775 nm. The structures consist of small depressions with approximately 3 μ m diameter. Varying depths of around 300 nm could be well reproduced. Reducing the pitch (distance between structure-to-structure centers), from ten to approximately one times the crater diameter, influences the structure quality and increases the deformation of the surface in the vicinity of the depressions. Consequently, the diffuse light scattering is improved from 0 to 30% haze. Overall, the presented approach is quite simple. This single-step texturing technique which can be easily used on different substrates is applicable in a wide range of thin-film solar cells. It has the advantage that ultra-thin electrodes can be used as the front contact as well as the potential to be integrated into a PV production line. Thus, complicated layer stacks for absorption enhancement can be avoided.
Design and Preparation of Nanoparticle Dimers for SERS Detection
2012-09-10
sensitivity afforded by surface enhanced Raman spectroscopy (SERS). Metal nanoparticles dimers were synthesized that incorporate SERS reporters...and antigens, based on the remarkable sensitivity afforded by surface enhanced Raman spectroscopy (SERS). Metal nanoparticles dimers were...Potma, V. A._Apkarian. High Sensitivity Surface-Enhanced Raman Scattering in Solution Using Engineered Silver Nanosphere Dimers, The Journal of
Use of Surface-Enhanced Raman Spectroscopy in Inorganic Syntheses for an Upper-Level Exploratory Lab
ERIC Educational Resources Information Center
Seney, Caryn S.; Yelverton, Joshua C.; Eanes, Sharon; Patel, Vikas; Riggs, Julia; Wright, Sarah; Bright, Robin M.
2007-01-01
An experiment is designed where students will be using both gold and silver nanoparticles to study the enhancement factors of organic molecules adsorbed to the surface of the nanoparticles during or after synthesis by using surface-enhanced Raman spectroscopy (SERS). The experiment has helped students learn about the theory and experimental…
ERIC Educational Resources Information Center
Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.
2012-01-01
A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…
Tree shelters fail to enhance height growth of northern red oak in the upper peninsula of Michigan
Douglas O. Lantagne; Raymond Miller
1997-01-01
Tree shelters have been shown to be a questionable establishment practice in shelterwood stands. Experiences with low seedling survival and growth may be due to an apparent deficiency of light. In other situations, tree shelters have generally been found to be beneficial in enhancing survival and growth of hardwood plantings. This poster will describe the poor survival...
Development of a Learning Model for Enhancing Social Skills on Elementary Students
ERIC Educational Resources Information Center
Traisorn, Rattanaporn; Soonthornrojana, Wimonrat; Chano, Jiraporn
2015-01-01
The goals of this study were: 1) to study the situation, problems and needs for a learning model to enhance the social skills of sixth grade students; 2) to develop a learning model that would address those needs; 3) to study the effectiveness of that learning model; 4) to compare performance on pretests and posttests of social skills; and 5) to…
Measuring situation awareness in emergency settings: a systematic review of tools and outcomes
Cooper, Simon; Porter, Joanne; Peach, Linda
2014-01-01
Background Nontechnical skills have an impact on health care outcomes and improve patient safety. Situation awareness is core with the view that an understanding of the environment will influence decision-making and performance. This paper reviews and describes indirect and direct measures of situation awareness applicable for emergency settings. Methods Electronic databases and search engines were searched from 1980 to 2010, including CINAHL, Ovid Medline, Pro-Quest, Cochrane, and the search engine, Google Scholar. Access strategies included keyword, author, and journal searches. Publications identified were assessed for relevance, and analyzed and synthesized using Oxford evidence levels and the Critical Appraisal Skills Programme guidelines in order to assess their quality and rigor. Results One hundred and thirteen papers were initially identified, and reduced to 55 following title and abstract review. The final selection included 14 papers drawn from the fields of emergency medicine, intensive care, anesthetics, and surgery. Ten of these discussed four general nontechnical skill measures (including situation awareness) and four incorporated the Situation Awareness Global Assessment Technique. Conclusion A range of direct and indirect techniques for measuring situation awareness is available. In the medical literature, indirect approaches are the most common, with situation awareness measured as part of a nontechnical skills assessment. In simulation-based studies, situation awareness in emergencies tends to be suboptimal, indicating the need for improved training techniques to enhance awareness and improve decision-making. PMID:27147872
NASA Technical Reports Server (NTRS)
Ng, Daniel
1996-01-01
The NASA self calibrating multiwavelength pyrometer is a recent addition to the list of pyrometers used in remote temperature measurement in research and development. The older one-color, two-color, and the disappearing filament pyrometers, as well as the multicolor and early multiwavelength pyrometers, all do not operate successfully in situations in which strong ambient radiation coexists with radiation originating from the measured surface. In such situations radiation departing from the target surface arrives at the pyrometer together with radiation coming from another source either directly or through reflection. Unlike the other pyrometers, the self calibrating multiwavelength pyrometer can still calibrate itself and measure the temperatures in this adverse environment.
Situational awareness and its application in the delivery suite.
Edozien, Leroy C
2015-01-01
The delivery suite is a high-risk environment. Transitions between low-risk and high-risk can be swift, and sentinel events can occur without warning. The prevention of accidents in this environment rests on the vigilance of the individual practitioner at the frontline. It is, therefore, important that the individual practitioner should develop and maintain the cognitive skills to anticipate, recognize, and intercept unfolding error chains. This commentary gives an overview of a nontechnical skill that is essential for safe practice in a delivery suite: situational awareness. A basic description of situational awareness is provided, using examples of loss of situational awareness in the delivery suite and examples of simple interventions that could promote situational awareness. Involuntary automaticity readily creeps in during performance of routine tasks, and cognitive overload could deplete attentional resources that are, by nature, limited. Strategies and tactics for maintaining situational awareness include proactively seeking and managing information on unfolding events, continually updating individual and team mental models, mindful use of checklists and scoreboards, and avoidance of attentional blindness. These simple interventions require minimal financial resources but could immensely enhance clinical performance and patient safety. Situational awareness should be included in the training of obstetrician-gynecologists and other staff working in a delivery suite.
Silvertown, Josh D.; Abrams, Stephen H.; Sivagurunathan, Koneswaran S.; Kennedy, Julia; Jeon, Jinseok; Mandelis, Andreas; Hellen, Adam; Hellen, Warren; Elman, Gary; Ehrlich, Richard; Chouljian, Raffy; Finer, Yoav; Amaechi, Bennett T.
2017-01-01
Introduction: A clinical study was initiated to investigate a caries detection device (The Canary System (CS)), based on photothermal radiometry and modulated luminescence (PTR-LUM). The primary objective of this study was to determine if PTR-LUM values (in the form of Canary Numbers; CN) correlate with International Caries Diagnostic and Assessment System (ICDAS II) scores and clinical situations. The secondary objectives of this study were to monitor the safety of PTR-LUM, and collect data to determine how CN values could be used to differentiate healthy from decayed tooth surfaces on a normalized scale. Methods: The trial was a four site, non-blinded study. Data was collected from 92 patients, resulting in 842 scanned tooth surfaces over multiple appointments. Surfaces were assessed according to ICDAS II, and further stratified into five clinical situation categories: 1) healthy surface, 2) non-cavitated white and/or brown spots; 3) caries lesions; 4) cavitation and 5) teeth undergoing remineralization therapy. CN data was analyzed separately for smooth and occlusal surfaces. Using a semi-logarithmic graph to plot raw CN (rCN) and normalized (CN) values, rCN data was normalized into a scale of 0-100. Results: Linear correlations (R2) between CN and ICDAS II groupings for smooth and occlusal surfaces were calculated as 0.9759 and 0.9267, respectively. The mean CN values derived from smooth (20.2±0.6) and occlusal (19±1.0) surfaces identified as healthy had significantly lower CN values (P<0.05) compared with the values from the other clinical situation categories. No adverse events were reported. Conclusion: The present study demonstrated the safety of PTR-LUM for clinical application and its ability to distinguish sound from carious tooth surfaces. A clear shift from the baseline in both PTR and LUM in carious enamel was observed depending on the type and nature of the lesion, and correlated to ICDAS II classification codes, which enabled the preliminary development of a Canary Scale. PMID:29290842
Kiani, Hossein; Sun, Da-Wen; Zhang, Zhihang
2012-11-01
It has been proven that ultrasound irradiation can enhance the rate of heat transfer processes. The objective of this work was to study the heat transfer phenomenon, mainly the heat exchange at the surface, as affected by ultrasound irradiation around a stationary copper sphere (k=386W m(-1)K(-1), C(p)=384J kg(-1)K(-1), ρ=8660kg m(-3)) during cooling. The sphere (0.01m in diameter) was immersed in an ethylene glycol-water mixture (-10°C) in an ultrasonic cooling system that included a refrigerated circulator, a flow meter, an ultrasound generator and an ultrasonic bath. The temperature of the sphere was recorded using a data logger equipped with a T-type thermocouple in the center of the sphere. The temperature of the cooling medium was also monitored by four thermocouples situated at different places in the bath. The sphere was located at different positions (0.02, 0.04 and 0.06m) above the transducer surface of the bath calculated considering the center of the sphere as the center of the reference system and was exposed to different intensities of ultrasound (0, 120, 190, 450, 890, 1800, 2800, 3400 and 4100W m(-2)) during cooling. The frequency of the ultrasound was 25kHz. It was demonstrated that ultrasound irradiation can increase the rate of heat transfer significantly, resulting in considerably shorter cooling times. Higher intensities caused higher cooling rates, and Nu values were increased from about 23-27 to 25-108 depending on the intensity of ultrasound and the position of the sphere. However, high intensities of ultrasound led to the generation of heat at the surface of the sphere, thus limiting the lowest final temperature achieved. An analytical solution was developed considering the heat generation and was fitted to the experimental data with R(2) values in the range of 0.910-0.998. Visual observations revealed that both cavitation and acoustic streaming were important for heat transfer phenomenon. Cavitation clouds at the surface of the sphere were the main cause of heating effect. The results showed that closer distances to the transducer surface showed higher cooling rates. On the other hand, despite having a bigger distance from the transducer, when the sphere was located close to the gas-liquid interface the enhancement factor of heat transfer was higher. Ultrasound irradiation showed promising effect for the enhancement of convective heat transfer rate during immersion cooling. More investigations are required to demonstrate the behavior of ultrasound assisted heat transfer and resolve the proper way of the application of ultrasound to assist the cooling and/or freezing processes. Copyright © 2012 Elsevier B.V. All rights reserved.
Electrospinning Robot for Regenerative Coating of Implants
NASA Astrophysics Data System (ADS)
Gerstenhaber, Jonathan A.
Electrospinning of nanofibrous mats and scaffolds enables generation of scaffolding that is not only highly porous, but also has a structure that essentially mimics the natural basement membrane. As a result, the method has proliferated extensively, and is commonly used for diverse applications such as water filtration or tissue engineering, the latter of which may involve the use of natural or synthetic materials. Common laboratory scale electrospinning setups can be built inexpensively with merely a syringe pump, a high voltage supply, and an aluminum foil target. These systems, however, are limited to flat target surface geometries that span several centimeters. While a scaffold can be cut or folded to conform to a bone or other biological surface, spinning directly onto a surface with significant peaks and troughs results in poor fiber uniformity. Furthermore, if an alteration of fiber properties is preferred, the high voltage setup limits user access and customization of parameters during the spinning period. Finally, control of the electric field is compromised by the proximity of grounded electrical components. As its first aim, this project develops a robotic control system to enable custom coatings of arbitrary surfaces. By augmenting the traditional electrospinning system with a three-dimensional robotic control system, electric field focusing fibers, and additional aerodynamic forces terms 'electroblowing', the device can be produced across targets with strong topographic anisotropy. The second aim continues to enhance these attributes with biocompatible soy based scaffolds. Craniofacial implants are often complex in geometry, and conformal bandages are particularly hard to produce in these areas. Soy based scaffolds will be produced for 3D-printed replicas of these situations. Finally, the methods developed across this aim enables the development and use of a handheld electrospinning system that combines a coaxial high velocity air flow with the high voltage spinning element to reduce effects of operator error. The final goal of the thesis is to test whether fiber control successfully reduces effects of fiber anisotropy in vitro and to use the enhanced fiber control mechanisms to produce scaffolds with significant anisotropy, depositing aligned fibers at a target point to eventually enable generation of scaffolds with programmable variable spatial alignment similar to tendon. When completed, the systems described will enable custom production of coatings or scaffolds for functionality as scaffolding on medically relevant surfaces. Specifically, this means first, that scaffolds can be used with confidence to improve fixation even of non-cylindrical implants and enhance local tissue integration, and second, that implants can be customized with areas of 'guidance' fibers or local drug depots to either promote regeneration and population by surrounding tissue or mimic natural anisotropic cues necessary for mechanical or biological functionality.
Ultrafast and nonlinear surface-enhanced Raman spectroscopy.
Gruenke, Natalie L; Cardinal, M Fernanda; McAnally, Michael O; Frontiera, Renee R; Schatz, George C; Van Duyne, Richard P
2016-04-21
Ultrafast surface-enhanced Raman spectroscopy (SERS) has the potential to study molecular dynamics near plasmonic surfaces to better understand plasmon-mediated chemical reactions such as plasmonically-enhanced photocatalytic or photovoltaic processes. This review discusses the combination of ultrafast Raman spectroscopic techniques with plasmonic substrates for high temporal resolution, high sensitivity, and high spatial resolution vibrational spectroscopy. First, we introduce background information relevant to ultrafast SERS: the mechanisms of surface enhancement in Raman scattering, the characterization of plasmonic materials with ultrafast techniques, and early complementary techniques to study molecule-plasmon interactions. We then discuss recent advances in surface-enhanced Raman spectroscopies with ultrafast pulses with a focus on the study of molecule-plasmon coupling and molecular dynamics with high sensitivity. We also highlight the challenges faced by this field by the potential damage caused by concentrated, highly energetic pulsed fields in plasmonic hotspots, and finally the potential for future ultrafast SERS studies.
Surface-enhanced hyper-Raman spectroscopy with a picosecond laser: gold and copper colloids
NASA Astrophysics Data System (ADS)
Lipscomb, Leigh Ann; Nie, Shuming; Feng, Sibo; Yu, Nai-Teng
1990-07-01
We have obtained surface-enhanced hyper-Raman scattering (SEHRS) spectra of crystal violet, rhodamine 6G and Ru(trpy) (BPE) 32+ adsorbed on gold and copper colloidal surfaces (where trpy=2,2',2″-terpyridine, BPE=trans-bis(4-pyridyl)ethylene). Our results demonstrate that the SEHRS effect is not intrinsically restricted to a Ag substrate and that surface enhancements at the emitted hyper-Raman photon frequencies are not required for observing SEHRS signals.
NASA Astrophysics Data System (ADS)
Wan, Xiu-mei; Gao, Ran; Lu, Dan-feng; Qi, Zhi-mei
2018-01-01
Surface plasmon-coupled emission has been widely used in fluorescence imaging, biochemical sensing, and enhanced Raman spectroscopy. A self-referenced directional enhanced Raman scattering for simultaneous detection of surface and bulk effects by using plasmon waveguide resonance (PWR) based surface plasmon-coupled emission has been proposed and experimentally demonstrated. Raman scattering was captured on the prism side in Kretschmann-surface plasmon-coupled emission. The distinct penetration depths (δ) of the evanescent field for the transverse electric (TE) and transverse magnetic (TM) modes result in different detected distances of the Raman signal. The experimental results demonstrate that the self-referenced directional enhanced Raman scattering of the TE and TM modes based on the PWR can detect and distinguish the surface and bulk effects simultaneously, which appears to have potential applications in researches of chemistry, medicine, and biology.
Gaitan, Gema; Herrero, Juan F
2005-02-01
Subanalgesic doses of the non-steroidal antiinflammatory drugs (NSAID) dexketoprofen trometamol and nitroparacetamol (NCX-701) enhance mu-opiate fentanyl effect in acute nociception. It is not known if a similar combination of drugs is effective in situations of spinal cord sensitization. The aim of this study was to assess if the enhancement of fentanyl antinociception can be observed in carrageenan-induced monoarthritis, when combined with dexketoprofen (DKT) or nitrodexketoprofen (HCT-2037). Withdrawal reflexes were recorded as single motor units in male Wistar rats anesthetized with alpha-chloralose. Fentanyl was studied alone and in the presence of 0.4, 0.8 micromol/kg of DKT or 0.3 micromol/kg of HCT-2037. In responses to noxious mechanical stimulation, the ID50 of fentanyl was enhanced twofold by 0.8 micromol/kg DKT and more than fourfold by HCT-2037 and no significant recovery was observed 45 min later. DKT 0.4 micromol/kg was, however, very little effective. The opioid antagonist naloxone did not reverse the effect. Enhancement of fentanyl effect on wind-up was only observed with HCT-2037 but not with DKT. We conclude that the combined administration of subanalgesic doses of dexketoprofen derivatives, specially its nitroderivative, and the mu-opiate fentanyl is an effective antinociceptive therapy in situations of articular inflammation involving a naloxone-independent mechanism of action.
Synthetic Vision Enhances Situation Awareness and RNP Capabilities for Terrain-Challenged Approaches
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Prinzel, Lawrence J., III; Bailey, Randall E.; Arthur, Jarvis J., III
2003-01-01
The Synthetic Vision Systems (SVS) Project of Aviation Safety Program is striving to eliminate poor visibility as a causal factor in aircraft accidents as well as enhance operational capabilities of all aircraft through the display of computer generated imagery derived from an onboard database of terrain, obstacle, and airport information. To achieve these objectives, NASA 757 flight test research was conducted at the Eagle-Vail, Colorado airport to evaluate three SVS display types (Head-Up Display, Head-Down Size A, Head-Down Size X) and two terrain texture methods (photo-realistic, generic) in comparison to the simulated Baseline Boeing-757 Electronic Attitude Direction Indicator and Navigation / Terrain Awareness and Warning System displays. These independent variables were evaluated for situation awareness, path error, and workload while making approaches to Runway 25 and 07 and during simulated engine-out Cottonwood 2 and KREMM departures. The results of the experiment showed significantly improved situation awareness, performance, and workload for SVS concepts compared to the Baseline displays and confirmed the retrofit capability of the Head-Up Display and Size A SVS concepts. The research also demonstrated that the pathway and pursuit guidance used within the SVS concepts achieved required navigation performance (RNP) criteria.
Proud Americans and lucky Japanese: cultural differences in appraisal and corresponding emotion.
Imada, Toshie; Ellsworth, Phoebe C
2011-04-01
Appraisal theories of emotion propose that the emotions people experience correspond to their appraisals of their situation. In other words, individual differences in emotional experiences reflect differing interpretations of the situation. We hypothesized that in similar situations, people in individualist and collectivist cultures experience different emotions because of culturally divergent causal attributions for success and failure (i.e., agency appraisals). In a test of this hypothesis, American and Japanese participants recalled a personal experience (Study 1) or imagined themselves to be in a situation (Study 2) in which they succeeded or failed, and then reported their agency appraisals and emotions. Supporting our hypothesis, cultural differences in emotions corresponded to differences in attributions. For example, in success situations, Americans reported stronger self-agency emotions (e.g., proud) than did Japanese, whereas Japanese reported a stronger situation-agency emotion (lucky). Also, cultural differences in attribution and emotion were largely explained by differences in self-enhancing motivation. When Japanese and Americans were induced to make the same attribution (Study 2), cultural differences in emotions became either nonsignificant or were markedly reduced. PsycINFO Database Record (c) 2011 APA, all rights reserved.
Situated learning theory: adding rate and complexity effects via Kauffman's NK model.
Yuan, Yu; McKelvey, Bill
2004-01-01
For many firms, producing information, knowledge, and enhancing learning capability have become the primary basis of competitive advantage. A review of organizational learning theory identifies two approaches: (1) those that treat symbolic information processing as fundamental to learning, and (2) those that view the situated nature of cognition as fundamental. After noting that the former is inadequate because it focuses primarily on behavioral and cognitive aspects of individual learning, this paper argues the importance of studying learning as interactions among people in the context of their environment. It contributes to organizational learning in three ways. First, it argues that situated learning theory is to be preferred over traditional behavioral and cognitive learning theories, because it treats organizations as complex adaptive systems rather than mere information processors. Second, it adds rate and nonlinear learning effects. Third, following model-centered epistemology, it uses an agent-based computational model, in particular a "humanized" version of Kauffman's NK model, to study the situated nature of learning. Using simulation results, we test eight hypotheses extending situated learning theory in new directions. The paper ends with a discussion of possible extensions of the current study to better address key issues in situated learning.
Electride Mediated Surface Enhanced Raman Scattering (SERS)
NASA Technical Reports Server (NTRS)
Anderson, Mark S. (Inventor)
2016-01-01
An electride may provide surface enhanced Raman scattering (SERS). The electride, a compound where the electrons serve as anions, may be a ceramic electride, such as a conductive ceramic derived from mayenite, or an organic electride, for example. The textured electride surface or electride particles may strongly enhance the Raman scattering of organic or other Raman active analytes. This may also provide a sensitive method for monitoring the chemistry and electronic environment at the electride surface. The results are evidence of a new class of polariton (i.e., a surface electride-polariton resonance mechanism) that is analogous to the surface plasmon-polariton resonance that mediates conventional SERS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berbeco, Ross I., E-mail: rberbeco@partners.org; Detappe, Alexandre; Tsiamas, Panogiotis
2016-01-15
Purpose: Previous studies have introduced gold nanoparticles as vascular-disrupting agents during radiation therapy. Crucial to this concept is the low energy photon content of the therapy radiation beam. The authors introduce a new mode of delivery including a linear accelerator target that can toggle between low Z and high Z targets during beam delivery. In this study, the authors examine the potential increase in tumor blood vessel endothelial cell radiation dose enhancement with the low Z target. Methods: The authors use Monte Carlo methods to simulate delivery of three different clinical photon beams: (1) a 6 MV standard (Cu/W) beam,more » (2) a 6 MV flattening filter free (Cu/W), and (3) a 6 MV (carbon) beam. The photon energy spectra for each scenario are generated for depths in tissue-equivalent material: 2, 10, and 20 cm. The endothelial dose enhancement for each target and depth is calculated using a previously published analytic method. Results: It is found that the carbon target increases the proportion of low energy (<150 keV) photons at 10 cm depth to 28% from 8% for the 6 MV standard (Cu/W) beam. This nearly quadrupling of the low energy photon content incident on a gold nanoparticle results in 7.7 times the endothelial dose enhancement as a 6 MV standard (Cu/W) beam at this depth. Increased surface dose from the low Z target can be mitigated by well-spaced beam arrangements. Conclusions: By using the fast-switching target, one can modulate the photon beam during delivery, producing a customized photon energy spectrum for each specific situation.« less
Khng, Kiat Hui
2017-11-01
A pre-test/post-test, intervention-versus-control experimental design was used to examine the effects, mechanisms and moderators of deep breathing on state anxiety and test performance in 122 Primary 5 students. Taking deep breaths before a timed math test significantly reduced self-reported feelings of anxiety and improved test performance. There was a statistical trend towards greater effectiveness in reducing state anxiety for boys compared to girls, and in enhancing test performance for students with higher autonomic reactivity in test-like situations. The latter moderation was significant when comparing high-versus-low autonomic reactivity groups. Mediation analyses suggest that deep breathing reduces state anxiety in test-like situations, creating a better state-of-mind by enhancing the regulation of adaptive-maladaptive thoughts during the test, allowing for better performance. The quick and simple technique can be easily learnt and effectively applied by most children to immediately alleviate some of the adverse effects of test anxiety on psychological well-being and academic performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weiwang; Li, Shengtao, E-mail: sli@xjtu.edu.cn; Min, Daomin
2016-04-15
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al{sub 2}O{sub 3} nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al{sub 2}O{sub 3} nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and themore » strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al{sub 2}O{sub 3} nanodielectrics is improved.« less
Spray Cooling Trajectory Angle Impact Upon Heat Flux Using a Straight Finned Enhanced Surface
NASA Technical Reports Server (NTRS)
Silk, Eric A.; Kim, Jungho; Kiger, Ken
2005-01-01
Experiments were conducted to study the effects of spray trajectory angles upon heat flux for flat and enhanced surface spray cooling. The surface enhancement consisted of straight fins machined on the top surface of a copper heater block. Spray cooling curves were obtained with the straight fin surface aligned both parallel (axial) and perpendicular (transverse) to the spray axis. Measurements were also obtained on a flat surface heater block for comparison purposes. Each copper block had a cross-sectional area of 2.0 sq cm. A 2x2 nozzle array was used with PF-5060 as the working fluid. Thermal performance data was obtained under nominally degassed (chamber pressure of 41.4 kPa) conditions. Results show that the maximum CHF in all cases was attained for a trajectory angle of 30' from the surface normal. Furthermore, trajectory angles applied to straight finned surfaces can have a critical heat flux (CHF) enhancement as much as 75% (heat flux value of 140 W/sq cm) relative to the vertical spray orientation for the analogous flat surface case under nominally degassed conditions.
Elastic adhesive dressing treatment of bleeding wounds in trauma victims.
Naimer, S A; Chemla, F
2000-11-01
Conventional methods for hemorrhage control in the trauma patient fall short of providing a full solution for the life-threatening bleeding injury. The tourniquet is limited specifically to injuries of the distal limbs. Local pressure or tight bandaging with military bandages is cumbersome and often insufficient. Therefore, we sought a superior method to stop bleeding in emergency situations. Our objective is report and description of our experience with this method. Since 1992 our trauma team repeatedly encountered multiple trauma victims presenting with bleeding wounds. We achieved hemorrhage control by means of an adhesive elastic bandage applied directly over a collection of 4 x 4 gauze pads placed on the wound surface. The roll is then wrapped around the body surface, over the bleeding site, until sufficient pressure is reached to terminate ongoing hemorrhage. Three typical cases are described in detail. Adhesive elastic dressing compression was successful in fully controlling bleeding without compromise of distal blood flow. Our method corresponded to the demand for an immediate, effective and lasting form of hemorrhage control without complications. Furthermore, this technique proved successful even over body surfaces normally recognized as difficult to compress. We experienced equal favorable success while working during transit by either ambulance or helicopter transportation. We find our preliminary experience using elastic adhesive dressing for bleeding control encouraging and suggest that this may substitute existing practices as the selected treatment when indicated. This method is presently underrecognized for this purpose. Development of a single unit bandage may further enhance success in the future.
Effect of rapidly changing river stage on uranium flux through the hyporheic zone.
Fritz, Brad G; Arntzen, Evan V
2007-01-01
Measurement of ground water/surface water interaction within the hyporheic zone is increasingly recognized as an important aspect of subsurface contaminant fate and transport. Understanding the interaction between ground water and surface water is critical in developing a complete conceptual model of contaminant transport through the hyporheic zone. At the Hanford Site near Richland, Washington, ground water contaminated with uranium discharges to the Columbia River through the hyporheic zone. Ground water flux varies according to changes in hydraulic gradient caused by fluctuating river stage, which changes in response to operation of dams on the Columbia River. Piezometers and continuous water quality monitoring probes were installed in the hyporheic zone to provide long-term, high-frequency measurement of hydraulic gradient and estimated uranium concentrations. Subsequently, the flux of water and uranium was calculated for each half-hour time period over a 15-month study period. In addition, measurement of water levels in the near-shore unconfined aquifer enhanced the understanding of the relationship between river stage, aquifer elevation, and uranium flux. Changing river stage resulted in fluctuating hydraulic gradient within the hyporheic zone. Further, influx of river water caused lower uranium concentrations as a result of dilution. The methods employed in this study provide a better understanding of the interaction between surface and ground water in a situation with a dynamically varying vertical hydraulic gradient and illustrate how the combination of relatively standard methods can be used to derive an accurate estimation of water and contaminant flux through the hyporheic zone.
Meyer, D.J.; Chander, G.
2008-01-01
Airborne Visible Infrared Imaging Spectrometer (AVIRIS) images , collected over Sioux Falls, South Dakota, were used to quantify the effect of spectral response on different surface materials and to develop spectral "figures-of-merit" for spectral responses covering similar, but not identical spectral bands. In this simulation, AVIRIS images were converted to radiance, then spectrally resampled to six wavelength bands commonly used for terrestrial observation. Preliminary results indicate that differences between the simulations can be attributed to variations in surface reflectance within spectral bands, and suggest influences due to water vapor absorption. Radiance simulated from the spectrally narrow Moderate Resolution Imaging Spectroradiometer (MODIS) Relative Spectral Responses (RSR) was generally higher than that using the broader Enhanced Thematic Mapper Plus (ETM+) RSRs over most targets encountered over the test area. This is consistent with many MODIS bands being biased toward shorter wavelengths compared to corresponding ETM+ bands when viewing targets whose radiance decreases with wavelength. In some cases the higher radiance values appeared to occur where the MODIS RSR is better situated over peak reflected wavelengths. Simulation differences between MODIS & ETM+ bands in the near-infrared indicated higher MODIS radiance values that suggest the influence of water vapor absorption at 820 nanometers. This result agreed with water vapor values retrieved from the AVIRIS images themselves at around 2.7 cm precipitable water, and measurements made at a nearby AERONET node at around 2.8cm during the AVIRIS overflight ?? 2007 IEEE.
NASA Astrophysics Data System (ADS)
Lopez-Valverde, M. A.; Lopez-Puertas, M.
1994-06-01
A radiative transfer model to study the infrared (1-20 micrometer) emissions of the CO and CO2 molecules in the atmosphere of Mars has been developed. The model runs from the planet's surface up to 180 km and has been especially elaborated to study non-local thermodynamic equilibrium (non-LTE) situations. it includes the most important energy levels and vibration-rotation bands able to give a significant atmospheric emission or produce a significant cooling/heating rate. Exchanges of energy in thermal and nonthermal (vibrational-vibrational) collisions as well as by radiative processes have been included. An exhaustive review of the rate constants for vibrational-thermal and vibrational-vibrational collisional exchanges has been carried out. Radiative transfer processes have been treated by using a modified Curtis matrix formulation. The populations of the excited vibrational levels for nighttime conditions are presented along with a sensitivity study of their variations to the kinetic temperature profile and to collisional rate constants. The populations of the CO2(0, nu2, 0) levels follow LTE up to about 85 km with the radiative transfer processes playing a very important role in maintaining this situation above the tropopause. This result is pratically insensitive to plausible variations in the kinetic temperature of the troposphere. The uncertainties in the rate constants play an important role in determining the populations of the levels at thermospheric altitudes, but they are of little significance for the heights where they start departing from LTE. The CO2(0, 00, 1) level breaks down from LTE at about 60 km, the laser bands at 10 micrometers giving a significant contribution to its population in the Martian mesosphere. The CO(1) level stars departing around 50 km and is noticeably enhanced in the upper thermosphere by absorption of upwelling flux from the planets' surface.
NASA Astrophysics Data System (ADS)
Wei, Pei; Wei, Zhengying; Chen, Zhen; Du, Jun; He, Yuyang; Li, Junfeng; Zhou, Yatong
2017-06-01
This densification behavior and attendant microstructural characteristics of the selective laser melting (SLM) processed AlSi10Mg alloy affected by the processing parameters were systematically investigated. The samples with a single track were produced by SLM to study the influences of laser power and scanning speed on the surface morphologies of scan tracks. Additionally, the bulk samples were produced to investigate the influence of the laser power, scanning speed, and hatch spacing on the densification level and the resultant microstructure. The experimental results showed that the level of porosity of the SLM-processed samples was significantly governed by energy density of laser beam and the hatch spacing. The tensile properties of SLM-processed samples and the attendant fracture surface can be enhanced by decreasing the level of porosity. The microstructure of SLM-processed samples consists of supersaturated Al-rich cellular structure along with eutectic Al/Si situated at the cellular boundaries. The Si content in the cellular boundaries increases with increasing the laser power and decreasing the scanning speed. The hardness of SLM-processed samples was significantly improved by this fine microstructure compared with the cast samples. Moreover, the hardness of SLM-processed samples at overlaps was lower than the hardness observed at track cores.
Orientation-Induced Effects of Water Harvesting on Humps-on-Strings of Bioinspired Fibers
Chen, Yuan; Li, Dan; Wang, Ting; Zheng, Yongmei
2016-01-01
Smart water-collecting functions are naturally endowed on biological surfaces with unique wettable microstructures, e.g., beetle back with “alternate hydrophobic, hydrophilic micro-regions”, and spider silk with wet-rebuilt “spindle-knot, joint” structures. Enlightened by the creature features, design of bio-inspired surfaces becomes the active issue in need of human beings for fresh water resource. Recently, as observed from spider web in nature, the net of spider silk is usually set in different situations and slopes in air, thus spider silks can be placed in all kinds of orientations as capturing water. Here, we show the styles and orientations of hump-on-string to control the ability of water collection as bioinspired silks are fabricated successfully. As different strings, sizes (height, length, pitch) of humps can become the controlling on volumes of extreme water drops. It is related to the different solid/liquid contact regions resulting in the as-modulated wet adhesion due to orientations of humps-on-strings. The conversion of high-low adhesion can be achieved to rely on orientations for the effect of capturing water drops. These studies offer an insight into enhancement of water collection efficiency and are helpful to design smart materials for controlled water drop capture and release via conversions of high-low adhesion. PMID:26812942
NASA Astrophysics Data System (ADS)
Chen, Xiaomin; Gu, Huaimin; Shen, Gaoshan; Dong, Xiao; Kang, Jian
2010-06-01
The surface enhanced Raman scattering (SERS) of caffeine on borohydride-reduced silver colloids system under different aqueous solution environment has been studied in this paper. The relative intensity of SERS of caffeine significantly varies with different concentrations of sodium chloride and silver particles. However, at too high or too low concentration of sodium chloride and silver particle, the enhancement of SERS spectra is not evident. The SERS spectra of caffeine suggest that the contribution of the charge transfer mechanism to SERS may be dominant. The chloride ions can significantly enhance the efficiency of SERS, while the enhancement is selective, as the efficiency in charge transfer enhancement is higher than in electromagnetic enhancement. Therefore, it can be concluded that the active site of chloride ion locates on the bond between the caffeine and the silver surface. In addition, the SERS spectra of caffeine on borohydride-reduced and citrate-reduced silver colloids are different, which may be due to different states caffeine adsorbed on silver surface under different silver colloids.
Surface Composition Influence on Internal Gas Flow at Large Knudsen Numbers
2000-07-09
situated in an ultra high vacuum system . The system is supplied with means of gas phase, surface CP585, Rarefied Gas Dynamics: 22nd International...control and gas flow measuring system . The experimental procedure consists in a few stages. The first stage includes surface preparation process at...solid body system , Proceedings 20-th Int. Symp. Rarefied Gas Dynamics, Peking University Press, Beijing, China, 1997, pp. 387-391. 3. Lord, R.G
NASA Astrophysics Data System (ADS)
Bakar, N. A.; Salleh, M. M.; Umar, A. A.; Shapter, J. G.
2018-03-01
This paper reports a study on surface-enhanced Raman scattering (SERS) phenomenon of triangular silver nanoplate (NP) films towards bisphenol A (BPA) detection. The NP films were prepared using self-assembly technique with four different immersion times; 1 hour, 2 hours, 5 hours, and 8 hours. The SERS measurement was studied by observing the changes in Raman spectra of BPA after BPA absorbed on the NP films. It was found that the Raman intensity of BPA peaks was enhanced by using the prepared SERS substrates. This is clearly indicated that these SERS silver substrates are suitable to sense industrial chemical and potentially used as SERS detector. However, the rate of SERS enhancement is depended on the distribution of NP on the substrate surface.
Enhanced diffusion on oscillating surfaces through synchronization
NASA Astrophysics Data System (ADS)
Wang, Jin; Cao, Wei; Ma, Ming; Zheng, Quanshui
2018-02-01
The diffusion of molecules and clusters under nanoscale confinement or absorbed on surfaces is the key controlling factor in dynamical processes such as transport, chemical reaction, or filtration. Enhancing diffusion could benefit these processes by increasing their transport efficiency. Using a nonlinear Langevin equation with an extensive number of simulations, we find a large enhancement in diffusion through surface oscillation. For helium confined in a narrow carbon nanotube, the diffusion enhancement is estimated to be over three orders of magnitude. A synchronization mechanism between the kinetics of the particles and the oscillating surface is revealed. Interestingly, a highly nonlinear negative correlation between diffusion coefficient and temperature is predicted based on this mechanism, and further validated by simulations. Our results provide a general and efficient method for enhancing diffusion, especially at low temperatures.
NASA Astrophysics Data System (ADS)
Dana, Aykutlu; Ayas, Sencer; Bakan, Gokhan; Ozgur, Erol; Guner, Hasan; Celebi, Kemal
2016-09-01
Infrared absorption spectroscopy has greatly benefited from the electromagnetic field enhancement offered by plasmonic surfaces. However, because of the localized nature of plasmonic fields, such field enhancements are limited to nm-scale volumes. Here, we demonstrate that a relatively small, but spatially-uniform field enhancement can yield a superior infrared detection performance compared to the plasmonic field enhancement exhibited by optimized infrared nanoantennas. A specifically designed CaF2/Al thin film surface is shown to enable observation of stronger vibrational signals from the probe material, with wider bandwidth and a deeper spatial extent of the field enhancement as compared to optimized plasmonic surfaces. It is demonstrated that the surface structure presented here can enable chemically specific and label-free detection of organic monolayers using surface enhanced infrared spectroscopy. Also, a low cost hand held infrared absorption measurement setup is demonstrated using a miniature bolometric sensor and a mobile phone. A specifically designed grating in combination with an IR light source yields an IR spectrometer covering 7-12 um range, with about 100 cm-1 resolution. Combining the enhancing substrates with the spectroscopy setup, low cost, high sensitivity mobile infrared sensing is enabled. The results have implications in homeland security and environmental monitoring as well as chemical analysis.
Surface-Enhanced Raman and Surface-Enhanced Hyper-Raman Scattering of Thiol-Functionalized Carotene
2016-01-01
A thiol-modified carotene, 7′-apo-7′-(4-mercaptomethylphenyl)-β-carotene, was used to obtain nonresonant surface-enhanced Raman scattering (SERS) spectra of carotene at an excitation wavelength of 1064 nm, which were compared with resonant SERS spectra at an excitation wavelength of 532 nm. These spectra and surface-enhanced hyper-Raman scattering (SEHRS) spectra of the functionalized carotene were compared with the spectra of nonmodified β-carotene. Using SERS, normal Raman, and SEHRS spectra, all obtained for the resonant case, the interaction of the carotene molecules with silver nanoparticles, as well as the influence of the resonance enhancement and the SERS enhancement on the spectra, were investigated. The interaction with the silver surface occurs for both functionalized and nonfunctionalized β-carotene, but only the stronger functionalization-induced interaction enables the acquisition of nonresonant SERS spectra of β-carotene at low concentrations. The resonant SEHRS and SERS spectra are very similar. Nevertheless, the SEHRS spectra contain additional bands of infrared-active modes of carotene. Increased contributions from bands that experience low resonance enhancement point to a strong interaction between silver nanoparticles and electronic levels of the molecules, thereby giving rise to a decrease in the resonance enhancement in SERS and SEHRS. PMID:28077983
Enhanced chiral response from the Fabry-Perot cavity coupled meta-surfaces
NASA Astrophysics Data System (ADS)
Yang, Ze-Jian; Hu, De-Jiao; Gao, Fu-Hua; Hou, Yi-Dong
2016-08-01
The circular dichroism (CD) signal of a two-dimensional (2D) chiral meta-surface is usually weak, where the difference between the transmitted (or reflected) right and left circular polarization is barely small. We present a general method to enhance the reflective CD spectrum, by adding a layer of reflective film behind the meta-surface. The light passes through the chiral meta-surface and propagates towards the reflector, where it is reflected back and further interacts with the chiral meta-surface. The light is reflected back and forth between these two layers, forming a Fabry-Perot type resonance, which interacts with the localized surface plasmonic resonance (LSPR) mode and greatly enhances the CD signal of the light wave leaving the meta-surface. We numerically calculate the CD enhancing effect of an L-shaped chiral meta-surface on a gold film in the visible range. Compared with the single layer meta-surface, the L-shaped chiral meta-surface has a CD maximum that is dramatically increased to 1. The analysis of reflection efficiency reveals that our design can be used to realize a reflective circular polarizer. Corresponding mode analysis shows that the huge CD originates from the hybrid mode comprised of FP mode and LSPR. Our results provide a general approach to enhancing the CD signal of a chiral meta-surface and can be used in areas like biosensing, circular polarizer, integrated photonics, etc. Project supported by the National Natural Science Foundation of China (Grant No. 61377054).
Choi, Suhee; Ahn, Miri; Kim, Jongwon
2013-05-24
The fabrication of effective surface-enhanced Raman scattering (SERS) substrates has been the subject of intensive research because of their useful applications. In this paper, dendritic gold (Au) rod (DAR) structures prepared by simple one-step electrodeposition in a short time were examined as an effective SERS-active substrate. The SERS activity of the DAR surfaces was compared to that of other nanostructured Au surfaces with different morphologies, and its dependence on the structural variation of DAR structures was examined. These comparisonal investigations revealed that highly faceted sharp edge sites present on the DAR surfaces play a critical role in inducing a high SERS activity. The SERS enhancement factor was estimated to be greater than 10(5), and the detection limit of rhodamine 6G at DAR surfaces was 10(-8)M. The DAR surfaces exhibit excellent spot-to-spot and substrate-to-substrate SERS enhancement reproducibility, and their long-term stability is very good. It was also demonstrated that the DAR surfaces can be effectively utilized in electrochemical SERS systems, wherein a reversible SERS behavior was obtained during the cycling to cathodic potential regions. Considering the straightforward preparation of DAR substrates and the clean nature of SERS-active Au surfaces prepared in the absence of additives, we expect that DAR surfaces can be used as cost-effective SERS substrates in analytical and electrochemical applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Terror management and stereotyping: why do people stereotype when mortality is salient?
Renkema, Lennart J; Stapel, Diederik A; Maringer, Marcus; van Yperen, Nico W
2008-04-01
Three studies examine two routes by which mortality threats may lead to stereotyping. Mortality salience may activate both a comprehension goal and an enhancement goal. Enhancement goals are likely to be more active in situations where intergroup competition or conflict is salient. If this is not the case, then a comprehension goal will predominate. In line with a why-determines-how logic, when mortality salience activates a comprehension goal, both positive and negative stereotyping occur. In contrast, the activation of an enhancement goal only increases negative stereotyping.
Structural Origin of Enhanced Dynamics at the Surface of a Glassy Alloy
NASA Astrophysics Data System (ADS)
Sun, Gang; Saw, Shibu; Douglass, Ian; Harrowell, Peter
2017-12-01
The enhancement of mobility at the surface of an amorphous alloy is studied using a combination of molecular dynamic simulations and normal mode analysis of the nonuniform distribution of Debye-Waller factors. The increased mobility at the surface is found to be associated with the appearance of Arrhenius temperature dependence. We show that the transverse Debye-Waller factor exhibits a peak at the surface. Over the accessible temperature range, we find that the bulk and surface diffusion coefficients obey the same empirical relationship with the respective Debye-Waller factors. Extrapolating this relationship to lower T , we argue that the observed decrease in the constraint at the surface is sufficient to account for the experimentally observed surface enhancement of mobility.
Crum, Alia J; Akinola, Modupe; Martin, Ashley; Fath, Sean
2017-07-01
Prior research suggests that altering situation-specific evaluations of stress as challenging versus threatening can improve responses to stress. The aim of the current study was to explore whether cognitive, physiological and affective stress responses can be altered independent of situation-specific evaluations by changing individuals' mindsets about the nature of stress in general. Using a 2 × 2 design, we experimentally manipulated stress mindset using multi-media film clips orienting participants (N = 113) to either the enhancing or debilitating nature of stress. We also manipulated challenge and threat evaluations by providing positive or negative feedback to participants during a social stress test. Results revealed that under both threat and challenge stress evaluations, a stress-is-enhancing mindset produced sharper increases in anabolic ("growth") hormones relative to a stress-is-debilitating mindset. Furthermore, when the stress was evaluated as a challenge, a stress-is-enhancing mindset produced sharper increases in positive affect, heightened attentional bias towards positive stimuli, and greater cognitive flexibility, whereas a stress-is-debilitating mindset produced worse cognitive and affective outcomes. These findings advance stress management theory and practice by demonstrating that a short manipulation designed to generate a stress-is-enhancing mindset can improve responses to both challenging and threatening stress.
Lee, Jaeho; Han, Tae-Hee; Park, Min-Ho; Jung, Dae Yool; Seo, Jeongmin; Seo, Hong-Kyu; Cho, Hyunsu; Kim, Eunhye; Chung, Jin; Choi, Sung-Yool; Kim, Taek-Soo; Lee, Tae-Woo; Yoo, Seunghyup
2016-01-01
Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening. PMID:27250743
Preconscious defence analysis, memory and structural change.
Ross, John Munder
2003-02-01
Beginning with the ways in which the use of the couch lends 'depth to the surface' (Erikson, 1954), I explore the topography of the inter- and intrasubjective psychoanalytic situation and process. I suggest that defences are not by definition unconscious but rather can be observed operating at conscious and preconscious levels, particularly under these conditions. A focus on preconscious disavowal provides a window on what has become unconscious repression. As a result of eliciting and then verbalising the operation of such defences with regard to anxieties in the here-and-now transference, declarative memories of increasingly specific childhood fantasies and events begin to hold sway over unmanageable procedural remnants from the analysand's past. With this may even come the possibility of neuronal regeneration, the more generalisable enhancement of declarative and symbolic functions and the sense of identity with which these are associated. Herein may lie one enduring therapeutic effect of the 'talking cure' - putting feelings into words - as one among a variety of psychotherapeutic modalities.
Physical mechanisms leading to two-dimensional gas content evolution within a volcanic conduit
NASA Astrophysics Data System (ADS)
Collombet, M.; Burgisser, A.; Chevalier, L. A. C.
2017-12-01
The eruption of viscous magma at the Earth's surface often gives rise to abrupt regime changes. The transition from the gentle effusion of a lava dome to brief but powerful explosions is a common regime change. This transition is often preceded by the sealing of the shallow part of the volcanic conduit and the accumulation of volatile-rich magma underneath, a situation that collects the energy to be brutally released during the subsequent explosion. While conduit sealing is well-documented, volatile accumulation has proven harder to characterize. In this study, we use a 2D conduit flow numerical model including gas loss within the magma and into the wallrock to follow the evolution of gas content during a regime transition. Using various initial porosity distributions, permeability laws and boundary conditions, we track the physical parameters that prevent or enhance gas escape from the magma. Our approach aims to identify the physical processes controlling eruptive transitions and to highlight the importance of using field data observations to constrain numerical models.
Runway Safety Monitor Algorithm for Runway Incursion Detection and Alerting
NASA Technical Reports Server (NTRS)
Green, David F., Jr.; Jones, Denise R. (Technical Monitor)
2002-01-01
The Runway Safety Monitor (RSM) is an algorithm for runway incursion detection and alerting that was developed in support of NASA's Runway Incursion Prevention System (RIPS) research conducted under the NASA Aviation Safety Program's Synthetic Vision System element. The RSM algorithm provides pilots with enhanced situational awareness and warnings of runway incursions in sufficient time to take evasive action and avoid accidents during landings, takeoffs, or taxiing on the runway. The RSM currently runs as a component of the NASA Integrated Display System, an experimental avionics software system for terminal area and surface operations. However, the RSM algorithm can be implemented as a separate program to run on any aircraft with traffic data link capability. The report documents the RSM software and describes in detail how RSM performs runway incursion detection and alerting functions for NASA RIPS. The report also describes the RIPS flight tests conducted at the Dallas-Ft Worth International Airport (DFW) during September and October of 2000, and the RSM performance results and lessons learned from those flight tests.
Kim, Seyoon; Jang, Min Seok; Brar, Victor W.; ...
2016-08-08
In this paper, subwavelength metallic slit arrays have been shown to exhibit extraordinary optical transmission, whereby tunneling surface plasmonic waves constructively interfere to create large forward light propagation. The intricate balancing needed for this interference to occur allows for resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate that extraordinary optical transmission resonance can be coupled to electrostatically tunable graphene plasmonic ribbons to create electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic ribbons situated inside metallic slits can efficiently block the coupling channel for resonant transmission, leading to a suppression of transmission. Full-wave simulationsmore » predict a transmission modulation of 95.7% via this mechanism. Experimental measurements reveal a modulation efficiency of 28.6% in transmission at 1,397 cm –1, corresponding to a 2.67-fold improvement over transmission without a metallic slit array. This work paves the way for enhancing light modulation in graphene plasmonics by employing noble metal plasmonic structures.« less
Lee, Jaeho; Han, Tae-Hee; Park, Min-Ho; Jung, Dae Yool; Seo, Jeongmin; Seo, Hong-Kyu; Cho, Hyunsu; Kim, Eunhye; Chung, Jin; Choi, Sung-Yool; Kim, Taek-Soo; Lee, Tae-Woo; Yoo, Seunghyup
2016-06-02
Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening.
Pictorial communication in virtual and real environments
NASA Technical Reports Server (NTRS)
Ellis, Stephen R. (Editor)
1991-01-01
Papers about the communication between human users and machines in real and synthetic environments are presented. Individual topics addressed include: pictorial communication, distortions in memory for visual displays, cartography and map displays, efficiency of graphical perception, volumetric visualization of 3D data, spatial displays to increase pilot situational awareness, teleoperation of land vehicles, computer graphics system for visualizing spacecraft in orbit, visual display aid for orbital maneuvering, multiaxis control in telemanipulation and vehicle guidance, visual enhancements in pick-and-place tasks, target axis effects under transformed visual-motor mappings, adapting to variable prismatic displacement. Also discussed are: spatial vision within egocentric and exocentric frames of reference, sensory conflict in motion sickness, interactions of form and orientation, perception of geometrical structure from congruence, prediction of three-dimensionality across continuous surfaces, effects of viewpoint in the virtual space of pictures, visual slant underestimation, spatial constraints of stereopsis in video displays, stereoscopic stance perception, paradoxical monocular stereopsis and perspective vergence. (No individual items are abstracted in this volume)
EDITORIAL: Gems in nanoscience Gems in nanoscience
NASA Astrophysics Data System (ADS)
Demming, Anna
2011-04-01
In 1902 R M Wood published the paper 'On a remarkable case of uneven distribution of light in a diffraction grating spectrum' [1]. As was true of so much of his work, interest in his observations took flight, inspiring extensive research into associated new optical phenomena. What is now known as Wood's anomaly has been described as the result of excitations of oscillations in the conducting electron plasma, or 'plasmons'. These quasiparticles have become increasingly attractive to researchers, perhaps less for the dazzling colours they impart to glitzy gemstones over their potential to facilitate medical imaging, as well as integrated optics [2] and the transfer of information and energy at dimensions below the diffraction limit. Excitation of surface plasmons provides a means of enhancing optical near fields, thus empowering a range of signal detecting applications. A range of innovative techniques have been implemented to probe surface plasmon resonances. The evolution of plasmon resonance energy and mean free path as particle dimensions increase from nanostructures to bulk matter has been monitored through ellipsometry, thus providing an insight into the plasmon polariton coupling [3]. Electron energy loss experiments have also proved a valuable tool for mapping surface plasmons with a spatial resolution an order of magnitude better than can be achieved with scanning near-field optical microscopes [4]. The exploitation of surface plasmons is primed to aid advances in medical imaging, diagnosis and therapy. Researchers in the US have developed a protein-enabled strategy to fabricate quantum dot nanoarrays where an increase in surface-plasmon-enhanced fluorescence of up to a factor of 15 has been achieved [5]. Understanding and dexterity in manipulating these enhancements has reached a high level of sophistication, and researchers in London have demonstrated the ability to increase the fluorescence enhancement by a factor of 4 and the decay rate by a factor of almost 30 by tuning the localised surface plasmon resonance of silver particle arrays to the emission wavelength of a locally situated fluorophore [6]. In the US and Belarus researchers have collaborated to investigate the potential of plasmonic nanobubbles, generated by laser activated nanoparticles, for combined diagnostics, therapy, and therapy guidance. Such nanobubbles can be optically tracked in the body, and their rapid expansion and collapse provides a localised mechanical impact on cells that can disrupt the cell membrane [7]. Surface plasmon polaritons at nanostructures allow highly local control of light, which has a range of uses in electronic devices. Photovoltaics researchers in the US and the Netherlands have demonstrated enhanced short circuit current densities compared to cells having flat or randomly textured back contacts using nanostructured plasmonic back contacts, which maximise the interaction with the light [8]. Progress in optoelectronics is another area where surface plasmon polaritons are playing an increasingly important role [9]. In this issue, researchers at the Institut des Sciences Molé culaire d'Orsay demonstrate that it is possible to excite propagating surface plasmon polaritons with a scanning tunnelling microscope, and detect them [2]. Their work also investigates the nature of the excited plasmons and how the intensities of the propagating surface plasmon polaritons and the localized plasmon emission can be enhanced by factors of 2 and 20 respectively by using a silver tip instead of a tungsten one. Wisdom may be worth more than silver and gold, but a little silver and gold can contribute a lot to unearthing new wisdom at the nanoscale. References [1] Wood R M 1902 Nanotechnology 18 296 [2] Wang T, Boer-Duchemin E, Zhang Y, Comtet G and Dujardin G 2011 Nanotechnology 22 175201 [3] Oates T W H and Mücklich A 2005 Nanotechnology 16 2606 [4] Bosman M, Keast V J, Watanabe M, Maaroof A I and Cortie M B 2007 Nanotechnology 18 165505 [5] Zin M T, Leong K, Wong N-Y, Ma H, Sarikaya M and Jen A K-Y 2009 Nanotechnology 20 015305 [6] Cade N I, Ritman-Meer T, Kwakwa K A and Richards D 2009 Nanotechnology 20 285201 [7] Lukianova-Hleb E Y, Hanna E Y, Hafner J H and Lapotko D O 2010 Nanotechnology 21 085102 [8] Ferry V E, Verschuuren M A, Li H B T, Verhagen E, Walters R J, Schropp R E I, Atwater H A, and Polman A 2010 Optics Express 18 A237-45 [9] Maier S A 2006 IEEE J. Sel. Top. Quantum Electron. 12 1671-7
Surface-enhanced Raman scattering (SERS) dosimeter and probe
Vo-Dinh, Tuan
1995-01-01
A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devises, in probe array devices.
Microscale surface modifications for heat transfer enhancement.
Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C
2013-10-09
In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.
Enhanced perfume surface delivery to interfaces using surfactant surface multilayer structures.
Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig
2016-01-01
Enhanced surface delivery and retention of perfumes at interfaces are the keys to their more effective and efficient deployment in a wide range of home and personal care related formulations. It has been previously demonstrated that the addition of multivalent counterions, notably Ca(2+), induces multilayer adsorption at the air-water interface for the anionic surfactant, sodium dodecyl-6-benzenesulfonate, LAS-6. Neutron reflectivity, NR, measurements are reported here which demonstrate that such surfactant surface multilayer structures are a potentially promising vehicle for enhanced delivery of perfumes to interfaces. The data show that the incorporation of the model perfumes, phenylethanol, PE, and linalool, LL, into the surface multilayer structure formed by LAS-6/Ca(2+) results in the surface structures being retained up to relatively high perfume mole fractions. Furthermore the amount of perfume at the surface is enhanced by at least an order of magnitude, compared to that co-adsorbed with a surfactant monolayer. Copyright © 2015 Elsevier Inc. All rights reserved.
Piveteau, Laura; Ong, Ta-Chung; Rossini, Aaron J; Emsley, Lyndon; Copéret, Christophe; Kovalenko, Maksym V
2015-11-04
Understanding the chemistry of colloidal quantum dots (QDs) is primarily hampered by the lack of analytical methods to selectively and discriminately probe the QD core, QD surface and capping ligands. Here, we present a general concept for studying a broad range of QDs such as CdSe, CdTe, InP, PbSe, PbTe, CsPbBr3, etc., capped with both organic and inorganic surface capping ligands, through dynamic nuclear polarization (DNP) surface enhanced NMR spectroscopy. DNP can enhance NMR signals by factors of 10-100, thereby reducing the measurement times by 2-4 orders of magnitude. 1D DNP enhanced spectra acquired in this way are shown to clearly distinguish QD surface atoms from those of the QD core, and environmental effects such as oxidation. Furthermore, 2D NMR correlation experiments, which were previously inconceivable for QD surfaces, are demonstrated to be readily performed with DNP and provide the bonding motifs between the QD surfaces and the capping ligands.
ERIC Educational Resources Information Center
Savelsbergh, Elwin R.; de Jong, Ton; Ferguson-Hessler, Monica G. M.
2011-01-01
Novice problem solvers are rather sensitive to surface problem features, and they often resort to trial and error formula matching rather than identifying an appropriate solution approach. These observations have been interpreted to imply that novices structure their knowledge according to surface features rather than according to problem type…
NASA Technical Reports Server (NTRS)
Case, Jonathan L; White, Kristopher D.
2014-01-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL is running a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework (hereafter referred to as the "SPoRT-LIS"). Output from the real-time SPoRT-LIS is used for (1) initializing land surface variables for local modeling applications, and (2) displaying in decision support systems for situational awareness and drought monitoring at select NOAA/National Weather Service (NWS) partner offices. The experimental CONUS run incorporates hourly quantitative precipitation estimation (QPE) from the National Severe Storms Laboratory Multi- Radar Multi-Sensor (MRMS) which will be transitioned into operations at the National Centers for Environmental Prediction (NCEP) in Fall 2014.This paper describes the current and experimental SPoRT-LIS configurations, and documents some of the limitations still remaining through the advent of MRMS precipitation analyses in the SPoRT-LIS land surface model (LSM) simulations.
Origin of the Surface-Induced First Hyperpolarizability in the C60/SiO2 System: SCC-DFTB Insight.
Nénon, Sébastien; Champagne, Benoît
2014-01-02
Using the self-consistent charge density functional tight binding (SCC-DFTB) method, C60 molecules physisorbed on an α-quartz slab are shown to display a first hyperpolarizability, whereas, owing to their symmetry, both the α-quartz slab and C60 molecule have no first hyperpolarizabilities. A larger first hyperpolarizability is achieved when the lowest-lying (five- or six-membered) ring is situated in between two hydroxyl rows, rather than on top, because this situation favors orbital overlaps and charge transfer. Further analysis has demonstrated that (i) the first hyperpolarizability originates from the MO overlap and field-induced charge transfers from the neighboring substrate/adsorbate moieties but not to geometric relaxation of the C60 molecules at the interface and that (ii) larger first hyperpolarizabilities are associated with low surface coverage and with small distances between C60 and the surface. This contribution is a clear illustration of the emergence of second-order nonlinear optical responses (first hyperpolarizability) as a result of breaking the centrosymmetry.
NASA Astrophysics Data System (ADS)
Krummacher, B. C.; Mathai, M. K.; Choong, V.; Choulis, S. A.; So, F.; Winnacker, A.
2006-09-01
The external light output of organic light emitting diodes (OLEDs) can be increased by modifying the light emitting surface. The apparent light extraction enhancement is given by the ratio between the efficiency of the unmodified device and the efficiency of the modified device. This apparent light extraction enhancement is dependent on the OLED architecture itself and is not the correct value to judge the effectiveness of a technique to enhance light outcoupling due to substrate surface modification. We propose a general method to evaluate substrate surface modification techniques for light extraction enhancement of OLEDs independent from the device architecture. This method is experimentally demonstrated using green electrophosphorescent OLEDs with different device architectures. The substrate surface of these OLEDs was modified by applying a prismatic film to increase light outcoupling from the device stack. It was demonstrated that the conventionally measured apparent light extraction enhancement by means of the prismatic film does not reflect the actual performance of the light outcoupling technique. Rather, by comparing the light extracted out of the prismatic film to that generated in the OLED layers and coupled into the substrate (before the substrate/air interface), a more accurate evaluation of light outcoupling enhancement can be achieved. Furthermore we show that substrate surface modification can change the output spectrum of a broad band emitting OLED.
NASA Astrophysics Data System (ADS)
Nien, Chun; Li, Yi-Hsuan; Su, Vin-Cent; Kuan, Chieh-Hsiung
2017-02-01
Surface-enhanced Raman scattering (SERS) is a powerful technique for trace chemical analysis and single molecule detection in the application of biochemical monitoring and food safety due to its ability to enhance the Raman scattering of molecules near the metallic surface or nanostructures. Here, we present a comprehensive study of the SERS enhancement by the periodically nanostructured surface, where the thin film of silver is deposited onto the surface, except the sidewall of posts, of 1-D lamellar gratings with varying pitch to forming metal-dielectric composite nanostructures. By enhancing the localized and surface-propagating mode in the vicinity of the concaves, the SERS signal can be improved by amplifying the intensity of electric field and increasing the optical path length of the incident light. Experimental investigations show that the enhancement factor can be manipulated by varying the polarization of incident light and the pitch size of gratings. To demonstrate the SERS effects of the proposed structures, thin layers of benzoic acid, which is commonly used as a food preservative, are deposited on the SERS substrates by spin-coating a solution of benzoic acid and dried at room temperature. A Confocal Raman microscope with a 532 nm laser source is used to illuminate light and measure the Raman spectrum of benzoic acid. We demonstrate the Raman signal of benzoic acid can be enhanced on the order of 102 on the SERS substrates.
Surface-Bound Casein Modulates the Adsorption and Activity of Kinesin on SiO2 Surfaces
Ozeki, Tomomitsu; Verma, Vivek; Uppalapati, Maruti; Suzuki, Yukiko; Nakamura, Mikihiko; Catchmark, Jeffrey M.; Hancock, William O.
2009-01-01
Abstract Conventional kinesin is routinely adsorbed to hydrophilic surfaces such as SiO2. Pretreatment of surfaces with casein has become the standard protocol for achieving optimal kinesin activity, but the mechanism by which casein enhances kinesin surface adsorption and function is poorly understood. We used quartz crystal microbalance measurements and microtubule gliding assays to uncover the role that casein plays in enhancing the activity of surface-adsorbed kinesin. On SiO2 surfaces, casein adsorbs as both a tightly bound monolayer and a reversibly bound second layer that has a dissociation constant of 500 nM and can be desorbed by washing with casein-free buffer. Experiments using truncated kinesins demonstrate that in the presence of soluble casein, kinesin tails bind well to the surface, whereas kinesin head binding is blocked. Removing soluble casein reverses these binding profiles. Surprisingly, reversibly bound casein plays only a moderate role during kinesin adsorption, but it significantly enhances kinesin activity when surface-adsorbed motors are interacting with microtubules. These results point to a model in which a dynamic casein bilayer prevents reversible association of the heads with the surface and enhances association of the kinesin tail with the surface. Understanding protein-surface interactions in this model system should provide a framework for engineering surfaces for functional adsorption of other motor proteins and surface-active enzymes. PMID:19383474
A Novel Malware Target Recognition Architecture for Enhanced Cyberspace Situation Awareness
2011-09-01
71 3.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2 CRISP - DM Process...71 3.3 Execution of the CRISP - DM Process...64 10. Adaptation of CRISP - DM process (from [13]). . . . . . . . . . . . . . . . . . . . . . . 72 11. Comparison of detection
An application of the suction analog for the analysis of asymmetric flow situations
NASA Technical Reports Server (NTRS)
Luckring, J. M.
1976-01-01
A recent extension of the suction analogy for estimation of vortex loads on asymmetric configurations is reviewed. This extension includes asymmetric augmented vortex lift and the forward sweep effect on side edge suction. Application of this extension to a series of skewed wings has resulted in an improved estimating capability for a wide range of asymmetric flow situations. Hence, the suction analogy concept now has more general applicability for subsonic lifting surface analysis.
Adult Playfulness, Humor Styles, and Subjective Happiness.
Yue, Xiao D; Leung, Chun-Lok; Hiranandani, Neelam A
2016-12-01
Playfulness has been referred to as a disposition that involves reframing a situation to amuse others and to make the situation more stimulating and enjoyable. It may serve to shift one's perspective when dealing with environmental threats. Despite all the benefits of playfulness towards psychological well-being, it remains a largely understudied subject in psychology, particularly in Chinese societies. Hence, this study examined the association between adult playfulness, humor styles, and subjective happiness among a sample of 166 university students in Hong Kong and 159 students in Guangzhou, who completed a self-administered questionnaire, including the Short Measure for Adult Playfulness, the Chinese Humor Styles Questionnaire, and the Subjective Happiness Scale. Results showed that adult playfulness was positively correlated with affiliative humor, self-enhancing humor, and subjective happiness in both Hong Kong and Guangzhou samples. By its implication, highly playful Chinese students preferred using affiliative and self-enhancing humor to amuse themselves and others. © The Author(s) 2016.
ESARR: enhanced situational awareness via road sign recognition
NASA Astrophysics Data System (ADS)
Perlin, V. E.; Johnson, D. B.; Rohde, M. M.; Lupa, R. M.; Fiorani, G.; Mohammad, S.
2010-04-01
The enhanced situational awareness via road sign recognition (ESARR) system provides vehicle position estimates in the absence of GPS signal via automated processing of roadway fiducials (primarily directional road signs). Sign images are detected and extracted from vehicle-mounted camera system, and preprocessed and read via a custom optical character recognition (OCR) system specifically designed to cope with low quality input imagery. Vehicle motion and 3D scene geometry estimation enables efficient and robust sign detection with low false alarm rates. Multi-level text processing coupled with GIS database validation enables effective interpretation even of extremely low resolution low contrast sign images. In this paper, ESARR development progress will be reported on, including the design and architecture, image processing framework, localization methodologies, and results to date. Highlights of the real-time vehicle-based directional road-sign detection and interpretation system will be described along with the challenges and progress in overcoming them.
Enhanced Training for Cyber Situational Awareness in Red versus Blue Team Exercises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbajal, Armida J.; Stevens-Adams, Susan Marie; Silva, Austin Ray
This report summarizes research conducted through the Sandia National Laboratories Enhanced Training for Cyber Situational Awareness in Red Versus Blue Team Exercises Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding concerning how to best structure training for cyber defenders. Two modes of training were considered. The baseline training condition (Tool-Based training) was based on current practices where classroom instruction focuses on the functions of a software tool with various exercises in which students apply those functions. In the second training condition (Narrative-Based training), classroom instruction addressed software functions, but in the contextmore » of adversary tactics and techniques. It was hypothesized that students receiving narrative-based training would gain a deeper conceptual understanding of the software tools and this would be reflected in better performance within a red versus blue team exercise.« less
Magnetic sensor nodes for enhanced situational awareness in urban settings
NASA Astrophysics Data System (ADS)
Trammell, Hoke; Shelby, Richard; Mathis, Kevin; Dalichaouch, Yacine; Kumar, Sankaran
2005-05-01
Military forces conducting urban operations are in need of non-line-of-sight sensor technologies for enhanced situational awareness. Disposable sensors ought to be able to detect and track targets through walls and within rooms in a building and relay that information in real-time to the soldier. We have recently developed magnetic sensor nodes aimed towards low cost, small size, low power consumption, and wireless communication. The current design uses a three-axis thin-film magnetoresistive sensor for low bandwidth B-field monitoring of magnetic targets such as vehicles and weapons carried by personnel. These sensor nodes are battery operated and use IEEE 802.15.4 communication link for control and data transmission. Power consumption during signal acquisition and communication is approximately 300 mW per channel. We will present and discuss node array performance, future node development and sensor fusion concepts.
FELIN: tailored optronics and systems solutions for dismounted combat
NASA Astrophysics Data System (ADS)
Milcent, A. M.
2009-05-01
The FELIN French modernization program for dismounted combat provides the Armies with info-centric systems which dramatically enhance the performances of the soldier and the platoon. Sagem now has available a portfolio of various equipments, providing C4I, data and voice digital communication, and enhanced vision for day and night operations, through compact high performance electro-optics. The FELIN system provides the infantryman with a high-tech integrated and modular system which increases significantly their detection, recognition, identification capabilities, their situation awareness and information sharing, and this in any dismounted close combat situation. Among the key technologies used in this system, infrared and intensified vision provide a significant improvement in capability, observation performance and protection of the ground soldiers. This paper presents in detail the developed equipments, with an emphasis on lessons learned from the technical and operational feedback from dismounted close combat field tests.
NASA Technical Reports Server (NTRS)
Faghri, Amir; Swanson, Theodore D.
1990-01-01
In the first section, improvements in the theoretical model and computational procedure for the prediction of film height and heat-transfer coefficient of the free surface flow of a radially-spreading thin liquid film adjacent to a flat horizontal surface of finite extent are presented. Flows in the presence and absence of gravity are considered. Theoretical results are compared to available experimental data with good agreement. In the presence of gravity, a hydraulic jump is present, isolating the flow into two regimes: supercritical upstream from the jump and subcritical downstream of it. In this situation, the effects of surface tension are important near the outer edge of the disk where the fluid experiences a free fall. A region of flow separation is present just downstream of the jump. In the absence of gravity, no hydraulic jump or separated flow region is present. The variation of the heat-transfer coefficient for flows in the presence and absence of gravity are also presented. In the second section, the results of a numerical simulation of the flow field and associated heat transfer coefficients are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The computation was performed for different flow rates and rotational velocities using a 3-D boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on flow rate, rate of rotation, and other parameters, an iterative procedure had to be used to ascertain its location. The computed film height agreed well with existing experimental measurements. The flow is found to be dominated by inertia near the entrance and close to the free surface and dominated by centrifugal force at larger radii and adjacent to the disk. The rotation enhances the heat transfer coefficient by a significant amount.
NASA Astrophysics Data System (ADS)
Sarswat, Prashant K.; Deka, Nipon; Jagan Mohan Rao, S.; Free, Michael L.; Kumar, Gagan
2017-08-01
The objective of this work is to understand and improve the photocatalytic activity of Cu2ZnSnS4 (CZTS) through postgrowth modification techniques to create surface textures. This objective can be achieved using a combination of solvents, etching agents, and anodization techniques. One of the most effective surface treatments for enhancing the surface properties of photovoltaic materials is formation of nanoscale flakes, although other surface modifications were also evaluated. The superior performance of textured films can be attributed to enhanced surface area of absorber material exposed to electrolyte, ZnS deficiency, and high catalytic activity due to reduced charge-transfer resistance. Fine-tuning of ion flux and electrolyte stoichiometry can be used to create a controlled growth algorithm for CZTS thin films. The resulting information can be utilized to optimize film properties. The utility of nanostructured or engineered surfaces was evaluated using photoelectrochemical measurements. Finite-difference time-domain (FDTD)-assisted simulations were conducted for selected texturing, revealing enhanced surface area of absorbing medium that ultimately resulted in greater power loss of light in the medium.
NASA Astrophysics Data System (ADS)
Arai, Hiroyuki; Miyagawa, Isao; Koike, Hideki; Haseyama, Miki
We propose a novel technique for estimating the number of people in a video sequence; it has the advantages of being stable even in crowded situations and needing no ground-truth data. By analyzing the geometrical relationships between image pixels and their intersection volumes in the real world quantitatively, a foreground image directly indicates the number of people. Because foreground detection is possible even in crowded situations, the proposed method can be applied in such situations. Moreover, it can estimate the number of people in an a priori manner, so it needs no ground-truth data unlike existing feature-based estimation techniques. Experiments show the validity of the proposed method.
Wurihan; Yamada, A; Suzuki, D; Shibata, Y; Kamijo, R; Miyazaki, T
2015-05-20
Anodically oxidized titanium surfaces, prepared by spark discharge, have micro-submicron surface topography and nano-scale surface chemistry, such as hydrophilic functional groups or hydroxyl radicals in parallel. The complexity of the surface characteristics makes it difficult to draw a clear conclusion as to which surface characteristic, of anodically oxidized titanium, is critical in each biological event. This study examined the in vitro biological changes, induced by various surface characteristics of anodically oxidized titanium with, or without, release of hydroxyl radicals onto the surface. Anodically oxidized titanium enhanced the expression of genes associated with differentiating osteoblasts and increased the degree of matrix mineralization by these cells in vitro. The phenotypes of cells on the anodically oxidized titanium were the same with, or without, release of hydroxyl radicals. However, the nanomechanical properties of this in vitro mineralized tissue were significantly enhanced on surfaces, with release of hydroxyl radicals by oxidation effects. In addition, the mineralized tissue, produced in the presence of bone morphogenetic protein-2 on bare titanium, had significantly weaker nanomechanical properties, despite there being higher osteogenic gene expression levels. We show that enhanced osteogenic cell differentiation on modified titanium is not a sufficient indicator of enhanced in vitro mineralization. This is based on the inferior mechanical properties of mineralized tissues, without either being cultured on a titanium surface with release of hydroxyl radicals, or being supplemented with lysyl oxidase family members.
Situation assessment in the Paladin tactical decision generation system
NASA Technical Reports Server (NTRS)
Mcmanus, John W.; Chappell, Alan R.; Arbuckle, P. Douglas
1992-01-01
Paladin is a real-time tactical decision generator for air combat engagements. Paladin uses specialized knowledge-based systems and other Artificial Intelligence (AI) programming techniques to address the modern air combat environment and agile aircraft in a clear and concise manner. Paladin is designed to provide insight into both the tactical benefits and the costs of enhanced agility. The system was developed using the Lisp programming language on a specialized AI workstation. Paladin utilizes a set of air combat rules, an active throttle controller, and a situation assessment module that have been implemented as a set of highly specialized knowledge-based systems. The situation assessment module was developed to determine the tactical mode of operation (aggressive, defensive, neutral, evasive, or disengagement) used by Paladin at each decision point in the air combat engagement. Paladin uses the situation assessment module; the situationally dependent modes of operation to more accurately represent the complex decision-making process of human pilots. This allows Paladin to adapt its tactics to the current situation and improves system performance. Discussed here are the details of Paladin's situation assessment and modes of operation. The results of simulation testing showing the error introduced into the situation assessment module due to estimation errors in positional and geometric data for the opponent aircraft are presented. Implementation issues for real-time performance are discussed and several solutions are presented, including Paladin's use of an inference engine designed for real-time execution.
Hydrological and Dynamical Characteristics of Summertime Droughts over U.S. Great Plains.
NASA Astrophysics Data System (ADS)
Chang, Fong-Chiau; Smith, Eric A.
2001-05-01
A drought pattern and its time evolution over the U.S. Great Plains are investigated from time series of climate divisional monthly mean surface air temperature and total precipitation anomalies. The spatial pattern consists of correlated occurrences of high (low) surface air temperature and deficit (excess) rainfall. The center of maximum amplitude in rain fluctuation is around Kansas City; that of temperature is over South Dakota. Internal consistency between temperature and precipitation variability is the salient feature of the drought pattern. A drought index is used to quantify drought severity for the period 1895-1996. The 12 severest drought months (in order) during this period are June 1933, June 1988, July 1936, August 1983, July 1934, July 1901, June 1931, August 1947, July 1930, June 1936, July 1954, and August 1936. Hydrological conditions are examined using National Centers for Environmental Prediction (NCEP) reanalysis precipitable water (PW) and monthly surface observations from Kansas City, Missouri, and Bismarck, North Dakota, near the drought centers. This analysis explains why droughts exhibit negative surface relative humidity anomalies accompanied by larger than normal monthly mean daily temperature ranges and why maximum PWs are confined to a strip of about 10° longitude from New Mexico and Arizona into the Dakotas and Minnesota.Dynamical conditions are examined using NCEP reanalysis sea level pressures and 500- and 200-mb geopotential heights. The analysis indicates a midtroposphere wave train with positive centers situated over the North Pacific, North America, and the North Atlantic, with negative centers in the southeastern Gulf of Alaska and Davis Strait. Above-normal sea level pressures over New Mexico, the North Atlantic, and the subtropical Pacific along with below-normal sea level pressures over the Gulf of Alaska eastward to Canada, Davis Strait, and Greenland are present during drought periods. The most prominent feature is the strong anticyclone over central North America.On a regional scale, midtropospheric westerly winds are weakened (or become easterly) south of a thermal heat low centered in South Dakota during drought episodes because of the north-south temperature reversal perturbation. The associated westward displaced Bermuda high leads to enhanced low-level warm flow into the Dakotas, thus helping to maintain the reversal in the meridional temperature gradient and the concomitant thermal wind reversal. Enhanced moisture transport from the Gulf of California into the western plains (part of the Great Basin monsoon process) results from the large-scale perturbation pressure pattern. Middle-upper level convergence maintains the water vapor strip east of the Rocky Mountains, while the Mississippi valley undergoes moisture cutoff from both this process and the westward shift in the Bermuda high. The strip of maximum PW then undergoes enhanced solar and infrared absorption that feeds back on the thermal heat low. Surface air temperatures warm while sinking motion balances middle-upper level radiative cooling around the Kansas City area. This is the dynamical coupling that leads to reduced surface relative humidities. The centers of high surface air temperature and deficit rainfall are dynamically consistent with patterns in geopotential heights, vertical velocities, and water vapor amounts.
An enhanced obstacle avoiding system for AUV`s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conte, G.; Zanoli, S.M.
1994-12-31
This paper concerns the development of a sonar-based navigation and guidance system for underwater, unmanned vehicles. In particular, the authors describe and discuss an obstacle avoidance procedure that is capable of dealing with situations involving several obstacles. The main features of the system are the use of a Kalman filter, both for estimating data and for predicting the evolution of the observed scene, and the possibility of working at different levels of data abstraction. The system has shown satisfactory performances in dealing with moving obstacles in general situations.
Handheld portable real-time tracking and communications device
Wiseman, James M [Albuquerque, NM; Riblett, Jr., Loren E.; Green, Karl L [Albuquerque, NM; Hunter, John A [Albuquerque, NM; Cook, III, Robert N.; Stevens, James R [Arlington, VA
2012-05-22
Portable handheld real-time tracking and communications devices include; a controller module, communications module including global positioning and mesh network radio module, data transfer and storage module, and a user interface module enclosed in a water-resistant enclosure. Real-time tracking and communications devices can be used by protective force, security and first responder personnel to provide situational awareness allowing for enhance coordination and effectiveness in rapid response situations. Such devices communicate to other authorized devices via mobile ad-hoc wireless networks, and do not require fixed infrastructure for their operation.
1981-10-01
Geography 3-1 Topography 3-. Drainage 3-1 ii Page Surface Geology 3-3 Barrier Sediments 3-3 Myrtle Beach Backbarrier Sediments 3-3 soils 3-5 Subsurface...Beach AFB Surface Drainage and Surface Water Sampling Points 3-2 3.2 Myrtle Beach AFB Surface Soils 3-4 3.3 Myrtle Beach AFB Location of Geologic Cross...has created a potential contamination problem. This situation is compounded by the site’s sandy soil and shallow ground water table. b.) Weathering Pit
NASA Astrophysics Data System (ADS)
Ye, Yongda; Wang, Haibo; Tang, Guoyi; Song, Guolin
2018-05-01
The effect of electropulsing-assisted ultrasonic nanocrystalline surface modification (EP-UNSM) on surface mechanical properties and microstructure of Ti-6Al-4V alloy is investigated. Compared to conventional ultrasonic nanocrystalline surface modification (UNSM), EP-UNSM can effectively facilitate surface roughness and morphology, leading to excellent surface roughness (reduced from Ra 0.918 to Ra 0.028 μm by UNSM and Ra 0.019 μm by EP-UNSM) and smoother morphology with less cracks and defects. Surface friction coefficients are enhanced, resulting in lower and smoother friction coefficients. In addition, the surface-strengthened layer and ultra-refined grains are significantly enhanced with more severe plastic deformation and a greater surface hardness (a maximum hardness value of 407 HV and an effective depth of 550 μm, in comparison with the maximum hardness value of 364 HV and effective depth of 300 μm obtained by conventional UNSM). Remarkable enhancement of surface mechanical properties can be attributed to the refined gradient microstructure and the enhanced severe plastic deformation layer induced by coupling the effects of UNSM and electropulsing. The accelerated dislocation mobility and atom diffusion caused by the thermal and athermal effects of electropulsing treatment may be the primary intrinsic reasons for these improvements.
Preparation of surface enhanced Raman substrate and its characterization
NASA Astrophysics Data System (ADS)
Liu, Y.; Wang, J. Y.; Wang, J. Q.
2017-10-01
Surface enhanced Raman spectroscopy (SERS) is a fast, convenient and highly sensitive detection technique, and preparing the good effect and repeatable substrate is the key to realize the trace amount and quantitative detection in the field of food safety detection. In this paper, a surface enhanced Raman substrate based on submicrometer silver particles structure was prepared by chemical deposition method, and characterized its structure and optical properties.
2014-08-26
Indium, Rhodium, Ruthenium, Tungsten, Titanium, Chromium, Palladium, Copper, Platinum and Magnesium . These have been chosen because all of them...performance. vii. Considering that the observed behaviors occur precisely where UV surface-enhanced Raman spectra indicated strong local field...research objective was centered on the UV plasmonic properties of Rh NPs by means of surface-enhanced Raman spectroscopy, surface-enhanced
Surface-enhanced Raman scattering (SERS) dosimeter and probe
Vo-Dinh, T.
1995-03-21
A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devices, in probe array devices. 10 figures.
2014-08-01
Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG) Surface and Director by Amir I Zaghloul, Youn M... Antenna with Electromagnetic Band Gap (EBG) Surface and Director Amir I Zaghloul, Youn M Lee, Gregory A Mitchell, and Theodore K Anthony...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG
IR absorption and surface-enhanced Raman spectra of the isoquinoline alkaloid berberine
NASA Astrophysics Data System (ADS)
Strekal', N. D.; Motevich, I. G.; Nowicky, J. W.; Maskevich, S. A.
2007-01-01
We present the IR absorption and surface-enhanced Raman scattering (SERS) spectra of the isoquinoline alkaloid berberine adsorbed on a silver hydrosol and on the surface of a silver electrode for different potentials. Based on quantum chemical calculations, for the first time we have assigned the vibrations in the berberine molecule according to vibrational mode. The effect of the potential of the silver electrode on the geometry of sorption of the molecule on the surface is considered, assuming a short-range mechanism for enhancement of Raman scattering.
2002-03-01
Surface Temperature and Polygraph Measures 19 References Cook , E. and Turpin , G. ( 1997 ). Differentiating orienting, startle, and defense responses... Turpin , 1997 ). The results of the present study also suggest that, in the forehead and periorbital region, the situation is complex. A multivariate...Facial Skin Surface Temperature and Polygraph Measures 3 areas would be differentially affected by participants’ fear-induced central and ANS responses to
Adaptation of a general circulation model to ocean dynamics
NASA Technical Reports Server (NTRS)
Turner, R. E.; Rees, T. H.; Woodbury, G. E.
1976-01-01
A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.
NASA Astrophysics Data System (ADS)
Quynh, Luu Manh; Nam, Nguyen Hoang; Kong, K.; Nhung, Nguyen Thi; Notingher, I.; Henini, M.; Luong, Nguyen Hoang
2016-05-01
The surface-enhanced Raman signals of 4-aminothiophenol (4-ATP) attached to the surface of colloidal gold nanoparticles with size distribution of 2 to 5 nm were used as a labeling agent to detect basal cell carcinoma (BCC) of the skin. The enhanced Raman band at 1075 cm-1 corresponding to the C-S stretching vibration in 4-ATP was observed during attachment to the surface of the gold nanoparticles. The frequency and intensity of this band did not change when the colloids were conjugated with BerEP4 antibody, which specifically binds to BCC. We show the feasibility of imaging BCC by surface-enhanced Raman spectroscopy, scanning the 1075 cm-1 band to detect the distribution of 4-ATP-coated gold nanoparticles attached to skin tissue ex vivo.
... and other surface injuries. Fish, coral, or other marine life can cause these. Other threats include debris, ... Aid and Injury Prevention Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight ...
NASA Astrophysics Data System (ADS)
Grushin, Adolfo G.; Venderbos, Jörn W. F.; Vishwanath, Ashvin; Ilan, Roni
2016-10-01
Topological Dirac and Weyl semimetals have an energy spectrum that hosts Weyl nodes appearing in pairs of opposite chirality. Topological stability is ensured when the nodes are separated in momentum space and unique spectral and transport properties follow. In this work, we study the effect of a space-dependent Weyl node separation, which we interpret as an emergent background axial-vector potential, on the electromagnetic response and the energy spectrum of Weyl and Dirac semimetals. This situation can arise in the solid state either from inhomogeneous strain or nonuniform magnetization and can also be engineered in cold atomic systems. Using a semiclassical approach, we show that the resulting axial magnetic field B5 is observable through an enhancement of the conductivity as σ ˜B52 due to an underlying chiral pseudomagnetic effect. We then use two lattice models to analyze the effect of B5 on the spectral properties of topological semimetals. We describe the emergent pseudo-Landau-level structure for different spatial profiles of B5, revealing that (i) the celebrated surface states of Weyl semimetals, the Fermi arcs, can be reinterpreted as n =0 pseudo-Landau levels resulting from a B5 confined to the surface, (ii) as a consequence of position-momentum locking, a bulk B5 creates pseudo-Landau levels interpolating in real space between Fermi arcs at opposite surfaces, and (iii) there are equilibrium bound currents proportional to B5 that average to zero over the sample, which are the analogs of bound currents in magnetic materials. We conclude by discussing how our findings can be probed experimentally.
Numerical study of surface plasmon enhanced nonlinear absorption and refraction.
Kohlgraf-Owens, Dana C; Kik, Pieter G
2008-07-07
Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.
Enhancement of the Triple Alpha Rate in a Hot Dense Medium
NASA Astrophysics Data System (ADS)
Beard, Mary; Austin, Sam M.; Cyburt, Richard
2017-09-01
In a sufficiently hot and dense astrophysical environment the rate of the triple-alpha (3 α ) reaction can increase greatly over the value appropriate for helium burning stars owing to hadronically induced deexcitation of the Hoyle state. In this Letter we use a statistical model to evaluate the enhancement as a function of temperature and density. For a density of 106 g cm-3 enhancements can exceed a factor of 100. In high temperature or density situations, the enhanced 3 α rate is a better estimate of this rate and should be used in these circumstances. We then examine the effect of these enhancements on production of 12C in the neutrino wind following a supernova explosion and in an x-ray burster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modak, Viraj P., E-mail: virajmodak@gmail.com; Wyslouzil, Barbara E., E-mail: wyslouzil.1@osu.edu; Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
The crystal-vapor surface free energy γ is an important physical parameter governing physical processes, such as wetting and adhesion. We explore exact and approximate routes to calculate γ based on cleaving an intact crystal into non-interacting sub-systems with crystal-vapor interfaces. We do this by turning off the interactions, ΔV, between the sub-systems. Using the soft-core scheme for turning off ΔV, we find that the free energy varies smoothly with the coupling parameter λ, and a single thermodynamic integration yields the exact γ. We generate another exact method, and a cumulant expansion for γ by expressing the surface free energy inmore » terms of an average of e{sup −βΔV} in the intact crystal. The second cumulant, or Gaussian approximation for γ is surprisingly accurate in most situations, even though we find that the underlying probability distribution for ΔV is clearly not Gaussian. We account for this fact by developing a non-Gaussian theory for γ and find that the difference between the non-Gaussian and Gaussian expressions for γ consist of terms that are negligible in many situations. Exact and approximate methods are applied to the (111) surface of a Lennard-Jones crystal and are also tested for more complex molecular solids, the surface of octane and nonadecane. Alkane surfaces were chosen for study because their crystal-vapor surface free energy has been of particular interest for understanding surface freezing in these systems.« less
Comparison of the GHSSmooth and the Rayleigh-Rice surface scatter theories
NASA Astrophysics Data System (ADS)
Harvey, James E.; Pfisterer, Richard N.
2016-09-01
The scalar-based GHSSmooth surface scatter theory results in an expression for the BRDF in terms of the surface PSD that is very similar to that provided by the rigorous Rayleigh-Rice (RR) vector perturbation theory. However it contains correction factors for two extreme situations not shared by the RR theory: (i) large incident or scattered angles that result in some portion of the scattered radiance distribution falling outside of the unit circle in direction cosine space, and (ii) the situation where the relevant rms surface roughness, σrel, is less than the total intrinsic rms roughness of the scattering surface. Also, the RR obliquity factor has been discovered to be an approximation of the more general GHSSmooth obliquity factor due to a little-known (or long-forgotten) implicit assumption in the RR theory that the surface autocovariance length is longer than the wavelength of the scattered radiation. This assumption allowed retaining only quadratic terms and lower in the series expansion for the cosine function, and results in reducing the validity of RR predictions for scattering angles greater than 60°. This inaccurate obliquity factor in the RR theory is also the cause of a complementary unrealistic "hook" at the high spatial frequency end of the predicted surface PSD when performing the inverse scattering problem. Furthermore, if we empirically substitute the polarization reflectance, Q, from the RR expression for the scalar reflectance, R, in the GHSSmooth expression, it inherits all of the polarization capabilities of the rigorous RR vector perturbation theory.
Using Photographic Images to Enhance Conceptual Development in Situations of Proportion
ERIC Educational Resources Information Center
Hilton, Annette; Hilton, Geoff; Dole, Shelley; Goos, Merrilyn
2015-01-01
Find out how to use photographic images to support the conceptual development of proportional thinking. This paper provides insight into a sequenced activity that promotes student engagement and makes links to familiar and unfamiliar contexts.
Mapping Participation in Situated Language Learning
ERIC Educational Resources Information Center
Groves, Olivia; Verenikina, Irina; Chen, Honglin
2016-01-01
Research on the international student experience in Australia has highlighted the challenges that international students face when obtaining tertiary qualifications in an Australian university [AEI. (2012). "Student voices: Enhancing the experience of international students in Australia." Canberra, Australia: Australian Education…
2015-01-01
In this report we describe a preparation of silver wires (SWs) on gold mirrors and its application to surface enhanced fluorescence (SEF) using a new methodology. Silica protected gold mirrors were drop-coated with a solution of silver triangular nanoprisms. The triangular nanoprisms were slowly air-dried to get silver wires that self-assembled on the gold mirrors. Fluorescence enhancement was studied using methyl azadioxatriangulenium chloride (Me-ADOTA·Cl) dye in PVA spin-coated on a clean glass coverslip. New Plasmonic Platforms (PPs) were assembled by placing a mirror with SWs in contact with a glass coverslip spin-coated with a uniform Me-ADOTA·Cl film. It was shown that surface enhanced fluorescence is a real phenomenon, not just an enhancement of the fluorescence signal due to an accumulation of the fluorophore on rough nanostructure surfaces. The average fluorescence enhancement was found to be about 15-fold. The lifetime of Me-ADOTA·Cl dye was significantly reduced (∼4 times) in the presence of SWs. Moreover, fluorescence enhancement and lifetime did not show any dependence on the excitation light polarization. PMID:25296293
Surface-enhanced Raman spectroscopy using 2D plasmons of InN nanostructures
NASA Astrophysics Data System (ADS)
Madapu, Kishore K.; Dhara, Sandip
2018-06-01
We explored the surface-enhanced Raman scattering (SERS) activity of the InN nanostructures, possessing surface electron accumulation (SEA), using the Rhodamine 6G (R6G) molecules. SERS enhancement is observed for the InN nanostructures which possess SEA. In case of high-temperature grown InN samples, a peak is observed in the low wave number (THz region) of Raman spectra of InN nanostructures originating from excitation of the two-dimensional (2D) plasmons of the SEA. The enhancement factor of four orders was calculated with the assumption of monolayer coverage of analyte molecule. SERS enhancement of InN nanostructures is attributed to the 2D plasmonic nature of InN nanostructures invoking SEA, rather than the contributions from 3D surface plasmon resonance and chemical interaction. The role of 2D plasmon excitation in SERS enhancement is corroborated by the near-field light-matter interaction studies using near-field scanning optical microscopy.
NASA Astrophysics Data System (ADS)
Li, Jianying; Mao, Jiangyu
2018-04-01
The 30-60-day boreal summer intraseasonal oscillation (BSISO) is a dominant variability of the Asian summer monsoon (ASM), with its intensity being quantified by intraseasonal standard deviations based on OLR data. The spatial and interannual variations of the BSISO intensity are identified via empirical orthogonal function (EOF) analysis for the period 1981-2014. The first EOF mode (EOF1) shows a spatially coherent enhancement or suppression of BSISO activity over the entire ASM region, and the interannual variability of this mode is related to the sea surface temperature anomaly (SSTA) contrast between the central-eastern North Pacific (CNP) and tropical Indian Ocean. In contrast, the second mode (EOF2) exhibits a seesaw pattern between the southeastern equatorial Indian Ocean (EIO) and equatorial western Pacific (EWP), with the interannual fluctuation linked with developing ENSO events. During strong years of EOF1 mode, the enhanced low-level westerlies induced by the summer-mean SSTA contrast between the warmer CNP and cooler tropical Indian Ocean tend to form a wetter moisture background over the eastern EIO, which interacts with intraseasonal low-level convergent flows, leading to stronger equatorial eastward propagation. The intensified easterly shear favors stronger northward propagation over the South Asian and Eastern Asian/Western North Pacific sectors, respectively. Opposite situation is for weak years. For interannual variations of EOF2 mode, the seesaw patterns with enhanced BSISO activity over the southeastern EIO while weakened activity over the EWP mostly occur in the La Niña developing summers, but inverse patterns appear in the El Niño developing summers.
Rocky Mountain Research Station USDA Forest Service
2004-01-01
Appropriate types of thinning and surface fuel treatments are clearly useful in reducing surface and crown fire hazards under a wide range of fuels and topographic situations. This paper provides well-established scientific principles and simulation tools that can be used to adjust fuel treatments to attain specific risk levels.
Surface metrics: An alternative to patch metrics for the quantification of landscape structure
Kevin McGarigal; Sermin Tagil; Samuel A. Cushman
2009-01-01
Modern landscape ecology is based on the patch mosaic paradigm, in which landscapes are conceptualized and analyzed as mosaics of discrete patches. While this model has been widely successful, there are many situations where it is more meaningful to model landscape structure based on continuous rather than discrete spatial heterogeneity. The growing field of surface...
Chemical enhancement of surface deposition
Patch, Keith D.; Morgan, Dean T.
1997-07-29
A method and apparatus for increasing the deposition of ions onto a surface, such as the adsorption of uranium ions on the detecting surface of a radionuclide detector. The method includes the step of exposing the surface to a complexing agent, such as a phosphate ion solution, which has an affinity for the dissolved species to be deposited on the surface. This provides, for example, enhanced sensitivity of the radionuclide detector.
Sol-gel chemical sensors for surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Lee, Vincent Y.; Farquharson, Stuart; Kwon, Hueong-Chan; Shahriari, Mahmoud R.; Rainey, Petrie M.
1999-02-01
Surface-enhanced Raman spectroscopy (SERS) promises to be one of the most sensitive methods for chemical detection. Unfortunately, the inability of SERS to perform quantitative chemical analysis has slowed its general use in laboratories. This is largely due to the difficulty of manufacturing either active surfaces that yield reproducible enhancements, or surfaces that are capable of reversible chemical adsorption, or both. In an effort to meet this need, we have developed metal-doped sol-gels that provide surface-enhancement of Raman scattering. The porous silica network offers a unique environment for stabilizing SER active metal particles and the high surface area increases the interaction between the analyte and metal particles. This eliminates the need to concentrate the analyte on the surface by evaporating the solvent. The sol-gel is easily coated on a variety of surfaces, such as fiber optics, glass slides, or glass tubing, and can be designed into sample flow systems. Here we present the development of both gold- and silver-doped sol-gels, which have been used to coat the inside walls of glass sample vials for SERS applications. The performance of the metal-doped sol-gels was evaluated using p-aminobenzoic acid, to establish enhancement factors, detection limits, dynamic response range, reversibility, reproducibility, and suitability to commercial spectrometers. Measurements of trace chemicals, such as adenine and cocaine, are also presented.
Note: A novel technique for analysis of aqueous solutions by laser-induced breakdown spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rusak, D. A.; Bell, Z. T.; Anthony, T. P.
2015-11-15
Surface-enhanced Raman spectroscopy (SERS) substrates typically consist of gold or silver nanoparticles deposited on a non-conductive substrate. In Raman spectroscopy, the nanoparticles produce an enhancement of the electromagnetic field which, in turn, leads to greater electronic excitation of molecules in the local environment. Here, we show that these same surfaces can be used to enhance the signal-to-noise ratio obtained in laser-induced breakdown spectroscopy of aqueous solutions. In this case, the SERS substrates not only lower breakdown thresholds and lead to more efficient plasma initiation but also provide an appropriately wettable surface for the deposition of the liquid. We refer tomore » this technique as surface-enhanced laser-induced breakdown spectroscopy.« less
Driver Support Functions under Resource-Limited Situations
NASA Astrophysics Data System (ADS)
Inagaki, Toshiyuki; Itoh, Makoto; Nagai, Yoshitomo
This paper reports results of an experiment with a driving simulator in order to answer the following question: What type of support should be given to an automobile driver when it is determined, via some monitoring method, that the driver's situation awareness may not be appropriate to a given traffic condition? This paper compares (a) warning type support in which an auditory warning is given to the driver to enhance situation awareness and (b) action type support in which an autonomous safety control is executed as a soft protection for avoiding an accident. Although the both types of driver support are effective, the former sometimes fail to assure safety, which suggests a limitation of the human locus of control assumption, while efficacy of the latter may be degraded by an incorrect human reasoning that can happen under uncertainty. This paper discusses viewpoints needed in the design of systems for supporting drivers in resource-limited situations in which information or time available for a driver is limited in a given traffic condition.
Creating the learning situation to promote student deep learning: Data analysis and application case
NASA Astrophysics Data System (ADS)
Guo, Yuanyuan; Wu, Shaoyan
2017-05-01
How to lead students to deeper learning and cultivate engineering innovative talents need to be studied for higher engineering education. In this study, through the survey data analysis and theoretical research, we discuss the correlation of teaching methods, learning motivation, and learning methods. In this research, we find that students have different motivation orientation according to the perception of teaching methods in the process of engineering education, and this affects their choice of learning methods. As a result, creating situations is critical to lead students to deeper learning. Finally, we analyze the process of learning situational creation in the teaching process of «bidding and contract management workshops». In this creation process, teachers use the student-centered teaching to lead students to deeper study. Through the study of influence factors of deep learning process, and building the teaching situation for the purpose of promoting deep learning, this thesis provide a meaningful reference for enhancing students' learning quality, teachers' teaching quality and the quality of innovation talent.
Big data for space situation awareness
NASA Astrophysics Data System (ADS)
Blasch, Erik; Pugh, Mark; Sheaff, Carolyn; Raquepas, Joe; Rocci, Peter
2017-05-01
Recent advances in big data (BD) have focused research on the volume, velocity, veracity, and variety of data. These developments enable new opportunities in information management, visualization, machine learning, and information fusion that have potential implications for space situational awareness (SSA). In this paper, we explore some of these BD trends as applicable for SSA towards enhancing the space operating picture. The BD developments could increase in measures of performance and measures of effectiveness for future management of the space environment. The global SSA influences include resident space object (RSO) tracking and characterization, cyber protection, remote sensing, and information management. The local satellite awareness can benefit from space weather, health monitoring, and spectrum management for situation space understanding. One area in big data of importance to SSA is value - getting the correct data/information at the right time, which corresponds to SSA visualization for the operator. A SSA big data example is presented supporting disaster relief for space situation awareness, assessment, and understanding.
Superconductive articles including cerium oxide layer
Wu, X.D.; Muenchausen, R.E.
1993-11-16
A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.
Superconductive articles including cerium oxide layer
Wu, Xin D.; Muenchausen, Ross E.
1993-01-01
A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.
Zhu, Zhendong; Bai, Benfeng; Duan, Huigao; Zhang, Haosu; Zhang, Mingqian; You, Oubo; Li, Qunqing; Tan, Qiaofeng; Wang, Jia; Fan, Shoushan; Jin, Guofan
2014-04-24
Plasmonic nanostructures separated by nanogaps enable strong electromagnetic-field confinement on the nanoscale for enhancing light-matter interactions, which are in great demand in many applications such as surface-enhanced Raman scattering (SERS). A simple M-shaped nanograting with narrow V-shaped grooves is proposed. Both theoretical and experimental studies reveal that the electromagnetic field on the surface of the M grating can be pronouncedly enhanced over that of a grating without such grooves, due to field localization in the nanogaps formed by the narrow V grooves. A technique based on room-temperature nanoimprinting lithography and anisotropic reactive-ion etching is developed to fabricate this device, which is cost-effective, reliable, and suitable for fabricating large-area nanostructures. As a demonstration of the potential application of this device, the M grating is used as a SERS substrate for probing Rhodamine 6G molecules. Experimentally, an average SERS enhancement factor as high as 5×10⁸ has been achieved, which verifies the greatly enhanced light-matter interaction on the surface of the M grating over that of traditional SERS surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Xu, Yi; Li, Liuhe; Luo, Sida; Lu, Qiuyuan; Gu, Jiabin; Lei, Ning; Huo, Chunqin
2017-01-01
Enhanced glow discharge plasma immersion ion implantation and deposition (EGD-PIII&D) have been proved to be highly effective for depositing diamond-like carbon (DLC) films on the inner surface of the slender quartz tube with a deposition rate of 1.3 μm/min. Such a high-efficiency DLC films deposition was explained previously as the short electrons mean free path to cause large collision frequency between electrons and neutral particles. However, in this paper, we found that the inner surface material of the tube itself play a vital role on the films deposition. To disclose the mechanism of this phenomenon, the effect of different inner surface materials on plasma discharge was experimentally and theoretically investigated. Then a self-enhancing plasma discharge is discovered. It is found that secondary electrons emitted from the inner surface material, whatever it is the tube inner surface or deposited DLC films, can dramatically enhance the plasma discharge to improve the DLC films deposition rate.
Self-assembled diatom substrates with plasmonic functionality
NASA Astrophysics Data System (ADS)
Kwon, Sun Yong; Park, Sehyun; Nichols, William T.
2014-04-01
Marine diatoms have an exquisitely complex exoskeleton that is promising for engineered surfaces such as sensors and catalysts. For such applications, creating uniform arrays of diatom frustules across centimeter scales will be necessary. Here, we present a simple, low-cost floating interface technique to self-assemble the diatom frustules. We show that well-prepared diatoms form floating hexagonal close-packed arrays at the air-water interface that can be transferred directly to a substrate. We functionalize the assembled diatom surfaces with gold and characterize the plasmonic functionality by using surface enhanced Raman scattering (SERS). Thin gold films conform to the complex, hierarchical diatom structure and produce a SERS enhancement factor of 2 × 104. Small gold nanoparticles attached to the diatom's surface produce a higher enhancement of 7 × 104 due to stronger localization of the surface plasmons. Taken together, the large-scale assembly and plasmonic functionalization represent a promising platform to control the energy and the material flows at a complex surface for applications such as sensors and plasmonic enhanced catalysts.
Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.
Ertsgaard, Christopher T; McKoskey, Rachel M; Rich, Isabel S; Lindquist, Nathan C
2014-10-28
In this paper, we demonstrate dynamic placement of locally enhanced plasmonic fields using holographic laser illumination of a silver nanohole array. To visualize these focused "hotspots", the silver surface was coated with various biological samples for surface-enhanced Raman spectroscopy (SERS) imaging. Due to the large field enhancements, blinking behavior of the SERS hotspots was observed and processed using a stochastic optical reconstruction microscopy algorithm enabling super-resolution localization of the hotspots to within 10 nm. These hotspots were then shifted across the surface in subwavelength (<100 nm for a wavelength of 660 nm) steps using holographic illumination from a spatial light modulator. This created a dynamic imaging and sensing surface, whereas static illumination would only have produced stationary hotspots. Using this technique, we also show that such subwavelength shifting and localization of plasmonic hotspots has potential for imaging applications. Interestingly, illuminating the surface with randomly shifting SERS hotspots was sufficient to completely fill in a wide field of view for super-resolution chemical imaging.
Buck, Ursula; Naether, Silvio; Braun, Marcel; Bolliger, Stephan; Friederich, Hans; Jackowski, Christian; Aghayev, Emin; Christe, Andreas; Vock, Peter; Dirnhofer, Richard; Thali, Michael J
2007-07-20
The examination of traffic accidents is daily routine in forensic medicine. An important question in the analysis of the victims of traffic accidents, for example in collisions between motor vehicles and pedestrians or cyclists, is the situation of the impact. Apart from forensic medical examinations (external examination and autopsy), three-dimensional technologies and methods are gaining importance in forensic investigations. Besides the post-mortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) for the documentation and analysis of internal findings, highly precise 3D surface scanning is employed for the documentation of the external body findings and of injury-inflicting instruments. The correlation of injuries of the body to the injury-inflicting object and the accident mechanism are of great importance. The applied methods include documentation of the external and internal body and the involved vehicles and inflicting tools as well as the analysis of the acquired data. The body surface and the accident vehicles with their damages were digitized by 3D surface scanning. For the internal findings of the body, post-mortem MSCT and MRI were used. The analysis included the processing of the obtained data to 3D models, determination of the driving direction of the vehicle, correlation of injuries to the vehicle damages, geometric determination of the impact situation and evaluation of further findings of the accident. In the following article, the benefits of the 3D documentation and computer-assisted, drawn-to-scale 3D comparisons of the relevant injuries with the damages to the vehicle in the analysis of the course of accidents, especially with regard to the impact situation, are shown on two examined cases.
Open cycle ocean thermal energy conversion system
Wittig, J. Michael
1980-01-01
An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.
Relationship between the parent material and the soil, in plain and mountainous areas
NASA Astrophysics Data System (ADS)
Kerek, Barbara; Kuti, Laszlo; Dobos, Timea; Vatai, Jozsef; Szentpetery, Ildiko
2013-04-01
One of the most important tasks of the soil is the nutrition of plants. This function is determinated by those parts of the geological media on what is the soil situated and from what the soil was formed (those two can be different). Soil can be formed definitely just from sediment, so it is more proper to speak about parent material than parent rock. Soil forming sediment is defined as the loose sediment on the surface, which is the upper layer of near-surface rocks in flat and hilly regions, and it is the upper layer of the sediment-ensemble situated on the undisturbed bedrock in mountainous areas. Considering its origin, these sediments could be autochthon or allochton. Soil forming is determinated, besides other factors (climate, elevation, vegetation, etc.), by the parent material, which has a crucial influence on the type, quality and fertility of soils through its mineral composition, physical and chemical characteristics. Agrogeological processes happen in the superficial loose sediments in mountainous areas, but the underlying solid rock (where on the surface or close to it, there is solid rock), has an effect on them. The plain and hilly regions covered by thick loose sediment and the areas build up by solid rock and covered with thinner loose sediment in mountainous areas should be searched separately. In plain areas the near-surface formations have to be studied as a whole down to the saturated zone, but at least to 10 m. In regions of mountain and mountain fronts, the thickness, the composition and genetics of the young unconsolidated sediments situated above the older solid rocks have a vital importance, and also the relations among the soils, soil forming sediments and the base rocks have to be understood.
Influence of shot peening on surface quality of austenitic and duplex stainless steel
NASA Astrophysics Data System (ADS)
Vinoth Jebaraj, A.; Sampath Kumar, T.; Ajay Kumar, L.; Deepak, C. R.
2017-11-01
In the present investigation, an attempt has been made to enhance the surface quality of austenitic stainless steel 316L and duplex stainless steel 2205 through shot peening process. The study mainly focuses the surface morphology, microstructural changes, surface roughness and microhardness of the peened layers. Metallography analysis was carried out and compared with the unpeened surface characteristics. As result of peening process, surface recrystallization was achieved on the layers of the peened samples. It was found that shot peening plays significant role in enhancing the surface properties of 316L and 2205. Particularly it has greater influence on the work hardening of austenitic stainless steel than the duplex stainless steel due to its more ductility nature under the investigated shot peening parameters. The findings of the present study will be useful with regard to the enhancement of surface texture achieved through peening.
High Electromagnetic Field Enhancement of TiO2 Nanotube Electrodes.
Öner, Ibrahim Halil; Querebillo, Christine Joy; David, Christin; Gernert, Ulrich; Walter, Carsten; Driess, Matthias; Leimkühler, Silke; Ly, Khoa Hoang; Weidinger, Inez M
2018-06-11
We present the fabrication of TiO 2 nanotube electrodes with high biocompatibility and extraordinary spectroscopic properties. Intense surface-enhanced resonance Raman signals of the heme unit of the redox enzyme Cytochrome b 5 were observed upon covalent immobilization of the protein matrix on the TiO 2 surface, revealing overall preserved structural integrity and redox behavior. The enhancement factor could be rationally controlled by varying the electrode annealing temperature, reaching a record maximum value of over 70 at 475 °C. For the first time, such high values are reported for non-directly surface-interacting probes, for which the involvement of charge-transfer processes in signal amplification can be excluded. The origin of the surface enhancement is exclusively attributed to enhanced localized electric fields resulting from the specific optical properties of the nanotubular geometry of the electrode. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Meteorological situations that generated exceptional discharges along the Danube River
NASA Astrophysics Data System (ADS)
Bocioaca, Mihai; Marinica, Ion; Rusu, Simona
2010-05-01
For Europe, the undisputed importance of the Danube can be rendered by some general data: Its hydrographic basin surface exceeds 817,000 km2, i.e. about 10% of that of the continent, its length is 2857 km and its mean multiannual discharge is about 6500 m3/s, thus ranking second to Volga river. Romania is the country with the largest surface situated within Danube's basin (97.4%), representing 29% of Danube's hydrographic basin. The water resources of the Danube in Bazias section amount to 205 billion m3, 30 billion m3 of which are technically usable resources. Our analysis aimed at determining those complex meteorological situations at the European continent level that triggered exceptional discharges along the Danube, resulting in severe flooding, causing in turn heavy damages, fatalities, population evacuations and considerable rehabilitation costs. A complex analysis was performed, of statistical-synoptic type and those complex meteorological situations were identified that determined the occurrence of such disasters. Discharges and levels of the Danube were used along the whole measuring period, data from the archive of the National Meteorological Administration, and data, map and image archives from Wetterzentrale (Kartenarchiv, NCEP, NCAR, AVN etc.). The complex meteorological situations at the level of the European continent that triggered exceptional discharges along the Danube correlate with intense cyclonic activity, of both the Icelandic and the Mediterranean cyclones, with the negative phase of the North-Atlantic Oscillation and with decreasing or minimum solar activity (according to data from NOAA's Space Environment Center). The most disastrous floods occurred in the spring of 2006. The paper is important for meteorologists, in their weather forecasting activity, for hydrologists, in their hydrological forecasting and for the institutions involved in flood management.
Trotter, Margaret J; Salmon, Paul M; Goode, Natassia; Lenné, Michael G
2018-02-01
Improvisation represents the spontaneous and real-time conception and execution of a novel response to an unanticipated situation. In order to benefit from the positive safety potential of this phenomenon, it is necessary to understand what influences its appropriateness and effectiveness. This study has applied the system-based methodology Impromaps to analysing accounts of improvisation aimed at mitigating adverse safety outcomes. These accounts were obtained from led outdoor activity (LOA) leaders through critical decision method interviews. Influencing factors and interactions have been identified across all system levels. The factors most influential to leaders' ability to improvise are 'Policy, procedures and rules', 'Organisation culture', 'Training', 'Role responsibilities', 'Communication/instruction/demonstration', 'Situation awareness', 'Leader experience', 'Mental simulation', 'Equipment, clothing & PPE' and 'Terrain/physical environment'. To enhance the likelihood of effective, appropriate improvisation, LOA providers are recommended to focus on higher level factors over which they are able to exert greater control. Practitioner Summary: To enhance resilience in safety-critical situations, organisations need to understand what influences appropriate, effective improvisation. To elucidate this, the Impromaps methodology is applied to in-depth interview data. The Impromap affords a graphical depiction of the influencing factors and interactions across the system, providing a basis for the development of interventions.
NASA Technical Reports Server (NTRS)
Govindaraj, T.; Mitchell, C. M.
1994-01-01
One of the goals of the National Aviation Safety/Automation program is to address the issue of human-centered automation in the cockpit. Human-centered automation is automation that, in the cockpit, enhances or assists the crew rather than replacing them. The Georgia Tech research program focused on this general theme, with emphasis on designing a computer-based pilot's assistant, intelligent (i.e, context-sensitive) displays, and an intelligent tutoring system for understanding and operating the autoflight system. In particular, the aids and displays were designed to enhance the crew's situational awareness of the current state of the automated flight systems and to assist the crew's situational awareness of the current state of the automated flight systems and to assist the crew in coordinating the autoflight system resources. The activities of this grant included: (1) an OFMspert to understand pilot navigation activities in a 727 class aircraft; (2) an extension of OFMspert to understand mode control in a glass cockpit, Georgia Tech Crew Activity Tracking System (GT-CATS); (3) the design of a training system to teach pilots about the vertical navigation portion of the flight management system -VNAV Tutor; and (4) a proof-of-concept display, using existing display technology, to facilitate mode awareness, particularly in situations in which controlled flight into terrain (CFIT) is a potential.
Characterization of cap-shaped silver particles for surface-enhanced fluorescence effects.
Yamaguchi, Tetsuji; Kaya, Takatoshi; Takei, Hiroyuki
2007-05-15
Surface-enhanced fluorescence has potentially many desirable properties as an analytical method for medical diagnostics, but the effect observed so far is rather modest and only in conjunction with fluorophores with low quantum yields. Coupled with the fact that preparation of suitable surfaces at low costs has been difficult, this has limited its utilities. Here we report a novel method for forming uniform and reproducible surfaces with respectable enhancement ratios even for high-quantum-yield fluorophores. Formation of dense surface-adsorbed latex spheres on a flat surface via partial aggregation, followed by evaporation of silver, results in a film consisting of cap-shaped silver particles at high densities. Binding of fluorescence biomolecules, either through physisorption or antigen-antibody reaction, was performed, and enhancements close to 50 have been observed with fluorophores such as R-phycoerythrin and Alexa 546-labeled, bovine serum albumin, both of which have quantum yields around 0.8. We attribute this to the unique shape of the silver particle and the presence of abundant gaps among adjacent particles at high densities. The effectiveness of the new surface is also demonstrated with IL-6 sandwich assays.
Characteristics of Pool Boiling on Graphite-Copper Composite Surfaces
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.; Yang, Wen-Jei
2002-01-01
Nucleate pool boiling performance of different liquids on graphite-copper composite (Gr-Cu) surfaces has been experimentally studied and modeled. Both highly wetting fluids, such as freon-113 and pentane, and a moderately wetting fluid (water) were tested on the Gr-Cu surfaces with different graphite-fiber volume fractions to reveal the enhancement effects of the composite surfaces on the nucleate pool boiling. Results of the experiments show that the graphite-fiber volume fraction has an optimum value. The Gr-Cu composite surface with 25 percent graphite-fiber volume (f=0.25) has a maximum enhancement effect on the nucleate boiling heat transfer comparing to the pure copper surface. For the highly wetting fluid, the nucleate boiling heat transfer is generally enhanced on the Gr- Cu composite surfaces by 3 to 6 times shown. In the low heat flux region, the enhancement is over 6 times, but in the high heat flux region, the enhancement is reduced to about 40%. For the moderately wetting fluid (water), stronger enhancement of nucleate boiling heat transfer is achieved on the composite surface. It shown the experimental results in which one observes the nucleate boiling heat transfer enhancement of 5 to 10 times in the low heat flux region and an enhancement of 3 to 5 times in the high heat flux region. Photographs of bubble departure during the initial stage of nucleate boiling indicate that the bubbles detached from the composite surface are much smaller in diameter than those detached from the pure copper surface. Typical photographs are presented.It shows that the bubbles departed from the composite surface have diameters of only O(0.1) mm, while those departed from the pure copper surface have diameters of O(1) mm. It is also found that the bubbles depart from the composite surface at a much higher frequency, thus forming vapor columns. These two phenomena combined with high thermal conductivity of the graphite fiber are considered the mechanisms for such a significant augmentation in nucleate boiling heat transfer on the composite surfaces. A physical model is developed to describe the phenomenon of bubble departure from the composite surface: The preferred site of bubble nucleation is the fiber tip because of higher tip temperature than the surrounding copper base and poor wettability of the graphite tip compared with that of the base material (copper). The high evaporation rate near the contact line produces the vapor cutback due to the vapor recoil pushing the three-phase line outwards from the fiber tip, and so a neck of the bubble is formed near the bubble bottom. Evaporation and surface tension accelerate the necking process and finally result in the bubble departure while a new small bubble is formed at the tip when the surface tension pushes the three-phase line back to the tip. The process is schematically shown. The proposed model is based on and confirmed by experimental results.
Tan, Wensheng; Wang, Xiao
2017-01-01
Due to their large compatibility difference, polyethylene (PE) and polyoxymethylene (POM) cannot be welded together by laser transmission welding. In this study, PE and POM are pretreated using plasma that significantly enhances their laser transmission welding strength. To understand the mechanism underlying the laser welding strength enhancement, surface modification is analyzed using contact angle measurements, atomic force microscopy (AFM), optical microscopy, and X-ray photoelectron spectroscopy (XPS). Characterization results show that the plasma surface treatment improves the surface free energy, significantly enhancing the wettability of the materials. The increase in surface roughness and the generation of homogeneous bubbles contribute to the formation of mechanical micro-interlocking. The oxygen-containing groups introduced by the oxygen plasma treatment improve the compatibility of PE and POM, and facilitate the diffusion and entanglement of molecular chains and the formation of van der Waals force. PMID:29278367
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Dong In; Kwak, Ho Jae; Noh, Hyunwoo
Over the past several decades, phenomena related to critical heat flux (CHF) on structured surfaces have received a large amount of attention from the research community. The purpose of such research has been to enhance the safety and efficiency of a variety of thermal systems. A number of theories have been put forward to explain the key CHF enhancement mechanisms on structured surfaces. However, these theories have not been confirmed experimentally due to limitations in the available visualization techniques and the complexity of the phenomena. To overcome the limitations of the previous visualization techniques and elucidate the CHF enhancement mechanismmore » on the structured surfaces, we introduce synchrotron X-ray imaging with high spatial (~2 μm) and time (~20,000 Hz) resolutions. Lastly, this technique has enabled us to confirm that capillary-induced flow is the key CHF enhancement mechanism on structured surfaces.« less
Liu, Huixia; Jiang, Yingjie; Tan, Wensheng; Wang, Xiao
2017-12-26
Due to their large compatibility difference, polyethylene (PE) and polyoxymethylene (POM) cannot be welded together by laser transmission welding. In this study, PE and POM are pretreated using plasma that significantly enhances their laser transmission welding strength. To understand the mechanism underlying the laser welding strength enhancement, surface modification is analyzed using contact angle measurements, atomic force microscopy (AFM), optical microscopy, and X-ray photoelectron spectroscopy (XPS). Characterization results show that the plasma surface treatment improves the surface free energy, significantly enhancing the wettability of the materials. The increase in surface roughness and the generation of homogeneous bubbles contribute to the formation of mechanical micro-interlocking. The oxygen-containing groups introduced by the oxygen plasma treatment improve the compatibility of PE and POM, and facilitate the diffusion and entanglement of molecular chains and the formation of van der Waals force.
Yu, Dong In; Kwak, Ho Jae; Noh, Hyunwoo; ...
2018-02-23
Over the past several decades, phenomena related to critical heat flux (CHF) on structured surfaces have received a large amount of attention from the research community. The purpose of such research has been to enhance the safety and efficiency of a variety of thermal systems. A number of theories have been put forward to explain the key CHF enhancement mechanisms on structured surfaces. However, these theories have not been confirmed experimentally due to limitations in the available visualization techniques and the complexity of the phenomena. To overcome the limitations of the previous visualization techniques and elucidate the CHF enhancement mechanismmore » on the structured surfaces, we introduce synchrotron X-ray imaging with high spatial (~2 μm) and time (~20,000 Hz) resolutions. Lastly, this technique has enabled us to confirm that capillary-induced flow is the key CHF enhancement mechanism on structured surfaces.« less
Enhanced optical output power of blue light-emitting diodes with quasi-aligned gold nanoparticles.
Jin, Yuanhao; Li, Qunqing; Li, Guanhong; Chen, Mo; Liu, Junku; Zou, Yuan; Jiang, Kaili; Fan, Shoushan
2014-01-06
The output power of the light from GaN-based light-emitting diodes (LEDs) was enhanced by fabricating gold (Au) nanoparticles on the surface of p-GaN. Quasi-aligned Au nanoparticle arrays were prepared by depositing Au thin film on an aligned suspended carbon nanotube thin film surface and then putting the Au-CNT system on the surface of p-GaN and thermally annealing the sample. The size and position of the Au nanoparticles were confined by the carbon nanotube framework, and no other additional residual Au was distributed on the surface of the p-GaN substrate. The output power of the light from the LEDs with Au nanoparticles was enhanced by 55.3% for an injected current of 100 mA with the electrical property unchanged compared with the conventional planar LEDs. The enhancement may originate from the surface plasmon effect and scattering effect of the Au nanoparticles.
Huang, H W; Lin, C H; Yu, C C; Lee, B D; Chiu, C H; Lai, C F; Kuo, H C; Leung, K M; Lu, T C; Wang, S C
2008-05-07
Enhanced light extraction from a GaN-based power chip (PC) of green light-emitting diodes (LEDs) with a rough p-GaN surface using nanoimprint lithography is presented. At a driving current of 350 mA and with a chip size of 1 mm × 1 mm packaged on transistor outline (TO)-cans, the light output power of the green PC LEDs with nano-rough p-GaN surface is enhanced by 48% when compared with the same device without a rough p-GaN surface. In addition, by examining the radiation patterns, the green PC LED with nano-rough p-GaN surface shows stronger light extraction with a wider view angle. These results offer promising potential to enhance the light output powers of commercial light-emitting devices by using the technique of nanoimprint lithography under suitable nanopattern design.
Strongly Modulated Friction of a Film-Terminated Ridge-Channel Structure.
He, Zhenping; Hui, Chung-Yuen; Levrard, Benjamin; Bai, Ying; Jagota, Anand
2016-05-26
Natural contacting surfaces have remarkable surface mechanical properties, which has led to the development of bioinspired surface structures using rubbery materials with strongly enhanced adhesion and static friction. However, sliding friction of structured rubbery surfaces is almost always significantly lower than that of a flat control, often due to significant loss of contact. Here we show that a film-terminated ridge-channel structure can strongly enhance sliding friction. We show that with properly chosen materials and geometrical parameters the near surface structure undergoes mechanical instabilities along with complex folding and sliding of internal interfaces, which is responsible for the enhancement of sliding friction. Because this structure shows no enhancement of adhesion under normal indentation by a sphere, it breaks the connection between energy loss during normal and shear loading. This makes it potentially interesting in many applications, for instance in tires, where one wishes to minimize rolling resistance (normal loading) while maximizing sliding friction (shear loading).
Technical Note: Enhancing the surface dose using a weak longitudinal magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlone, Marco, E-mail: marco.carlone@rmp.uhn.on.ca; Keller, Harald; Rezaee, Mohammad
2016-06-15
Purpose: The surface dose in radiotherapy is subject to the physical properties of the radiation beam and collimator. The purpose of this work is to investigate the manipulation of surface dose using magnetic fields produced with a resistive magnet. Better understanding of the feasibility and mechanisms of altered surface dose could have important clinical applications where the surface dose must be increased for therapeutic goals, or reduced to enhance the therapeutic benefit. Methods: A resistive magnet capable of generating a peak magnetic field up to 0.24 T was integrated with a cobalt treatment unit. The magnetic fringe field of themore » magnet was small due to the self-shielding built within the magnet. The magnetic field at the beam collimation jaws of the cobalt irradiator was less than 10 G. The surface dose and depth dose were measured for varying magnetic field strengths. Results: The resistive magnet was able to alter the dose in the buildup region of the {sup 60}Co depth dose significantly, and the magnitude of dose enhancement was directly related to the strength of the longitudinal magnetic field. Peak magnetic fields as low as 0.08 T were able to affect the surface dose. At a peak field of 0.24 T, the authors measured a surface dose enhancement of 2.8-fold. Conclusions: Surface dose enhancement using resistive magnets is feasible. Further experimental study is needed to understand the origin of the scattered electrons that contribute to the increase in surface dose.« less
Noninvasive noble metal nanoparticle arrays for surface-enhanced Raman spectroscopy of proteins
NASA Astrophysics Data System (ADS)
Inya-Agha, Obianuju; Forster, Robert J.; Keyes, Tia E.
2007-02-01
Noble metal nanoparticles arrays are well established substrates for surface enhanced Raman spectroscopy (SERS). Their ability to enhance optical fields is based on the interaction of their surface valence electrons with incident electromagnetic radiation. In the array configuration, noble metal nanoparticles have been used to produce SER spectral enhancements of up to 10 8 orders of magnitude, making them useful for the trace analysis of physiologically relevant analytes such as proteins and peptides. Electrostatic interactions between proteins and metal surfaces result in the preferential adsorption of positively charged protein domains onto metal surfaces. This preferential interaction has the effect of disrupting the native conformation of the protein fold, with a concomitant loss of protein function. A major historic advantage of Raman microspectroscopy has been is its non-invasive nature; protein denaturation on the metal surfaces required for SER spectroscopy renders it a much more invasive technique. Further, part of the analytical power of Raman spectroscopy lies in its use as a secondary conformation probe. The protein structural loss which occurs on the metal surface results in secondary conformation readings which are not true to the actual native state of the analyte. This work presents a method for chemical fabrication of noble metal SERS arrays with surface immobilized layers which can protect protein native conformation without excessively mitigating the electromagnetic enhancements of spectra. Peptide analytes are used as model systems for proteins. Raman spectra of alpha lactalbumin on surfaces and when immobilized on these novel arrays are compared. We discuss the ability of the surface layer to protect protein structure whilst improving signal intensity.
Environmental Propagation of Noise in Mines and Nearby Villages: A Study Through Noise Mapping
Manwar, Veena D.; Mandal, Bibhuti B.; Pal, Asim K.
2016-01-01
Background: Noise mapping being an established practice in Europe is hardly practiced for noise management in India although it is mandatory in Indian mines as per guidelines of the Directorate General of Mines Safety (DGMS). As a pilot study, noise mapping was conducted in an opencast mine with three different models; one based on the baseline operating conditions in two shifts (Situation A), and two other virtual situations where either production targets were enhanced by extending working hours to three shifts (Situation B) or only by increased mechanization and not changing the duration of work (Situation C). Methods: Noise sources were categorized as point, line, area, and moving sources. Considering measured power of the sources, specific meteorological and geographical parameters, noise maps were generated using Predictor LimA software. Results: In all three situations, Lden values were 95 dB(A) and 70–80 dB(A) near drill machine and haul roads, respectively. Noise contours were wider in Situation C due to increase in frequency of dumpers. Lden values near Shovel 1 and Shovel 2 under Situation B increased by 5 dB and 3 dB, respectively due to expansion of working hours. In Situation C, noise levels were >82 dB(A) around shovels. Noise levels on both sides of conveyor belts were in the range of 80–85 dB(A) in Situations A and C whereas it was 85–90 dB(A) in Situation B. Near crusher plants, it ranged from 80 to 90 dB(A) in Situations A and C and between 85 and 95 dB(A) in Situation B. In all situations, noise levels near residential areas exceeded the Central Pollution Control Board (CPCB) limits, i.e., 55 dB(A). Conclusions: For all situations, predicted noise levels exceeded CPCB limits within the mine and nearby residential area. Residential areas near the crusher plants are vulnerable to increased noise propagation. It is recommended to put an acoustic barrier near the crusher plant to attenuate the noise propagation. PMID:27569406
Capillary surfaces in a wedge: Differing contact angles
NASA Technical Reports Server (NTRS)
Concus, Paul; Finn, Robert
1994-01-01
The possible zero-gravity equilibrium configurations of capillary surfaces u(x, y) in cylindrical containers whose sections are (wedge) domains with corners are investigated mathematically, for the case in which the contact angles on the two sides of the wedge may differ. In such a situation the behavior can depart in significant qualitative ways from that for which the contact angles on the two sides are the same. Conditions are described under which such qualitative changes must occur. Numerically computed surfaces are depicted to indicate the behavior.
NASA Astrophysics Data System (ADS)
Yan, Xinzhu; Li, Jian; Li, Licheng; Huang, Zhengyong; Wang, Feipeng; Wei, Yuan
2016-10-01
In this Letter, the dewetting behavior of superhydrophobic condensing surfaces under a tangential AC electric field is reported. The surface coverage of condensed droplets only exhibits a negligible increase with time. The jumping frequency of droplets is enhanced. The AC electric field motivates the dynamic transition of droplets from stretch to recoil, resulting in the counterforce propelling droplet jumping. The considerable horizontal component of jumping velocity facilitates droplet departure from superhydrophobic surfaces. Both the amplitude and frequency of AC voltage are important factors for droplet departure and dewetting effect. Thereby, the tangential electric field provides a unique and easily implementable approach to enhance droplet removal from superhydrophobic condensing surfaces.
NASA Astrophysics Data System (ADS)
Nielsen, M. H.; Petersen, C. T.; Hansen, S.
2014-12-01
Macropores forming a continuous pathway between the soil surface and subsurface drains favour the transport of many contaminants from agricultural fields to surface waters. The smoke injection method presented by Shipitalo and Gibbs (2000) used for demonstrating and quantifying such pathways has been further developed and used on a drained Danish sandy loam. In order to identify the preferential pathways to drains, smoke was injected in three 1.15 m deep tile drains (total drain length 93 m), and smoke emitting macropores (SEMP) at the soil surface were counted and characterized as producing either strong or weak plumes compared to reference plumes from 3 and 6 mm wide tubes. In the two situations investigated in the present study - an early spring and an autumn situation, smoke only penetrated the soil surface layer via earthworm burrows located in a 1.0 m wide belt directly above the drain lines. However, it is known from previous studies that desiccation fractures in a dry summer situation also can contribute to the smoke pattern. The distance between SEMP measured along the drain lines was on average 0.46 m whereas the average spacing between SEMP with strong plumes was 2.3 m. Ponded water was applied in 6 cm wide rings placed above 52 burrows including 17 reference burrows which did not emit smoke. Thirteen pathways in the soil were examined using dye tracer and profile excavation. SEMP with strong plumes marked the entrance of highly efficient transport pathways conducting surface applied water and dye tracer into the drain. However, no single burrow was traced all the way from the surface into the drain, the dye patterns branched off in a network of other macropores. Water infiltration rates were significantly higher (P < 0.05) in SEMP with strong plumes (average rate: 247 mL min-1 n = 19) compared to SEMP with weak plumes (average rate: 87 mL min-1 n = 16) and no plumes (average rate: 56 mL min-1 n = 17). The results suggest that the smoke injection method is useful for identification of potentially efficient pathways for surface applied contaminants to drains and surface waters, pathways being associated primarily with unevenly distributed SEMP producing strong smoke plumes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Tao, E-mail: st@mail.iee.ac.cn; Yang, Wenjin; Zhang, Cheng
Polymer materials, such as polymethylmethacrylate (PMMA), are widely used as insulators in vacuum. The insulating performance of a high-voltage vacuum system is mainly limited by surface flashover of the insulators rather than bulk breakdown. Non-thermal plasmas are an efficient method to modify the chemical and physical properties of polymer material surfaces, and enhance the surface insulating performance. In this letter, an atmospheric-pressure dielectric barrier discharge is used to treat the PMMA surface to improve the surface flashover strength in vacuum. Experimental results indicate that the plasma treatment method using Ar and CF{sub 4} (10:1) as the working gas can etchmore » the PMMA surface, introduce fluoride groups to the surface, and then alter the surface characteristics of the PMMA. The increase in the surface roughness can introduce physical traps that can capture free electrons, and the fluorination can enhance the charge capturing ability. The increase in the surface roughness and the introduction of the fluoride groups can enhance the PMMA hydrophobic ability, improve the charge capturing ability, decrease the secondary electron emission yield, increase the surface resistance, and improve the surface flashover voltage in vacuum.« less
Reliability and validity enhancement: a treatment package for increasing fidelity of self-report.
Bornstein, P H; Hamilton, S B; Miller, R K; Quevillon, R P; Spitzform, M
1977-07-01
This study investigated the effects of reliability and validity "enhancers" on fidelity of self-report data in an analogue therapy situation. Under the guise of a Concentration Skills Training Program, 57 Ss were assigned randomly to one of the following conditions: (a) Reliability Enhancement; (b) Truth Talk; (c) No Comment Control. Results indicated significant differences among groups (p less than .05). In addition, tests of multiple comparisons revealed that Reliability Enhancement was significantly different from Truth Talk in occurrences of unreliability (p less than .05). These findings are discussed in light of the increased reliance on self-report data in behavioral intervention, and recommendations are made for future research.
Johnston, Jencilin; Taylor, Erik N; Gilbert, Richard J; Webster, Thomas J
2016-01-01
Vibrational spectroscopy is a powerful analytical tool that assesses molecular properties based on spectroscopic signatures. In this study, the effect of gold nanoparticle morphology (spherical vs multi-branched) was assessed for the characterization of a Raman signal (ie, molecular fingerprint) that may be helpful for numerous medical applications. Multi-branched gold nanoparticles (MBAuNPs) were fabricated using a green chemistry method which employed the reduction of gold ion solute by 2-[4-(2-hydroxyethyl)-1-piperazyl] ethane sulfonic acid. Two types of reporter dyes, indocyanine (IR820 and IR792) and carbocyanine (DTTC [3,3'-diethylthiatricarbocyanine iodide] and DTDC [3,3'-diethylthiadicarbocyanine iodide]), were functionalized to the surface of the MBAuNPs and stabilized with denatured bovine serum albumin, thus forming the surface-enhanced Raman spectroscopy tag. Fluorescein isothiocyanate-conjugated anti-epidermal growth factor receptor to the surface-enhanced Raman spectroscopy tags and the properties of the resulting conjugates were assessed through determination of the Raman signal. Using the MBAuNP Raman probes synthesized in this manner, we demonstrated that MBAuNP provided significantly more surface-enhanced Raman scattering signal when compared with the associated spherical gold nanoparticle of similar size and concentration. MBAuNP enhancements were retained in the surface-enhanced Raman spectroscopy tags complexed to anti-epidermal growth factor receptor, providing evidence that this could be a useful biological probe for enhanced Raman molecular fingerprinting. Furthermore, while utilizing IR820 as a novel reporter dye linked with MBAuNP, superior Raman signal fingerprint results were obtained. Such results provide significant promise for the use of MBAuNP in the detection of numerous diseases for which biologically specific surface markers exist.
Johnston, Jencilin; Taylor, Erik N; Gilbert, Richard J; Webster, Thomas J
2016-01-01
Vibrational spectroscopy is a powerful analytical tool that assesses molecular properties based on spectroscopic signatures. In this study, the effect of gold nanoparticle morphology (spherical vs multi-branched) was assessed for the characterization of a Raman signal (ie, molecular fingerprint) that may be helpful for numerous medical applications. Multi-branched gold nanoparticles (MBAuNPs) were fabricated using a green chemistry method which employed the reduction of gold ion solute by 2-[4-(2-hydroxyethyl)-1-piperazyl] ethane sulfonic acid. Two types of reporter dyes, indocyanine (IR820 and IR792) and carbocyanine (DTTC [3,3′-diethylthiatricarbocyanine iodide] and DTDC [3,3′-diethylthiadicarbocyanine iodide]), were functionalized to the surface of the MBAuNPs and stabilized with denatured bovine serum albumin, thus forming the surface-enhanced Raman spectroscopy tag. Fluorescein isothiocyanate-conjugated anti-epidermal growth factor receptor to the surface-enhanced Raman spectroscopy tags and the properties of the resulting conjugates were assessed through determination of the Raman signal. Using the MBAuNP Raman probes synthesized in this manner, we demonstrated that MBAuNP provided significantly more surface-enhanced Raman scattering signal when compared with the associated spherical gold nanoparticle of similar size and concentration. MBAuNP enhancements were retained in the surface-enhanced Raman spectroscopy tags complexed to anti-epidermal growth factor receptor, providing evidence that this could be a useful biological probe for enhanced Raman molecular fingerprinting. Furthermore, while utilizing IR820 as a novel reporter dye linked with MBAuNP, superior Raman signal fingerprint results were obtained. Such results provide significant promise for the use of MBAuNP in the detection of numerous diseases for which biologically specific surface markers exist. PMID:26730189
PECASE: Resonantly-Enhanced Lanthanide Emitters for Subwavelength-Scale, Active Photonics
2015-03-19
2013), 191109, DOI:10.1063/1.4829142. [12] Dongfang Li, Nabil M. Lawandy, and Rashid Zia, “Surface phonon- polariton enhanced optical forces in...10.1063/1.4829142. [12] Dongfang Li, Nabil M. Lawandy, and Rashid Zia, “Surface phonon- polariton enhanced optical forces in silicon carbide
Predicting women's alcohol risk-taking while abroad.
Smith, Gabie; Klein, Sarah
2010-05-01
Numerous studies have examined risk factors that are associated with heavy alcohol use; however, much of this research has not addressed factors that specifically relate to women's alcohol use. The current study has extended the previous literature on women's alcohol-use behavior by examining factors associated with risky drinking in young women traveling abroad (n = 55). Using a pretest-posttest design, we examined the influence of disinhibition sensation-seeking and endorsement of social enhancement alcohol expectancies in relation to participation in risky alcohol use while abroad for three weeks. Analyses confirmed that disinhibition sensation-seeking and social enhancement alcohol expectancies were associated with participation in risky alcohol-use behaviors while abroad (controlling for alcohol-use at the pretest). Analysis of qualitative data reinforced the importance of social facilitation in women's alcohol risk-taking. Participants' qualitative data also emphasized characteristics of situational disinhibition relating to travel as well as culturally-specific motivations for alcohol-use behaviors. Further research examining women's personal need for disinhibition and the role of situational disinhibition in motivating alcohol risk-taking is warranted. In addition, the current findings suggest that interventions focusing on the connections between alcohol use and enhancement of social relationships and the potential isolating effects of non-use are necessary.
CFIT Prevention Using Synthetic Vision
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.; Parrish, Russell V.
2003-01-01
In commercial aviation, over 30-percent of all fatal accidents worldwide are categorized as Controlled Flight Into Terrain (CFIT) accidents where a fully functioning airplane is inadvertently flown into the ground, water, or an obstacle. An experiment was conducted at NASA Langley Research Center investigating the presentation of a synthetic terrain database scene to the pilot on a Primary Flight Display (PFD). The major hypothesis for the experiment is that a synthetic vision system (SVS) will improve the pilot s ability to detect and avoid a potential CFIT compared to conventional flight instrumentation. All display conditions, including the baseline, contained a Terrain Awareness and Warning System (TAWS) and Vertical Situation Display (VSD) enhanced Navigation Display (ND). Sixteen pilots each flew 22 approach - departure maneuvers in Instrument Meteorological Conditions (IMC) to the terrain challenged Eagle County Regional Airport (EGE) in Colorado. For the final run, the flight guidance cues were altered such that the departure path went into the terrain. All pilots with a SVS enhanced PFD (12 of 16 pilots) noticed and avoided the potential CFIT situation. All of the pilots who flew the anomaly with the baseline display configuration (which included a TAWS and VSD enhanced ND) had a CFIT event.
How Anxiety Leads to Suboptimal Decisions Under Risky Choice Situations.
Yang, Zhiyong; Saini, Ritesh; Freling, Traci
2015-10-01
The current research proposes that situationally activated anxiety--whether incidental or integral-impairs decision making. In particular, we theorize that anxiety drives decisionmakers to more heavily emphasize subjective anecdotal information in their decision making, at the expense of more factual statistical information--a deleterious heuristic called the anecdotal bias. Four studies provide consistent support for this assertion. Studies 1A and 1B feature field experiments that demonstrate the role of incidental anxiety in enhancing the anecdotal bias in a choice context. Study 2 builds on these findings, manipulating individuals' incidental anxiety and showing how this affects the anecdotal bias in the context of message evaluations. Study 2 also provides direct evidence that only high-arousal negative emotions such as anxiety/worry enhance the anecdotal bias, not just any negative emotion (e.g., sadness). While the first three studies examine how incidental anxiety impacts choice, the last study demonstrates the effect of integral anxiety on decision making, manipulating anxiety by intensifying participants' perceived risk. Our results show that--consistent with findings from our first three studies--the anecdotal bias is enhanced when anxiety is heightened by individuals' perception of risk. © 2015 Society for Risk Analysis.
Chemical enhancement of surface deposition
Patch, K.D.; Morgan, D.T.
1997-07-29
A method and apparatus are disclosed for increasing the deposition of ions onto a surface, such as the adsorption of uranium ions on the detecting surface of a radionuclide detector. The method includes the step of exposing the surface to a complexing agent, such as a phosphate ion solution, which has an affinity for the dissolved species to be deposited on the surface. This provides, for example, enhanced sensitivity of the radionuclide detector. 16 figs.
Surface-enhanced Raman spectroscopy of half-mustard agent.
Stuart, Douglas A; Biggs, Kevin B; Van Duyne, Richard P
2006-04-01
The detection and identification of chemical warfare agents is an important analytical goal. Herein, it is demonstrated that 2-chloroethyl ethyl sulfide (half-mustard, CEES) can be successfully analysed using surface-enhanced Raman spectroscopy (SERS). A critical component in this detection system is the fabrication of a robust, yet highly enhancing, sensor surface. Recent advances in substrate fabrication and in the fundamental understanding of the SERS phenomenon enable the development of improved substrates for practical SERS applications.
The Measurement of Wettability
ERIC Educational Resources Information Center
Pirie, Brian J. S.; Gregory, David W.
1973-01-01
Discusses the use of a simple apparatus to measure contact angles between a liquid drop and a solid surface which are determining factors of wettability. Included are examples of applying this technique to various experimental situations. (CC)
Real Time Metrics and Analysis of Integrated Arrival, Departure, and Surface Operations
NASA Technical Reports Server (NTRS)
Sharma, Shivanjli; Fergus, John
2017-01-01
A real time dashboard was developed in order to inform and present users notifications and integrated information regarding airport surface operations. The dashboard is a supplement to capabilities and tools that incorporate arrival, departure, and surface air-traffic operations concepts in a NextGen environment. As trajectory-based departure scheduling and collaborative decision making tools are introduced in order to reduce delays and uncertainties in taxi and climb operations across the National Airspace System, users across a number of roles benefit from a real time system that enables common situational awareness. In addition to shared situational awareness the dashboard offers the ability to compute real time metrics and analysis to inform users about capacity, predictability, and efficiency of the system as a whole. This paper describes the architecture of the real time dashboard as well as an initial set of metrics computed on operational data. The potential impact of the real time dashboard is studied at the site identified for initial deployment and demonstration in 2017; Charlotte-Douglas International Airport. Analysis and metrics computed in real time illustrate the opportunity to provide common situational awareness and inform users of metrics across delay, throughput, taxi time, and airport capacity. In addition, common awareness of delays and the impact of takeoff and departure restrictions stemming from traffic flow management initiatives are explored. The potential of the real time tool to inform the predictability and efficiency of using a trajectory-based departure scheduling system is also discussed.
Marquart, Hans; Warren, Nicholas D; Laitinen, Juha; van Hemmen, Joop J
2006-07-01
Dermal exposure needs to be addressed in regulatory risk assessment of chemicals. The models used so far are based on very limited data. The EU project RISKOFDERM has gathered a large number of new measurements on dermal exposure to industrial chemicals in various work situations, together with information on possible determinants of exposure. These data and information, together with some non-RISKOFDERM data were used to derive default values for potential dermal exposure of the hands for so-called 'TGD exposure scenarios'. TGD exposure scenarios have similar values for some very important determinant(s) of dermal exposure, such as amount of substance used. They form narrower bands within the so-called 'RISKOFDERM scenarios', which cluster exposure situations according to the same purpose of use of the products. The RISKOFDERM scenarios in turn are narrower bands within the so-called Dermal Exposure Operation units (DEO units) that were defined in the RISKOFDERM project to cluster situations with similar exposure processes and exposure routes. Default values for both reasonable worst case situations and typical situations were derived, both for single datasets and, where possible, for combined datasets that fit the same TGD exposure scenario. The following reasonable worst case potential hand exposures were derived from combined datasets: (i) loading and filling of large containers (or mixers) with large amounts (many litres) of liquids: 11,500 mg per scenario (14 mg cm(-2) per scenario with surface of the hands assumed to be 820 cm(2)); (ii) careful mixing of small quantities (tens of grams in <1l): 4.1 mg per scenario (0.005 mg cm(-2) per scenario); (iii) spreading of (viscous) liquids with a comb on a large surface area: 130 mg per scenario (0.16 mg cm(-2) per scenario); (iv) brushing and rolling of (relatively viscous) liquid products on surfaces: 6500 mg per scenario (8 mg cm(-2) per scenario) and (v) spraying large amounts of liquids (paints, cleaning products) on large areas: 12,000 mg per scenario (14 mg cm(-2) per scenario). These default values are considered useful for estimating exposure for similar substances in similar situations with low uncertainty. Several other default values based on single datasets can also be used, but lead to estimates with a higher uncertainty, due to their more limited basis. Sufficient analogy in all described parameters of the scenario, including duration, is needed to enable proper use of the default values. The default values lead to similar estimates as the RISKOFDERM dermal exposure model that was based on the same datasets, but uses very different parameters. Both approaches are preferred over older general models, such as EASE, that are not based on data from actual dermal exposure situations.
Lin, Hung-Yu; Kuo, Yang; Liao, Cheng-Yuan; Yang, C C; Kiang, Yean-Woei
2012-01-02
The authors numerically investigate the absorption enhancement of an amorphous Si solar cell, in which a periodical one-dimensional nanowall or two-dimensional nanopillar structure of the Ag back-reflector is fabricated such that a dome-shaped grating geometry is formed after Si deposition and indium-tin-oxide coating. In this investigation, the effects of surface plasmon (SP) interaction in such a metal nanostructure are of major concern. Absorption enhancement in most of the solar spectral range of significant amorphous Si absorption (320-800 nm) is observed in a grating solar cell. In the short-wavelength range of high amorphous Si absorption, the weakly wavelength-dependent absorption enhancement is mainly caused by the broadband anti-reflection effect, which is produced through the surface nano-grating structures. In the long-wavelength range of diminishing amorphous Si absorption, the highly wavelength-sensitive absorption enhancement is mainly caused by Fabry-Perot resonance and SP interaction. The SP interaction includes the contributions of surface plasmon polariton and localized surface plasmon.
Nicolson, Fay; Jamieson, Lauren E; Mabbott, Samuel; Plakas, Konstantinos; Shand, Neil C; Detty, Michael R; Graham, Duncan; Faulds, Karen
2018-04-21
In order to improve patient survival and reduce the amount of unnecessary and traumatic biopsies, non-invasive detection of cancerous tumours is of imperative and urgent need. Multicellular tumour spheroids (MTS) can be used as an ex vivo cancer tumour model, to model in vivo nanoparticle (NP) uptake by the enhanced permeability and retention (EPR) effect. Surface enhanced spatially offset Raman spectroscopy (SESORS) combines both surface enhanced Raman spectroscopy (SERS) and spatially offset Raman spectroscopy (SORS) to yield enhanced Raman signals at much greater sub-surface levels. By utilizing a reporter that has an electronic transition in resonance with the laser frequency, surface enhanced resonance Raman scattering (SERRS) yields even greater enhancement in Raman signal. Using a handheld SORS spectrometer with back scattering optics, we demonstrate the detection of live breast cancer 3D MTS containing SERRS active NPs through 15 mm of porcine tissue. False color 2D heat intensity maps were used to determine tumour model location. In addition, we demonstrate the tracking of SERRS-active NPs through porcine tissue to depths of up to 25 mm. This unprecedented performance is due to the use of red-shifted chalcogenpyrylium-based Raman reporters to demonstrate the novel technique of surface enhanced spatially offset resonance Raman spectroscopy (SESORRS) for the first time. Our results demonstrate a significant step forward in the ability to detect vibrational fingerprints from a tumour model at depth through tissue. Such an approach offers significant promise for the translation of NPs into clinical applications for non-invasive disease diagnostics based on this new chemical principle of measurement.
Enhancing Convective Heat Transfer over a Surrogate Photovoltaic Panel
NASA Astrophysics Data System (ADS)
Fouladi, Fama
This research is particularly focused on studying heat transfer enhancement of a photovoltaic (PV) panel by putting an obstacle at the panel's windward edge. The heat transfer enhancement is performed by disturbing the airflow over the surface and increasing the heat and momentum transfer. Different objects such as triangular, square, rectangular, and discrete rectangular ribs and partial grids were applied at the leading edge of a surrogate PV panel and flow and the heat transfer of the panel are investigated experimentally. This approach was selected to expand understanding of effect of these different objects on the flow and turbulence structures over a flat surface by analyzing the flow comprehensively. It is observed that, a transverse object at the plate's leading edge would cause some flow blockage in the streamwise direction, but at the same time creates some velocity in the normal and cross stream directions. In addition to that, the obstacle generates some turbulence over the surface which persists for a long downstream distance. Also, among all studied objects, discrete rectangular ribs demonstrate the highest heat transfer rate enhancement (maximum Nu/Nu0 of 1.5). However, ribs with larger gap ratios are observed to be more effective at enhancing the heat transfer augmentation at closer distances to the rib, while at larger downstream distances from the rib, discrete ribs with smaller gap ratios are more effective. Furthermore, this work attempted to recognize the most influential flow parameters on the heat transfer enhancement of the surface. It is seen that the flow structure over a surface downstream of an object (flow separation-reattachment behaviour) has a significant effect on the heat transfer enhancement trend. Also, turbulence intensities are the most dominant parameters in enhancing the heat transfer rate from the surface; however, flow velocity (mostly normal velocity) is also an important factor.
NASA Astrophysics Data System (ADS)
Zhu, Shuangmei; Fan, Chunzhen; Mao, Yanchao; Wang, Junqiao; He, Jinna; Liang, Erjun; Chao, Mingju
2016-02-01
We proposed a facile green synthesis system to synthesize large-scale Ag hemi-mesoparticles monolayer on Cu foil. Ag hemi-mesoparticles have different surface morphologies on their surfaces, including ridge-like, meatball-like, and fluffy-like shapes. In the reaction, silver nitrate was reduced by copper at room temperature in dimethyl sulfoxide via the galvanic displacement reaction. The different surface morphologies of the Ag hemi-mesoparticles were adjusted by changing the reaction time, and the hemi-mesoparticle surface formed fluffy-spherical nanoprotrusions at longer reaction time. At the same time, we explored the growth mechanism of silver hemi-mesoparticles with different surface morphologies. With 4-mercaptobenzoic acid as Raman probe molecules, the fluffy-like silver hemi-mesoparticles monolayer with the best activity of surface enhanced Raman scattering (SERS), the enhancement factor is up to 7.33 × 107 and the detection limit can reach 10-10M. SERS measurements demonstrate that these Ag hemi-mesoparticles can serve as sensitive SERS substrates. At the same time, using finite element method, the distribution of the localized electromagnetic field near the particle surface was simulated to verify the enhanced mechanism. This study helps us to understand the relationship between morphology Ag hemi-mesoparicles and the properties of SERS.
Zhu, Shuangmei; Fan, Chunzhen; Mao, Yanchao; Wang, Junqiao; He, Jinna; Liang, Erjun; Chao, Mingju
2016-02-21
We proposed a facile green synthesis system to synthesize large-scale Ag hemi-mesoparticles monolayer on Cu foil. Ag hemi-mesoparticles have different surface morphologies on their surfaces, including ridge-like, meatball-like, and fluffy-like shapes. In the reaction, silver nitrate was reduced by copper at room temperature in dimethyl sulfoxide via the galvanic displacement reaction. The different surface morphologies of the Ag hemi-mesoparticles were adjusted by changing the reaction time, and the hemi-mesoparticle surface formed fluffy-spherical nanoprotrusions at longer reaction time. At the same time, we explored the growth mechanism of silver hemi-mesoparticles with different surface morphologies. With 4-mercaptobenzoic acid as Raman probe molecules, the fluffy-like silver hemi-mesoparticles monolayer with the best activity of surface enhanced Raman scattering (SERS), the enhancement factor is up to 7.33 × 10(7) and the detection limit can reach 10(-10)M. SERS measurements demonstrate that these Ag hemi-mesoparticles can serve as sensitive SERS substrates. At the same time, using finite element method, the distribution of the localized electromagnetic field near the particle surface was simulated to verify the enhanced mechanism. This study helps us to understand the relationship between morphology Ag hemi-mesoparicles and the properties of SERS.
Numerical investigation of mist/air impingement cooling on ribbed blade leading-edge surface.
Bian, Qingfei; Wang, Jin; Chen, Yi-Tung; Wang, Qiuwang; Zeng, Min
2017-12-01
The working gas turbine blades are exposed to the environment of high temperature, especially in the leading-edge region. The mist/air two-phase impingement cooling has been adopted to enhance the heat transfer on blade surfaces and investigate the leading-edge cooling effectiveness. An Euler-Lagrange particle tracking method is used to simulate the two-phase impingement cooling on the blade leading-edge. The mesh dependency test has been carried out and the numerical method is validated based on the available experimental data of mist/air cooling with jet impingement on a concave surface. The cooling effectiveness on three target surfaces is investigated, including the smooth and the ribbed surface with convex/concave columnar ribs. The results show that the cooling effectiveness of the mist/air two-phase flow is better than that of the single-phase flow. When the ribbed surfaces are used, the heat transfer enhancement is significant, the surface cooling effectiveness becomes higher and the convex ribbed surface presents a better performance. With the enhancement of the surface heat transfer, the pressure drop in the impingement zone increases, but the incremental factor of the flow friction is smaller than that of the heat transfer enhancement. Copyright © 2017 Elsevier Ltd. All rights reserved.
Surface-enhanced FAST CARS: en route to quantum nano-biophotonics
NASA Astrophysics Data System (ADS)
Voronine, Dmitri V.; Zhang, Zhenrong; Sokolov, Alexei V.; Scully, Marlan O.
2018-02-01
Quantum nano-biophotonics as the science of nanoscale light-matter interactions in biological systems requires developing new spectroscopic tools for addressing the challenges of detecting and disentangling weak congested optical signals. Nanoscale bio-imaging addresses the challenge of the detection of weak resonant signals from a few target biomolecules in the presence of the nonresonant background from many undesired molecules. In addition, the imaging must be performed rapidly to capture the dynamics of biological processes in living cells and tissues. Label-free non-invasive spectroscopic techniques are required to minimize the external perturbation effects on biological systems. Various approaches were developed to satisfy these requirements by increasing the selectivity and sensitivity of biomolecular detection. Coherent anti-Stokes Raman scattering (CARS) and surface-enhanced Raman scattering (SERS) spectroscopies provide many orders of magnitude enhancement of chemically specific Raman signals. Femtosecond adaptive spectroscopic techniques for CARS (FAST CARS) were developed to suppress the nonresonant background and optimize the efficiency of the coherent optical signals. This perspective focuses on the application of these techniques to nanoscale bio-imaging, discussing their advantages and limitations as well as the promising opportunities and challenges of the combined coherence and surface enhancements in surface-enhanced coherent anti-Stokes Raman scattering (SECARS) and tip-enhanced coherent anti-Stokes Raman scattering (TECARS) and the corresponding surface-enhanced FAST CARS techniques. Laser pulse shaping of near-field excitations plays an important role in achieving these goals and increasing the signal enhancement.
NASA Astrophysics Data System (ADS)
Kohler, Sophie; Far, Aïcha Beya; Hirsch, Ernest
2007-01-01
This paper presents an original approach for the optimal 3D reconstruction of manufactured workpieces based on a priori planification of the task, enhanced on-line through dynamic adjustment of the lighting conditions, and built around a cognitive intelligent sensory system using so-called Situation Graph Trees. The system takes explicitely structural knowledge related to image acquisition conditions, type of illumination sources, contents of the scene (e. g., CAD models and tolerance information), etc. into account. The principle of the approach relies on two steps. First, a socalled initialization phase, leading to the a priori task plan, collects this structural knowledge. This knowledge is conveniently encoded, as a sub-part, in the Situation Graph Tree building the backbone of the planning system specifying exhaustively the behavior of the application. Second, the image is iteratively evaluated under the control of this Situation Graph Tree. The information describing the quality of the piece to analyze is thus extracted and further exploited for, e. g., inspection tasks. Lastly, the approach enables dynamic adjustment of the Situation Graph Tree, enabling the system to adjust itself to the actual application run-time conditions, thus providing the system with a self-learning capability.
The characterization of photographic materials as substrates for surface enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Vaughan, J.; Hortin, N.; Christie, S.; Kvasnik, F.; Scully, P. J.
2005-06-01
In this study, five types of photographic materials were obtained from commercial sources and characterized for use as substrates for surface enhanced Raman spectroscopy. The substrates are photographic emulsions coated on glass or paper support. The emulsions were developed to maximize the amount of metallic silver aggregated into clusters. The test analyte, Cresyl Violet, was deposited directly onto the substrate surface. The permeable nature of the supporting gelatin matrix enables the interaction between the target analyte and the solid silver clusters. The surface enhanced Raman spectra of a 2.75 × 10-7 M concentration of Cresyl Violet in ethanol were obtained using these photographic substrates. The Raman and resonant Raman enhancement of Cresyl Violet varies from substrate to substrate, as does the ratio of Raman to resonant Raman peak heights.
Đorđević, Sanela M; Santrač, Anja; Cekić, Nebojša D; Marković, Bojan D; Divović, Branka; Ilić, Tanja M; Savić, Miroslav M; Savić, Snežana D
2017-11-30
This work aimed to deepen the lately acquired knowledge about parenteral nanoemulsions as carriers for brain delivery of risperidone, a poorly water-soluble antipsychotic drug, through establishing the prospective relationship between their physicochemical, pharmacokinetic, biodistribution, and behavioral performances. For this purpose, two optimized risperidone-loaded nanoemulsions, stabilized by lecithin or lecithin/polysorbate 80 mixture, and costabilized by sodium oleate, were produced by high-pressure homogenization. The characterization revealed the favorable droplet size, narrow size distribution, high surface charge, with proven stability to autoclaving and long-term stability for at least one year at 25±2°C. Pharmacokinetic and tissue distribution results demonstrated improved plasma, liver, and brain pharmacokinetic parameters, resulting in 1.2-1.5-fold increased relative bioavailability, 1.1-1.8-fold decreased liver distribution, and about 1.3-fold improved brain uptake of risperidone active moiety following intraperitoneal administration of nanoemulsions relative to solution in rats. In behavioral study, investigated nanoemulsions showed pronounced reduction in basal and, more pertinently, amphetamine-induced locomotor activity in rats, with an early onset of antipsychotic action, and this effect lasted at least 90min after drug injection. Together, these findings corroborate the applicability of parenteral nanoemulsions as carriers for enhanced brain delivery of risperidone, further suggesting their promise in acute psychosis treatment or other emergency situations. Copyright © 2017 Elsevier B.V. All rights reserved.
Far-side geometrical enhancement in surface-enhanced Raman scattering with Ag plasmonic films
NASA Astrophysics Data System (ADS)
Perera, M. Nilusha M. N.; Gibbs, W. E. Keith; Juodkazis, Saulius; Stoddart, Paul R.
2018-01-01
Surface-enhanced Raman scattering (SERS) is a surface sensitive technique where the large increase in scattering has primarily been attributed to electromagnetic and chemical enhancements. While smaller geometrical enhancements due to thin film interference and cavity resonances have also been reported, an additional enhancement in the SERS signal, referred to as the `far-side geometrical enhancement', occurs when the SERS substrate is excited through an underlying transparent dielectric substrate. Here the far-side geometrically-enhanced SERS signal has been explored experimentally in more detail. Thermally evaporated Ag plasmonic films functionalised with thiophenol were used to study the dependence of the geometrically-enhanced SERS signal on the excitation wavelength, supporting substrate material and excitation angle of incidence. The results were interpreted using a `geometrical enhancement factor' (GEF), defined as the ratio of far-side to near-side SERS signal intensity. The experimental results confirmed that the highest GEFs of 3.2-3.5× are seen closer to the localized surface plasmon resonance peak of the Ag metallic nanostructures. Interestingly, the GEF for Ag plasmonic films deposited on glass and sapphire were the same within the measurement errors, whereas increasing angle of incidence showed a decrease in the GEF. Given this improved understanding of the far-side geometrical SERS enhancement, the potential for further signal amplification and optimisation for practical sensing applications can now be considered, especially for SERS detection modes at the farend of optical fibre probes and through process windows.
A monitoring study of the 1998 rainstorm along the Yangtze River of China by using TIPEX data
NASA Astrophysics Data System (ADS)
Wang, Jizhi; Yang, Yuanqin; Xu, Xiangde; Zhang, Guangzhi
2003-05-01
By using data from the Secondary Tibetan Plateau Science Experiment (TIPEX) in 1998, including enhanced soundings, surface observations, data from captive balloons, remote sensing, and Doppler radar (China and Japan cooperative study of GAME/ Tibet), a monitoring study on the generation and moving track of the cumulus convective systems over the Tibetan Plateau is made, and the relationship between the evolution of cloud systems over the Tibetan Plateau and 1998 flooding in China is studied. The results are as follows. 1) Analyzing the image animation and Hovmoller diagram of satellite TBB data shows that the rainstorms for the Yangtze River in the last ten days of July 1998 can be tracked regionally to the Tibetan Plateau. 2) For the period of cloud clusters passing through the Amdo station (18 19 July), monitoring observations by Doppler radar is made. The monitoring of radar echoes shows that the developing, eastward motion, and strengthening of the echoes can be frequently observed in the middle of the Tibetan Plateau. An integrated analysis and tracking of the generation, disappearance, development, and eastward motion of these convective systems by using multiple instruments is very valuable for diagnosing and predicting the influence of the plateau systems on the downstream weather situation. 3) The integrated analysis of space-time cross sections of the enhanced upper air and surface observations from TIPEX during the intensified observation period shows that the frequent development of convective clouds over the Tibetan Plateau is related with the quasi-stationary convergence of surface winds. The dynamic convergence of surface winds, the vertical shear in the upper air, and transportation of water vapor due to increasing humidity over the Tibetan Plateau played an important role in the developing and strengthening of rainstorms over the Yangtze River in 1998. 4) Meso-sale filtration analysis of the vertical distribution of water vapor over the Tibetan Plateau indicates that alternating changes of high and low water vapor distribution over the Tibetan Plateau reveals clearly that the sub-synoptic scale waves exist, whose lifetime is on the order of the hours. The revelation of the eastward motion of mesoscale waves from the Tibetan Plateau indicates that the plateau systems obviously influenced the rainstorms over the Yangtze River valley in 1998.
Kaidonis, J A
2012-08-01
Non-carious tooth surface loss or tooth wear is becoming an increasingly significant factor affecting the long-term health of the dentition. The adverse effects of tooth wear are becoming increasingly apparent both in young persons and, as more people retain their teeth, into old age. This situation challenges the preventive and restorative skills of dental practitioners.
Photonic Crystal Enhanced Fluorescence for Early Breast Cancer Biomarker Detection
Cunningham, Brian T.; Zangar, Richard C.
2013-01-01
Photonic crystal surfaces offer a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics. Through the complementary processes of photonic crystal enhanced excitation and enhanced extraction, a periodic dielectric-based nanostructured surface can simultaneously increase the electric field intensity experienced by surface-bound fluorophores and increase the collection efficiency of emitted fluorescent photons. Through the ability to inexpensively fabricate photonic crystal surfaces over substantial surface areas, they are amenable to single-use applications in biological sensing, such as disease biomarker detection in serum. In this review, we will describe the motivation for implementing high-sensitivity, multiplexed biomarker detection in the context of breast cancer diagnosis. We will summarize recent efforts to improve the detection limits of such assays though the use of photonic crystal surfaces. Reduction of detection limits is driven by low autofluorescent substrates for photonic crystal fabrication, and detection instruments that take advantage of their unique features. PMID:22736539
Engtrakul, Dr. Chaiwat; Hu, Michael Z.; Bischoff, Brian L; ...
2016-01-01
The impact of surface-selective coatings on water permeation through a membrane when exposed to catalytic fast pyrolysis (CFP) vapor products was studied by tailoring the surface properties of the membrane coating from superhydrophilic to superhydrophobic. Our approach utilized high-performance architectured surface-selective (HiPAS) membranes that were inserted after a CFP reactor. At this insertion point, the inner wall surface of a tubular membrane was exposed to a mixture of water and upgraded product vapors, including light gases and deoxygenated hydrocarbons. Under proper membrane operating conditions, a high selectivity for water over 1-ring upgraded biomass pyrolysis hydrocarbons was observed due to amore » surface-enhanced capillary condensation process. Owing to this surface-enhanced effect, HiPAS membranes have the potential to enable high flux separations suggesting that water can be selectively removed from the CFP product vapors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engtrakul, Chaiwat; Hu, Michael Z.; Bischoff, Brian L.
2016-10-20
The impact of surface-selective coatings on water permeation through a membrane when exposed to catalytic fast pyrolysis (CFP) vapor products was studied by tailoring the surface properties of the membrane coating from superhydrophilic to superhydrophobic. Our approach used high-performance architectured surface-selective (HiPAS) membranes that were inserted after a CFP reactor. At this insertion point, the inner wall surface of a tubular membrane was exposed to a mixture of water and upgraded product vapors, including light gases and deoxygenated hydrocarbons. Under proper membrane operating conditions, a high selectivity for water over one-ring upgraded biomass pyrolysis hydrocarbons was observed as a resultmore » of a surface-enhanced capillary condensation process. Owing to this surface-enhanced effect, HiPAS membranes have the potential to enable high flux separations, suggesting that water can be selectively removed from the CFP product vapors.« less
NASA Astrophysics Data System (ADS)
Zhou, Qing; Shao, Mingwang; Que, Ronghui; Cheng, Liang; Zhuo, Shujuan; Tong, Yanhua; Lee, Shuit-Tong
2011-05-01
Silver vanadate nanoribbons were synthesized via a hydrothermal process, which exhibited surface-enhanced Raman scattering effect. This surface-enhanced substrate was stable and reproducible for identifying human serum transferrin and human serum apotransferrin in the concentration of 1×10-5 M, which further exhibited significant sensitivity in monitoring the conversion of these two proteins in turn. This result showed that the silver vanadate nanoribbon might be employed as biomonitor in such systems.
Zero energy states at a normal-metal/cuprate-superconductor interface probed by shot noise
NASA Astrophysics Data System (ADS)
Negri, O.; Zaberchik, M.; Drachuck, G.; Keren, A.; Reznikov, M.
2018-06-01
We report measurements of the current noise generated in the optimally doped, x =0.15 , Au-La2-xSrxCuO4 junctions. For high transmission junctions on a (110) surface, we observed a split zero-bias conductance peak (ZBCP), accompanied by enhanced shot noise. We observed no enhanced noise neither in low-transmission junctions on a (110) surface nor in any junction on a (100) surface. We attribute the enhanced noise to Cooper pair transport through the junctions.
Zhang, Cai; Tang, Ning; Shang, Liangliang; Fu, Lei; Wang, Weiying; Xu, Fujun; Wang, Xinqiang; Ge, Weikun; Shen, Bo
2017-05-24
We report the enhancement of the polarization and internal quantum efficiency (IQE) of deep-UV LEDs by evaporating Al nanoparticles on the device surface to induce localized surface plasmons (LSPs). The deep-UV LEDs polarization is improved due to part of TM emission turns into TE emission through LSPs coupling. The significantly enhanced IQE is attributed to LSPs coupling, which suppress the participation of delocalized and dissociated excitons to non-radiative recombination process.
Environmental propagation of noise in mines and nearby villages: A study through noise mapping.
Manwar, Veena D; Mandal, Bibhuti B; Pal, Asim K
2016-01-01
Noise mapping being an established practice in Europe is hardly practiced for noise management in India although it is mandatory in Indian mines as per guidelines of the Directorate General of Mines Safety (DGMS). As a pilot study, noise mapping was conducted in an opencast mine with three different models; one based on the baseline operating conditions in two shifts (Situation A), and two other virtual situations where either production targets were enhanced by extending working hours to three shifts (Situation B) or only by increased mechanization and not changing the duration of work (Situation C). Noise sources were categorized as point, line, area, and moving sources. Considering measured power of the sources, specific meteorological and geographical parameters, noise maps were generated using Predictor LimA software. In all three situations, Lden values were 95 dB(A) and 70-80 dB(A) near drill machine and haul roads, respectively. Noise contours were wider in Situation C due to increase in frequency of dumpers. Lden values near Shovel 1 and Shovel 2 under Situation B increased by 5 dB and 3 dB, respectively due to expansion of working hours. In Situation C, noise levels were >82 dB(A) around shovels. Noise levels on both sides of conveyor belts were in the range of 80-85 dB(A) in Situations A and C whereas it was 85-90 dB(A) in Situation B. Near crusher plants, it ranged from 80 to 90 dB(A) in Situations A and C and between 85 and 95 dB(A) in Situation B. In all situations, noise levels near residential areas exceeded the Central Pollution Control Board (CPCB) limits, i.e., 55 dB(A). For all situations, predicted noise levels exceeded CPCB limits within the mine and nearby residential area. Residential areas near the crusher plants are vulnerable to increased noise propagation. It is recommended to put an acoustic barrier near the crusher plant to attenuate the noise propagation.
Liu, Yungui; Yao, Ying; Shangguan, Shihao; Gu, Qun; Gao, Wuming; Chen, Yaoshui
2014-05-01
Study the current quality management situation of enterprises marketing corneal contact lens via systemic investigations and explore effective administration countermeasures in the future. The quality management indicators of sixty-two corneal contact lens marketing enterprises in Xuhui district of Shanghai were systematically investigated and enterprises of different operation models was compared and analyzed. Wholesale enterprises and retail chain enterprises are apparently better than independent enterprises almost in all facets. Facilitate market accession of corneal contact lens marketing enterprises, encourage the business model of retail chain, enhance supervision of corneal contact lens marketing enterprises, especially independent franchisors.
Liu, Shaohui; Xue, Shuangxi; Xiu, Shaomei; Shen, Bo; Zhai, Jiwei
2016-05-17
Ferroelectric-relaxor behavior of Ba(Zr0.3Ti0.7)O3 nanofibers (BZT NF) with a large aspect ratio were prepared via electrospinning and surface modified by PVP as dielectric fillers. The nanocomposite flexible films based on surface modified BZT NF and polyvinylidene fluoride (PVDF) were fabricated via a solution casting. The results show that the surface-modified BZT NF fillers are highly dispersed and well integrated in the PVDF nanocomposites. The nanocomposites exhibit enhanced dielectric constant and reduced loss tangents at a low volume fraction of surface-modified BZT NF. The polymer nanocomposites maintain a relatively high breakdown strength, which is favorable for enhancing energy storage density in the nanocomposites. The nanocomposite containing of 2.5 vol. % of PVP modified BZT NF exhibits energy density as high as 6.3 J/cm(3) at 3800 kV/cm, which is more than doubled that of the pure PVDF of 2.8 J/cm(3) at 4000 kV/cm. Such significant enhancement could be attributed to the combined effects of the surface modification and large aspect ratio of the BZT NF. This work may provide a route for using the surface modified ferroelectric-relaxor behavior of ceramic nanofibers to enhance the dielectric energy density in ceramic-polymer nanocomposites.
Research on the Wireless Sensor Networks Applied in the Battlefield Situation Awareness System
NASA Astrophysics Data System (ADS)
Hua, Guan; Li, Yan-Xiao; Yan, Xiao-Mei
In the modern warfare information is the crucial key of winning. Battlefield situation awareness contributes to grasping and retaining the intelligence predominance. Due to its own special characteristics Wireless Sensor Networks (WSN) have been widely used to realize reconnaissance and surveillance in the joint operations and provide simultaneous, comprehensive, accurate data to multiechelon commanders and the combatant personnel for decision making and rapid response. Military sensors have drawn great attention in the ongoing projects which have satisfied the initial design or research purpose. As the interface of the "Internet of Things" which will have an eye on every corner of the battlespace WSNs play the necessary role in the incorporated situation awareness system. WSNs, radar, infrared ray or other means work together to acquire awareness intelligence for the deployed functional units to enhance the fighting effect.
Enhanced Circular Dichroism of Gold Bilayered Slit Arrays Embedded with Rectangular Holes.
Zhang, Hao; Wang, Yongkai; Luo, Lina; Wang, Haiqing; Zhang, Zhongyue
2017-01-01
Gold bilayered slit arrays with rectangular holes embedded into the metal surface are designed to enhance the circular dichroism (CD) effect of gold bilayered slit arrays. The rectangular holes in these arrays block electric currents and generate localized surface plasmons around these holes, thereby strengthening the CD effect. The CD enhancement factor depends strongly on the rotational angle and the structural parameters of the rectangular holes; this factor can be enhanced further by drilling two additional rectangular holes into the metal surfaces of the arrays. These results help facilitate the design of chiral structures to produce a strong CD effect and large electric fields.
Current collection from the space plasma through defects in solar array insulation
NASA Technical Reports Server (NTRS)
Robinson, R. S.; Stillwell, R. P.; Kaufman, H. R.
1985-01-01
Operating high-voltage solar arrays in the space environment can result in anomalously large currents being collected through small insulation defects. Tests simulating the electron collection have shown that there are two major collection modes. The first involves current enhancement by means of a surface phenomenon involving secondary electron emission from the surrounding insulator. In the second mode, the current collection is enhanced by vaporization and ionization of the insulator material, in addition to the surface enhancement of the first mode. The electron collection due to surface enhancement (first mode) has been modeled. Using this model, simple calculations yield realistic predictions.
Wavelength modulated surface enhanced (resonance) Raman scattering for background-free detection.
Praveen, Bavishna B; Steuwe, Christian; Mazilu, Michael; Dholakia, Kishan; Mahajan, Sumeet
2013-05-21
Spectra in surface-enhanced Raman scattering (SERS) are always accompanied by a continuum emission called the 'background' which complicates analysis and is especially problematic for quantification and automation. Here, we implement a wavelength modulation technique to eliminate the background in SERS and its resonant version, surface-enhanced resonance Raman scattering (SERRS). This is demonstrated on various nanostructured substrates used for SER(R)S. An enhancement in the signal to noise ratio for the Raman bands of the probe molecules is also observed. This technique helps to improve the analytical ability of SERS by alleviating the problem due to the accompanying background and thus making observations substrate independent.
NASA Astrophysics Data System (ADS)
Schäfer, M.; Bierwirth, E.; Ehrlich, A.; Jäkel, E.; Wendisch, M.
2015-01-01
Based on airborne spectral imaging observations three-dimensional (3-D) radiative effects between Arctic boundary layer clouds and ice floes have been identified and quantified. A method is presented to discriminate sea ice and open water in case of clouds from imaging radiance measurements. This separation simultaneously reveals that in case of clouds the transition of radiance between open water and sea ice is not instantaneously but horizontally smoothed. In general, clouds reduce the nadir radiance above bright surfaces in the vicinity of sea ice - open water boundaries, while the nadir radiance above dark surfaces is enhanced compared to situations with clouds located above horizontal homogeneous surfaces. With help of the observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge. This affected distance Δ L was found to depend on both, cloud and sea ice properties. For a ground overlaying cloud in 0-200 m altitude, increasing the cloud optical thickness from τ = 1 to τ = 10 decreases Δ L from 600 to 250 m, while increasing cloud base altitude or cloud geometrical thickness can increase Δ L; Δ L(τ = 1/10) = 2200 m/1250 m for 500-1000 m cloud altitude. To quantify the effect for different shapes and sizes of the ice floes, various albedo fields (infinite straight ice edge, circles, squares, realistic ice floe field) were modelled. Simulations show that Δ L increases by the radius of the ice floe and for sizes larger than 6 km (500-1000 m cloud altitude) asymptotically reaches maximum values, which corresponds to an infinite straight ice edge. Furthermore, the impact of these 3-D-radiative effects on retrieval of cloud optical properties was investigated. The enhanced brightness of a dark pixel next to an ice edge results in uncertainties of up to 90 and 30% in retrievals of cloud optical thickness and effective radius reff, respectively. With help of Δ L quantified here, an estimate of the distance to the ice edge for which the retrieval errors are negligible is given.
Detection of latent prints by Raman imaging
Lewis, Linda Anne [Andersonville, TN; Connatser, Raynella Magdalene [Knoxville, TN; Lewis, Sr., Samuel Arthur
2011-01-11
The present invention relates to a method for detecting a print on a surface, the method comprising: (a) contacting the print with a Raman surface-enhancing agent to produce a Raman-enhanced print; and (b) detecting the Raman-enhanced print using a Raman spectroscopic method. The invention is particularly directed to the imaging of latent fingerprints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dong; Zhou, Jun, E-mail: zhoujun@nbu.edu.cn; Rippa, Massimo
A set of periodic and quasi-periodic Au nanoarrays with different morphologies have been fabricated by using electron beam lithography technique, and their optical properties have been examined experimentally and analyzed theoretically by scanning near-field optical microscope and finite element method, respectively. Results present that the localized surface plasmon resonance of the as-prepared Au nanoarrays exhibit the structure-depended characteristics. Comparing with the periodic nanoarrays, the quasi-periodic ones demonstrate stronger electric field enhancement, especially for Thue-Morse nanoarray. Meanwhile, the surface enhanced Raman scattering (SERS) spectra of 4-mercaptobenzoic acid molecular labeled nanoarrays show that the quasi-periodic nanoarrays exhibit distinct SERS enhancement, for example,more » a higher enhancement factor of ∼10{sup 7} is obtained for the Thue-Morse nanoarray consisted of square pillars of 100 nm size. Therefore, it is significant to optimally design and fabricate the chip-scale quasi-periodic nanoarrays with high localized electric field enhancement for SERS applications in biosensing field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shioi, Masahiko, E-mail: shioi.masahiko@jp.panasonic.com; Department of Electric and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501; Jans, Hilde
With a view to biomedical and environmental applications, we investigate the plasmonic properties of a rectangular gold nanodisk array in water to boost surface enhanced Raman scattering (SERS) effects. To control the resonance wavelengths of the surface plasmon polariton and the localized surface plasmon, their dependence on the array period and diameter in water is studied in detail using a finite difference time domain method. A good agreement is obtained between calculated resonant wavelengths and those of gold nanodisk arrays fabricated using electron beam lithography. For the optimized structure, a SERS enhancement factor of 7.8 × 10{sup 7} is achieved in watermore » experimentally.« less
NASA Astrophysics Data System (ADS)
Zheng, Y.; Zhang, R.; Bourassa, M. A.
2014-12-01
Composite analysis from NCEP-NCAR reanalysis datasets over the period 1948-2007 indicates that stronger East Asian winter monsoons (EAWM) and stronger Australian summer monsoons (ASM) generally co-exist in boreal winters preceding the onset of El Niño, although the EAWM tend to be weak after 1990, probably because of the decadal shift of EAWM and the change in El Niño events from cold-tongue type to warm-pool type. The anomalous EAWM and ASM enhance surface westerlies over the western tropical Pacific Ocean (WTP). It is proposed that the enhanced surface westerlies over the WTP prior to El Niño onset are generally associated with the concurrent anomalous EAWM and ASM. A simple analytical atmospheric model is constructed to test the hypothesis that the emergence of enhanced surface westerlies over the WTP can be linked to concurrent EAWM and ASM anomalies. Model results indicate that when anomalous northerlies from the EAWM converge with anomalous southerlies from the ASM, westerly anomalies over the WTP are enhanced. This result provides a possible explanation of the co-impact of the EAWM and the ASM on the onset of El Niño through enhancing the surface westerly over the WTP.
Enhanced photothermal lens using a photonic crystal surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yunfei; Liu, Longju; Zhao, Xiangwei
2016-08-15
A photonic crystal (PC)-enhanced photothermal lens (PTL) is demonstrated for the detection of optically thin light absorption materials. The PC-enhanced PTL system is based on a pump-probe scheme consisting of a PC surface, pump laser beam, and probe laser beam. Heated by the pump beam, light absorption materials on the PC surface generate the PTL and cause a substantial change to the guided-mode resonance supported by the PC structure. The change of the PC resonance is detected using the probe laser beam by measuring its reflectivity from the PC surface. When applied to analyze dye molecules deposited on the PCmore » substrate, the developed system is capable of enhancing the PTL signal by 10-fold and reducing the lowest distinguishable concentration by 8-fold, in comparison to measuring without utilizing the PC resonance. The PC-enhanced PTL was also used to detect gold nanoparticles on the PC surface and exhibited a 20-fold improvement of the lowest distinguishable concentration. The PC-enhanced PTL technology offers a potential tool to obtain the absorption signatures of thin films in a broad spectral range with high sensitivity and inexpensive instrumentation. As a result, this technology will enable a broad range of applications of photothermal spectroscopy in chemical analysis and biomolecule sensing.« less
[Current treatment situation and progress on bone defect of collapsed tibial plateau fractures].
Luo, Chang-qi; Fang, Yue; Tu, Chong-qi; Yang, Tian-fu
2016-02-01
Characteristics of collapsed tibial plateau fracture determines that the joint surface must remain anatomical reduction,line of force in tibial must exist and internal fixation must be strong. However, while renewing articular surface smoothness, surgeons have a lot of problems in dealing with bone defect under the joint surface. Current materials used for bone defect treatment include three categories: autologous bone, allograft bone and bone substitutes. Some scholars think that autologous bone grafts have a number of drawbacks, such as increasing trauma, prolonged operation time, the limited source, bone area bleeding,continuous pain, local infection and anesthesia,but most scholars believe that the autologous cancellous bone graft is still the golden standard. Allograft bone has the ability of bone conduction, but the existence of immune responses, the possibility of a virus infection, and the limited source of the allograft cannot meet the clinical demands. Likewise, bone substitutes have the problem that osteogenesis does not match with degradation in rates. Clinical doctors can meet the demand of the patient's bone graft according to patient's own situation and economic conditions.
Sued, Bruna Pinto Ribeiro; Pereira, Paula Marcele Afonso; Faria, Yuri Vieira; Ramos, Juliana Nunes; Binatti, Vanessa Batista; Santos, Kátia Regina Netto Dos; Seabra, Sérgio Henrique; Hirata, Raphael; Vieira, Verônica Viana; Mattos-Guaraldi, Ana Luíza; Pereira, José Augusto Adler
2017-03-01
The association between Staphylococcus haemolyticus and severe nosocomial infections is increasing. However, the extent to which fomites contribute to the dissemination of this pathogen through patients and hospital wards remains unknown. In the present study, sphygmomanometers and thermometers were evaluated as potential fomites of oxacillin-resistant S. haemolyticus (ORSH). The influence of oxacillin and vancomycin on biofilm formation by ORSH strains isolated from fomites was also investigated. The presence of ORSH on swabs taken from fomite surfaces in a Brazilian hospital was assessed using standard microbiological procedures. Antibiotic susceptibility profiles were determined by the disk diffusion method, and clonal distribution was assessed in pulsed-field gel electrophoresis (PFGE) assays. Minimum inhibitory concentrations (MICs) of oxacillin and vancomycin were evaluated via the broth microdilution method. Polymerase chain reaction (PCR) assays were performed to detect the mecA and icaAD genes. ORSH strains grown in media containing 1/4 MIC of vancomycin or oxacillin were investigated for slime production and biofilm formation on glass, polystyrene and polyurethane catheter surfaces. ORSH strains comprising five distinct PFGE types were isolated from sphygmomanometers (n = 5) and a thermometer (n = 1) used in intensive care units and surgical wards. ORSH strains isolated from fomites showed susceptibility to only linezolid and vancomycin and were characterised as multi-drug resistant (MDR). Slime production, biofilm formation and the survival of sessile bacteria differed and were independent of the presence of the icaAD and mecA genes, PFGE type and subtype. Vancomycin and oxacillin did not inhibit biofilm formation by vancomycin-susceptible ORSH strains on abiotic surfaces, including on the catheter surface. Enhanced biofilm formation was observed in some situations. Moreover, a sub-lethal dose of vancomycin induced biofilm formation by an ORSH strain on polystyrene. Sphygmomanometers and thermometers are fomites for the transmission of ORSH. A sub-lethal dose of vancomycin may favor biofilm formation by ORSH on fomites and catheter surfaces.
Sued, Bruna Pinto Ribeiro; Pereira, Paula Marcele Afonso; Faria, Yuri Vieira; Ramos, Juliana Nunes; Binatti, Vanessa Batista; dos Santos, Kátia Regina Netto; Seabra, Sérgio Henrique; Hirata, Raphael; Vieira, Verônica Viana; Mattos-Guaraldi, Ana Luíza; Pereira, José Augusto Adler
2017-01-01
BACKGROUND The association between Staphylococcus haemolyticus and severe nosocomial infections is increasing. However, the extent to which fomites contribute to the dissemination of this pathogen through patients and hospital wards remains unknown. OBJECTIVES In the present study, sphygmomanometers and thermometers were evaluated as potential fomites of oxacillin-resistant S. haemolyticus (ORSH). The influence of oxacillin and vancomycin on biofilm formation by ORSH strains isolated from fomites was also investigated. METHODS The presence of ORSH on swabs taken from fomite surfaces in a Brazilian hospital was assessed using standard microbiological procedures. Antibiotic susceptibility profiles were determined by the disk diffusion method, and clonal distribution was assessed in pulsed-field gel electrophoresis (PFGE) assays. Minimum inhibitory concentrations (MICs) of oxacillin and vancomycin were evaluated via the broth microdilution method. Polymerase chain reaction (PCR) assays were performed to detect the mecA and icaAD genes. ORSH strains grown in media containing 1/4 MIC of vancomycin or oxacillin were investigated for slime production and biofilm formation on glass, polystyrene and polyurethane catheter surfaces. FINDINGS ORSH strains comprising five distinct PFGE types were isolated from sphygmomanometers (n = 5) and a thermometer (n = 1) used in intensive care units and surgical wards. ORSH strains isolated from fomites showed susceptibility to only linezolid and vancomycin and were characterised as multi-drug resistant (MDR). Slime production, biofilm formation and the survival of sessile bacteria differed and were independent of the presence of the icaAD and mecA genes, PFGE type and subtype. Vancomycin and oxacillin did not inhibit biofilm formation by vancomycin-susceptible ORSH strains on abiotic surfaces, including on the catheter surface. Enhanced biofilm formation was observed in some situations. Moreover, a sub-lethal dose of vancomycin induced biofilm formation by an ORSH strain on polystyrene. MAIN CONCLUSIONS Sphygmomanometers and thermometers are fomites for the transmission of ORSH. A sub-lethal dose of vancomycin may favor biofilm formation by ORSH on fomites and catheter surfaces. PMID:28225903
NASA Astrophysics Data System (ADS)
Oliveira, Henrique; Rodrigues, Marco; Radius, Andrea
2012-01-01
Airport Obstruction Charts (AOCs) are graphical representations of natural or man-made obstructions (its locations and heights) around airfields, according to International Civil Aviation Organization (ICAO) Annexes 4, 14 and 15. One of the most important types of data used in AOCs production/update tasks is a Digital Surface Model (first reflective surface) of the surveyed area. The development of advanced remote sensing technologies provide the available tools for obstruction data acquisition, while Geographic Information Systems (GIS) present the perfect platform for storing and analyzing this type of data, enabling the production of digital ACOs, greatly contributing to the increase of the situational awareness of pilots and enhancing the air navigation safety level [1]. Data acquisition corresponding to the first reflective surface can be obtained through the use of Airborne Laser-Scanning and Light Detection and Ranging (ALS/LIDAR) or Spaceborne SAR Systems. The need of surveying broad areas, like the entire territory of a state, shows that Spaceborne SAR systems are the most adequate in economic and feasibility terms of the process, to perform the monitoring and producing a high resolution Digital Surface Model (DSM). The high resolution DSM generation depends on many factors: the available data set, the used technique and the setting parameters. To increase the precision and obtain high resolution products, two techniques are available using a stack of data: the PS (Permanent Scatterers) technique [2], that uses large stack of data to identify many stable and coherent targets through multi- temporal analysis, removing the atmospheric contribution and to minimize the estimation errors, and the Small Baseline Subset (SBAS) technique ([3],[4]), that relies on the use of small baseline SAR interferograms and on the application of the so called singular value decomposition (SVD) method, in order to link independent SAR acquisition data sets, separated by large baselines, thus increasing the number of data used for the analysis.
Carniel, S.; Warner, J.C.; Chiggiato, J.; Sclavo, M.
2009-01-01
An accurate numerical prediction of the oceanic upper layer velocity is a demanding requirement for many applications at sea and is a function of several near-surface processes that need to be incorporated in a numerical model. Among them, we assess the effects of vertical resolution, different vertical mixing parameterization (the so-called Generic Length Scale -GLS- set of k-??, k-??, gen, and the Mellor-Yamada), and surface roughness values on turbulent kinetic energy (k) injection from breaking waves. First, we modified the GLS turbulence closure formulation in the Regional Ocean Modeling System (ROMS) to incorporate the surface flux of turbulent kinetic energy due to wave breaking. Then, we applied the model to idealized test cases, exploring the sensitivity to the above mentioned factors. Last, the model was applied to a realistic situation in the Adriatic Sea driven by numerical meteorological forcings and river discharges. In this case, numerical drifters were released during an intense episode of Bora winds that occurred in mid-February 2003, and their trajectories compared to the displacement of satellite-tracked drifters deployed during the ADRIA02-03 sea-truth campaign. Results indicted that the inclusion of the wave breaking process helps improve the accuracy of the numerical simulations, subject to an increase in the typical value of the surface roughness z0. Specifically, the best performance was obtained using ??CH = 56,000 in the Charnok formula, the wave breaking parameterization activated, k-?? as the turbulence closure model. With these options, the relative error with respect to the average distance of the drifter was about 25% (5.5 km/day). The most sensitive factors in the model were found to be the value of ??CH enhanced with respect to a standard value, followed by the adoption of wave breaking parameterization and the particular turbulence closure model selected. ?? 2009 Elsevier Ltd.
The role of eye fixation in memory enhancement under stress - An eye tracking study.
Herten, Nadja; Otto, Tobias; Wolf, Oliver T
2017-04-01
In a stressful situation, attention is shifted to potentially relevant stimuli. Recent studies from our laboratory revealed that participants stressed perform superior in a recognition task involving objects of the stressful episode. In order to characterize the role of a stress induced alteration in visual exploration, the present study investigated whether participants experiencing a laboratory social stress situation differ in their fixation from participants of a control group. Further, we aimed at shedding light on the relation of fixation behaviour with obtained memory measures. We randomly assigned 32 male and 31 female participants to a control or a stress condition consisting of the Trier Social Stress Test (TSST), a public speaking paradigm causing social evaluative threat. In an established 'friendly' control condition (f-TSST) participants talk to a friendly committee. During both conditions, the committee members used ten office items (central objects) while another ten objects were present without being used (peripheral objects). Participants wore eye tracking glasses recording their fixations. On the next day, participants performed free recall and recognition tasks involving the objects present the day before. Stressed participants showed enhanced memory for central objects, accompanied by longer fixation times and larger fixation amounts on these objects. Contrasting this, fixation towards the committee faces showed the reversed pattern; here, control participants exhibited longer fixations. Fixation indices and memory measures were, however, not correlated with each other. Psychosocial stress is associated with altered fixation behaviour. Longer fixation on objects related to the stressful situation may reflect enhanced encoding, whereas diminished face fixation suggests gaze avoidance of aversive, socially threatening stimuli. Modified visual exploration should be considered in future stress research, in particular when focussing on memory for a stressful episode. Copyright © 2017 Elsevier Inc. All rights reserved.
Team communication patterns in emergency resuscitation: a mixed methods qualitative analysis.
Calder, Lisa Anne; Mastoras, George; Rahimpour, Mitra; Sohmer, Benjamin; Weitzman, Brian; Cwinn, A Adam; Hobin, Tara; Parush, Avi
2017-12-01
In order to enhance patient safety during resuscitation of critically ill patients, we need to optimize team communication and enhance team situational awareness but little is known about resuscitation team communication patterns. The objective of this study is to understand how teams communicate during resuscitation; specifically to assess for a shared mental model (organized understanding of a team's relationships) and information needs. We triangulated 3 methods to evaluate resuscitation team communication at a tertiary care academic trauma center: (1) interviews; (2) simulated resuscitation observations; (3) live resuscitation observations. We interviewed 18 resuscitation team members about shared mental models, roles and goals of team members and procedural expectations. We observed 30 simulated resuscitation video recordings and documented the timing, source and destination of communication and the information category. We observed 12 live resuscitations in the emergency department and recorded baseline characteristics of the type of resuscitations, nature of teams present and type and content of information exchanges. The data were analyzed using a qualitative communication analysis method. We found that resuscitation team members described a shared mental model. Respondents understood the roles and goals of each team member in order to provide rapid, efficient and life-saving care with an overall need for situational awareness. The information flow described in the interviews was reflected during the simulated and live resuscitations with the most responsible physician and charting nurse being central to team communication. We consolidated communicated information into six categories: (1) time; (2) patient status; (3) patient history; (4) interventions; (5) assistance and consultations; 6) team members present. Resuscitation team members expressed a shared mental model and prioritized situational awareness. Our findings support a need for cognitive aids to enhance team communication during resuscitations.
Feeling smart: Effects of caffeine and glucose on cognition, mood and self-judgment.
Ullrich, Susann; de Vries, Yfke C; Kühn, Simone; Repantis, Dimitris; Dresler, Martin; Ohla, Kathrin
2015-11-01
During education and early career, young adults often face examinations and assessment centers. Coffee and energy drinks are convenient and commonly used to enhance or maintain performance in these situations. Whether these macronutrients improve performance in a demanding and drawn-out multi-task situation is not clear. Using double-blind, placebo-controlled studies, we set out to examine the effects of caffeine and glucose in an assessment center-like situation, under natural consumption conditions, in a group of young adults who were heterogeneous with respect to consumption patterns. We measured multi-task performance including logical thinking, processing speed, numeric and verbal memory, attention and the ability to concentrate, and mood over a two-hour period. Caffeine and glucose were administered in common beverages with appropriate placebo controls allowing the assessment of psychological effects of expectancy. Importantly, and in contrast to most previous studies, participants retained their habitual caffeine and sugar intake (studies 1 and 2) as this represents common behavior. Based on the bulk of literature, we hypothesized that (i) caffeine enhances attentional performance and mood, while performance in more complex tasks will remain unchanged, and that (ii) glucose enhances performance on memory tasks accompanied with negative mood. Our results provide evidence that neither caffeine nor glucose significantly influence cognitive performance when compared with placebo, water, or no treatment controls in a multi-task setting. Yet, caffeine and, by trend, placebo improve dispositions such that participants perceive preserved mental energy throughout the test procedure. These subjective effects were stronger after 24 h caffeine abstinence (study 3). Future studies will have to address whether these mood changes actually result in increased motivation during a challenging task.
The Taxiway Navigation and Situation Awareness (T-NASA) System
NASA Technical Reports Server (NTRS)
Foyle, David C.; Sridhar, Banavar (Technical Monitor)
1997-01-01
The goal of NASA's Terminal Area Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) subelement is to improve the efficiency of airport surface operations for commercial aircraft operating in weather conditions to Category IIIB while maintaining a high degree of safety. Currently, surface operations are one of the least technologically sophisticated components of the air transport system, being conducted in the 1990's with the same basic technology as in the 1930's. Pilots are given little or no explicit information about their current position, and routing information is limited to ATC communications and airport charts. In TAP/LVLASO, advanced technologies such as satellite navigation systems, digital data communications, advanced information presentation technology, and ground surveillance systems will be integrated into flight deck displays to enable expeditious and safe traffic movement on the airport surface. The cockpit display suite is called the T-NASA (Taxiway Navigation and Situation Awareness) System. This system has three integrated components: 1) Moving Map track-up airport surface display with own-ship, traffic and graphical route guidance 2) Scene-Linked Symbology - route/taxi information virtually projected via a Head-up Display (HUD) onto the forward scene; and, 3) 3-D Audio Ground Collision Avoidance and Navigation system - spatially-localized auditory traffic and navigation alerts. In the current paper, the design philosophy of the T-NASA system will be presented, and the T-NASA system display components described.
Surface-Enhanced Raman Optical Data Storage system
Vo-Dinh, T.
1991-03-12
A method and apparatus for a Surface-Enhanced Raman Optical Data Storage (SERODS) System are disclosed. A medium which exhibits the Surface Enhanced Raman Scattering (SERS) phenomenon has data written onto its surface of microenvironment by means of a write-on procedure which disturbs the surface or microenvironment of the medium and results in the medium having a changed SERS emission when excited. The write-on procedure is controlled by a signal that corresponds to the data to be stored so that the disturbed regions on the storage device (e.g., disk) represent the data. After the data is written onto the storage device it is read by exciting the surface of the storage device with an appropriate radiation source and detecting changes in the SERS emission to produce a detection signal. The data is then reproduced from the detection signal. 5 figures.
Surface-enhanced raman optical data storage system
Vo-Dinh, Tuan
1991-01-01
A method and apparatus for a Surface-Enhanced Raman Optical Data Storage (SERODS) System is disclosed. A medium which exhibits the Surface Enhanced Raman Scattering (SERS) phenomenon has data written onto its surface of microenvironment by means of a write-on procedure which disturbs the surface or microenvironment of the medium and results in the medium having a changed SERS emission when excited. The write-on procedure is controlled by a signal that corresponds to the data to be stored so that the disturbed regions on the storage device (e.g., disk) represent the data. After the data is written onto the storage device it is read by exciting the surface of the storage device with an appropriate radiation source and detecting changes in the SERS emission to produce a detection signal. The data is then reproduced from the detection signal.
NASA Astrophysics Data System (ADS)
Zhang, Hai; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Huang, Jingfeng; Superczynski, Stephen; Ciren, Pubu
2016-09-01
The Visible/Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite has been retrieving aerosol optical thickness (AOT), operationally and globally, over ocean and land since shortly after S-NPP launch in 2011. However, the current operational VIIRS AOT retrieval algorithm over land has two limitations in its assumptions for land surfaces: (1) it only retrieves AOT over the dark surfaces and (2) it assumes that the global surface reflectance ratios between VIIRS bands are constants. In this work, we develop a surface reflectance ratio database over land with a spatial resolution 0.1° × 0.1° using 2 years of VIIRS top of atmosphere reflectances. We enhance the current operational VIIRS AOT retrieval algorithm by applying the surface reflectance ratio database in the algorithm. The enhanced algorithm is able to retrieve AOT over both dark and bright surfaces. Over bright surfaces, the VIIRS AOT retrievals from the enhanced algorithm have a correlation of 0.79, mean bias of -0.008, and standard deviation (STD) of error of 0.139 when compared against the ground-based observations at the global AERONET (Aerosol Robotic Network) sites. Over dark surfaces, the VIIRS AOT retrievals using the surface reflectance ratio database improve the root-mean-square error from 0.150 to 0.123. The use of the surface reflectance ratio database also increases the data coverage of more than 20% over dark surfaces. The AOT retrievals over bright surfaces are comparable to MODIS Deep Blue AOT retrievals.
Control of wave-driven turbulence and surface heating on the mixing of microplastic marine debris
NASA Astrophysics Data System (ADS)
Kukulka, T.; Lavender Law, K. L.; Proskurowski, G. K.
2016-02-01
Buoyant microplastic marine debris (MPMD) is a pollutant in the ocean surface boundary layer (OSBL) that is submerged by turbulent transport processes. Langmuir circulation (LC) is a turbulent process driven by wind and surface waves that enhances mixing in the OSBL. Sea surface cooling also contributes to OSBL turbulence by driving convection. On the other hand, sea surface heating stratifies and stabilizes the water column to reduce turbulent motion. We analyze observed MPMD surface concentrations in the Atlantic and Pacific Oceans to reveal a significant increase in MPMD concentrations during surface heating and a decrease during surface cooling. Turbulence resolving large eddy simulations of the OSBL for an idealized diurnal heating cycle suggest that turbulent downward fluxes of buoyant tracers are enhanced at night, facilitating deep submergence of plastics, and suppressed in heating conditions, resulting in surface trapped MPMD. Simulations agree with observations if enhanced mixing due to LC is included. Our results demonstrate the controlling influence of surface heat fluxes and LC on turbulent transport in the OSBL and on vertical distributions of buoyant marine particles.
Perspective: Surface freezing in water: A nexus of experiments and simulations
NASA Astrophysics Data System (ADS)
Haji-Akbari, Amir; Debenedetti, Pablo G.
2017-08-01
Surface freezing is a phenomenon in which crystallization is enhanced at a vapor-liquid interface. In some systems, such as n-alkanes, this enhancement is dramatic and results in the formation of a crystalline layer at the free interface even at temperatures slightly above the equilibrium bulk freezing temperature. There are, however, systems in which the enhancement is purely kinetic and only involves faster nucleation at or near the interface. The first, thermodynamic, type of surface freezing is easier to confirm in experiments, requiring only the verification of the existence of crystalline order at the interface. The second, kinetic, type of surface freezing is far more difficult to prove experimentally. One material that is suspected of undergoing the second type of surface freezing is liquid water. Despite strong indications that the freezing of liquid water is kinetically enhanced at vapor-liquid interfaces, the findings are far from conclusive, and the topic remains controversial. In this perspective, we present a simple thermodynamic framework to understand conceptually and distinguish these two types of surface freezing. We then briefly survey fifteen years of experimental and computational work aimed at elucidating the surface freezing conundrum in water.
Forced convection in the wakes of impacting and sliding bubbles
NASA Astrophysics Data System (ADS)
O'Reilly Meehan, R.; Williams, N. P.; Donnelly, B.; Persoons, T.; Nolan, K.; Murray, D. B.
2017-09-01
Both vapour and gas bubbles are known to significantly increase heat transfer rates between a heated surface and the surrounding fluid, even with no phase change. The cooling structures observed are highly temporal, intricate and complex, with a full description of the surface cooling phenomena not yet available. The current study uses high speed infrared thermography to measure the surface temperature and determine the convective heat flux enhancement associated with the interaction of a single air bubble with a heated, inclined surface. This process can be discretised into the initial impact, in which enhancement levels in excess of 20 times natural convection are observed, and the subsequent sliding behaviour, with more moderate maximum enhancement levels of 8 times natural convection. In both cases, localised regions of suppressed heat transfer are also observed due to the recirculation of warm fluid displaced from the thermal boundary layer with the surface. The cooling patterns observed herein are consistent with the interaction between an undulating wake containing multiple hairpin vortex loops and the thermal boundary layer that exists under the surface, with the initial nature of this enhancement and suppression dependent on the particular point on its rising path at which the bubble impacts the surface.
Abate, Salvatore; Giorgianni, Gianfranco; Gentiluomo, Serena; Centi, Gabriele; Perathoner, Siglinda
2015-11-01
Palladium ultrathin films (around 2 μm) with different surface nanostructures are characterized by TEM, SEM, AFM, and temperature programmed reduction (TPR), and evaluated in terms of H2 permeability and H2-N2 separation. A change in the characteristics of Pd seeds by controlled oxidation-reduction treatments produces films with the same thickness, but different surface and bulk nanostructure. In particular, the films have finer and more homogeneous Pd grains, which results in lower surface roughness. Although all samples show high permeo-selectivity to H2 , the samples with finer grains exhibit enhanced permeance and lower activation energy for H2 transport. The analysis of the data suggests that grain boundaries between the Pd grains at the surface favor H2 transfer from surface to subsurface. Thus, the surface nanostructure plays a relevant role in enhancing the transport of H2 over the Pd ultrathin film, which is an important aspect to develop improved membranes that function at low temperatures and toward new integrated process architectures in H2 and syngas production with enhanced sustainability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tran, Phat L.; Gamboa, Jessica R.; McCracken, Katherine E.; Riley, Mark R.
2014-01-01
Assuring cell adhesion to an underlying biomaterial surface is vital in implant device design and tissue engineering, particularly under circumstances where cells are subjected to potential detachment from overriding fluid flow. Cell-substrate adhesion is a highly regulated process involving the interplay of mechanical properties, surface topographic features, electrostatic charge, and biochemical mechanisms. At the nanoscale level the physical properties of the underlying substrate are of particular importance in cell adhesion. Conventionally, natural, pro-adhesive, and often thrombogenic, protein biomaterials are frequently utilized to facilitate adhesion. In the present study nanofabrication techniques are utilized to enhance the biological functionality of a synthetic polymer surface, polymethymethacrylate, with respect to cell adhesion. Specifically we examine the effect on cell adhesion of combining: 1. optimized surface texturing, 2. electrostatic charge and 3. cell adhesive ligands, uniquely assembled on the substrata surface, as an ensemble of nanoparticles trapped in nanowells. Our results reveal that the ensemble strategy leads to enhanced, more than simply additive, endothelial cell adhesion under both static and flow conditions. This strategy may be of particular utility for enhancing flow-resistant endothelialization of blood-contacting surfaces of cardiovascular devices subjected to flow-mediated shear. PMID:23225491
NASA Astrophysics Data System (ADS)
Dmitriyeva, Olga; Hamm, Steven C.; Knies, David L.; Cantwell, Richard; McConnell, Matt
2018-05-01
Our previous work experimentally demonstrated the enhancement of electrochemical hydrogen insertion into palladium by modifying the chemical composition of the cathode surface with Pb, Pt and Bi, referred to as surface promoters. The experiment demonstrated that an optimal combination of the surface promoters led to an increase in hydrogen fugacity of more than three orders of magnitude, while maintaining the same current density. This manuscript discusses the application of Density Functional Theory (DFT) to elucidate the thermodynamics and kinetics of observed enhancement of electrochemical hydrogen insertion into palladium. We present theoretical simulations that: (1) establish the elevation of hydrogen's chemical potential on Pb and Bi surfaces to enhance hydrogen insertion, (2) confirm the increase of a Tafel activation barrier that results in a decrease of the reaction rate at the given hydrogen overpotential, and (3) explain why the surface promoter's coverage needs to be non-uniform, namely to allow hydrogen insertion into palladium bulk while simultaneously locking hydrogen below the surface (the corking effect). The discussed DFT-based method can be used for efficient scanning of different material configurations to design a highly effective hydrogen storage system.
USDA-ARS?s Scientific Manuscript database
A highly sensitive immunoassay based on surface-enhanced Raman scattering (SERS) spectroscopy has been developed for multiplex detection of surface envelope and capsid antigens of the viral zoonotic pathogens West Nile virus (WNV) and Rift Valley fever virus (RVFV). Detection was mediated by antibo...
Nano-patterned superconducting surface for high quantum efficiency cathode
Hannon, Fay; Musumeci, Pietro
2017-03-07
A method for providing a superconducting surface on a laser-driven niobium cathode in order to increase the effective quantum efficiency. The enhanced surface increases the effective quantum efficiency by improving the laser absorption of the surface and enhancing the local electric field. The surface preparation method makes feasible the construction of superconducting radio frequency injectors with niobium as the photocathode. An array of nano-structures are provided on a flat surface of niobium. The nano-structures are dimensionally tailored to interact with a laser of specific wavelength to thereby increase the electron yield of the surface.
NASA Astrophysics Data System (ADS)
Kang, Byungjun; Imakita, Kenji; Fujii, Minoru; Hayashi, Shinji
2018-03-01
The enhancement of second-harmonic generation from a dielectric layer embedded in a metal-dielectric-metal structure upon excitation of surface plasmon polaritons is demonstrated experimentally. The metal-dielectric-metal structure consisting of a Gex(SiO2)1-x layer sandwiched by two Ag layers was prepared, and the surface plasmon polaritons were excited in an attenuated total reflection geometry. The measured attenuated total reflection spectra exhibited two reflection dips corresponding to the excitation of two different surface plasmon polariton modes. Strong second-harmonic signals were observed under the excitation of these surface plasmon polariton modes. The results demonstrate that the second-harmonic intensity of the Gex(SiO2)1-x layer is highly enhanced relative to that of the single layer deposited on a substrate. Under the excitation of one of the two surface plasmon polariton modes, the estimated enhancement factor falls in a range between 39.9 and 171, while under the excitation of the other surface plasmon polariton mode, it falls in a range between 3.96 and 84.6.
NASA Astrophysics Data System (ADS)
Loganathan, B.; Chandraboss, V. L.; Senthilvelan, S.; Karthikeyan, B.
2016-01-01
We present a detailed analysis of surface-enhanced Raman scattering of 7-azaindole and L-cysteine adsorbed on a tailored Rh surface by using experimental and density functional theoretical (DFT) calculations. DFT with the B3LYP/Lanl2DZ basis set was used for the optimization of the ground state geometries and simulation of the surface-enhanced Raman spectrum of probe molecules adsorbed on Rh6 cluster. 7-azaindole and L-cysteine adsorption at the shell interface was ascertained from first-principles. In addition, characterization of synthesized trimetallic AuPt core/Rh shell colloidal nanocomposites has been analyzed by UV-visible spectroscopy, high-resolution transmission and scanning electron microscopy, selected area electron diffraction pattern analysis, energy-dispersive X-ray spectroscopy, atomic force, confocal Raman microscopy, FT-Raman and surface-enhanced Raman spectroscopic analysis. This analysis serves as the first step in gaining an accurate understanding of specific interactions at the interface of organic and biomolecules and to gain knowledge on the surface composition of trimetallic Au/Pt/Rh colloidal nanocomposites.
Surface-Enhanced Raman Spectroscopy as a Probe of the Surface Chemistry of Nanostructured Materials.
Dick, Susan; Konrad, Magdalena P; Lee, Wendy W Y; McCabe, Hannah; McCracken, John N; Rahman, Taifur M D; Stewart, Alan; Xu, Yikai; Bell, Steven E J
2016-07-01
Surface-enhanced Raman spectroscopy (SERS) is now widely used as a rapid and inexpensive tool for chemical/biochemical analysis. The method can give enormous increases in the intensities of the Raman signals of low-concentration molecular targets if they are adsorbed on suitable enhancing substrates, which are typically composed of nanostructured Ag or Au. However, the features of SERS that allow it to be used as a chemical sensor also mean that it can be used as a powerful probe of the surface chemistry of any nanostructured material that can provide SERS enhancement. This is important because it is the surface chemistry that controls how these materials interact with their local environment and, in real applications, this interaction can be more important than more commonly measured properties such as morphology or plasmonic absorption. Here, the opportunity that this approach to SERS provides is illustrated with examples where the surface chemistry is both characterized and controlled in order to create functional nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Daqun; Mei, Yihong; Hu, Weihua; Li, Chang Ming
2018-05-15
For sensitive immunoassay, it is essentially important to immobilize antibody on a surface with high density and full retention of their recognition activity. Bio-inspired polydopamine (PDA) thin film has been widely utilized as a reactive coating to immobilize antibody on various surfaces. We herein report that the antibody immobilization capacity of PDA thin film is electrochemically enhanced by applying an oxidative potential to convert the surface catechol group to reactive quinone group. Quantitative surface plasmon resonance (SPR) investigation unveils that upon proper electrochemical oxidization, the antibody loading capacity of PDA film is significantly improved (up to 27%) and is very close to the theoretically maximal capacity of a planar surface if concentrated antibody solution is used. Using prostate-specific antigen (PSA) as a model target, it is further demonstrated that the SPR immunoassay sensitivity is greatly enhanced due to the improved antibody immobilization. This work offers an efficient strategy to enhance the reactivity of PDA film towards nucleophiles, and may also facilitate its immunoassay application among others. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yin, K.; Song, Y. X.; Dong, X. R.; Wang, C.; Duan, J. A.
2016-11-01
Reported here is the bio-inspired and robust function of underwater superoleophobic, anti-oil metallic surfaces with ultra-broadband enhanced optical absorption obtained through femtosecond laser micromachining. Three distinct surface structures are fabricated using a wide variety of processing parameters. Underwater superoleophobic and anti-oil surfaces containing coral-like microstructures with nanoparticles and mount-like microstructures are achieved. These properties of the as-prepared surfaces exhibit good chemical stability when exposed to various types of oils and when immersed in water with a wide range of pH values. Moreover, coral-like microstructures with nanoparticle surfaces show strongly enhanced optical absorption over a broadband wavelength range from 0.2-25 μm. The potential mechanism for the excellent performance of the coral-like microstructures with a nanoparticle surface is also discussed. This multifunctional surface has potential applications in military submarines, amphibious military aircraft and tanks, and underwater anti-oil optical counter-reconnaissance devices.
Live texturing of augmented reality characters from colored drawings.
Magnenat, Stéphane; Ngo, Dat Tien; Zünd, Fabio; Ryffel, Mattia; Noris, Gioacchino; Rothlin, Gerhard; Marra, Alessia; Nitti, Maurizio; Fua, Pascal; Gross, Markus; Sumner, Robert W
2015-11-01
Coloring books capture the imagination of children and provide them with one of their earliest opportunities for creative expression. However, given the proliferation and popularity of digital devices, real-world activities like coloring can seem unexciting, and children become less engaged in them. Augmented reality holds unique potential to impact this situation by providing a bridge between real-world activities and digital enhancements. In this paper, we present an augmented reality coloring book App in which children color characters in a printed coloring book and inspect their work using a mobile device. The drawing is detected and tracked, and the video stream is augmented with an animated 3-D version of the character that is textured according to the child's coloring. This is possible thanks to several novel technical contributions. We present a texturing process that applies the captured texture from a 2-D colored drawing to both the visible and occluded regions of a 3-D character in real time. We develop a deformable surface tracking method designed for colored drawings that uses a new outlier rejection algorithm for real-time tracking and surface deformation recovery. We present a content creation pipeline to efficiently create the 2-D and 3-D content. And, finally, we validate our work with two user studies that examine the quality of our texturing algorithm and the overall App experience.
Sub-nanometer Resolution Imaging with Amplitude-modulation Atomic Force Microscopy in Liquid
Farokh Payam, Amir; Piantanida, Luca; Cafolla, Clodomiro; Voïtchovsky, Kislon
2016-01-01
Atomic force microscopy (AFM) has become a well-established technique for nanoscale imaging of samples in air and in liquid. Recent studies have shown that when operated in amplitude-modulation (tapping) mode, atomic or molecular-level resolution images can be achieved over a wide range of soft and hard samples in liquid. In these situations, small oscillation amplitudes (SAM-AFM) enhance the resolution by exploiting the solvated liquid at the surface of the sample. Although the technique has been successfully applied across fields as diverse as materials science, biology and biophysics and surface chemistry, obtaining high-resolution images in liquid can still remain challenging for novice users. This is partly due to the large number of variables to control and optimize such as the choice of cantilever, the sample preparation, and the correct manipulation of the imaging parameters. Here, we present a protocol for achieving high-resolution images of hard and soft samples in fluid using SAM-AFM on a commercial instrument. Our goal is to provide a step-by-step practical guide to achieving high-resolution images, including the cleaning and preparation of the apparatus and the sample, the choice of cantilever and optimization of the imaging parameters. For each step, we explain the scientific rationale behind our choices to facilitate the adaptation of the methodology to every user's specific system. PMID:28060262
Airport Traffic Conflict Detection and Resolution Algorithm Evaluation
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Chartrand, Ryan C.; Wilson, Sara R.; Commo, Sean A.; Otero, Sharon D.; Barker, Glover D.
2012-01-01
A conflict detection and resolution (CD&R) concept for the terminal maneuvering area (TMA) was evaluated in a fast-time batch simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. The CD&R concept is being designed to enhance surface situation awareness and provide cockpit alerts of potential conflicts during runway, taxi, and low altitude air-to-air operations. The purpose of the study was to evaluate the performance of aircraft-based CD&R algorithms in the TMA, as a function of surveillance accuracy. This paper gives an overview of the CD&R concept, simulation study, and results. The Next Generation Air Transportation System (NextGen) concept for the year 2025 and beyond envisions the movement of large numbers of people and goods in a safe, efficient, and reliable manner [1]. NextGen will remove many of the constraints in the current air transportation system, support a wider range of operations, and provide an overall system capacity up to three times that of current operating levels. Emerging NextGen operational concepts [2], such as four-dimensional trajectory based airborne and surface operations, equivalent visual operations, and super density arrival and departure operations, require a different approach to air traffic management and as a result, a dramatic shift in the tasks, roles, and responsibilities for the flight deck and air traffic control (ATC) to ensure a safe, sustainable air transportation system.
Promoting interdomain analogical transfer: When creating a problem helps to solve a problem.
Minervino, Ricardo A; Olguín, Valeria; Trench, Máximo
2017-02-01
Research on analogical thinking has devised several ways of promoting an abstract encoding of base analogs, thus rendering them more retrievable during later encounters with similar situations lacking surface similarities. Recent studies have begun to explore ways of facilitating transfer at retrieval time, which could facilitate the retrieval of distant analogs learned within contexts that were not specially directed to emphasize their abstract structure. Such studies demonstrate that comparing a target problem to an analogous problem helps students retrieve base analogs that lack surface similarities. To devise more portable ways of enhancing analogical transfer, Experiment 1 replicated Kurtz and Loewenstein's (Memory & Cognition, 35, 334-341, 2007) target-comparison procedure with an additional condition in which participants compared the target to a nonanalogous problem before attempting to reach its solution. Although comparing two analogous targets outperformed the standard transfer condition in promoting analogical transfer, comparing nonanalogous problems did not yield a transfer advantage. Based on prior studies that showed that the activity of creating analogous problems during their initial encoding elicits a more abstract representation of base analogs, in Experiment 2 we assessed whether constructing a second analogous target problem at retrieval time helps participants retrieve superficially dissimilar base analogs. As predicted, target invention increased the retrieval of distant sources. In both experiments we found an association between the quality of the generated schemas and the probability of retrieving a distant base analog from memory.
NASA Astrophysics Data System (ADS)
Zhang, J.; Chen, Z.; Cheng, C.; Wang, Y. X.
2017-10-01
A phase field crystal (PFC) model is employed to study morphology evolution of nanoheteroepitaxy and misfit dislocation generation when applied with enhanced supercooling, lattice mismatch and substrate vicinal angle conditions. Misfit strain that rises due to lattice mismatch causes rough surfaces or misfit dislocations, deteriorates film properties, hence, efforts taken to reveal their microscopic mechanism are significant for film quality improvement. Uniform islands, instead of misfit dislocations, are developed in subcritical thickness film, serving as a way of strain relief by surface mechanism. Misfit dislocations generate when strain relief by surface mechanism is deficient in higher supercooling, multilayers of misfit dislocations dominate, but the number of layers reduces gradually when the supercooling is further enhanced. Rough surfaces like islands or cuspate pits are developed which is ascribed to lattice mismatch, multilayers of misfit dislocations generate to further enhance lattice mismatch. Layers of misfit dislocations generate at a thickening position at enhanced substrate vicinal angle, this further enhancing the angle leading to sporadic generation of misfit dislocations.
Huo, Si-Xin; Liu, Qian; Cao, Shuo-Hui; Cai, Wei-Peng; Meng, Ling-Yan; Xie, Kai-Xin; Zhai, Yan-Yun; Zong, Cheng; Yang, Zhi-Lin; Ren, Bin; Li, Yao-Qun
2015-06-04
Surface-enhanced Raman scattering (SERS) is a unique analytical technique that provides fingerprint spectra, yet facing the obstacle of low collection efficiency. In this study, we demonstrated a simple approach to measure surface plasmon-coupled directional enhanced Raman scattering by means of the reverse Kretschmann configuration (RK-SPCR). Highly directional and p-polarized Raman scattering of 4-aminothiophenol (4-ATP) was observed on a nanoparticle-on-film substrate at 46° through the prism coupler with a sharp angle distribution (full width at half-maximum of ∼3.3°). Because of the improved collection efficiency, the Raman scattering signal was enhanced 30-fold over the conventional SERS mode; this was consistent with finite-difference time-domain simulations. The effect of nanoparticles on the coupling efficiency of propagated surface plasmons was investigated. Possessing straightforward implementation and directional enhancement of Raman scattering, RK-SPCR is anticipated to simplify SERS instruments and to be broadly applicable to biochemical assays.