BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity.
Jiang, Wen; Feng, Songjie; Huang, Shisheng; Yu, Wenxia; Li, Guanglei; Yang, Guang; Liu, Yajing; Zhang, Yu; Zhang, Lei; Hou, Yu; Chen, Jia; Chen, Jieping; Huang, Xingxu
2018-06-06
Base editor (BE), containing a cytidine deaminase and catalytically defective Cas9, has been widely used to perform base editing. However, the narrow editing window of BE limits its utility. Here, we developed a new editing technology named as base editor for programming larger C to U (T) scope (BE-PLUS) by fusing 10 copies of GCN4 peptide to nCas9(D10A) for recruiting scFv-APOBEC-UGI-GB1 to the target sites. The new system achieves base editing with a broadened window, resulting in an increased genome-targeting scope. Interestingly, the new system yielded much fewer unwanted indels and non-C-to-T conversions. We also demonstrated its potential use in gene disruption across the whole genome through induction of stop codons (iSTOP). Taken together, the BE-PLUS system offers a new editing tool with increased editing window and enhanced fidelity.
Window classification of brain CT images in biomedical articles.
Xue, Zhiyun; Antani, Sameer; Long, L Rodney; Demner-Fushman, Dina; Thoma, George R
2012-01-01
Effective capability to search biomedical articles based on visual properties of article images may significantly augment information retrieval in the future. In this paper, we present a new method to classify the window setting types of brain CT images. Windowing is a technique frequently used in the evaluation of CT scans, and is used to enhance contrast for the particular tissue or abnormality type being evaluated. In particular, it provides radiologists with an enhanced view of certain types of cranial abnormalities, such as the skull lesions and bone dysplasia which are usually examined using the " bone window" setting and illustrated in biomedical articles using "bone window images". Due to the inherent large variations of images among articles, it is important that the proposed method is robust. Our algorithm attained 90% accuracy in classifying images as bone window or non-bone window in a 210 image data set.
Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin
2017-10-01
Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary to fixed window length conventional filters. Copyright © 2017 Elsevier B.V. All rights reserved.
Keith M. Reynolds; Edward H. Holsten
1997-01-01
SBexpert version 2.0 is a knowledge-based decision-support system for spruce beetle (Dendroctonus rufipennis (Kby.)) management developed for use in Microsoft (MS) Windows with the KnowledgePro Windows development language. Version 2.0 is a significant enhancement of version 1.0. The SBexpert users guide provides detailed instructions on the use of...
Bond-selective imaging of deep tissue through the optical window between 1600 and 1850 nm.
Wang, Pu; Wang, Han-Wei; Sturek, Michael; Cheng, Ji-Xin
2012-01-01
We report the employment of an optical window between 1600 nm and 1850 nm for bond-selective deep tissue imaging through harmonic vibrational excitation and acoustic detection of resultant pressure waves. In this window where a local minimum of water absorption resides, we found a 5 times enhancement of photoacoustic signal by first overtone excitation of the methylene group CH(2) at 1730 nm, compared to the second overtone excitation at 1210 nm. The enhancement allows 3D mapping of intramuscular fat with improved contrast and of lipid deposition inside an atherosclerotic artery wall in the presence of blood. Moreover, lipid and protein are differentiated based on the first overtone absorption profiles of CH(2) and methyl group CH(3) in this window. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxin; Wen, Wenhui; Wang, Kai
2016-01-11
1700-nm window has been demonstrated to be a promising excitation window for deep-tissue multiphoton microscopy (MPM). Long working-distance water immersion objective lenses are typically used for deep-tissue imaging. However, absorption due to immersion water at 1700 nm is still high and leads to dramatic decrease in signals. In this paper, we demonstrate measurement of absorption spectrum of deuterium oxide (D{sub 2}O) from 1200 nm to 2600 nm, covering the three low water-absorption windows potentially applicable for deep-tissue imaging (1300 nm, 1700 nm, and 2200 nm). We apply this measured result to signal enhancement in MPM at the 1700-nm window. Compared with water immersion, D{sub 2}O immersionmore » enhances signal levels in second-harmonic generation imaging, 3-photon fluorescence imaging, and third-harmonic generation imaging by 8.1, 24.8, and 24.7 times with 1662-nm excitation, in good agreement with theoretical calculation based on our absorption measurement. This suggests D{sub 2}O a promising immersion medium for deep-tissue imaging.« less
NASA Technical Reports Server (NTRS)
Collier, Mark D.; Killough, Ronnie; Martin, Nancy L.
1990-01-01
NASA is currently using a set of applications called the Display Builder and Display Manager. They run on Concurrent systems and heavily depend on the Graphic Kernel System (GKS). At this time however, these two applications would more appropriately be developed in X Windows, in which a low X is used for all actual text and graphics display and a standard widget set (such as Motif) is used for the user interface. Use of the X Windows will increase performance, improve the user interface, enhance portability, and improve reliability. Prototype of X Window/Motif based Display Manager provides the following advantages over a GKS based application: improved performance by using a low level X Windows, display of graphic and text will be more efficient; improved user interface by using Motif; Improved portability by operating on both Concurrent and Sun workstations; and Improved reliability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L; Shen, C; Wang, J
Purpose: To reduce cone beam CT (CBCT) imaging dose, we previously proposed a progressive dose control (PDC) scheme to employ temporal correlation between CBCT images at different fractions for image quality enhancement. A temporal non-local means (TNLM) method was developed to enhance quality of a new low-dose CBCT using existing high-quality CBCT. To enhance a voxel value, the TNLM method searches for similar voxels in a window. Due to patient deformation among the two CBCTs, a large searching window was required, reducing image quality and computational efficiency. This abstract proposes a deformation-assisted TNLM (DA-TNLM) method to solve this problem. Methods:more » For a low-dose CBCT to be enhanced using a high-quality CBCT, we first performed deformable image registration between the low-dose CBCT and the high-quality CBCT to approximately establish voxel correspondence between the two. A searching window for a voxel was then set based on the deformation vector field. Specifically, the search window for each voxel was shifted by the deformation vector. A TNLM step was then applied using only voxels within this determined window to correct image intensity at the low-dose CBCT. Results: We have tested the proposed scheme on simulated CIRS phantom data and real patient data. The CITS phantom was scanned on Varian onboard imaging CBCT system with coach shifting and dose reducing for each time. The real patient data was acquired in four fractions with dose reduced from standard CBCT dose to 12.5% of standard dose. It was found that the DA-TNLM method can reduce total dose by over 75% on average in the first four fractions. Conclusion: We have developed a PDC scheme which can enhance the quality of image scanned at low dose using a DA-TNLM method. Tests in phantom and patient studies demonstrated promising results.« less
Chest CT window settings with multiscale adaptive histogram equalization: pilot study.
Fayad, Laura M; Jin, Yinpeng; Laine, Andrew F; Berkmen, Yahya M; Pearson, Gregory D; Freedman, Benjamin; Van Heertum, Ronald
2002-06-01
Multiscale adaptive histogram equalization (MAHE), a wavelet-based algorithm, was investigated as a method of automatic simultaneous display of the full dynamic contrast range of a computed tomographic image. Interpretation times were significantly lower for MAHE-enhanced images compared with those for conventionally displayed images. Diagnostic accuracy, however, was insufficient in this pilot study to allow recommendation of MAHE as a replacement for conventional window display.
Design and implementation of face recognition system based on Windows
NASA Astrophysics Data System (ADS)
Zhang, Min; Liu, Ting; Li, Ailan
2015-07-01
In view of the basic Windows login password input way lacking of safety and convenient operation, we will introduce the biometrics technology, face recognition, into the computer to login system. Not only can it encrypt the computer system, also according to the level to identify administrators at all levels. With the enhancement of the system security, user input can neither be a cumbersome nor worry about being stolen password confidential.
Switchable Materials for Smart Windows.
Wang, Yang; Runnerstrom, Evan L; Milliron, Delia J
2016-06-07
This article reviews the basic principles of and recent developments in electrochromic, photochromic, and thermochromic materials for applications in smart windows. Compared with current static windows, smart windows can dynamically modulate the transmittance of solar irradiation based on weather conditions and personal preferences, thus simultaneously improving building energy efficiency and indoor human comfort. Although some smart windows are commercially available, their widespread implementation has not yet been realized. Recent advances in nanostructured materials provide new opportunities for next-generation smart window technology owing to their unique structure-property relations. Nanomaterials can provide enhanced coloration efficiency, faster switching kinetics, and longer lifetime. In addition, their compatibility with solution processing enables low-cost and high-throughput fabrication. This review also discusses the importance of dual-band modulation of visible and near-infrared (NIR) light, as nearly 50% of solar energy lies in the NIR region. Some latest results show that solution-processable nanostructured systems can selectively modulate the NIR light without affecting the visible transmittance, thus reducing energy consumption by air conditioning, heating, and artificial lighting.
Gundogdu, Erhan; Ozkan, Huseyin; Alatan, A Aydin
2017-11-01
Correlation filters have been successfully used in visual tracking due to their modeling power and computational efficiency. However, the state-of-the-art correlation filter-based (CFB) tracking algorithms tend to quickly discard the previous poses of the target, since they consider only a single filter in their models. On the contrary, our approach is to register multiple CFB trackers for previous poses and exploit the registered knowledge when an appearance change occurs. To this end, we propose a novel tracking algorithm [of complexity O(D) ] based on a large ensemble of CFB trackers. The ensemble [of size O(2 D ) ] is organized over a binary tree (depth D ), and learns the target appearance subspaces such that each constituent tracker becomes an expert of a certain appearance. During tracking, the proposed algorithm combines only the appearance-aware relevant experts to produce boosted tracking decisions. Additionally, we propose a versatile spatial windowing technique to enhance the individual expert trackers. For this purpose, spatial windows are learned for target objects as well as the correlation filters and then the windowed regions are processed for more robust correlations. In our extensive experiments on benchmark datasets, we achieve a substantial performance increase by using the proposed tracking algorithm together with the spatial windowing.
Attenuating fearful memories: effect of cued extinction on intrusions.
Marks, Elizabeth H; Zoellner, Lori A
2014-12-01
Exposure-based therapies for posttraumatic stress disorder are thought to reduce intrusive memories through extinction processes. Methods that enhance extinction may translate to improved treatment. Rat research suggests retrieving a memory via a conditioned stimulus (CS) cue, and then modifying the retrieved memory within a specific reconsolidation window may enhance extinction. In humans, studies (e.g., Kindt & Soeter, 2013; Schiller et al., 2010) using basic learning paradigms show discrepant findings. Using a distressing film paradigm, participants (N = 148) completed fear acquisition and extinction. At extinction, they were randomized to 1 of 3 groups: CS cue within reconsolidation window, CS cue outside window, or non-CS cue within window. Intrusions were assessed 24 hr after extinction. Participants receiving the CS cue and completing extinction within the reconsolidation window had more intrusions (M = 2.40, SD = 2.54) than those cued outside (M = 1.65, SD = 1.70) or those receiving a non-CS cue (M = 1.24, SD = 1.26), F(2, 145) = 4.52, p = .01, d = 0.55. Consistent with the reconsolidation hypothesis, presenting a CS cue does appear to activate a specific period of time during which a memory can be updated. However, the CS cue caused increased, rather than decreased, frequency of intrusions. Understanding parameters of preextinction cueing may help us better understand reconsolidation as a potential memory updating mechanism.
Hayashi, Motohiro; Chernov, Mikhail F; Tamura, Noriko; Yomo, Shoji; Tamura, Manabu; Horiba, Ayako; Izawa, Masahiro; Muragaki, Yoshihiro; Iseki, Hiroshi; Okada, Yoshikazu; Ivanov, Pavel; Régis, Jean; Takakura, Kintomo
2013-01-01
Gamma Knife radiosurgery (GKS) is currently performed with 0.1 mm preciseness, which can be designated microradiosurgery. It requires advanced methods for visualizing the target, which can be effectively attained by a neuroimaging protocol based on plain and gadolinium-enhanced constructive interference in steady state (CISS) images. Since 2003, the following thin-sliced images are routinely obtained before GKS of skull base lesions in our practice: axial CISS, gadolinium-enhanced axial CISS, gadolinium-enhanced axial modified time-of-flight (TOF), and axial computed tomography (CT). Fusion of "bone window" CT and magnetic resonance imaging (MRI), and detailed three-dimensional (3D) delineation of the anatomical structures are performed with the Leksell GammaPlan (Elekta Instruments AB). Recently, a similar technique has been also applied to evaluate neuroanatomy before open microsurgical procedures. Plain CISS images permit clear visualization of the cranial nerves in the subarachnoid space. Gadolinium-enhanced CISS images make the tumor "lucid" but do not affect the signal intensity of the cranial nerves, so they can be clearly delineated in the vicinity to the lesion. Gadolinium-enhanced TOF images are useful for 3D evaluation of the interrelations between the neoplasm and adjacent vessels. Fusion of "bone window" CT and MRI scans permits simultaneous assessment of both soft tissue and bone structures and allows 3D estimation and correction of MRI distortion artifacts. Detailed understanding of the neuroanatomy based on application of the advanced neuroimaging protocol permits performance of highly conformal and selective radiosurgical treatment. It also allows precise planning of the microsurgical procedures for skull base tumors.
Structure-activity relationships for skin sensitization: recent improvements to Derek for Windows.
Langton, Kate; Patlewicz, Grace Y; Long, Anthony; Marchant, Carol A; Basketter, David A
2006-12-01
Derek for Windows (DfW) is a knowledge-based expert system that predicts the toxicity of a chemical from its structure. Its predictions are based in part on alerts that describe structural features or toxicophores associated with toxicity. Recently, improvements have been made to skin sensitization alerts within the DfW knowledge base in collaboration with Unilever. These include modifications to the alerts describing the skin sensitization potential of aldehydes, 1,2-diketones, and isothiazolinones and consist of enhancements to the toxicophore definition, the mechanistic classification, and the extent of supporting evidence provided. The outcomes from this collaboration demonstrate the importance of updating and refining computer models for the prediction of skin sensitization as new information from experimental and theoretical studies becomes available.
NASA Astrophysics Data System (ADS)
Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun
2016-05-01
The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.
NASA Astrophysics Data System (ADS)
Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro
2016-05-01
Efficiency enhancement was achieved in Cu2O-based heterojunction solar cells fabricated with a zinc-germanium-oxide (Zn1- x Ge x -O) thin film as the n-type window layer and a p-type Na-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing Cu sheets. The Ge content (x) dependence of the obtained photovoltaic properties of the heterojunction solar cells is mainly explained by the conduction band discontinuity that results from the electron affinity difference between Zn1- x Ge x -O and Cu2O:Na. The optimal value of x in Zn1- x Ge x -O thin films prepared by pulsed laser deposition was observed to be 0.62. An efficiency of 8.1% was obtained in a MgF2/Al-doped ZnO/Zn0.38Ge0.62-O/Cu2O:Na heterojunction solar cell.
Carreiro, André V; Amaral, Pedro M T; Pinto, Susana; Tomás, Pedro; de Carvalho, Mamede; Madeira, Sara C
2015-12-01
Amyotrophic Lateral Sclerosis (ALS) is a devastating disease and the most common neurodegenerative disorder of young adults. ALS patients present a rapidly progressive motor weakness. This usually leads to death in a few years by respiratory failure. The correct prediction of respiratory insufficiency is thus key for patient management. In this context, we propose an innovative approach for prognostic prediction based on patient snapshots and time windows. We first cluster temporally-related tests to obtain snapshots of the patient's condition at a given time (patient snapshots). Then we use the snapshots to predict the probability of an ALS patient to require assisted ventilation after k days from the time of clinical evaluation (time window). This probability is based on the patient's current condition, evaluated using clinical features, including functional impairment assessments and a complete set of respiratory tests. The prognostic models include three temporal windows allowing to perform short, medium and long term prognosis regarding progression to assisted ventilation. Experimental results show an area under the receiver operating characteristics curve (AUC) in the test set of approximately 79% for time windows of 90, 180 and 365 days. Creating patient snapshots using hierarchical clustering with constraints outperforms the state of the art, and the proposed prognostic model becomes the first non population-based approach for prognostic prediction in ALS. The results are promising and should enhance the current clinical practice, largely supported by non-standardized tests and clinicians' experience. Copyright © 2015 Elsevier Inc. All rights reserved.
Shakil, Sadia; Lee, Chin-Hui; Keilholz, Shella Dawn
2016-01-01
A promising recent development in the study of brain function is the dynamic analysis of resting-state functional MRI scans, which can enhance understanding of normal cognition and alterations that result from brain disorders. One widely used method of capturing the dynamics of functional connectivity is sliding window correlation (SWC). However, in the absence of a “gold standard” for comparison, evaluating the performance of the SWC in typical resting-state data is challenging. This study uses simulated networks (SNs) with known transitions to examine the effects of parameters such as window length, window offset, window type, noise, filtering, and sampling rate on the SWC performance. The SWC time course was calculated for all node pairs of each SN and then clustered using the k-means algorithm to determine how resulting brain states match known configurations and transitions in the SNs. The outcomes show that the detection of state transitions and durations in the SWC is most strongly influenced by the window length and offset, followed by noise and filtering parameters. The effect of the image sampling rate was relatively insignificant. Tapered windows provide less sensitivity to state transitions than rectangular windows, which could be the result of the sharp transitions in the SNs. Overall, the SWC gave poor estimates of correlation for each brain state. Clustering based on the SWC time course did not reliably reflect the underlying state transitions unless the window length was comparable to the state duration, highlighting the need for new adaptive window analysis techniques. PMID:26952197
ERIC Educational Resources Information Center
Watts, Marty
2006-01-01
In this article, the author discusses the role of window films in enhancing indoor air quality in schools. Historically, window film has been used to reduce temperatures in buildings prone to overheating. Too much solar energy entering through windows makes occupants uncomfortable and air conditioning more costly. Film has been a simple solution…
Mouse Driven Window Graphics for Network Teaching.
ERIC Educational Resources Information Center
Makinson, G. J.; And Others
Computer enhanced teaching of computational mathematics on a network system driving graphics terminals is being redeveloped for a mouse-driven, high resolution, windowed environment of a UNIX work station. Preservation of the features of networked access by heterogeneous terminals is provided by the use of the X Window environment. A dmonstrator…
MULTIPLE PROJECTIONS SYSTEM (MPS): USER'S MANUAL VERSION 2.0
The document is a user's manual for Multiple Projections System (MPS) Version 2.0, based on the 3% reasonable further progress (RFP) tracking system that was developed in FY92/FY93. The 3% RFP tracking system is a Windows application, and enhancements to convert the 3% RFP track...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarty, U.; Rao, B. S.; Arora, V.
Enhanced water window x-ray emission (23–44 Å) from carbon clusters, formed in situ using a pre-pulse, irradiated by intense (I > 10{sup 17} W/cm{sup 2}) ultra-short laser pulse, is demonstrated. An order of magnitude x-ray enhancement over planar graphite target is observed in carbon clusters, formed by a sub-ns pre-pulse, interacting with intense main pulse after a delay. The effect of the delay and the duration of the main pulse is studied for optimizing the x-ray emission in the water window region. This x-ray source has added advantages of being an efficient, high repetition rate, and low debris x-ray source.
NASA Astrophysics Data System (ADS)
Zeng, Bangze; Zhu, Youpan; Li, Zemin; Hu, Dechao; Luo, Lin; Zhao, Deli; Huang, Juan
2014-11-01
Duo to infrared image with low contrast, big noise and unclear visual effect, target is very difficult to observed and identified. This paper presents an improved infrared image detail enhancement algorithm based on adaptive histogram statistical stretching and gradient filtering (AHSS-GF). Based on the fact that the human eyes are very sensitive to the edges and lines, the author proposed to extract the details and textures by using the gradient filtering. New histogram could be acquired by calculating the sum of original histogram based on fixed window. With the minimum value for cut-off point, author carried on histogram statistical stretching. After the proper weights given to the details and background, the detail-enhanced results could be acquired finally. The results indicate image contrast could be improved and the details and textures could be enhanced effectively as well.
Using Parameters of Dynamic Pulse Function for 3d Modeling in LOD3 Based on Random Textures
NASA Astrophysics Data System (ADS)
Alizadehashrafi, B.
2015-12-01
The pulse function (PF) is a technique based on procedural preprocessing system to generate a computerized virtual photo of the façade with in a fixed size square(Alizadehashrafi et al., 2009, Musliman et al., 2010). Dynamic Pulse Function (DPF) is an enhanced version of PF which can create the final photo, proportional to real geometry. This can avoid distortion while projecting the computerized photo on the generated 3D model(Alizadehashrafi and Rahman, 2013). The challenging issue that might be handled for having 3D model in LoD3 rather than LOD2, is the final aim that have been achieved in this paper. In the technique based DPF the geometries of the windows and doors are saved in an XML file schema which does not have any connections with the 3D model in LoD2 and CityGML format. In this research the parameters of Dynamic Pulse Functions are utilized via Ruby programming language in SketchUp Trimble to generate (exact position and deepness) the windows and doors automatically in LoD3 based on the same concept of DPF. The advantage of this technique is automatic generation of huge number of similar geometries e.g. windows by utilizing parameters of DPF along with defining entities and window layers. In case of converting the SKP file to CityGML via FME software or CityGML plugins the 3D model contains the semantic database about the entities and window layers which can connect the CityGML to MySQL(Alizadehashrafi and Baig, 2014). The concept behind DPF, is to use logical operations to project the texture on the background image which is dynamically proportional to real geometry. The process of projection is based on two vertical and horizontal dynamic pulses starting from upper-left corner of the background wall in down and right directions respectively based on image coordinate system. The logical one/zero on the intersections of two vertical and horizontal dynamic pulses projects/does not project the texture on the background image. It is possible to define priority for each layer. For instance the priority of the door layer can be higher than window layer which means that window texture cannot be projected on the door layer. Orthogonal and rectified perpendicular symmetric photos of the 3D objects that are proportional to the real façade geometry must be utilized for the generation of the output frame for DPF. The DPF produces very high quality and small data size of output image files in quite smaller dimension compare with the photorealistic texturing method. The disadvantage of DPF is its preprocessing method to generate output image file rather than online processing to generate the texture within the 3D environment such as CityGML. Furthermore the result of DPF can be utilized for 3D model in LOD2 rather than LOD3. In the current work the random textures of the window layers are created based on parameters of DPF within Ruby console of SketchUp Trimble to generate the deeper geometries of the windows and their exact position on the façade automatically along with random textures to increase Level of Realism (LoR)(Scarpino, 2010). As the output frame in DPF is proportional to real geometry (height and width of the façade) it is possible to query the XML database and convert them to units such as meter automatically. In this technique, the perpendicular terrestrial photo from the façade is rectified by employing projective transformation based on the frame which is in constrain proportion to real geometry. The rectified photos which are not suitable for texturing but necessary for measuring, can be resized in constrain proportion to real geometry before measuring process. Height and width of windows, doors, horizontal and vertical distance between windows from upper left corner of the photo dimensions of doors and windows are parameters that should be measured to run the program as a plugins in SketchUp Trimble. The system can use these parameters and texture file names and file paths to create the façade semi-automatically. To avoid leaning geometry the textures of windows, doors and etc, should be cropped and rectified from perpendicular photos, so that they can be used in the program to create the whole façade along with its geometries. Texture enhancement should be done in advance such as removing disturbing objects, exposure setting, left-right up-down transformation, and so on. In fact, the quality, small data size, scale and semantic database for each façade are the prominent advantages of this method.
Detection with Enhanced Energy Windowing Phase I Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bass, David A.; Enders, Alexander L.
2016-12-01
This document reviews the progress of Phase I of the Detection with Enhanced Energy Windowing (DEEW) project. The DEEW project is the implementation of software incorporating an algorithm which reviews data generated by radiation portal monitors and utilizes advanced and novel techniques for detecting radiological and fissile material while not alarming on Naturally Occurring Radioactive Material. Independent testing indicated that the Enhanced Energy Windowing algorithm showed promise at reducing the probability of alarm in the stream of commerce compared to existing algorithms and other developmental algorithms, while still maintaining adequate sensitivity to threats. This document contains a brief description ofmore » the project, instructions for setting up and running the applications, and guidance to help make reviewing the output files and source code easier.« less
Dermatas, Evangelos
2015-01-01
A novel method for finger vein pattern extraction from infrared images is presented. This method involves four steps: preprocessing which performs local normalization of the image intensity, image enhancement, image segmentation, and finally postprocessing for image cleaning. In the image enhancement step, an image which will be both smooth and similar to the original is sought. The enhanced image is obtained by minimizing the objective function of a modified separable Mumford Shah Model. Since, this minimization procedure is computationally intensive for large images, a local application of the Mumford Shah Model in small window neighborhoods is proposed. The finger veins are located in concave nonsmooth regions and, so, in order to distinct them from the other tissue parts, all the differences between the smooth neighborhoods, obtained by the local application of the model, and the corresponding windows of the original image are added. After that, veins in the enhanced image have been sufficiently emphasized. Thus, after image enhancement, an accurate segmentation can be obtained readily by a local entropy thresholding method. Finally, the resulted binary image may suffer from some misclassifications and, so, a postprocessing step is performed in order to extract a robust finger vein pattern. PMID:26120357
Development of Multispectral Sandwich-Type IR Windows.
1977-04-01
Coatings 52 4.4 Thermophyslcal Properties 59 4.5 Mechanical Properties 62 4.5.1 Hardness and Strength of Window Components ... 62 4.5.2 Bond...AR coating ) 51 36 Transmittance vs. wavelength for a 0.050 in. thick CVD ZnS plate (No AR coating ) 53 37 Transmittance of a ZnS/ZnSe composite...compared to 67% calculated for the ZnSe window alone. As described below, anti -reflection coatings deposited onto the composite window will further enhance
New machining method of high precision infrared window part
NASA Astrophysics Data System (ADS)
Yang, Haicheng; Su, Ying; Xu, Zengqi; Guo, Rui; Li, Wenting; Zhang, Feng; Liu, Xuanmin
2016-10-01
Most of the spherical shell of the photoelectric multifunctional instrument was designed as multi optical channel mode to adapt to the different band of the sensor, there were mainly TV, laser and infrared channels. Without affecting the optical diameter, wind resistance and pneumatic performance of the optical system, the overall layout of the spherical shell was optimized to save space and reduce weight. Most of the shape of the optical windows were special-shaped, each optical window directly participated in the high resolution imaging of the corresponding sensor system, and the optical axis parallelism of each sensor needed to meet the accuracy requirement of 0.05mrad.Therefore precision machining of optical window parts quality will directly affect the photoelectric system's pointing accuracy and interchangeability. Processing and testing of the TV and laser window had been very mature, while because of the special nature of the material, transparent and high refractive rate, infrared window parts had the problems of imaging quality and the control of the minimum focal length and second level parallel in the processing. Based on years of practical experience, this paper was focused on how to control the shape and parallel difference precision of infrared window parts in the processing. Single pass rate was increased from 40% to more than 95%, the processing efficiency was significantly enhanced, an effective solution to the bottleneck problem in the actual processing, which effectively solve the bottlenecks in research and production.
NASA Astrophysics Data System (ADS)
Li, C.; Zhou, X.; Tang, D.; Zhu, Z.
2018-04-01
Resolution and sidelobe are mutual restrict for SAR image. Usually sidelobe suppression is based on resolution reduction. This paper provide a method for resolution enchancement using sidelobe opposition speciality of hanning window and SAR image. The method can keep high resolution on the condition of sidelobe suppression. Compare to traditional method, this method can enchance 50 % resolution when sidelobe is -30dB.
Seismic facies analysis based on self-organizing map and empirical mode decomposition
NASA Astrophysics Data System (ADS)
Du, Hao-kun; Cao, Jun-xing; Xue, Ya-juan; Wang, Xing-jian
2015-01-01
Seismic facies analysis plays an important role in seismic interpretation and reservoir model building by offering an effective way to identify the changes in geofacies inter wells. The selections of input seismic attributes and their time window have an obvious effect on the validity of classification and require iterative experimentation and prior knowledge. In general, it is sensitive to noise when waveform serves as the input data to cluster analysis, especially with a narrow window. To conquer this limitation, the Empirical Mode Decomposition (EMD) method is introduced into waveform classification based on SOM. We first de-noise the seismic data using EMD and then cluster the data using 1D grid SOM. The main advantages of this method are resolution enhancement and noise reduction. 3D seismic data from the western Sichuan basin, China, are collected for validation. The application results show that seismic facies analysis can be improved and better help the interpretation. The powerful tolerance for noise makes the proposed method to be a better seismic facies analysis tool than classical 1D grid SOM method, especially for waveform cluster with a narrow window.
Windows Program For Driving The TDU-850 Printer
NASA Technical Reports Server (NTRS)
Parrish, Brett T.
1995-01-01
Program provides WYSIWYG compatibility between video display and printout. PDW is Microsoft Windows printer-driver computer program for use with Raytheon TDU-850 printer. Provides previously unavailable linkage between printer and IBM PC-compatible computers running Microsoft Windows. Enhances capabilities of Raytheon TDU-850 hardcopier by emulating all textual and graphical features normally supported by laser/ink-jet printers and makes printer compatible with any Microsoft Windows application. Also provides capabilities not found in laser/ink-jet printer drivers by providing certain Windows applications with ability to render high quality, true gray-scale photographic hardcopy on TDU-850. Written in C language.
Technologies for precision manufacture of current and future windows and domes
NASA Astrophysics Data System (ADS)
Hallock, Bob; Shorey, Aric
2009-05-01
The final finish and characterization of windows and domes presents a number of challenges in achieving desired precision with acceptable cost and schedule. This becomes more difficult with advanced materials and as window and dome shapes and requirements become more complex, including acute angle corners, transmitted wavefront specifications, aspheric geometries and trending toward conformal surfaces. Magnetorheological Finishing (MRF®) and Magnetorheological Jet (MR Jet®), along with metrology provided by Sub-aperture Stitching Interferometry (SSI®) have several unique attributes that provide them advantages in enhancing fabrication of current and next generation windows and domes. The advantages that MRF brings to the precision finishing of a wide range of shapes such as flats, spheres (including hemispheres), cylinders, aspheres and even freeform optics, has been well documented. Recent advancements include the ability to finish freeform shapes up to 2-meters in size as well as progress in finishing challenging IR materials. Due to its shear-based removal mechanism in contrast to the pressure-based process of other techniques, edges are not typically rolled, in particular on parts with acute angle corners. MR Jet provides additional benefits, particularly in the finishing of the inside of steep concave domes and other irregular shapes. The ability of MR Jet to correct the figure of conformal domes deterministically and to high precision has been demonstrated. Combining these technologies with metrology techniques, such as SSI provides a solution for finishing current and future windows and domes in a reliable, deterministic and cost-effective way. The ability to use the SSI to characterize a range of shapes such as domes and aspheres, as well as progress in using MRF and MR Jet for finishing conventional and conformal windows and domes with increasing size and complexity of design will be presented.
NASA Astrophysics Data System (ADS)
Cheng, Z.; Chen, Y.; Liu, Y.; Liu, W.; Zhang, G.
2015-12-01
Among those hydrocarbon reservoir detection techniques, the time-frequency analysis based approach is one of the most widely used approaches because of its straightforward indication of low-frequency anomalies from the time-frequency maps, that is to say, the low-frequency bright spots usually indicate the potential hydrocarbon reservoirs. The time-frequency analysis based approach is easy to implement, and more importantly, is usually of high fidelity in reservoir prediction, compared with the state-of-the-art approaches, and thus is of great interest to petroleum geologists, geophysicists, and reservoir engineers. The S transform has been frequently used in obtaining the time-frequency maps because of its better performance in controlling the compromise between the time and frequency resolutions than the alternatives, such as the short-time Fourier transform, Gabor transform, and continuous wavelet transform. The window function used in the majority of previous S transform applications is the symmetric Gaussian window. However, one problem with the symmetric Gaussian window is the degradation of time resolution in the time-frequency map due to the long front taper. In our study, a bi-Gaussian S transform that substitutes the symmetric Gaussian window with an asymmetry bi-Gaussian window is proposed to analyze the multi-channel seismic data in order to predict hydrocarbon reservoirs. The bi-Gaussian window introduces asymmetry in the resultant time-frequency spectrum, with time resolution better in the front direction, as compared with the back direction. It is the first time that the bi-Gaussian S transform is used for analyzing multi-channel post-stack seismic data in order to predict hydrocarbon reservoirs since its invention in 2003. The superiority of the bi-Gaussian S transform over traditional S transform is tested on a real land seismic data example. The performance shows that the enhanced temporal resolution can help us depict more clearly the edge of the hydrocarbon reservoir, especially when the thickness of the reservoir is small (such as the thin beds).
2009-10-01
be made. Currently, iodine based compounds are used to enhance contrast of CT which have the limitations of short imaging window due to rapid...number compared to conventionally used iodine compounds . Nanoparticle based CT contrast agents have been demonstrated for vascular imaging, which...constructs with gamma or positron emitting isotopes through a covalent attachment of a bifunctional chelator to the nanoparticles surface. However, in
NASA Astrophysics Data System (ADS)
Reil, Frank; Thomas, John E.
2002-05-01
For the first time we are able to observe the time-resolved Wigner function of enhanced backscatter from a random medium using a novel two-window technique. This technique enables us to directly verify the phase-conjugating properties of random media. An incident divergent beam displays a convergent enhanced backscatter cone. We measure the joint position and momentum (x, p) distributions of the light field as a function of propagation time in the medium. The two-window technique allows us to independently control the resolutions for position and momentum, thereby surpassing the uncertainty limit associated with Fourier transform pairs. By using a low-coherence light source in a heterodyne detection scheme, we observe enhanced backscattering resolved by path length in the random medium, providing information about the evolution of optical coherence as a function of penetration depth in the random medium.
Design strategies to minimize the radiative efficiency of global warming molecules
Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.
2010-01-01
A strategy is devised to screen molecules based on their radiative efficiency. The methodology should be useful as one additional constraint when determining the best molecule to use for an industrial application. The strategy is based on the results of a recent study where we examined molecular properties of global warming molecules using ab initio electronic structure methods to determine which fundamental molecular properties are important in assessing the radiative efficiency of a molecule. Six classes of perfluorinated compounds are investigated. For similar numbers of fluorine atoms, their absorption of radiation in the IR window decreases according to perfluoroethers > perfluorothioethers ≈ sulfur/carbon compounds > perfluorocarbons > perfluoroolefins > carbon/nitrogen compounds. Perfluoroethers and hydrofluorethers are shown to possess a large absorption in the IR window due to (i) the C─O bonds are very polar, (ii) the C-O stretches fall within the IR window and have large IR intensity due to their polarity, and (iii) the IR intensity for C-F stretches in which the fluorine atom is bonded to the carbon that is bonded to the oxygen atom is enhanced due to a larger C─F bond polarity. Lengthening the carbon chain leads to a larger overall absorption in the IR window, though the IR intensity per bond is smaller. Finally, for a class of partially fluorinated compounds with a set number of electronegative atoms, the overall absorption in the IR window can vary significantly, as much as a factor of 2, depending on how the fluorine atoms are distributed within the molecule. PMID:20439762
Real-time 3-D contrast-enhanced transcranial ultrasound and aberration correction.
Ivancevich, Nikolas M; Pinton, Gianmarco F; Nicoletto, Heather A; Bennett, Ellen; Laskowitz, Daniel T; Smith, Stephen W
2008-09-01
Contrast-enhanced (CE) transcranial ultrasound (US) and reconstructed 3-D transcranial ultrasound have shown advantages over traditional methods in a variety of cerebrovascular diseases. We present the results from a novel ultrasound technique, namely real-time 3-D contrast-enhanced transcranial ultrasound. Using real-time 3-D (RT3D) ultrasound and microbubble contrast agent, we scanned 17 healthy volunteers via a single temporal window and nine via the suboccipital window and report our detection rates for the major cerebral vessels. In 71% of subjects, both of our observers identified the ipsilateral circle of Willis from the temporal window, and in 59% we imaged the entire circle of Willis. From the suboccipital window, both observers detected the entire vertebrobasilar circulation in 22% of subjects, and in 44%, the basilar artery. After performing phase aberration correction on one subject, we were able to increase the diagnostic value of the scan, detecting a vessel not present in the uncorrected scan. These preliminary results suggest that RT3D CE transcranial US and RT3D CE transcranial US with phase aberration correction have the potential to greatly impact the field of neurosonology.
Real-Time 3D Contrast-Enhanced Transcranial Ultrasound and Aberration Correction
Ivancevich, Nikolas M.; Pinton, Gianmarco F.; Nicoletto, Heather A.; Bennett, Ellen; Laskowitz, Daniel T.; Smith, Stephen W.
2008-01-01
Contrast-enhanced (CE) transcranial ultrasound (US) and reconstructed 3D transcranial ultrasound have shown advantages over traditional methods in a variety of cerebrovascular diseases. We present the results from a novel ultrasound technique, namely real-time 3D contrast-enhanced transcranial ultrasound. Using real-time 3D (RT3D) ultrasound and micro-bubble contrast agent, we scanned 17 healthy volunteers via a single temporal window and 9 via the sub-occipital window and report our detection rates for the major cerebral vessels. In 71% of subjects, both of our observers identified the ipsilateral circle of Willis from the temporal window, and in 59% we imaged the entire circle of Willis. From the sub-occipital window, both observers detected the entire vertebrobasilar circulation in 22% of subjects, and in 44% the basilar artery. After performing phase aberration correction on one subject, we were able to increase the diagnostic value of the scan, detecting a vessel not present in the uncorrected scan. These preliminary results suggest that RT3D CE transcranial US and RT3D CE transcranial US with phase aberration correction have the potential to greatly impact the field of neurosonology. PMID:18395321
Metals as radio-enhancers in oncology: The industry perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pottier, Agnés, E-mail: agnes.pottier@nanobiotix.com; Borghi, Elsa; Levy, Laurent
Radio-enhancers, metal-based nanosized agents, could play a key role in oncology. They may unlock the potential of radiotherapy by enhancing the radiation dose deposit within tumors when the ionizing radiation source is ‘on’, while exhibiting chemically inert behavior in cellular and subcellular systems when the radiation beam is ‘off’. Important decision points support the development of these new type of therapeutic agents originated from nanotechnology. Here, we discuss from an industry perspective, the interest of developing radio-enhancer agents to improve tumor control, the relevance of nanotechnology to achieve adequate therapeutic attributes, and present some considerations for their development in oncology.more » - Highlights: • Oncology is a field of high unmet medical need. • Despites of its widespread usage, radiation therapy presents a narrow therapeutic window. • High density material at the nanoscale may enhance radiation dose deposit from cancer cells. • Metal-based nanosized radio-enhancers could unlock the potential of radiotherapy.« less
Illusory displacement of equiluminous kinetic edges.
Ramachandran, V S; Anstis, S M
1990-01-01
A stationary window was cut out of a stationary random-dot pattern. When a field of dots was moved continuously behind the window (a) the window appeared to move in the same direction even though it was stationary, (b) the position of the 'kinetic edges' defining the window was also displaced along the direction of dot motion, and (c) the edges of the window tended to fade on steady fixation even though the dots were still clearly visible. The illusory displacement was enhanced considerably if the kinetic edge was equiluminous and if the 'window' region was seen as 'figure' rather than 'ground'. Since the extraction of kinetic edges probably involves the use of direction-selective cells, the illusion may provide insights into how the visual system uses the output of these cells to localize the kinetic edges.
A Trusted Path Design and Implementation for Security Enhanced Linux
2004-09-01
functionality by a member of the team? Witten, et al., [21] provides an excellent discussion of some aspects of the subject. Ultimately, open vs ...terminal window is a program like gnome - terminal that provides a TTY-like environment as a window inside an X Windows session. The phrase computer...Editors selected No sound or video No graphics Check all development boxes except KDE Administrative tools System tools No printing support
NASA Astrophysics Data System (ADS)
Ko, Bonggyun; Song, Jae Wook; Chang, Woojin
2018-02-01
The aim of this research is to propose an alarm index to forecast the crash of the Korean financial market in extension to the idea of Johansen-Ledoit-Sornette model, which uses the log-periodic functions and pattern recognition algorithm. We discover that the crashes of the Korean financial market can be classified into domestic and global crises where each category requires different window length of fitted datasets. Therefore, we add the window length as a new parameter to enhance the performance of alarm index. Distinguishing the domestic and global crises separately, our alarm index demonstrates more robust forecasting than previous model by showing the error diagram and the results of trading performance.
NASA Astrophysics Data System (ADS)
Xie, Xinxin; Crewell, Susanne; Löhnert, Ulrich; Simmer, Clemens; Miao, Jungang
2015-06-01
This study analyzes the effects of atmospheric absorption and emission on the polarization difference (PD) and brightness temperature (TB) generated by horizontally oriented snow particles. A three-layer plane-parallel atmosphere model is used in conjunction with a simplified radiative transfer (RT) scheme to illustrate the combined effects of dichroic and nondichroic media on microwave signatures observed by ground-based and spaceborne sensors. Based on idealized scenarios which encompass a dichroic snow layer and adjacent nondichroic layers composed of supercooled liquid water (SCLW) droplets and water vapor, we demonstrate that the presence of atmospheric absorption/emission enhances TB and damps PD when observed from the ground. From a spaceborne perspective, however, TB can be reduced or enhanced by an absorbing/emitting layer above the snow layer, while a strong absorbing/emitting layer below the dichroic snow layer may even enhance PD. The induced PD and TB, which rely on snow microphysical assumptions, can vary up to 2 K and 10 K, respectively, due to the temperature-dependent absorption of SCLW. RT calculations based on 223 snowfall profiles selected from European Centre for Medium-Range Weather Forecasts data sets indicate that the existence of SCLW has a noticeable impact on PD and TB at three window frequencies (150 GHz, 243 GHz, and 664 GHz) during snowfall. Our results imply that while polarimetric channels at the three window channels have the potential for snowfall characterization, accurate information on liquid water is required to correctly interpret the polarimetric observations.
NASA Astrophysics Data System (ADS)
Zhang, Xue; Wang, Yong; Fan, Junjie; Zhong, Yong; Zhang, Rui
2014-09-01
To improve the transmitting power in an S-band klystron, a long pill-box window that has a disk with grooves with a semicircular cross section is theoretically investigated and simulated. A Monte-Carlo algorithm is used to track the secondary electron trajectories and analyze the multipactor scenario in the long pill-box window and on the grooved surface. Extending the height of the long-box window can decrease the normal electric field on the surface of the window disk, but the single surface multipactor still exists. It is confirmed that the window disk with periodic semicircular grooves can explicitly suppress the multipactor and predominantly depresses the local field enhancement and the bottom continuous multipactor. The difference between semicircular and sharp boundary grooves is clarified numerically and analytically.
McCoy, Ryan J; O'Brien, Fergal J
2012-12-01
Tissue engineering approaches to developing functional substitutes are often highly complex, multivariate systems where many aspects of the biomaterials, bio-regulatory factors or cell sources may be controlled in an effort to enhance tissue formation. Furthermore, success is based on multiple performance criteria reflecting both the quantity and quality of the tissue produced. Managing the trade-offs between different performance criteria is a challenge. A "windows of operation" tool that graphically represents feasible operating spaces to achieve user-defined levels of performance has previously been described by researchers in the bio-processing industry. This paper demonstrates the value of "windows of operation" to the tissue engineering field using a perfusion-scaffold bioreactor system as a case study. In our laboratory, perfusion bioreactor systems are utilized in the context of bone tissue engineering to enhance the osteogenic differentiation of cell-seeded scaffolds. A key challenge of such perfusion bioreactor systems is to maximize the induction of osteogenesis but minimize cell detachment from the scaffold. Two key operating variables that influence these performance criteria are the mean scaffold pore size and flow-rate. Using cyclooxygenase-2 and osteopontin gene expression levels as surrogate indicators of osteogenesis, we employed the "windows of operation" methodology to rapidly identify feasible operating ranges for the mean scaffold pore size and flow-rate that achieved user-defined levels of performance for cell detachment and differentiation. Incorporation of such tools into the tissue engineer's armory will hopefully yield a greater understanding of the highly complex systems used and help aid decision making in future translation of products from the bench top to the market place. Copyright © 2012 Wiley Periodicals, Inc.
Kunwar, Sandeep; Chang, Susan M; Prados, Michael D; Berger, Mitchel S; Sampson, John H; Croteau, David; Sherman, Jeffrey W; Grahn, Amy Y; Shu, Vince S; Dul, Jeanne L; Husain, Syed R; Joshi, Bharat H; Pedain, Christoph; Puri, Raj K
2006-04-15
Convection-enhanced delivery (CED) is an increasingly used novel local/regional delivery method targeted directly to tissue. It relies on a continuous pressure gradient for distribution of therapeutic agents into the interstitial space, with administration of the infusate over a few days. Cintredekin besudotox (also known as IL13- PE38QQR) is a recombinant chimeric cytotoxin consisting of interleukin-13 and a truncated exotoxin produced by the Pseudomonas aeruginosa bacterium, which targets malignant glioma cells. Cintredekin besudotox was administered via intraparenchymal CED after resection of supratentorial recurrent malignant glioma. The safety and toxicity profile was reviewed for 53 patients in whom infusion catheters had been placed; 51 of them received CED of the study drug. Adverse events were categorized based on time of onset in relation to CED, and the causal relationship with catheter placement or delivery of cintredekin besudotox. Catheters were placed in 53 patients, although only 51 of them received cintredekin besudotox. Most adverse events related to catheter placement or the study drug originated from the central nervous system. Three symptomatic windows were defined: the first one was between surgical procedure and CED; the second was during CED and up to 1 week after its completion; and the third window was 2 to 10 weeks after treatment. Those windows generally reflected adverse events related to surgical procedures, mass effect from infusate, and drug effect on tumor-infiltrated and normal brain parenchyma, respectively. The symptomatic windows identified in this study apply to any CED clinical trials, particularly those in which chimeric cytotoxins are used, and will help to determine the most likely underlying pathophysiological process causing symptoms. This information, in turn, will help to prevent adverse events or minimize their severity. Those events also have implications for dose escalation and outcome measures.
Emergence of two near-infrared windows for in vivo and intraoperative SERS.
Lane, Lucas A; Xue, Ruiyang; Nie, Shuming
2018-04-06
Two clear windows in the near-infrared (NIR) spectrum are of considerable current interest for in vivo molecular imaging and spectroscopic detection. The main rationale is that near-infrared light can penetrate biological tissues such as skin and blood more efficiently than visible light because these tissues scatter and absorb less light at longer wavelengths. The first clear window, defined as light wavelengths between 650nm and 950nm, has been shown to be far superior for in vivo and intraoperative optical imaging than visible light. The second clear window, operating in the wavelength range of 1000-1700nm, has been reported to further improve detection sensitivity, spatial resolution, and tissue penetration because tissue photon scattering and background interference are further reduced at longer wavelengths. Here we discuss recent advances in developing biocompatible plasmonic nanoparticles for in vivo and intraoperative surface-enhanced Raman scattering (SERS) in both the first and second NIR windows. In particular, a new class of 'broad-band' plasmonic nanostructures is well suited for surface Raman enhancement across a broad range of wavelengths allowing a direct comparison of detection sensitivity and tissue penetration between the two NIR window. Also, optimized and encoded SERS nanoparticles are generally nontoxic and are much brighter than near-infrared quantum dots (QDs), raising new possibilities for ultrasensitive detection of microscopic tumors and image-guided precision surgery. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dat, Tran Huy; Takeda, Kazuya; Itakura, Fumitada
We present a multichannel speech enhancement method based on MAP speech spectral magnitude estimation using a generalized gamma model of speech prior distribution, where the model parameters are adapted from actual noisy speech in a frame-by-frame manner. The utilization of a more general prior distribution with its online adaptive estimation is shown to be effective for speech spectral estimation in noisy environments. Furthermore, the multi-channel information in terms of cross-channel statistics are shown to be useful to better adapt the prior distribution parameters to the actual observation, resulting in better performance of speech enhancement algorithm. We tested the proposed algorithm in an in-car speech database and obtained significant improvements of the speech recognition performance, particularly under non-stationary noise conditions such as music, air-conditioner and open window.
Engineering Encounters: The Internet of Things for Kids
ERIC Educational Resources Information Center
Davis, Tiffany
2017-01-01
This column presents ideas and techniques to enhance science teaching. In the "Talking Window Garden" project, students create "smart" plant pots that use sensors to collect and analyze data on the health of their plants. The Talking Window Garden project was a collaborative effort between an elementary teacher who wanted to…
NASA Astrophysics Data System (ADS)
Liu, Chang; Wang, Ning; Long, Yi
2013-10-01
Vanadium dioxide (VO2) has a great potential to be utilized as solar energy switching glazing, even though there exist some intrinsic problems of low luminous transmittance (Tlum) and poor oxidation resistance. Si-Al based anti-reflection (AR) sol-gel coatings processed at low temperature have been developed to tackle these issues assisted by adjusting ramping rate and annealing temperature. Si-Al based AR coating gives large relative enhancement on the transmittance (22% for Tlum, 14% for the whole solar spectrum Tsol,) and successfully maintains IR contrast at 2500 nm wavelength with 18% relative increase in solar modulation (ΔTsol). The optimized Si-Al based AR coating annealing conditions are recorded at 3 °C/min ramping rate and 100 °C annealing temperature. Fluorinated-Si based gel offers a new direction of multifunctional overcoat on thermochromic smart windows with hydrophobicity (contact angle 111°), averaged 14% relatively increased luminous transmittance and enhanced oxidation resistance.
Voc enhancement of a solar cell with doped Li+-PbS as the active layer
NASA Astrophysics Data System (ADS)
Chávez Portillo, M.; Alvarado Pulido, J.; Gallardo Hernández, S.; Soto Cruz, B. S.; Alcántara Iniesta, S.; Gutiérrez Pérez, R.; Portillo Moreno, O.
2018-06-01
In this report, we investigate the fabrication of solar cells obtained by chemical bath technique, based on CdS as window layer and PbS and PbS-Li+-doped as the active layer. We report open-circuit-voltage Voc values of ∼392 meV for PbS and ∼630 meV for PbSLi+-doped, a remarkable enhanced in the open circuit voltage is shown for solar cells with doped active layer. Li+ ion passivate the dangling bonds in PbS-metal layer interface in consequence reducing the recombination centers.
Study and Simulation of Enhancements for TCP Performance Over Noisy High Latency Links
NASA Technical Reports Server (NTRS)
Partridge, Craig
1999-01-01
The goal of this study is to better understand how TCP behaves over noisy, high-latency links such as satellite links and propose improvements to TCP implementations such that TCP might better handle such links. This report is comprised of a series of smaller reports, presentations and recommendations. Included in these documents are a summary of the TCP enhancement techniques for large windows, protect against wrap around (PAWS), use of selective acknowledgements (SACK), increasing TCP's initial window and recommendations to implement TCP pacing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xue, E-mail: zhangxue.iecas@yahoo.com; Wang, Yong; Fan, Junjie
2014-09-15
To improve the transmitting power in an S-band klystron, a long pill-box window that has a disk with grooves with a semicircular cross section is theoretically investigated and simulated. A Monte-Carlo algorithm is used to track the secondary electron trajectories and analyze the multipactor scenario in the long pill-box window and on the grooved surface. Extending the height of the long-box window can decrease the normal electric field on the surface of the window disk, but the single surface multipactor still exists. It is confirmed that the window disk with periodic semicircular grooves can explicitly suppress the multipactor and predominantlymore » depresses the local field enhancement and the bottom continuous multipactor. The difference between semicircular and sharp boundary grooves is clarified numerically and analytically.« less
Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows.
Cortelletti, P; Skripka, A; Facciotti, C; Pedroni, M; Caputo, G; Pinna, N; Quintanilla, M; Benayas, A; Vetrone, F; Speghini, A
2018-02-01
Lanthanide-activated SrF 2 nanoparticles with a multishell architecture were investigated as optical thermometers in the biological windows. A ratiometric approach based on the relative changes in the intensities of different lanthanide (Nd 3+ and Yb 3+ ) NIR emissions was applied to investigate the thermometric properties of the nanoparticles. It was found that an appropriate doping with Er 3+ ions can increase the thermometric properties of the Nd 3+ -Yb 3+ coupled systems. In addition, a core containing Yb 3+ and Tm 3+ can generate light in the visible and UV regions upon near-infrared (NIR) laser excitation at 980 nm. The multishell structure combined with the rational choice of dopants proves to be particularly important to control and enhance the performance of nanoparticles as NIR nanothermometers.
NASA Astrophysics Data System (ADS)
Park, Jong Yul; Kim, Sung-Ho; Rok Kim, Kyung
2015-06-01
In this work, we propose extended design window which is helpful to judge whether the plasma-wave transistor (PWT) operates as a resonant terahertz (THz) electromagnetic (EM) wave emitter. When metal-oxide-semiconductor field-effect transistor (MOSFET) is on strong inversion which is believed to be an operation regime of PWT THz emitter, Boltzmann statistics is no longer valid and degenerate Fermi-Dirac distribution should be considered. Based on degenerate carrier velocity model, we report the increased maximum channel length (Lmax) to 17 nm for strained silicon (s-Si) PWT with assuming μ = 500 cm2·V-1·s-1. As mobility is enhanced, it is possible to observe two emission spectrums [fundamental (N = 1) and third (N = 3) harmonics] in a specific operation range. Theoretically, increment of Lmax for enhanced μ is limited to near 35 nm by the Pauli’s principle in the case of s-Si PWT. This theoretical value of Lmax should be compromised by considering actual PWT operation voltage for gate oxide breakdown.
Tuning antiferromagnetic exchange interaction for spontaneous exchange bias in MnNiSnSi system
NASA Astrophysics Data System (ADS)
Jia, Liyun; Shen, Jianlei; Li, Mengmeng; Wang, Xi; Ma, Li; Zhen, Congmian; Hou, Denglu; Liu, Enke; Wang, Wenhong; Wu, Guangheng
2017-12-01
Based on almost all the data from the literature on spontaneous exchange bias (SEB), it is expected that the system will show SEB if it meets two conditions simultaneously: (i) there are the coexistence and competition of antiferromagnetic (AFM) and ferromagnetic (FM) interactions and (ii) AFM interaction should dominate but not be too strong in this competition. In order to verify this view, a systematic study on SEB has been performed in this work. Mn50Ni40Sn10 with strong FM interaction and without SEB is chosen as the mother composition, and the negative chemical pressure is introduced by the substitution of Sn by Si to enhance AFM interaction. It is found that a long-range FM ordering window is closed, and a long-range AFM ordering window is opened. As a result, SEB is triggered and a continuous tuning of the spontaneous exchange bias field (HSEB) from 0 Oe to 1300 Oe has been realized in a Mn50Ni40Sn10-xSix system by the enhanced AFM interaction.
Horton, Rachael Jane; Minniti, Antoinette; Mireylees, Stewart; McEntegart, Damian
2008-11-01
Non-compliance in clinical studies is a significant issue, but causes remain unclear. Utilizing the Elaboration Likelihood Model of persuasion, this study assessed the psychophysical peripheral cue 'Interactive Voice Response System (IVRS) call frequency' on compliance. 71 participants were randomized to once daily (OD), twice daily (BID) or three times daily (TID) call schedules over two weeks. Participants completed 30-item cognitive function tests at each call. Compliance was defined as proportion of expected calls within a narrow window (+/- 30 min around scheduled time), and within a relaxed window (-30 min to +4 h). Data were analyzed by ANOVA and pairwise comparisons adjusted by the Bonferroni correction. There was a relationship between call frequency and compliance. Bonferroni adjusted pairwise comparisons showed significantly higher compliance (p=0.03) for the BID (51.0%) than TID (30.3%) for the narrow window; for the extended window, compliance was higher (p=0.04) with OD (59.5%), than TID (38.4%). The IVRS psychophysical peripheral cue call frequency supported the ELM as a route to persuasion. The results also support OD strategy for optimal compliance. Models suggest specific indicators to enhance compliance with medication dosing and electronic patient diaries to improve health outcomes and data integrity respectively.
Shehzad, Khurram; Xu, Yang; Gao, Chao; Li, Hanying; Dang, Zhi-Min; Hasan, Tawfique; Luo, Jack; Duan, Xiangfeng
2017-03-01
Polymer dielectrics offer key advantages over their ceramic counterparts such as flexibility, scalability, low cost, and high breakdown voltages. However, a major drawback that limits more widespread application of polymer dielectrics is their temperature-dependent dielectric properties. Achieving dielectric constants with low/zero-temperature coefficient (L/0TC) over a broad temperature range is essential for applications in diverse technologies. Here, we report a hybrid filler strategy to produce polymer composites with an ultrawide L/0TC window of dielectric constant, as well as a significantly enhanced dielectric value, maximum energy storage density, thermal conductivity, and stability. By creating a series of percolative polymer composites, we demonstrated hybrid carbon filler based composites can exhibit a zero-temperature coefficient window of 200 °C (from -50 to 150 °C), the widest 0TC window for all polymer composite dielectrics reported to date. We further show the electric and dielectric temperature coefficient of the composites is highly stable against stretching and bending, even under AC electric field with frequency up to 1 MHz. We envision that our method will push the functional limits of polymer dielectrics for flexible electronics in extreme conditions such as in hybrid vehicles, aerospace, power electronics, and oil/gas exploration.
Wang, Bing; Baby, Varghese; Tong, Wilson; Xu, Lei; Friedman, Michelle; Runser, Robert; Glesk, Ivan; Prucnal, Paul
2002-01-14
A novel optical switch based on cascading two terahertz optical asymmetric demultiplexers (TOAD) is presented. By utilizing the sharp edge of the asymmetric TOAD switching window profile, two TOAD switching windows are overlapped to produce a narrower aggregate switching window, not limited by the pulse propagation time in the SOA of the TOAD. Simulations of the cascaded TOAD switching window show relatively constant window amplitude for different window sizes. Experimental results on cascading two TOADs, each with a switching window of 8ps, but with the SOA on opposite sides of the fiber loop, show a minimum switching window of 2.7ps.
A large, switchable optical clearing skull window for cerebrovascular imaging
Zhang, Chao; Feng, Wei; Zhao, Yanjie; Yu, Tingting; Li, Pengcheng; Xu, Tonghui; Luo, Qingming; Zhu, Dan
2018-01-01
Rationale: Intravital optical imaging is a significant method for investigating cerebrovascular structure and function. However, its imaging contrast and depth are limited by the turbid skull. Tissue optical clearing has a great potential for solving this problem. Our goal was to develop a transparent skull window, without performing a craniotomy, for use in assessing cerebrovascular structure and function. Methods: Skull optical clearing agents were topically applied to the skulls of mice to create a transparent window within 15 min. The clearing efficacy, repeatability, and safety of the skull window were then investigated. Results: Imaging through the optical clearing skull window enhanced both the contrast and the depth of intravital imaging. The skull window could be used on 2-8-month-old mice and could be expanded from regional to bi-hemispheric. In addition, the window could be repeatedly established without inducing observable inflammation and metabolic toxicity. Conclusion: We successfully developed an easy-to-handle, large, switchable, and safe optical clearing skull window. Combined with various optical imaging techniques, cerebrovascular structure and function can be observed through this optical clearing skull window. Thus, it has the potential for use in basic research on the physiopathologic processes of cortical vessels. PMID:29774069
Mansouri, Majdi; Nounou, Mohamed N; Nounou, Hazem N
2017-09-01
In our previous work, we have demonstrated the effectiveness of the linear multiscale principal component analysis (PCA)-based moving window (MW)-generalized likelihood ratio test (GLRT) technique over the classical PCA and multiscale principal component analysis (MSPCA)-based GLRT methods. The developed fault detection algorithm provided optimal properties by maximizing the detection probability for a particular false alarm rate (FAR) with different values of windows, and however, most real systems are nonlinear, which make the linear PCA method not able to tackle the issue of non-linearity to a great extent. Thus, in this paper, first, we apply a nonlinear PCA to obtain an accurate principal component of a set of data and handle a wide range of nonlinearities using the kernel principal component analysis (KPCA) model. The KPCA is among the most popular nonlinear statistical methods. Second, we extend the MW-GLRT technique to one that utilizes exponential weights to residuals in the moving window (instead of equal weightage) as it might be able to further improve fault detection performance by reducing the FAR using exponentially weighed moving average (EWMA). The developed detection method, which is called EWMA-GLRT, provides improved properties, such as smaller missed detection and FARs and smaller average run length. The idea behind the developed EWMA-GLRT is to compute a new GLRT statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data. This provides a more accurate estimation of the GLRT statistic and provides a stronger memory that will enable better decision making with respect to fault detection. Therefore, in this paper, a KPCA-based EWMA-GLRT method is developed and utilized in practice to improve fault detection in biological phenomena modeled by S-systems and to enhance monitoring process mean. The idea behind a KPCA-based EWMA-GLRT fault detection algorithm is to combine the advantages brought forward by the proposed EWMA-GLRT fault detection chart with the KPCA model. Thus, it is used to enhance fault detection of the Cad System in E. coli model through monitoring some of the key variables involved in this model such as enzymes, transport proteins, regulatory proteins, lysine, and cadaverine. The results demonstrate the effectiveness of the proposed KPCA-based EWMA-GLRT method over Q , GLRT, EWMA, Shewhart, and moving window-GLRT methods. The detection performance is assessed and evaluated in terms of FAR, missed detection rates, and average run length (ARL 1 ) values.
Prevedello, Luciano M; Erdal, Barbaros S; Ryu, John L; Little, Kevin J; Demirer, Mutlu; Qian, Songyue; White, Richard D
2017-12-01
Purpose To evaluate the performance of an artificial intelligence (AI) tool using a deep learning algorithm for detecting hemorrhage, mass effect, or hydrocephalus (HMH) at non-contrast material-enhanced head computed tomographic (CT) examinations and to determine algorithm performance for detection of suspected acute infarct (SAI). Materials and Methods This HIPAA-compliant retrospective study was completed after institutional review board approval. A training and validation dataset of noncontrast-enhanced head CT examinations that comprised 100 examinations of HMH, 22 of SAI, and 124 of noncritical findings was obtained resulting in 2583 representative images. Examinations were processed by using a convolutional neural network (deep learning) using two different window and level configurations (brain window and stroke window). AI algorithm performance was tested on a separate dataset containing 50 examinations with HMH findings, 15 with SAI findings, and 35 with noncritical findings. Results Final algorithm performance for HMH showed 90% (45 of 50) sensitivity (95% confidence interval [CI]: 78%, 97%) and 85% (68 of 80) specificity (95% CI: 76%, 92%), with area under the receiver operating characteristic curve (AUC) of 0.91 with the brain window. For SAI, the best performance was achieved with the stroke window showing 62% (13 of 21) sensitivity (95% CI: 38%, 82%) and 96% (27 of 28) specificity (95% CI: 82%, 100%), with AUC of 0.81. Conclusion AI using deep learning demonstrates promise for detecting critical findings at noncontrast-enhanced head CT. A dedicated algorithm was required to detect SAI. Detection of SAI showed lower sensitivity in comparison to detection of HMH, but showed reasonable performance. Findings support further investigation of the algorithm in a controlled and prospective clinical setting to determine whether it can independently screen noncontrast-enhanced head CT examinations and notify the interpreting radiologist of critical findings. © RSNA, 2017 Online supplemental material is available for this article.
Multi-alternative decision-making with non-stationary inputs.
Nunes, Luana F; Gurney, Kevin
2016-08-01
One of the most widely implemented models for multi-alternative decision-making is the multihypothesis sequential probability ratio test (MSPRT). It is asymptotically optimal, straightforward to implement, and has found application in modelling biological decision-making. However, the MSPRT is limited in application to discrete ('trial-based'), non-time-varying scenarios. By contrast, real world situations will be continuous and entail stimulus non-stationarity. In these circumstances, decision-making mechanisms (like the MSPRT) which work by accumulating evidence, must be able to discard outdated evidence which becomes progressively irrelevant. To address this issue, we introduce a new decision mechanism by augmenting the MSPRT with a rectangular integration window and a transparent decision boundary. This allows selection and de-selection of options as their evidence changes dynamically. Performance was enhanced by adapting the window size to problem difficulty. Further, we present an alternative windowing method which exponentially decays evidence and does not significantly degrade performance, while greatly reducing the memory resources necessary. The methods presented have proven successful at allowing for the MSPRT algorithm to function in a non-stationary environment.
Rajanna, Pramod Mulbagal; Gilshteyn, Evgenia; Yagafarov, Timur; Alekseeva, Alena; Anisimov, Anton; Sergeev, Oleg; Neumueller, Alex; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert
2018-01-09
We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and a thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high quality SWCNTs with an enhanced conductivity by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with different SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit Jsc, open-circuit Voc, and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and efficiency of 3.4% under simulated one-sun AM 1.5G direct illumination. © 2018 IOP Publishing Ltd.
Rajanna, Pramod M; Gilshteyn, Evgenia P; Yagafarov, Timur; Aleekseeva, Alena K; Anisimov, Anton S; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G
2018-01-31
We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.
NASA Astrophysics Data System (ADS)
Rajanna, Pramod M.; Gilshteyn, Evgenia P.; Yagafarov, Timur; Aleekseeva, Alena K.; Anisimov, Anton S.; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G.
2018-03-01
We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.
Kovalenko, Olga A; Azzam, Edouard I; Ende, Norman
2013-11-01
The purpose of this study was to evaluate the window of time and dose of human umbilical-cord-blood (HUCB) mononucleated cells necessary for successful treatment of radiation injury in mice. Female A/J mice (27-30 weeks old) were exposed to an absorbed dose of 9-10 Gy of (137)Cs γ-rays delivered acutely to the whole body. They were treated either with 1 × 10(8) or 2 × 10(8) HUCB mononucleated cells at 24-52 h after the irradiation. The antibiotic Levaquin was applied 4 h postirradiation. The increased dose of cord-blood cells resulted in enhanced survival. The enhancement of survival in animals that received 2 × 10(8) HUCB mononucleated cells relative to irradiated but untreated animals was highly significant (P < 0.01). Compared with earlier studies, the increased dose of HUCB mononucleated cells, coupled with early use of an antibiotic, extended the window of time for effective treatment of severe radiation injury from 4 to 24-52 h after exposure.
Windows Into the Real World From a Virtual Globe
NASA Astrophysics Data System (ADS)
Rich, J.; Urban-Rich, J.
2007-12-01
Virtual globes such as Google Earth can be great tools for learning about the geographical variation of the earth. The key to virtual globes is the use of satellite imagery to provide a highly accurate view of the earth's surface. However, because the images are not updated regularly, variations in climate and vegetation over time can not be easily seen. In order to enhance the view of the earth and observe these changes by region and over time we are working to add near real time "windows" into the real world from a virtual globe. For the past 4 years we have been installing web cameras in areas of the world that will provide long term monitoring of global changes. By archiving hourly images from arctic, temperate and tropical regions we are creating a visual data set that is already beginning to tell the story of climate variability. The cameras are currently installed in 10 elementary schools in 3 countries and show the student's view out each window. The Windows Around the World program (http://www.WindowsAroundTheWorld.org) uses the images from these cameras to help students gain a better understanding of earth process and variability in climate and vegetation between different regions and over time. Previously we have used standard web based technologies such as DHTML and AJAX to provide near real-time access to these images and also provide enhanced functionality such as dynamic time lapse movies that allow users to see changes over months, days or hours up to the current hour (http://www.windowsaroundtheworld.org/north_america.aspx). We have integrated the camera images from Windows Around the World into Google Earth. Through network links and models we are creating a way for students to "fly" to another school in the program and see what the current view is out the window. By using a model as a screen, the image can be viewed from the same direction as the students who are sitting in a classroom at the participating school. Once at the school, visiting students can move around the area in three dimensions and gain a better understanding of what they are seeing out the window. Currently time-lapse images can be viewed at a lower resolution for all schools on the globe or when flying into an individual school, higher resolution time-lapse images can be seen. The observation of shadows, precipitation, movement of the sun and changes in vegetation allows the viewer to gain a better understanding of how the earth works and how the environment changes between regions and over time. World.org
Combining Vector Quantization and Histogram Equalization.
ERIC Educational Resources Information Center
Cosman, Pamela C.; And Others
1992-01-01
Discussion of contrast enhancement techniques focuses on the use of histogram equalization with a data compression technique, i.e., tree-structured vector quantization. The enhancement technique of intensity windowing is described, and the use of enhancement techniques for medical images is explained, including adaptive histogram equalization.…
Impulsive noise suppression in color images based on the geodesic digital paths
NASA Astrophysics Data System (ADS)
Smolka, Bogdan; Cyganek, Boguslaw
2015-02-01
In the paper a novel filtering design based on the concept of exploration of the pixel neighborhood by digital paths is presented. The paths start from the boundary of a filtering window and reach its center. The cost of transitions between adjacent pixels is defined in the hybrid spatial-color space. Then, an optimal path of minimum total cost, leading from pixels of the window's boundary to its center is determined. The cost of an optimal path serves as a degree of similarity of the central pixel to the samples from the local processing window. If a pixel is an outlier, then all the paths starting from the window's boundary will have high costs and the minimum one will also be high. The filter output is calculated as a weighted mean of the central pixel and an estimate constructed using the information on the minimum cost assigned to each image pixel. So, first the costs of optimal paths are used to build a smoothed image and in the second step the minimum cost of the central pixel is utilized for construction of the weights of a soft-switching scheme. The experiments performed on a set of standard color images, revealed that the efficiency of the proposed algorithm is superior to the state-of-the-art filtering techniques in terms of the objective restoration quality measures, especially for high noise contamination ratios. The proposed filter, due to its low computational complexity, can be applied for real time image denoising and also for the enhancement of video streams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, J; Washington University in St Louis, St Louis, MO; Li, H. Harlod
Purpose: In RT patient setup 2D images, tissues often cannot be seen well due to the lack of image contrast. Contrast enhancement features provided by image reviewing software, e.g. Mosaiq and ARIA, require manual selection of the image processing filters and parameters thus inefficient and cannot be automated. In this work, we developed a novel method to automatically enhance the 2D RT image contrast to allow automatic verification of patient daily setups as a prerequisite step of automatic patient safety assurance. Methods: The new method is based on contrast limited adaptive histogram equalization (CLAHE) and high-pass filtering algorithms. The mostmore » important innovation is to automatically select the optimal parameters by optimizing the image contrast. The image processing procedure includes the following steps: 1) background and noise removal, 2) hi-pass filtering by subtracting the Gaussian smoothed Result, and 3) histogram equalization using CLAHE algorithm. Three parameters were determined through an iterative optimization which was based on the interior-point constrained optimization algorithm: the Gaussian smoothing weighting factor, the CLAHE algorithm block size and clip limiting parameters. The goal of the optimization is to maximize the entropy of the processed Result. Results: A total 42 RT images were processed. The results were visually evaluated by RT physicians and physicists. About 48% of the images processed by the new method were ranked as excellent. In comparison, only 29% and 18% of the images processed by the basic CLAHE algorithm and by the basic window level adjustment process, were ranked as excellent. Conclusion: This new image contrast enhancement method is robust and automatic, and is able to significantly outperform the basic CLAHE algorithm and the manual window-level adjustment process that are currently used in clinical 2D image review software tools.« less
Shin, Dong Ho; Kim, Dong Wook; Lim, Hyung Gyu; Jung, Eui Sung; Seong, Ki Woong; Lee, Jyung Hyun; Kim, Myoung Nam; Cho, Jin Ho
2014-01-01
Round window placement of a 3-coil transducer offers a new approach for coupling an implantable hearing aid to the inner ear. The transducer exhibits high performance at low-frequencies. One remarkable feature of the 3-coil transducer is that it minimizes leakage flux. Thus, the transducer, which consists of two permanent magnets and three coils, can enhance vibrational displacement. In human temporal bones, stapes vibration was observed by laser Doppler vibrometer in response to round window stimulation using the 3-coil transducer. Coupling between the 3-coil transducer and the round window was connected by a wire-rod. The stimulation created stapes velocity when the round window stimulated. Performance evaluation was conducted by measuring stapes velocity. To verify the performance of the 3-coil transducer, stapes velocity for round window and tympanic membrane stimulation were compared, respectively. Stapes velocity by round window stimulation using the 3-coil transducer was approximately 14 dB higher than that achieved by tympanic membrane stimulation. The study shows that 3-coil transducer is suitable for implantable hearing aids.
Vanadium dioxide nanogrid films for high transparency smart architectural window applications.
Liu, Chang; Balin, Igal; Magdassi, Shlomo; Abdulhalim, Ibrahim; Long, Yi
2015-02-09
This study presents a novel approach towards achieving high luminous transmittance (T(lum)) for vanadium dioxide (VO(2)) thermochromic nanogrid films whilst maintaining the solar modulation ability (ΔT(sol)). The perforated VO(2)-based films employ orderly-patterned nano-holes, which are able to favorably transmit visible light dramatically but retain large near-infrared modulation, thereby enhancing ΔT(sol). Numerical optimizations using parameter search algorithms have implemented through a series of Finite Difference Time Domain (FDTD) simulations by varying film thickness, cell periodicity, grid dimensions and variations of grid arrangement. The best performing results of T(lum) (76.5%) and ΔT(sol) (14.0%) are comparable, if not superior, to the results calculated from nanothermochromism, nanoporosity and biomimic nanostructuring. It opens up a new approach for thermochromic smart window applications.
Wheeler, Lance M.; Moore, David T.; Ihly, Rachelle; ...
2017-11-23
Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer - composed of a metal halide perovskite-methylamine complex - from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning themore » absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. In conclusion, this work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.« less
Wheeler, Lance M; Moore, David T; Ihly, Rachelle; Stanton, Noah J; Miller, Elisa M; Tenent, Robert C; Blackburn, Jeffrey L; Neale, Nathan R
2017-11-23
Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer-composed of a metal halide perovskite-methylamine complex-from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning the absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. This work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Lance M.; Moore, David T.; Ihly, Rachelle
Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer - composed of a metal halide perovskite-methylamine complex - from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning themore » absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. In conclusion, this work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.« less
Modeling Charge Collection in Detector Arrays
NASA Technical Reports Server (NTRS)
Hardage, Donna (Technical Monitor); Pickel, J. C.
2003-01-01
A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).
A new Hessian - based approach for segmentation of CT porous media images
NASA Astrophysics Data System (ADS)
Timofey, Sizonenko; Marina, Karsanina; Dina, Gilyazetdinova; Kirill, Gerke
2017-04-01
Hessian matrix based methods are widely used in image analysis for features detection, e.g., detection of blobs, corners and edges. Hessian matrix of the imageis the matrix of 2nd order derivate around selected voxel. Most significant features give highest values of Hessian transform and lowest values are located at smoother parts of the image. Majority of conventional segmentation techniques can segment out cracks, fractures and other inhomogeneities in soils and rocks only if the rest of the image is significantly "oversigmented". To avoid this disadvantage, we propose to enhance greyscale values of voxels belonging to such specific inhomogeneities on X-ray microtomography scans. We have developed and implemented in code a two-step approach to attack the aforementioned problem. During the first step we apply a filter that enhances the image and makes outstanding features more sharply defined. During the second step we apply Hessian filter based segmentation. The values of voxels on the image to be segmented are calculated in conjunction with the values of other voxels within prescribed region. Contribution from each voxel within such region is computed by weighting according to the local Hessian matrix value. We call this approach as Hessian windowed segmentation. Hessian windowed segmentation has been tested on different porous media X-ray microtomography images, including soil, sandstones, carbonates and shales. We also compared this new method against others widely used methods such as kriging, Markov random field, converging active contours and region grow. We show that our approach is more accurate in regions containing special features such as small cracks, fractures, elongated inhomogeneities and other features with low contrast related to the background solid phase. Moreover, Hessian windowed segmentation outperforms some of these methods in computational efficiency. We further test our segmentation technique by computing permeability of segmented images and comparing them against laboratory based measurements. This work was partially supported by RFBR grant 15-34-20989 (X-ray tomography and image fusion) and RSF grant 14-17-00658 (image segmentation and pore-scale modelling).
Windows .NET Network Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST)
Dowd, Scot E; Zaragoza, Joaquin; Rodriguez, Javier R; Oliver, Melvin J; Payton, Paxton R
2005-01-01
Background BLAST is one of the most common and useful tools for Genetic Research. This paper describes a software application we have termed Windows .NET Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST), which enhances the BLAST utility by improving usability, fault recovery, and scalability in a Windows desktop environment. Our goal was to develop an easy to use, fault tolerant, high-throughput BLAST solution that incorporates a comprehensive BLAST result viewer with curation and annotation functionality. Results W.ND-BLAST is a comprehensive Windows-based software toolkit that targets researchers, including those with minimal computer skills, and provides the ability increase the performance of BLAST by distributing BLAST queries to any number of Windows based machines across local area networks (LAN). W.ND-BLAST provides intuitive Graphic User Interfaces (GUI) for BLAST database creation, BLAST execution, BLAST output evaluation and BLAST result exportation. This software also provides several layers of fault tolerance and fault recovery to prevent loss of data if nodes or master machines fail. This paper lays out the functionality of W.ND-BLAST. W.ND-BLAST displays close to 100% performance efficiency when distributing tasks to 12 remote computers of the same performance class. A high throughput BLAST job which took 662.68 minutes (11 hours) on one average machine was completed in 44.97 minutes when distributed to 17 nodes, which included lower performance class machines. Finally, there is a comprehensive high-throughput BLAST Output Viewer (BOV) and Annotation Engine components, which provides comprehensive exportation of BLAST hits to text files, annotated fasta files, tables, or association files. Conclusion W.ND-BLAST provides an interactive tool that allows scientists to easily utilizing their available computing resources for high throughput and comprehensive sequence analyses. The install package for W.ND-BLAST is freely downloadable from . With registration the software is free, installation, networking, and usage instructions are provided as well as a support forum. PMID:15819992
Duration of ultrasound-mediated enhanced plasma membrane permeability.
Lammertink, Bart; Deckers, Roel; Storm, Gert; Moonen, Chrit; Bos, Clemens
2015-03-30
Ultrasound (US) induced cavitation can be used to enhance the intracellular delivery of drugs by transiently increasing the cell membrane permeability. The duration of this increased permeability, termed temporal window, has not been fully elucidated. In this study, the temporal window was investigated systematically using an endothelial- and two breast cancer cell lines. Model drug uptake was measured as a function of time after sonication, in the presence of SonoVue™ microbubbles, in HUVEC, MDA-MB-468 and 4T1 cells. In addition, US pressure amplitude was varied in MDA-MB-468 cells to investigate its effect on the temporal window. Cell membrane permeability of HUVEC and MDA-MB-468 cells returned to control level within 1-2 h post-sonication, while 4T1 cells needed over 3h. US pressure affected the number of cells with increased membrane permeability, as well as the temporal window in MDA-MB-468 cells. This study shows that the duration of increased membrane permeability differed between the cell lines and US pressures used here. However, all were consistently in the order of 1-3 h after sonication. Copyright © 2014 Elsevier B.V. All rights reserved.
Absorption characterization of immersion medium for multiphoton microscopy at the 1700nm window
NASA Astrophysics Data System (ADS)
Wen, Wenhui; Qiu, Ping
2017-02-01
Larger imaging depth is the quest of almost all the imaging modalities, including multiphoton microscopy (MPM). Recently, it has been domonstrated that excitation at the 1700-nm helps extending imaging depth in MPM, optical coherence tomography, as well as photoacoustic imaging compared with excitation at other wavelengths. In MPM, immersion objective lenses with high numerical aperture (NA) are typically used to achieve better signal resolution, higer signal collection efficiency, and stronger signal generation. Although physically short ( mm), this extra optical path length traversed by the excitation light inevitably introduces absorption of the excitation light, and as a result leads to a decrease in the signal generation. Here we demonstrate experimental characterization of absorption spectrum of various immersion media at the 1700-nm window, including water (H2O), deuterium oxide (D2O), and several brands of immersion oil. Our results identify either the best immersion medium for a specific wavelength, or the best wavelength for a specific immersion medium at the 1700-nm window. Furthermore, through quantitative MPM experiments comparing different immersion media, we show that the MPM signal levels can be enhanced by more than ten fold simply by selecting the proper immersion medium, in good agreement with theoretical expectation based on the absorption measurement. Our results will offer guidelines for signal optimization in MPM at the 1700-nm window.
Dong, Jie; Wang, Dawei; Ma, Zhenshen; Deng, Guodong; Wang, Lanhua; Zhang, Jiandong
2017-01-01
The aim of the study was evaluate the 3.0 T magnetic resonance (MR) perfusion imaging scanning time window following contrast injection for differentiating benign and malignant breast lesions and to determine the optimum scanning time window for increased scanner usage efficiency and reduced diagnostic adverse risk factors. A total of 52 women with breast abnormalities were selected for conventional MR imaging and T1 dynamic-enhanced imaging. Quantitative parameters [volume transfer constant (Ktrans), rate constant (Kep) and extravascular extracellular volume fraction (Ve)] were calculated at phases 10, 20, 30, 40 and 50, which represented time windows at 5, 10, 15, 20 and 25 min, respectively, following injection of contrast agent. The association of the parameters at different phases with benign and malignant tumor diagnosis was analyzed. MR perfusion imaging was verified as an effective modality in the diagnosis of breast malignancies and the best scanning time window was identified: i) Values of Ktrans and Kep at all phases were statistically significant in differentiating benign and malignant tumors (P<0.05), while the value of Ve had statistical significance only at stage 10, but not at any other stages (P>0.05); ii) values of Ve in benign tumors increased with phase number, but achieved no obvious changes at different phases in malignant tumors; iii) the optimum scanning time window of breast perfusion imaging with 3.0 T MR was between phases 10 and 30 (i.e., between 5 and 15 min after contrast agent injection). The variation trend of Ve values at different phases may serve as a diagnostic reference for differentiating benign and malignant breast abnormalities. The most efficient scanning time window was indicated to be 5 min after contrast injection, based on the observation that the Ve value only had statistical significance in diagnosis at stage 10. However, the optimal scanning time window is from 5 to 15 min following the injection of contrast agent, since that the variation trend of Ve is able to serve as a diagnostic reference. PMID:28450944
Dong, Jie; Wang, Dawei; Ma, Zhenshen; Deng, Guodong; Wang, Lanhua; Zhang, Jiandong
2017-03-01
The aim of the study was evaluate the 3.0 T magnetic resonance (MR) perfusion imaging scanning time window following contrast injection for differentiating benign and malignant breast lesions and to determine the optimum scanning time window for increased scanner usage efficiency and reduced diagnostic adverse risk factors. A total of 52 women with breast abnormalities were selected for conventional MR imaging and T1 dynamic-enhanced imaging. Quantitative parameters [volume transfer constant (K trans ), rate constant (K ep ) and extravascular extracellular volume fraction (V e )] were calculated at phases 10, 20, 30, 40 and 50, which represented time windows at 5, 10, 15, 20 and 25 min, respectively, following injection of contrast agent. The association of the parameters at different phases with benign and malignant tumor diagnosis was analyzed. MR perfusion imaging was verified as an effective modality in the diagnosis of breast malignancies and the best scanning time window was identified: i) Values of K trans and K ep at all phases were statistically significant in differentiating benign and malignant tumors (P<0.05), while the value of V e had statistical significance only at stage 10, but not at any other stages (P>0.05); ii) values of V e in benign tumors increased with phase number, but achieved no obvious changes at different phases in malignant tumors; iii) the optimum scanning time window of breast perfusion imaging with 3.0 T MR was between phases 10 and 30 (i.e., between 5 and 15 min after contrast agent injection). The variation trend of V e values at different phases may serve as a diagnostic reference for differentiating benign and malignant breast abnormalities. The most efficient scanning time window was indicated to be 5 min after contrast injection, based on the observation that the V e value only had statistical significance in diagnosis at stage 10. However, the optimal scanning time window is from 5 to 15 min following the injection of contrast agent, since that the variation trend of V e is able to serve as a diagnostic reference.
Bio-inspired color image enhancement
NASA Astrophysics Data System (ADS)
Meylan, Laurence; Susstrunk, Sabine
2004-06-01
Capturing and rendering an image that fulfills the observer's expectations is a difficult task. This is due to the fact that the signal reaching the eye is processed by a complex mechanism before forming a percept, whereas a capturing device only retains the physical value of light intensities. It is especially difficult to render complex scenes with highly varying luminances. For example, a picture taken inside a room where objects are visible through the windows will not be rendered correctly by a global technique. Either details in the dim room will be hidden in shadow or the objects viewed through the window will be too bright. The image has to be treated locally to resemble more closely to what the observer remembers. The purpose of this work is to develop a technique for rendering images based on human local adaptation. We take inspiration from a model of color vision called Retinex. This model determines the perceived color given spatial relationships of the captured signals. Retinex has been used as a computational model for image rendering. In this article, we propose a new solution inspired by Retinex that is based on a single filter applied to the luminance channel. All parameters are image-dependent so that the process requires no parameter tuning. That makes the method more flexible than other existing ones. The presented results show that our method suitably enhances high dynamic range images.
Bång, Magnus; Larsson, Anders; Eriksson, Henrik
2003-01-01
In this paper, we present a new approach to clinical workplace computerization that departs from the window-based user interface paradigm. NOSTOS is an experimental computer-augmented work environment designed to support data capture and teamwork in an emergency room. NOSTOS combines multiple technologies, such as digital pens, walk-up displays, headsets, a smart desk, and sensors to enhance an existing paper-based practice with computer power. The physical interfaces allow clinicians to retain mobile paper-based collaborative routines and still benefit from computer technology. The requirements for the system were elicited from situated workplace studies. We discuss the advantages and disadvantages of augmenting a paper-based clinical work environment.
Process Flow Features as a Host-Based Event Knowledge Representation
2012-06-14
an executing process during a window of time called a process flow. Process flows are calculated from key process data structures extracted from...for Cluster 98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.9. Davies- Boldin Dunn Index Sliding Window 5 on Windows 7...82 4.10. Davies- Boldin Dunn Index Sliding Window 10 on Windows 7 . 83 4.11. Davies- Boldin Dunn Index Sliding Window 20 on Windows 7 . 83 ix List of
Li, Wenwen; Zhang, Sanpei; Wang, Bangrun; Gu, Sui; Xu, Dong; Wang, Jianing; Chen, Chunhua; Wen, Zhaoyin
2018-06-19
Solid polymer electrolytes (SPEs) have shown extraordinary promise for all-solid-state lithium metal batteries with high energy density and flexibility but are mainly limited by the low ionic conductivity and their poor stability with lithium metal anode. In this work, we propose a highly ordered porous electrolyte additive derived from SSZ-13 for high-rate all-solid-state lithium metal batteries. The nanoporous adsorption effect provided by the highly ordered porous nanoparticles in the poly (ethylene oxide) (PEO) electrolyte are found to significantly improve the Li + conductivity (1.91×10 -3 S cm -1 at 60°C, 4.43×10 -5 S cm -1 at 20°C) and widen the electrochemical stability window to 4.7 V vs Li + /Li. Meanwhile, the designed PEO-based electrolyte demonstrates enhanced stability with the lithium metal anode. Through systematically increasing Li + diffusion, widening the electrochemical stability window and enhancing the stability of the SSZ-CPE electrolyte, the LiFePO4/SSZ-CPE/Li cell is optimized to deliver high-rate capability and stable cycling performance, which demonstrates great potential for all-solid-state energy storage application.
Gabor filter based fingerprint image enhancement
NASA Astrophysics Data System (ADS)
Wang, Jin-Xiang
2013-03-01
Fingerprint recognition technology has become the most reliable biometric technology due to its uniqueness and invariance, which has been most convenient and most reliable technique for personal authentication. The development of Automated Fingerprint Identification System is an urgent need for modern information security. Meanwhile, fingerprint preprocessing algorithm of fingerprint recognition technology has played an important part in Automatic Fingerprint Identification System. This article introduces the general steps in the fingerprint recognition technology, namely the image input, preprocessing, feature recognition, and fingerprint image enhancement. As the key to fingerprint identification technology, fingerprint image enhancement affects the accuracy of the system. It focuses on the characteristics of the fingerprint image, Gabor filters algorithm for fingerprint image enhancement, the theoretical basis of Gabor filters, and demonstration of the filter. The enhancement algorithm for fingerprint image is in the windows XP platform with matlab.65 as a development tool for the demonstration. The result shows that the Gabor filter is effective in fingerprint image enhancement technology.
Computed Tomography Window Blending: Feasibility in Thoracic Trauma.
Mandell, Jacob C; Wortman, Jeremy R; Rocha, Tatiana C; Folio, Les R; Andriole, Katherine P; Khurana, Bharti
2018-02-07
This study aims to demonstrate the feasibility of processing computed tomography (CT) images with a custom window blending algorithm that combines soft-tissue, bone, and lung window settings into a single image; to compare the time for interpretation of chest CT for thoracic trauma with window blending and conventional window settings; and to assess diagnostic performance of both techniques. Adobe Photoshop was scripted to process axial DICOM images from retrospective contrast-enhanced chest CTs performed for trauma with a window-blending algorithm. Two emergency radiologists independently interpreted the axial images from 103 chest CTs with both blended and conventional windows. Interpretation time and diagnostic performance were compared with Wilcoxon signed-rank test and McNemar test, respectively. Agreement with Nexus CT Chest injury severity was assessed with the weighted kappa statistic. A total of 13,295 images were processed without error. Interpretation was faster with window blending, resulting in a 20.3% time saving (P < .001), with no difference in diagnostic performance, within the power of the study to detect a difference in sensitivity of 5% as determined by post hoc power analysis. The sensitivity of the window-blended cases was 82.7%, compared to 81.6% for conventional windows. The specificity of the window-blended cases was 93.1%, compared to 90.5% for conventional windows. All injuries of major clinical significance (per Nexus CT Chest criteria) were correctly identified in all reading sessions, and all negative cases were correctly classified. All readers demonstrated near-perfect agreement with injury severity classification with both window settings. In this pilot study utilizing retrospective data, window blending allows faster preliminary interpretation of axial chest CT performed for trauma, with no significant difference in diagnostic performance compared to conventional window settings. Future studies would be required to assess the utility of window blending in clinical practice. Copyright © 2018 The Association of University Radiologists. All rights reserved.
Guide to Mathematics Released Items: Understanding Scoring. 2015
ERIC Educational Resources Information Center
Partnership for Assessment of Readiness for College and Careers, 2015
2015-01-01
The 2014-2015 administrations of the PARCC assessment included two separate test administration windows: the Performance-Based Assessment (PBA) and the End-of-Year (EOY), both of which were administered in paper-based and computer-based formats. The first window was for administration of the PBA, and the second window was for the administration of…
1994-05-01
thermal stresses of 10 million Watts per meter, 1,000 times better than Zerodur *. This property is also important for many thermal management...products UTD has coated to date include: • Optical windows, lenses, and mirrors . Zinc sulfide infrared windows coated with a 2.5 micron-thick...implants 16, 49 microwave plasma-enhanced CVD 2 mirrors , diamond-coated 49 models of diamond growth 10, 25, 33, 34, 39 moderators 10
2010-09-01
for Applied Mathematics. Kennedy, R. C. (2009a). Clocking Windows netbook performance. Retrieved on 08/14/2010, from http...podcasts.infoworld.com/d/hardware/clocking-windows- netbook -performance-883?_kip_ipx=1177119066-1281460794 Kennedy, R. C. (2009b). OfficeBench 7: A cool new way to
Enhanced networks operations using the X Window System
NASA Technical Reports Server (NTRS)
Linares, Irving
1993-01-01
We propose an X Window Graphical User Interface (GUI) which is tailored to the operations of NASA GSFC's Network Control Center (NCC), the NASA Ground Terminal (NGT), the White Sands Ground Terminal (WSGT), and the Second Tracking and Data Relay Satellite System (TDRSS) Ground Terminal (STGT). The proposed GUI can also be easily extended to other Ground Network (GN) Tracking Stations due to its standardized nature.
Schüpbach, Jörg; Gebhardt, Martin D.; Scherrer, Alexandra U.; Bisset, Leslie R.; Niederhauser, Christoph; Regenass, Stephan; Yerly, Sabine; Aubert, Vincent; Suter, Franziska; Pfister, Stefan; Martinetti, Gladys; Andreutti, Corinne; Klimkait, Thomas; Brandenberger, Marcel; Günthard, Huldrych F.
2013-01-01
Background Tests for recent infections (TRIs) are important for HIV surveillance. We have shown that a patient's antibody pattern in a confirmatory line immunoassay (Inno-Lia) also yields information on time since infection. We have published algorithms which, with a certain sensitivity and specificity, distinguish between incident (< = 12 months) and older infection. In order to use these algorithms like other TRIs, i.e., based on their windows, we now determined their window periods. Methods We classified Inno-Lia results of 527 treatment-naïve patients with HIV-1 infection < = 12 months according to incidence by 25 algorithms. The time after which all infections were ruled older, i.e. the algorithm's window, was determined by linear regression of the proportion ruled incident in dependence of time since infection. Window-based incident infection rates (IIR) were determined utilizing the relationship ‘Prevalence = Incidence x Duration’ in four annual cohorts of HIV-1 notifications. Results were compared to performance-based IIR also derived from Inno-Lia results, but utilizing the relationship ‘incident = true incident + false incident’ and also to the IIR derived from the BED incidence assay. Results Window periods varied between 45.8 and 130.1 days and correlated well with the algorithms' diagnostic sensitivity (R2 = 0.962; P<0.0001). Among the 25 algorithms, the mean window-based IIR among the 748 notifications of 2005/06 was 0.457 compared to 0.453 obtained for performance-based IIR with a model not correcting for selection bias. Evaluation of BED results using a window of 153 days yielded an IIR of 0.669. Window-based IIR and performance-based IIR increased by 22.4% and respectively 30.6% in 2008, while 2009 and 2010 showed a return to baseline for both methods. Conclusions IIR estimations by window- and performance-based evaluations of Inno-Lia algorithm results were similar and can be used together to assess IIR changes between annual HIV notification cohorts. PMID:23990968
Tay, Benjamin Chia-Meng; Chow, Tzu-Hao; Ng, Beng-Koon; Loh, Thomas Kwok-Seng
2012-09-01
This study investigates the autocorrelation bandwidths of dual-window (DW) optical coherence tomography (OCT) k-space scattering profile of different-sized microspheres and their correlation to scatterer size. A dual-bandwidth spectroscopic metric defined as the ratio of the 10% to 90% autocorrelation bandwidths is found to change monotonically with microsphere size and gives the best contrast enhancement for scatterer size differentiation in the resulting spectroscopic image. A simulation model supports the experimental results and revealed a tradeoff between the smallest detectable scatterer size and the maximum scatterer size in the linear range of the dual-window dual-bandwidth (DWDB) metric, which depends on the choice of the light source optical bandwidth. Spectroscopic OCT (SOCT) images of microspheres and tonsil tissue samples based on the proposed DWDB metric showed clear differentiation between different-sized scatterers as compared to those derived from conventional short-time Fourier transform metrics. The DWDB metric significantly improves the contrast in SOCT imaging and can aid the visualization and identification of dissimilar scatterer size in a sample. Potential applications include the early detection of cell nuclear changes in tissue carcinogenesis, the monitoring of healing tendons, and cell proliferation in tissue scaffolds.
Zhu, Yizhou; He, Xingfeng; Mo, Yifei
2015-10-06
First-principles calculations were performed to investigate the electrochemical stability of lithium solid electrolyte materials in all-solid-state Li-ion batteries. The common solid electrolytes were found to have a limited electrochemical window. Our results suggest that the outstanding stability of the solid electrolyte materials is not thermodynamically intrinsic but is originated from kinetic stabilizations. The sluggish kinetics of the decomposition reactions cause a high overpotential leading to a nominally wide electrochemical window observed in many experiments. The decomposition products, similar to the solid-electrolyte-interphases, mitigate the extreme chemical potential from the electrodes and protect the solid electrolyte from further decompositions. With the aidmore » of the first-principles calculations, we revealed the passivation mechanism of these decomposition interphases and quantified the extensions of the electrochemical window from the interphases. We also found that the artificial coating layers applied at the solid electrolyte and electrode interfaces have a similar effect of passivating the solid electrolyte. Our newly gained understanding provided general principles for developing solid electrolyte materials with enhanced stability and for engineering interfaces in all-solid-state Li-ion batteries.« less
Lee, John Y-K.; Thawani, Jayesh P.; Pierce, John; Zeh, Ryan; Martinez-Lage, Maria; Chanin, Michelle; Venegas, Ollin; Nims, Sarah; Learned, Kim; Keating, Jane; Singhal, Sunil
2016-01-01
Background Although real-time localization of gliomas has improved with intraoperative image guidance systems, these tools are limited by brain shift, surgical cavity deformation, and expense. Objective To propose a novel method to perform near-infrared (NIR) imaging during glioma resections based on preclinical and clinical investigations, in order to localize tumors and to potentially identify residual disease. Methods Fifteen patients were identified and administered an FDA-approved, NIR contrast agent (Second Window indocyanine green [ICG], 5 mg/kg) prior to surgical resection. An NIR camera was utilized to localize the tumor prior to resection and to visualize surgical margins following resection. Neuropathology and MR imaging data were used to assess the accuracy and precision of NIR-fluorescence in identifying tumor tissue. Results NIR visualization of 15 gliomas (10 glioblastoma multiforme, 1 anaplastic astrocytoma, 2 low grade astrocytoma, 1 juvenile pilocytic astrocytoma, and 1 ganglioglioma) was performed 22.7 hours (mean) after intravenous injection of ICG. During surgery, 12/15 tumors were visualized with the NIR camera. The mean signal-to-background ratio was 9.5 ± 0.8 and fluorescence was noted through the dura to a maximum parenchymal depth of 13 mm. The best predictor of positive fluorescence was enhancement on T1-weighted imaging; this correlated with SBR (P = .03). Non-enhancing tumors did not demonstrate NIR fluorescence. Using pathology as the gold standard, the technique demonstrated a sensitivity of 98% and specificity of 45% to identify tumor in gadolinium-enhancing specimens (n = 71). Conclusion Using Second Window ICG, gadolinium-enhancing tumors can be localized through brain parenchyma intraoperatively. Its utility for margin detection is promising but limited by lower specificity. PMID:27741220
High performance sapphire windows
NASA Technical Reports Server (NTRS)
Bates, Stephen C.; Liou, Larry
1993-01-01
High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.
High performance sapphire windows
NASA Astrophysics Data System (ADS)
Bates, Stephen C.; Liou, Larry
1993-02-01
High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.
Improving the Performance of PbS Quantum Dot Solar Cells by Optimizing ZnO Window Layer
NASA Astrophysics Data System (ADS)
Yang, Xiaokun; Hu, Long; Deng, Hui; Qiao, Keke; Hu, Chao; Liu, Zhiyong; Yuan, Shengjie; Khan, Jahangeer; Li, Dengbing; Tang, Jiang; Song, Haisheng; Cheng, Chun
2017-04-01
Comparing with hot researches in absorber layer, window layer has attracted less attention in PbS quantum dot solar cells (QD SCs). Actually, the window layer plays a key role in exciton separation, charge drifting, and so on. Herein, ZnO window layer was systematically investigated for its roles in QD SCs performance. The physical mechanism of improved performance was also explored. It was found that the optimized ZnO films with appropriate thickness and doping concentration can balance the optical and electrical properties, and its energy band align well with the absorber layer for efficient charge extraction. Further characterizations demonstrated that the window layer optimization can help to reduce the surface defects, improve the heterojunction quality, as well as extend the depletion width. Compared with the control devices, the optimized devices have obtained an efficiency of 6.7% with an enhanced V oc of 18%, J sc of 21%, FF of 10%, and power conversion efficiency of 58%. The present work suggests a useful strategy to improve the device performance by optimizing the window layer besides the absorber layer.
Chang, Tianci; Cao, Xun; Li, Ning; Long, Shiwei; Gao, Xiang; Dedon, Liv R; Sun, Guangyao; Luo, Hongjie; Jin, Ping
2017-08-09
In the pursuit of energy efficient materials, vanadium dioxide (VO 2 ) based smart coatings have gained much attention in recent years. For smart window applications, VO 2 thin films should be fabricated at low temperature to reduce the cost in commercial fabrication and solve compatibility problems. Meanwhile, thermochromic performance with high luminous transmittance and solar modulation ability, as well as effective UV shielding function has become the most important developing strategy for ideal smart windows. In this work, facile Cr 2 O 3 /VO 2 bilayer coatings on quartz glasses were designed and fabricated by magnetron sputtering at low temperatures ranging from 250 to 350 °C as compared with typical high growth temperatures (>450 °C). The bottom Cr 2 O 3 layer not only provides a structural template for the growth of VO 2 (R), but also serves as an antireflection layer for improving the luminous transmittance. It was found that the deposition of Cr 2 O 3 layer resulted in a dramatic enhancement of the solar modulation ability (56.4%) and improvement of luminous transmittance (26.4%) when compared to single-layer VO 2 coating. According to optical measurements, the Cr 2 O 3 /VO 2 bilayer structure exhibits excellent optical performances with an enhanced solar modulation ability (ΔT sol = 12.2%) and a high luminous transmittance (T lum,lt = 46.0%), which makes a good balance between ΔT sol and T lum for smart windows applications. As for UV-shielding properties, more than 95.8% UV radiation (250-400 nm) can be blocked out by the Cr 2 O 3 /VO 2 structure. In addition, the visualized energy-efficient effect was modeled by heating a beaker of water using infrared imaging method with/without a Cr 2 O 3 /VO 2 coating glass.
Adaptive Window Zero-Crossing-Based Instantaneous Frequency Estimation
NASA Astrophysics Data System (ADS)
Sekhar, S. Chandra; Sreenivas, TV
2004-12-01
We address the problem of estimating instantaneous frequency (IF) of a real-valued constant amplitude time-varying sinusoid. Estimation of polynomial IF is formulated using the zero-crossings of the signal. We propose an algorithm to estimate nonpolynomial IF by local approximation using a low-order polynomial, over a short segment of the signal. This involves the choice of window length to minimize the mean square error (MSE). The optimal window length found by directly minimizing the MSE is a function of the higher-order derivatives of the IF which are not available a priori. However, an optimum solution is formulated using an adaptive window technique based on the concept of intersection of confidence intervals. The adaptive algorithm enables minimum MSE-IF (MMSE-IF) estimation without requiring a priori information about the IF. Simulation results show that the adaptive window zero-crossing-based IF estimation method is superior to fixed window methods and is also better than adaptive spectrogram and adaptive Wigner-Ville distribution (WVD)-based IF estimators for different signal-to-noise ratio (SNR).
NASA Technical Reports Server (NTRS)
Jafri, Madiha; Ely, Jay; Vahala, Linda
2006-01-01
Neural Network Modeling is introduced in this paper to classify and predict Interference Path Loss measurements on Airbus 319 and 320 airplanes. Interference patterns inside the aircraft are classified and predicted based on the locations of the doors, windows, aircraft structures and the communication/navigation system-of-concern. Modeled results are compared with measured data and a plan is proposed to enhance the modeling for better prediction of electromagnetic coupling problems inside aircraft.
Parallel Force Assay for Protein-Protein Interactions
Aschenbrenner, Daniela; Pippig, Diana A.; Klamecka, Kamila; Limmer, Katja; Leonhardt, Heinrich; Gaub, Hermann E.
2014-01-01
Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay. PMID:25546146
Parallel force assay for protein-protein interactions.
Aschenbrenner, Daniela; Pippig, Diana A; Klamecka, Kamila; Limmer, Katja; Leonhardt, Heinrich; Gaub, Hermann E
2014-01-01
Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay.
Abt, Nicholas B; Lehar, Mohamed; Guajardo, Carolina Trevino; Penninger, Richard T; Ward, Bryan K; Pearl, Monica S; Carey, John P
2016-04-01
Whether the round window membrane (RWM) is permeable to iodine-based contrast agents (IBCA) is unknown; therefore, our goal was to determine if IBCAs could diffuse through the RWM using CT volume acquisition imaging. Imaging of hydrops in the living human ear has attracted recent interest. Intratympanic (IT) injection has shown gadolinium's ability to diffuse through the RWM, enhancing the perilymphatic space. Four unfixed human cadaver temporal bones underwent intratympanic IBCA injection using three sequentially studied methods. The first method was direct IT injection. The second method used direct RWM visualization via tympanomeatal flap for IBCA-soaked absorbable gelatin pledget placement. In the third method, the middle ear was filled with contrast after flap elevation. Volume acquisition CT images were obtained immediately postexposure, and at 1-, 6-, and 24-hour intervals. Postprocessing was accomplished using color ramping and subtraction imaging. After the third method, positive RWM and perilymphatic enhancement were observed with endolymph sparing. Gray scale and color ramp multiplanar reconstructions displayed increased signal within the cochlea compared with precontrast imaging. The cochlea was measured for attenuation differences compared with pure water, revealing a preinjection average of -1,103 HU and a postinjection average of 338 HU. Subtraction imaging shows enhancement remaining within the cochlear space, Eustachian tube, middle ear epithelial lining, and mastoid. Iohexol iodine contrast is able to diffuse across the RWM. Volume acquisition CT imaging was able to detect perilymphatic enhancement at 0.5-mm slice thickness. The clinical application of IBCA IT injection seems promising but requires further safety studies.
Challenger Center's Window on the Universe
NASA Astrophysics Data System (ADS)
Livengood, T. A.; Goldstein, J. J.; Smith, S.; Bobrowsky, M.; Radnofsky, M.; Perelmuter, J.-M.; Jaggar, L.
2001-11-01
Challenger Center for Space Science Education's Window on the Universe program aims to create a network of under-served communities across the nation dedicated to sustained science, math, and technology education. Window communities presently include Broken Arrow, OK; Muncie, IN; Moscow, ID; Nogales, AZ; Tuskegee, AL; Marquette, MI; Altamont, KS; Washington, D.C.; and other emerging sites. Window uses themes of human space flight and the space sciences as interdisciplinary means to inspire entire communities. Practicing scientists and engineers engaged in these disciplines are invited to volunteer to become a part of these communities for a week, each visitor reaching roughly 2000 K-12 students through individual classroom visits and Family Science Night events during an intense Window on the Universe Week. In the same Window Week, Challenger Center scientists and educators present a workshop for local educators to provide training in the use of a K-12 educational module built around a particular space science and exploration theme. Window communities follow a 3-year development: Year 1, join the network, experience Window Week presented by Challenger Center and visiting researchers; Year 2, same as Year 1 plus workshop on partnering with local organizations to develop sources of visiting researchers and to enhance connections with local resources; Year 3 and subsequent, the community stages its own Window Week, with Challenger Center providing new education modules and training workshops for "master educators" from the Window community, after which the master educators return home to conduct training workshops of their own. Challenger Center remains a resource and clearinghouse for Window communities to acquire experience, technical information, and opportunities for distance collaboration with other Window communities. Window on the Universe is dedicated to assessing degree of success vs. failure in each program component and as a whole, using pre- and post-assessment questionnaires to develop a sound basis for continual improvement. Window on the Universe is funded by NASA's Office of Space Flight and the Office of Space Science.
Ramani, Subha; Könings, Karen; Mann, Karen V; van der Vleuten, Cees
2017-10-01
Self-assessment and reflection are essential for meaningful feedback. We aimed to explore whether the well-known Johari window model of self-awareness could guide feedback conversations between faculty and residents and enhance the institutional feedback culture. We had previously explored perceptions of residents and faculty regarding sociocultural factors impacting feedback. We re-analyzed data targeting themes related to self-assessment, reflection, feedback seeking and acceptance, aiming to generate individual and institutional feedback strategies applicable to each quadrant of the window. We identified the following themes for each quadrant: (1) Behaviors known to self and others - Validating the known; (2) Behaviors unknown to self but known to others - Accepting the blind; (3) Behaviors known to self and unknown to others - Disclosure of hidden; and (4) Behaviors unknown to self and others - Uncovering the unknown. Normalizing self-disclosure of limitations, encouraging feedback seeking, training in nonjudgmental feedback and providing opportunities for longitudinal relationships could promote self-awareness, ultimately expanding the "open" quadrant of the Johari window. The Johari window, a model of self-awareness in interpersonal communications, could provide a robust framework for individuals to improve their feedback conversations and institutions to design feedback initiatives that enhance its quality and impact.
X-window-based 2K display workstation
NASA Astrophysics Data System (ADS)
Weinberg, Wolfram S.; Hayrapetian, Alek S.; Cho, Paul S.; Valentino, Daniel J.; Taira, Ricky K.; Huang, H. K.
1991-07-01
A high-definition, high-performance display station for reading and review of digital radiological images is introduced. The station is based on a Sun SPARC Station 4 and employs X window system for display and manipulation of images. A mouse-operated graphic user interface is implemented utilizing Motif-style tools. The system supports up to four MegaScan gray-scale 2560 X 2048 monitors. A special configuration of frame and video buffer yields a data transfer of 50 M pixels/s. A magnetic disk array supplies a storage capacity of 2 GB with a data transfer rate of 4-6 MB/s. The system has access to the central archive through an ultrahigh-speed fiber-optic network and patient studies are automatically transferred to the local disk. The available image processing functions include change of lookup table, zoom and pan, and cine. Future enhancements will provide for manual contour tracing, length, area, and density measurements, text and graphic overlay, as well as composition of selected images. Additional preprocessing procedures under development will optimize the initial lookup table and adjust the images to a standard orientation.
HPC in a HEP lab: lessons learned from setting up cost-effective HPC clusters
NASA Astrophysics Data System (ADS)
Husejko, Michal; Agtzidis, Ioannis; Baehler, Pierre; Dul, Tadeusz; Evans, John; Himyr, Nils; Meinhard, Helge
2015-12-01
In this paper we present our findings gathered during the evaluation and testing of Windows Server High-Performance Computing (Windows HPC) in view of potentially using it as a production HPC system for engineering applications. The Windows HPC package, an extension of Microsofts Windows Server product, provides all essential interfaces, utilities and management functionality for creating, operating and monitoring a Windows-based HPC cluster infrastructure. The evaluation and test phase was focused on verifying the functionalities of Windows HPC, its performance, support of commercial tools and the integration with the users work environment. We describe constraints imposed by the way the CERN Data Centre is operated, licensing for engineering tools and scalability and behaviour of the HPC engineering applications used at CERN. We will present an initial set of requirements, which were created based on the above constraints and requests from the CERN engineering user community. We will explain how we have configured Windows HPC clusters to provide job scheduling functionalities required to support the CERN engineering user community, quality of service, user- and project-based priorities, and fair access to limited resources. Finally, we will present several performance tests we carried out to verify Windows HPC performance and scalability.
Mock Target Window OTR and IR Design and Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wass, Alexander Joseph
In order to fully verify temperature measurements made on the target window using infrared (IR) optical non-contact methods, actual comparative measurements are made with a real beam distribution as the heat source using Argonne National Laboratory’s (ANL) 35 MeV electron accelerator. Using Monte Carlo N-Particle (MCNP) simulations and thermal Finite Element Analysis (FEA), a cooled mock target window with thermocouple implants is designed to be used in such a test to achieve window temperatures up to 700°C. An uncoated and blackcoated mock window is designed to enhance the IR temperature measurements and verify optical transmitted radiation (OTR) imagery. This allowsmore » us to fully verify and characterize our temperature accuracy with our current IR camera method and any future method we may wish to explore using actual production conditions. This test also provides us with valuable conclusions/concerns regarding the calibration method we developed using our IR test stand at TA-53 in MPF-14.« less
Photoacoustic imaging at 1064nm wavelength with exogenous contrast agents
NASA Astrophysics Data System (ADS)
Upputuri, Paul Kumar; Jiang, Yuyan; Pu, Kanyi; Pramanik, Manojit
2018-02-01
Photoacoustic (PA) imaging is a promising imaging modality for both preclinical research and clinical practices. Laser wavelengths in the first near infrared window (NIR-I, 650-950 nm) have been widely used for photoacoustic imaging. As compared with NIR-I window, scattering of photons by biological tissues is largely reduced in the second NIR (NIR-II) window, leading to enhanced imaging fidelity. However, the lack of biocompatible NIR-II absorbing exogenous agents prevented the use of this window for in vivo imaging. In recent years, few studies have been reported on photoacoustic imaging in NIR-II window using exogenous contrast agents. In this work, we discuss the recent work on PA imaging using 1064 nm wavelength, the fundamental of Nd:YAG laser, as an excitation wavelength. The PA imaging at 1064 nm is advantageous because of the low and homogeneous signal from tissue background, enabling high contrast in PA imaging when NIR-II absorbing contrast agents are employed.
Novel contact hole reticle design for enhanced lithography process window in IC manufacturing
NASA Astrophysics Data System (ADS)
Chang, Chung-Hsing
2005-01-01
For 90nm node generation, 65nm, and beyond, dark field mask types such as contact-hole, via, and trench patterns that all are very challenging to print with satisfactory process windows for day-to-day lithography manufacturing. Resolution enhancement technology (RET) masks together with ArF high numerical aperture (NA) scanners have been recognized as the inevitable choice of method for 65nm node manufacturing. Among RET mask types, the alternating phase shifting mask (AltPSM) is one of the well-known strong enhancement techniques. However AltPSM can have a very strong optical proximity effect that comes with the use of small on-axis illumination sigma setting. For very dense contact features, it may be possible for AltPSM to overcome the phase conflict by limiting the mask design rules. But it is not feasible to resolve the inherent phase conflict for the semi-dense, semi-isolated and isolated contact areas. Hence the adoption of this strong enhancement technique for dark filed mask types in today"s IC manufacturing has been very limited. In this paper, we present a novel yet a very powerful design method to achieve contact and via masks printing for 90nm, 65nm, and beyond. We name our new mask design as: Novel Improved Contact-hole pattern Exposure PSM (NICE PSM) with off-axis illumination, such as QUASAR. This RET masks design can enhance the process window of isolated, semi-isolated contact hole and via hole patterns. The main concepts of NICE PSM with QUASAR off-axis illumination are analogous to the Super-FLEX pupil filter technology.
Novel contact hole reticle design for enhanced lithography process window in IC manufacturing
NASA Astrophysics Data System (ADS)
Chang, Chung-Hsing
2004-10-01
For 90nm node generation, 65nm, and beyond, dark field mask types such as contact-hole, via, and trench patterns that all are very challenging to print with satisfactory process windows for day-to-day lithography manufacturing. Resolution enhancement technology (RET) masks together with ArF high numerical aperture (NA) scanners have been recognized as the inevitable choice of method for 65nm node manufacturing. Among RET mask types, the alternating phase shifting mask (AltPSM) is one of the well-known strong enhancement techniques. However, AltPSM can have a very strong optical proximity effect that comes with the use of small on-axis illumination sigma setting. For very dense contact features, it may be possible for AltPSM to overcome the phase conflict by limiting the mask design rules. But it is not feasible to resolve the inherent phase conflict for the semi-dense, semi-isolated and isolated contact areas. Hence the adoption of this strong enhancement technique for dark filed mask types in today"s IC manufacturing has been very limited. In this paper, we report a novel yet a very powerful design method to achieve contact and via masks printing for 90nm, 65nm, and beyond. We name our new mask design as: Novel Improved Contact-hole pattern Exposure PSM (NICE PSM) with off-axis illumination, such as QUASAR. This RET masks design can enhance the process window of isolated, semi-isolated contact hole and via hole patterns. The main concepts of NICE PSM with QUASAR off-axis illumination are analogous to the Super-FLEX pupil filter technology.
VISUAL PLUMES CONCEPTS TO POTENTIALLY ADAPT OR ADOPT IN MODELING PLATFORMS SUCH AS VISJET
Windows-based programs share many familiar features and components. For example, file dialogue windows are familiar to most Windows-based personal computer users. Such program elements are desirable because the user is already familiar with how they function, obviating the need f...
Parity-time-symmetry enhanced optomechanically-induced-transparency
Li, Wenlin; Jiang, Yunfeng; Li, Chong; Song, Heshan
2016-01-01
We propose and analyze a scheme to enhance optomechanically-induced-transparency (OMIT) based on parity-time-symmetric optomechanical system. Our results predict that an OMIT window which does not exist originally can appear in weak optomechanical coupling and driving system via coupling an auxiliary active cavity with optical gain. This phenomenon is quite different from these reported in previous works in which the gain is considered just to damage OMIT phenomenon even leads to electromagnetically induced absorption or inverted-OMIT. Such enhanced OMIT effects are ascribed to the additional gain which can increase photon number in cavity without reducing effective decay. We also discuss the scheme feasibility by analyzing recent experiment parameters. Our work provide a promising platform for the coherent manipulation and slow light operation, which has potential applications for quantum information processing and quantum optical device. PMID:27489193
Sahi, Kamal; Jackson, Stuart; Wiebe, Edward; Armstrong, Gavin; Winters, Sean; Moore, Ronald; Low, Gavin
2014-02-01
To assess if "liver window" settings improve the conspicuity of small renal cell carcinomas (RCC). Patients were analysed from our institution's pathology-confirmed RCC database that included the following: (1) stage T1a RCCs, (2) an unenhanced computed tomography (CT) abdomen performed ≤ 6 months before histologic diagnosis, and (3) age ≥ 17 years. Patients with multiple tumours, prior nephrectomy, von Hippel-Lindau disease, and polycystic kidney disease were excluded. The unenhanced CT was analysed, and the tumour locations were confirmed by using corresponding contrast-enhanced CT or magnetic resonance imaging studies. Representative single-slice axial, coronal, and sagittal unenhanced CT images were acquired in "soft tissue windows" (width, 400 Hounsfield unit (HU); level, 40 HU) and liver windows (width, 150 HU; level, 88 HU). In addition, single-slice axial, coronal, and sagittal unenhanced CT images of nontumourous renal tissue (obtained from the same cases) were acquired in soft tissue windows and liver windows. These data sets were randomized, unpaired, and were presented independently to 3 blinded radiologists for analysis. The presence or absence of suspicious findings for tumour was scored on a 5-point confidence scale. Eighty-three of 415 patients met the study criteria. Receiver operating characteristics (ROC) analysis, t test analysis, and kappa analysis were used. ROC analysis showed statistically superior diagnostic performance for liver windows compared with soft tissue windows (area under the curve of 0.923 vs 0.879; P = .0002). Kappa statistics showed "good" vs "moderate" agreement between readers for liver windows compared with soft tissue windows. Use of liver windows settings improves the detection of small RCCs on the unenhanced CT. Copyright © 2014 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garretson, Justin; Hobart, Clinton; Rael, Reymundo
Windows 8 App for use in viewing, enhancing, and manipulating x-ray images. Intended for use by state/local government, federal agencies, and military in explosive ordinance disposal (EOD) applications.
CatReg Software for Categorical Regression Analysis (May 2016)
CatReg 3.0 is a Microsoft Windows enhanced version of the Agency’s categorical regression analysis (CatReg) program. CatReg complements EPA’s existing Benchmark Dose Software (BMDS) by greatly enhancing a risk assessor’s ability to determine whether data from separate toxicologic...
NASA Astrophysics Data System (ADS)
Pilyavsky, Genady; Mahadevan, S.; Kane, S. R.; Howard, A. W.; Ciardi, D. R.; de Pree, C.; Dragomir, D.; Fischer, D.; Henry, G. W.; Jensen, E. L. N.; Laughlin, G.; Marlowe, H.; Rabus, M.; von Braun, K.; Wright, J. T.; Wang, X.
2012-01-01
The discovery of transiting planets around bright stars holds the potential to greatly enhance our understanding of planetary atmospheres. The Transit Ephemeris Refinement and Monitoring Survey (TERMS) project focuses on updating the ephemerides of known exoplanets, put tighter constraints on the orbital parameters and shrink the large errors on the predicted transit windows, enabling photometric monitoring to search for a transit signature. Here, we present the revised orbital parameters and the photometric coverage during a predicted transit window of HD168443b, a massive planet orbiting the bright star HD 168443 (V = 6.92) with a period of 58.11 days. The high eccentricity of the planetary orbit (e = 0.53) significantly enhances the a-priori transit probability (3.7%) from what is expected for a circular orbit (2.5%). The transit ephemeris was updated using refined orbital parameters from additional Keck-HIRES radial velocities. The photometry obtained at the 1 m telescope in Cerro Tololo Inter-American Observatory (CTIO) and the T8 0.8 m Automated Photometric Telescope (APT) at Fairborn Observatory achieved the necessary millimag precision. The expected change in flux (0.5%) for HD168443 was not observed during the predicted transit window, thus allowing us to rule out the transit and put tighter constrains on the orbital inclination of HD168443b. Additionally, we present the software used to analyze the CTIO data. Developed by the TERMS team, this IDL based package is a fast, precise, and easy to use program which has eliminated the need for external software and command line prompts by utilizing the functionality of a graphical user interface (GUI).
Ding, Jun; Arigong, Bayaner; Ren, Han; Zhou, Mi; Shao, Jin; Lu, Meng; Chai, Yang; Lin, Yuankun; Zhang, Hualiang
2014-01-01
Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, which is achieved without breaking the structure symmetry. Further investigations have shown that the single transparency window in the proposed quadrupole slot structure is more likely originated from the quantum effect of Autler-Townes splitting. Then, by introducing a dipole slot to the quadrupole slot structure to form the dolmen-like slot structure, an additional transmission dip could occur in the transmission spectrum, thus, a multiple-transparency-window system can be achieved (for the first time for graphene-based devices). More importantly, the transparency windows for both the quadrupole slot and the dolmen-like slot structures can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer (through electrostatic gating). The proposed slot metamaterial structures with tunable single and multiple transparency windows could find potential applications in many areas such as multiple-wavelength slow-light devices, active plasmonic switching, and optical sensing. PMID:25146672
Ding, Jun; Arigong, Bayaner; Ren, Han; Zhou, Mi; Shao, Jin; Lu, Meng; Chai, Yang; Lin, Yuankun; Zhang, Hualiang
2014-08-22
Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, which is achieved without breaking the structure symmetry. Further investigations have shown that the single transparency window in the proposed quadrupole slot structure is more likely originated from the quantum effect of Autler-Townes splitting. Then, by introducing a dipole slot to the quadrupole slot structure to form the dolmen-like slot structure, an additional transmission dip could occur in the transmission spectrum, thus, a multiple-transparency-window system can be achieved (for the first time for graphene-based devices). More importantly, the transparency windows for both the quadrupole slot and the dolmen-like slot structures can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer (through electrostatic gating). The proposed slot metamaterial structures with tunable single and multiple transparency windows could find potential applications in many areas such as multiple-wavelength slow-light devices, active plasmonic switching, and optical sensing.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., but not limited to, certain window, floor, and stair surfaces. Impact surface means an interior or.... Interior window sill means the portion of the horizontal window ledge that protrudes into the interior of... based on the equation [60+(3*100)+(4*110)]/(1+3+4). Window trough means, for a typical double-hung...
Local electronic and optical behavior of ELO a-plane GaN
NASA Astrophysics Data System (ADS)
Baski, A. A.; Moore, J. C.; Ozgur, U.; Kasliwal, V.; Ni, X.; Morkoc, H.
2007-03-01
Conductive atomic force microscopy (CAFM) and near-field optical microscopy (NSOM) were used to study a-plane GaN films grown via epitaxial lateral overgrowth (ELO). The ELO films were prepared by metal organic chemical vapor deposition on a patterned SiO2 layer with 4-μm wide windows, which was deposited on a GaN template grown on r-plane sapphire. The window regions of the coalesced ELO films appear as depressions with a high density of surface pits. At reverse bias below 12 V, very low uniform conduction (2 pA) is seen in the window regions. Above 20 V, a lower-quality sample shows localized sites inside the window regions with significant leakage, indicating a correlation between the presence of surface pits and leakage sites. Room temperature NSOM studies also suggest a greater density of surface terminated dislocations in the window regions, while wing regions explicitly show enhanced optical quality of the overgrown GaN. The combination of CAFM and NSOM data therefore indicates a correlation between the presence of surface pits, localized reverse-bias current leakage, and low PL intensity in the window regions.
Cavity Enhanced Absorption Spectroscopy Using a Broadband Prism Cavity and a Supercontinuum Source
NASA Astrophysics Data System (ADS)
Johnston, Paul S.; Lehmann, Kevin K.
2009-06-01
The multiplex advantage of current cavity enhanced spectrometers is limited by the high reflectivity bandwidth of the mirrors used to construct the high finesse cavity. Previously, we reported the design and construction of a new spectrometer that circumvents this limitation by utilizing Brewster^{,}s angle prism retroreflectors. The prisms, made from fused silica and combined with a supercontinuum source generated by pumping a highly nonlinear photonic crystal fiber, yields a spectral window ranging from 500 nm to 1750 nm. Recent progress in the instruments development will be discussed, including work on modeling the prism cavity losses, alternative prism material for use in the UV and mid-IR spectral regions, and a new high power supercontinuum source based on mode-locked picosecond laser.
NASA Astrophysics Data System (ADS)
Boashash, Boualem; Lovell, Brian; White, Langford
1988-01-01
Time-Frequency analysis based on the Wigner-Ville Distribution (WVD) is shown to be optimal for a class of signals where the variation of instantaneous frequency is the dominant characteristic. Spectral resolution and instantaneous frequency tracking is substantially improved by using a Modified WVD (MWVD) based on an Autoregressive spectral estimator. Enhanced signal-to-noise ratio may be achieved by using 2D windowing in the Time-Frequency domain. The WVD provides a tool for deriving descriptors of signals which highlight their FM characteristics. These descriptors may be used for pattern recognition and data clustering using the methods presented in this paper.
Lu, Aitao; Yang, Ling; Yu, Yanping; Zhang, Meichao; Shao, Yulan; Zhang, Honghong
2014-08-01
The present study used the event-related potential technique to investigate the nature of linguistic effect on color perception. Four types of stimuli based on hue differences between a target color and a preceding color were used: zero hue step within-category color (0-WC); one hue step within-category color (1-WC); one hue step between-category color (1-BC); and two hue step between-category color (2-BC). The ERP results showed no significant effect of stimulus type in the 100-200 ms time window. However, in the 200-350 ms time window, ERP responses to 1-WC target color overlapped with that to 0-WC target color for right visual field (RVF) but not left visual field (LVF) presentation. For the 1-BC condition, ERP amplitudes were comparable in the two visual fields, both being significantly different from the 0-WC condition. The 2-BC condition showed the same pattern as the 1-BC condition. These results suggest that the categorical perception of color in RVF is due to linguistic suppression on within-category color discrimination but not between-category color enhancement, and that the effect is independent of early perceptual processes. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Interoperability through standardization: Electronic mail, and X Window systems
NASA Technical Reports Server (NTRS)
Amin, Ashok T.
1993-01-01
Since the introduction of computing machines, there has been continual advances in computer and communication technologies and approaching limits. The user interface has evolved from a row of switches, character based interface using teletype terminals and then video terminals, to present day graphical user interface. It is expected that next significant advances will come in the availability of services, such as electronic mail and directory services, as the standards for applications are developed and in the 'easy to use' interfaces, such as Graphical User Interface for example Window and X Window, which are being standardized. Various proprietary electronic mail (email) systems are in use within organizations at each center of NASA. Each system provides email services to users within an organization, however the support for email services across organizations and across centers exists at centers to a varying degree and is often easy to use. A recent NASA email initiative is intended 'to provide a simple way to send email across organizational boundaries without disruption of installed base.' The initiative calls for integration of existing organizational email systems through gateways connected by a message switch, supporting X.400 and SMTP protocols, to create a NASA wide email system and for implementation of NASA wide email directory services based on OSI standard X.500. A brief overview of MSFC efforts as a part of this initiative are described. Window based graphical user interfaces make computers easy to use. X window protocol has been developed at Massachusetts Institute of Technology in 1984/1985 to provide uniform window based interface in a distributed computing environment with heterogenous computers. It has since become a standard supported by a number of major manufacturers. Z Windows systems, terminals and workstations, and X Window applications are becoming available. However impact of its use in the Local Area Network environment on the network traffic are not well understood. It is expected that the use of X Windows systems will increase at MSFC especially for Unix based systems. An overview of X Window protocol is presented and its impact on the network traffic is examined. It is proposed that an analytical model of X Window systems in the network environment be developed and validated through the use of measurements to generate application and user profiles.
Sobolik, Tammy; Su, Ying-Jun; Ashby, Will; Schaffer, David K.; Wells, Sam; Wikswo, John P.; Zijlstra, Andries; Richmond, Ann
2016-01-01
ABSTRACT We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment. PMID:28243517
Microwave accelerator E-beam pumped laser
Brau, Charles A.; Stein, William E.; Rockwood, Stephen D.
1980-01-01
A device and method for pumping gaseous lasers by means of a microwave accelerator. The microwave accelerator produces a relativistic electron beam which is applied along the longitudinal axis of the laser through an electron beam window. The incident points of the electron beam on the electron beam window are varied by deflection coils to enhance the cooling characteristics of the foil. A thyratron is used to reliably modulate the microwave accelerator to produce electron beam pulses which excite the laser medium to produce laser pulse repetition frequencies not previously obtainable. An aerodynamic window is also disclosed which eliminates foil heating problems, as well as a magnetic bottle for reducing laser cavity length and pressures while maintaining efficient energy deposition.
Sobolik, Tammy; Su, Ying-Jun; Ashby, Will; Schaffer, David K; Wells, Sam; Wikswo, John P; Zijlstra, Andries; Richmond, Ann
2016-01-01
We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment.
NASA Astrophysics Data System (ADS)
Mannon, Timothy Patrick, Jr.
Improving well design has and always will be the primary goal in drilling operations in the oil and gas industry. Oil and gas plays are continuing to move into increasingly hostile drilling environments, including near and/or sub-salt proximities. The ability to reduce the risk and uncertainly involved in drilling operations in unconventional geologic settings starts with improving the techniques for mudweight window modeling. To address this issue, an analysis of wellbore stability and well design improvement has been conducted. This study will show a systematic approach to well design by focusing on best practices for mudweight window projection for a field in Mississippi Canyon, Gulf of Mexico. The field includes depleted reservoirs and is in close proximity of salt intrusions. Analysis of offset wells has been conducted in the interest of developing an accurate picture of the subsurface environment by making connections between depth, non-productive time (NPT) events, and mudweights used. Commonly practiced petrophysical methods of pore pressure, fracture pressure, and shear failure gradient prediction have been applied to key offset wells in order to enhance the well design for two proposed wells. For the first time in the literature, the accuracy of the commonly accepted, seismic interval velocity based and the relatively new, seismic frequency based methodologies for pore pressure prediction are qualitatively and quantitatively compared for accuracy. Accuracy standards will be based on the agreement of the seismic outputs to pressure data obtained while drilling and petrophysically based pore pressure outputs for each well. The results will show significantly higher accuracy for the seismic frequency based approach in wells that were in near/sub-salt environments and higher overall accuracy for all of the wells in the study as a whole.
Local electronic and optical behaviors of a-plane GaN grown via epitaxial lateral overgrowth
NASA Astrophysics Data System (ADS)
Moore, J. C.; Kasliwal, V.; Baski, A. A.; Ni, X.; Özgür, Ü.; Morkoç, H.
2007-01-01
Conductive atomic force microscopy and near-field optical microscopy (NSOM) were used to study the morphology, conduction, and optical properties of a-plane GaN films grown via epitaxial lateral overgrowth (ELO) by metal organic chemical vapor deposition. The AFM images for the coalesced ELO films show undulations, where the window regions appear as depressions with a high density of surface pits. At reverse bias below 12V, very low uniform conduction (2pA) is seen in the window regions. Above 20V, a lower-quality sample shows localized sites inside the window regions with significant leakage, indicating a correlation between the presence of surface pits and leakage sites. Room temperature NSOM studies explicitly showed enhanced optical quality in the wing regions of the overgrown GaN due to a reduced density of dislocations, with the wings and the windows clearly discernible from near-field photoluminescence mapping.
NASA Technical Reports Server (NTRS)
Thompson, Shelby; Litaker, Harry; Howard, Robert
2009-01-01
A natural component to driving any type of vehicle, be it Earth-based or space-based, is visibility. In its simplest form visibility is a measure of the distance at which an object can be seen. With the National Aeronautics and Space Administration s (NASA) Space Shuttle and the International Space Station (ISS), there are human factors design guidelines for windows. However, for planetary exploration related vehicles, especially land-based vehicles, relatively little has been written on the importance of windows. The goal of the current study was to devise a proper methodology and to obtain preliminary human-in-the-loop data on window placement and location for the small pressurized rover (SPR). Nine participants evaluated multiple areas along the vehicle s front "nose", while actively maneuvering through several lunar driving simulations. Subjective data was collected on seven different aspects measuring areas of necessity, frequency of views, and placement/configuration of windows using questionnaires and composite drawings. Results indicated a desire for a large horizontal field-of-view window spanning the front of the vehicle for most driving situations with slightly reduced window areas for the lower front, lower corners, and side views.
NASA Astrophysics Data System (ADS)
Wu, Meiyi; Burcklen, Catherine; André, Jean-Michel; Guen, Karine Le; Giglia, Angelo; Koshmak, Konstantin; Nannarone, Stefano; Bridou, Françoise; Meltchakov, Evgueni; Rossi, Sébastien de; Delmotte, Franck; Jonnard, Philippe
2017-11-01
We study Cr/Sc-based multilayer mirrors designed to work in the water window range using hard and soft x-ray reflectivity as well as x-ray fluorescence enhanced by standing waves. Samples differ by the elemental composition of the stack, the thickness of each layer, and the order of deposition. This paper mainly consists of two parts. In the first part, the optical performances of different Cr/Sc-based multilayers are reported, and in the second part, we extend further the characterization of the structural parameters of the multilayers, which can be extracted by comparing the experimental data with simulations. The methodology is detailed in the case of Cr/B4C/Sc sample for which a three-layer model is used. Structural parameters determined by fitting reflectivity curve are then introduced as fixed parameters to plot the x-ray standing wave curve, to compare with the experiment, and confirm the determined structure of the stack.
Abt, Nicholas B.; Lehar, Mohamed; Guajardo, Carolina Trevino; Penninger, Richard T.; Ward, Bryan K.; Pearl, Monica S.; Carey, John P.
2016-01-01
Hypothesis Whether the RWM is permeable to iodine-based contrast agents (IBCA) is unknown; therefore, our goal was to determine if IBCAs could diffuse through the RWM using CT volume acquisition imaging. Introduction Imaging of hydrops in the living human ear has attracted recent interest. Intratympanic (IT) injection has shown gadolinium's ability to diffuse through the round window membrane (RWM), enhancing the perilymphatic space. Methods Four unfixed human cadaver temporal bones underwent intratympanic IBCA injection using three sequentially studied methods. The first method was direct IT injection. The second method used direct RWM visualization via tympanomeatal flap for IBCA-soaked absorbable gelatin pledget placement. In the third method, the middle ear was filled with contrast after flap elevation. Volume acquisition CT images were obtained immediately post-exposure, and at 1, 6, and 24 hour intervals. Post-processing was accomplished using color ramping and subtraction imaging. Results Following the third method, positive RWM and perilymphatic enhancement were seen with endolymph sparing. Gray scale and color ramp multiplanar reconstructions displayed increased signal within the cochlea compared to pre-contrast imaging. The cochlea was measured for attenuation differences compared to pure water, revealing a pre-injection average of −1,103 HU and a post-injection average of 338 HU. Subtraction imaging shows enhancement remaining within the cochlear space, Eustachian tube, middle ear epithelial lining, and mastoid. Conclusions Iohexol iodine contrast is able to diffuse across the RWM. Volume acquisition CT imaging was able to detect perilymphatic enhancement at 0.5mm slice thickness. The clinical application of IBCA IT injection appears promising but requires further safety studies. PMID:26859543
NASA Astrophysics Data System (ADS)
Chen, Sy-Hann; Jhong, Jhen-Yu
2011-08-01
This study achieved a substantial enhancement in electroluminescence by coupling localized surface plasmons in a single layer of Ag nanoparticles. Thermal evaporation was used to fabricate 20-nm Ag particles sandwiched between a gallium-doped zinc oxide film and a glass substrate to form novel window materials for use in polymer light-emitting diodes (PLEDs). The PLEDs discussed herein are single-layer devices based on a poly(9,9-di-n-octyl-2,7-fluorene) (PFO) emissive layer. In addition to low cost, this novel fabrication method can effectively prevent interruption or degradation of the charge transport properties of the active layer to meet the high performance requirements of PLEDs. Due to the surface-plasmon-enhanced emission, the electroluminescence intensity was increased by nearly 1-fold, compared to that of the same PLED without the interlayer of Ag nanoparticles.
Gao, Wen-Yang; Leng, Kunyue; Cash, Lindsay; Chrzanowski, Matthew; Stackhouse, Chavis A; Sun, Yinyong; Ma, Shengqian
2015-03-21
A series of prototypal metal-organic frameworks (MOFs) consisting of polyhedral cages with accessible Lewis-acid sites, have been systematically investigated for Friedländer annulation reaction, a straightforward approach to synthesizing quinoline and its derivatives. Amongst them MMCF-2 demonstrates significantly enhanced catalytic activity compared with the benchmark MOFs, HKUST-1 and MOF-505, as a result of a high-density of accessible Cu(II) Lewis acid sites and large window size in the cuboctahedral cage-based nanoreactor of MMCF-2.
Configuring Eclipse for GMAT Builds: Instructions for Windows Users, Rev. 0.3
NASA Technical Reports Server (NTRS)
Conway, Darrel J.
2007-01-01
This document provides instructions about how to configure the Eclipse IDE to build GMAT on Windows based PCs. The current instructions are preliminary; the Windows builds using Eclipse are currently a bit crude. These instructions are intended to give you enough information to get Eclipse setup to build wxWidgets based executables in general, and GMAT in particular.
Li, Ang; Li, Xiang; Yu, Xujiang; Li, Wei; Zhao, Ruyi; An, Xiao; Cui, Daxiang; Chen, Xiaoyuan; Li, Wanwan
2017-01-01
In this work, we report a successful synthesis of copper bismuth sulfide nanorods (NRs) with broad and strong photoabsorption ranging from ultraviolet (UV) to near-infrared (NIR) wavelengths, which can be used as a 1064 nm-laser-driven photothermal agent with the photothermal conversion efficiency of 40.7%, noticeably higher than most of the reported PTT agents working in NIR-II window. The as-prepared PEGylated Cu 3 BiS 3 NRs were used as photoacoustic imaging (PAI) and CT imaging agents due to their strong NIR absorption and large X-ray attenuation coefficient of bismuth. We are the first to demonstrate that a small quantity of PEGylated Cu 3 BiS 3 NRs in tumors can concentrate radiation energy and trigger mild PTT under NIR-II irradiation and thus, these particles could be used as a novel, synergistic thermoradiotheraputic agent that enhances the efficacy of radiotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Liping; Qin, Kaiqiang; Li, Jiajun; Zhao, Naiqin; Shi, Chunsheng; Ma, Liying; He, Chunnian; He, Fang; Liu, Enzuo
2018-01-01
High quality free-standing 3D nanoporous graphene (3DNG) films were fabricated using nanoporous nickel as template and catalyst. The effect of heteroatom doping and pore size on the electrochemical performance of the 3D graphene films as supercapacitor electrodes are systematically studied. Compared with macroporous graphene films, nanoporous graphene films exhibit an extraordinarily large operational window in neutral, acidic and alkaline aqueous electrolytes, as well as high packing density. Nitrogen and oxygen doping play different roles in different aqueous electrolytes on the electrical conductivity and pseudocapacitance of 3DNG. The realization of both high packing density, 3.65 mg/cm2, and the maximum working window, as well as the synergistic effect between N and O doping, gives rise to a high areal capacitance of 435 mF/cm2 in neutral electrolyte and excellent cycle stability up to 5000 cycles. The results provide a potential strategy to further increase the volumetric or areal energy density of carbon-based aqueous supercapacitor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tal, J.; Lopez, A.; Edwards, J.M.
1995-04-01
In this paper, an alternative solution to the traditional CNC machine tool controller has been introduced. Software and hardware modules have been described and their incorporation in a CNC control system has been outlined. This type of CNC machine tool controller demonstrates that technology is accessible and can be readily implemented into an open architecture machine tool controller. Benefit to the user is greater controller flexibility, while being economically achievable. PC based, motion as well as non-motion features will provide flexibility through a Windows environment. Up-grading this type of controller system through software revisions will keep the machine tool inmore » a competitive state with minimal effort. Software and hardware modules are mass produced permitting competitive procurement and incorporation. Open architecture CNC systems provide diagnostics thus enhancing maintainability, and machine tool up-time. A major concern of traditional CNC systems has been operator training time. Training time can be greatly minimized by making use of Windows environment features.« less
Kim, Jeehwan; Abou-Kandil, Ahmed; Fogel, Keith; Hovel, Harold; Sadana, Devendra K
2010-12-28
Addition of carbon into p-type "window" layers in hydrogenated amorphous silicon (a-Si:H) solar cells enhances short circuit currents and open circuit voltages by a great deal. However, a-Si:H solar cells with high carbon-doped "window" layers exhibit poor fill factors due to a Schottky barrier-like impedance at the interface between a-SiC:H windows and transparent conducting oxides (TCO), although they show maximized short circuit currents and open circuit voltages. The impedance is caused by an increasing mismatch between the work function of TCO and that of p-type a-SiC:H. Applying ultrathin high-work-function metals at the interface between the two materials results in an effective lowering of the work function mismatch and a consequent ohmic behavior. If the metal layer is sufficiently thin, then it forms nanodots rather than a continuous layer which provides light-scattering effect. We demonstrate 31% efficiency enhancement by using high-work-function materials for engineering the work function at the key interfaces to raise fill factors as well as photocurrents. The use of metallic interface layers in this work is a clear contrast to previous work where attempts were made to enhance the photocurrent using plasmonic metal nanodots on the solar cell surface.
BROADENING OF THE RF POWER-DENSITY WINDOW FOR CALCIUM-ION EFFLUX FROM BRAIN TISSUE
Blackman, et. al. have reported enhanced efflux of calcium ions from chicken forebrains, exposed in vitro in a 50 ohm stripline to 147 MHz radiation, modulated sinusoidally at 16 Hz. When the spacing between the sample tubes was 3.8 cm on center, enhancement occurred at an incide...
NASA Astrophysics Data System (ADS)
Frommholz, D.; Linkiewicz, M.; Poznanska, A. M.
2016-06-01
This paper proposes an in-line method for the simplified reconstruction of city buildings from nadir and oblique aerial images that at the same time are being used for multi-source texture mapping with minimal resampling. Further, the resulting unrectified texture atlases are analyzed for façade elements like windows to be reintegrated into the original 3D models. Tests on real-world data of Heligoland/ Germany comprising more than 800 buildings exposed a median positional deviation of 0.31 m at the façades compared to the cadastral map, a correctness of 67% for the detected windows and good visual quality when being rendered with GPU-based perspective correction. As part of the process building reconstruction takes the oriented input images and transforms them into dense point clouds by semi-global matching (SGM). The point sets undergo local RANSAC-based regression and topology analysis to detect adjacent planar surfaces and determine their semantics. Based on this information the roof, wall and ground surfaces found get intersected and limited in their extension to form a closed 3D building hull. For texture mapping the hull polygons are projected into each possible input bitmap to find suitable color sources regarding the coverage and resolution. Occlusions are detected by ray-casting a full-scale digital surface model (DSM) of the scene and stored in pixel-precise visibility maps. These maps are used to derive overlap statistics and radiometric adjustment coefficients to be applied when the visible image parts for each building polygon are being copied into a compact texture atlas without resampling whenever possible. The atlas bitmap is passed to a commercial object-based image analysis (OBIA) tool running a custom rule set to identify windows on the contained façade patches. Following multi-resolution segmentation and classification based on brightness and contrast differences potential window objects are evaluated against geometric constraints and conditionally grown, fused and filtered morphologically. The output polygons are vectorized and reintegrated into the previously reconstructed buildings by sparsely ray-tracing their vertices. Finally the enhanced 3D models get stored as textured geometry for visualization and semantically annotated "LOD-2.5" CityGML objects for GIS applications.
Sabushimike, Donatien; Na, Seung You; Kim, Jin Young; Bui, Ngoc Nam; Seo, Kyung Sik; Kim, Gil Gyeom
2016-01-01
The detection of a moving target using an IR-UWB Radar involves the core task of separating the waves reflected by the static background and by the moving target. This paper investigates the capacity of the low-rank and sparse matrix decomposition approach to separate the background and the foreground in the trend of UWB Radar-based moving target detection. Robust PCA models are criticized for being batched-data-oriented, which makes them inconvenient in realistic environments where frames need to be processed as they are recorded in real time. In this paper, a novel method based on overlapping-windows processing is proposed to cope with online processing. The method consists of processing a small batch of frames which will be continually updated without changing its size as new frames are captured. We prove that RPCA (via its Inexact Augmented Lagrange Multiplier (IALM) model) can successfully separate the two subspaces, which enhances the accuracy of target detection. The overlapping-windows processing method converges on the optimal solution with its batch counterpart (i.e., processing batched data with RPCA), and both methods prove the robustness and efficiency of the RPCA over the classic PCA and the commonly used exponential averaging method. PMID:27598159
Cecere, Roberto; Gross, Joachim; Willis, Ashleigh; Thut, Gregor
2017-05-24
In multisensory integration, processing in one sensory modality is enhanced by complementary information from other modalities. Intersensory timing is crucial in this process because only inputs reaching the brain within a restricted temporal window are perceptually bound. Previous research in the audiovisual field has investigated various features of the temporal binding window, revealing asymmetries in its size and plasticity depending on the leading input: auditory-visual (AV) or visual-auditory (VA). Here, we tested whether separate neuronal mechanisms underlie this AV-VA dichotomy in humans. We recorded high-density EEG while participants performed an audiovisual simultaneity judgment task including various AV-VA asynchronies and unisensory control conditions (visual-only, auditory-only) and tested whether AV and VA processing generate different patterns of brain activity. After isolating the multisensory components of AV-VA event-related potentials (ERPs) from the sum of their unisensory constituents, we ran a time-resolved topographical representational similarity analysis (tRSA) comparing the AV and VA ERP maps. Spatial cross-correlation matrices were built from real data to index the similarity between the AV and VA maps at each time point (500 ms window after stimulus) and then correlated with two alternative similarity model matrices: AV maps = VA maps versus AV maps ≠ VA maps The tRSA results favored the AV maps ≠ VA maps model across all time points, suggesting that audiovisual temporal binding (indexed by synchrony perception) engages different neural pathways depending on the leading sense. The existence of such dual route supports recent theoretical accounts proposing that multiple binding mechanisms are implemented in the brain to accommodate different information parsing strategies in auditory and visual sensory systems. SIGNIFICANCE STATEMENT Intersensory timing is a crucial aspect of multisensory integration, determining whether and how inputs in one modality enhance stimulus processing in another modality. Our research demonstrates that evaluating synchrony of auditory-leading (AV) versus visual-leading (VA) audiovisual stimulus pairs is characterized by two distinct patterns of brain activity. This suggests that audiovisual integration is not a unitary process and that different binding mechanisms are recruited in the brain based on the leading sense. These mechanisms may be relevant for supporting different classes of multisensory operations, for example, auditory enhancement of visual attention (AV) and visual enhancement of auditory speech (VA). Copyright © 2017 Cecere et al.
2017-01-01
In multisensory integration, processing in one sensory modality is enhanced by complementary information from other modalities. Intersensory timing is crucial in this process because only inputs reaching the brain within a restricted temporal window are perceptually bound. Previous research in the audiovisual field has investigated various features of the temporal binding window, revealing asymmetries in its size and plasticity depending on the leading input: auditory–visual (AV) or visual–auditory (VA). Here, we tested whether separate neuronal mechanisms underlie this AV–VA dichotomy in humans. We recorded high-density EEG while participants performed an audiovisual simultaneity judgment task including various AV–VA asynchronies and unisensory control conditions (visual-only, auditory-only) and tested whether AV and VA processing generate different patterns of brain activity. After isolating the multisensory components of AV–VA event-related potentials (ERPs) from the sum of their unisensory constituents, we ran a time-resolved topographical representational similarity analysis (tRSA) comparing the AV and VA ERP maps. Spatial cross-correlation matrices were built from real data to index the similarity between the AV and VA maps at each time point (500 ms window after stimulus) and then correlated with two alternative similarity model matrices: AVmaps = VAmaps versus AVmaps ≠ VAmaps. The tRSA results favored the AVmaps ≠ VAmaps model across all time points, suggesting that audiovisual temporal binding (indexed by synchrony perception) engages different neural pathways depending on the leading sense. The existence of such dual route supports recent theoretical accounts proposing that multiple binding mechanisms are implemented in the brain to accommodate different information parsing strategies in auditory and visual sensory systems. SIGNIFICANCE STATEMENT Intersensory timing is a crucial aspect of multisensory integration, determining whether and how inputs in one modality enhance stimulus processing in another modality. Our research demonstrates that evaluating synchrony of auditory-leading (AV) versus visual-leading (VA) audiovisual stimulus pairs is characterized by two distinct patterns of brain activity. This suggests that audiovisual integration is not a unitary process and that different binding mechanisms are recruited in the brain based on the leading sense. These mechanisms may be relevant for supporting different classes of multisensory operations, for example, auditory enhancement of visual attention (AV) and visual enhancement of auditory speech (VA). PMID:28450537
Chiu, Yueh-Hsiu Mathilda; Hsu, Hsiao-Hsien Leon; Coull, Brent A.; Bellinger, David C.; Kloog, Itai; Schwartz, Joel; Wright, Robert O.; Wright, Rosalind J.
2015-01-01
Background Brain growth and structural organization occurs in stages beginning prenatally. Toxicants may impact neurodevelopment differently dependent upon exposure timing and fetal sex. Objectives We implemented innovative methodology to identify sensitive windows for the associations between prenatal particulate matter with diameter≤2.5μm (PM2.5) and children’s neurodevelopment. Methods We assessed 267 full-term urban children’s prenatal daily PM2.5 exposure using a validated satellite-based spatio-temporally resolved prediction model. Outcomes included IQ (WISC-IV), attention (omission errors [OEs], commission errors [CEs], hit reaction time [HRT], and HRT standard error [HRT-SE] on the Conners’ CPT-II), and memory (general memory [GM] index and its components - verbal [VEM] and visual [VIM] memory, and attention-concentration [AC] indices on the WRAML-2) assessed at age 6.5±0.98 years. To identify the role of exposure timing, we used distributed lag models to examine associations between weekly prenatal PM2.5 exposure and neurodevelopment. Sex-specific associations were also examined. Results Mothers were primarily minorities (60% Hispanic, 25% black); 69% had ≤12 years of education. Adjusting for maternal age, education, race, and smoking, we found associations between higher PM2.5 levels at 31–38 weeks with lower IQ, at 20–26 weeks gestation with increased OEs, at 32–36 weeks with slower HRT, and at 22–40 weeks with increased HRT-SE among boys, while significant associations were found in memory domains in girls (higher PM2.5 exposure at 18–26 weeks with reduced VIM, at 12–20 weeks with reduced GM). Conclusions Increased PM2.5 exposure in specific prenatal windows was associated with poorer function across memory and attention domains with variable associations based on sex. Refined determination of time window- and sex-specific associations may enhance insight into underlying mechanisms and identification of vulnerable subgroups. PMID:26641520
Chiu, Yueh-Hsiu Mathilda; Hsu, Hsiao-Hsien Leon; Coull, Brent A; Bellinger, David C; Kloog, Itai; Schwartz, Joel; Wright, Robert O; Wright, Rosalind J
2016-02-01
Brain growth and structural organization occurs in stages beginning prenatally. Toxicants may impact neurodevelopment differently dependent upon exposure timing and fetal sex. We implemented innovative methodology to identify sensitive windows for the associations between prenatal particulate matter with diameter ≤ 2.5 μm (PM2.5) and children's neurodevelopment. We assessed 267 full-term urban children's prenatal daily PM2.5 exposure using a validated satellite-based spatio-temporally resolved prediction model. Outcomes included IQ (WISC-IV), attention (omission errors [OEs], commission errors [CEs], hit reaction time [HRT], and HRT standard error [HRT-SE] on the Conners' CPT-II), and memory (general memory [GM] index and its components - verbal [VEM] and visual [VIM] memory, and attention-concentration [AC] indices on the WRAML-2) assessed at age 6.5±0.98 years. To identify the role of exposure timing, we used distributed lag models to examine associations between weekly prenatal PM2.5 exposure and neurodevelopment. Sex-specific associations were also examined. Mothers were primarily minorities (60% Hispanic, 25% black); 69% had ≤12 years of education. Adjusting for maternal age, education, race, and smoking, we found associations between higher PM2.5 levels at 31-38 weeks with lower IQ, at 20-26 weeks gestation with increased OEs, at 32-36 weeks with slower HRT, and at 22-40 weeks with increased HRT-SE among boys, while significant associations were found in memory domains in girls (higher PM2.5 exposure at 18-26 weeks with reduced VIM, at 12-20 weeks with reduced GM). Increased PM2.5 exposure in specific prenatal windows may be associated with poorer function across memory and attention domains with variable associations based on sex. Refined determination of time window- and sex-specific associations may enhance insight into underlying mechanisms and identification of vulnerable subgroups. Copyright © 2015 Elsevier Ltd. All rights reserved.
Remembering the Important Things: Semantic Importance in Stream Reasoning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Rui; Greaves, Mark T.; Smith, William P.
Reasoning and querying over data streams rely on the abil- ity to deliver a sequence of stream snapshots to the processing algo- rithms. These snapshots are typically provided using windows as views into streams and associated window management strategies. Generally, the goal of any window management strategy is to preserve the most im- portant data in the current window and preferentially evict the rest, so that the retained data can continue to be exploited. A simple timestamp- based strategy is rst-in-rst-out (FIFO), in which items are replaced in strict order of arrival. All timestamp-based strategies implicitly assume that a temporalmore » ordering reliably re ects importance to the processing task at hand, and thus that window management using timestamps will maximize the ability of the processing algorithms to deliver accurate interpretations of the stream. In this work, we explore a general no- tion of semantic importance that can be used for window management for streams of RDF data using semantically-aware processing algorithms like deduction or semantic query. Semantic importance exploits the infor- mation carried in RDF and surrounding ontologies for ranking window data in terms of its likely contribution to the processing algorithms. We explore the general semantic categories of query contribution, prove- nance, and trustworthiness, as well as the contribution of domain-specic ontologies. We describe how these categories behave using several con- crete examples. Finally, we consider how a stream window management strategy based on semantic importance could improve overall processing performance, especially as available window sizes decrease.« less
Fluvastatin as a micropore lifetime enhancer for sustained delivery across microneedle-treated skin.
Ghosh, Priyanka; Brogden, Nicole K; Stinchcomb, Audra L
2014-02-01
Microneedles (MNs), a physical skin permeation enhancement technique, facilitate drug delivery across the skin, thus enhancing the number of drugs that can be delivered transdermally in therapeutically relevant concentrations. The micropores created in the skin by MNs reseal because of normal healing processes of the skin, thus limiting the duration of the drug delivery window. Pore lifetime enhancement strategies can increase the effectiveness of MNs as a drug delivery mechanism by prolonging the delivery window. Fluvastatin (FLU), a HMGCoA reductase inhibitor, was used in this study to enhance the pore lifetime by inhibiting the synthesis of cholesterol, a major component of the stratum corneum lipids. The study showed that using FLU as a pretreatment it is possible to enhance the pore lifetime of MN-treated skin and thus allow for sustained drug delivery. The skin recovered within a 30-45-min time period following the removal of occlusion, and there was no significant irritation observed due to the treatment compared to the control sites. Thus, it can be concluded that localized skin treatment with FLU can be used to extend micropore lifetime and deliver drugs for up to 7 days across MN-treated skin. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Qualitative mechanism models and the rationalization of procedures
NASA Technical Reports Server (NTRS)
Farley, Arthur M.
1989-01-01
A qualitative, cluster-based approach to the representation of hydraulic systems is described and its potential for generating and explaining procedures is demonstrated. Many ideas are formalized and implemented as part of an interactive, computer-based system. The system allows for designing, displaying, and reasoning about hydraulic systems. The interactive system has an interface consisting of three windows: a design/control window, a cluster window, and a diagnosis/plan window. A qualitative mechanism model for the ORS (Orbital Refueling System) is presented to coordinate with ongoing research on this system being conducted at NASA Ames Research Center.
Windows of sensitivity to toxic chemicals in the motor effects development.
Ingber, Susan Z; Pohl, Hana R
2016-02-01
Many chemicals currently used are known to elicit nervous system effects. In addition, approximately 2000 new chemicals introduced annually have not yet undergone neurotoxicity testing. This review concentrated on motor development effects associated with exposure to environmental neurotoxicants to help identify critical windows of exposure and begin to assess data needs based on a subset of chemicals thoroughly reviewed by the Agency for Toxic Substances and Disease Registry (ATSDR) in Toxicological Profiles and Addenda. Multiple windows of sensitivity were identified that differed based on the maturity level of the neurological system at the time of exposure, as well as dose and exposure duration. Similar but distinct windows were found for both motor activity (GD 8-17 [rats], GD 12-14 and PND 3-10 [mice]) and motor function performance (insufficient data for rats, GD 12-17 [mice]). Identifying specific windows of sensitivity in animal studies was hampered by study designs oriented towards detection of neurotoxicity that occurred at any time throughout the developmental process. In conclusion, while this investigation identified some critical exposure windows for motor development effects, it demonstrates a need for more acute duration exposure studies based on neurodevelopmental windows, particularly during the exposure periods identified in this review. Published by Elsevier Inc.
Windows of sensitivity to toxic chemicals in the motor effects development✩
Ingber, Susan Z.; Pohl, Hana R.
2017-01-01
Many chemicals currently used are known to elicit nervous system effects. In addition, approximately 2000 new chemicals introduced annually have not yet undergone neurotoxicity testing. This review concentrated on motor development effects associated with exposure to environmental neurotoxicants to help identify critical windows of exposure and begin to assess data needs based on a subset of chemicals thoroughly reviewed by the Agency for Toxic Substances and Disease Registry (ATSDR) in Toxicological Profiles and Addenda. Multiple windows of sensitivity were identified that differed based on the maturity level of the neurological system at the time of exposure, as well as dose and exposure duration. Similar but distinct windows were found for both motor activity (GD 8–17 [rats], GD 12–14 and PND 3–10 [mice]) and motor function performance (insufficient data for rats, GD 12–17 [mice]). Identifying specific windows of sensitivity in animal studies was hampered by study designs oriented towards detection of neurotoxicity that occurred at any time throughout the developmental process. In conclusion, while this investigation identified some critical exposure windows for motor development effects, it demonstrates a need for more acute duration exposure studies based on neurodevelopmental windows, particularly during the exposure periods identified in this review. PMID:26686904
Integrated self-cleaning window assembly for optical transmission in combustion environments
Kass, Michael D [Oak Ridge, TN
2007-07-24
An integrated window design for optical transmission in combustion environments is described. The invention consists of an integrated optical window design that prevents and removes the accumulation of carbon-based particulate matter and gaseous hydrocarbons through a combination of heat and catalysis. These windows will enable established optical technologies to be applied to combustion environments and their exhaust systems.
NASA Astrophysics Data System (ADS)
Jian, Wang; Xiaohong, Meng; Hong, Liu; Wanqiu, Zheng; Yaning, Liu; Sheng, Gui; Zhiyang, Wang
2017-03-01
Full waveform inversion and reverse time migration are active research areas for seismic exploration. Forward modeling in the time domain determines the precision of the results, and numerical solutions of finite difference have been widely adopted as an important mathematical tool for forward modeling. In this article, the optimum combined of window functions was designed based on the finite difference operator using a truncated approximation of the spatial convolution series in pseudo-spectrum space, to normalize the outcomes of existing window functions for different orders. The proposed combined window functions not only inherit the characteristics of the various window functions, to provide better truncation results, but also control the truncation error of the finite difference operator manually and visually by adjusting the combinations and analyzing the characteristics of the main and side lobes of the amplitude response. Error level and elastic forward modeling under the proposed combined system were compared with outcomes from conventional window functions and modified binomial windows. Numerical dispersion is significantly suppressed, which is compared with modified binomial window function finite-difference and conventional finite-difference. Numerical simulation verifies the reliability of the proposed method.
Magnetic resonance angiography: current status and future directions
2011-01-01
With recent improvement in hardware and software techniques, magnetic resonance angiography (MRA) has undergone significant changes in technique and approach. The advent of 3.0 T magnets has allowed reduction in exogenous contrast dose without compromising overall image quality. The use of novel intravascular contrast agents substantially increases the image windows and decreases contrast dose. Additionally, the lower risk and cost in non-contrast enhanced (NCE) MRA has sparked renewed interest in these methods. This article discusses the current state of both contrast-enhanced (CE) and NCE-MRA. New CE-MRA methods take advantage of dose reduction at 3.0 T, novel contrast agents, and parallel imaging methods. The risks of gadolinium-based contrast media, and the NCE-MRA methods of time-of-flight, steady-state free precession, and phase contrast are discussed. PMID:21388544
Zhu, Shijin; Li, Li; Liu, Jiabin; Wang, Hongtao; Wang, Tian; Zhang, Yuxin; Zhang, Lili; Ruoff, Rodney S; Dong, Fan
2018-02-27
Two-dimensional birnessite has attracted attention for electrochemical energy storage because of the presence of redox active Mn 4+ /Mn 3+ ions and spacious interlayer channels available for ions diffusion. However, current strategies are largely limited to enhancing the electrical conductivity of birnessite. One key limitation affecting the electrochemical properties of birnessite is the poor utilization of the MnO 6 unit. Here, we assemble β-MnO 2 /birnessite core-shell structure that exploits the exposed crystal face of β-MnO 2 as the core and ultrathin birnessite sheets that have the structure advantage to enhance the utilization efficiency of the Mn from the bulk. Our birnessite that has sheets parallel to each other is found to have unusual crystal structure with interlayer spacing, Mn(III)/Mn(IV) ratio and the content of the balancing cations differing from that of the common birnessite. The substrate directed growth mechanism is carefully investigated. The as-prepared core-shell nanostructures enhance the exposed surface area of birnessite and achieve high electrochemical performances (for example, 657 F g -1 in 1 M Na 2 SO 4 electrolyte based on the weight of parallel birnessite) and excellent rate capability over a potential window of up to 1.2 V. This strategy opens avenues for fundamental studies of birnessite and its properties and suggests the possibility of its use in energy storage and other applications. The potential window of an asymmetric supercapacitor that was assembled with this material can be enlarged to 2.2 V (in aqueous electrolyte) with a good cycling ability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinzel, P.; Kleint, L., E-mail: pheinzel@asu.cas.cz
We present a novel observation of the white light flare (WLF) continuum, which was significantly enhanced during the X1 flare on 2014 March 29 (SOL2014-03-29T17:48). Data from the Interface Region Imaging Spectrograph (IRIS) in its near-UV channel show that at the peak of the continuum enhancement, the contrast at the quasi-continuum window above 2813 Å reached 100%-200% and can be even larger closer to Mg II lines. This is fully consistent with the hydrogen recombination Balmer-continuum emission, which follows an impulsive thermal and non-thermal ionization caused by the precipitation of electron beams through the chromosphere. However, a less probable photosphericmore » continuum enhancement cannot be excluded. The light curves of the Balmer continuum have an impulsive character with a gradual fading, similar to those detected recently in the optical region on the Solar Optical Telescope on board Hinode. This observation represents a first Balmer-continuum detection from space far beyond the Balmer limit (3646 Å), eliminating seeing effects known to complicate the WLF detection. Moreover, we use a spectral window so far unexplored for flare studies, which provides the potential to study the Balmer continuum, as well as many metallic lines appearing in emission during flares. Combined with future ground-based observations of the continuum near the Balmer limit, we will be able to disentangle various scenarios of the WLF origin. IRIS observations also provide a critical quantitative measure of the energy radiated in the Balmer continuum, which constrains various models of the energy transport and deposit during flares.« less
NASA Astrophysics Data System (ADS)
Chu, X.
2011-12-01
This study, funded by the NSF CAREER program, focuses on developing new methods to quantify microtopography-controlled overland flow processes and integrating the cutting-edge hydrologic research with all-level education and outreach activities. To achieve the educational goal, an interactive teaching-learning software package has been developed. This software, with enhanced visualization capabilities, integrates the new modeling techniques, computer-guided learning processes, and education-oriented tools in a user-friendly interface. Both Windows-based and web-based versions have been developed. The software is specially designed for three major user levels: elementary level (Level 1: K-12 and outreach education), medium level (Level 2: undergraduate education), and advanced level (Level 3: graduate education). Depending on the levels, users are guided to different educational systems. Each system consists of a series of mini "libraries" featured with movies, pictures, and documentation that cover fundamental theories, varying scale experiments, and computer modeling of overland flow generation, surface runoff, and infiltration processes. Testing and practical use of this educational software in undergraduate and graduate teaching demonstrate its effectiveness to promote students' learning and interest in hydrologic sciences. This educational software also has been used as a hydrologic demonstration tool for K-12 students and Native American students through the Nurturing American Tribal Undergraduate Research Education (NATURE) program and Science, Technology, Engineering and Mathematics (STEM) outreach activities.
4. NORTHWEST FRONT, WITH FOUR BULLET GLASS WINDOWS. Edwards ...
4. NORTHWEST FRONT, WITH FOUR BULLET GLASS WINDOWS. - Edwards Air Force Base, South Base Sled Track, Observation Block House, Station "O" area, east end of Sled Track, Lancaster, Los Angeles County, CA
Sunlight Responsive Thermochromic Window System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millett, F,A; Byker,H, J
2006-10-27
Pleotint has embarked on a novel approach with our Sunlight Responsive Thermochromic, SRT™, windows. We are integrating dynamic sunlight control, high insulation values and low solar heat gain together in a high performance window. The Pleotint SRT window is dynamic because it reversibly changes light transmission based on thermochromics activated directly by the heating effect of sunlight. We can achieve a window package with low solar heat gain coefficient (SHGC), a low U value and high insulation. At the same time our windows provide good daylighting. Our innovative window design offers architects and building designers the opportunity to choose theirmore » desired energy performance, excellent sound reduction, external pane can be self-cleaning, or a resistance to wind load, blasts, bullets or hurricanes. SRT windows would provide energy savings that are estimated at up to 30% over traditional window systems. Glass fabricators will be able to use existing equipment to make the SRT window while adding value and flexibility to the basic design. Glazing installers will have the ability to fit the windows with traditional methods without wires, power supplies and controllers. SRT windows can be retrofit into existing buildings,« less
A frequency-based window width optimized two-dimensional S-Transform profilometry
NASA Astrophysics Data System (ADS)
Zhong, Min; Chen, Feng; Xiao, Chao
2017-11-01
A new scheme is proposed to as a frequency-based window width optimized two-dimensional S-Transform profilometry, in which parameters pu and pv are introduced to control the width of a two-dimensional Gaussian window. Unlike the standard two-dimensional S-transform using the Gaussian window with window width proportional to the reciprocal local frequency of the tested signal, the size of window width for the optimized two-dimensional S-Transform varies with the pu th (pv th) power of the reciprocal local frequency fx (fy) in x (y) direction. The paper gives a detailed theoretical analysis of optimized two-dimensional S-Transform in fringe analysis as well as the characteristics of the modified Gauss window. Simulations are applied to evaluate the proposed scheme, the results show that the new scheme has better noise reduction ability and can extract phase distribution more precise in comparison with the standard two-dimensional S-transform even though the surface of the measured object varies sharply. Finally, the proposed scheme is demonstrated on three-dimensional surface reconstruction for a complex plastic cat mask to show its effectiveness.
Rusterholz, Thomas; Achermann, Peter; Dürr, Roland; Koenig, Thomas; Tarokh, Leila
2017-06-01
Investigating functional connectivity between brain networks has become an area of interest in neuroscience. Several methods for investigating connectivity have recently been developed, however, these techniques need to be applied with care. We demonstrate that global field synchronization (GFS), a global measure of phase alignment in the EEG as a function of frequency, must be applied considering signal processing principles in order to yield valid results. Multichannel EEG (27 derivations) was analyzed for GFS based on the complex spectrum derived by the fast Fourier transform (FFT). We examined the effect of window functions on GFS, in particular of non-rectangular windows. Applying a rectangular window when calculating the FFT revealed high GFS values for high frequencies (>15Hz) that were highly correlated (r=0.9) with spectral power in the lower frequency range (0.75-4.5Hz) and tracked the depth of sleep. This turned out to be spurious synchronization. With a non-rectangular window (Tukey or Hanning window) these high frequency synchronization vanished. Both, GFS and power density spectra significantly differed for rectangular and non-rectangular windows. Previous papers using GFS typically did not specify the applied window and may have used a rectangular window function. However, the demonstrated impact of the window function raises the question of the validity of some previous findings at higher frequencies. We demonstrated that it is crucial to apply an appropriate window function for determining synchronization measures based on a spectral approach to avoid spurious synchronization in the beta/gamma range. Copyright © 2017 Elsevier B.V. All rights reserved.
Kirschman, Lucas J; Crespi, Erica J; Warne, Robin W
2018-01-01
Ubiquitous environmental stressors are often thought to alter animal susceptibility to pathogens and contribute to disease emergence. However, duration of exposure to a stressor is likely critical, because while chronic stress is often immunosuppressive, acute stress can temporarily enhance immune function. Furthermore, host susceptibility to stress and disease often varies with ontogeny; increasing during critical developmental windows. How the duration and timing of exposure to stressors interact to shape critical windows and influence disease processes is not well tested. We used ranavirus and larval amphibians as a model system to investigate how physiological stress and pathogenic infection shape development and disease dynamics in vertebrates. Based on a resource allocation model, we designed experiments to test how exposure to stressors may induce resource trade-offs that shape critical windows and disease processes because the neuroendocrine stress axis coordinates developmental remodelling, immune function and energy allocation in larval amphibians. We used wood frog larvae (Lithobates sylvaticus) to investigate how chronic and acute exposure to corticosterone, the dominant amphibian glucocorticoid hormone, mediates development and immune function via splenocyte immunohistochemistry analysis in association with ranavirus infection. Corticosterone treatments affected immune function, as both chronic and acute exposure suppressed splenocyte proliferation, although viral replication rate increased only in the chronic corticosterone treatment. Time to metamorphosis and survival depended on both corticosterone treatment and infection status. In the control and chronic corticosterone treatments, ranavirus infection decreased survival and delayed metamorphosis, although chronic corticosterone exposure accelerated rate of metamorphosis in uninfected larvae. Acute corticosterone exposure accelerated metamorphosis increased survival in infected larvae. Interactions between stress exposure (via glucocorticoid actions) and infection impose resource trade-offs that shape optimal allocation between development and somatic function. As a result, critical disease windows are likely shaped by stress exposure because any conditions that induce changes in differentiation rates will alter the duration and susceptibility of organisms to stressors or disease. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
DETAIL OF ORIGINAL WINDOWS ON SECOND FLOOR AT THE EAST ...
DETAIL OF ORIGINAL WINDOWS ON SECOND FLOOR AT THE EAST END, SHOWING CLEARANCE BETWEEN WINDOW SASH AND PILASTER. VIEW FACING NORTH-NORTHWEST. - U.S. Naval Base, Pearl Harbor, Aviation Storehouse, Vincennes Avenue at Simms Street, Pearl City, Honolulu County, HI
3. NORTH FRONT, BULLET GLASS OBSERVATION WINDOWS FACE SLED TRACK. ...
3. NORTH FRONT, BULLET GLASS OBSERVATION WINDOWS FACE SLED TRACK. - Edwards Air Force Base, South Base Sled Track, Instrumentation & Control Building, South of Sled Track, Station "50" area, Lancaster, Los Angeles County, CA
Using web-based video to enhance physical examination skills in medical students.
Orientale, Eugene; Kosowicz, Lynn; Alerte, Anton; Pfeiffer, Carol; Harrington, Karen; Palley, Jane; Brown, Stacey; Sapieha-Yanchak, Teresa
2008-01-01
Physical examination (PE) skills among U.S. medical students have been shown to be deficient. This study examines the effect of a Web-based physical examination curriculum on first-year medical student PE skills. Web-based video clips, consisting of instruction in 77 elements of the physical examination, were created using Microsoft Windows Moviemaker software. Medical students' PE skills were evaluated by standardized patients before and after implementation of the Internet-based video. Following implementation of this curriculum, there was a higher level of competency (from 87% in 2002-2003 to 91% in 2004-2005), and poor performances on standardized patient PE exams substantially diminished (from a 14%-22%failure rate in 2002-2003, to 4% in 2004-2005. A significant improvement in first-year medical student performance on the adult PE occurred after implementing Web-based instructional video.
Numerical study of metal oxide hetero-junction solar cells with defects and interface states
NASA Astrophysics Data System (ADS)
Zhu, Le; Shao, Guosheng; Luo, J. K.
2013-05-01
Further to our previous work on ideal metal oxide (MO) hetero-junction solar cells, a systematic simulation has been carried out to investigate the effects of defects and interface states on the cells. Two structures of the window/absorber (WA) and window/absorber/voltage-enhancer (WAV) were modelled with defect concentration, defect energy level, interface state (ISt) density and ISt energy level as parameters. The simulation showed that the defects in the window layer and the voltage-enhancer layer have very limited effects on the performance of the cells, but those in the absorption layer have profound effects on the cell performance. The interface states at the W/A interface have a limited effect on the performance even for a density up to 1013 cm-2, while those at the A/V interface cause the solar cell to deteriorate severely even at a low density of lower than 1 × 1011 cm-2. It also showed that the back surface field (BSF) induced by band gap off-set in the WAV structure loses its function when defects with a modest concentration exist in the absorption layer and does not improve the open voltage at all.
NASA Astrophysics Data System (ADS)
Kang, Jae-sik; Oh, Eun-Joo; Bae, Min-Jung; Song, Doo-Sam
2017-12-01
Given that the Korean government is implementing what has been termed the energy standards and labelling program for windows, window companies will be required to assign window ratings based on the experimental results of their product. Because this has added to the cost and time required for laboratory tests by window companies, the simulation system for the thermal performance of windows has been prepared to compensate for time and cost burdens. In Korea, a simulator is usually used to calculate the thermal performance of a window through WINDOW/THERM, complying with ISO 15099. For a single window, the simulation results are similar to experimental results. A double window is also calculated using the same method, but the calculation results for this type of window are unreliable. ISO 15099 should not recommend the calculation of the thermal properties of an air cavity between window sashes in a double window. This causes a difference between simulation and experimental results pertaining to the thermal performance of a double window. In this paper, the thermal properties of air cavities between window sashes in a double window are analyzed through computational fluid dynamics (CFD) simulations with the results compared to calculation results certified by ISO 15099. The surface temperature of the air cavity analyzed by CFD is compared to the experimental temperatures. These results show that an appropriate calculation method for an air cavity between window sashes in a double window should be established for reliable thermal performance results for a double window.
Rugged sensor window materials for harsh environments
NASA Astrophysics Data System (ADS)
Bayya, Shyam; Villalobos, Guillermo; Kim, Woohong; Sanghera, Jasbinger; Hunt, Michael; Aggarwal, Ishwar D.
2014-09-01
There are several military or commercial systems operating in very harsh environments that require rugged windows. On some of these systems, windows become the single point of failure. These applications include sensor or imaging systems, high-energy laser weapons systems, submarine photonic masts, IR countermeasures and missiles. Based on the sea or land or air based platforms the window or dome on these systems must withstand wave slap, underwater or ground based explosions, or survive flight through heavy rain and sand storms while maintaining good optical transmission in the desired wavelength range. Some of these applications still use softer ZnS or fused silica windows because of lack of availability of rugged materials in shapes or sizes required. Sapphire, ALON and spinel are very rugged materials with significantly higher strengths compared to ZnS and fused silica. There have been recent developments in spinel, ALON and sapphire materials to fabricate in large sizes and conformal shapes. We have been developing spinel ceramics for several of these applications. We are also developing β-SiC as a transparent window material as it has higher hardness, strength, and toughness than sapphire, ALON and spinel. This paper gives a summary of our recent findings.
Windows System Engineer with the Computational Science Center. He implements, supports, and integrates Windows-based technology solutions at the ESIF and manages a portion of the VMware infrastructure . Throughout his career, Tony has built a strong skillset in enterprise Windows Engineering and Active
Excoffier, Laurent; Lischer, Heidi E L
2010-05-01
We present here a new version of the Arlequin program available under three different forms: a Windows graphical version (Winarl35), a console version of Arlequin (arlecore), and a specific console version to compute summary statistics (arlsumstat). The command-line versions run under both Linux and Windows. The main innovations of the new version include enhanced outputs in XML format, the possibility to embed graphics displaying computation results directly into output files, and the implementation of a new method to detect loci under selection from genome scans. Command-line versions are designed to handle large series of files, and arlsumstat can be used to generate summary statistics from simulated data sets within an Approximate Bayesian Computation framework. © 2010 Blackwell Publishing Ltd.
Observations on the effects of image processing functions on fingermark data in the Fourier domain
NASA Astrophysics Data System (ADS)
Bramble, Simon K.; Fabrizi, Paola M.
1995-09-01
One of the image processing functions used for the enhancement of laten fingermark images is the Fourier transform. This paper describes some effects of spatial resolution, zero-filling and windowing on fingermark data in the Fourier domain. It is shown that with an understanding of the fingermark structure it is possible to determine the approximate prosition of the frequency data in the Fourier domain corresponding to the fingermark image detail. The effect of attenuation of frequency data on a zero-filled image is shown to be different to the same attenuation on a non-zero-filled image. The effects of windowing spatial data on the frequency data are also highlighted and compared with the same data after the application of a Hanning window.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qingkun; Frazier, Allister W.; Zhao, Xinpeng
Experimental realization of optically transparent, mechanically robust and flexible aerogels has been a longstanding challenge, which limits their practical applications in energy-saving devices, such as thermally insulating films for enhancing energy efficiency of windows. The poor transparency precluded even hypothetical consideration of the possibility of birefringent aerogels. We develop birefringent and optically isotropic aerogels that combine properties of thermal super-insulation, mechanical robustness and flexibility, and transparency to visible-spectrum light. This unusual combination of physical properties is achieved by combining liquid crystalline self-organization of cellulose nanofibers with polysiloxane cross-linking and control of the nanoscale porosity to form hybrid organic-inorganic mesostructured aerogels.more » Potential applications of these inexpensive materials range from single pane window retrofitting to smart fabrics.« less
An Evaluation of TCP with Larger Initial Windows
NASA Technical Reports Server (NTRS)
Allman, Mark; Hayes, Christopher; Ostermann, Shawn
1998-01-01
Transmission Control Protocol (TCP's) slow start algorithm gradually increases the amount of data a sender injects into the network, which prevents the sender from overwhelming the network with an inappropriately large burst of traffic. However, the slow start algorithm can make poor use of the available band-width for transfers which are small compared to the bandwidth-delay product of the link, such as file transfers up to few thousand characters over satellite links or even transfers of several hundred bytes over local area networks. This paper evaluates a proposed performance enhancement that raises the initial window used by TCP from 1 MSS-sized segment to roughly 4 KB. The paper evaluates the impact of using larger initial windows on TCP transfers over both the shared Internet and dialup modem links.
6. SOUTH SIDE, DETAIL OF BULLET GLASS WINDOWS AT GROUND ...
6. SOUTH SIDE, DETAIL OF BULLET GLASS WINDOWS AT GROUND LEVEL. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
Window acoustic study for advanced turboprop aircraft
NASA Technical Reports Server (NTRS)
Prydz, R. A.; Balena, F. J.
1984-01-01
An acoustic analysis was performed to establish window designs for advanced turboprop powered aircraft. The window transmission loss requirements were based on A-weighted interior noise goals of 80 and 75 dBA. The analytical results showed that a triple pane window consisting of two glass outer panes and an inner pane of acrylic would provide the required transmission loss and meet the sidewall space limits. Two window test articles were fabricated for laboratory evaluation and verification of the predicted transmission loss. Procedures for performing laboratory tests are presented.
Automated variance reduction for MCNP using deterministic methods.
Sweezy, J; Brown, F; Booth, T; Chiaramonte, J; Preeg, B
2005-01-01
In order to reduce the user's time and the computer time needed to solve deep penetration problems, an automated variance reduction capability has been developed for the MCNP Monte Carlo transport code. This new variance reduction capability developed for MCNP5 employs the PARTISN multigroup discrete ordinates code to generate mesh-based weight windows. The technique of using deterministic methods to generate importance maps has been widely used to increase the efficiency of deep penetration Monte Carlo calculations. The application of this method in MCNP uses the existing mesh-based weight window feature to translate the MCNP geometry into geometry suitable for PARTISN. The adjoint flux, which is calculated with PARTISN, is used to generate mesh-based weight windows for MCNP. Additionally, the MCNP source energy spectrum can be biased based on the adjoint energy spectrum at the source location. This method can also use angle-dependent weight windows.
Double-Windows-Based Motion Recognition in Multi-Floor Buildings Assisted by a Built-In Barometer.
Liu, Maolin; Li, Huaiyu; Wang, Yuan; Li, Fei; Chen, Xiuwan
2018-04-01
Accelerometers, gyroscopes and magnetometers in smartphones are often used to recognize human motions. Since it is difficult to distinguish between vertical motions and horizontal motions in the data provided by these built-in sensors, the vertical motion recognition accuracy is relatively low. The emergence of a built-in barometer in smartphones improves the accuracy of motion recognition in the vertical direction. However, there is a lack of quantitative analysis and modelling of the barometer signals, which is the basis of barometer's application to motion recognition, and a problem of imbalanced data also exists. This work focuses on using the barometers inside smartphones for vertical motion recognition in multi-floor buildings through modelling and feature extraction of pressure signals. A novel double-windows pressure feature extraction method, which adopts two sliding time windows of different length, is proposed to balance recognition accuracy and response time. Then, a random forest classifier correlation rule is further designed to weaken the impact of imbalanced data on recognition accuracy. The results demonstrate that the recognition accuracy can reach 95.05% when pressure features and the improved random forest classifier are adopted. Specifically, the recognition accuracy of the stair and elevator motions is significantly improved with enhanced response time. The proposed approach proves effective and accurate, providing a robust strategy for increasing accuracy of vertical motions.
NASA Astrophysics Data System (ADS)
Yanagawa, Hiroto; Inoue, Asuka; Sugimoto, Hiroshi; Shioi, Masahiko; Fujii, Minoru
2017-12-01
Near-field coupling between a silicon quantum dot (Si-QD) monolayer and a plasmonic substrate fabricated by nano-imprint lithography and having broad multiple resonances in the near-infrared (NIR) window of biological substances was studied by precisely controlling the QDs-substrate distance. A strong enhancement of the NIR photoluminescence (PL) of Si-QDs was observed. Detailed analyses of the PL and PL excitation spectra, the PL decay dynamics, and the reflectance spectra revealed that both the excitation cross-sections and the emission rates are enhanced by the surface plasmon resonances, thanks to the broad multiple resonances of the plasmonic substrate, and that the relative contribution of the two enhancement processes depends strongly on the excitation wavelength. Under excitation by short wavelength photons (405 nm), where enhancement of the excitation cross-section is not expected, the maximum enhancement was obtained when the QDs-substrate distance was around 30 nm. On the other hand, under long wavelength excitation (641 nm), where strong excitation cross-section enhancement is expected, the largest enhancement was obtained when the distance was minimum (around 1 nm). The achievement of efficient excitation of NIR luminescence of Si-QDs by long wavelength photons paves the way for the development of Si-QD-based fluorescence bio-sensing devices with a high bound-to-free ratio.
Fabrication of Microcapsules for Dye-Doped Polymer-Dispersed Liquid Crystal-Based Smart Windows.
Kim, Mingyun; Park, Kyun Joo; Seok, Seunghwan; Ok, Jong Min; Jung, Hee-Tae; Choe, Jaehoon; Kim, Do Hyun
2015-08-19
A dye-doped polymer-dispersed liquid crystal (PDLC) is an attractive material for application in smart windows. Smart windows using a PDLC can be operated simply and have a high contrast ratio compared to those of other devices that employed photochromic or thermochromic material. However, in conventional dye-doped PDLC methods, dye contamination can cause problems and has a limited degree of commercialization of electric smart windows. Here, we report on an approach to resolve dye-related problems by encapsulating the dye in monodispersed capsules. By encapsulation, a fabricated dye-doped PDLC had a contrast ratio of >120 at 600 nm. This fabrication method of encapsulating the dye in a core-shell structured microcapsule in a dye-doped PDLC device provides a practical platform for dye-doped PDLC-based smart windows.
NASA Technical Reports Server (NTRS)
Jafri, Madiha J.; Ely, Jay J.; Vahala, Linda L.
2007-01-01
In this paper, neural network (NN) modeling is combined with fuzzy logic to estimate Interference Path Loss measurements on Airbus 319 and 320 airplanes. Interference patterns inside the aircraft are classified and predicted based on the locations of the doors, windows, aircraft structures and the communication/navigation system-of-concern. Modeled results are compared with measured data. Combining fuzzy logic and NN modeling is shown to improve estimates of measured data over estimates obtained with NN alone. A plan is proposed to enhance the modeling for better prediction of electromagnetic coupling problems inside aircraft.
NASA Astrophysics Data System (ADS)
Yang, Shuang-Long; Liang, Li-Ping; Liu, Hou-De; Xu, Ke-Jun
2018-03-01
Aiming at reducing the estimation error of the sensor frequency response function (FRF) estimated by the commonly used window-based spectral estimation method, the error models of interpolation and transient errors are derived in the form of non-parameter models. Accordingly, window effects on the errors are analyzed and reveal that the commonly used hanning window leads to smaller interpolation error which can also be significantly eliminated by the cubic spline interpolation method when estimating the FRF from the step response data, and window with smaller front-end value can restrain more transient error. Thus, a new dual-cosine window with its non-zero discrete Fourier transform bins at -3, -1, 0, 1, and 3 is constructed for FRF estimation. Compared with the hanning window, the new dual-cosine window has the equivalent interpolation error suppression capability and better transient error suppression capability when estimating the FRF from the step response; specifically, it reduces the asymptotic property of the transient error from O(N-2) of the hanning window method to O(N-4) while only increases the uncertainty slightly (about 0.4 dB). Then, one direction of a wind tunnel strain gauge balance which is a high order, small damping, and non-minimum phase system is employed as the example for verifying the new dual-cosine window-based spectral estimation method. The model simulation result shows that the new dual-cosine window method is better than the hanning window method for FRF estimation, and compared with the Gans method and LPM method, it has the advantages of simple computation, less time consumption, and short data requirement; the actual data calculation result of the balance FRF is consistent to the simulation result. Thus, the new dual-cosine window is effective and practical for FRF estimation.
Prospective Heart Tracking for Whole-heart Magnetic Resonance Angiography
Moghari, Mehdi H.; Geva, Tal; Powell, Andrew J.
2015-01-01
Purpose To develop a prospective respiratory-gating technique (Heart-NAV) for use with contrast-enhanced 3D inversion recovery (IR) whole-heart magnetic resonance angiography (MRA) acquisitions that directly tracks heart motion without creating image inflow artifact. Methods With Heart-NAV, 1 of the startup pulses for the whole-heart steady-state free precession MRA sequence is used to collect the centerline of k-space, and its 1-dimensional reconstruction is fed into the standard diaphragm-navigator (NAV) signal analysis process to prospectively gate and track respiratory-induced heart displacement. Ten healthy volunteers underwent non-contrast whole-heart MRA acquisitions using the conventional diaphragm-NAV and Heart-NAV with 5 and 10 mm acceptance windows in a 1.5T scanner. Five patients underwent contrast-enhanced IR whole-heart MRA using a diaphragm-NAV and Heart-NAV with a 5 mm acceptance window. Results For non-contrast whole-heart MRA with both the 5 and 10 mm acceptance windows, Heart-NAV yielded coronary artery vessel sharpness and subjective visual scores that were not significantly different than those using a conventional diaphragm-NAV. Scan time for Heart-NAV was 10% shorter (p<0.05). In patients undergoing contrast-enhanced IR whole-heart MRA, inflow artifact was seen with the diaphragm-NAV but not with Heart-NAV. Conclusion Compared to a conventional diaphragm-NAV, Heart-NAV achieves similar image quality in a slightly shorter scan time and eliminates inflow artifact. PMID:26843458
Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin
2016-09-02
For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method.
An Approach to Improve the Quality of Infrared Images of Vein-Patterns
Lin, Chih-Lung
2011-01-01
This study develops an approach to improve the quality of infrared (IR) images of vein-patterns, which usually have noise, low contrast, low brightness and small objects of interest, thus requiring preprocessing to improve their quality. The main characteristics of the proposed approach are that no prior knowledge about the IR image is necessary and no parameters must be preset. Two main goals are sought: impulse noise reduction and adaptive contrast enhancement technologies. In our study, a fast median-based filter (FMBF) is developed as a noise reduction method. It is based on an IR imaging mechanism to detect the noisy pixels and on a modified median-based filter to remove the noisy pixels in IR images. FMBF has the advantage of a low computation load. In addition, FMBF can retain reasonably good edges and texture information when the size of the filter window increases. The most important advantage is that the peak signal-to-noise ratio (PSNR) caused by FMBF is higher than the PSNR caused by the median filter. A hybrid cumulative histogram equalization (HCHE) is proposed for adaptive contrast enhancement. HCHE can automatically generate a hybrid cumulative histogram (HCH) based on two different pieces of information about the image histogram. HCHE can improve the enhancement effect on hot objects rather than background. The experimental results are addressed and demonstrate that the proposed approach is feasible for use as an effective and adaptive process for enhancing the quality of IR vein-pattern images. PMID:22247674
An approach to improve the quality of infrared images of vein-patterns.
Lin, Chih-Lung
2011-01-01
This study develops an approach to improve the quality of infrared (IR) images of vein-patterns, which usually have noise, low contrast, low brightness and small objects of interest, thus requiring preprocessing to improve their quality. The main characteristics of the proposed approach are that no prior knowledge about the IR image is necessary and no parameters must be preset. Two main goals are sought: impulse noise reduction and adaptive contrast enhancement technologies. In our study, a fast median-based filter (FMBF) is developed as a noise reduction method. It is based on an IR imaging mechanism to detect the noisy pixels and on a modified median-based filter to remove the noisy pixels in IR images. FMBF has the advantage of a low computation load. In addition, FMBF can retain reasonably good edges and texture information when the size of the filter window increases. The most important advantage is that the peak signal-to-noise ratio (PSNR) caused by FMBF is higher than the PSNR caused by the median filter. A hybrid cumulative histogram equalization (HCHE) is proposed for adaptive contrast enhancement. HCHE can automatically generate a hybrid cumulative histogram (HCH) based on two different pieces of information about the image histogram. HCHE can improve the enhancement effect on hot objects rather than background. The experimental results are addressed and demonstrate that the proposed approach is feasible for use as an effective and adaptive process for enhancing the quality of IR vein-pattern images.
SOUTHWEST SIDE AND SOUTHEAST FRONT, BUILDING 1932. OBSERVATION WINDOWS ARE ...
SOUTHWEST SIDE AND SOUTHEAST FRONT, BUILDING 1932. OBSERVATION WINDOWS ARE BEHIND THE METAL GRATING. ENTRY HATCH IS ON NORTHWEST FACADE - Edwards Air Force Base, X-15 Engine Test Complex, Observation Bunker Types, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
NASA Technical Reports Server (NTRS)
Whitmore, Mihriban; Baggerman, Susan; Byrne, Vicky
2004-01-01
With the advent of the ISS and the experience of Russian, European, and US crewmembers on Mir, the importance of the psychological element in long duration missions is increasingly recognized. An integrated imagery system or Magic Window System could enhance the habitability, performance, and productivity for long term stays in space. Because this is type of system is a new concept for space, functional and technical requirements need to be determined. As part of a three-year project, the functional and technical requirements for an Imagery System onboard the International Space Station (ISS) have been explored. Valuable information was gathered from a survey completed by participants that had been in analog environments (remote/isolated) such as Antarctica, Aquarius, ISS crewmember debriefs, and crew support meetings to identify key functions desired for an integrated Magic Window System. Exercise and medical care activities were identified as areas that could benefit from such a system. It was determined that for exercise, it was worth exploring the concept of displaying a dynamic screen that changes as the crewmember's speed changes while showing physiological measures in a combined display. In terms of enhancing the interfaces for medical care activities, the Magic Window System could show video clips along side procedures for just-in-time training scenarios through a heads-up display. In addition, the portability, usability, and reliability were stressed as important considerations for an integrated system of technologies or Magic Window System. In addition, a review of state-of-the-art screens and other existing technologies such as tablet PCs and Personal Digital Assistants (PDAs) was conducted and contributed to defining technical requirements and feasibility of systems. Some heuristic evaluations of large displays and PDAs were conducted. Finally, feasibility for implementation onboard ISS has been considered. Currently, specific headset units are undergoing usability testing. The outcome of these activities will be valuable to determine the best candidates for an integrated system that could accommodate different needs depending on task.
Assessing Thermal Comfort Due to a Ventilated Double Window
NASA Astrophysics Data System (ADS)
Carlos, Jorge S.; Corvacho, Helena
2017-10-01
Building design and its components are the result of a complex process, which should provide pleasant conditions to its inhabitants. Therefore, indoor acceptable comfort is influenced by the architectural design. ISO and ASHRAE standards define thermal comfort as the condition of mind that expresses satisfaction with the thermal environment. The energy demand for heating, beside the building’s physical properties, also depend on human behaviour, like opening or closing windows. Generally, windows are the weakest façade element concerning to thermal performance. A lower thermal resistance allows higher thermal conduction through it. When a window is very hot or cold, and the occupant is very close to it, it may result in thermal discomfort. The functionality of a ventilated double window introduces new physical considerations to a traditional window. In consequence, it is necessary to study the local effect on human comfort in function of the boundary conditions. Wind, solar availability, air temperature and therefore heating and indoor air quality conditions will affect the relationship between this passive system and the indoor environment. In the present paper, the influence of thermal performance and ventilation on human comfort resulting from the construction and geometry solutions is shown, helping to choose the best solution. The presented approach shows that in order to save energy it is possible to reduce the air changes of a room to the minimum, without compromising air quality, enhancing simultaneously local thermal performance and comfort. The results of the study on the effect of two parallel windows with a ventilated channel in the same fenestration on comfort conditions for several different room dimensions, are also presented. As the room dimensions’ rate changes so does the window to floor rate; therefore, under the same climatic conditions and same construction solution, different results are obtained.
Wang, Min; Ma, Pengsha; Yin, Min; Lu, Linfeng; Lin, Yinyue; Chen, Xiaoyuan; Jia, Wei; Cao, Xinmin; Chang, Paichun; Li, Dongdong
2017-09-01
Antireflection (AR) at the interface between the air and incident window material is paramount to boost the performance of photovoltaic devices. 3D nanostructures have attracted tremendous interest to reduce reflection, while the structure is vulnerable to the harsh outdoor environment. Thus the AR film with improved mechanical property is desirable in an industrial application. Herein, a scalable production of flexible AR films is proposed with microsized structures by roll-to-roll imprinting process, which possesses hydrophobic property and much improved robustness. The AR films can be potentially used for a wide range of photovoltaic devices whether based on rigid or flexible substrates. As a demonstration, the AR films are integrated with commercial Si-based triple-junction thin film solar cells. The AR film works as an effective tool to control the light travel path and utilize the light inward more efficiently by exciting hybrid optical modes, which results in a broadband and omnidirectional enhanced performance.
Pressure-enhanced superconductivity in Eu 3 Bi 2 S 4 F 4
Luo, Yongkang; Zhai, Hui -Fei; Zhang, Pan; ...
2014-12-17
The pressure effect on the newly discovered charge-transferred BiS 2-based superconductor, Eu 3Bi 2S 4F 4, with a T c of 1.5 K at ambient pressure, is investigated by transport and magnetic measurements. Accompanied with the enhancement of metallicity under pressures, the onset superconducting transition temperature increases abruptly around 1.0 GPa, reaching ~10.0 K at 2.26 GPa. Alternating current magnetic susceptibility measurements indicate that a new superconducting phase with a higher T c emerges and dominates at high pressures. In the broad pressure window of 0.68GPa≤p≤2.00 GPa, the high-T c phase coexists with the low-T c phase. Hall effect measurementsmore » reveal a significant difference in electronic structures between the two superconducting phases. As a result, our work devotes the effort to establish the commonality of pressure effect on the BiS 2-based superconductors, and also uncovers the importance of electron carrier density in the high-T c phase.« less
Wang, Min; Ma, Pengsha; Lu, Linfeng; Lin, Yinyue; Chen, Xiaoyuan; Jia, Wei; Cao, Xinmin; Chang, Paichun
2017-01-01
Antireflection (AR) at the interface between the air and incident window material is paramount to boost the performance of photovoltaic devices. 3D nanostructures have attracted tremendous interest to reduce reflection, while the structure is vulnerable to the harsh outdoor environment. Thus the AR film with improved mechanical property is desirable in an industrial application. Herein, a scalable production of flexible AR films is proposed with microsized structures by roll‐to‐roll imprinting process, which possesses hydrophobic property and much improved robustness. The AR films can be potentially used for a wide range of photovoltaic devices whether based on rigid or flexible substrates. As a demonstration, the AR films are integrated with commercial Si‐based triple‐junction thin film solar cells. The AR film works as an effective tool to control the light travel path and utilize the light inward more efficiently by exciting hybrid optical modes, which results in a broadband and omnidirectional enhanced performance. PMID:28932667
Image dehazing based on non-local saturation
NASA Astrophysics Data System (ADS)
Wang, Linlin; Zhang, Qian; Yang, Deyun; Hou, Yingkun; He, Xiaoting
2018-04-01
In this paper, a method based on non-local saturation algorithm is proposed to avoid block and halo effect for single image dehazing with dark channel prior. First we convert original image from RGB color space into HSV color space with the idea of non-local method. Image saturation is weighted equally by the size of fixed window according to image resolution. Second we utilize the saturation to estimate the atmospheric light value and transmission rate. Then through the function of saturation and transmission, the haze-free image is obtained based on the atmospheric scattering model. Comparing the results of existing methods, our method can restore image color and enhance contrast. We guarantee the proposed method with quantitative and qualitative evaluation respectively. Experiments show the better visual effect with high efficiency.
Platform for Postprocessing Waveform-Based NDE
NASA Technical Reports Server (NTRS)
Roth, Don
2008-01-01
Taking advantage of the similarities that exist among all waveform-based non-destructive evaluation (NDE) methods, a common software platform has been developed containing multiple- signal and image-processing techniques for waveforms and images. The NASA NDE Signal and Image Processing software has been developed using the latest versions of LabVIEW, and its associated Advanced Signal Processing and Vision Toolkits. The software is useable on a PC with Windows XP and Windows Vista. The software has been designed with a commercial grade interface in which two main windows, Waveform Window and Image Window, are displayed if the user chooses a waveform file to display. Within these two main windows, most actions are chosen through logically conceived run-time menus. The Waveform Window has plots for both the raw time-domain waves and their frequency- domain transformations (fast Fourier transform and power spectral density). The Image Window shows the C-scan image formed from information of the time-domain waveform (such as peak amplitude) or its frequency-domain transformation at each scan location. The user also has the ability to open an image, or series of images, or a simple set of X-Y paired data set in text format. Each of the Waveform and Image Windows contains menus from which to perform many user actions. An option exists to use raw waves obtained directly from scan, or waves after deconvolution if system wave response is provided. Two types of deconvolution, time-based subtraction or inverse-filter, can be performed to arrive at a deconvolved wave set. Additionally, the menu on the Waveform Window allows preprocessing of waveforms prior to image formation, scaling and display of waveforms, formation of different types of images (including non-standard types such as velocity), gating of portions of waves prior to image formation, and several other miscellaneous and specialized operations. The menu available on the Image Window allows many further image processing and analysis operations, some of which are found in commercially-available image-processing software programs (such as Adobe Photoshop), and some that are not (removing outliers, Bscan information, region-of-interest analysis, line profiles, and precision feature measurements).
Wisp, the Windows Interface for Simulating Plumes, is designed to be an easy-to-use windows platform program for aquatic modeling. Wisp inherits many of its capabilities from its predecessor, the DOS-based PLUMES (Baumgartner, Frick, Roberts, 1994). These capabilities have been ...
Rule-Based Motion Coordination for the Adaptive Suspension Vehicle on Ternary-Type Terrain
1990-12-01
robot-window-array* nil) (defvar *robot..window..width* nil) (defvar * rebot -.window..heig)ht* nil) (defvar *terrain-buffer* nil) (defvar *terrain...cond ((momrber leg lift-able-leg. -test #’equal) log) (t nil)) .(dafmethod (test-overlap- rebot ipltcable-leg) (log) (nond ((and (member leg place-able
Finger-Vein Image Enhancement Using a Fuzzy-Based Fusion Method with Gabor and Retinex Filtering
Shin, Kwang Yong; Park, Young Ho; Nguyen, Dat Tien; Park, Kang Ryoung
2014-01-01
Because of the advantages of finger-vein recognition systems such as live detection and usage as bio-cryptography systems, they can be used to authenticate individual people. However, images of finger-vein patterns are typically unclear because of light scattering by the skin, optical blurring, and motion blurring, which can degrade the performance of finger-vein recognition systems. In response to these issues, a new enhancement method for finger-vein images is proposed. Our method is novel compared with previous approaches in four respects. First, the local and global features of the vein lines of an input image are amplified using Gabor filters in four directions and Retinex filtering, respectively. Second, the means and standard deviations in the local windows of the images produced after Gabor and Retinex filtering are used as inputs for the fuzzy rule and fuzzy membership function, respectively. Third, the optimal weights required to combine the two Gabor and Retinex filtered images are determined using a defuzzification method. Fourth, the use of a fuzzy-based method means that image enhancement does not require additional training data to determine the optimal weights. Experimental results using two finger-vein databases showed that the proposed method enhanced the accuracy of finger-vein recognition compared with previous methods. PMID:24549251
Automated segmentation of hepatic vessel trees in non-contrast x-ray CT images
NASA Astrophysics Data System (ADS)
Kawajiri, Suguru; Zhou, Xiangrong; Zhang, Xuejin; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kondo, Hiroshi; Kanematsu, Masayuki; Hoshi, Hiroaki
2007-03-01
Hepatic vessel trees are the key structures in the liver. Knowledge of the hepatic vessel trees is important for liver surgery planning and hepatic disease diagnosis such as portal hypertension. However, hepatic vessels cannot be easily distinguished from other liver tissues in non-contrast CT images. Automated segmentation of hepatic vessels in non-contrast CT images is a challenging issue. In this paper, an approach for automated segmentation of hepatic vessels trees in non-contrast X-ray CT images is proposed. Enhancement of hepatic vessels is performed using two techniques: (1) histogram transformation based on a Gaussian window function; (2) multi-scale line filtering based on eigenvalues of Hessian matrix. After the enhancement of hepatic vessels, candidate of hepatic vessels are extracted by thresholding. Small connected regions of size less than 100 voxels are considered as false-positives and are removed from the process. This approach is applied to 20 cases of non-contrast CT images. Hepatic vessel trees segmented from the contrast-enhanced CT images of the same patient are used as the ground truth in evaluating the performance of the proposed segmentation method. Results show that the proposed method can enhance and segment the hepatic vessel regions in non-contrast CT images correctly.
Akhavan, Shahab; Yeltik, Aydan; Demir, Hilmi Volkan
2014-06-25
We propose and demonstrate light-sensitive nanocrystal skins that exhibit broadband sensitivity enhancement based on electron transfer to a thin TiO2 film grown by atomic layer deposition. In these photosensors, which operate with no external bias, photogenerated electrons remain trapped inside the nanocrystals. These electrons generally recombine with the photogenerated holes that accumulate at the top interfacing contact, which leads to lower photovoltage buildup. Because favorable conduction band offset aids in transferring photoelectrons from CdTe nanocrystals to the TiO2 layer, which decreases the exciton recombination probability, TiO2 has been utilized as the electron-accepting material in these light-sensitive nanocrystal skins. A controlled interface thickness between the TiO2 layer and the monolayer of CdTe nanocrystals enables a photovoltage buildup enhancement in the proposed nanostructure platform. With TiO2 serving as the electron acceptor, we observed broadband sensitivity improvement across 350-475 nm, with an approximately 22% enhancement. Furthermore, time-resolved fluorescence measurements verified the electron transfer from the CdTe nanocrystals to the TiO2 layer in light-sensitive skins. These results could pave the way for engineering nanocrystal-based light-sensing platforms, such as smart transparent windows, light-sensitive walls, and large-area optical detection systems.
Sound transmission loss of windows on high speed trains
NASA Astrophysics Data System (ADS)
Zhang, Yumei; Xiao, Xinbiao; Thompson, David; Squicciarini, Giacomo; Wen, Zefeng; Li, Zhihui; Wu, Yue
2016-09-01
The window is one of the main components of the high speed train car body structure through which noise can be transmitted. To study the windows’ acoustic properties, the vibration of one window of a high speed train has been measured for a running speed of 250 km/h. The corresponding interior noise and the noise in the wheel-rail area have been measured simultaneously. The experimental results show that the window vibration velocity has a similar spectral shape to the interior noise. Interior noise source identification further indicates that the window makes a contribution to the interior noise. Improvement of the window's Sound Transmission Loss (STL) can reduce the interior noise from this transmission path. An STL model of the window is built based on wave propagation and modal superposition methods. From the theoretical results, the window's STL property is studied and several factors affecting it are investigated, which provide indications for future low noise design of high speed train windows.
3. NORTHEAST SIDE, WITH A SINGLE BULLET GLASS WINDOW AND ...
3. NORTHEAST SIDE, WITH A SINGLE BULLET GLASS WINDOW AND SOUTHEAST REAR WITH ENTRY DOOR. - Edwards Air Force Base, South Base Sled Track, Observation Block House, Station "O" area, east end of Sled Track, Lancaster, Los Angeles County, CA
Error-Based Design Space Windowing
NASA Technical Reports Server (NTRS)
Papila, Melih; Papila, Nilay U.; Shyy, Wei; Haftka, Raphael T.; Fitz-Coy, Norman
2002-01-01
Windowing of design space is considered in order to reduce the bias errors due to low-order polynomial response surfaces (RS). Standard design space windowing (DSW) uses a region of interest by setting a requirement on response level and checks it by a global RS predictions over the design space. This approach, however, is vulnerable since RS modeling errors may lead to the wrong region to zoom on. The approach is modified by introducing an eigenvalue error measure based on point-to-point mean squared error criterion. Two examples are presented to demonstrate the benefit of the error-based DSW.
Data in support of energy performance of double-glazed windows.
Shakouri, Mahmoud; Banihashemi, Saeed
2016-06-01
This paper provides the data used in a research project to propose a new simplified windows rating system based on saved annual energy ("Developing an empirical predictive energy-rating model for windows by using Artificial Neural Network" (Shakouri Hassanabadi and Banihashemi Namini, 2012) [1], "Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates" (Banihashemi et al., 2015) [2]). A full factorial simulation study was conducted to evaluate the performance of 26 different types of windows in a four-story residential building. In order to generalize the results, the selected windows were tested in four climates of cold, tropical, temperate, and hot and arid; and four different main orientations of North, West, South and East. The accompanied datasets include the annual saved cooling and heating energy in different climates and orientations by using the selected windows. Moreover, a complete dataset is provided that includes the specifications of 26 windows, climate data, month, and orientation of the window. This dataset can be used to make predictive models for energy efficiency assessment of double glazed windows.
Yu, Jung-Hoon; Nam, Sang-Hun; Lee, Ji Won; Boo, Jin-Hyo
2016-07-09
This paper presents the preparation of high-quality vanadium dioxide (VO₂) thermochromic thin films with enhanced visible transmittance (T vis ) via radio frequency (RF) sputtering and plasma enhanced chemical vapor deposition (PECVD). VO₂ thin films with high T vis and excellent optical switching efficiency (E os ) were successfully prepared by employing SiO₂ as a passivation layer. After SiO₂ deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO₂ coating, the phase transition temperature (T c ) of the prepared films was not affected. Compared with pristine VO₂, the total layer thickness after SiO₂ coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO₂ thin films showed a higher T vis value (λ 650 nm, 58%) compared with the pristine samples (λ 650 nm, 43%). This enhancement of T vis while maintaining high E os is meaningful for VO₂-based smart window applications.
NASA Astrophysics Data System (ADS)
Feng, Cheng; Zhang, Yijun; Qian, Yunsheng; Wang, Ziheng; Liu, Jian; Chang, Benkang; Shi, Feng; Jiao, Gangcheng
2018-04-01
A theoretical emission model for AlxGa1-xAs/GaAs cathode with complex structure based on photon-enhanced thermionic emission is developed by utilizing one-dimensional steady-state continuity equations. The cathode structure comprises a graded-composition AlxGa1-xAs window layer and an exponential-doping GaAs absorber layer. In the deduced model, the physical properties changing with the Al composition are taken into consideration. Simulated current-voltage characteristics are presented and some important factors affecting the conversion efficiency are also illustrated. Compared with the graded-composition and uniform-doping cathode structure, and the uniform-composition and uniform-doping cathode structure, the graded-composition and exponential-doping cathode structure can effectively improve the conversion efficiency, which is ascribed to the twofold built-in electric fields. More strikingly, this graded bandgap structure is especially suitable for photon-enhanced thermionic emission devices since a higher conversion efficiency can be achieved at a lower temperature.
NASA Astrophysics Data System (ADS)
Robinson, C.; Barry, D. A.
2008-12-01
Enhanced anaerobic dechlorination is a promising technology for in situ remediation of chlorinated ethene DNAPL source areas. However, the build-up of organic acids and HCl in the source zone can lead to significant groundwater acidification. The resulting pH drop inhibits the activity of the dechlorinating microorganisms and thus may stall the remediation process. Source zone remediation requires extensive dechlorination, such that it may be common for soil's natural buffering capacity to be exceeded, and for acidic conditions to develop. In these cases bicarbonate addition (e.g., NaHCO3, KHCO3) is required for pH control. As a design tool for treatment strategies, we have developed BUCHLORAC, a Windows Graphical User Interface based on an abiotic geochemical model that allows the user to predict the acidity generated during dechlorination and associated buffer requirements for their specific operating conditions. BUCHLORAC was motivated by the SABRE (Source Area BioREmediation) project, which aims to evaluate the effectiveness of enhanced reductive dechlorination in the treatment of chlorinated solvent source zones.
Cross-Layer Algorithms for QoS Enhancement in Wireless Multimedia Sensor Networks
NASA Astrophysics Data System (ADS)
Saxena, Navrati; Roy, Abhishek; Shin, Jitae
A lot of emerging applications like advanced telemedicine and surveillance systems, demand sensors to deliver multimedia content with precise level of QoS enhancement. Minimizing energy in sensor networks has been a much explored research area but guaranteeing QoS over sensor networks still remains an open issue. In this letter we propose a cross-layer approach combining Network and MAC layers, for QoS enhancement in wireless multimedia sensor networks. In the network layer a statistical estimate of sensory QoS parameters is performed and a nearoptimal genetic algorithmic solution is proposed to solve the NP-complete QoS-routing problem. On the other hand the objective of the proposed MAC algorithm is to perform the QoS-based packet classification and automatic adaptation of the contention window. Simulation results demonstrate that the proposed protocol is capable of providing lower delay and better throughput, at the cost of reasonable energy consumption, in comparison with other existing sensory QoS protocols.
Application of the EM algorithm to radiographic images.
Brailean, J C; Little, D; Giger, M L; Chen, C T; Sullivan, B J
1992-01-01
The expectation maximization (EM) algorithm has received considerable attention in the area of positron emitted tomography (PET) as a restoration and reconstruction technique. In this paper, the restoration capabilities of the EM algorithm when applied to radiographic images is investigated. This application does not involve reconstruction. The performance of the EM algorithm is quantitatively evaluated using a "perceived" signal-to-noise ratio (SNR) as the image quality metric. This perceived SNR is based on statistical decision theory and includes both the observer's visual response function and a noise component internal to the eye-brain system. For a variety of processing parameters, the relative SNR (ratio of the processed SNR to the original SNR) is calculated and used as a metric to compare quantitatively the effects of the EM algorithm with two other image enhancement techniques: global contrast enhancement (windowing) and unsharp mask filtering. The results suggest that the EM algorithm's performance is superior when compared to unsharp mask filtering and global contrast enhancement for radiographic images which contain objects smaller than 4 mm.
Tsai, Kuo-Ming; Wang, He-Yi
2014-08-20
This study focuses on injection molding process window determination for obtaining optimal imaging optical properties, astigmatism, coma, and spherical aberration using plastic lenses. The Taguchi experimental method was first used to identify the optimized combination of parameters and significant factors affecting the imaging optical properties of the lens. Full factorial experiments were then implemented based on the significant factors to build the response surface models. The injection molding process windows for lenses with optimized optical properties were determined based on the surface models, and confirmation experiments were performed to verify their validity. The results indicated that the significant factors affecting the optical properties of lenses are mold temperature, melt temperature, and cooling time. According to experimental data for the significant factors, the oblique ovals for different optical properties on the injection molding process windows based on melt temperature and cooling time can be obtained using the curve fitting approach. The confirmation experiments revealed that the average errors for astigmatism, coma, and spherical aberration are 3.44%, 5.62%, and 5.69%, respectively. The results indicated that the process windows proposed are highly reliable.
Photorefractive-based adaptive optical windows
NASA Astrophysics Data System (ADS)
Liu, Yuexin; Yang, Yi; Wang, Bo; Fu, John Y.; Yin, Shizhuo; Guo, Ruyan; Yu, Francis T.
2004-10-01
Optical windows have been widely used in optical spectrographic processing system. In this paper, various window profiles, such as rectangular, triangular, Hamming, Hanning, and Blackman etc., have been investigated in detail, regarding their effect on the generated spectrograms, such as joint time-frequency resolution ΔtΔw, the sidelobe amplitude attenuation etc.. All of these windows can be synthesized in a photorefractive crystal by angular multiplexing holographic technique, which renders the system more adaptive. Experimental results are provided.
Opto-mechanical design of optical window for aero-optics effect simulation instruments
NASA Astrophysics Data System (ADS)
Wang, Guo-ming; Dong, Dengfeng; Zhou, Weihu; Ming, Xing; Zhang, Yan
2016-10-01
A complete theory is established for opto-mechanical systems design of the window in this paper, which can make the design more rigorous .There are three steps about the design. First, the universal model of aerodynamic environment is established based on the theory of Computational Fluid Dynamics, and the pneumatic pressure distribution and temperature data of optical window surface is obtained when aircraft flies in 5-30km altitude, 0.5-3Ma speed and 0-30°angle of attack. The temperature and pressure distribution values for the maximum constraint is selected as the initial value of external conditions on the optical window surface. Then, the optical window and mechanical structure are designed, which is also divided into two parts: First, mechanical structure which meet requirements of the security and tightness is designed. Finally, rigorous analysis and evaluation are given about the structure of optics and mechanics we have designed. There are two parts to be analyzed. First, the Fluid-Solid-Heat Coupled Model is given based on finite element analysis. And the deformation of the glass and structure can be obtained by the model, which can assess the feasibility of the designed optical windows and ancillary structure; Second, the new optical surface is fitted by Zernike polynomials according to the deformation of the surface of the optical window, which can evaluate imaging quality impact of spectral camera by the deformation of window.
NASA Astrophysics Data System (ADS)
Upadhyaya, A. S.; Bandyopadhyay, P. K.
2012-11-01
In state of art technology, integrated devices are widely used or their potential advantages. Common system reduces weight as well as total space covered by its various parts. In the state of art surveillance system integrated SWIR and night vision system used for more accurate identification of object. In this system a common optical window is used, which passes the radiation of both the regions, further both the spectral regions are separated in two channels. ZnS is a good choice for a common window, as it transmit both the region of interest, night vision (650 - 850 nm) as well as SWIR (0.9 - 1.7 μm). In this work a broad band anti reflection coating is developed on ZnS window to enhance the transmission. This seven layer coating is designed using flip flop design method. After getting the final design, some minor refinement is done, using simplex method. SiO2 and TiO2 coating material combination is used for this work. The coating is fabricated by physical vapour deposition process and the materials were evaporated by electron beam gun. Average transmission of both side coated substrate from 660 to 1700 nm is 95%. This coating also acts as contrast enhancement filter for night vision devices, as it reflect the region of 590 - 660 nm. Several trials have been conducted to check the coating repeatability, and it is observed that transmission variation in different trials is not very much and it is under the tolerance limit. The coating also passes environmental test for stability.
NASA Astrophysics Data System (ADS)
Wang, Xiaohui; Couwenhoven, Mary E.; Foos, David H.; Doran, James; Yankelevitz, David F.; Henschke, Claudia I.
2008-03-01
An image-processing method has been developed to improve the visibility of tube and catheter features in portable chest x-ray (CXR) images captured in the intensive care unit (ICU). The image-processing method is based on a multi-frequency approach, wherein the input image is decomposed into different spatial frequency bands, and those bands that contain the tube and catheter signals are individually enhanced by nonlinear boosting functions. Using a random sampling strategy, 50 cases were retrospectively selected for the study from a large database of portable CXR images that had been collected from multiple institutions over a two-year period. All images used in the study were captured using photo-stimulable, storage phosphor computed radiography (CR) systems. Each image was processed two ways. The images were processed with default image processing parameters such as those used in clinical settings (control). The 50 images were then separately processed using the new tube and catheter enhancement algorithm (test). Three board-certified radiologists participated in a reader study to assess differences in both detection-confidence performance and diagnostic efficiency between the control and test images. Images were evaluated on a diagnostic-quality, 3-megapixel monochrome monitor. Two scenarios were studied: the baseline scenario, representative of today's workflow (a single-control image presented with the window/level adjustments enabled) vs. the test scenario (a control/test image pair presented with a toggle enabled and the window/level settings disabled). The radiologists were asked to read the images in each scenario as they normally would for clinical diagnosis. Trend analysis indicates that the test scenario offers improved reading efficiency while providing as good or better detection capability compared to the baseline scenario.
Applying a visual language for image processing as a graphical teaching tool in medical imaging
NASA Astrophysics Data System (ADS)
Birchman, James J.; Tanimoto, Steven L.; Rowberg, Alan H.; Choi, Hyung-Sik; Kim, Yongmin
1992-05-01
Typical user interaction in image processing is with command line entries, pull-down menus, or text menu selections from a list, and as such is not generally graphical in nature. Although applying these interactive methods to construct more sophisticated algorithms from a series of simple image processing steps may be clear to engineers and programmers, it may not be clear to clinicians. A solution to this problem is to implement a visual programming language using visual representations to express image processing algorithms. Visual representations promote a more natural and rapid understanding of image processing algorithms by providing more visual insight into what the algorithms do than the interactive methods mentioned above can provide. Individuals accustomed to dealing with images will be more likely to understand an algorithm that is represented visually. This is especially true of referring physicians, such as surgeons in an intensive care unit. With the increasing acceptance of picture archiving and communications system (PACS) workstations and the trend toward increasing clinical use of image processing, referring physicians will need to learn more sophisticated concepts than simply image access and display. If the procedures that they perform commonly, such as window width and window level adjustment and image enhancement using unsharp masking, are depicted visually in an interactive environment, it will be easier for them to learn and apply these concepts. The software described in this paper is a visual programming language for imaging processing which has been implemented on the NeXT computer using NeXTstep user interface development tools and other tools in an object-oriented environment. The concept is based upon the description of a visual language titled `Visualization of Vision Algorithms' (VIVA). Iconic representations of simple image processing steps are placed into a workbench screen and connected together into a dataflow path by the user. As the user creates and edits a dataflow path, more complex algorithms can be built on the screen. Once the algorithm is built, it can be executed, its results can be reviewed, and operator parameters can be interactively adjusted until an optimized output is produced. The optimized algorithm can then be saved and added to the system as a new operator. This system has been evaluated as a graphical teaching tool for window width and window level adjustment, image enhancement using unsharp masking, and other techniques.
NASA Astrophysics Data System (ADS)
Guo, Guo; Guo, Junwei; Niu, Xinjian; Liu, Yinghui; Wang, Hui; Wei, Yanyu
2017-06-01
A large power water-cooled microwave resonance window used for the electron cyclotron resonance (ECR) ion source is investigated in this paper. The microwave characteristic simulation, thermal analysis, and structure design are deeply and successively carried out before fabrication. After the machining and welding of the components, the window is cold and hot tested. The application results demonstrate that when the input power is 2000 W, the reflected power is only 5 W. The vacuum is below 10-10 Pa, and the high power microwave operation can last 30 h continuously and reliably, which indicates that the design and assembling can achieve the high efficiency of the microwave transmission. Finally, the performance of the ECR ion source is enhanced by the improvement of the injected microwave power to the ECR plasma.
Holographic diffractive structures for daylighting, phase 1
NASA Astrophysics Data System (ADS)
1985-10-01
Advanced Environmental Research Group (AERG) has researched and developed a proprietary device which will passively track the Sun throughout a wide range of latitudes, hours of the day and seasons of the year. The Holographic Diffractive Structure (HDS), consists of novel holographic diffraction grating designs applied to a substrate suitable for mounting or incorporated into window glazings. The HDS installations will be a low cost system for the controlled management of sunlight in buildings for energy savings and an enhanced lighting environment. The HDSs act to intercept sunlight and redirect it away from the immediate window area towards the darker regions at the rear of the room, or (via light guides) to interior spaces without windows, or (used on the facade of a building) to redirect sunlight into dark urban canyons or onto the facades of other nearby buildings.
Effect of window length on performance of the elbow-joint angle prediction based on electromyography
NASA Astrophysics Data System (ADS)
Triwiyanto; Wahyunggoro, Oyas; Adi Nugroho, Hanung; Herianto
2017-05-01
The high performance of the elbow joint angle prediction is essential on the development of the devices based on electromyography (EMG) control. The performance of the prediction depends on the feature of extraction parameters such as window length. In this paper, we evaluated the effect of the window length on the performance of the elbow-joint angle prediction. The prediction algorithm consists of zero-crossing feature extraction and second order of Butterworth low pass filter. The feature was used to extract the EMG signal by varying window length. The EMG signal was collected from the biceps muscle while the elbow was moved in the flexion and extension motion. The subject performed the elbow motion by holding a 1-kg load and moved the elbow in different periods (12 seconds, 8 seconds and 6 seconds). The results indicated that the window length affected the performance of the prediction. The 250 window lengths yielded the best performance of the prediction algorithm of (mean±SD) root mean square error = 5.68%±1.53% and Person’s correlation = 0.99±0.0059.
Wide modulation bandwidth terahertz detection in 130 nm CMOS technology
NASA Astrophysics Data System (ADS)
Nahar, Shamsun; Shafee, Marwah; Blin, Stéphane; Pénarier, Annick; Nouvel, Philippe; Coquillat, Dominique; Safwa, Amr M. E.; Knap, Wojciech; Hella, Mona M.
2016-11-01
Design, manufacturing and measurements results for silicon plasma wave transistors based wireless communication wideband receivers operating at 300 GHz carrier frequency are presented. We show the possibility of Si-CMOS based integrated circuits, in which by: (i) specific physics based plasma wave transistor design allowing impedance matching to the antenna and the amplifier, (ii) engineering the shape of the patch antenna through a stacked resonator approach and (iii) applying bandwidth enhancement strategies to the design of integrated broadband amplifier, we achieve an integrated circuit of the 300 GHz carrier frequency receiver for wireless wideband operation up to/over 10 GHz. This is, to the best of our knowledge, the first demonstration of low cost 130 nm Si-CMOS technology, plasma wave transistors based fast/wideband integrated receiver operating at 300 GHz atmospheric window. These results pave the way towards future large scale (cost effective) silicon technology based terahertz wireless communication receivers.
WinTRAX: A raytracing software package for the design of multipole focusing systems
NASA Astrophysics Data System (ADS)
Grime, G. W.
2013-07-01
The software package TRAX was a simulation tool for modelling the path of charged particles through linear cylindrical multipole fields described by analytical expressions and was a development of the earlier OXRAY program (Grime and Watt, 1983; Grime et al., 1982) [1,2]. In a 2005 comparison of raytracing software packages (Incerti et al., 2005) [3], TRAX/OXRAY was compared with Geant4 and Zgoubi and was found to give close agreement with the more modern codes. TRAX was a text-based program which was only available for operation in a now rare VMS workstation environment, so a new program, WinTRAX, has been developed for the Windows operating system. This implements the same basic computing strategy as TRAX, and key sections of the code are direct translations from FORTRAN to C++, but the Windows environment is exploited to make an intuitive graphical user interface which simplifies and enhances many operations including system definition and storage, optimisation, beam simulation (including with misaligned elements) and aberration coefficient determination. This paper describes the program and presents comparisons with other software and real installations.
Evaluation of Equivalent Vision Technologies for Supersonic Aircraft Operations
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Williams, Steven P.; Wilz, Susan P.; Arthur, Jarvis J., III; Bailey, Randall E.
2009-01-01
Twenty-four air transport-rated pilots participated as subjects in a fixed-based simulation experiment to evaluate the use of Synthetic/Enhanced Vision (S/EV) and eXternal Vision System (XVS) technologies as enabling technologies for future all-weather operations. Three head-up flight display concepts were evaluated a monochromatic, collimated Head-up Display (HUD) and a color, non-collimated XVS display with a field-of-view (FOV) equal to and also, one significantly larger than the collimated HUD. Approach, landing, departure, and surface operations were conducted. Additionally, the apparent angle-of-attack (AOA) was varied (high/low) to investigate the vertical field-of-view display requirements and peripheral, side window visibility was experimentally varied. The data showed that lateral approach tracking performance and lateral landing position were excellent regardless of the display type and AOA condition being evaluated or whether or not there were peripheral cues in the side windows. Longitudinal touchdown and glideslope tracking were affected by the display concepts. Larger FOV display concepts showed improved longitudinal touchdown control, superior glideslope tracking, significant situation awareness improvements and workload reductions compared to smaller FOV display concepts.
Matsumoto, Atsushi; Kakigi, Ryusuke
2014-01-01
Recent neuroimaging experiments have revealed that subliminal priming of a target stimulus leads to the reduction of neural activity in specific regions concerned with processing the target. Such findings lead to questions about the degree to which the subliminal priming effect is based only on decreased activity in specific local brain regions, as opposed to the influence of neural mechanisms that regulate communication between brain regions. To address this question, this study recorded EEG during performance of a subliminal semantic priming task. We adopted an information-based approach that used independent component analysis and multivariate autoregressive modeling. Results indicated that subliminal semantic priming caused significant modulation of alpha band activity in the left inferior frontal cortex and modulation of gamma band activity in the left inferior temporal regions. The multivariate autoregressive approach confirmed significant increases in information flow from the inferior frontal cortex to inferior temporal regions in the early time window that was induced by subliminal priming. In the later time window, significant enhancement of bidirectional causal flow between these two regions underlying subliminal priming was observed. Results suggest that unconscious processing of words influences not only local activity of individual brain regions but also the dynamics of neural communication between those regions.
Dang, Xiangnan; Gu, Li; Qi, Jifa; Correa, Santiago; Zhang, Geran; Belcher, Angela M.; Hammond, Paula T.
2016-01-01
Fluorescence imaging in the second near-infrared window (NIR-II, 1,000–1,700 nm) features deep tissue penetration, reduced tissue scattering, and diminishing tissue autofluorescence. Here, NIR-II fluorescent probes, including down-conversion nanoparticles, quantum dots, single-walled carbon nanotubes, and organic dyes, are constructed into biocompatible nanoparticles using the layer-by-layer (LbL) platform due to its modular and versatile nature. The LbL platform has previously been demonstrated to enable incorporation of diagnostic agents, drugs, and nucleic acids such as siRNA while providing enhanced blood plasma half-life and tumor targeting. This work carries out head-to-head comparisons of currently available NIR-II probes with identical LbL coatings with regard to their biodistribution, pharmacokinetics, and toxicities. Overall, rare-earth-based down-conversion nanoparticles demonstrate optimal biological and optical performance and are evaluated as a diagnostic probe for high-grade serous ovarian cancer, typically diagnosed at late stage. Successful detection of orthotopic ovarian tumors is achieved by in vivo NIR-II imaging and confirmed by ex vivo microscopic imaging. Collectively, these results indicate that LbL-based NIR-II probes can serve as a promising theranostic platform to effectively and noninvasively monitor the progression and treatment of serous ovarian cancer. PMID:27114520
Constraining Alternative Theories of Gravity Using Pulsar Timing Arrays
NASA Astrophysics Data System (ADS)
Cornish, Neil J.; O'Beirne, Logan; Taylor, Stephen R.; Yunes, Nicolás
2018-05-01
The opening of the gravitational wave window by ground-based laser interferometers has made possible many new tests of gravity, including the first constraints on polarization. It is hoped that, within the next decade, pulsar timing will extend the window by making the first detections in the nanohertz frequency regime. Pulsar timing offers several advantages over ground-based interferometers for constraining the polarization of gravitational waves due to the many projections of the polarization pattern provided by the different lines of sight to the pulsars, and the enhanced response to longitudinal polarizations. Here, we show that existing results from pulsar timing arrays can be used to place stringent limits on the energy density of longitudinal stochastic gravitational waves. However, unambiguously distinguishing these modes from noise will be very difficult due to the large variances in the pulsar-pulsar correlation patterns. Existing upper limits on the power spectrum of pulsar timing residuals imply that the amplitude of vector longitudinal (VL) and scalar longitudinal (SL) modes at frequencies of 1/year are constrained, AVL<4 ×10-16 and ASL<4 ×10-17, while the bounds on the energy density for a scale invariant cosmological background are ΩVLh2<4 ×10-11 and ΩSLh2<3 ×10-13.
Constraining Alternative Theories of Gravity Using Pulsar Timing Arrays.
Cornish, Neil J; O'Beirne, Logan; Taylor, Stephen R; Yunes, Nicolás
2018-05-04
The opening of the gravitational wave window by ground-based laser interferometers has made possible many new tests of gravity, including the first constraints on polarization. It is hoped that, within the next decade, pulsar timing will extend the window by making the first detections in the nanohertz frequency regime. Pulsar timing offers several advantages over ground-based interferometers for constraining the polarization of gravitational waves due to the many projections of the polarization pattern provided by the different lines of sight to the pulsars, and the enhanced response to longitudinal polarizations. Here, we show that existing results from pulsar timing arrays can be used to place stringent limits on the energy density of longitudinal stochastic gravitational waves. However, unambiguously distinguishing these modes from noise will be very difficult due to the large variances in the pulsar-pulsar correlation patterns. Existing upper limits on the power spectrum of pulsar timing residuals imply that the amplitude of vector longitudinal (VL) and scalar longitudinal (SL) modes at frequencies of 1/year are constrained, A_{VL}<4×10^{-16} and A_{SL}<4×10^{-17}, while the bounds on the energy density for a scale invariant cosmological background are Ω_{VL}h^{2}<4×10^{-11} and Ω_{SL}h^{2}<3×10^{-13}.
State-of-the-art software for window energy-efficiency rating and labeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arasteh, D.; Finlayson, E.; Huang, J.
1998-07-01
Measuring the thermal performance of windows in typical residential buildings is an expensive proposition. Not only is laboratory testing expensive, but each window manufacturer typically offers hundreds of individual products, each of which has different thermal performance properties. With over a thousand window manufacturers nationally, a testing-based rating system would be prohibitively expensive to the industry and to consumers. Beginning in the early 1990s, simulation software began to be used as part of a national program for rating window U-values. The rating program has since been expanded to include Solar Hear Gain Coefficients and is now being extended to annualmore » energy performance. This paper describes four software packages available to the public from Lawrence Berkeley National Laboratory (LBNL). These software packages are used to evaluate window thermal performance: RESFEN (for evaluating annual energy costs), WINDOW (for calculating a product`s thermal performance properties), THERM (a preprocessor for WINDOW that determines two-dimensional heat-transfer effects), and Optics (a preprocessor for WINDOW`s glass database). Software not only offers a less expensive means than testing to evaluate window performance, it can also be used during the design process to help manufacturers produce windows that will meet target specifications. In addition, software can show small improvements in window performance that might not be detected in actual testing because of large uncertainties in test procedures.« less
Galias, Zbigniew
2017-05-01
An efficient method to find positions of periodic windows for the quadratic map f(x)=ax(1-x) and a heuristic algorithm to locate the majority of wide periodic windows are proposed. Accurate rigorous bounds of positions of all periodic windows with periods below 37 and the majority of wide periodic windows with longer periods are found. Based on these results, we prove that the measure of the set of regular parameters in the interval [3,4] is above 0.613960137. The properties of periodic windows are studied numerically. The results of the analysis are used to estimate that the true value of the measure of the set of regular parameters is close to 0.6139603.
Dong, Bing; Li, Yan; Han, Xin-li; Hu, Bin
2016-01-01
For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10−5 in optimized correction and is 1.427 × 10−5 in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method. PMID:27598161
ERIC Educational Resources Information Center
Masalski, William J.
This book seeks to develop, enhance, and expand students' understanding of mathematics by using technology. Topics covered include the advantages of spreadsheets along with the opportunity to explore the 'what if?' type of questions encountered in the problem-solving process, enhancing the user's insight into the development and use of algorithms,…
7. BULLET GLASS OBSERVATION WINDOW AT GROUND LEVEL ON WEST ...
7. BULLET GLASS OBSERVATION WINDOW AT GROUND LEVEL ON WEST REAR. - Edwards Air Force Base, South Base Sled Track, Firing & Control Blockhouse for 10,000-foot Track, South of Sled Track at midpoint of 20,000-foot track, Lancaster, Los Angeles County, CA
Interactive floating windows: a new technique for stereoscopic video games
NASA Astrophysics Data System (ADS)
Zerebecki, Chris; Stanfield, Brodie; Tawadrous, Mina; Buckstein, Daniel; Hogue, Andrew; Kapralos, Bill
2012-03-01
The film industry has a long history of creating compelling experiences in stereoscopic 3D. Recently, the video game as an artistic medium has matured into an effective way to tell engaging and immersive stories. Given the current push to bring stereoscopic 3D technology into the consumer market there is considerable interest to develop stereoscopic 3D video games. Game developers have largely ignored the need to design their games specifically for stereoscopic 3D and have thus relied on automatic conversion and driver technology. Game developers need to evaluate solutions used in other media, such as film, to correct perceptual problems such as window violations, and modify or create new solutions to work within an interactive framework. In this paper we extend the dynamic floating window technique into the interactive domain enabling the player to position a virtual window in space. Interactively changing the position, size, and the 3D rotation of the virtual window, objects can be made to 'break the mask' dramatically enhancing the stereoscopic effect. By demonstrating that solutions from the film industry can be extended into the interactive space, it is our hope that this initiates further discussion in the game development community to strengthen their story-telling mechanisms in stereoscopic 3D games.
NASA Astrophysics Data System (ADS)
Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar
2016-12-01
A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values ( 4 and 11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH 14 and brown at pH 2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms ;C;, ;H; and ;Dprot; at pH 14 and Forms ;A;, ;D;, and ;P; at pH 2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH 2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450 cm- 1, 616 to 632 cm- 1, 1332 to 1343 cm- 1 etc. Again, the most enhanced peak at 1548 cm- 1 in NRS while in the SERS window this appears at 1580 cm- 1. Similar observation was also made for CZA at pH 14. For example, the 423 cm- 1 band in the NRS profile experience a blue shift and appears at 447 cm- 1 in the SERS spectrum as well as other bands at 850, 1067 and 1214 cm- 1 in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH 2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH 14). The DFT calculations for these prescribed model systems were also carried out to have a plausible understanding of their equilibrium geometries and the vibrational wavenumbers. An idea about the molecular orientation of the adsorbate over nanocolloidal gold substrate is also documented.
Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar
2016-12-05
A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~4 and ~11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH~14 and brown at pH~2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH~14 and Forms "A", "D", and "P" at pH~2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH~2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450cm(-1), 616 to 632cm(-1), 1332 to 1343cm(-1) etc. Again, the most enhanced peak at ~1548cm(-1) in NRS while in the SERS window this appears at ~1580cm(-1). Similar observation was also made for CZA at pH~14. For example, the 423cm(-1) band in the NRS profile experience a blue shift and appears at ~447cm(-1) in the SERS spectrum as well as other bands at ~850, ~1067 and ~1214cm(-1) in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH~2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH~14). The DFT calculations for these prescribed model systems were also carried out to have a plausible understanding of their equilibrium geometries and the vibrational wavenumbers. An idea about the molecular orientation of the adsorbate over nanocolloidal gold substrate is also documented. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhao, Chen; Zhang, Shunqi; Liu, Zhipeng; Yin, Tao
2015-07-01
A new method to improve the focalization and efficiency of the Figure of Eight (FOE) coil in rTMS is discussed in this paper. In order to decrease the half width of the distribution curve (HWDC), as well to increase the ratio of positive peak value to negative peak value (RPN) of the induced electric field, a shield plate with a window and a ferromagnetic block are assumed to enhance the positive peak value of the induced electrical field. The shield is made of highly conductive copper, and the block is made of highly permeable soft magnetic ferrite. A computer simulation is conducted on ANSYS® software to conduct the finite element analysis (FEA). Two comparing coefficients were set up to optimize the sizes of the shield window and the block. Simulation results show that a shield with a 60 mm × 30 mm sized window, together with a block 40 mm thick, can decrease the focal area of a FOE coil by 46.7%, while increasing the RPN by 135.9%. The block enhances the peak value of the electrical field induced by a shield-FOE by 8.4%. A real human head model was occupied in this paper to further verify our method.
NASA Astrophysics Data System (ADS)
Lechevallier, Loic; Vasilchenko, Semen; Grilli, Roberto; Mondelain, Didier; Romanini, Daniele; Campargue, Alain
2018-04-01
The amplitude, the temperature dependence, and the physical origin of the water vapour absorption continuum are a long-standing issue in molecular spectroscopy with direct impact in atmospheric and planetary sciences. In recent years, we have determined the self-continuum absorption of water vapour at different spectral points of the atmospheric windows at 4.0, 2.1, 1.6, and 1.25 µm, by highly sensitive cavity-enhanced laser techniques. These accurate experimental constraints have been used to adjust the last version (3.2) of the semi-empirical MT_CKD model (Mlawer-Tobin_Clough-Kneizys-Davies), which is widely incorporated in atmospheric radiative-transfer codes. In the present work, the self-continuum cross-sections, CS, are newly determined at 3.3 µm (3007 cm-1) and 2.0 µm (5000 cm-1) by optical-feedback-cavity enhanced absorption spectroscopy (OFCEAS) and cavity ring-down spectroscopy (CRDS), respectively. These new data allow extending the spectral coverage of the 4.0 and 2.1 µm windows, respectively, and testing the recently released 3.2 version of the MT_CKD continuum. By considering high temperature literature data together with our data, the temperature dependence of the self-continuum is also obtained.
Small-window parametric imaging based on information entropy for ultrasound tissue characterization
Tsui, Po-Hsiang; Chen, Chin-Kuo; Kuo, Wen-Hung; Chang, King-Jen; Fang, Jui; Ma, Hsiang-Yang; Chou, Dean
2017-01-01
Constructing ultrasound statistical parametric images by using a sliding window is a widely adopted strategy for characterizing tissues. Deficiency in spatial resolution, the appearance of boundary artifacts, and the prerequisite data distribution limit the practicability of statistical parametric imaging. In this study, small-window entropy parametric imaging was proposed to overcome the above problems. Simulations and measurements of phantoms were executed to acquire backscattered radiofrequency (RF) signals, which were processed to explore the feasibility of small-window entropy imaging in detecting scatterer properties. To validate the ability of entropy imaging in tissue characterization, measurements of benign and malignant breast tumors were conducted (n = 63) to compare performances of conventional statistical parametric (based on Nakagami distribution) and entropy imaging by the receiver operating characteristic (ROC) curve analysis. The simulation and phantom results revealed that entropy images constructed using a small sliding window (side length = 1 pulse length) adequately describe changes in scatterer properties. The area under the ROC for using small-window entropy imaging to classify tumors was 0.89, which was higher than 0.79 obtained using statistical parametric imaging. In particular, boundary artifacts were largely suppressed in the proposed imaging technique. Entropy enables using a small window for implementing ultrasound parametric imaging. PMID:28106118
Small-window parametric imaging based on information entropy for ultrasound tissue characterization
NASA Astrophysics Data System (ADS)
Tsui, Po-Hsiang; Chen, Chin-Kuo; Kuo, Wen-Hung; Chang, King-Jen; Fang, Jui; Ma, Hsiang-Yang; Chou, Dean
2017-01-01
Constructing ultrasound statistical parametric images by using a sliding window is a widely adopted strategy for characterizing tissues. Deficiency in spatial resolution, the appearance of boundary artifacts, and the prerequisite data distribution limit the practicability of statistical parametric imaging. In this study, small-window entropy parametric imaging was proposed to overcome the above problems. Simulations and measurements of phantoms were executed to acquire backscattered radiofrequency (RF) signals, which were processed to explore the feasibility of small-window entropy imaging in detecting scatterer properties. To validate the ability of entropy imaging in tissue characterization, measurements of benign and malignant breast tumors were conducted (n = 63) to compare performances of conventional statistical parametric (based on Nakagami distribution) and entropy imaging by the receiver operating characteristic (ROC) curve analysis. The simulation and phantom results revealed that entropy images constructed using a small sliding window (side length = 1 pulse length) adequately describe changes in scatterer properties. The area under the ROC for using small-window entropy imaging to classify tumors was 0.89, which was higher than 0.79 obtained using statistical parametric imaging. In particular, boundary artifacts were largely suppressed in the proposed imaging technique. Entropy enables using a small window for implementing ultrasound parametric imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsen Ph.D., Arild; Goudey, Howdy; Kohler, Christian
2010-06-17
While window frames typically represent 20-30percent of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows which incorporate very low conductance glazings. Developing low-conductance window frames requires accurate simulation tools for product research and development. The Passivhaus Institute in Germany states that windows (glazing and frames, combined) should have U-values not exceeding 0.80 W/(m??K). This has created a niche market for highly insulating frames, with frame U-values typically around 0.7-1.0 W/(m2 cdot K). The U-values reported are often based on numerical simulationsmore » according to international simulation standards. It is prudent to check the accuracy of these calculation standards, especially for high performance products before more manufacturers begin to use them to improve other product offerings. In this paper the thermal transmittance of five highly insulating window frames (three wooden frames, one aluminum frame and one PVC frame), found from numerical simulations and experiments, are compared. Hot box calorimeter results are compared with numerical simulations according to ISO 10077-2 and ISO 15099. In addition CFD simulations have been carried out, in order to use the most accurate tool available to investigate the convection and radiation effects inside the frame cavities. Our results show that available tools commonly used to evaluate window performance, based on ISO standards, give good overall agreement, but specific areas need improvement.« less
ERIC Educational Resources Information Center
Lowe, Phyllis; And Others
This module, one of ten competency based modules developed for vocational home economics teachers, is based on a job cluster in window treatment services. It can be used for various types of learners such as the handicapped, slowlearners, high school students, and adults including senior citizens. Focusing on the specific job title of window…
Air transparent soundproof window
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sang-Hoon, E-mail: shkim@mmu.ac.kr; Lee, Seong-Hyun
2014-11-15
A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. Themore » sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.« less
AN ASSESSMENT OF MCNP WEIGHT WINDOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. S. HENDRICKS; C. N. CULBERTSON
2000-01-01
The weight window variance reduction method in the general-purpose Monte Carlo N-Particle radiation transport code MCNPTM has recently been rewritten. In particular, it is now possible to generate weight window importance functions on a superimposed mesh, eliminating the need to subdivide geometries for variance reduction purposes. Our assessment addresses the following questions: (1) Does the new MCNP4C treatment utilize weight windows as well as the former MCNP4B treatment? (2) Does the new MCNP4C weight window generator generate importance functions as well as MCNP4B? (3) How do superimposed mesh weight windows compare to cell-based weight windows? (4) What are the shortcomingsmore » of the new MCNP4C weight window generator? Our assessment was carried out with five neutron and photon shielding problems chosen for their demanding variance reduction requirements. The problems were an oil well logging problem, the Oak Ridge fusion shielding benchmark problem, a photon skyshine problem, an air-over-ground problem, and a sample problem for variance reduction.« less
Conformal ALON® and spinel windows
NASA Astrophysics Data System (ADS)
Goldman, Lee M.; Smith, Mark; Ramisetty, Mohan; Jha, Santosh; Sastri, Suri
2017-05-01
The requirements for modern aircraft based reconnaissance systems are driving the need for conformal windows for future sensor systems. However, limitations on optical systems and the ability to produce windows in complex geometries currently limit the geometry of existing windows and window assemblies to faceted assemblies of flat windows. ALON consists primarily of aluminum and oxygen, similar to that of alumina, with a small amount of nitrogen added to help stabilize the cubic gamma-AlON phase. ALON's chemical similarity to alumina, translates into a robust manufacturing process. This ease of processing has allowed Surmet to produce ALON windows and domes in a wide variety of geometries and sizes. Spinel (MgAl2O4) contains equal molar amounts of MgO and Al2O3, and is a cubic material, that transmits further into the Infrared than ALON. Spinel is produced via powder processing techniques similar to those used to produce ALON. Surmet is now applying the lessons learned with ALON to produce conformal spinel windows and domes as well.
Integrated model-based retargeting and optical proximity correction
NASA Astrophysics Data System (ADS)
Agarwal, Kanak B.; Banerjee, Shayak
2011-04-01
Conventional resolution enhancement techniques (RET) are becoming increasingly inadequate at addressing the challenges of subwavelength lithography. In particular, features show high sensitivity to process variation in low-k1 lithography. Process variation aware RETs such as process-window OPC are becoming increasingly important to guarantee high lithographic yield, but such techniques suffer from high runtime impact. An alternative to PWOPC is to perform retargeting, which is a rule-assisted modification of target layout shapes to improve their process window. However, rule-based retargeting is not a scalable technique since rules cannot cover the entire search space of two-dimensional shape configurations, especially with technology scaling. In this paper, we propose to integrate the processes of retargeting and optical proximity correction (OPC). We utilize the normalized image log slope (NILS) metric, which is available at no extra computational cost during OPC. We use NILS to guide dynamic target modification between iterations of OPC. We utilize the NILS tagging capabilities of Calibre TCL scripting to identify fragments with low NILS. We then perform NILS binning to assign different magnitude of retargeting to different NILS bins. NILS is determined both for width, to identify regions of pinching, and space, to locate regions of potential bridging. We develop an integrated flow for 1x metal lines (M1) which exhibits lesser lithographic hotspots compared to a flow with just OPC and no retargeting. We also observe cases where hotspots that existed in the rule-based retargeting flow are fixed using our methodology. We finally also demonstrate that such a retargeting methodology does not significantly alter design properties by electrically simulating a latch layout before and after retargeting. We observe less than 1% impact on latch Clk-Q and D-Q delays post-retargeting, which makes this methodology an attractive one for use in improving shape process windows without perturbing designed values.
Wildcat5 for Windows, a rainfall-runoff hydrograph model: user manual and documentation
R. H. Hawkins; A. Barreto-Munoz
2016-01-01
Wildcat5 for Windows (Wildcat5) is an interactive Windows Excel-based software package designed to assist watershed specialists in analyzing rainfall runoff events to predict peak flow and runoff volumes generated by single-event rainstorms for a variety of watershed soil and vegetation conditions. Model inputs are: (1) rainstorm characteristics, (2) parameters related...
Prospective heart tracking for whole-heart magnetic resonance angiography.
Moghari, Mehdi H; Geva, Tal; Powell, Andrew J
2017-02-01
To develop a prospective respiratory-gating technique (Heart-NAV) for use with contrast-enhanced three-dimensional (3D) inversion recovery (IR) whole-heart magnetic resonance angiography (MRA) acquisitions that directly tracks heart motion without creating image inflow artifact. With Heart-NAV, one of the startup pulses for the whole-heart steady-state free precession MRA sequence is used to collect the centerline of k-space, and its one-dimensional reconstruction is fed into the standard diaphragm-navigator (NAV) signal analysis process to prospectively gate and track respiratory-induced heart displacement. Ten healthy volunteers underwent non-contrast whole-heart MRA acquisitions using the conventional diaphragm-NAV and Heart-NAV with 5 and 10-mm acceptance windows in a 1.5T scanner. Five patients underwent contrast-enhanced IR whole-heart MRA using a diaphragm-NAV and Heart-NAV with a 5-mm acceptance window. For non-contrast whole-heart MRA with both the 5 and 10-mm acceptance windows, Heart-NAV yielded coronary artery vessel sharpness and subjective visual scores that were not significantly different than those using a conventional diaphragm-NAV. Scan time for Heart-NAV was 10% shorter (p < 0.05). In patients undergoing contrast-enhanced IR whole-heart MRA, inflow artifact was seen with the diaphragm-NAV but not with Heart-NAV. Compared with a conventional diaphragm-NAV, Heart-NAV achieves similar image quality in a slightly shorter scan time and eliminates inflow artifact. Magn Reson Med 77:759-765, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Bidelman, Gavin M
2016-10-01
Musical training is associated with behavioral and neurophysiological enhancements in auditory processing for both musical and nonmusical sounds (e.g., speech). Yet, whether the benefits of musicianship extend beyond enhancements to auditory-specific skills and impact multisensory (e.g., audiovisual) processing has yet to be fully validated. Here, we investigated multisensory integration of auditory and visual information in musicians and nonmusicians using a double-flash illusion, whereby the presentation of multiple auditory stimuli (beeps) concurrent with a single visual object (flash) induces an illusory perception of multiple flashes. We parametrically varied the onset asynchrony between auditory and visual events (leads and lags of ±300 ms) to quantify participants' "temporal window" of integration, i.e., stimuli in which auditory and visual cues were fused into a single percept. Results show that musically trained individuals were both faster and more accurate at processing concurrent audiovisual cues than their nonmusician peers; nonmusicians had a higher susceptibility for responding to audiovisual illusions and perceived double flashes over an extended range of onset asynchronies compared to trained musicians. Moreover, temporal window estimates indicated that musicians' windows (<100 ms) were ~2-3× shorter than nonmusicians' (~200 ms), suggesting more refined multisensory integration and audiovisual binding. Collectively, findings indicate a more refined binding of auditory and visual cues in musically trained individuals. We conclude that experience-dependent plasticity of intensive musical experience extends beyond simple listening skills, improving multimodal processing and the integration of multiple sensory systems in a domain-general manner.
ToF-SIMS characterization of robust window material for use in diode pumped alkali lasers
NASA Astrophysics Data System (ADS)
Fletcher, Aaron; Turner, David; Fairchild, Steven; Rice, Christopher; Pitz, Gregory
2018-03-01
Developments in diode pumped alkali laser (DPAL) systems have been impeded because of the catastrophic failure of laser windows. The window's failure is caused by localized laser-induced heating of window material. This heating is believed to occur due to increases in absorption on or near the surface of the window. This increase is believed to be caused by either adsorption of carbon-based soot from the collisional gas or by the diffusion of rubidium into the bulk material. The work presented here will focus on the diffusion of Rb into the bulk window materials and will strive to identify a superior material to use as windows. The results of this research indicate that aluminum oxynitride (ALON), sapphire, MgAl2O4 (spinel), and ZrO2 are resistant to alkali-induced changes in optical properties.
Evaluation of Energy Efficiency Performance of Heated Windows
NASA Astrophysics Data System (ADS)
Jammulamadaka, Hari Swarup
The study about the evaluation of the performance of the heated windows was funded by the WVU Research Office as a technical assistance award at the 2014 TransTech Energy Business Development Conference to the Green Heated Glass company/project owned by Frank Dlubak. The award supports a WVU researcher to conduct a project important for commercialization. This project was awarded to the WVU Industrial Assessment Center in 2015. The current study attempted to evaluate the performance of the heated windows by developing an experimental setup to test the window at various temperatures by varying the current input to the window. The heated double pane window was installed in an insulated box. A temperature gradient was developed across the window by cooling one side of the window using gel based ice packs. The other face of the window was heated by passing current at different wattages through the window. The temperature of the inside and outside panes, current and voltage input, room and box temperature were recorded, and used to calculate the apparent R-value of the window when not being heated vs when being heated. It has been concluded from the study that the heated double pane window is more effective in reducing heat losses by as much as 50% than a non-heated double pane window, if the window temperature is maintained close to the room temperature. If the temperature of the window is much higher than the room temperature, the losses through the window appear to increase beyond that of a non-heated counterpart. The issues encountered during the current round of experiments are noted, and recommendations provided for future studies.
Design and simulation of a sub-terahertz folded-waveguide extended interaction oscillator
NASA Astrophysics Data System (ADS)
Liu, Wenxin; Zhang, Zhaochuan; Zhao, Chao; Guo, Xin; Liao, Suying
2017-06-01
In this paper, an interesting type of a two-section folded wave-guide (TSFW) slow wave structure (SWS) for the development of sub-Terahertz (sub-THz) extended interaction oscillator (EIO) is proposed. In this sub-THz device, the prebunching electron beam is produced by the TSFW SWS, which results in the enhancement of the output power. To verify this concept, the TSFW for sub-THz EIO is developed, which includes the design, simulation, and some fabrications. A small size of electron optics system (EOS), the TSFW SWS for beam-wave interactions, and the output structure are studied with simulations. Through the codes Egun and Superfish, the EOS is designed and optimized. With a help of CST studio and 3D particle-in-cell (PIC) simulation CHIPIC, the characteristics of beam-wave interaction generated by the TSFW are studied. The results of PIC simulation show that the output power is remarkably enhanced by a factor of 3, which exceeds 200 W at the frequency of 108 GHz. Based on the optimum parameters, the TSFW is manufactured with a high speed numerical mill, and the test transmission characteristic |S21| is 13 dB. At last, the output structure with a pill-box window is optimized, fabricated, integrated, and tested, and the result shows that the voltage standing-wave ratio of the window is about 2.2 at an operating frequency of 108 GHz. This design and simulation can provide an effective method to develop high power THz sources.
NASA Astrophysics Data System (ADS)
Xiao, Fan; Chen, Zhijun; Chen, Jianguo; Zhou, Yongzhang
2016-05-01
In this study, a novel batch sliding window (BSW) based singularity mapping approach was proposed. Compared to the traditional sliding window (SW) technique with disadvantages of the empirical predetermination of a fixed maximum window size and outliers sensitivity of least-squares (LS) linear regression method, the BSW based singularity mapping approach can automatically determine the optimal size of the largest window for each estimated position, and utilizes robust linear regression (RLR) which is insensitive to outlier values. In the case study, tin geochemical data in Gejiu, Yunnan, have been processed by BSW based singularity mapping approach. The results show that the BSW approach can improve the accuracy of the calculation of singularity exponent values due to the determination of the optimal maximum window size. The utilization of RLR method in the BSW approach can smoothen the distribution of singularity index values with few or even without much high fluctuate values looking like noise points that usually make a singularity map much roughly and discontinuously. Furthermore, the student's t-statistic diagram indicates a strong spatial correlation between high geochemical anomaly and known tin polymetallic deposits. The target areas within high tin geochemical anomaly could probably have much higher potential for the exploration of new tin polymetallic deposits than other areas, particularly for the areas that show strong tin geochemical anomalies whereas no tin polymetallic deposits have been found in them.
Zhang, Jinshui; Yuan, Zhoumiqi; Shuai, Guanyuan; Pan, Yaozhong; Zhu, Xiufang
2017-04-26
This paper developed an approach, the window-based validation set for support vector data description (WVS-SVDD), to determine optimal parameters for support vector data description (SVDD) model to map specific land cover by integrating training and window-based validation sets. Compared to the conventional approach where the validation set included target and outlier pixels selected visually and randomly, the validation set derived from WVS-SVDD constructed a tightened hypersphere because of the compact constraint by the outlier pixels which were located neighboring to the target class in the spectral feature space. The overall accuracies for wheat and bare land achieved were as high as 89.25% and 83.65%, respectively. However, target class was underestimated because the validation set covers only a small fraction of the heterogeneous spectra of the target class. The different window sizes were then tested to acquire more wheat pixels for validation set. The results showed that classification accuracy increased with the increasing window size and the overall accuracies were higher than 88% at all window size scales. Moreover, WVS-SVDD showed much less sensitivity to the untrained classes than the multi-class support vector machine (SVM) method. Therefore, the developed method showed its merits using the optimal parameters, tradeoff coefficient ( C ) and kernel width ( s ), in mapping homogeneous specific land cover.
Multi-Window Controllers for Autonomous Space Systems
NASA Technical Reports Server (NTRS)
Lurie, B, J.; Hadaegh, F. Y.
1997-01-01
Multi-window controllers select between elementary linear controllers using nonlinear windows based on the amplitude and frequency content of the feedback error. The controllers are relatively simple to implement and perform much better than linear controllers. The commanders for such controllers only order the destination point and are freed from generating the command time-profiles. The robotic missions rely heavily on the tasks of acquisition and tracking. For autonomous and optimal control of the spacecraft, the control bandwidth must be larger while the feedback can (and, therefore, must) be reduced.. Combining linear compensators via multi-window nonlinear summer guarantees minimum phase character of the combined transfer function. It is shown that the solution may require using several parallel branches and windows. Several examples of multi-window nonlinear controller applications are presented.
NASA Astrophysics Data System (ADS)
Wen, Xixing; Zeng, Xiangbin; Zheng, Wenjun; Liao, Wugang; Feng, Feng
2015-01-01
The charging/discharging behavior of Si quantum dots (QDs) embedded in amorphous silicon carbide (a-SiCx) was investigated based on the Al/insulating layer/Si QDs embedded in a-SiCx/SiO2/p-Si (metal-insulator-quantum dots-oxide-silicon) multilayer structure by capacitance-voltage (C-V) and conductance-voltage (G-V) measurements. Transmission electron microscopy and Raman scattering spectroscopy measurements reveal the microstructure and distribution of Si QDs. The occurrence and shift of conductance peaks indicate the carrier transfer and the charging/discharging behavior of Si QDs. The multilayer structure shows a large memory window of 5.2 eV at ±8 V sweeping voltage. Analysis of the C-V and G-V results allows a quantification of the Coulomb charging energy and the trapped charge density associated with the charging/discharging behavior. It is found that the memory window is related to the size effect, and Si QDs with large size or low Coulomb charging energy can trap two or more electrons by changing the charging voltage. Meanwhile, the estimated lower potential barrier height between Si QD and a-SiCx, and the lower Coulomb charging energy of Si QDs could enhance the charging and discharging effect of Si QDs and lead to an enlarged memory window. Further studies of the charging/discharging mechanism of Si QDs embedded in a-SiCx can promote the application of Si QDs in low-power consumption semiconductor memory devices.
Fermentation process tracking through enhanced spectral calibration modeling.
Triadaphillou, Sophia; Martin, Elaine; Montague, Gary; Norden, Alison; Jeffkins, Paul; Stimpson, Sarah
2007-06-15
The FDA process analytical technology (PAT) initiative will materialize in a significant increase in the number of installations of spectroscopic instrumentation. However, to attain the greatest benefit from the data generated, there is a need for calibration procedures that extract the maximum information content. For example, in fermentation processes, the interpretation of the resulting spectra is challenging as a consequence of the large number of wavelengths recorded, the underlying correlation structure that is evident between the wavelengths and the impact of the measurement environment. Approaches to the development of calibration models have been based on the application of partial least squares (PLS) either to the full spectral signature or to a subset of wavelengths. This paper presents a new approach to calibration modeling that combines a wavelength selection procedure, spectral window selection (SWS), where windows of wavelengths are automatically selected which are subsequently used as the basis of the calibration model. However, due to the non-uniqueness of the windows selected when the algorithm is executed repeatedly, multiple models are constructed and these are then combined using stacking thereby increasing the robustness of the final calibration model. The methodology is applied to data generated during the monitoring of broth concentrations in an industrial fermentation process from on-line near-infrared (NIR) and mid-infrared (MIR) spectrometers. It is shown that the proposed calibration modeling procedure outperforms traditional calibration procedures, as well as enabling the identification of the critical regions of the spectra with regard to the fermentation process.
Cluster-inspired Superionic Conductors
NASA Astrophysics Data System (ADS)
Fang, Hong; Jena, Puru
Superionic conductors with desirable properties hold the key to the development of next generation of rechargeable metal-ion batteries. In this study, we report a new family of superionic conductors composed by clusters based on the antiperovskite fast-ion conductors. The new lightweight conductor shows larger electrochemical stability window and favorable thermal and mechanical properties, while maintain a high Li+-ionconductivity at room temperature and a low activation energy. We reveal the conduction mechanism of the material by identifying the relation between the orientational symmetry of the cluster rotors and the potential surface felt by the lithium ion. We also find that the mixed phase of the new conductors show further enhanced conductivity.
Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows
NASA Astrophysics Data System (ADS)
Richard, L.; Vasilchenko, S.; Mondelain, D.; Ventrillard, I.; Romanini, D.; Campargue, A.
2017-11-01
In a recent contribution [A. Campargue, S. Kassi, D. Mondelain, S. Vasilchenko, D. Romanini, Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model. J. Geophys. Res. Atmos., 121,13,180-13,203, doi:10.1002/2016JD025531], we reported accurate water vapor absorption continuum measurements by Cavity Ring-down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Absorption Spectroscopy (OF-CEAS) at selected spectral points of 4 near infrared transparency windows. In the present work, the self-continuum cross-sections, CS, are determined for two new spectral points. The 2491 cm-1 spectral point in the region of maximum transparency of the 4.0 μm window was measured by OF-CEAS in the 23-52 °C temperature range. The 4435 cm-1 spectral point of the 2.1 μm window was measured by CRDS at room temperature. The self-continuum cross-sections were determined from the pressure squared dependence of the continuum absorption. Comparison to the literature shows a reasonable agreement with 1970 s and 1980 s measurements using a grating spectrograph in the 4.0 μm window and a very good consistency with our previous laser measurements in the 2.1 μm window. For both studied spectral points, our values are much smaller than previous room temperature measurements by Fourier Transform Spectroscopy. Significant deviations (up to about a factor 4) are noted compared to the widely used semi empirical MT_CKD model of the absorption continuum. The measured temperature dependence at 2491 cm-1 is consistent with previous high temperature measurements in the 4.0 μm window and follows an exp(D0/kT) law, D0 being the dissociation energy of the water dimer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoessel, Chris
2013-11-13
This project developed a new high-performance R-10/high SHGC window design, reviewed market positioning and evaluated manufacturing solutions required for broad market adoption. The project objectives were accomplished by: identifying viable technical solutions based on modeling of modern and potential coating stacks and IGU designs; development of new coating material sets for HM thin film stacks, as well as improved HM IGU designs to accept multiple layers of HM films; matching promising new coating designs with new HM IGU designs to demonstrate performance gains; and, in cooperation with a window manufacturer, assess the potential for high-volume manufacturing and cost efficiency ofmore » a HM-based R-10 window with improved solar heat gain characteristics. A broad view of available materials and design options was applied to achieve the desired improvements. Gated engineering methodologies were employed to guide the development process from concept generation to a window demonstration. The project determined that a slightly de-rated window performance allows formulation of a path to achieve the desired cost reductions to support end consumer adoption.« less
Fisher, Jeffrey D; Amico, K Rivet; Fisher, William A; Cornman, Deborah H; Shuper, Paul A; Trayling, Cynthia; Redding, Caroline; Barta, William; Lemieux, Anthony F; Altice, Frederick L; Dieckhaus, Kevin; Friedland, Gerald
2011-11-01
We evaluated the efficacy of LifeWindows, a theory-based, computer-administered antiretroviral (ARV) therapy adherence support intervention, delivered to HIV + patients at routine clinical care visits. 594 HIV + adults receiving HIV care at five clinics were randomized to intervention or control arms. Intervention vs. control impact in the intent-to-treat sample (including participants whose ARVs had been entirely discontinued, who infrequently attended care, or infrequently used LifeWindows) did not reach significance. Intervention impact in the On Protocol sample (328 intervention and control arm participants whose ARVs were not discontinued, who attended care and were exposed to LifeWindows regularly) was significant. On Protocol intervention vs. control participants achieved significantly higher levels of perfect 3-day ACTG-assessed adherence over time, with sensitivity analyses maintaining this effect down to 70% adherence. This study supports the utility of LifeWindows and illustrates that patients on ARVs who persist in care at clinical care sites can benefit from adherence promotion software.
Investigation of high temperature antennas for space shuttle
NASA Technical Reports Server (NTRS)
Kuhlman, E. A.
1973-01-01
The design and development of high temperature antennas for the space shuttle orbiter are discussed. The antenna designs were based on three antenna types, an annular slot (L-Band), a linear slot (C-Band), and a horn (C-Band). The design approach was based on combining an RF window, which provides thermal protection, with an off-the-shelf antenna. Available antenna window materials were reviewed and compared, and the materials most compatible with the design requirements were selected. Two antenna window design approaches were considered: one employed a high temperature dielectric material and a low density insulation material, and the other an insulation material usable for the orbiter thermal protection system. Preliminary designs were formulated and integrated into the orbiter structure. Simple electrical models, with a series of window configurations, were constructed and tested. The results of tests and analyses for the final antenna system designs are given and show that high temperature antenna systems consisting of off-the-shelf antennas thermally protected by RF windows can be designed for the Space Shuttle Orbiter.
Activity Recognition on Streaming Sensor Data.
Krishnan, Narayanan C; Cook, Diane J
2014-02-01
Many real-world applications that focus on addressing needs of a human, require information about the activities being performed by the human in real-time. While advances in pervasive computing have lead to the development of wireless and non-intrusive sensors that can capture the necessary activity information, current activity recognition approaches have so far experimented on either a scripted or pre-segmented sequence of sensor events related to activities. In this paper we propose and evaluate a sliding window based approach to perform activity recognition in an on line or streaming fashion; recognizing activities as and when new sensor events are recorded. To account for the fact that different activities can be best characterized by different window lengths of sensor events, we incorporate the time decay and mutual information based weighting of sensor events within a window. Additional contextual information in the form of the previous activity and the activity of the previous window is also appended to the feature describing a sensor window. The experiments conducted to evaluate these techniques on real-world smart home datasets suggests that combining mutual information based weighting of sensor events and adding past contextual information into the feature leads to best performance for streaming activity recognition.
Upconverting device for enhanced recogntion of certain wavelengths of light
Kross, Brian; McKIsson, John E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zorn, Carl
2013-05-21
An upconverting device for enhanced recognition of selected wavelengths is provided. The device comprises a transparent light transmitter in combination with a plurality of upconverting nanoparticles. The device may a lens in eyewear or alternatively a transparent panel such as a window in an instrument or machine. In use the upconverting device is positioned between a light source and the eye(s) of the user of the upconverting device.
Resonance Raman Probes for Organelle-Specific Labeling in Live Cells
NASA Astrophysics Data System (ADS)
Kuzmin, Andrey N.; Pliss, Artem; Lim, Chang-Keun; Heo, Jeongyun; Kim, Sehoon; Rzhevskii, Alexander; Gu, Bobo; Yong, Ken-Tye; Wen, Shangchun; Prasad, Paras N.
2016-06-01
Raman microspectroscopy provides for high-resolution non-invasive molecular analysis of biological samples and has a breakthrough potential for dissection of cellular molecular composition at a single organelle level. However, the potential of Raman microspectroscopy can be fully realized only when novel types of molecular probes distinguishable in the Raman spectroscopy modality are developed for labeling of specific cellular domains to guide spectrochemical spatial imaging. Here we report on the design of a next generation Raman probe, based on BlackBerry Quencher 650 compound, which provides unprecedentedly high signal intensity through the Resonance Raman (RR) enhancement mechanism. Remarkably, RR enhancement occurs with low-toxic red light, which is close to maximum transparency in the biological optical window. The utility of proposed RR probes was validated for targeting lysosomes in live cultured cells, which enabled identification and subsequent monitoring of dynamic changes in this organelle by Raman imaging.
MaxReport: An Enhanced Proteomic Result Reporting Tool for MaxQuant.
Zhou, Tao; Li, Chuyu; Zhao, Wene; Wang, Xinru; Wang, Fuqiang; Sha, Jiahao
2016-01-01
MaxQuant is a proteomic software widely used for large-scale tandem mass spectrometry data. We have designed and developed an enhanced result reporting tool for MaxQuant, named as MaxReport. This tool can optimize the results of MaxQuant and provide additional functions for result interpretation. MaxReport can generate report tables for protein N-terminal modifications. It also supports isobaric labelling based relative quantification at the protein, peptide or site level. To obtain an overview of the results, MaxReport performs general descriptive statistical analyses for both identification and quantification results. The output results of MaxReport are well organized and therefore helpful for proteomic users to better understand and share their data. The script of MaxReport, which is freely available at http://websdoor.net/bioinfo/maxreport/, is developed using Python code and is compatible across multiple systems including Windows and Linux.
Mehdi, Elnur; Alkan, Alpay; Yetis, Huseyin; Aralasmak, Ayse; Ozdemir, Huseyin
2014-07-01
During the follow-up of recurrent pneumonia in a 9-month-old girl, rhinorrhea with discharge of a positional and intermittent nature was discovered. Radiological assessment was requested to detect any skull base openings and cerebrospinal fluid (CSF) leakage. T2-weighted MR cisternography showed bilateral inner ear dysplasia, communication of the internal auditory canal with the vestibule, and effusion in the right middle ear. Intrathecal contrast-enhanced MR cisternography revealed a CSF fistula from the right internal auditory canal to the Eustachian tube. The patient was operated upon on the right side, and the presence of a CSF leak near the oval window was confirmed. No adverse effects were seen during the short-term and long-term follow-up. Diagnosing this case required special attention, careful examination, and relevant investigations to find the site of CSF leakage in this patient with bilateral inner ear dysplasia.
NASA Astrophysics Data System (ADS)
Iga, Mitsuhiro; Kakuryu, Nobuyuki; Tanaami, Takeo; Sajiki, Jiro; Isozaki, Katsumi; Itoh, Tamitake
2012-10-01
We describe the development of a hyper-spectral imaging (HSI) system composed of thin-film tunable band-pass filters (TF-TBPFs) and its application to inhomogeneous sample surfaces. Compared with existing HSI systems, the system has a simpler optical arrangement and has an optical transmittance of up to 80% owing to polarization independence. The HSI system exhibits a constant spectral resolution over a spectral window of 80 nm (530 to 610 nm) and tunable spectral resolution from 1.5 to 3.0 nm, and requires only 5.4 s per measurement. Plasmon resonance and surface enhanced Raman scattering (SERS) from inhomogeneous surfaces dispersed with Ag nanoparticles (NP) have been measured with the HSI system. The measurement of multiple Ag NPs is consistent with conventional isolated NP measurements as explained by the electromagnetic mechanism of SERS, demonstrating the validity of the HSI system.
Aerosol-spray diverse mesoporous metal oxides from metal nitrates.
Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang
2015-04-21
Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances.
NASA Astrophysics Data System (ADS)
Gao, Kun; Prucnal, S.; Skorupa, W.; Helm, M.; Zhou, Shengqiang
2013-09-01
GaAs and GaAs based materials have outstanding optoelectronic properties and are widely used as light emitting media in devices. Many approaches have been applied to GaAs to generate luminescence at 0.88, 1.30, and 1.55 μm which are transmission windows of optical fibers. In this paper, we present the photoluminescence at 1.30 μm from deep level defects in GaAs treated by ion-implantation and flash lamp annealing (FLA). Such emission, which exhibits superior temperature stability, can be obtained from FLA treated virgin GaAs as well as doped GaAs. Indium-doping in GaAs can greatly enhance the luminescence. By photoluminescence, Raman measurements, and positron annihilation spectroscopy, we conclude that the origin of the 1.30 μm emission is from transitions between the VAs-donor and X-acceptor pairs.
Thalagala, N
2015-11-01
The normative age ranges during which cohorts of children achieve milestones are called windows of achievement. The patterns of these windows of achievement are known to be both genetically and environmentally dependent. This study aimed to determine the windows of achievement for motor, social emotional, language and cognitive development milestones for infants and toddlers in Sri Lanka. A set of 293 milestones identified through a literature review were subjected to content validation using parent and expert reviews, which resulted in the selection of a revised set of 277 milestones. Thereafter, a sample of 1036 children from 2 months to 30 months was examined to see whether or not they had attained the selected milestones. Percentile ages of attaining milestone were determined using a rearranged closed form equation related to the logistic regression. The parameters required for calculations were derived through the logistic regression of milestone achievement statuses against ages of children. These percentile ages were used to define the respective windows of achievement. A set of 178 robust indicators that represent motor, socio emotional, language and cognitive development skills and their windows of achievement relevant to 2 to 24 months of age were determined. Windows of achievement for six gross motor milestones determined in the study were shown to closely overlap a similar set of windows of achievement published by the World Health Organization indicating the validity of some findings. A methodology combining the content validation based on qualitative techniques and age validation based on regression modelling found to be effective for determining age percentiles for realizing milestones and determining respective windows of achievement. © 2015 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Wiebenson, John
1998-01-01
Teachers can use "built teaching aids" or elements of the school building itself to expand teaching and enhance learning. Possibilities include bulletin boards, display cases, murals painted by local artists, permanent information panels, interior windows to classrooms, flags, and bas-reliefs on building exteriors. Playground pavement…
Smith, Lauren H; Hargrove, Levi J; Lock, Blair A; Kuiken, Todd A
2011-04-01
Pattern recognition-based control of myoelectric prostheses has shown great promise in research environments, but has not been optimized for use in a clinical setting. To explore the relationship between classification error, controller delay, and real-time controllability, 13 able-bodied subjects were trained to operate a virtual upper-limb prosthesis using pattern recognition of electromyogram (EMG) signals. Classification error and controller delay were varied by training different classifiers with a variety of analysis window lengths ranging from 50 to 550 ms and either two or four EMG input channels. Offline analysis showed that classification error decreased with longer window lengths (p < 0.01 ). Real-time controllability was evaluated with the target achievement control (TAC) test, which prompted users to maneuver the virtual prosthesis into various target postures. The results indicated that user performance improved with lower classification error (p < 0.01 ) and was reduced with longer controller delay (p < 0.01 ), as determined by the window length. Therefore, both of these effects should be considered when choosing a window length; it may be beneficial to increase the window length if this results in a reduced classification error, despite the corresponding increase in controller delay. For the system employed in this study, the optimal window length was found to be between 150 and 250 ms, which is within acceptable controller delays for conventional multistate amplitude controllers.
The Use of Variable Q1 Isolation Windows Improves Selectivity in LC-SWATH-MS Acquisition.
Zhang, Ying; Bilbao, Aivett; Bruderer, Tobias; Luban, Jeremy; Strambio-De-Castillia, Caterina; Lisacek, Frédérique; Hopfgartner, Gérard; Varesio, Emmanuel
2015-10-02
As tryptic peptides and metabolites are not equally distributed along the mass range, the probability of cross fragment ion interference is higher in certain windows when fixed Q1 SWATH windows are applied. We evaluated the benefits of utilizing variable Q1 SWATH windows with regards to selectivity improvement. Variable windows based on equalizing the distribution of either the precursor ion population (PIP) or the total ion current (TIC) within each window were generated by an in-house software, swathTUNER. These two variable Q1 SWATH window strategies outperformed, with respect to quantification and identification, the basic approach using a fixed window width (FIX) for proteomic profiling of human monocyte-derived dendritic cells (MDDCs). Thus, 13.8 and 8.4% additional peptide precursors, which resulted in 13.1 and 10.0% more proteins, were confidently identified by SWATH using the strategy PIP and TIC, respectively, in the MDDC proteomic sample. On the basis of the spectral library purity score, some improvement warranted by variable Q1 windows was also observed, albeit to a lesser extent, in the metabolomic profiling of human urine. We show that the novel concept of "scheduled SWATH" proposed here, which incorporates (i) variable isolation windows and (ii) precursor retention time segmentation further improves both peptide and metabolite identifications.
Optical Evaluation of DMDs with UV-Grade FS, Sapphire, MgF2 Windows and Reflectance of Bare Devices
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Heap, Sara; Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan; Roberto, Massimo
2016-01-01
Digital Micro-mirror Devices (DMDs) have been identified as an alternative to microshutter arrays for space-based multi-object spectrometers (MOS). Specifically, the MOS at the heart of a proposed Galactic Evolution Spectroscopic Explorer (GESE) that uses the DMD as a reprogrammable slit mask. Unfortunately, the protective borosilicate windows limit the use of DMDs in the UV and IR regimes, where the glass has insufficient throughput. In this work, we present our efforts to replace standard DMD windows with custom windows made from UV-grade fused silica, Low Absorption Optical Sapphire (LAOS) and magnesium fluoride. We present reflectance measurements of the antireflection coated windows and a reflectance study of the DMDs active area (window removed). Furthermore, we investigated the long-term stability of the DMD reflectance and recoating device with fresh Al coatings.
Zheng, Yuanjie; Keller, Brad M; Ray, Shonket; Wang, Yan; Conant, Emily F; Gee, James C; Kontos, Despina
2015-07-01
Mammographic percent density (PD%) is known to be a strong risk factor for breast cancer. Recent studies also suggest that parenchymal texture features, which are more granular descriptors of the parenchymal pattern, can provide additional information about breast cancer risk. To date, most studies have measured mammographic texture within selected regions of interest (ROIs) in the breast, which cannot adequately capture the complexity of the parenchymal pattern throughout the whole breast. To better characterize patterns of the parenchymal tissue, the authors have developed a fully automated software pipeline based on a novel lattice-based strategy to extract a range of parenchymal texture features from the entire breast region. Digital mammograms from 106 cases with 318 age-matched controls were retrospectively analyzed. The lattice-based approach is based on a regular grid virtually overlaid on each mammographic image. Texture features are computed from the intersection (i.e., lattice) points of the grid lines within the breast, using a local window centered at each lattice point. Using this strategy, a range of statistical (gray-level histogram, co-occurrence, and run-length) and structural (edge-enhancing, local binary pattern, and fractal dimension) features are extracted. To cover the entire breast, the size of the local window for feature extraction is set equal to the lattice grid spacing and optimized experimentally by evaluating different windows sizes. The association between their lattice-based texture features and breast cancer was evaluated using logistic regression with leave-one-out cross validation and further compared to that of breast PD% and commonly used single-ROI texture features extracted from the retroareolar or the central breast region. Classification performance was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC). DeLong's test was used to compare the different ROCs in terms of AUC performance. The average univariate performance of the lattice-based features is higher when extracted from smaller than larger window sizes. While not every individual texture feature is superior to breast PD% (AUC: 0.59, STD: 0.03), their combination in multivariate analysis has significantly better performance (AUC: 0.85, STD: 0.02, p < 0.001). The lattice-based texture features also outperform the single-ROI texture features when extracted from the retroareolar or the central breast region (AUC: 0.60-0.74, STD: 0.03). Adding breast PD% does not make a significant performance improvement to the lattice-based texture features or the single-ROI features (p > 0.05). The proposed lattice-based strategy for mammographic texture analysis enables to characterize the parenchymal pattern over the entire breast. As such, these features provide richer information compared to currently used descriptors and may ultimately improve breast cancer risk assessment. Larger studies are warranted to validate these findings and also compare to standard demographic and reproductive risk factors.
Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai Weixing; Zhao Binghui; Conover, David
2012-01-15
Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow.more » From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.« less
Du, Feng; Jiao, Jun
2016-04-01
The present study used a spatial blink task and a cuing task to examine the boundary between feature-based capture and relation-based capture. Feature-based capture occurs when distractors match the target feature such as target color. The occurrence of relation-based capture is contingent upon the feature relation between target and distractor (e.g., color relation). The results show that color distractors that match the target-nontarget color relation do not consistently capture attention when they appear outside of the attentional window, but distractors appearing outside the attentional window that match the target color consistently capture attention. In contrast, color distractors that best match the target-nontarget color relation but not the target color, are more likely to capture attention when they appear within the attentional window. Consistently, color cues that match the target-nontarget color relation produce a cuing effect when they appear within the attentional window, while target-color matched cues do not. Such a double dissociation between color-based capture and color-relation-based capture indicates functionally distinct mechanisms for these 2 types of attentional selection. This also indicates that the spatial blink task and the uninformative cuing task are measuring distinctive aspects of involuntary attention. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Energy Conservation in the Home. Performance Based Lesson Plans.
ERIC Educational Resources Information Center
Alabama State Dept. of Education, Montgomery. Home Economics Service.
These ten performance-based lesson plans concentrate on tasks related to energy conservation in the home. They are (1) caulk cracks, holes, and joints; (2) apply weatherstripping to doors and windows; (3) add plastic/solar screen window covering; (4) arrange furniture for saving energy; (5) set heating/cooling thermostat; (6) replace faucet…
Strategy for Developing Expert-System-Based Internet Protocols (TCP/IP)
NASA Technical Reports Server (NTRS)
Ivancic, William D.
1997-01-01
The Satellite Networks and Architectures Branch of NASA's Lewis Research is addressing the issue of seamless interoperability of satellite networks with terrestrial networks. One of the major issues is improving reliable transmission protocols such as TCP over long latency and error-prone links. Many tuning parameters are available to enhance the performance of TCP including segment size, timers and window sizes. There are also numerous congestion avoidance algorithms such as slow start, selective retransmission and selective acknowledgment that are utilized to improve performance. This paper provides a strategy to characterize the performance of TCP relative to various parameter settings in a variety of network environments (i.e. LAN, WAN, wireless, satellite, and IP over ATM). This information can then be utilized to develop expert-system-based Internet protocols.
NASA Technical Reports Server (NTRS)
Durkin, John; Schlegelmilch, Richard; Tallo, Donald
1992-01-01
LeRC has recently completed the design of a Ka-band satellite transponder system, as part of the Advanced Communication Technology Satellite (ACTS) System. To enhance the reliability of this satellite, NASA funded the University of Akron to explore the application of an expert system to provide the transponder with an autonomous diagnosis capability. The results of this research was the development of a prototype diagnosis expert system called FIDEX (fault-isolation and diagnosis expert). FIDEX is a frame-based expert system that was developed in the NEXPERT Object development environment by Neuron Data, Inc. It is a MicroSoft Windows version 3.0 application, and was designed to operate on an Intel i80386 based personal computer system.
Protective broadband window coatings
NASA Astrophysics Data System (ADS)
Askinazi, Joel; Narayanan, Authi A.
1997-06-01
Optical windows employed in current and future airborne and ground based optical sensor systems are required to provide long service life under extreme environmental conditions including blowing sand and high speed rain. State of the art sensor systems are employing common aperture windows which must provide optical bandpasses from the TV to the LWIR. Operation Desert Storm experience indicates that current optical coatings provide limited environmental protection which adversely affects window life cycle cost. Most of these production coatings also have limited optical bandpasses (LWIR, MWIR, or TV-NIR). A family of optical coatings has been developed which provide a significant increase in rain and sand impact protection to current optical window materials. These coatings can also be tailored to provide either narrow optical bandwidth (e.g., LWIR) or broadband transmittance (TV- LWIR). They have been applied to a number of standard optical window materials. These coating have successfully completed airborne rain and sand abrasion test with minimal impact on optical window performance. Test results are presented. Low cost service life is anticipated as well as the ability to operate windows in even more taxing environments than currently feasible.
NASA Astrophysics Data System (ADS)
Zboril, Ondrej; Nedoma, Jan; Cubik, Jakub; Novak, Martin; Bednarek, Lukas; Fajkus, Marcel; Vasinek, Vladimir
2016-04-01
Interferometric sensors are very accurate and sensitive sensors that due to the extreme sensitivity allow sensing vibration and acoustic signals. This paper describes a new method of implementation of Mach-Zehnder interferometer for sensing of vibrations caused by touching on the window panes. Window panes are part of plastic windows, in which the reference arm of the interferometer is mounted and isolated inside the frame, a measuring arm of the interferometer is fixed to the window pane and it is mounted under the cover of the window frame. It prevents visibility of the optical fiber and this arrangement is the basis for the safety system. For the construction of the vibration sensor standard elements of communication networks are used - optical fiber according to G.652D and 1x2 splitters with dividing ratio 1:1. Interferometer operated at a wavelength of 1550 nm. The paper analyses the sensitivity of the window in a 12x12 measuring points matrix, there is specified sensitivity distribution of the window pane.
Practical method and device for enhancing pulse contrast ratio for lasers and electron accelerators
Zhang, Shukui; Wilson, Guy
2014-09-23
An apparatus and method for enhancing pulse contrast ratios for drive lasers and electron accelerators. The invention comprises a mechanical dual-shutter system wherein the shutters are placed sequentially in series in a laser beam path. Each shutter of the dual shutter system has an individually operated trigger for opening and closing the shutter. As the triggers are operated individually, the delay between opening and closing first shutter and opening and closing the second shutter is variable providing for variable differential time windows and enhancement of pulse contrast ratio.
Designing intuitive dialog boxes in Windows environments
NASA Astrophysics Data System (ADS)
Souetova, Natalia
2000-01-01
There were analyzed some approaches to user interface design. Most existing interfaces seem to be difficult for understanding and studying for newcomers. There were defined some ways for designing interfaces based on psychology of computer image perception and experience got while working with artists and designers without special technique education. Some applications with standard Windows interfaces, based on these results, were developed. Windows environment was chosen because they are very popular now. This increased quality and speed of users' job and reduced quantity of troubles and mistakes. Now high-qualified employers do not spend their working time for explanation and help.
DETAIL, WINDOW ON THE NORTH FACADE, LOOKING SOUTH Eglin ...
DETAIL, WINDOW ON THE NORTH FACADE, LOOKING SOUTH - Eglin Air Force Base, Storehouse & Company Administration, Southeast of Flager Road, Nassau Lane, & southern edge of Weekly Bayou, Valparaiso, Okaloosa County, FL
Windowing technique in FM radar realized by FPGA for better target resolution
NASA Astrophysics Data System (ADS)
Ponomaryov, Volodymyr I.; Escamilla-Hernandez, Enrique; Kravchenko, Victor F.
2006-09-01
Remote sensing systems, such as SAR usually apply FM signals to resolve nearly placed targets (objects) and improve SNR. Main drawbacks in the pulse compression of FM radar signal that it can add the range side-lobes in reflectivity measurements. Using weighting window processing in time domain it is possible to decrease significantly the side-lobe level (SLL) of output radar signal that permits to resolve small or low power targets those are masked by powerful ones. There are usually used classical windows such as Hamming, Hanning, Blackman-Harris, Kaiser-Bessel, Dolph-Chebyshev, Gauss, etc. in window processing. Additionally to classical ones in here we also use a novel class of windows based on atomic functions (AF) theory. For comparison of simulation and experimental results we applied the standard parameters, such as coefficient of amplification, maximum level of side-lobe, width of main lobe, etc. In this paper we also proposed to implement the compression-windowing model on a hardware level employing Field Programmable Gate Array (FPGA) that offers some benefits like instantaneous implementation, dynamic reconfiguration, design, and field programmability. It has been investigated the pulse compression design on FPGA applying classical and novel window technique to reduce the SLL in absence and presence of noise. The paper presents simulated and experimental examples of detection of small or nearly placed targets in the imaging radar. Paper also presents the experimental hardware results of windowing in FM radar demonstrating resolution of the several targets for classical rectangular, Hamming, Kaiser-Bessel, and some novel ones: Up(x), fup 4(x)•D 3(x), fup 6(x)•G 3(x), etc. It is possible to conclude that windows created on base of the AFs offer better decreasing of the SLL in cases of presence or absence of noise and when we move away of the main lobe in comparison with classical windows.
Zhang, Zhengyi; Zhang, Gaoyan; Zhang, Yuanyuan; Liu, Hong; Xu, Junhai; Liu, Baolin
2017-12-01
This study aimed to investigate the functional connectivity in the brain during the cross-modal integration of polyphonic characters in Chinese audio-visual sentences. The visual sentences were all semantically reasonable and the audible pronunciations of the polyphonic characters in corresponding sentences contexts varied in four conditions. To measure the functional connectivity, correlation, coherence and phase synchronization index (PSI) were used, and then multivariate pattern analysis was performed to detect the consensus functional connectivity patterns. These analyses were confined in the time windows of three event-related potential components of P200, N400 and late positive shift (LPS) to investigate the dynamic changes of the connectivity patterns at different cognitive stages. We found that when differentiating the polyphonic characters with abnormal pronunciations from that with the appreciate ones in audio-visual sentences, significant classification results were obtained based on the coherence in the time window of the P200 component, the correlation in the time window of the N400 component and the coherence and PSI in the time window the LPS component. Moreover, the spatial distributions in these time windows were also different, with the recruitment of frontal sites in the time window of the P200 component, the frontal-central-parietal regions in the time window of the N400 component and the central-parietal sites in the time window of the LPS component. These findings demonstrate that the functional interaction mechanisms are different at different stages of audio-visual integration of polyphonic characters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeler, D; Tommy Edwards, T; Kevin Fox, K
The Savannah River National Laboratory (SRNL) has developed, and continues to enhance, its integrated capability to evaluate the impact of proposed sludge preparation plans on the Defense Waste Processing Facility's (DWPF's) operation. One of the components of this integrated capability focuses on frit development which identifies a viable frit or frits for each sludge option being contemplated for DWPF processing. A frit is considered viable if its composition allows for economic fabrication and if, when it is combined with the sludge option under consideration, the DWPF property/composition models (the models of DWPF's Product Composition Control System (PCCS)) indicate that themore » combination has the potential for an operating window (a waste loading (WL) interval over which the sludge/frit glass system satisfies processability and durability constraints) that would allow DWPF to meet its goals for waste loading and canister production. This report documents the results of SRNL's efforts to identify candidate frit compositions and corresponding predicted operating windows (defined in terms of WL intervals) for the February 2007 compositional projection of Sludge Batch 4 (SB4) developed by the Liquid Waste Organization (LWO). The nominal compositional projection was used to assess projected operating windows (in terms of a waste loading interval over which all predicted properties were classified as acceptable) for various frits, evaluate the applicability of the 0.6 wt% SO{sub 4}{sup =} PCCS limit to the glass systems of interest, and determine the impact (or lack thereof) to the previous SB4 variability studies. It should be mentioned that the information from this report will be coupled with assessments of melt rate to recommend a frit for SB4 processing. The results of this paper study suggest that candidate frits are available to process the nominal SB4 composition over attractive waste loadings of interest to DWPF. Specifically, two primary candidate frits for SB4 processing, Frit 510 and Frit 418, have projected operating windows that should allow for successful processing at DWPF. While Frit 418 has been utilized at DWPF, Frit 510 is a higher B{sub 2}O{sub 3} based frit which could lead to improvements in melt rate. These frits provide relatively large operating windows and demonstrate robustness to possible sludge compositional variation while avoiding potential nepheline formation issues. In addition, assessments of SO{sub 4}{sup =} solubility indicate that the 0.6 wt% SO{sub 4}{sup =} limit in PCCS is applicable for the Frit 418 and the Frit 510 based SB4 glass systems.« less
Intelligent windows using new thermotropic layers with long-term stability
NASA Astrophysics Data System (ADS)
Watanabe, Haruo
1995-08-01
This paper concerns the autonomous responsive type light adjustment window (intelligent windows) among smart windows which adjust the light upon receiving environmental energy. More specifically, this is a thermotropic window panel that laminates and seals a new type of highly viscous polymer aqueous solution gel. A conventional thermotropic window panel has never been put to practical use since the reversible change between the colorless, transparent state (water-clear) and translucent scattered state (paper-white) with uniformity was not possible. The change involved phase separation and generated non-uniformity. The author, after fundamental studies of hydrophobic bonding, successfully solved the problem by developing a polymer aqueous solution gel with amphiphatic molecule as the third component in addition to water and water-soluble polymer with hydrophobic radical, based on the molecular spacer concept. In addition, the author established peripheral technologies and succeeded in experimentally fabricating a panel type 'Affinity's Intelligent Window (AIW)' that has attained the level of practical use.
INTERIOR OF BUILDING 2, TYPICAL OFFICE (#212) WINDOW AND HEAT ...
INTERIOR OF BUILDING 2, TYPICAL OFFICE (#212) WINDOW AND HEAT REGISTER, SECOND FLOOR. FACING SOUTH - Roosevelt Base, Dispensary, Corner of Colorado Street & Richardson Avenue, Long Beach, Los Angeles County, CA
Northwest side view showing 3 windows and security light ...
Northwest side view showing 3 windows and security light - U.S. Naval Base, Pearl Harbor, Naval Hospital, Animal House, Near intersection of Hospital Way & Third Street, Pearl City, Honolulu County, HI
13. Interior view of open; showing exterior window, open doorways ...
13. Interior view of open; showing exterior window, open doorways into offices; northeast corner of building; view to southeast. - Ellsworth Air Force Base, Warehouse, 789 Twining Street, Blackhawk, Meade County, SD
Zhang, Li; Takara, Kazuhiro; Yamakawa, Daishi; Kidoya, Hiroyasu; Takakura, Nobuyuki
2016-01-01
Antiangiogenic agents transiently normalize tumor vessel structure and improve vessel function, thereby providing a window of opportunity for enhancing the efficacy of chemotherapy or radiotherapy. Currently, there are no reliable predictors or markers reflecting this vessel normalization window during antiangiogenic therapy. Apelin, the expression of which is regulated by hypoxia, and which has well-described roles in tumor progression, is an easily measured secreted protein. Here, we show that apelin can be used as a marker for the vessel normalization window during antiangiogenic therapy. Mice bearing s.c. tumors resulting from inoculation of the colon adenocarcinoma cell line HT29 were treated with a single injection of bevacizumab, a mAb neutralizing vascular endothelial growth factor. Tumor growth, vessel density, pericyte coverage, tumor hypoxia, and small molecule delivery were determined at four different times after treatment with bevacizumab (days 1, 3, 5, and 8). Tumor growth and vessel density were significantly reduced after bevacizumab treatment, which also significantly increased tumor vessel maturity, and improved tumor hypoxia and small molecule delivery between days 3 and 5. These effects abated by day 8, suggesting that a time window for vessel normalization was opened between days 3 and 5 during bevacizumab treatment in this model. Apelin mRNA expression and plasma apelin levels decreased transiently at day 5 post-treatment, coinciding with vessel normalization. Thus, apelin is a potential indicator of the vessel normalization window during antiangiogenic therapy. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
An Evidence-Based Forensic Taxonomy of Windows Phone Communication Apps.
Cahyani, Niken Dwi Wahyu; Martini, Ben; Choo, Kim-Kwang Raymond; Ab Rahman, Nurul Hidayah; Ashman, Helen
2018-05-01
Communication apps can be an important source of evidence in a forensic investigation (e.g., in the investigation of a drug trafficking or terrorism case where the communications apps were used by the accused persons during the transactions or planning activities). This study presents the first evidence-based forensic taxonomy of Windows Phone communication apps, using an existing two-dimensional Android forensic taxonomy as a baseline. Specifically, 30 Windows Phone communication apps, including Instant Messaging (IM) and Voice over IP (VoIP) apps, are examined. Artifacts extracted using physical acquisition are analyzed, and seven digital evidence objects of forensic interest are identified, namely: Call Log, Chats, Contacts, Locations, Installed Applications, SMSs and User Accounts. Findings from this study would help to facilitate timely and effective forensic investigations involving Windows Phone communication apps. © 2017 American Academy of Forensic Sciences.
Subsurface event detection and classification using Wireless Signal Networks.
Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T
2012-11-05
Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events.
A novel configurable VLSI architecture design of window-based image processing method
NASA Astrophysics Data System (ADS)
Zhao, Hui; Sang, Hongshi; Shen, Xubang
2018-03-01
Most window-based image processing architecture can only achieve a certain kind of specific algorithms, such as 2D convolution, and therefore lack the flexibility and breadth of application. In addition, improper handling of the image boundary can cause loss of accuracy, or consume more logic resources. For the above problems, this paper proposes a new VLSI architecture of window-based image processing operations, which is configurable and based on consideration of the image boundary. An efficient technique is explored to manage the image borders by overlapping and flushing phases at the end of row and the end of frame, which does not produce new delay and reduce the overhead in real-time applications. Maximize the reuse of the on-chip memory data, in order to reduce the hardware complexity and external bandwidth requirements. To perform different scalar function and reduction function operations in pipeline, this can support a variety of applications of window-based image processing. Compared with the performance of other reported structures, the performance of the new structure has some similarities to some of the structures, but also superior to some other structures. Especially when compared with a systolic array processor CWP, this structure at the same frequency of approximately 12.9% of the speed increases. The proposed parallel VLSI architecture was implemented with SIMC 0.18-μm CMOS technology, and the maximum clock frequency, power consumption, and area are 125Mhz, 57mW, 104.8K Gates, respectively, furthermore the processing time is independent of the different window-based algorithms mapped to the structure
Subsurface Event Detection and Classification Using Wireless Signal Networks
Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T.
2012-01-01
Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events. PMID:23202191
Fused Reality for Enhanced Flight Test Capabilities
NASA Technical Reports Server (NTRS)
Bachelder, Ed; Klyde, David
2011-01-01
The feasibility of using Fused Reality-based simulation technology to enhance flight test capabilities has been investigated. In terms of relevancy to piloted evaluation, there remains no substitute for actual flight tests, even when considering the fidelity and effectiveness of modern ground-based simulators. In addition to real-world cueing (vestibular, visual, aural, environmental, etc.), flight tests provide subtle but key intangibles that cannot be duplicated in a ground-based simulator. There is, however, a cost to be paid for the benefits of flight in terms of budget, mission complexity, and safety, including the need for ground and control-room personnel, additional aircraft, etc. A Fused Reality(tm) (FR) Flight system was developed that allows a virtual environment to be integrated with the test aircraft so that tasks such as aerial refueling, formation flying, or approach and landing can be accomplished without additional aircraft resources or the risk of operating in close proximity to the ground or other aircraft. Furthermore, the dynamic motions of the simulated objects can be directly correlated with the responses of the test aircraft. The FR Flight system will allow real-time observation of, and manual interaction with, the cockpit environment that serves as a frame for the virtual out-the-window scene.
Enhanced, Partially Redundant Emergency Notification System
NASA Technical Reports Server (NTRS)
Pounds, Clark D.
2005-01-01
The Johnson Space Center Emergency Notification System (JENS) software utilizes pre-existing computation and communication infrastructure to augment a prior variable-tone, siren-based, outdoor alarm system, in order to enhance the ability to give notice of emergencies to employees working in multiple buildings. The JENS software includes a component that implements an administrative Web site. Administrators can grant and deny access to the administrative site and to an originator Web site that enables authorized individuals to quickly compose and issue alarms. The originator site also facilitates maintenance and review of alarms already issued. A custom client/server application program enables an originator to notify every user who is logged in on a Microsoft Windows-based desktop computer by means of a pop-up message that interrupts, but does not disrupt, the user s work. Alternatively or in addition, the originator can send an alarm message to recipients on an e-mail distribution list and/or can post the notice on an internal Web site. An alarm message can consist of (1) text describing the emergency and suggesting a course of action and (2) a replica of the corresponding audible outdoor alarm.
Development of TiO2 containing hardmasks through plasma-enhanced atomic layer deposition
NASA Astrophysics Data System (ADS)
De Silva, Anuja; Seshadri, Indira; Chung, Kisup; Arceo, Abraham; Meli, Luciana; Mendoza, Brock; Sulehria, Yasir; Yao, Yiping; Sunder, Madhana; Truong, Hoa; Matham, Shravan; Bao, Ruqiang; Wu, Heng; Felix, Nelson M.; Kanakasabapathy, Sivananda
2017-04-01
With the increasing prevalence of complex device integration schemes, trilayer patterning with a solvent strippable hardmask can have a variety of applications. Spin-on metal hardmasks have been the key enabler for selective removal through wet strip when active areas need to be protected from dry etch damage. As spin-on metal hardmasks require a dedicated track to prevent metal contamination and are limited in their ability to scale down thickness without compromising on defectivity, there has been a need for a deposited hardmask solution. Modulation of film composition through deposition conditions enables a method to create TiO2 films with wet etch tunability. This paper presents a systematic study on development and characterization of plasma-enhanced atomic layer deposited (PEALD) TiO2-based hardmasks for patterning applications. We demonstrate lithographic process window, pattern profile, and defectivity evaluation for a trilayer scheme patterned with PEALD-based TiO2 hardmask and its performance under dry and wet strip conditions. Comparable structural and electrical performance is shown for a deposited versus a spin-on metal hardmask.
Persico, Paola; Ambrogi, Veronica; Baroni, Antonio; Santagata, Gabriella; Carfagna, Cosimo; Malinconico, Mario; Cerruti, Pierfrancesco
2012-12-01
Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer, whose applicability is limited by its brittleness and narrow processing window. In this study a pomace extract (EP), from the bio-waste of winery industry, was used as thermal and processing stabilizer for PHB, aimed to engineer a totally bio-based system. The results showed that EP enhanced the thermal stability of PHB, which maintained high molecular weights after processing. This evidence was in agreement with the slower decrease in viscosity over time observed by rheological tests. EP also affected the melt crystallization kinetics and the overall crystallinity extent. Finally, dynamic mechanical and tensile tests showed that EP slightly improved the polymer ductility. The results are intriguing, in view of the development of sustainable alternatives to synthetic polymer additives, thus increasing the applicability of bio-based materials. Moreover, the reported results demonstrated the feasibility of the conversion of an agro-food by-product into a bio-resource in an environmentally friendly and cost-effective way. Copyright © 2012 Elsevier B.V. All rights reserved.
Effect of natural phenolics on the thermal and processing behaviour of poly(3-hydroxybutyrate)
NASA Astrophysics Data System (ADS)
Auriemma, Maria; Piscitelli, Amodio; Pasquino, Rossana; Cerruti, Pierfrancesco; Angelini, Stefania; Scarinzi, Gennaro; Malinconico, Mario; Grizzuti, Nino
2015-12-01
Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer, whose applicability is limited by its relatively poor mechanical properties and narrow processing window. In this paper, different natural phenol-based additives, including tannic acid (TA), grape bagasse extract (EP), and a lignocellulosic biomass (LC) were used as thermal and processing stabilizers for PHB. The thermal stability of both neat and doped PHB samples was studied by rheology and calorimetry. The experimental results showed that neat PHB massively degrades and that the addition of phenol additives enhances the thermal stability of PHB, preserving the polymer molecular weight after processing. This finding was in agreement with the slower decay in viscosity observed through rheological tests. Physical and chemical interactions between polymer and additive were considered as key factors to interpret the experimental data. LC affected the melt crystallization kinetics of PHB enhancing crystallization upon cooling. This finding suggests that LC was a heterogeneous nucleating agent, potentially able to control the physical aging of PHB. The described results are of interest for the development of sustainable alternatives to synthetic polymer additives, by increasing the applicability of bio-based materials.
Yu, Jung-Hoon; Nam, Sang-Hun; Lee, Ji Won; Boo, Jin-Hyo
2016-01-01
This paper presents the preparation of high-quality vanadium dioxide (VO2) thermochromic thin films with enhanced visible transmittance (Tvis) via radio frequency (RF) sputtering and plasma enhanced chemical vapor deposition (PECVD). VO2 thin films with high Tvis and excellent optical switching efficiency (Eos) were successfully prepared by employing SiO2 as a passivation layer. After SiO2 deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO2 coating, the phase transition temperature (Tc) of the prepared films was not affected. Compared with pristine VO2, the total layer thickness after SiO2 coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO2 thin films showed a higher Tvis value (λ 650 nm, 58%) compared with the pristine samples (λ 650 nm, 43%). This enhancement of Tvis while maintaining high Eos is meaningful for VO2-based smart window applications. PMID:28773679
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Inside the Space Station Processing Facility, a technician begins checking the Cupola after its delivery and uncrating. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Inside the Space Station Processing Facility, technicians begin checking the Cupola after its delivery and uncrating. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys, and for Earth and celestial studies. The Cupola is the final element of the Space Station core.
NASA Astrophysics Data System (ADS)
Zhang, Shangbin; Lu, Siliang; He, Qingbo; Kong, Fanrang
2016-09-01
For rotating machines, the defective faults of bearings generally are represented as periodic transient impulses in acquired signals. The extraction of transient features from signals has been a key issue for fault diagnosis. However, the background noise reduces identification performance of periodic faults in practice. This paper proposes a time-varying singular value decomposition (TSVD) method to enhance the identification of periodic faults. The proposed method is inspired by the sliding window method. By applying singular value decomposition (SVD) to the signal under a sliding window, we can obtain a time-varying singular value matrix (TSVM). Each column in the TSVM is occupied by the singular values of the corresponding sliding window, and each row represents the intrinsic structure of the raw signal, namely time-singular-value-sequence (TSVS). Theoretical and experimental analyses show that the frequency of TSVS is exactly twice that of the corresponding intrinsic structure. Moreover, the signal-to-noise ratio (SNR) of TSVS is improved significantly in comparison with the raw signal. The proposed method takes advantages of the TSVS in noise suppression and feature extraction to enhance fault frequency for diagnosis. The effectiveness of the TSVD is verified by means of simulation studies and applications to diagnosis of bearing faults. Results indicate that the proposed method is superior to traditional methods for bearing fault diagnosis.
VO2 thermochromic smart window for energy savings and generation
Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling
2013-01-01
The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner. PMID:24157625
VO₂ thermochromic smart window for energy savings and generation.
Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling
2013-10-24
The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner.
Optimal pulse design for communication-oriented slow-light pulse detection.
Stenner, Michael D; Neifeld, Mark A
2008-01-21
We present techniques for designing pulses for linear slow-light delay systems which are optimal in the sense that they maximize the signal-to-noise ratio (SNR) and signal-to-noise-plus-interference ratio (SNIR) of the detected pulse energy. Given a communication model in which input pulses are created in a finite temporal window and output pulse energy in measured in a temporally-offset output window, the SNIR-optimal pulses achieve typical improvements of 10 dB compared to traditional pulse shapes for a given output window offset. Alternatively, for fixed SNR or SNIR, window offset (detection delay) can be increased by 0.3 times the window width. This approach also invites a communication-based model for delay and signal fidelity.
Xie, Jin; Sendek, Austin D; Cubuk, Ekin D; Zhang, Xiaokun; Lu, Zhiyi; Gong, Yongji; Wu, Tong; Shi, Feifei; Liu, Wei; Reed, Evan J; Cui, Yi
2017-07-25
Modern lithium ion batteries are often desired to operate at a wide electrochemical window to maximize energy densities. While pushing the limit of cutoff potentials allows batteries to provide greater energy densities with enhanced specific capacities and higher voltage outputs, it raises key challenges with thermodynamic and kinetic stability in the battery. This is especially true for layered lithium transition-metal oxides, where capacities can improve but stabilities are compromised as wider electrochemical windows are applied. To overcome the above-mentioned challenges, we used atomic layer deposition to develop a LiAlF 4 solid thin film with robust stability and satisfactory ion conductivity, which is superior to commonly used LiF and AlF 3 . With a predicted stable electrochemical window of approximately 2.0 ± 0.9 to 5.7 ± 0.7 V vs Li + /Li for LiAlF 4 , excellent stability was achieved for high Ni content LiNi 0.8 Mn 0.1 Co 0.1 O 2 electrodes with LiAlF 4 interfacial layer at a wide electrochemical window of 2.75-4.50 V vs Li + /Li.
Modeling and experimental investigation of x-ray spectra from a liquid metal anode x-ray tube
NASA Astrophysics Data System (ADS)
David, Bernd R.; Thran, Axel; Eckart, Rainer
2004-11-01
This paper presents simulated and measured spectra of a novel type of x-ray tube. The bremsstrahlung generating principle of this tube is based on the interaction of high energetic electrons with a turbulently flowing liquid metal separated from the vacuum by a thin window. We simulated the interaction of 50-150 keV electrons with liquid metal targets composed of the elements Ga, In, Sn, as well as the solid elements C, W and Re used for the electron windows. We obtained x-ray spectra and energy loss curves for various liquid metal/window combinations and thicknesses of the window material. In terms of optimum heat transport a thin diamond window in combination with the liquid metal GaInSn is the best suited system. If photon flux is the optimization criteria, thin tungsten/rhenium windows cooled by GaInSn should be preferred.
Wang, Ruikang K.
2014-01-01
In vivo imaging of mouse brain vasculature typically requires applying skull window opening techniques: open-skull cranial window or thinned-skull cranial window. We report non-invasive 3D in vivo cerebral blood flow imaging of C57/BL mouse by the use of ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate two cranial window types based on their procedures and ability to visualize surface pial vessel dynamics. Application of the thinned-skull technique is found to be effective in achieving high quality images for pial vessels for short-term imaging, and has advantages over the open-skull technique in available imaging area, surgical efficiency, and cerebral environment preservation. In summary, thinned-skull cranial window serves as a promising tool in studying hemodynamics in pial microvasculature using OMAG or other OCT blood flow imaging modalities. PMID:25426632
Transplant Image Processing Technology under Windows into the Platform Based on MiniGUI
NASA Astrophysics Data System (ADS)
Gan, Lan; Zhang, Xu; Lv, Wenya; Yu, Jia
MFC has a large number of digital image processing-related API functions, object-oriented and class mechanisms which provides image processing technology strong support in Windows. But in embedded systems, image processing technology dues to the restrictions of hardware and software do not have the environment of MFC in Windows. Therefore, this paper draws on the experience of image processing technology of Windows and transplants it into MiniGUI embedded systems. The results show that MiniGUI/Embedded graphical user interface applications about image processing which used in embedded image processing system can be good results.
Keith M. Reynolds; Edward H. Holsten; Richard A. Werner
1994-01-01
SBexpert version 1.0 is a knowledge-based decision-support system for spruce beetle (Dendroctonus rutipennis (Kby.)) management developed for use in Microsoft Windows with the KnowledgePro Windows development language. The SBexpert users guide provides detailed instructions on the use of all SBexpert features. SBexpert has four main topics (...
7. DETAIL SHOWING BLAST SHIELDED WINDOWS, WEST SIDE. Edwards ...
7. DETAIL SHOWING BLAST SHIELDED WINDOWS, WEST SIDE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
DETAILS, EAVES AND WINDOWS OF THE EAST (REAR) FACADE, LOOKING ...
DETAILS, EAVES AND WINDOWS OF THE EAST (REAR) FACADE, LOOKING NORTH - Eglin Air Force Base, Storehouse & Company Administration, Southeast of Flager Road, Nassau Lane, & southern edge of Weekly Bayou, Valparaiso, Okaloosa County, FL
VIEW OF TYPICAL WINDOW ON THE WEST (FRONT) FACADE, LOOKING ...
VIEW OF TYPICAL WINDOW ON THE WEST (FRONT) FACADE, LOOKING EAST - Eglin Air Force Base, Storehouse & Company Administration, Southeast of Flager Road, Nassau Lane, & southern edge of Weekly Bayou, Valparaiso, Okaloosa County, FL
Window structure for passivating solar cells based on gallium arsenide
NASA Technical Reports Server (NTRS)
Barnett, Allen M. (Inventor)
1985-01-01
Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.
Detail view of bracket, arched window and eagle from building ...
Detail view of bracket, arched window and eagle from building 18 section. Jet Lowe, Haer staff photographer, summer 1995 - Naval Base Philadelphia-Philadelphia Naval Shipyard, Machine Shops, League Island, Philadelphia, Philadelphia County, PA
NASA Astrophysics Data System (ADS)
Paul, Bijan Kumar; Mahanta, Subrata; Singh, Rupashree Balia; Guchhait, Nikhil
2011-06-01
A structurally simple Schiff base N-benzyl-(3-hydroxy-2-naphthalene) (NBHN32) has been synthesized and characterized by 1H NMR, 13C NMR, and DEPT spectroscopy. The photophysical behaviour of NBHN32 in response to the presence of various transition metal cations has been explored by means of steady-state absorption, emission and time-resolved emission spectroscopy techniques. Efficient through space intramolecular photoinduced electron transfer (PET) between the naphthalene fluorophore and the imine group has been argued for extremely low fluorescence yield of NBHN32 compared to the parent molecule 3-hydroxy-2-naphthaldehyde (HN32) containing the same fluorophore but lacking the receptor moiety. Transition metal ion-induced emission enhancement is thus addressed on the lexicon of perturbation of the PET by the metal ions. Apart from fluorescence enhancement, transition metal ion imparts remarkable shift of the emission maxima of NBHN32, which is another unique aspect on the proposed ability of NBHN32 to function as a fluorescence chemosensor.
NASA Astrophysics Data System (ADS)
Kong, Fanrong; Chen, Peiqi; Nie, Qiuyue; Zhang, Xiaoning; Zhang, Zhen; Jiang, Binhao
2018-02-01
The modulation and enhancement effect of sub-wavelength plasma structures on compact antennas exhibits obvious technological advantage and considerable progress. In order to extend the availability of this technology under complex and actual environment with inhomogeneous plasma structure, a numerical simulation analysis based on finite element method has been conducted in this paper. The modulation function of the antenna radiation with sub-wavelength plasma layer located at different positions was investigated, and the inhomogeneous plasma layer with multiple electron density distribution profiles were employed to explore the effect of plasma density distribution on the antenna radiation. It has been revealed that the optical near-field modulated distance and reduced plasma distribution are more beneficial to enhance the radiation. On the basis above, an application-focused research about communication through the plasma sheath surrounding a hypersonic vehicle has been carried out aiming at exploring an effective communication window. The relevant results devote guiding significance in the field of antenna radiation modulation and enhancement, as well as the development of communication technology in hypersonic flight.
Xu, Stanley; Hambidge, Simon J; McClure, David L; Daley, Matthew F; Glanz, Jason M
2013-08-30
In the examination of the association between vaccines and rare adverse events after vaccination in postlicensure observational studies, it is challenging to define appropriate risk windows because prelicensure RCTs provide little insight on the timing of specific adverse events. Past vaccine safety studies have often used prespecified risk windows based on prior publications, biological understanding of the vaccine, and expert opinion. Recently, a data-driven approach was developed to identify appropriate risk windows for vaccine safety studies that use the self-controlled case series design. This approach employs both the maximum incidence rate ratio and the linear relation between the estimated incidence rate ratio and the inverse of average person time at risk, given a specified risk window. In this paper, we present a scan statistic that can identify appropriate risk windows in vaccine safety studies using the self-controlled case series design while taking into account the dependence of time intervals within an individual and while adjusting for time-varying covariates such as age and seasonality. This approach uses the maximum likelihood ratio test based on fixed-effects models, which has been used for analyzing data from self-controlled case series design in addition to conditional Poisson models. Copyright © 2013 John Wiley & Sons, Ltd.
Region of interest and windowing-based progressive medical image delivery using JPEG2000
NASA Astrophysics Data System (ADS)
Nagaraj, Nithin; Mukhopadhyay, Sudipta; Wheeler, Frederick W.; Avila, Ricardo S.
2003-05-01
An important telemedicine application is the perusal of CT scans (digital format) from a central server housed in a healthcare enterprise across a bandwidth constrained network by radiologists situated at remote locations for medical diagnostic purposes. It is generally expected that a viewing station respond to an image request by displaying the image within 1-2 seconds. Owing to limited bandwidth, it may not be possible to deliver the complete image in such a short period of time with traditional techniques. In this paper, we investigate progressive image delivery solutions by using JPEG 2000. An estimate of the time taken in different network bandwidths is performed to compare their relative merits. We further make use of the fact that most medical images are 12-16 bits, but would ultimately be converted to an 8-bit image via windowing for display on the monitor. We propose a windowing progressive RoI technique to exploit this and investigate JPEG 2000 RoI based compression after applying a favorite or a default window setting on the original image. Subsequent requests for different RoIs and window settings would then be processed at the server. For the windowing progressive RoI mode, we report a 50% reduction in transmission time.
Fida, Benish; Bernabucci, Ivan; Bibbo, Daniele; Conforto, Silvia; Schmid, Maurizio
2015-07-01
Accuracy of systems able to recognize in real time daily living activities heavily depends on the processing step for signal segmentation. So far, windowing approaches are used to segment data and the window size is usually chosen based on previous studies. However, literature is vague on the investigation of its effect on the obtained activity recognition accuracy, if both short and long duration activities are considered. In this work, we present the impact of window size on the recognition of daily living activities, where transitions between different activities are also taken into account. The study was conducted on nine participants who wore a tri-axial accelerometer on their waist and performed some short (sitting, standing, and transitions between activities) and long (walking, stair descending and stair ascending) duration activities. Five different classifiers were tested, and among the different window sizes, it was found that 1.5 s window size represents the best trade-off in recognition among activities, with an obtained accuracy well above 90%. Differences in recognition accuracy for each activity highlight the utility of developing adaptive segmentation criteria, based on the duration of the activities. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Chen, Guang-Hong; Li, Yinsheng
2015-08-01
In x-ray computed tomography (CT), a violation of the Tuy data sufficiency condition leads to limited-view artifacts. In some applications, it is desirable to use data corresponding to a narrow temporal window to reconstruct images with reduced temporal-average artifacts. However, the need to reduce temporal-average artifacts in practice may result in a violation of the Tuy condition and thus undesirable limited-view artifacts. In this paper, the authors present a new iterative reconstruction method, synchronized multiartifact reduction with tomographic reconstruction (SMART-RECON), to eliminate limited-view artifacts using data acquired within an ultranarrow temporal window that severely violates the Tuy condition. In time-resolved contrast enhanced CT acquisitions, image contrast dynamically changes during data acquisition. Each image reconstructed from data acquired in a given temporal window represents one time frame and can be denoted as an image vector. Conventionally, each individual time frame is reconstructed independently. In this paper, all image frames are grouped into a spatial-temporal image matrix and are reconstructed together. Rather than the spatial and/or temporal smoothing regularizers commonly used in iterative image reconstruction, the nuclear norm of the spatial-temporal image matrix is used in SMART-RECON to regularize the reconstruction of all image time frames. This regularizer exploits the low-dimensional structure of the spatial-temporal image matrix to mitigate limited-view artifacts when an ultranarrow temporal window is desired in some applications to reduce temporal-average artifacts. Both numerical simulations in two dimensional image slices with known ground truth and in vivo human subject data acquired in a contrast enhanced cone beam CT exam have been used to validate the proposed SMART-RECON algorithm and to demonstrate the initial performance of the algorithm. Reconstruction errors and temporal fidelity of the reconstructed images were quantified using the relative root mean square error (rRMSE) and the universal quality index (UQI) in numerical simulations. The performance of the SMART-RECON algorithm was compared with that of the prior image constrained compressed sensing (PICCS) reconstruction quantitatively in simulations and qualitatively in human subject exam. In numerical simulations, the 240(∘) short scan angular span was divided into four consecutive 60(∘) angular subsectors. SMART-RECON enables four high temporal fidelity images without limited-view artifacts. The average rRMSE is 16% and UQIs are 0.96 and 0.95 for the two local regions of interest, respectively. In contrast, the corresponding average rRMSE and UQIs are 25%, 0.78, and 0.81, respectively, for the PICCS reconstruction. Note that only one filtered backprojection image can be reconstructed from the same data set with an average rRMSE and UQIs are 45%, 0.71, and 0.79, respectively, to benchmark reconstruction accuracies. For in vivo contrast enhanced cone beam CT data acquired from a short scan angular span of 200(∘), three 66(∘) angular subsectors were used in SMART-RECON. The results demonstrated clear contrast difference in three SMART-RECON reconstructed image volumes without limited-view artifacts. In contrast, for the same angular sectors, PICCS cannot reconstruct images without limited-view artifacts and with clear contrast difference in three reconstructed image volumes. In time-resolved CT, the proposed SMART-RECON method provides a new method to eliminate limited-view artifacts using data acquired in an ultranarrow temporal window, which corresponds to approximately 60(∘) angular subsectors.
Yang, Peihua; Sun, Peng; Chai, Zhisheng; Huang, Langhuan; Cai, Xiang; Tan, Shaozao; Song, Jinhui; Mai, Wenjie
2014-10-27
Multifunctional glass windows that combine energy storage and electrochromism have been obtained by facile thermal evaporation and electrodeposition methods. For example, WO3 films that had been deposited on fluorine-doped tin oxide (FTO) glass exhibited a high specific capacitance of 639.8 F g(-1). Their color changed from transparent to deep blue with an abrupt decrease in optical transmittance from 91.3% to 15.1% at a wavelength of 633 nm when a voltage of -0.6 V (vs. Ag/AgCl) was applied, demonstrating its excellent energy-storage and electrochromism properties. As a second example, a polyaniline-based pseudocapacitive glass was also developed, and its color can change from green to blue. A large-scale pseudocapacitive WO3-based glass window (15×15 cm(2)) was fabricated as a prototype. Such smart pseudocapacitive glass windows show great potential in functioning as electrochromic windows and concurrently powering electronic devices, such as mobile phones or laptops. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Continuation of research into software for space operations support, volume 1
NASA Technical Reports Server (NTRS)
Collier, Mark D.; Killough, Ronnie; Martin, Nancy L.
1990-01-01
A prototype workstation executive called the Hardware Independent Software Development Environment (HISDE) was developed. Software technologies relevant to workstation executives were researched and evaluated and HISDE was used as a test bed for prototyping efforts. New X Windows software concepts and technology were introduced into workstation executives and related applications. The four research efforts performed included: (1) Research into the usability and efficiency of Motif (an X Windows based graphic user interface) which consisted of converting the existing Athena widget based HISDE user interface to Motif demonstrating the usability of Motif and providing insight into the level of effort required to translate an application from widget to another; (2) Prototype a real time data display widget which consisted of research methods for and prototyping the selected method of displaying textual values in an efficient manner; (3) X Windows performance evaluation which consisted of a series of performance measurements which demonstrated the ability of low level X Windows to display textural information; (4) Convert the Display Manager to X Window/Motif which is the application used by NASA for data display during operational mode.
Mind the Gap: Summary of Window Residential Retrofit Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, Joseph M.; Cort, Katherine A.; Widder, Sarah H.
Improving the insulation, solar heat gain, and infiltration characteristics of windows in a home has the potential to significantly improve the overall thermal performance by reducing heat transfer through the window and also by decreasing infiltration of outdoor air into the home. As approximately 43% of existing homes still have single-pane clear windows (~50 million houses) and millions of other homes have only double-pane clear windows (Cort 2013), improving window performance also presents a significant opportunity for energy savings in the residential sector. Today, various energy-saving window retrofit opportunities are available to homeowners, ranging from window coverings and storm panelsmore » to highly-insulating triple-pane R-5 window replacements. Many of these technologies have been evaluated in the field, in the “Lab Homes” at Pacific Northwest National Laboratory, and through modeling to prove their cost-effectiveness and performance in different climate regions. Recently, the Pacific Northwest’s Regional Technical Forum approved a utility measure for low- emissivity storm windows based on such data. This action represents a watershed moment for increasing the variety and prevalence of fenestration options in utility programs, especially for the low-income demographic. This paper will review various window retrofit options, the most recent field test and modeling data regarding their performance and cost-effectiveness, and discuss future rating efforts. This information is useful for utilities and energy-efficiency program managers to help effectively implement incentive measures for these technologies.« less
Novel windowing technique realized in FPGA for radar system
NASA Astrophysics Data System (ADS)
Escamilla-Hernandez, E.; Kravchenko, V. F.; Ponomaryov, V. I.; Ikuo, Arai
2006-02-01
To improve the weak target detection ability in radar applications a pulse compression is usually used that in the case linear FM modulation can improve the SNR. One drawback in here is that it can add the range side-lobes in reflectivity measurements. Using weighting window processing in time domain it is possible to decrease significantly the side-lobe level (SLL) and resolve small or low power targets those are masked by powerful ones. There are usually used classical windows such as Hamming, Hanning, etc. in window processing. Additionally to classical ones in this paper we also use a novel class of windows based on atomic functions (AF) theory. For comparison of simulation and experimental results we applied the standard parameters, such as coefficient of amplification, maximum level of side-lobe, width of main lobe, etc. To implement the compression-windowing model on hardware level it has been employed FPGA. This work aims at demonstrating a reasonably flexible implementation of FM-linear signal, pulse compression and windowing employing FPGA's. Classical and novel AF window technique has been investigated to reduce the SLL taking into account the noise influence and increasing the detection ability of the small or weak targets in the imaging radar. Paper presents the experimental hardware results of windowing in pulse compression radar resolving several targets for rectangular, Hamming, Kaiser-Bessel, (see manuscript for formula) functions windows. The windows created by use the atomic functions offer sufficiently better decreasing of the SLL in case of noise presence and when we move away of the main lobe in comparison with classical windows.
Buzsáki, György; Watson, Brendon O.
2012-01-01
The perpetual activity of the cerebral cortex is largely supported by the variety of oscillations the brain generates, spanning a number of frequencies and anatomical locations, as well as behavioral correlates. First, we review findings from animal studies showing that most forms of brain rhythms are inhibition-based, producing rhythmic volleys of inhibitory inputs to principal cell populations, thereby providing alternating temporal windows of relatively reduced and enhanced excitability in neuronal networks. These inhibition-based mechanisms offer natural temporal frames to group or “chunk” neuronal activity into cell assemblies and sequences of assemblies, with more complex multi-oscillation interactions creating syntactical rules for the effective exchange of information among cortical networks. We then review recent studies in human psychiatric patients demonstrating a variety alterations in neural oscillations across all major psychiatric diseases, and suggest possible future research directions and treatment approaches based on the fundamental properties of brain rhythms. PMID:23393413
Computed Tomographic Window Setting for Bronchial Measurement to Guide Double-Lumen Tube Size.
Seo, Jeong-Hwa; Bae, Jinyoung; Paik, Hyesun; Koo, Chang-Hoon; Bahk, Jae-Hyon
2018-04-01
The bronchial diameter measured on computed tomography (CT) can be used to guide double-lumen tube (DLT) sizes objectively. The bronchus is known to be measured most accurately in the so-called bronchial CT window. The authors investigated whether using the bronchial window results in the selection of more appropriately sized DLTs than using the other windows. CT image analysis and prospective randomized study. Tertiary hospital. Adults receiving left-sided DLTs. The authors simulated selection of DLT sizes based on the left bronchial diameters measured in the lung (width 1,500 Hounsfield unit [HU] and level -700 HU), bronchial (1,000 HU and -450 HU), and mediastinal (400 HU and 25 HU) CT windows. Furthermore, patients were randomly assigned to undergo imaging with either the bronchial or mediastinal window to guide DLT sizes. Using the underwater seal technique, the authors assessed whether the DLT was appropriately sized, undersized, or oversized for the patient. On 130 CT images, the bronchial diameter (9.9 ± 1.2 mm v 10.5 ± 1.3 mm v 11.7 ± 1.3 mm) and the selected DLT size were different in the lung, bronchial, and mediastinal windows, respectively (p < 0.001). In 13 patients (17%), the bronchial diameter measured in the lung window suggested too small DLTs (28 Fr) for adults. In the prospective study, oversized tubes were chosen less frequently in the bronchial window than in the mediastinal window (6/110 v 23/111; risk ratio 0.38; 95% CI 0.19-0.79; p = 0.003). No tubes were undersized after measurements in these two windows. The bronchial measurement in the bronchial window guided more appropriately sized DLTs compared with the lung or mediastinal windows. Copyright © 2017 Elsevier Inc. All rights reserved.
Molecular mechanisms of Ebola pathogenesis.
Rivera, Andrea; Messaoudi, Ilhem
2016-11-01
Ebola viruses (EBOVs) and Marburg viruses (MARVs) are among the deadliest human viruses, as highlighted by the recent and widespread Ebola virus outbreak in West Africa, which was the largest and longest epidemic of Ebola virus disease (EVD) in history, resulting in significant loss of life and disruptions across multiple continents. Although the number of cases has nearly reached its nadir, a recent cluster of 5 cases in Guinea on March 17, 2016, has extended the enhanced surveillance period to June 15, 2016. New, enhanced 90-d surveillance windows replaced the 42-d surveillance window to ensure the rapid detection of new cases that may arise from a missed transmission chain, reintroduction from an animal reservoir, or more important, reemergence of the virus that has persisted in an EVD survivor. In this review, we summarize our current understanding of EBOV pathogenesis, describe vaccine and therapeutic candidates in clinical trials, and discuss mechanisms of viral persistence and long-term health sequelae for EVD survivors. © Society for Leukocyte Biology.
Integral window/photon beam position monitor and beam flux detectors for x-ray beams
Shu, Deming; Kuzay, Tuncer M.
1995-01-01
A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.
Ma, Hsiang-Yang; Lin, Ying-Hsiu; Wang, Chiao-Yin; Chen, Chiung-Nien; Ho, Ming-Chih; Tsui, Po-Hsiang
2016-08-01
Ultrasound Nakagami imaging is an attractive method for visualizing changes in envelope statistics. Window-modulated compounding (WMC) Nakagami imaging was reported to improve image smoothness. The sliding window technique is typically used for constructing ultrasound parametric and Nakagami images. Using a large window overlap ratio may improve the WMC Nakagami image resolution but reduces computational efficiency. Therefore, the objectives of this study include: (i) exploring the effects of the window overlap ratio on the resolution and smoothness of WMC Nakagami images; (ii) proposing a fast algorithm that is based on the convolution operator (FACO) to accelerate WMC Nakagami imaging. Computer simulations and preliminary clinical tests on liver fibrosis samples (n=48) were performed to validate the FACO-based WMC Nakagami imaging. The results demonstrated that the width of the autocorrelation function and the parameter distribution of the WMC Nakagami image reduce with the increase in the window overlap ratio. One-pixel shifting (i.e., sliding the window on the image data in steps of one pixel for parametric imaging) as the maximum overlap ratio significantly improves the WMC Nakagami image quality. Concurrently, the proposed FACO method combined with a computational platform that optimizes the matrix computation can accelerate WMC Nakagami imaging, allowing the detection of liver fibrosis-induced changes in envelope statistics. FACO-accelerated WMC Nakagami imaging is a new-generation Nakagami imaging technique with an improved image quality and fast computation. Copyright © 2016 Elsevier B.V. All rights reserved.
Tunable Transmission-Line Metamaterials Mimicking Electromagnetically Induced Transparency
NASA Astrophysics Data System (ADS)
Feng, T. H.; Han, H. P.
2016-11-01
Tunable transmission-line (TL) metamaterials mimicking electromagnetically induced transparency (EIT) have been studied. Firstly, two types of tunable TL EIT-like metamaterial, based on the double split-ring resonator (DSRR) and single split-ring resonator (SSRR), were fabricated and their transmission properties carefully compared. The results showed that the transmittance maximum was almost invariable with shift of the transparency window for the tunable DSRR-based TL EIT-like metamaterial, but for the tunable SSRR-based TL EIT-like metamaterial, the transmittance maximum gradually diminished with shift of the transparency window toward the center of the absorption band. Moreover, the reason for these different transmission properties was explored, revealing that the reduction of the transmittance maximum of the transparency window for the tunable SSRR-based TL EIT-like metamaterial is mainly due to energy loss caused by the resistance of the loaded varactor diodes.
Nguyen, Quoc-Thang; Miledi, Ricardo
2003-09-30
Current computer programs for intracellular recordings often lack advanced data management, are usually incompatible with other applications and are also difficult to adapt to new experiments. We have addressed these shortcomings in e-Phys, a suite of electrophysiology applications for intracellular recordings. The programs in e-Phys use Component Object Model (COM) technologies available in the Microsoft Windows operating system to provide enhanced data storage, increased interoperability between e-Phys and other COM-aware applications, and easy customization of data acquisition and analysis thanks to a script-based integrated programming environment. Data files are extensible, hierarchically organized and integrated in the Windows shell by using the Structured Storage technology. Data transfers to and from other programs are facilitated by implementing the ActiveX Automation standard and distributed COM (DCOM). ActiveX Scripting allows experimenters to write their own event-driven acquisition and analysis programs in the VBScript language from within e-Phys. Scripts can reuse components available from other programs on other machines to create distributed meta-applications. This paper describes the main features of e-Phys and how this package was used to determine the effect of the atypical antipsychotic drug clozapine on synaptic transmission at the neuromuscular junction.
Sémon, Marie; Mouchiroud, Dominique; Duret, Laurent
2005-02-01
Mammalian chromosomes are characterized by large-scale variations of DNA base composition (the so-called isochores). In contradiction with previous studies, Lercher et al. (Hum. Mol. Genet., 12, 2411, 2003) recently reported a strong correlation between gene expression breadth and GC-content, suggesting that there might be a selective pressure favoring the concentration of housekeeping genes in GC-rich isochores. We reassessed this issue by examining in human and mouse the correlation between gene expression and GC-content, using different measures of gene expression (EST, SAGE and microarray) and different measures of GC-content. We show that correlations between GC-content and expression are very weak, and may vary according to the method used to measure expression. Such weak correlations have a very low predictive value. The strong correlations reported by Lercher et al. (2003) are because of the fact that they measured variables over neighboring genes windows. We show here that using gene windows artificially enhances the correlation. The assertion that the expression of a given gene depends on the GC-content of the region where it is located is therefore not supported by the data.
Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns
Chang, Tzu-Hsuan; Xiong, Shisheng; Jacobberger, Robert M.; ...
2016-08-16
Directed self-assembly of block copolymers is a scalable method to fabricate well-ordered patterns over the wafer scale with feature sizes below the resolution of conventional lithography. Typically, lithographically-defined prepatterns with varying chemical contrast are used to rationally guide the assembly of block copolymers. The directed self-assembly to obtain accurate registration and alignment is largely influenced by the assembly kinetics. Furthermore, a considerably broad processing window is favored for industrial manufacturing. Using an atomically-thin layer of graphene on germanium, after two simple processing steps, we create a novel chemical pattern to direct the assembly of polystyreneblock-poly(methyl methacrylate). Faster assembly kinetics aremore » observed on graphene/germanium chemical patterns than on conventional chemical patterns based on polymer mats and brushes. This new chemical pattern allows for assembly on a wide range of guiding periods and along designed 90° bending structures. We also achieve density multiplication by a factor of 10, greatly enhancing the pattern resolution. Lastly, the rapid assembly kinetics, minimal topography, and broad processing window demonstrate the advantages of inorganic chemical patterns composed of hard surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruther, Rose E.; Sun, Che -Nan; Holliday, Adam
A simple electrolyte consisting of NaPF 6 salt in 1,2-dimethoxyethane (DME) can extend the voltage window of electric double-layer capacitors (EDLCs) to >3.5 V. DME does not passivate carbon electrodes at very negative potentials (near Na/Na +), extending the practical voltage window by about 1.0 V compared to standard, non-aqueous electrolytes based on acetonitrile. The voltage window is demonstrated in two- and three-electrode cells using a combination of electrochemical impedance spectroscopy (EIS), charge-discharge cycling, and measurements of leakage current. DME-based electrolytes cannot match the high conductivity of acetonitrile solutions, but they can satisfy applications that demand high energy density atmore » moderate power. The conductivity of NaPF 6 in DME is comparable to commercial lithium-ion battery electrolytes and superior to most ionic liquids. Lastly, factors that limit the voltage window and EDLC energy density are discussed, and strategies to further boost energy density are proposed.« less
Active noise attenuation in ventilation windows.
Huang, Huahua; Qiu, Xiaojun; Kang, Jian
2011-07-01
The feasibility of applying active noise control techniques to attenuate low frequency noise transmission through a natural ventilation window into a room is investigated analytically and experimentally. The window system is constructed by staggering the opening sashes of a spaced double glazing window to allow ventilation and natural light. An analytical model based on the modal expansion method is developed to calculate the low frequency sound field inside the window and the room and to be used in the active noise control simulations. The effectiveness of the proposed analytical model is validated by using the finite element method. The performance of the active control system for a window with different source and receiver configurations are compared, and it is found that the numerical and experimental results are in good agreement and the best result is achieved when the secondary sources are placed in the center at the bottom of the staggered window. The extra attenuation at the observation points in the optimized window system is almost equivalent to the noise reduction at the error sensor and the frequency range of effective control is up to 390 Hz in the case of a single channel active noise control system. © 2011 Acoustical Society of America
Method of high speed flow field influence and restrain on laser communication
NASA Astrophysics Data System (ADS)
Meng, Li-xin; Wang, Chun-hui; Qian, Cun-zhu; Wang, Shuo; Zhang, Li-zhong
2013-08-01
For laser communication performance which carried by airplane or airship, due to high-speed platform movement, the air has two influences in platform and laser communication terminal window. The first influence is that aerodynamic effect causes the deformation of the optical window; the second one is that a shock wave and boundary layer would be generated. For subsonic within the aircraft, the boundary layer is the main influence. The presence of a boundary layer could change the air density and the temperature of the optical window, which causes the light deflection and received beam spot flicker. Ultimately, the energy hunting of the beam spot which reaches receiving side increases, so that the error rate increases. In this paper, aerodynamic theory is used in analyzing the influence of the optical window deformation due to high speed air. Aero-optics theory is used to analyze the influence of the boundary layer in laser communication link. Based on this, we focused on working on exploring in aerodynamic and aero-optical effect suppression method in the perspective of the optical window design. Based on planning experimental aircraft types and equipment installation location, we optimized the design parameters of the shape and thickness of the optical window, the shape and size of air-management kit. Finally, deformation of the optical window and air flow distribution were simulated by fluid simulation software in the different mach and different altitude fly condition. The simulation results showed that the optical window can inhibit the aerodynamic influence after optimization. In addition, the boundary layer is smoothed; the turbulence influence is reduced, which meets the requirements of the airborne laser communication.
Spotlight-8 Image Analysis Software
NASA Technical Reports Server (NTRS)
Klimek, Robert; Wright, Ted
2006-01-01
Spotlight is a cross-platform GUI-based software package designed to perform image analysis on sequences of images generated by combustion and fluid physics experiments run in a microgravity environment. Spotlight can perform analysis on a single image in an interactive mode or perform analysis on a sequence of images in an automated fashion. Image processing operations can be employed to enhance the image before various statistics and measurement operations are performed. An arbitrarily large number of objects can be analyzed simultaneously with independent areas of interest. Spotlight saves results in a text file that can be imported into other programs for graphing or further analysis. Spotlight can be run on Microsoft Windows, Linux, and Apple OS X platforms.
Design Mining Interacting Wind Turbines.
Preen, Richard J; Bull, Larry
2016-01-01
An initial study has recently been presented of surrogate-assisted evolutionary algorithms used to design vertical-axis wind turbines wherein candidate prototypes are evaluated under fan-generated wind conditions after being physically instantiated by a 3D printer. Unlike other approaches, such as computational fluid dynamics simulations, no mathematical formulations were used and no model assumptions were made. This paper extends that work by exploring alternative surrogate modelling and evolutionary techniques. The accuracy of various modelling algorithms used to estimate the fitness of evaluated individuals from the initial experiments is compared. The effect of temporally windowing surrogate model training samples is explored. A surrogate-assisted approach based on an enhanced local search is introduced; and alternative coevolution collaboration schemes are examined.
X-Windows Widget for Image Display
NASA Technical Reports Server (NTRS)
Deen, Robert G.
2011-01-01
XvicImage is a high-performance XWindows (Motif-compliant) user interface widget for displaying images. It handles all aspects of low-level image display. The fully Motif-compliant image display widget handles the following tasks: (1) Image display, including dithering as needed (2) Zoom (3) Pan (4) Stretch (contrast enhancement, via lookup table) (5) Display of single-band or color data (6) Display of non-byte data (ints, floats) (7) Pseudocolor display (8) Full overlay support (drawing graphics on image) (9) Mouse-based panning (10) Cursor handling, shaping, and planting (disconnecting cursor from mouse) (11) Support for all user interaction events (passed to application) (12) Background loading and display of images (doesn't freeze the GUI) (13) Tiling of images.
Growth hormone doping in sports: a critical review of use and detection strategies.
Baumann, Gerhard P
2012-04-01
GH is believed to be widely employed in sports as a performance-enhancing substance. Its use in athletic competition is banned by the World Anti-Doping Agency, and athletes are required to submit to testing for GH exposure. Detection of GH doping is challenging for several reasons including identity/similarity of exogenous to endogenous GH, short half-life, complex and fluctuating secretory dynamics of GH, and a very low urinary excretion rate. The detection test currently in use (GH isoform test) exploits the difference between recombinant GH (pure 22K-GH) and the heterogeneous nature of endogenous GH (several isoforms). Its main limitation is the short window of opportunity for detection (~12-24 h after the last GH dose). A second test to be implemented soon (the biomarker test) is based on stimulation of IGF-I and collagen III synthesis by GH. It has a longer window of opportunity (1-2 wk) but is less specific and presents a variety of technical challenges. GH doping in a larger sense also includes doping with GH secretagogues and IGF-I and its analogs. The scientific evidence for the ergogenicity of GH is weak, a fact that is not widely appreciated in athletic circles or by the general public. Also insufficiently appreciated is the risk of serious health consequences associated with high-dose, prolonged GH use. This review discusses the GH biology relevant to GH doping; the virtues and limitations of detection tests in blood, urine, and saliva; secretagogue efficacy; IGF-I doping; and information about the effectiveness of GH as a performance-enhancing agent.
Laser Ignition Technology for Bi-Propellant Rocket Engine Applications
NASA Technical Reports Server (NTRS)
Thomas, Matthew E.; Bossard, John A.; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)
2001-01-01
The fiber optically coupled laser ignition approach summarized is under consideration for use in igniting bi-propellant rocket thrust chambers. This laser ignition approach is based on a novel dual pulse format capable of effectively increasing laser generated plasma life times up to 1000 % over conventional laser ignition methods. In the dual-pulse format tinder consideration here an initial laser pulse is used to generate a small plasma kernel. A second laser pulse that effectively irradiates the plasma kernel follows this pulse. Energy transfer into the kernel is much more efficient because of its absorption characteristics thereby allowing the kernel to develop into a much more effective ignition source for subsequent combustion processes. In this research effort both single and dual-pulse formats were evaluated in a small testbed rocket thrust chamber. The rocket chamber was designed to evaluate several bipropellant combinations. Optical access to the chamber was provided through small sapphire windows. Test results from gaseous oxygen (GOx) and RP-1 propellants are presented here. Several variables were evaluated during the test program, including spark location, pulse timing, and relative pulse energy. These variables were evaluated in an effort to identify the conditions in which laser ignition of bi-propellants is feasible. Preliminary results and analysis indicate that this laser ignition approach may provide superior ignition performance relative to squib and torch igniters, while simultaneously eliminating some of the logistical issues associated with these systems. Further research focused on enhancing the system robustness, multiplexing, and window durability/cleaning and fiber optic enhancements is in progress.
Validation of vision-based obstacle detection algorithms for low-altitude helicopter flight
NASA Technical Reports Server (NTRS)
Suorsa, Raymond; Sridhar, Banavar
1991-01-01
A validation facility being used at the NASA Ames Research Center is described which is aimed at testing vision based obstacle detection and range estimation algorithms suitable for low level helicopter flight. The facility is capable of processing hundreds of frames of calibrated multicamera 6 degree-of-freedom motion image sequencies, generating calibrated multicamera laboratory images using convenient window-based software, and viewing range estimation results from different algorithms along with truth data using powerful window-based visualization software.
ERIC Educational Resources Information Center
Chung, Gregory K. W. K.; Gyllenhammer, Ruth G.; Baker, Eva L.
2011-01-01
In this study, we compared the effects of simulator-based virtual ultrasound scanning practice to classroom-based hands-on ultrasound scanning practice on participants' knowledge of FAST window quadrants and interpretation, and on participants' performance on live patient FAST exams. Twenty-five novice participants were randomly assigned to the…
A general graphical user interface for automatic reliability modeling
NASA Technical Reports Server (NTRS)
Liceaga, Carlos A.; Siewiorek, Daniel P.
1991-01-01
Reported here is a general Graphical User Interface (GUI) for automatic reliability modeling of Processor Memory Switch (PMS) structures using a Markov model. This GUI is based on a hierarchy of windows. One window has graphical editing capabilities for specifying the system's communication structure, hierarchy, reconfiguration capabilities, and requirements. Other windows have field texts, popup menus, and buttons for specifying parameters and selecting actions. An example application of the GUI is given.
1988-05-12
the "load IC" menu option. A prompt will appear in the typescript window requesting the name of the knowledge base to be loaded. Enter...highlighted and then a prompt will appear in the typescript window. The prompt will be requesting the name of the file containing the message to be read in...the file name, the system will begin reading in the message. The listified message is echoed back in the typescript window. After that, the screen
NASA Glenn Steady-State Heat Pipe Code GLENHP: Compilation for 64- and 32-Bit Windows Platforms
NASA Technical Reports Server (NTRS)
Tower, Leonard K.; Geng, Steven M.
2016-01-01
A new version of the NASA Glenn Steady State Heat Pipe Code, designated "GLENHP," is introduced here. This represents an update to the disk operating system (DOS) version LERCHP reported in NASA/TM-2000-209807. The new code operates on 32- and 64-bit Windows-based platforms from within the 32-bit command prompt window. An additional evaporator boundary condition and other features are provided.
Time-marching multi-grid seismic tomography
NASA Astrophysics Data System (ADS)
Tong, P.; Yang, D.; Liu, Q.
2016-12-01
From the classic ray-based traveltime tomography to the state-of-the-art full waveform inversion, because of the nonlinearity of seismic inverse problems, a good starting model is essential for preventing the convergence of the objective function toward local minima. With a focus on building high-accuracy starting models, we propose the so-called time-marching multi-grid seismic tomography method in this study. The new seismic tomography scheme consists of a temporal time-marching approach and a spatial multi-grid strategy. We first divide the recording period of seismic data into a series of time windows. Sequentially, the subsurface properties in each time window are iteratively updated starting from the final model of the previous time window. There are at least two advantages of the time-marching approach: (1) the information included in the seismic data of previous time windows has been explored to build the starting models of later time windows; (2) seismic data of later time windows could provide extra information to refine the subsurface images. Within each time window, we use a multi-grid method to decompose the scale of the inverse problem. Specifically, the unknowns of the inverse problem are sampled on a coarse mesh to capture the macro-scale structure of the subsurface at the beginning. Because of the low dimensionality, it is much easier to reach the global minimum on a coarse mesh. After that, finer meshes are introduced to recover the micro-scale properties. That is to say, the subsurface model is iteratively updated on multi-grid in every time window. We expect that high-accuracy starting models should be generated for the second and later time windows. We will test this time-marching multi-grid method by using our newly developed eikonal-based traveltime tomography software package tomoQuake. Real application results in the 2016 Kumamoto earthquake (Mw 7.0) region in Japan will be demonstrated.
The National Stormwater Calculator (NSC) makes it easy to estimate runoff reduction when planning a new development or redevelopment site with low impact development (LID) stormwater controls. The Calculator is currently deployed as a Windows desktop application. The NSC is organ...
The National Stormwater Calculator (NSC) makes it easy to estimate runoff reduction when planning a new development or redevelopment site with low impact development (LID) stormwater controls. The Calculator is currently deployed as a Windows desktop application. The Calculator i...
Audiovisual Asynchrony Detection in Human Speech
ERIC Educational Resources Information Center
Maier, Joost X.; Di Luca, Massimiliano; Noppeney, Uta
2011-01-01
Combining information from the visual and auditory senses can greatly enhance intelligibility of natural speech. Integration of audiovisual speech signals is robust even when temporal offsets are present between the component signals. In the present study, we characterized the temporal integration window for speech and nonspeech stimuli with…
Defining window-boundaries for genomic analyses using smoothing spline techniques
Beissinger, Timothy M.; Rosa, Guilherme J.M.; Kaeppler, Shawn M.; ...
2015-04-17
High-density genomic data is often analyzed by combining information over windows of adjacent markers. Interpretation of data grouped in windows versus at individual locations may increase statistical power, simplify computation, reduce sampling noise, and reduce the total number of tests performed. However, use of adjacent marker information can result in over- or under-smoothing, undesirable window boundary specifications, or highly correlated test statistics. We introduce a method for defining windows based on statistically guided breakpoints in the data, as a foundation for the analysis of multiple adjacent data points. This method involves first fitting a cubic smoothing spline to the datamore » and then identifying the inflection points of the fitted spline, which serve as the boundaries of adjacent windows. This technique does not require prior knowledge of linkage disequilibrium, and therefore can be applied to data collected from individual or pooled sequencing experiments. Moreover, in contrast to existing methods, an arbitrary choice of window size is not necessary, since these are determined empirically and allowed to vary along the genome.« less
4. DETAIL SHOWING PERISCOPE AND SHIELDED WINDOWS ON EAST SIDE, ...
4. DETAIL SHOWING PERISCOPE AND SHIELDED WINDOWS ON EAST SIDE, NORTH PART. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
DETAILS, ROOF VENTS AND WINDOWS, NORTHERN CORNER SECTION OF THE ...
DETAILS, ROOF VENTS AND WINDOWS, NORTHERN CORNER SECTION OF THE EAST (REAR) FACADE, LOOKING NORTHWEST - Eglin Air Force Base, Storehouse & Company Administration, Southeast of Flager Road, Nassau Lane, & southern edge of Weekly Bayou, Valparaiso, Okaloosa County, FL
14. CLOSEUP VIEW OF WINDOW IN SIGNAL TOWER OFFICE FACING ...
14. CLOSE-UP VIEW OF WINDOW IN SIGNAL TOWER OFFICE FACING WEST. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI
Stereo matching using census cost over cross window and segmentation-based disparity refinement
NASA Astrophysics Data System (ADS)
Li, Qingwu; Ni, Jinyan; Ma, Yunpeng; Xu, Jinxin
2018-03-01
Stereo matching is a vital requirement for many applications, such as three-dimensional (3-D) reconstruction, robot navigation, object detection, and industrial measurement. To improve the practicability of stereo matching, a method using census cost over cross window and segmentation-based disparity refinement is proposed. First, a cross window is obtained using distance difference and intensity similarity in binocular images. Census cost over the cross window and color cost are combined as the matching cost, which is aggregated by the guided filter. Then, winner-takes-all strategy is used to calculate the initial disparities. Second, a graph-based segmentation method is combined with color and edge information to achieve moderate under-segmentation. The segmented regions are classified into reliable regions and unreliable regions by consistency checking. Finally, the two regions are optimized by plane fitting and propagation, respectively, to match the ambiguous pixels. The experimental results are on Middlebury Stereo Datasets, which show that the proposed method has good performance in occluded and discontinuous regions, and it obtains smoother disparity maps with a lower average matching error rate compared with other algorithms.
Muon catalyzed fusion beam window mechanical strength testing and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ware, A.G.; Zabriskie, J.M.
A thin aluminum window (0.127 mm (0.005-inch) thick x 146 mm (5 3/4-inch) diameter) of 2024-T6 alloy was modeled and analyzed using the ABAQUS non-linear finite element analysis code. A group of windows was fabricated, heat-treated and subsequently tested. Testing included both ultimate burst pressure and fatigue. Fatigue testing cycles involved ''oil-canning'' behavior representing vacuum purge and reversal to pressure. Test results are compared to predictions and the mode of failure is discussed. Operational requirements, based on the above analysis and correlational testing, for the actual beam windows are discussed. 1 ref., 3 figs.
PHREEQCI; a graphical user interface for the geochemical computer program PHREEQC
Charlton, Scott R.; Macklin, Clifford L.; Parkhurst, David L.
1997-01-01
PhreeqcI is a Windows-based graphical user interface for the geochemical computer program PHREEQC. PhreeqcI provides the capability to generate and edit input data files, run simulations, and view text files containing simulation results, all within the framework of a single interface. PHREEQC is a multipurpose geochemical program that can perform speciation, inverse, reaction-path, and 1D advective reaction-transport modeling. Interactive access to all of the capabilities of PHREEQC is available with PhreeqcI. The interface is written in Visual Basic and will run on personal computers under the Windows(3.1), Windows95, and WindowsNT operating systems.
Shuttle Hypervelocity Impact Database
NASA Technical Reports Server (NTRS)
Hyde, James L.; Christiansen, Eric L.; Lear, Dana M.
2011-01-01
With three missions outstanding, the Shuttle Hypervelocity Impact Database has nearly 3000 entries. The data is divided into tables for crew module windows, payload bay door radiators and thermal protection system regions, with window impacts compromising just over half the records. In general, the database provides dimensions of hypervelocity impact damage, a component level location (i.e., window number or radiator panel number) and the orbiter mission when the impact occurred. Additional detail on the type of particle that produced the damage site is provided when sampling data and definitive analysis results are available. Details and insights on the contents of the database including examples of descriptive statistics will be provided. Post flight impact damage inspection and sampling techniques that were employed during the different observation campaigns will also be discussed. Potential enhancements to the database structure and availability of the data for other researchers will be addressed in the Future Work section. A related database of returned surfaces from the International Space Station will also be introduced.
Modified skin window technique for the extended characterisation of acute inflammation in humans
Marks, D. J. B.; Radulovic, M.; McCartney, S.; Bloom, S.; Segal, A. W.
2009-01-01
Objective To modify the skin window technique for extended analysis of acute inflammatory responses in humans, and demonstrate its applicability for investigating disease. Subjects 15 healthy subjects and 5 Crohn’s patients. Treatment Skin windows, created by dermal abrasion, were overlaid for various durations with filter papers saturated in saline, 100 ng/ml muramyl dipeptide (MDP) or 10 μg/ml interleukin-8 (IL-8). Methods Exuded leukocytes were analyzed by microscopy, immunoblot, DNA-bound transcription factor arrays and RT-PCR. Inflammatory mediators were quantified by ELISA. Results Infiltrating leukocytes were predominantly neutrophils. Numerous secreted mediators were detectable. MDP and IL-8 enhanced responses. Many signalling proteins were phosphorylated with differential patterns in Crohn’s patients, notably PKC α/β hyperphosphorylation (11.3 ± 3.1 vs 1.2 ± 0.9 units, P < 0.02). Activities of 44 transcription factors were detectable, and sufficient RNA isolated for expression analysis of over 400 genes. Conclusions The modifications enable broad characterisation of inflammatory responses and administration of exogenous immunomodulators. PMID:17522815
Effects of XeCl excimer lasers and fluoride application on artificial caries-like lesions
NASA Astrophysics Data System (ADS)
Wilder-Smith, Petra B. B.; Phan, T.; Liaw, Lih-Huei L.; Berns, Michael W.
1994-09-01
In this study the affects of a pulsed excimer laser emitting at 308 nm (XeCl) on enamel susceptibility to artificial caries-like lesions were investigated. Additional effects of fluoride (F) application were also studied and SEC examinations performed. Sixty-four extracted human molar teeth were coated with acid resistant varnish leaving four windows, then sectioned, leaving one window on each tooth quarter. The windows were treated in one of the following ways: untreated (control), or lased, or exposed to 4 min. APF (1.23% F) before lasing, or exposed to 4 min. APF (1.23% F) after lasing. After lasing, microhardness profiles were obtained and SEM was performed. Caries resistance was generally increased at moderate fluences. F application combined with lasing enhanced caries resistance at some parameters. SEM showed effects ranging from minimal to localized effects to extended glazing. Pulsed excimer laser irradiation, especially combined with topical F application can inhibit development of artificial caries-like lesions.
NASA Astrophysics Data System (ADS)
Yang, Honggang; Lin, Huibin; Ding, Kang
2018-05-01
The performance of sparse features extraction by commonly used K-Singular Value Decomposition (K-SVD) method depends largely on the signal segment selected in rolling bearing diagnosis, furthermore, the calculating speed is relatively slow and the dictionary becomes so redundant when the fault signal is relatively long. A new sliding window denoising K-SVD (SWD-KSVD) method is proposed, which uses only one small segment of time domain signal containing impacts to perform sliding window dictionary learning and select an optimal pattern with oscillating information of the rolling bearing fault according to a maximum variance principle. An inner product operation between the optimal pattern and the whole fault signal is performed to enhance the characteristic of the impacts' occurrence moments. Lastly, the signal is reconstructed at peak points of the inner product to realize the extraction of the rolling bearing fault features. Both simulation and experiments verify that the method could extract the fault features effectively.
Transparent and Flexible Large-scale Graphene-based Heater
NASA Astrophysics Data System (ADS)
Kang, Junmo; Lee, Changgu; Kim, Young-Jin; Choi, Jae-Boong; Hong, Byung Hee
2011-03-01
We report the application of transparent and flexible heater with high optical transmittance and low sheet resistance using graphene films, showing outstanding thermal and electrical properties. The large-scale graphene films were grown on Cu foil by chemical vapor deposition methods, and transferred to transparent substrates by multiple stacking. The wet chemical doping process enhanced the electrical properties, showing a sheet resistance as low as 35 ohm/sq with 88.5 % transmittance. The temperature response usually depends on the dimension and the sheet resistance of the graphene-based heater. We show that a 4x4 cm2 heater can reach 80& circ; C within 40 seconds and large-scale (9x9 cm2) heater shows uniformly heating performance, which was measured using thermocouple and infra-red camera. These heaters would be very useful for defogging systems and smart windows.
NASA Astrophysics Data System (ADS)
Zhang, Guangyun; Jia, Xiuping; Pham, Tuan D.; Crane, Denis I.
2010-01-01
The interpretation of the distribution of fluorescence in cells is often by simple visualization of microscope-derived images for qualitative studies. In other cases, however, it is desirable to be able to quantify the distribution of fluorescence using digital image processing techniques. In this paper, the challenges of fluorescence segmentation due to the noise present in the data are addressed. We report that intensity measurements alone do not allow separation of overlapping data between target and background. Consequently, spatial properties derived from neighborhood profile were included. Mathematical Morphological operations were implemented for cell boundary extraction and a window based contrast measure was developed for fluorescence puncta identification. All of these operations were applied in the proposed multistage processing scheme. The testing results show that the spatial measures effectively enhance the target separability.
DUBROVSKY, J. G.; GAMBETTA, G. A.; HERNÁNDEZ-BARRERA, A.; SHISHKOVA, S.; GONZÁLEZ, I.
2006-01-01
• Background and Aims The basic regulatory mechanisms that control lateral root (LR) initiation are still poorly understood. An attempt is made to characterize the pattern and timing of LR initiation, to define a developmental window in which LR initiation takes place and to address the question of whether LR initiation is predictable. • Methods The spatial patterning of LRs and LR primordia (LRPs) on cleared root preparations were characterized. New measures of LR and LRP densities (number of LRs and/or LRPs divided by the length of the root portions where they are present) were introduced and illustrate the shortcomings of the more customarily used measure through a comparative analysis of the mutant aux1-7. The enhancer trap line J0121 was used to monitor LR initiation in time-lapse experiments and a plasmolysis-based method was developed to determine the number of pericycle cells between successive LRPs. • Key Results LRP initiation occurred strictly acropetally and no de novo initiation events were found between already developed LRs or LRPs. However, LRPs did not become LRs in a similar pattern. The longitudinal spacing of lateral organs was variable and the distance between lateral organs was proportional to the number of cells and the time between initiations of successive LRPs. There was a strong tendency towards alternation in LR initiation between the two pericycle cell files adjacent to the protoxylem poles. LR density increased with time due to the emergence of slowly developing LRPs and appears to be unique for individual Arabidopsis accessions. • Conclusions. In Arabidopsis there is a narrow developmental window for LR initiation, and no specific cell-count or distance-measuring mechanisms have been found that determine the site of successive initiation events. Nevertheless, the branching density and lateral organ density (density of LRs and LRPs) are accession-specific, and based on the latter density the average distance between successive LRs can be predicted. PMID:16390845
Fixed-rate layered multicast congestion control
NASA Astrophysics Data System (ADS)
Bing, Zhang; Bing, Yuan; Zengji, Liu
2006-10-01
A new fixed-rate layered multicast congestion control algorithm called FLMCC is proposed. The sender of a multicast session transmits data packets at a fixed rate on each layer, while receivers each obtain different throughput by cumulatively subscribing to deferent number of layers based on their expected rates. In order to provide TCP-friendliness and estimate the expected rate accurately, a window-based mechanism implemented at receivers is presented. To achieve this, each receiver maintains a congestion window, adjusts it based on the GAIMD algorithm, and from the congestion window an expected rate is calculated. To measure RTT, a new method is presented which combines an accurate measurement with a rough estimation. A feedback suppression based on a random timer mechanism is given to avoid feedback implosion in the accurate measurement. The protocol is simple in its implementation. Simulations indicate that FLMCC shows good TCP-friendliness, responsiveness as well as intra-protocol fairness, and provides high link utilization.
22. DETAIL INTERIOR VIEW OF OFFICE, SHOWING ORIGINAL SASH WINDOWS ...
22. DETAIL INTERIOR VIEW OF OFFICE, SHOWING ORIGINAL SASH WINDOWS AND DUCT WORK (OTHER OFFICE INTERIORS ARE GREATLY ALTERED FROM THE ORIGINAL) - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA
Steinway piano and stained glass clerestory window in lounge area, ...
Steinway piano and stained glass clerestory window in lounge area, upper deck. Hot water radiators can be seen at base of wall. These run throughout the houseboat. - Houseboat LA DUCHESSE, The Antique Boat Museum, Clayton, Jefferson County, NY
DETAIL OF EAVES AND HOODS OVER WINDOWS ON NORTHEAST END ...
DETAIL OF EAVES AND HOODS OVER WINDOWS ON NORTHEAST END OF NORTHWEST SIDE, WITH SEABEE STATUE IN BACKGROUND. - U.S. Naval Base, Pearl Harbor, Joint Intelligence Center, Makalapa Drive in Makalapa Administration Area, Pearl City, Honolulu County, HI
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At the Space Station Processing Facility, a trailer delivers the Cupola, an element scheduled to be installed on the International Space Station in early 2009. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.
An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement.
Zimmerman, J B; Pizer, S M; Staab, E V; Perry, J R; McCartney, W; Brenton, B C
1988-01-01
Adaptive histogram equalization (AHE) and intensity windowing have been compared using psychophysical observer studies. Experienced radiologists were shown clinical CT (computerized tomographic) images of the chest. Into some of the images, appropriate artificial lesions were introduced; the physicians were then shown the images processed with both AHE and intensity windowing. They were asked to assess the probability that a given image contained the artificial lesion, and their accuracy was measured. The results of these experiments show that for this particular diagnostic task, there was no significant difference in the ability of the two methods to depict luminance contrast; thus, further evaluation of AHE using controlled clinical trials is indicated.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Inside the Space Station Processing Facility, the Cupola is uncrated. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. The Cupola is an element scheduled to be installed on the International Space Station in early 2009. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. The Cupola, an element scheduled to be installed on the International Space Station in early 2009, arrives at KSC on the flatbed of a trailer. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.
Radiofrequency attenuator and method
Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM; Agrawal, Anoop [Tucson, AZ; Hall, Simon B [Palmerston North, NZ
2009-01-20
Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.
Radiofrequency attenuator and method
Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM; Agrawal, Anoop [Tucson, AZ; Hall, Simon B [Palmerston North, NZ
2009-11-10
Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3 C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.
Tough, processable simultaneous semi-interpenetrating polyimides
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
1996-01-01
A high temperature semi-interpenetrating polymer network (semi-IPN) was developed which had significantly improved processability, damage tolerance and mechanical performance, when compared to the commercial Thermid.RTM. materials. This simultaneous semi-IPN was prepared by mixing a thermosetting polyimide with a thermoplastic monomer precursor solution (NR-15082) and allowing them to react upon heating. This reaction occurs at a rate which decreases the flow and broadens the processing window. Upon heating at a higher temperature, there is an increase in flow. Because of the improved flow properties, broadened processing window and enhanced toughness, high strength polymer matrix composites, adhesives and molded articles can now be prepared from the acetylene endcapped polyimides which were previously inherently brittle and difficult to process.
AICUZ Air Installation Compatible Use Zone Report for Mather Air Force Base, California.
1982-09-01
Insulation shall be glass fiber or mineral wool . 1-4 Windows a. Windows other than as described in this sectionshall have a laboratory sound transmission...above. Ceilings shall be substantially airtight, with a minimum number of penetrations. I b. Glass fiber or mineral wool insulation at least 2" thick...throughout the cavity space behind the exterior sheathing and between wall studs. Insulation shall be glass fiber or mineral wool . 2-4 Windows a
Mission Driven Scene Understanding: Candidate Model Training and Validation
2016-09-01
driven scene understanding. One of the candidate engines that we are evaluating is a convolutional neural network (CNN) program installed on a Windows 10...Theano-AlexNet6,7) installed on a Windows 10 notebook computer. To the best of our knowledge, an implementation of the open-source, Python-based...AlexNet CNN on a Windows notebook computer has not been previously reported. In this report, we present progress toward the proof-of-principle testing
Effect of Data Assimilation Parameters on The Optimized Surface CO2 Flux in Asia
NASA Astrophysics Data System (ADS)
Kim, Hyunjung; Kim, Hyun Mee; Kim, Jinwoong; Cho, Chun-Ho
2018-02-01
In this study, CarbonTracker, an inverse modeling system based on the ensemble Kalman filter, was used to evaluate the effects of data assimilation parameters (assimilation window length and ensemble size) on the estimation of surface CO2 fluxes in Asia. Several experiments with different parameters were conducted, and the results were verified using CO2 concentration observations. The assimilation window lengths tested were 3, 5, 7, and 10 weeks, and the ensemble sizes were 100, 150, and 300. Therefore, a total of 12 experiments using combinations of these parameters were conducted. The experimental period was from January 2006 to December 2009. Differences between the optimized surface CO2 fluxes of the experiments were largest in the Eurasian Boreal (EB) area, followed by Eurasian Temperate (ET) and Tropical Asia (TA), and were larger in boreal summer than in boreal winter. The effect of ensemble size on the optimized biosphere flux is larger than the effect of the assimilation window length in Asia, but the importance of them varies in specific regions in Asia. The optimized biosphere flux was more sensitive to the assimilation window length in EB, whereas it was sensitive to the ensemble size as well as the assimilation window length in ET. The larger the ensemble size and the shorter the assimilation window length, the larger the uncertainty (i.e., spread of ensemble) of optimized surface CO2 fluxes. The 10-week assimilation window and 300 ensemble size were the optimal configuration for CarbonTracker in the Asian region based on several verifications using CO2 concentration measurements.
ERIC Educational Resources Information Center
Kennedy, Mike
2006-01-01
Educators and school designers place a high priority on creating facilities that enhance learning. That applies not only to how a school is built, but also to the materials and equipment used. Just as acoustical treatments or well-placed windows and skylights can make a classroom more conducive to learning, so can the right furniture. Desks,…
USDA-ARS?s Scientific Manuscript database
‘Honeycrisp’ is an economically important apple cultivar increasing rapidly in planted acreage in many apple growing regions. Long-term cold storage can enhance value by enabling a longer window of availability, but the cultivar is highly susceptible to chilling induced disorders. Soggy breakdown ...
OASIS: Prototyping Graphical Interfaces to Networked Information.
ERIC Educational Resources Information Center
Buckland, Michael K.; And Others
1993-01-01
Describes the latest modifications being made to OASIS, a front-end enhancement to the University of California's MELVYL online union catalog. Highlights include the X Windows interface; multiple database searching to act as an information network; Lisp implementation for flexible data representation; and OASIS commands and features to help…
Radiation/Catalytic Augmented Combustion.
1982-05-01
enhanced combustion processes, utilizing pulsed and continuous VUV light- serces . Similarly, the catalytic technique has provided efficient combustion...tures we had a pl /cx LiF lens with a focal length of 200 nm, and a MgF2 window 2 nmn in thickness. Although these materials are considered to be among
The occurrence of endocrine disrupting chemicals (EDCs) in concentrated animal feed operation (CAFO) waste, and the potential effects of these chemicals on aquatic ecosystems have been of recent concern. There is evidence that exposure to EDCs during enhanced windows of sensitiv...
Exclusive queueing model including the choice of service windows
NASA Astrophysics Data System (ADS)
Tanaka, Masahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro
2018-01-01
In a queueing system involving multiple service windows, choice behavior is a significant concern. This paper incorporates the choice of service windows into a queueing model with a floor represented by discrete cells. We contrived a logit-based choice algorithm for agents considering the numbers of agents and the distances to all service windows. Simulations were conducted with various parameters of agent choice preference for these two elements and for different floor configurations, including the floor length and the number of service windows. We investigated the model from the viewpoint of transit times and entrance block rates. The influences of the parameters on these factors were surveyed in detail and we determined that there are optimum floor lengths that minimize the transit times. In addition, we observed that the transit times were determined almost entirely by the entrance block rates. The results of the presented model are relevant to understanding queueing systems including the choice of service windows and can be employed to optimize facility design and floor management.
Foo, Lee Kien; McGree, James; Duffull, Stephen
2012-01-01
Optimal design methods have been proposed to determine the best sampling times when sparse blood sampling is required in clinical pharmacokinetic studies. However, the optimal blood sampling time points may not be feasible in clinical practice. Sampling windows, a time interval for blood sample collection, have been proposed to provide flexibility in blood sampling times while preserving efficient parameter estimation. Because of the complexity of the population pharmacokinetic models, which are generally nonlinear mixed effects models, there is no analytical solution available to determine sampling windows. We propose a method for determination of sampling windows based on MCMC sampling techniques. The proposed method attains a stationary distribution rapidly and provides time-sensitive windows around the optimal design points. The proposed method is applicable to determine sampling windows for any nonlinear mixed effects model although our work focuses on an application to population pharmacokinetic models. Copyright © 2012 John Wiley & Sons, Ltd.
Smart windows with functions of reflective display and indoor temperature-control
NASA Astrophysics Data System (ADS)
Lee, I.-Hui; Chao, Yu-Ching; Hsu, Chih-Cheng; Chang, Liang-Chao; Chiu, Tien-Lung; Lee, Jiunn-Yih; Kao, Fu-Jen; Lee, Chih-Kung; Lee, Jiun-Haw
2010-02-01
In this paper, a switchable window based on cholestreric liquid crystal (CLC) was demonstrated. Under different applied voltages, incoming light at visible and infrared wavelengths was modulated, respectively. A mixture of CLC with a nematic liquid crystal and a chiral dopant selectively reflected infrared light without bias, which effectively reduced the indoor temperature under sunlight illumination. At this time, transmission at visible range was kept at high and the windows looked transparent. With increasing the voltage to 15V, CLC changed to focal conic state and can be used as a reflective display, a privacy window, or a screen for projector. Under a high voltage (30V), homeotropic state was achieved. At this time, both infrared and visible light can transmit which acted as a normal window, which permitted infrared spectrum of winter sunlight to enter the room so as to reduce the heating requirement. Such a device can be used as a switchable window in smart buildings, green houses and windshields.
NREL Electrochromic Window Research Wins Award
None
2017-12-09
Winners of the CO-LABS Governor's Award for High-Impact Research in Energy Efficiency, Dr. Satyen Deb at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) discovered that a small electrical charge can change the opacity of tungsten oxide from clear to tinted. He, Dr. Dane Gillaspie, and their fellow scientists at NREL then applied this knowledge to develop and transfer the technologies required to construct an electrochromic window, which can switch between clear and heavily tinted states. Electrochromic windows allow natural light in while adding tint to reduce summer heat and glare, and going clear to allow sunlight through in the winter. Broad adaptation of these windows could reduce US total energy use by four percent and reduce building cooling loads by 20%, much of this during expensive peak hours. Windows based on these discoveries are now being installed worldwide.
Sornborger, Andrew T.; Wang, Zhuo; Tao, Louis
2015-01-01
Neural oscillations can enhance feature recognition [1], modulate interactions between neurons [2], and improve learning and memory [3]. Numerical studies have shown that coherent spiking can give rise to windows in time during which information transfer can be enhanced in neuronal networks [4–6]. Unanswered questions are: 1) What is the transfer mechanism? And 2) how well can a transfer be executed? Here, we present a pulse-based mechanism by which a graded current amplitude may be exactly propagated from one neuronal population to another. The mechanism relies on the downstream gating of mean synaptic current amplitude from one population of neurons to another via a pulse. Because transfer is pulse-based, information may be dynamically routed through a neural circuit with fixed connectivity. We demonstrate the transfer mechanism in a realistic network of spiking neurons and show that it is robust to noise in the form of pulse timing inaccuracies, random synaptic strengths and finite size effects. We also show that the mechanism is structurally robust in that it may be implemented using biologically realistic pulses. The transfer mechanism may be used as a building block for fast, complex information processing in neural circuits. We show that the mechanism naturally leads to a framework wherein neural information coding and processing can be considered as a product of linear maps under the active control of a pulse generator. Distinct control and processing components combine to form the basis for the binding, propagation, and processing of dynamically routed information within neural pathways. Using our framework, we construct example neural circuits to 1) maintain a short-term memory, 2) compute time-windowed Fourier transforms, and 3) perform spatial rotations. We postulate that such circuits, with automatic and stereotyped control and processing of information, are the neural correlates of Crick and Koch’s zombie modes. PMID:26227067
Templated fabrication of hollow nanospheres with 'windows' of accurate size and tunable number.
Xie, Duan; Hou, Yidong; Su, Yarong; Gao, Fuhua; Du, Jinglei
2015-01-01
The 'windows' or 'doors' on the surface of a closed hollow structure can enable the exchange of material and information between the interior and exterior of one hollow sphere or between two hollow spheres, and this information or material exchange can also be controlled through altering the window' size. Thus, it is very interesting and important to achieve the fabrication and adjustment of the 'windows' or 'doors' on the surface of a closed hollow structure. In this paper, we propose a new method based on the temple-assisted deposition method to achieve the fabrication of hollow spheres with windows of accurate size and number. Through precisely controlling of deposition parameters (i.e., deposition angle and number), hollow spheres with windows of total size from 0% to 50% and number from 1 to 6 have been successfully achieved. A geometrical model has been developed for the morphology simulation and size calculation of the windows, and the simulation results meet well with the experiment. This model will greatly improve the convenience and efficiency of this temple-assisted deposition method. In addition, these hollow spheres with desired windows also can be dispersed into liquid or arranged regularly on any desired substrate. These advantages will maximize their applications in many fields, such as drug transport and nano-research container.
Eisner, Brian H; Kambadakone, Avinash; Monga, Manoj; Anderson, James K; Thoreson, Andrew A; Lee, Hang; Dretler, Stephen P; Sahani, Dushyant V
2009-04-01
We determined the most accurate method of measuring urinary stones on computerized tomography. For the in vitro portion of the study 24 calculi, including 12 calcium oxalate monohydrate and 12 uric acid stones, that had been previously collected at our clinic were measured manually with hand calipers as the gold standard measurement. The calculi were then embedded into human kidney-sized potatoes and scanned using 64-slice multidetector computerized tomography. Computerized tomography measurements were performed at 4 window settings, including standard soft tissue windows (window width-320 and window length-50), standard bone windows (window width-1120 and window length-300), 5.13x magnified soft tissue windows and 5.13x magnified bone windows. Maximum stone dimensions were recorded. For the in vivo portion of the study 41 patients with distal ureteral stones who underwent noncontrast computerized tomography and subsequently spontaneously passed the stones were analyzed. All analyzed stones were 100% calcium oxalate monohydrate or mixed, calcium based stones. Stones were prospectively collected at the clinic and the largest diameter was measured with digital calipers as the gold standard. This was compared to computerized tomography measurements using 4.0x magnified soft tissue windows and 4.0x magnified bone windows. Statistical comparisons were performed using Pearson's correlation and paired t test. In the in vitro portion of the study the most accurate measurements were obtained using 5.13x magnified bone windows with a mean 0.13 mm difference from caliper measurement (p = 0.6). Measurements performed in the soft tissue window with and without magnification, and in the bone window without magnification were significantly different from hand caliper measurements (mean difference 1.2, 1.9 and 1.4 mm, p = 0.003, <0.001 and 0.0002, respectively). When comparing measurement errors between stones of different composition in vitro, the error for calcium oxalate calculi was significantly different from the gold standard for all methods except bone window settings with magnification. For uric acid calculi the measurement error was observed only in standard soft tissue window settings. In vivo 4.0x magnified bone windows was superior to 4.0x magnified soft tissue windows in measurement accuracy. Magnified bone window measurements were not statistically different from digital caliper measurements (mean underestimation vs digital caliper 0.3 mm, p = 0.4), while magnified soft tissue windows were statistically distinct (mean underestimation 1.4 mm, p = 0.001). In this study magnified bone windows were the most accurate method of stone measurements in vitro and in vivo. Therefore, we recommend the routine use of magnified bone windows for computerized tomography measurement of stones. In vitro the measurement error in calcium oxalate stones was greater than that in uric acid stones, suggesting that stone composition may be responsible for measurement inaccuracies.
Hydrocarbon-Fueled Rocket Plume Measurement Using Polarized UV Raman Spectroscopy
NASA Technical Reports Server (NTRS)
Wehrmeyer, Joseph A.
2002-01-01
The influence of pressure upon the signal strength and polarization properties of UV Raman signals has been investigated experimentally up to pressures of 165 psia (11 atm). No significant influence of pressure upon the Raman scattering cross section or depolarization ratio of the N2 Raman signal was found. The Raman scattering signal varied linearly with pressure for the 300 K N2 samples examined, thus showing no enhancement of cross section with increasing pressure. However at the highest pressures associated with rocket engine combustion, there could be an increase in the Raman scattering cross section, based upon others' previous work at higher pressures than those examined in this work. The influence of pressure upon thick fused silica windows, used in the NASA Modular Combustion Test Article, was also investigated. No change in the transmission characteristics of the windows occurred as the pressure difference across the windows increased from 0 psig up to 150 psig. A calibration was performed on the UV Raman system at Vanderbilt University, which is similar to the one at the NASA-Marshall Test Stand 115. The results of this calibration are described in the form of temperature-dependent functions, f(T)'s, that account for the increase in Raman scattering cross section with an increase in temperature and also account for the reduction in collected Raman signal if wavelength integration does not occur across the entire wavelength range of the Raman signal. These functions generally vary only by approximately 10% across their respective temperature ranges, except for the case Of CO2, where there is a factor of three difference in its f(T) from 300 K to 2500 K. However this trend for CO2 is consistent with the experimental work of others, and is expected based on the low characteristic vibrational temperature Of CO2. A time-averaged temperature measurement technique has been developed, using the same equipment as for the work mentioned above, that is based upon high-spectral resolution UV Raman scattering. This technique can provide temperature measurements for flows where pressure cannot be measured.
A Search for the Transit of HD 168443b: Improved Orbital Parameters and Photometry
NASA Astrophysics Data System (ADS)
Pilyavsky, Genady; Mahadevan, Suvrath; Kane, Stephen R.; Howard, Andrew W.; Ciardi, David R.; de Pree, Chris; Dragomir, Diana; Fischer, Debra; Henry, Gregory W.; Jensen, Eric L. N.; Laughlin, Gregory; Marlowe, Hannah; Rabus, Markus; von Braun, Kaspar; Wright, Jason T.; Wang, Xuesong X.
2011-12-01
The discovery of transiting planets around bright stars holds the potential to greatly enhance our understanding of planetary atmospheres. In this work we present the search for transits of HD 168443b, a massive planet orbiting the bright star HD 168443 (V = 6.92) with a period of 58.11 days. The high eccentricity of the planetary orbit (e = 0.53) significantly enhances the a priori transit probability beyond that expected for a circular orbit, making HD 168443 a candidate for our ongoing Transit Ephemeris Refinement and Monitoring Survey. Using additional radial velocities from Keck High Resolution Echelle Spectrometer, we refined the orbital parameters of this multi-planet system and derived a new transit ephemeris for HD 168443b. The reduced uncertainties in the transit window make a photometric transit search practicable. Photometric observations acquired during predicted transit windows were obtained on three nights. Cerro Tololo Inter-American Observatory 1.0 m photometry acquired on 2010 September 7 had the required precision to detect a transit but fell just outside of our final transit window. Nightly photometry from the T8 0.8 m automated photometric telescope at Fairborn Observatory, acquired over a span of 109 nights, demonstrates that HD 168443 is constant on a timescale of weeks. Higher-cadence photometry on 2011 April 28 and June 25 shows no evidence of a transit. We are able to rule out a non-grazing transit of HD 168443b.
WINCADRE INORGANIC (WINDOWS COMPUTER-AIDED DATA REVIEW AND EVALUATION)
WinCADRE (Computer-Aided Data Review and Evaluation) is a Windows -based program designed for computer-assisted data validation. WinCADRE is a powerful tool which significantly decreases data validation turnaround time. The electronic-data-deliverable format has been designed in...
DETAIL OF ORIGINAL SIXOVERSIXLIGHT DOUBLEHUNG SASH WINDOWS WITH GRADUATED SCALE ...
DETAIL OF ORIGINAL SIX-OVER-SIX-LIGHT DOUBLE-HUNG SASH WINDOWS WITH GRADUATED SCALE IN 1' INCREMENTS. VIEW FACING NORTHWEST - U.S. Naval Base, Pearl Harbor, Gymnasium Building, North Waterfront & Pierce Street near Berth S-13, Pearl City, Honolulu County, HI
Ong, Peng Kai; Meays, Diana; Frangos, John A.; Carvalho, Leonardo J.M.
2013-01-01
Objective The acute implantation of a cranial window for studying cerebroarteriolar reactivity in living animals involves a highly surgically-invasive craniotomy procedure at the time of experimentation, which limits its application in severely ill animals such as in the experimental murine model of cerebral malaria (ECM). To overcome this problem, a chronic window implantation scheme was designed and implemented. Methods A partial craniotomy is first performed by creating a skull bone flap in the healthy mice, which are then left to recover for 1–2 weeks, followed by infection to induce ECM. Uninfected animals are utilized as control. When cranial superfusion is needed, the bone flap is retracted and window implantation completed by assembling a perfusion chamber for compound delivery to the exposed brain surface. The presurgical step is intended to minimize surgical trauma on the day of experimentation. Results Chronic preparations in uninfected mice exhibited remarkably improved stability over acute ones by significantly reducing periarteriolar tissue damage and enhancing cerebroarteriolar dilator responses. The chronic scheme was successfully implemented in ECM mice which unveiled novel preliminary insights on impaired cerebroarteriolar reactivity and eNOS dysfunction. Conclusion The chronic scheme presents an innovative approach for advancing our mechanistic understanding on cerebrovascular dysfunction in ECM. PMID:23279271
Teh, V; Sim, K S; Wong, E K
2016-11-01
According to the statistic from World Health Organization (WHO), stroke is one of the major causes of death globally. Computed tomography (CT) scan is one of the main medical diagnosis system used for diagnosis of ischemic stroke. CT scan provides brain images in Digital Imaging and Communication in Medicine (DICOM) format. The presentation of CT brain images is mainly relied on the window setting (window center and window width), which converts an image from DICOM format into normal grayscale format. Nevertheless, the ordinary window parameter could not deliver a proper contrast on CT brain images for ischemic stroke detection. In this paper, a new proposed method namely gamma correction extreme-level eliminating with weighting distribution (GCELEWD) is implemented to improve the contrast on CT brain images. GCELEWD is capable of highlighting the hypodense region for diagnosis of ischemic stroke. The performance of this new proposed technique, GCELEWD, is compared with four of the existing contrast enhancement technique such as brightness preserving bi-histogram equalization (BBHE), dualistic sub-image histogram equalization (DSIHE), extreme-level eliminating histogram equalization (ELEHE), and adaptive gamma correction with weighting distribution (AGCWD). GCELEWD shows better visualization for ischemic stroke detection and higher values with image quality assessment (IQA) module. SCANNING 38:842-856, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Borusewicz, P; Stańczyk, E; Kubiak, K; Spużak, J; Glińska-Suchocka, K; Jankowski, M; Nicpoń, J; Podgórski, P
2018-05-01
Dynamic contrast enhanced (DCE)-magnetic resonance imaging (MRI) consists of acquisition of native baseline images, followed by a series of acquisitions performed during and after administration of a contrast medium. DCE-MRI, in conjunction with hepatobiliary-specific contrast media, such as gadoxetic acid (GD-EOB-DTPA), allows for precise characterisation of the enhancement pattern of the hepatic parenchyma following administration of the contrast agent. The aim of the study was to assess the pattern of temporal resolution contrast enhancement of the hepatic parenchyma following administration of GD-EOB-DTPA and to determine the optimal time window for post-contrast assessment of the liver. The study was carried out on eight healthy beagle dogs. MRI was performed using a 1.5T scanner. The imaging protocol included T1 weighted (T1-W) gradient echo (GRE), T2 weighted (T2-W) turbo spin echo (TSE) and dynamic T1-W GRE sequences. The dynamic T1-W sequence was performed using single 10mm thick slices. Regions of interest (ROIs) were chosen and the signal intensity curves were calculated for quantitative image analysis. The mean time to peak for all dogs was 26min. The plateau phase lasted on average 21min. A gradual decrease in the signal intensity of the hepatic parenchyma was observed in all dogs. A DCE-MRI enhancement pattern of the hepatic parenchyma was evident in dogs following the administration of a GD-EOB-DTPA, establishing baseline data for an optimal time window between 26 and 41min after administration of the contrast agent. Copyright © 2018 Elsevier Ltd. All rights reserved.
Asgari, Afrouz; Ashoor, Mansour; Sohrabpour, Mostafa; Shokrani, Parvaneh; Rezaei, Ali
2015-05-01
Improving signal to noise ratio (SNR) and qualified images by the various methods is very important for detecting the abnormalities at the body organs. Scatter and attenuation of photons by the organs lead to errors in radiopharmaceutical estimation as well as degradation of images. The choice of suitable energy window and the radionuclide have a key role in nuclear medicine which appearing the lowest scatter fraction as well as having a nearly constant linear attenuation coefficient as a function of phantom thickness. The energy windows of symmetrical window (SW), asymmetric window (ASW), high window (WH) and low window (WL) using Tc-99m and Sm-153 radionuclide with solid water slab phantom (RW3) and Teflon bone phantoms have been compared, and Matlab software and Monte Carlo N-Particle (MCNP4C) code were modified to simulate these methods and obtaining the amounts of FWHM and full width at tenth maximum (FWTM) using line spread functions (LSFs). The experimental data were obtained from the Orbiter Scintron gamma camera. Based on the results of the simulation as well as experimental work, the performance of WH and ASW display of the results, lowest scatter fraction as well as constant linear attenuation coefficient as a function of phantom thickness. WH and ASW were optimal windows in nuclear medicine imaging for Tc-99m in RW3 phantom and Sm-153 in Teflon bone phantom. Attenuation correction was done for WH and ASW optimal windows and for these radionuclides using filtered back projection algorithm. Results of simulation and experimental show that very good agreement between the set of experimental with simulation as well as theoretical values with simulation data were obtained which was nominally less than 7.07 % for Tc-99m and less than 8.00 % for Sm-153. Corrected counts were not affected by the thickness of scattering material. The Simulated results of Line Spread Function (LSF) for Sm-153 and Tc-99m in phantom based on four windows and TEW method were indicated that the FWHM and FWTM values were approximately the same in TEW method and WH and ASW, but the sensitivity at the optimal window was more than that of the other one. The suitable determination of energy window width on the energy spectra can be useful in optimal design to improve efficiency and contrast. It is found that the WH is preferred to the ASW and the ASW is preferred to the SW.
Complex analysis of energy efficiency in operated high-rise residential building: Case study
NASA Astrophysics Data System (ADS)
Korniyenko, Sergey
2018-03-01
Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects). Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.
Baczkowski, Blazej M; Johnstone, Tom; Walter, Henrik; Erk, Susanne; Veer, Ilya M
2017-06-01
We evaluated whether sliding-window analysis can reveal functionally relevant brain network dynamics during a well-established fear conditioning paradigm. To this end, we tested if fMRI fluctuations in amygdala functional connectivity (FC) can be related to task-induced changes in physiological arousal and vigilance, as reflected in the skin conductance level (SCL). Thirty-two healthy individuals participated in the study. For the sliding-window analysis we used windows that were shifted by one volume at a time. Amygdala FC was calculated for each of these windows. Simultaneously acquired SCL time series were averaged over time frames that corresponded to the sliding-window FC analysis, which were subsequently regressed against the whole-brain seed-based amygdala sliding-window FC using the GLM. Surrogate time series were generated to test whether connectivity dynamics could have occurred by chance. In addition, results were contrasted against static amygdala FC and sliding-window FC of the primary visual cortex, which was chosen as a control seed, while a physio-physiological interaction (PPI) was performed as cross-validation. During periods of increased SCL, the left amygdala became more strongly coupled with the bilateral insula and anterior cingulate cortex, core areas of the salience network. The sliding-window analysis yielded a connectivity pattern that was unlikely to have occurred by chance, was spatially distinct from static amygdala FC and from sliding-window FC of the primary visual cortex, but was highly comparable to that of the PPI analysis. We conclude that sliding-window analysis can reveal functionally relevant fluctuations in connectivity in the context of an externally cued task. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Daniel; Chen, Damian; Yen, Ray; Cheng, Mingjen; Lan, Andy; Ghaskadvi, Rajesh
2008-11-01
Identifying hotspots--structures that limit the lithography process window--become increasingly important as the industry relies heavily on RET to print sub-wavelength designs. KLA-Tencor's patented Process Window Qualification (PWQ) methodology has been used for this purpose in various fabs. PWQ methodology has three key advantages (a) PWQ Layout--to obtain the best sensitivity (b) Design Based Binning--for pattern repeater analysis (c) Intelligent sampling--for the best DOI sampling rate. This paper evaluates two different analysis strategies for SEM review sampling successfully deployed at Inotera Memories, Inc. We propose a new approach combining the location repeater and pattern repeaters. Based on a recent case study the new sampling flow reduces the data analysis and sampling time from 6 hours to 1.5 hour maintaining maximum DOI sample rate.
Doping of AlH3 with alkali metal hydrides for enhanced decomposition kinetics
NASA Astrophysics Data System (ADS)
Sandrock, Gary; Reilly, James
2005-03-01
Aluminum hydride, AlH3, has inherently high gravimetric and volumetric properties for onboard vehiclular hydrogen storage (10 wt% H2 and 0.148 kg H2/L). Yet it has been widely neglected because of its kinetic limitations for low-temperature H2 desorption and the thermodynamic difficulties associated with recharging. This paper considers a scenario whereby doped AlH3 is decomposed onboard and recharged offboard. In particular, we show that particle size control and doping with small levels of alkali metal hydrides (e.g., LiH) results in accelerated H2 desorption rates nearly high enough to supply fuel-cell and ICE vehicles. The mechanism of enhanced H2 desorption is associated with the formation of alanate windows (e.g., LiAlH4) between the AlH3 particles and the external gas phase. These alanate windows can be doped with Ti to further enhance transparency, even to the point of accomplishing slow decomposition of AlH3 at room temperature. It is highly likely 2010 gravimetric and volumetric vehicular system targets (6 wt% H2 and 0.045 kg/L) can be met with AlH3. But a new, low-cost method of offboard regeneration of spent Al back to AlH3 is yet needed.
Economic efficiency of application of solar window
NASA Astrophysics Data System (ADS)
Shapoval, Stepan
2017-12-01
Priority and qualitatively new direction in the fuel and energy sector is renewable energy. This paper describes a feasibility study of using solar window in the system of solar heat supply. The article presents literature data about the effectiveness of the use of solar systems in other countries. The results confirm a sufficient efficiency of solar heat supply with using solar Windows. Insights based on practical experience and mathematical calculations, which are aimed at a detailed explanation of economic efficiency of the proposed construction.
Diamond-Based Supercapacitors: Realization and Properties.
Gao, Fang; Nebel, Christoph E
2016-10-26
In this Spotlight on Applications, we describe our recent progress on the fabrication of surface-enlarged boron-doped polycrystalline diamond electrodes, and evaluate their performance in supercapacitor applications. We begin with a discussion of the fabrication methods of porous diamond materials. The diamond surface enlargement starts with a top-down plasma etching method. Although the extra surface area provided by surface roughening or nanostructuring provides good outcome for sensing applications, a capacitance value <1 mF cm -2 or a surface-enlargement factor <100 fail to meet the requirement of a practical supercapacitor. Driven by the need for large surface areas, we recently focused on the tempated-growth method. We worked on both supported and free-standing porous diamond materials to enhance the areal capacitance to the "mF cm -2 " range. With our newly developed free-standing diamond paper, areal capacitance can be multiplied by stacking multilayers of the electrode material. Finally, considering the fact that there is no real diamond-based supercapacitor device up to now, we fabricated the first prototype pouch-cell device based on the free-standing diamond paper to evaluate its performance. The results reveal that the diamond paper is suitable for operation in high potential windows (up to 2.5 V) in aqueous electrolyte with a capacitance of 0.688 mF cm -2 per layer of paper (or 0.645 F g -1 ). Impedance spectroscopy revealed that the operation frequency of the device exceeds 30 Hz. Because of the large potential window and the ability to work at high frequency, the specific power of the device reached 1 × 10 5 W kg -1 . In the end, we made estimations on the future target performance of diamond supercapacitors based on the existing information.
Aerosol-spray diverse mesoporous metal oxides from metal nitrates
Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang
2015-01-01
Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988
Shen, Ping; Wang, Guoxin; Kang, Bonan; Guo, Wenbin; Shen, Liang
2018-02-21
Semitransparent polymer solar cells (ST-PSCs) show attractive potential in power-generating windows or building-integrated photovoltaics. However, the development of ST-PSCs is lagging behind opaque PSCs because of the contradiction between device efficiency and transmission. Herein, Ag/Au alloy nanoparticles and photonic crystals (PCs) were simultaneously introduced into ST-PSCs, acting compatibly as localized surface plasmon resonances and distributed Bragg reflectors to enhance light absorption and transmission. As a result, ST-PSCs based on a hybrid PTB7-Th:PC 71 BM active layer contribute an efficiency as high as 7.13 ± 0.15% and an average visible transmission beyond 20%, which are superior to most of the reported results. Furthermore, PCs can partly compensate valley range of transmission by balancing reflection and transmission regions, yielding a high color rendering index of 95. We believe that the idea of two light management methods compatibly enhancing the performance of ST-PSCs can offer a promising path to develop photovoltaic applications.
Nanoparticle-Delivered Chemotherapy: Old Drugs in New Packages.
Lee, Michael S; Dees, E Claire; Wang, Andrew Z
2017-03-15
Cytotoxic chemotherapies have a narrow therapeutic window, with high peaks and troughs of plasma concentration. Novel nanoparticle formulations of cytotoxic chemotherapy drugs can enhance pharmacokinetic characteristics and facilitate passive targeting of drugs to tumors via the enhanced permeability and retention effect, thus mitigating toxicity. Nanoparticle vehicles currently in clinical use or undergoing clinical investigation for anticancer therapies include liposomes, polymeric micelles, protein-drug nanoparticles, and dendrimers. Multiple nanoparticle formulations of existing cytotoxic chemotherapies are approved for use in several indications, with clinical data indeed showing optimization of pharmacokinetics and different toxicity profiles compared with their parent drugs. There are also many new nanoparticle drug formulations in development and undergoing early- and late-phase clinical trials, including several that utilize active targeting or triggered release based on environmental stimuli. Here, we review the rationale for nanoparticle formulations of existing or previously investigated cytotoxic drugs, describe currently approved nanoparticle formulations of drugs, and discuss some of the most promising clinical trials currently underway.
High-frequency modes in a two-dimensional rectangular room with windows
NASA Astrophysics Data System (ADS)
Shabalina, E. D.; Shirgina, N. V.; Shanin, A. V.
2010-07-01
We examine a two-dimensional model problem of architectural acoustics on sound propagation in a rectangular room with windows. It is supposed that the walls are ideally flat and hard; the windows absorb all energy that falls upon them. We search for the modes of such a room having minimal attenuation indices, which have the expressed structure of billiard trajectories. The main attenuation mechanism for such modes is diffraction at the edges of the windows. We construct estimates for the attenuation indices of the given modes based on the solution to the Weinstein problem. We formulate diffraction problems similar to the statement of the Weinstein problem that describe the attenuation of billiard modes in complex situations.
3. EAST SIDE FROM ATOP TUNNEL, SHOWING BLAST SHIELDED WINDOWS ...
3. EAST SIDE FROM ATOP TUNNEL, SHOWING BLAST SHIELDED WINDOWS AND PERISCOPE FACING TO TEST STAND 1-3. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
DOT National Transportation Integrated Search
1997-07-01
This report provides estimates of the numbers of persons injured as a result of : hazards involving four specific motor vehicle components: radiators, batteries, : power windows, and power roofs. The injury estimates are based upon data from : the Co...
Low-complexity image processing for real-time detection of neonatal clonic seizures.
Ntonfo, Guy Mathurin Kouamou; Ferrari, Gianluigi; Raheli, Riccardo; Pisani, Francesco
2012-05-01
In this paper, we consider a novel low-complexity real-time image-processing-based approach to the detection of neonatal clonic seizures. Our approach is based on the extraction, from a video of a newborn, of an average luminance signal representative of the body movements. Since clonic seizures are characterized by periodic movements of parts of the body (e.g., the limbs), by evaluating the periodicity of the extracted average luminance signal it is possible to detect the presence of a clonic seizure. The periodicity is investigated, through a hybrid autocorrelation-Yin estimation technique, on a per-window basis, where a time window is defined as a sequence of consecutive video frames. While processing is first carried out on a single window basis, we extend our approach to interlaced windows. The performance of the proposed detection algorithm is investigated, in terms of sensitivity and specificity, through receiver operating characteristic curves, considering video recordings of newborns affected by neonatal seizures.
Combining the Hanning windowed interpolated FFT in both directions
NASA Astrophysics Data System (ADS)
Chen, Kui Fu; Li, Yan Feng
2008-06-01
The interpolated fast Fourier transform (IFFT) has been proposed as a way to eliminate the picket fence effect (PFE) of the fast Fourier transform. The modulus based IFFT, cited in most relevant references, makes use of only the 1st and 2nd highest spectral lines. An approach using three principal spectral lines is proposed. This new approach combines both directions of the complex spectrum based IFFT with the Hanning window. The optimal weight to minimize the estimation variance is established on the first order Taylor series expansion of noise interference. A numerical simulation is carried out, and the results are compared with the Cramer-Rao bound. It is demonstrated that the proposed approach has a lower estimation variance than the two-spectral-line approach. The improvement depends on the extent of sampling deviating from the coherent condition, and the best is decreasing variance by 2/7. However, it is also shown that the estimation variance of the windowed IFFT with the Hanning is significantly higher than that of without windowing.
Stable electrolyte for high voltage electrochemical double-layer capacitors
Ruther, Rose E.; Sun, Che -Nan; Holliday, Adam; ...
2016-12-28
A simple electrolyte consisting of NaPF 6 salt in 1,2-dimethoxyethane (DME) can extend the voltage window of electric double-layer capacitors (EDLCs) to >3.5 V. DME does not passivate carbon electrodes at very negative potentials (near Na/Na +), extending the practical voltage window by about 1.0 V compared to standard, non-aqueous electrolytes based on acetonitrile. The voltage window is demonstrated in two- and three-electrode cells using a combination of electrochemical impedance spectroscopy (EIS), charge-discharge cycling, and measurements of leakage current. DME-based electrolytes cannot match the high conductivity of acetonitrile solutions, but they can satisfy applications that demand high energy density atmore » moderate power. The conductivity of NaPF 6 in DME is comparable to commercial lithium-ion battery electrolytes and superior to most ionic liquids. Lastly, factors that limit the voltage window and EDLC energy density are discussed, and strategies to further boost energy density are proposed.« less
Solar radiation control using nematic curvilinear aligned phase (NCAP) liquid crystal technology
NASA Astrophysics Data System (ADS)
vanKonynenburg, Peter; Marsland, Stephen; McCoy, James
1987-11-01
A new, advanced liquid crystal technology has made economical, large area, electrically-controlled windows a commercial reality. The new technology, Nematic Curvilinear Aligned Phase (NCAP), is based on a polymeric material containing small droplets of nematic liquid crystal which is coated and laminated between transparent electrodes and fabricated into large area field effect devices. NCAP windows feature variable solar transmission and reflection through a voltage-controlled scattering mechanism. Laminated window constructions provide the excellent transmission and visibility of glass in the powered condition. In the unpowered condition, the windows are highly translucent, and provide 1) blocked vision for privacy, security, and obscuration of information, and 2) glare control and solar shading. The stability is excellent during accelerated aging tests. Degradation mechanisms which can limit performance and lifetime are discussed. Maximum long term stability is achieved by product designs that incorporate the appropriate window materials to provide environmental protection.
Fully automatic time-window selection using machine learning for global adjoint tomography
NASA Astrophysics Data System (ADS)
Chen, Y.; Hill, J.; Lei, W.; Lefebvre, M. P.; Bozdag, E.; Komatitsch, D.; Tromp, J.
2017-12-01
Selecting time windows from seismograms such that the synthetic measurements (from simulations) and measured observations are sufficiently close is indispensable in a global adjoint tomography framework. The increasing amount of seismic data collected everyday around the world demands "intelligent" algorithms for seismic window selection. While the traditional FLEXWIN algorithm can be "automatic" to some extent, it still requires both human input and human knowledge or experience, and thus is not deemed to be fully automatic. The goal of intelligent window selection is to automatically select windows based on a learnt engine that is built upon a huge number of existing windows generated through the adjoint tomography project. We have formulated the automatic window selection problem as a classification problem. All possible misfit calculation windows are classified as either usable or unusable. Given a large number of windows with a known selection mode (select or not select), we train a neural network to predict the selection mode of an arbitrary input window. Currently, the five features we extract from the windows are its cross-correlation value, cross-correlation time lag, amplitude ratio between observed and synthetic data, window length, and minimum STA/LTA value. More features can be included in the future. We use these features to characterize each window for training a multilayer perceptron neural network (MPNN). Training the MPNN is equivalent to solve a non-linear optimization problem. We use backward propagation to derive the gradient of the loss function with respect to the weighting matrices and bias vectors and use the mini-batch stochastic gradient method to iteratively optimize the MPNN. Numerical tests show that with a careful selection of the training data and a sufficient amount of training data, we are able to train a robust neural network that is capable of detecting the waveforms in an arbitrary earthquake data with negligible detection error compared to existing selection methods (e.g. FLEXWIN). We will introduce in detail the mathematical formulation of the window-selection-oriented MPNN and show very encouraging results when applying the new algorithm to real earthquake data.
The Impact of Changing Cloud Cover on the High Arctic's Primary Cooling-to-space Windows
NASA Astrophysics Data System (ADS)
Mariani, Zen; Rowe, Penny; Strong, Kimberly; Walden, Von; Drummond, James
2014-05-01
In the Arctic, most of the infrared energy emitted by the surface escapes to space in two atmospheric windows at 10 and 20 μm. As the Arctic warms, the 20 μm cooling-to-space window becomes increasingly opaque (or "closed"), trapping more surface infrared radiation in the atmosphere, with implications for the Arctic's radiative energy balance. Since 2006, the Canadian Network for the Detection of Atmospheric Change (CANDAC) has measured downwelling infrared radiance with an Atmospheric Emitted Radiance Interferometer (AERI) at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Canada, providing the first long-term measurements of the 10 and 20 μm windows in the high Arctic. In this work, measurements of the distribution of downwelling 10 and 20 µm brightness temperatures at Eureka are separated based on cloud cover, providing a comparison to an existing climatology from the Southern Great Plains (SGP). Measurements of the downwelling radiance at both 10 and 20 μm exhibit strong seasonal variability as a result of changes in temperature and water vapour, in addition to variability with cloud cover. When separated by season, brightness temperatures in the 20 µm window are found to be independent of cloud thickness in the summertime, indicating that this window is closed in the summer. Radiance trends in three-month averages are positive and are significantly larger (factor > 5) than the trends detected at the SGP, indicating that changes in the downwelling radiance are accelerated in the high Arctic compared to lower latitudes. This statistically significant increase (> 5% / yr) in radiance at 10 μm occurs only when the 20 μm window is mostly transparent, or "open" (i.e., in all seasons except summer), and may have long-term consequences, particularly as warmer temperatures and increased water vapour "close" the dirty window for a prolonged period. These surface-based measurements of radiative forcing can be used to quantify changes in the high-Arctic energy budget and evaluate general circulation model simulations.
Do windows or natural views affect outcomes or costs among patients in ICUs?
Kohn, Rachel; Harhay, Michael O; Cooney, Elizabeth; Small, Dylan S; Halpern, Scott D
2013-07-01
To determine whether potential exposure to natural light via windows or to more pleasing views through windows affects outcomes or costs among critically ill patients. Retrospective cohort study. An academic hospital in Philadelphia, PA. Six thousand one hundred thirty-eight patients admitted to a 24-bed medical ICU and 6,631 patients admitted to a 24-bed surgical ICU from July 1, 2006, to June 30, 2010. Assignment to medical ICU rooms with vs. without windows and to surgical ICU rooms with natural vs. industrial views based on bed availability. In primary analyses adjusting for patient characteristics, medical ICU patients admitted to rooms with (n = 4,093) versus without (n = 2,243) windows did not differ in rates of ICU (p = 0.25) or in-hospital (p = 0.94) mortality, ICU readmissions (p = 0.37), or delirium (p = 0.56). Surgical ICU patients admitted to rooms with natural (n = 3,072) versus industrial (n = 3,588) views experienced slightly shorter ICU lengths of stay and slightly lower variable costs. Instrumental variable analyses based on initial bed assignment and exposure time did not show any differences in any outcomes in either the medical ICU or surgical ICU cohorts, and none of the differences noted in primary analyses remained statistically significant when adjusting for multiple comparisons. In a prespecified subgroup analysis among patients with ICU length of stay greater than 72 hours, MICU windows were associated with reduced ICU (p = 0.02) and hospital mortality (p = 0.04); these results did not meet criteria for significance after adjustment for multiple comparisons. ICU rooms with windows or natural views do not improve outcomes or reduce costs of in-hospital care for general populations of medical and surgical ICU patients. Future work is needed to determine whether targeting light from windows directly toward patients influences outcomes and to explore these effects in patients at high risk for adverse outcomes.
Implementing Audio-CASI on Windows’ Platforms
Cooley, Philip C.; Turner, Charles F.
2011-01-01
Audio computer-assisted self interviewing (Audio-CASI) technologies have recently been shown to provide important and sometimes dramatic improvements in the quality of survey measurements. This is particularly true for measurements requiring respondents to divulge highly sensitive information such as their sexual, drug use, or other sensitive behaviors. However, DOS-based Audio-CASI systems that were designed and adopted in the early 1990s have important limitations. Most salient is the poor control they provide for manipulating the video presentation of survey questions. This article reports our experiences adapting Audio-CASI to Microsoft Windows 3.1 and Windows 95 platforms. Overall, our Windows-based system provided the desired control over video presentation and afforded other advantages including compatibility with a much wider array of audio devices than our DOS-based Audio-CASI technologies. These advantages came at the cost of increased system requirements --including the need for both more RAM and larger hard disks. While these costs will be an issue for organizations converting large inventories of PCS to Windows Audio-CASI today, this will not be a serious constraint for organizations and individuals with small inventories of machines to upgrade or those purchasing new machines today. PMID:22081743
Broadband Absorbing Exciton-Plasmon Metafluids with Narrow Transparency Windows.
Yang, Jihua; Kramer, Nicolaas J; Schramke, Katelyn S; Wheeler, Lance M; Besteiro, Lucas V; Hogan, Christopher J; Govorov, Alexander O; Kortshagen, Uwe R
2016-02-10
Optical metafluids that consist of colloidal solutions of plasmonic and/or excitonic nanomaterials may play important roles as functional working fluids or as means for producing solid metamaterial coatings. The concept of a metafluid employed here is based on the picture that a single ballistic photon, propagating through the metafluid, interacts with a large collection of specifically designed optically active nanocrystals. We demonstrate water-based metafluids that act as broadband electromagnetic absorbers in a spectral range of 200-3300 nm and feature a tunable narrow (∼100 nm) transparency window in the visible-to-near-infrared region. To define this transparency window, we employ plasmonic gold nanorods. We utilize excitonic boron-doped silicon nanocrystals as opaque optical absorbers ("optical wall") in the UV and blue-green range of the spectrum. Water itself acts as an opaque "wall" in the near-infrared to infrared. We explore the limits of the concept of a "simple" metafluid by computationally testing and validating the effective medium approach based on the Beer-Lambert law. According to our simulations and experiments, particle aggregation and the associated decay of the window effect are one example of the failure of the simple metafluid concept due to strong interparticle interactions.
NASA Technical Reports Server (NTRS)
Craig, Roger A.; Davy, William C.; Whiting, Ellis E.
1994-01-01
The Radiative Heating Experiment, RHE, aboard the Aeroassist Flight Experiment, AFE, (now cancelled) was to make in-situ measurements of the stagnation region shock layer radiation during an aerobraking maneuver from geosynchronous to low earth orbit. The measurements were to provide a data base to help develop and validate aerothermodynamic computational models. Although cancelled, much work was done to develop the science requirements and to successfully meet RHE technical challenges. This paper discusses the RHE scientific objectives and expected science performance of a small sapphire window for the RHE radiometers. The spectral range required was from 170 to 900 nm. The window size was based on radiometer sensitivity requirements including capability of on-orbit solar calibration.
Sheng, Ouwei; Jin, Chengbin; Luo, Jianmin; Yuan, Huadong; Huang, Hui; Gan, Yongping; Zhang, Jun; Xia, Yang; Liang, Chu; Zhang, Wenkui; Tao, Xinyong
2018-05-09
High ionic conductivity, satisfactory mechanical properties, and wide electrochemical windows are crucial factors for composite electrolytes employed in solid-state lithium-ion batteries (SSLIBs). Based on these considerations, we fabricate Mg 2 B 2 O 5 nanowire enabled poly(ethylene oxide) (PEO)-based solid-state electrolytes (SSEs). Notably, these SSEs have enhanced ionic conductivity and a large electrochemical window. The elevated ionic conductivity is attributed to the improved motion of PEO chains and the increased Li migrating pathway on the interface between Mg 2 B 2 O 5 and PEO-LiTFSI. Moreover, the interaction between Mg 2 B 2 O 5 and -SO 2 - in TFSI - anions could also benefit the improvement of conductivity. In addition, the SSEs containing Mg 2 B 2 O 5 nanowires exhibit improved the mechanical properties and flame-retardant performance, which are all superior to the pristine PEO-LiTFSI electrolyte. When these multifunctional SSEs are paired with LiFePO 4 cathodes and lithium metal anodes, the SSLIBs show better rate performance and higher cyclic capacity of 150, 106, and 50 mAh g -1 under 0.2 C at 50, 40, and 30 °C. This strategy of employing Mg 2 B 2 O 5 nanowires provides the design guidelines of assembling multifunctional SSLIBs with high ionic conductivity, excellent mechanical properties, and flame-retardant performance at the same time.
Vicarious extinction learning during reconsolidation neutralizes fear memory.
Golkar, Armita; Tjaden, Cathelijn; Kindt, Merel
2017-05-01
Previous studies have suggested that fear memories can be updated when recalled, a process referred to as reconsolidation. Given the beneficial effects of model-based safety learning (i.e. vicarious extinction) in preventing the recovery of short-term fear memory, we examined whether consolidated long-term fear memories could be updated with safety learning accomplished through vicarious extinction learning initiated within the reconsolidation time-window. We assessed this in a final sample of 19 participants that underwent a three-day within-subject fear-conditioning design, using fear-potentiated startle as our primary index of fear learning. On day 1, two fear-relevant stimuli (reinforced CSs) were paired with shock (US) and a third stimulus served as a control (CS). On day 2, one of the two previously reinforced stimuli (the reminded CS) was presented once in order to reactivate the fear memory 10 min before vicarious extinction training was initiated for all CSs. The recovery of the fear memory was tested 24 h later. Vicarious extinction training conducted within the reconsolidation time window specifically prevented the recovery of the reactivated fear memory (p = 0.03), while leaving fear-potentiated startle responses to the non-reactivated cue intact (p = 0.62). These findings are relevant to both basic and clinical research, suggesting that a safe, non-invasive model-based exposure technique has the potential to enhance the efficiency and durability of anxiolytic therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Building No. 92, interior of shop with windows on left ...
Building No. 92, interior of shop with windows on left and welding stalls at center, view facing west - U.S. Naval Base, Pearl Harbor, Marine Railway No. 1 Accessories House & Apprentice Welding School, Additions, Intersection of Avenue B & Sixth Street, Pearl City, Honolulu County, HI
Structure and enhanced thermochromic performance of low-temperature fabricated VO2/V2O3 thin film
NASA Astrophysics Data System (ADS)
Sun, Guangyao; Cao, Xun; Gao, Xiang; Long, Shiwei; Liang, Mengshi; Jin, Ping
2016-10-01
For VO2-based smart window manufacture, it is a long-standing demand for high-quality thin films deposited at low temperature. Here, the thermochromic films of VO2 were deposited by a magnetron sputtering method at a fairly low temperature of 250 °C without subsequent annealing by embedding a V2O3 interlayer. V2O3 acts as a seed layer to lower the depositing temperature and buffer layer to epitaxial grow VO2 film. The VO2/V2O3 films display high solar modulating ability and narrow hysteresis loop. Our data can serve as a promising point for industrial production with high degree of crystallinity at a low temperature.
NASA Astrophysics Data System (ADS)
Larumbe, Belen; Laviada, Jaime; Ibáñez-Loinaz, Asier; Teniente, Jorge
2018-01-01
A real-time imaging system based on a frequency scanning antenna for conveyor belt setups is presented in this paper. The frequency scanning antenna together with an inexpensive parabolic reflector operates at the W band enabling the detection of details with dimensions in the order of 2 mm. In addition, a low level of sidelobes is achieved by optimizing unequal dividers to window the power distribution for sidelobe reduction. Furthermore, the quality of the images is enhanced by the radiation pattern properties. The performance of the system is validated by showing simulation as well as experimental results obtained in real time, proving the feasibility of these kinds of frequency scanning antennas for cost-effective imaging applications.
HRCT Correlation with Round Window Identification during Cochlear Implantation in Children.
Pendem, Sai Kiran; Rangasami, Rajeswaran; Arunachalam, Ravi Kumar; Mohanarangam, Venkata Sai Pulivadulu; Natarajan, Paarthipan
2014-01-01
To determine the accuracy of High Resolution Computer Tomography (HRCT) temporal bone measurements in predicting the actual visualization of round window niche as viewed through posterior tympanotomy (i.e. facial recess). This is a prospective study of 37 cochlear implant candidates, aged between 1and 6 years, who were referred for HRCT temporal bone during the period December 2013 to July 2014. Cochlear implantation was done in 37 children (25 in the right ear and 12 in the left ear). The distance between the short process of incus and the round window niche and the distance between the oval window and the round window niche were measured preoperatively on sub-millimeter (0.7 mm) HRCT images. We classified the visibility of round window niche based on the surgical view (i.e. through posterior tympanotomy) during surgery into three types: 1) Type 1- fully visible, 2) Type 2- partially visible, and 3) Type 3- difficult to visualize. The preoperative HRCT measurements were used to predict the type of visualization of round window niche before surgery and correlated with the findings during surgery. The mean and standard deviation for the distance between the short process of incus and the round window niche and for the distance between the oval window and the round window niche for Types 1, 2, and 3 were 8.5 ± 0.2 mm and 3.2 ± 0.2 mm, 8.0 ± 0.4 mm and 3.8 ± 0.2 mm, 7.5 ± 0.2 mm and 4.4 ± 0.2 mm respectively, and showed statistically significant difference (P < 0.01) between them. The preoperative HRCT measurements had a sensitivity and specificity of 92.3% and 96.2%, respectively, in determining the actual visualization of round window niche. This study shows preoperative HRCT temporal bone measurements are useful in predicting the actual visualization of round window niche as viewed through posterior tympanotomy.
MULTIPLE POWER DENSITY WINDOWS AND THEIR POSSIBLE ORIGIN
We have previously reported that in vitro exposure of chick forebrain tissue to 50-Mz radiofrequency (RF) radiation, amplitude modulated (AM) at 16 Hz, would enhance the efflux of calcium ions only within two power density ranges: one spanning from 1.44 to 1.67 mW/cm2, and the ot...
Integrated Approach to User Account Management
NASA Technical Reports Server (NTRS)
Kesselman, Glenn; Smith, William
2007-01-01
IT environments consist of both Windows and other platforms. Providing user account management for this model has become increasingly diffi cult. If Microsoft#s Active Directory could be enhanced to extend a W indows identity for authentication services for Unix, Linux, Java and Macintosh systems, then an integrated approach to user account manag ement could be realized.
Seeing the Light: A Classroom-Sized Pinhole Camera Demonstration for Teaching Vision
ERIC Educational Resources Information Center
Prull, Matthew W.; Banks, William P.
2005-01-01
We describe a classroom-sized pinhole camera demonstration (camera obscura) designed to enhance students' learning of the visual system. The demonstration consists of a suspended rear-projection screen onto which the outside environment projects images through a small hole in a classroom window. Students can observe these images in a darkened…
Perovskite Photovoltachromic Supercapacitor with All-Transparent Electrodes.
Zhou, Feichi; Ren, Zhiwei; Zhao, Yuda; Shen, Xinpeng; Wang, Aiwu; Li, Yang Yang; Surya, Charles; Chai, Yang
2016-06-28
Photovoltachromic cells (PVCCs) are of great interest for the self-powered smart windows of architectures and vehicles, which require widely tunable transmittance and automatic color change under photostimuli. Organolead halide perovskite possesses high light absorption coefficient and enables thin and semitransparent photovoltaic device. In this work, we demonstrate co-anode and co-cathode photovoltachromic supercapacitors (PVCSs) by vertically integrating a perovskite solar cell (PSC) with MoO3/Au/MoO3 transparent electrode and electrochromic supercapacitor. The PVCSs provide a seamless integration of energy harvesting/storage device, automatic and wide color tunability, and enhanced photostability of PSCs. Compared with conventional PVCC, the counter electrodes of our PVCSs provide sufficient balancing charge, eliminate the necessity of reverse bias voltage for bleaching the device, and realize reasonable in situ energy storage. The color states of PVCSs not only indicate the amount of energy stored and energy consumed in real time, but also enhance the photostability of photovoltaic component by preventing its long-time photoexposure under fully charged state of PVCSs. This work designs PVCS devices for multifunctional smart window applications commonly made of glass.
Observing with HST I: A New, Friendlier Proposal Submission System
NASA Astrophysics Data System (ADS)
Asson, D.; Roman, A.; Durkin, M.; Krueger, A.; Lucas, R.
1994-12-01
The new Remote Proposal Submission system (RPS2) has drastically changed the method of proposal preparation and submission for Hubble Space Telescope observing. Just as COSTAR cleared up and enhanced HST's sight, the components of RPS2 clear up and give new insight into how a proposal actually executes on the telescope and how it is scheduled. In previous cycles, proposal preparation was a kind of art form. The period between submission and delivery of science data was often opaque to the proposer. One of the goals of the Space Telescope Science Institute is to open a window on the proposal review process for the astronomer. Feedback is now given on the schedulability windows, detailed timing, and feasibility of a proposal. Many errors and problems that went undetected until much later in the review process can now be caught and fixed by the proposer. The quality of the errors reported have also been enhanced. A new template has also been introduced to simplify a previously complicated task by removing redundant, confusing, and obsolete elements.
Seismic random noise removal by delay-compensation time-frequency peak filtering
NASA Astrophysics Data System (ADS)
Yu, Pengjun; Li, Yue; Lin, Hongbo; Wu, Ning
2017-06-01
Over the past decade, there has been an increasing awareness of time-frequency peak filtering (TFPF) due to its outstanding performance in suppressing non-stationary and strong seismic random noise. The traditional approach based on time-windowing achieves local linearity and meets the unbiased estimation. However, the traditional TFPF (including the improved algorithms with alterable window lengths) could hardly relieve the contradiction between removing noise and recovering the seismic signal, and this situation is more obvious in wave crests and troughs, even for alterable window lengths (WL). To improve the efficiency of the algorithm, the following TFPF in the time-space domain is applied, such as in the Radon domain and radial trace domain. The time-space transforms obtain a reduced-frequency input to reduce the TFPF error and stretch the desired signal along a certain direction, therefore the time-space development brings an improvement by both enhancing reflection events and attenuating noise. It still proves limited in application because the direction should be matched as a straight line or quadratic curve. As a result, waveform distortion and false seismic events may appear when processing the complex stratum record. The main emphasis in this article is placed on the time-space TFPF applicable expansion. The reconstructed signal in delay-compensation TFPF, which is generated according to the similarity among the reflection events, overcomes the limitation of the direction curve fitting. Moreover, the reconstructed signal just meets the TFPF linearity unbiased estimation and integrates signal reservation with noise attenuation. Experiments on both the synthetic model and field data indicate that delay-compensation TFPF has a better performance over the conventional filtering algorithms.
Ackermann, M.; Arcavi, I.; Baldini, L.; ...
2015-07-09
Supernovae (SNe) exploding in a dense circumstellar medium (CSM) are hypothesized to accelerate cosmic rays in collisionless shocks and emit GeV γ-rays and TeV neutrinos on a timescale of several months. We perform the first systematic search for γ-ray emission in Fermi Large Area Telescope data in the energy range frommore » $$100\\;\\mathrm{MeV}$$ to $$300\\;\\mathrm{GeV}$$ from the ensemble of 147 SNe Type IIn exploding in a dense CSM. Here, we search for a γ-ray excess at each SNe location in a one-year time window. In order to enhance a possible weak signal, we simultaneously study the closest and optically brightest sources of our sample in a joint-likelihood analysis in three different time windows (1 year, 6 months, and 3 months). For the most promising source of the sample, SN 2010jl (PTF 10aaxf), we repeat the analysis with an extended time window lasting 4.5 years. We do not find a significant excess in γ-rays for any individual source nor for the combined sources and provide model-independent flux upper limits for both cases. Additionally, we derive limits on the γ-ray luminosity and the ratio of γ-ray-to-optical luminosity ratio as a function of the index of the proton injection spectrum assuming a generic γ-ray production model. Furthermore, we present detailed flux predictions based on multi-wavelength observations and the corresponding flux upper limit at a 95% confidence level (CL) for the source SN 2010jl (PTF 10aaxf).« less
Rosa, Maria José; Just, Allan C; Guerra, Marco Sánchez; Kloog, Itai; Hsu, Hsiao-Hsien Leon; Brennan, Kasey J; García, Adriana Mercado; Coull, Brent; Wright, Rosalind J; Téllez Rojo, Martha María; Baccarelli, Andrea A; Wright, Robert O
2017-01-01
Changes in mitochondrial DNA (mtDNA) can serve as a marker of cumulative oxidative stress (OS) due to the mitochondria's unique genome and relative lack of repair systems. In utero particulate matter ≤2.5μm (PM 2.5 ) exposure can enhance oxidative stress. Our objective was to identify sensitive windows to predict mtDNA damage experienced in the prenatal period due to PM 2.5 exposure using mtDNA content measured in cord blood. Women affiliated with the Mexican social security system were recruited during pregnancy in the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) study. Mothers with cord blood collected at delivery and complete covariate data were included (n=456). Mothers' prenatal daily exposure to PM 2.5 was estimated using a satellite-based spatio-temporally resolved prediction model and place of residence during pregnancy. DNA was extracted from umbilical cord leukocytes. Quantitative real-time polymerase chain reaction (qPCR) was used to determine mtDNA content. A distributive lag regression model (DLM) incorporating weekly averages of daily PM 2.5 predictions was constructed to plot the association between exposure and OS over the length of pregnancy. In models that included child's sex, mother's age at delivery, prenatal environmental tobacco smoke exposure, birth year, maternal education, and assay batch, we found significant associations between higher PM 2.5 exposure during late pregnancy (35-40weeks) and lower mtDNA content in cord blood. Increased PM 2.5 during a specific prenatal window in the third trimester was associated with decreased mtDNA content suggesting heightened sensitivity to PM-induced OS during this life stage. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Murrill, Steven R.; Franck, Charmaine C.; Espinola, Richard L.; Petkie, Douglas T.; De Lucia, Frank C.; Jacobs, Eddie L.
2011-11-01
The U.S. Army Research Laboratory (ARL) and the U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) have developed a terahertz-band imaging system performance model/tool for detection and identification of concealed weaponry. The details of the MATLAB-based model which accounts for the effects of all critical sensor and display components, and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security & Defence Symposium (Brugge). An advanced version of the base model that accounts for both the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system, and for the impact of target and background thermal emission, was reported on at the 2007 SPIE Defense and Security Symposium (Orlando). This paper will provide a comprehensive review of an enhanced, user-friendly, Windows-executable, terahertz-band imaging system performance analysis and design tool that now includes additional features such as a MODTRAN-based atmospheric attenuation calculator and advanced system architecture configuration inputs that allow for straightforward performance analysis of active or passive systems based on scanning (single- or line-array detector element(s)) or staring (focal-plane-array detector elements) imaging architectures. This newly enhanced THz imaging system design tool is an extension of the advanced THz imaging system performance model that was developed under the Defense Advanced Research Project Agency's (DARPA) Terahertz Imaging Focal-Plane Technology (TIFT) program. This paper will also provide example system component (active-illumination source and detector) trade-study analyses using the new features of this user-friendly THz imaging system performance analysis and design tool.
Enhanced performance of an S-band fiber laser using a thulium-doped photonic crystal fiber
NASA Astrophysics Data System (ADS)
Muhammad, A. R.; Emami, S. D.; Hmood, J. K.; Sayar, K.; Penny, R.; Abdul-Rashid, H. A.; Ahmad, H.; Harun, S. W.
2014-11-01
This work proposes a new method to enhance the performance of an S-band fiber laser by using a thulium-doped photonic crystal fiber (PCF). The proposed method is based on amplified spontaneous emission (ASE) suppression provided by the thulium-doped PCF unique geometric structure. The enhanced performance of this filter based PCF is dependent on the short and long cut-off wavelength characteristics that define the fiber transmission window. Realizing the short wavelength cut-off location requires the PCF cladding to be doped with a high index material, which provides a refractive index difference between the core and cladding region. Achieving the long cut-off wavelength necessitates enlarging the size of the air holes surrounding the rare-earth doped core region. The PCF structure is optimized so as to achieve the desired ASE suppression regions of below 0.8 μm and above 1.8 μm. The laser performance is simulated for different host media, namely pure silica, alumino-silicate, and fluoride-based fiber ZBLAN based on this thulium-doped PCF design. The host media spectroscopic details, including lifetime variations and quantum efficiency effect on the lasing emission are also discussed. Information on the filter based PCF design is gathered via a full-vectorial finite element method analysis and specifically a numerical modelling solution for the energy level rate equation using the Runge-Kutta method. Results are analyzed for gain improvement, lasing cavity, laser efficiency and effect of core size diameter variation. Results are compared with conventional thulium-doped fiber and thulium-doped PCF for every single host media. We observe that the ZBLAN host media is the most promising candidate due to its greater quantum efficiency.
The round window region and contiguous areas: endoscopic anatomy and surgical implications.
Marchioni, Daniele; Alicandri-Ciufelli, Matteo; Pothier, David D; Rubini, Alessia; Presutti, Livio
2015-05-01
The round window region is a critical area of the middle ear; the aim of this paper is to describe its anatomy from an endoscopic perspective, emphasizing some structures, the knowledge of which could have important implications during surgery, as well as to evaluate what involvement cholesteatoma may have with these structures. Retrospective review of video recordings of endoscopic ear surgeries and retrospective database review were conducted in Tertiary university referral center. Videos from endoscopic middle ear procedures carried out between June 2010 and September 2012 and stored in a shared database were reviewed retrospectively. Surgeries in which an endoscopic magnification of the round window region and the inferior retrotympanum area was performed intraoperatively were included in the study. Involvement by cholesteatoma of those regions was also documented based on information obtained from the surgical database. Conformation of the tegmen of the round window niche may influence the surgical view of round window membrane. A structure connecting the round window area to the petrous apex, named the subcochlear canaliculus, is described. Cholesteatoma can invade the round window areas in some patients. Endoscopic approaches can guarantee a very detailed view and allow the exploration of the round window region. Exact anatomical knowledge of this region can have important advantages during surgery, since some pathology can invade inside cavities or tunnels otherwise not seen by instrumentation that produces a straight-line view (e.g. microscope).
Free-breathing 3D Cardiac MRI Using Iterative Image-Based Respiratory Motion Correction
Moghari, Mehdi H.; Roujol, Sébastien; Chan, Raymond H.; Hong, Susie N.; Bello, Natalie; Henningsson, Markus; Ngo, Long H.; Goddu, Beth; Goepfert, Lois; Kissinger, Kraig V.; Manning, Warren J.; Nezafat, Reza
2012-01-01
Respiratory motion compensation using diaphragmatic navigator (NAV) gating with a 5 mm gating window is conventionally used for free-breathing cardiac MRI. Due to the narrow gating window, scan efficiency is low resulting in long scan times, especially for patients with irregular breathing patterns. In this work, a new retrospective motion compensation algorithm is presented to reduce the scan time for free-breathing cardiac MRI that increasing the gating window to 15 mm without compromising image quality. The proposed algorithm iteratively corrects for respiratory-induced cardiac motion by optimizing the sharpness of the heart. To evaluate this technique, two coronary MRI datasets with 1.3 mm3 resolution were acquired from 11 healthy subjects (7 females, 25±9 years); one using a NAV with a 5 mm gating window acquired in 12.0±2.0 minutes and one with a 15 mm gating window acquired in 7.1±1.0 minutes. The images acquired with a 15 mm gating window were corrected using the proposed algorithm and compared to the uncorrected images acquired with the 5 mm and 15 mm gating windows. The image quality score, sharpness, and length of the three major coronary arteries were equivalent between the corrected images and the images acquired with a 5 mm gating window (p-value>0.05), while the scan time was reduced by a factor of 1.7. PMID:23132549
Graphene Reinforced Glassy Carbon (GRGC) Beam Windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renomeron, Lynda L.
Secondary particle beams require beam windows that isolate the target (usually in air) from the primary particle beam vacuum. Advanced beam window solutions are needed that can withstand anticipated increases in beam power and intensity that will result in higher thermal shock on the window and increased oxidative erosion rates on the air-side caused by increased temperatures. Carbon-based windows, in particular, glassy carbon windows are of interest to minimize interaction with the beam. The attractive properties of glassy carbon are: 1. Low atomic number 2. Low thermal expansion 3. High strength and low Young's modulus 4. Low gas permeability andmore » low outgassing for ultrahigh vacuum use The one liability of glassy carbon is its low thermal conductivity, nominally 5 W/mK, which will exacerbate temperature rise, oxidation, and thermal shock concerns as beam powers increase. TA&T proposes the development of graphene reinforced glassy carbon (GRGC) composites to increase the thermal conductivity and address this Achilles heel of glassy carbon. Graphene as a reinforcing phase has shown the capability to increase the thermal conductivity of the matrix material by up to two orders of magnitude. For beam windows this would substantially increase heat spreading away from the beam zone of the window and improve thermal shock resistance, and reduce maximum temperature and air-side oxidation of the window. Increased thermal conductivity would also improve the effectiveness of edge-cooling schemes to minimize temperature increase. In the Phase I effort, graphene oxide (GO) particles were dispersed into glassy carbon precursor at different content levels and cast into solid shapes. The goal was to determine the effect of graphene concentration on the mechanical properties (flexure strength), and thermal (thermal conductivity). The Phase I results indicated that addition of graphene did have a significant effect on thermal conductivity; however the microstructural properties of the composite need further improvement. The Phase II work is designed to address the processing issues found during Phase I, so as to fully realize the benefits of GO within the glassy carbon In addition to enabling improved windows for high energy particle beam experiments, the reinforced glassy carbon material will find various other applications such as thruster bodies for rocket propulsion, more durable carbon-based electrodes for electrochemistry applications, bi-polar plates for advanced batteries, catalyst support structures, and structural bio-implants.« less
Personal computer (PC) based image processing applied to fluid mechanics research
NASA Technical Reports Server (NTRS)
Cho, Y.-C.; Mclachlan, B. G.
1987-01-01
A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processsed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes commputation.
Personal Computer (PC) based image processing applied to fluid mechanics
NASA Technical Reports Server (NTRS)
Cho, Y.-C.; Mclachlan, B. G.
1987-01-01
A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes computation.
Liu, Bin; Wu, Hao; Zhang, Deyuan; Wang, Xiaolong; Chou, Kuo-Chen
2017-02-21
To expedite the pace in conducting genome/proteome analysis, we have developed a Python package called Pse-Analysis. The powerful package can automatically complete the following five procedures: (1) sample feature extraction, (2) optimal parameter selection, (3) model training, (4) cross validation, and (5) evaluating prediction quality. All the work a user needs to do is to input a benchmark dataset along with the query biological sequences concerned. Based on the benchmark dataset, Pse-Analysis will automatically construct an ideal predictor, followed by yielding the predicted results for the submitted query samples. All the aforementioned tedious jobs can be automatically done by the computer. Moreover, the multiprocessing technique was adopted to enhance computational speed by about 6 folds. The Pse-Analysis Python package is freely accessible to the public at http://bioinformatics.hitsz.edu.cn/Pse-Analysis/, and can be directly run on Windows, Linux, and Unix.
NASA Astrophysics Data System (ADS)
He, A.; Quan, C.
2018-04-01
The principal component analysis (PCA) and region matching combined method is effective for fringe direction estimation. However, its mask construction algorithm for region matching fails in some circumstances, and the algorithm for conversion of orientation to direction in mask areas is computationally-heavy and non-optimized. We propose an improved PCA based region matching method for the fringe direction estimation, which includes an improved and robust mask construction scheme, and a fast and optimized orientation-direction conversion algorithm for the mask areas. Along with the estimated fringe direction map, filtered fringe pattern by automatic selective reconstruction modification and enhanced fast empirical mode decomposition (ASRm-EFEMD) is used for Hilbert spiral transform (HST) to demodulate the phase. Subsequently, windowed Fourier ridge (WFR) method is used for the refinement of the phase. The robustness and effectiveness of proposed method are demonstrated by both simulated and experimental fringe patterns.
Experimental research of UWB over fiber system employing 128-QAM and ISFA-optimized scheme
NASA Astrophysics Data System (ADS)
He, Jing; Xiang, Changqing; Long, Fengting; Chen, Zuo
2018-05-01
In this paper, an optimized intra-symbol frequency-domain averaging (ISFA) scheme is proposed and experimentally demonstrated in intensity-modulation and direct-detection (IMDD) multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system. According to the channel responses of three MB-OFDM UWB sub-bands, the optimal ISFA window size for each sub-band is investigated. After 60-km standard single mode fiber (SSMF) transmission, the experimental results show that, at the bit error rate (BER) of 3.8 × 10-3, the receiver sensitivity of 128-quadrature amplitude modulation (QAM) can be improved by 1.9 dB using the proposed enhanced ISFA combined with training sequence (TS)-based channel estimation scheme, compared with the conventional TS-based channel estimation. Moreover, the spectral efficiency (SE) is up to 5.39 bit/s/Hz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Shengbo; Ting, Hungkit; Ma, Yingzhuang
2015-05-15
In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark.more » The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading.« less
Advances in EPG for treatment and research: an illustrative case study.
Scobbie, James M; Wood, Sara E; Wrench, Alan A
2004-01-01
Electropalatography (EPG), a technique which reveals tongue-palate contact patterns over time, is a highly effective tool for speech research. We report here on recent developments by Articulate Instruments Ltd. These include hardware for Windows-based computers, backwardly compatible (with Reading EPG3) software systems for clinical intervention and laboratory-based analysis for EPG and acoustic data, and an enhanced clinical interface with client and file management tools. We focus here on a single case study of a child aged 10+/-years who had been diagnosed with an intractable speech disorder possibly resulting ultimately from a complete cleft of hard and soft palate. We illustrate how assessment, diagnosis and treatment of the intractable speech disorder are undertaken using this new generation of instrumental phonetic support. We also look forward to future developments in articulatory phonetics that will link EPG with ultrasound for research and clinical communities.
Quick Vegas: Improving Performance of TCP Vegas for High Bandwidth-Delay Product Networks
NASA Astrophysics Data System (ADS)
Chan, Yi-Cheng; Lin, Chia-Liang; Ho, Cheng-Yuan
An important issue in designing a TCP congestion control algorithm is that it should allow the protocol to quickly adjust the end-to-end communication rate to the bandwidth on the bottleneck link. However, the TCP congestion control may function poorly in high bandwidth-delay product networks because of its slow response with large congestion windows. In this paper, we propose an enhanced version of TCP Vegas called Quick Vegas, in which we present an efficient congestion window control algorithm for a TCP source. Our algorithm improves the slow-start and congestion avoidance techniques of original Vegas. Simulation results show that Quick Vegas significantly improves the performance of connections as well as remaining fair when the bandwidth-delay product increases.
Data entry and error embedding system
NASA Technical Reports Server (NTRS)
Woo, Daniel N. (Inventor); Woo, Jr., John (Inventor)
1998-01-01
A data entry and error embedding system in which, first, a document is bitmapped and recorded in a first memory. Then, it is displayed, and portions of it to be replicated by data entry are underlayed by a window, into which window replicated data is entered in location and size such that it is juxtaposed just below that which is replicated, enhancing the accuracy of replication. Second, with this format in place, selected portions of the replicated data are altered by the insertion of character or word substitutions, thus the embedding of errors. Finally, a proofreader would endeavor to correct the error embedded data and a record of his or her changes recorded. In this manner, the skill level of the proofreader and accuracy of the data are computed.
Temporal dynamics of figure-ground segregation in human vision.
Neri, Peter; Levi, Dennis M
2007-01-01
The segregation of figure from ground is arguably one of the most fundamental operations in human vision. Neural signals reflecting this operation appear in cortex as early as 50 ms and as late as 300 ms after presentation of a visual stimulus, but it is not known when these signals are used by the brain to construct the percepts of figure and ground. We used psychophysical reverse correlation to identify the temporal window for figure-ground signals in human perception and found it to lie within the range of 100-160 ms. Figure enhancement within this narrow temporal window was transient rather than sustained as may be expected from measurements in single neurons. These psychophysical results prompt and guide further electrophysiological studies.
Tough, processable simultaneous semi-interpenetrating polyimides
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
1994-01-01
A high temperature semi-interpenetrating polymer network (semi-IPN) was developed which had significantly improved processability, damage tolerance, and mechanical performance when compared to the commercial Thermid materials. This simultaneous semi-IPN was prepared by mixing a thermosetting polyimide with a thermoplastic monomer precursor solution (NR150B2) and allowing them to react upon heating. This reaction occurs at a rate which decreases the flow and broadens the processing window. Upon heating at a higher temperature, there is an increase in flow. Because of the improved flow properties, broadened processing window and enhanced toughness, high strength polymer matrix composites, adhesives and molded articles can now be prepared from the acetylene endcapped polyimides which were previously inherently brittle and difficult to process.
The Windowed Removable Partial Denture: A Treatment Option for Patients with Lone-Standing Teeth.
Jum'ah, Ahmad A; Haite, Terence; Nattress, Brian
2015-03-01
The decision as to whether to retain or extract a single remaining natural tooth prior to the provision of dentures can be a difficult one. If the tooth is left in situ, the development of an adequate peripheral seal around the denture is not possible thereby compromising the appliance' retention. If the tooth is extracted the possibility of gaining direct retention with the use of clasps or attachments is lost. This paper aims to illustrate the use of windowed removable partial denture design and review the literature relevant to this area. The use of such a design can enhance the retention of the appliance by encircling the lone standing tooth/teeth utilising an elastomeric permanent soft lining material.
2009-01-01
Oracle 9i, 10g MySQL MS SQL Server MS SQL Server Operating System Supported Windows 2003 Server Windows 2000 Server (32 bit...WebStar (Mac OS X) SunOne Internet Information Services (IIS) Database Server Supported MS SQL Server MS SQL Server Oracle 9i, 10g...challenges of Web-based surveys are: 1) identifying the best Commercial Off the Shelf (COTS) Web-based survey packages to serve the particular
Modeling an enhanced ridesharing system with meet points and time windows
Li, Xin; Hu, Sangen; Deng, Kai
2018-01-01
With the rising of e-hailing services in urban areas, ride sharing is becoming a common mode of transportation. This paper presents a mathematical model to design an enhanced ridesharing system with meet points and users’ preferable time windows. The introduction of meet points allows ridesharing operators to trade off the benefits of saving en-route delays and the cost of additional walking for some passengers to be collectively picked up or dropped off. This extension to the traditional door-to-door ridesharing problem brings more operation flexibility in urban areas (where potential requests may be densely distributed in neighborhood), and thus could achieve better system performance in terms of reducing the total travel time and increasing the served passengers. We design and implement a Tabu-based meta-heuristic algorithm to solve the proposed mixed integer linear program (MILP). To evaluate the validation and effectiveness of the proposed model and solution algorithm, several scenarios are designed and also resolved to optimality by CPLEX. Results demonstrate that (i) detailed route plan associated with passenger assignment to meet points can be obtained with en-route delay savings; (ii) as compared to CPLEX, the meta-heuristic algorithm bears the advantage of higher computation efficiency and produces good quality solutions with 8%~15% difference from the global optima; and (iii) introducing meet points to ridesharing system saves the total travel time by 2.7%-3.8% for small-scale ridesharing systems. More benefits are expected for ridesharing systems with large size of fleet. This study provides a new tool to efficiently operate the ridesharing system, particularly when the ride sharing vehicles are in short supply during peak hours. Traffic congestion mitigation will also be expected. PMID:29715302
Herbst-Kralovetz, Melissa M.; Pyles, Richard B.
2006-01-01
Alternative strategies for controlling the growing herpes simplex virus type 2 (HSV-2) epidemic are needed. A novel class of immunomodulatory microbicides has shown promise as antiherpetics, including intravaginally applied CpG-containing oligodeoxynucleotides that stimulate toll-like receptor 9 (TLR9). In the current study, we quantified protection against experimental genital HSV-2 infection provided by an alternative nucleic acid-based TLR agonist, polyinosine-poly(C) (PIC) (TLR3 agonist). Using a protection quantification paradigm, groups of mice were PIC treated and then subdivided into groups challenged with escalating doses of HSV-2. Using this paradigm, a temporal window of PIC efficacy for single applications was defined as 1 day prior to (prophylactic) through 4 h after (therapeutic) viral challenge. PIC treatment within this window protected against 10-fold-higher HSV-2 challenges, as indicated by increased 50% infectious dose values relative to those for vehicle-treated controls. Disease resolution and survival were significantly enhanced by repetitive PIC doses. Using optimal PIC regimens, cytokine induction was evaluated in murine vaginal lavages and in human vaginal epithelial cells. Similar induction patterns were observed, with kinetics that explained the limited durability of PIC-afforded protection. Daily PIC delivery courses did not generate sustained cytokine levels in murine vaginal fluids that would be indicative of local immunotoxicity. No evidence of immunotoxicity was observed in selected organs that were analyzed following repetitive vaginal PIC doses. Animal and in vitro data indicate that PIC may prove to be a valuable preventative microbicide and/or therapeutic agent against genital herpes by increasing resistance to HSV-2 and enhancing disease resolution following a failure of prevention. PMID:17005677
Errico, Claudia; Osmanski, Bruno-Félix; Pezet, Sophie; Couture, Olivier; Lenkei, Zsolt; Tanter, Mickael
2016-01-01
Functional ultrasound (fUS) is a novel neuroimaging technique, based on high-sensitivity ultrafast Doppler imaging of cerebral blood volume, capable of measuring brain activation and connectivity in rodents with high spatiotemporal resolution (100 μm, 1 ms). However, the skull attenuates acoustic waves, so fUS in rats currently requires craniotomy or a thinned-skull window. Here we propose a non-invasive approach by enhancing the fUS signal with a contrast agent, inert gas microbubbles. Plane-wave illumination of the brain at high frame rate (500 Hz compounded sequence with three tilted plane waves, PRF = 1500Hz with a 128 element 15 MHz linear transducer), yields highly-resolved neurovascular maps. We compared fUS imaging performance through the intact skull bone (transcranial fUS) versus a thinned-skull window in the same animal. First, we show that the vascular network of the adult rat brain can be imaged transcranially only after a bolus intravenous injection of microbubbles, which leads to a 9 dB gain in the contrast-to-tissue ratio. Next, we demonstrate that functional increase in the blood volume of the primary sensory cortex after targeted electrical-evoked stimulations of the sciatic nerve is observable transcranially in presence of contrast agents, with high reproducibility (Pearson's coefficient ρ = 0.7 ± 0.1, p = 0.85). Our work demonstrates that the combination of ultrafast Doppler imaging and injection of contrast agent allows non-invasive functional brain imaging through the intact skull bone in rats. These results should ease non-invasive longitudinal studies in rodents and open a promising perspective for the adoption of highly resolved fUS approaches for the adult human brain. PMID:26416649
Paul, Bijan Kumar; Mahanta, Subrata; Singh, Rupashree Balia; Guchhait, Nikhil
2011-06-01
A structurally simple Schiff base N-benzyl-(3-hydroxy-2-naphthalene) (NBHN32) has been synthesized and characterized by (1)H NMR, (13)C NMR, and DEPT spectroscopy. The photophysical behaviour of NBHN32 in response to the presence of various transition metal cations has been explored by means of steady-state absorption, emission and time-resolved emission spectroscopy techniques. Efficient through space intramolecular photoinduced electron transfer (PET) between the naphthalene fluorophore and the imine group has been argued for extremely low fluorescence yield of NBHN32 compared to the parent molecule 3-hydroxy-2-naphthaldehyde (HN32) containing the same fluorophore but lacking the receptor moiety. Transition metal ion-induced emission enhancement is thus addressed on the lexicon of perturbation of the PET by the metal ions. Apart from fluorescence enhancement, transition metal ion imparts remarkable shift of the emission maxima of NBHN32, which is another unique aspect on the proposed ability of NBHN32 to function as a fluorescence chemosensor. Copyright © 2011 Elsevier B.V. All rights reserved.
Enabling Disabled Persons to Gain Access to Digital Media
NASA Technical Reports Server (NTRS)
Beach, Glenn; OGrady, Ryan
2011-01-01
A report describes the first phase in an effort to enhance the NaviGaze software to enable profoundly disabled persons to operate computers. (Running on a Windows-based computer equipped with a video camera aimed at the user s head, the original NaviGaze software processes the user's head movements and eye blinks into cursor movements and mouse clicks to enable hands-free control of the computer.) To accommodate large variations in movement capabilities among disabled individuals, one of the enhancements was the addition of a graphical user interface for selection of parameters that affect the way the software interacts with the computer and tracks the user s movements. Tracking algorithms were improved to reduce sensitivity to rotations and reduce the likelihood of tracking the wrong features. Visual feedback to the user was improved to provide an indication of the state of the computer system. It was found that users can quickly learn to use the enhanced software, performing single clicks, double clicks, and drags within minutes of first use. Available programs that could increase the usability of NaviGaze were identified. One of these enables entry of text by using NaviGaze as a mouse to select keys on a virtual keyboard.
Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats
Zhang, Jianying; Yuan, Ting; Wang, James H-C.
2016-01-01
The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients. PMID:26885754
Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats.
Zhang, Jianying; Yuan, Ting; Wang, James H-C
2016-02-23
The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients.
Looking through the postdisaster policy window
NASA Astrophysics Data System (ADS)
Solecki, William D.; Michaels, Sarah
1994-07-01
Policy windows are transitory opportunities during which the likelihood of adopting new policy or legislative proposals is greater than usual. Accepted wisdom has held that natural disasters serve as focusing events that generate policy windows in their wake. This paper highlights the need for a more circumscribed understanding of when and where policy windows occur based on the experiences of three US regional planning organizations: a hand-picked commission of community leaders, a council of governments, and a special-purpose substate organization. The first operated in the San Francisco Bay Area of California following the Loma Prieta earthquake (October 1989), and the other two in South Carolina's Atlantic coastal plain after Hurricane Hugo (September 1989). The analysis concludes that natural disasters did not transform the agenda or mission of these entities. Policy windows were neither automatic outcomes of focusing events nor did they ensure the adoption of pertinent policy within the organizations investigated. Several conditions are minimally necessary for using policy windows to bring about hazard mitigation: comprehensive institutional conceptualization of hazards management, institutional strength and flexibility, and well-placed, effective policy entrepreneurs.
NASA Astrophysics Data System (ADS)
Thubaasini, P.; Rusnida, R.; Rohani, S. M.
This paper describes Linux, an open source platform used to develop and run a virtual architectural walkthrough application. It proposes some qualitative reflections and observations on the nature of Linux in the concept of Virtual Reality (VR) and on the most popular and important claims associated with the open source approach. The ultimate goal of this paper is to measure and evaluate the performance of Linux used to build the virtual architectural walkthrough and develop a proof of concept based on the result obtain through this project. Besides that, this study reveals the benefits of using Linux in the field of virtual reality and reflects a basic comparison and evaluation between Windows and Linux base operating system. Windows platform is use as a baseline to evaluate the performance of Linux. The performance of Linux is measured based on three main criteria which is frame rate, image quality and also mouse motion.
Shot boundary detection and label propagation for spatio-temporal video segmentation
NASA Astrophysics Data System (ADS)
Piramanayagam, Sankaranaryanan; Saber, Eli; Cahill, Nathan D.; Messinger, David
2015-02-01
This paper proposes a two stage algorithm for streaming video segmentation. In the first stage, shot boundaries are detected within a window of frames by comparing dissimilarity between 2-D segmentations of each frame. In the second stage, the 2-D segments are propagated across the window of frames in both spatial and temporal direction. The window is moved across the video to find all shot transitions and obtain spatio-temporal segments simultaneously. As opposed to techniques that operate on entire video, the proposed approach consumes significantly less memory and enables segmentation of lengthy videos. We tested our segmentation based shot detection method on the TRECVID 2007 video dataset and compared it with block-based technique. Cut detection results on the TRECVID 2007 dataset indicate that our algorithm has comparable results to the best of the block-based methods. The streaming video segmentation routine also achieves promising results on a challenging video segmentation benchmark database.
Smith, E M; Wandtke, J; Robinson, A
1999-05-01
The Medical Information, Communication and Archive System (MICAS) is a multivendor incremental approach to picture archiving and communications system (PACS). It is a multimodality integrated image management system that is seamlessly integrated with the radiology information system (RIS). Phase II enhancements of MICAS include a permanent archive, automated workflow, study caches, Microsoft (Redmond, WA) Windows NT diagnostic workstations with all components adhering to Digital Information Communications in Medicine (DICOM) standards. MICAS is designed as an enterprise-wide PACS to provide images and reports throughout the Strong Health healthcare network. Phase II includes the addition of a Cemax-Icon (Fremont, CA) archive, PACS broker (Mitra, Waterloo, Canada), an interface (IDX PACSlink, Burlington, VT) to the RIS (IDXrad) plus the conversion of the UNIX-based redundant array of inexpensive disks (RAID) 5 temporary archives in phase I to NT-based RAID 0 DICOM modality-specific study caches (ImageLabs, Bedford, MA). The phase I acquisition engines and workflow management software was uninstalled and the Cemax archive manager (AM) assumed these functions. The existing ImageLabs UNIX-based viewing software was enhanced and converted to an NT-based DICOM viewer. Installation of phase II hardware and software and integration with existing components began in July 1998. Phase II of MICAS demonstrates that a multivendor open-system incremental approach to PACS is feasible, cost-effective, and has significant advantages over a single-vendor implementation.
ERIC Educational Resources Information Center
McGrath, Kathryn
2005-01-01
"Candles in Our Windows"--also titled "Nightlights"--is a play developed for elementary and middle school students about how residents in Billings, Montana, took a stand against hate. Last March, the 6th-grade students of Woodland Elementary School in New Jersey performed an early version of the play based on a children's book,…
NASA Technical Reports Server (NTRS)
Baker, Marshalyn; Mailhot, Michele; Graff, Paige Valderrama
2010-01-01
This is a teacher's guide to assist teachers in developing modules on windows for use in both earth and space and astronaut photographs. Activities incorporating mathematical exercises are suggested for grades five through ten.
Variation in bird-window collision mortality and scavenging rates within an urban landscape
Annual avian mortality from collisions with windows and buildings is estimated to range from a million to a billion birds in the United States alone. However, estimates of mortality based on carcass counts suffer from bias due to imperfect detection and carcass scavenging. We stu...
Multi-focus image fusion based on window empirical mode decomposition
NASA Astrophysics Data System (ADS)
Qin, Xinqiang; Zheng, Jiaoyue; Hu, Gang; Wang, Jiao
2017-09-01
In order to improve multi-focus image fusion quality, a novel fusion algorithm based on window empirical mode decomposition (WEMD) is proposed. This WEMD is an improved form of bidimensional empirical mode decomposition (BEMD), due to its decomposition process using the adding window principle, effectively resolving the signal concealment problem. We used WEMD for multi-focus image fusion, and formulated different fusion rules for bidimensional intrinsic mode function (BIMF) components and the residue component. For fusion of the BIMF components, the concept of the Sum-modified-Laplacian was used and a scheme based on the visual feature contrast adopted; when choosing the residue coefficients, a pixel value based on the local visibility was selected. We carried out four groups of multi-focus image fusion experiments and compared objective evaluation criteria with other three fusion methods. The experimental results show that the proposed fusion approach is effective and performs better at fusing multi-focus images than some traditional methods.
Tunable phonon-induced transparency in bilayer graphene nanoribbons.
Yan, Hugen; Low, Tony; Guinea, Francisco; Xia, Fengnian; Avouris, Phaedon
2014-08-13
In the phenomenon of plasmon-induced transparency, which is a classical analogue of electromagnetically induced transparency (EIT) in atomic gases, the coherent interference between two plasmon modes results in an optical transparency window in a broad absorption spectrum. With the requirement of contrasting lifetimes, typically one of the plasmon modes involved is a dark mode that has limited coupling to the electromagnetic radiation and possesses relatively longer lifetime. Plasmon-induced transparency not only leads to light transmission at otherwise opaque frequency regions but also results in the slowing of light group velocity and enhanced optical nonlinearity. In this article, we report an analogous behavior, denoted as phonon-induced transparency (PIT), in AB-stacked bilayer graphene nanoribbons. Here, light absorption due to the plasmon excitation is suppressed in a narrow window due to the coupling with the infrared active Γ-point optical phonon, whose function here is similar to that of the dark plasmon mode in the plasmon-induced transparency. We further show that PIT in bilayer graphene is actively tunable by electrostatic gating and estimate a maximum slow light factor of around 500 at the phonon frequency of 1580 cm(-1), based on the measured spectra. Our demonstration opens an avenue for the exploration of few-photon nonlinear optics and slow light in this novel two-dimensional material.
Wicha, Nicole Y Y; Moreno, Eva M; Kutas, Marta
2004-09-01
Recent studies indicate that the human brain attends to and uses grammatical gender cues during sentence comprehension. Here, we examine the nature and time course of the effect of gender on word-by-word sentence reading. Event-related brain potentials were recorded to an article and noun, while native Spanish speakers read medium- to high-constraint Spanish sentences for comprehension. The noun either fit the sentence meaning or not, and matched the preceding article in gender or not; in addition, the preceding article was either expected or unexpected based on prior sentence context. Semantically anomalous nouns elicited an N400. Gender-disagreeing nouns elicited a posterior late positivity (P600), replicating previous findings for words. Gender agreement and semantic congruity interacted in both the N400 window--with a larger negativity frontally for double violations--and the P600 window--with a larger positivity for semantic anomalies, relative to the prestimulus baseline. Finally, unexpected articles elicited an enhanced positivity (500-700 msec post onset) relative to expected articles. Overall, our data indicate that readers anticipate and attend to the gender of both articles and nouns, and use gender in real time to maintain agreement and to build sentence meaning.
Photo-reactive charge trapping memory based on lanthanide complex.
Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V A L
2015-10-09
Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 10(4) s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.
High-performance image processing on the desktop
NASA Astrophysics Data System (ADS)
Jordan, Stephen D.
1996-04-01
The suitability of computers to the task of medical image visualization for the purposes of primary diagnosis and treatment planning depends on three factors: speed, image quality, and price. To be widely accepted the technology must increase the efficiency of the diagnostic and planning processes. This requires processing and displaying medical images of various modalities in real-time, with accuracy and clarity, on an affordable system. Our approach to meeting this challenge began with market research to understand customer image processing needs. These needs were translated into system-level requirements, which in turn were used to determine which image processing functions should be implemented in hardware. The result is a computer architecture for 2D image processing that is both high-speed and cost-effective. The architectural solution is based on the high-performance PA-RISC workstation with an HCRX graphics accelerator. The image processing enhancements are incorporated into the image visualization accelerator (IVX) which attaches to the HCRX graphics subsystem. The IVX includes a custom VLSI chip which has a programmable convolver, a window/level mapper, and an interpolator supporting nearest-neighbor, bi-linear, and bi-cubic modes. This combination of features can be used to enable simultaneous convolution, pan, zoom, rotate, and window/level control into 1 k by 1 k by 16-bit medical images at 40 frames/second.
Marabondo, Stephen; Kaufman, Howard L
2017-12-01
In 1998, high-dose interleukin-2 (IL-2) was the first immunotherapy approved for the treatment of metastatic melanoma based on durable objective responses documented in a subset of patients but widespread utilization was limited by significant toxicity. Advances in targeted therapy and the emergence of T cell checkpoint inhibitors, which can generally be given in the ambulatory setting, have further limited consideration of IL-2 for melanoma patients and the role of IL-2 in the current landscape of melanoma treatment is uncertain. Areas covered: In this review, we will describe advances in clinical diagnostic and management strategies that have improved the therapeutic window for IL-2 therapy in patients with melanoma. Further, we will describe the potential for using IL-2 in patients whose disease has progressed after other interventions or as part of combination immunotherapy approaches that are now in clinical development. We will also review the common toxicities of IL-2 therapy and their current management will be discussed. Expert opinion: High-dose IL-2 remains an important option for patients with melanoma and has an improved therapeutic window in the contemporary era. The reasons why IL-2 is not utilized more frequently and measures for enhancing its use will be detailed.
Photo-reactive charge trapping memory based on lanthanide complex
NASA Astrophysics Data System (ADS)
Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V. A. L.
2015-10-01
Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 104 s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.
Kamauu, Aaron W C; DuVall, Scott L; Wiggins, Richard H; Avrin, David E
2008-09-01
In the creation of interesting radiological cases in a digital teaching file, it is necessary to adjust the window and level settings of an image to effectively display the educational focus. The web-based applet described in this paper presents an effective solution for real-time window and level adjustments without leaving the picture archiving and communications system workstation. Optimized images are created, as user-defined parameters are passed between the applet and a servlet on the Health Insurance Portability and Accountability Act-compliant teaching file server.
Sader, John E; Sanelli, Julian; Hughes, Barry D; Monty, Jason P; Bieske, Evan J
2011-09-01
The thermal noise spectrum of nanomechanical devices is commonly used to characterize their mechanical properties and energy dissipation. This spectrum is measured from finite time series of Brownian motion of the device, which is windowed and Fourier transformed. Here, we present a theoretical and experimental investigation of the effect of such finite sampling on the measured device quality factor. We prove that if no spectral window is used, the thermal noise spectrum retains its original Lorentzian distribution but with a reduced quality factor, indicating an apparent enhancement in energy dissipation. A simple analytical formula is derived connecting the true and measured quality factors - this enables extraction of the true device quality factor from measured data. Common windows used to reduce spectral leakage are found to distort the (true) Lorentzian shape, potentially making fitting problematic. These findings are expected to be of particular importance for devices with high quality factors, where spectral resolution can be limited in practice. Comparison and validation using measurements on atomic force microscope cantilevers are presented. © 2011 American Institute of Physics
Lee, Heng Yeong; Cai, Yufeng; Bi, Shuguang; Liang, Yen Nan; Song, Yujie; Hu, Xiao Matthew
2017-02-22
In this work, a novel fully autonomous photothermotropic material made by hybridization of the poly(N-isopropylacrylamide) (PNIPAM) hydrogel and antimony-tin oxide (ATO) is presented. In this photothermotropic system, the near-infrared (NIR)-absorbing ATO acts as nanoheater to induce the optical switching of the hydrogel. Such a new passive smart window is characterized by excellent NIR shielding, a photothermally activated switching mechanism, enhanced response speed, and solar modulation ability. Systems with 0, 5, 10, and 15 atom % Sb-doped ATO in PNIPAM were investigated, and it was found that a PNIPAM/ATO nanocomposite is able to be photothermally activated. The 10 atom % Sb-doped PNIPAM/ATO exhibits the best response speed and solar modulation ability. Different film thicknesses and ATO contents will affect the response rate and solar modulation ability. Structural stability tests at 15 cycles under continuous exposure to solar irradiation at 1 sun intensity demonstrated the performance stability of such a photothermotropic system. We conclude that such a novel photothermotropic hybrid can be used as a new generation of autonomous passive smart windows for climate-adaptable solar modulation.
Entropy-based adaptive attitude estimation
NASA Astrophysics Data System (ADS)
Kiani, Maryam; Barzegar, Aylin; Pourtakdoust, Seid H.
2018-03-01
Gaussian approximation filters have increasingly been developed to enhance the accuracy of attitude estimation in space missions. The effective employment of these algorithms demands accurate knowledge of system dynamics and measurement models, as well as their noise characteristics, which are usually unavailable or unreliable. An innovation-based adaptive filtering approach has been adopted as a solution to this problem; however, it exhibits two major challenges, namely appropriate window size selection and guaranteed assurance of positive definiteness for the estimated noise covariance matrices. The current work presents two novel techniques based on relative entropy and confidence level concepts in order to address the abovementioned drawbacks. The proposed adaptation techniques are applied to two nonlinear state estimation algorithms of the extended Kalman filter and cubature Kalman filter for attitude estimation of a low earth orbit satellite equipped with three-axis magnetometers and Sun sensors. The effectiveness of the proposed adaptation scheme is demonstrated by means of comprehensive sensitivity analysis on the system and environmental parameters by using extensive independent Monte Carlo simulations.
Tandem luminescent solar concentrators based on engineered quantum dots
NASA Astrophysics Data System (ADS)
Wu, Kaifeng; Li, Hongbo; Klimov, Victor I.
2018-02-01
Luminescent solar concentrators (LSCs) can serve as large-area sunlight collectors for terrestrial and space-based photovoltaics. Due to their high emission efficiencies and readily tunable emission and absorption spectra, colloidal quantum dots have emerged as a new and promising type of LSC fluorophore. Spectral tunability of the quantum dots also facilitates the realization of stacked multilayered LSCs, where enhanced performance is obtained through spectral splitting of incident sunlight, as in multijunction photovoltaics. Here, we demonstrate a large-area (>230 cm2) tandem LSC based on two types of nearly reabsorption-free quantum dots spectrally tuned for optimal solar-spectrum splitting. This prototype device exhibits a high optical quantum efficiency of 6.4% for sunlight illumination and solar-to-electrical power conversion efficiency of 3.1%. The efficiency gains due to the tandem architecture over single-layer devices quickly increase with increasing LSC size and can reach more than 100% in structures with window sizes of more than 2,500 cm2.
Virtual tryout planning in automotive industry based on simulation metamodels
NASA Astrophysics Data System (ADS)
Harsch, D.; Heingärtner, J.; Hortig, D.; Hora, P.
2016-11-01
Deep drawn sheet metal parts are increasingly designed to the feasibility limit, thus achieving a robust manufacturing is often challenging. The fluctuation of process and material properties often lead to robustness problems. Therefore, numerical simulations are used to detect the critical regions. To enhance the agreement with the real process conditions, the material data are acquired through a variety of experiments. Furthermore, the force distribution is taken into account. The simulation metamodel contains the virtual knowledge of a particular forming process, which is determined based on a series of finite element simulations with variable input parameters. Based on the metamodels, virtual process windows can be displayed for different configurations. This helps to improve the operating point as well as to adjust process settings in case the process becomes unstable. Furthermore, the time of tool tryout can be shortened due to transfer of the virtual knowledge contained in the metamodels on the optimisation of the drawbeads. This allows the tool manufacturer to focus on the essential, to save time and to recognize complex relationships.
A Patch-Based Approach for the Segmentation of Pathologies: Application to Glioma Labelling.
Cordier, Nicolas; Delingette, Herve; Ayache, Nicholas
2016-04-01
In this paper, we describe a novel and generic approach to address fully-automatic segmentation of brain tumors by using multi-atlas patch-based voting techniques. In addition to avoiding the local search window assumption, the conventional patch-based framework is enhanced through several simple procedures: an improvement of the training dataset in terms of both label purity and intensity statistics, augmented features to implicitly guide the nearest-neighbor-search, multi-scale patches, invariance to cube isometries, stratification of the votes with respect to cases and labels. A probabilistic model automatically delineates regions of interest enclosing high-probability tumor volumes, which allows the algorithm to achieve highly competitive running time despite minimal processing power and resources. This method was evaluated on Multimodal Brain Tumor Image Segmentation challenge datasets. State-of-the-art results are achieved, with a limited learning stage thus restricting the risk of overfit. Moreover, segmentation smoothness does not involve any post-processing.
New Materials for Structural Composites and Protective Coatings
NASA Technical Reports Server (NTRS)
2008-01-01
The objective of this Phase I project was to create novel conductive materials that are lightweight and strong enough for multiple ground support equipment and Exploration applications. The long-term goal is to combine these materials within specially designed devices to create composites or coatings with diagnostic capabilities, increased strength, and tunable properties such as transparency, electroluminescence, and fire resistance. One such technology application is a smart windows system. In such a system, the transmission of light through a window is controlled by electrical power. In the future, these materials may also be able to absorb sunlight and convert it into electrical energy to produce light, thereby creating a self-sufficient lighting system. This experiment, conducted in collaboration with the Georgia Institute of Technology, demonstrated enhancements in fabricating fiber materials from carbon nanotubes (CNT). These nanotubes were grown as forests in an ultra-high-purity chemical vapor deposition (CVD) furnace and then drawn, using novel processing techniques, into fibers and yarns that would be turned into filaments. This work was submitted to the Journal of Advanced Functional Materials. The CNT fibers were initially tested as filament materials at atmospheric pressure; however, even under high current loads, the filaments produced only random sparking. The CNT fibers were also converted into transparent, hydrophobic, and conductive sheets. Filament testing at low vacuum pressures is in progress, and the technology will be enhanced in 2008. As initial proof of the smart-windows application concept, the use of CNT sheets as composites/ protective coatings was demonstrated in collaboration with Nanocomp Technologies of Concord, New Hampshire.
Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; ...
2015-06-30
The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as muchmore » geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.« less
Microperforations significantly enhance diffusion across round window membrane.
Kelso, Catherine M; Watanabe, Hirobumi; Wazen, Joseph M; Bucher, Tizian; Qian, Zhen J; Olson, Elizabeth S; Kysar, Jeffrey W; Lalwani, Anil K
2015-04-01
Introduction of microperforations in round window membrane (RWM) will allow reliable and predictable intracochlear delivery of pharmaceutical, molecular, or cellular therapeutic agents. Reliable delivery of medications into the inner ear remains a formidable challenge. The RWM is an attractive target for intracochlear delivery. However, simple diffusion across intact RWM is limited by what material can be delivered, size of material to be delivered, difficulty with precise dosing, timing, and precision of delivery over time. Further, absence of reliable methods for measuring diffusion across RWM in vitro is a significant experimental impediment. A novel model for measuring diffusion across guinea pig RWM, with and without microperforation, was developed and tested: cochleae, sparing the RWM, were embedded in 3D-printed acrylic holders using hybrid dental composite and light cured to adapt the round window niche to 3 ml Franz diffusion cells. Perforations were created with 12.5-μm-diameter needles and examined with light microscopy. Diffusion of 1 mM Rhodamine B across RWM in static diffusion cells was measured via fluorescence microscopy. The diffusion cell apparatus provided reliable and replicable measurements of diffusion across RWM. The permeability of Rhodamine B across intact RWM was 5.1 × 10(9-) m/s. Manual application of microperforation with a 12.5-μm-diameter tip produced an elliptical tear removing 0.22 ± 0.07% of the membrane and was associated with a 35× enhancement in diffusion (P < 0.05). Diffusion cells can be applied to the study of RWM permeability in vitro. Microperforation in RWM is an effective means of increasing diffusion across the RWM.
[Real-time detection and processing of medical signals under windows using Lcard analog interfaces].
Kuz'min, A A; Belozerov, A E; Pronin, T V
2008-01-01
Multipurpose modular software for an analog interface based on Lcard 761 is considered. Algorithms for pipeline processing of medical signals under Windows with dynamic control of computational resources are suggested. The software consists of user-friendly completable modifiable modules. The module hierarchy is based on object-oriented heritage principles, which make it possible to construct various real-time systems for long-term detection, processing, and imaging of multichannel medical signals.
Peng, Sijia; Wang, Wenjuan; Chen, Chunlai
2018-05-10
Fluorescence correlation spectroscopy is a powerful single-molecule tool that is able to capture kinetic processes occurring at the nanosecond time scale. However, the upper limit of its time window is restricted by the dwell time of the molecule of interest in the confocal detection volume, which is usually around submilliseconds for a freely diffusing biomolecule. Here, we present a simple and easy-to-implement method, named surface transient binding-based fluorescence correlation spectroscopy (STB-FCS), which extends the upper limit of the time window to seconds. We further demonstrated that STB-FCS enables capture of both intramolecular and intermolecular kinetic processes whose time scales cross several orders of magnitude.
Bacterial burden in the operating room: impact of airflow systems.
Hirsch, Tobias; Hubert, Helmine; Fischer, Sebastian; Lahmer, Armin; Lehnhardt, Marcus; Steinau, Hans-Ulrich; Steinstraesser, Lars; Seipp, Hans-Martin
2012-09-01
Wound infections present one of the most prevalent and frequent complications associated with surgical procedures. This study analyzes the impact of currently used ventilation systems in the operating room to reduce bacterial contamination during surgical procedures. Four ventilation systems (window-based ventilation, supported air nozzle canopy, low-turbulence displacement airflow, and low-turbulence displacement airflow with flow stabilizer) were analyzed. Two hundred seventy-seven surgical procedures in 6 operating rooms of 5 different hospitals were analyzed for this study. Window-based ventilation showed the highest intraoperative contamination (13.3 colony-forming units [CFU]/h) followed by supported air nozzle canopy (6.4 CFU/h; P = .001 vs window-based ventilation) and low-turbulence displacement airflow (3.4 and 0.8 CFU/h; P < .001 vs window-based ventilation and supported air nozzle canopy). The highest protection was provided by the low-turbulence displacement airflow with flow stabilizer (0.7 CFU/h), which showed a highly significant difference compared with the best supported air nozzle canopy theatre (3.9 CFU/h; P < .001). Furthermore, this system showed no increase of contamination in prolonged durations of surgical procedures. This study shows that intraoperative contamination can be significantly reduced by the use of adequate ventilation systems. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Satellite Data Processing System (SDPS) users manual V1.0
NASA Technical Reports Server (NTRS)
Caruso, Michael; Dunn, Chris
1989-01-01
SDPS is a menu driven interactive program designed to facilitate the display and output of image and line-based data sets common to telemetry, modeling and remote sensing. This program can be used to display up to four separate raster images and overlay line-based data such as coastlines, ship tracks and velocity vectors. The program uses multiple windows to communicate information with the user. At any given time, the program may have up to four image display windows as well as auxiliary windows containing information about each image displayed. SDPS is not a commercial program. It does not contain complete type checking or error diagnostics which may allow the program to crash. Known anomalies will be mentioned in the appropriate section as notes or cautions. SDPS was designed to be used on Sun Microsystems Workstations running SunView1 (Sun Visual/Integrated Environment for Workstations). It was primarily designed to be used on workstations equipped with color monitors, but most of the line-based functions and several of the raster-based functions can be used with monochrome monitors. The program currently runs on Sun 3 series workstations running Sun OS 4.0 and should port easily to Sun 4 and Sun 386 series workstations with SunView1. Users should also be familiar with UNIX, Sun workstations and the SunView window system.
NASGRO 3.0: A Software for Analyzing Aging Aircraft
NASA Technical Reports Server (NTRS)
Mettu, S. R.; Shivakumar, V.; Beek, J. M.; Yeh, F.; Williams, L. C.; Forman, R. G.; McMahon, J. J.; Newman, J. C., Jr.
1999-01-01
Structural integrity analysis of aging aircraft is a critical necessity in view of the increasing numbers of such aircraft in general aviation, the airlines and the military. Efforts are in progress by NASA, the FAA and the DoD to focus attention on aging aircraft safety. The present paper describes the NASGRO software which is well-suited for effectively analyzing the behavior of defects that may be found in aging aircraft. The newly revised Version 3.0 has many features specifically implemented to suit the needs of the aircraft community. The fatigue crack growth computer program NASA/FLAGRO 2.0 was originally developed to analyze space hardware such as the Space Shuttle, the International Space Station and the associated payloads. Due to popular demand, the software was enhanced to suit the needs of the aircraft industry. Major improvements in Version 3.0 are the incorporation of the ability to read aircraft spectra of unlimited size, generation of common aircraft fatigue load blocks, and the incorporation of crack-growth models which include load-interaction effects such as retardation due to overloads and acceleration due to underloads. Five new crack-growth models, viz., generalized Willenborg, modified generalized Willenborg, constant closure model, Walker-Chang model and the deKoning-Newman strip-yield model, have been implemented. To facilitate easier input of geometry, material properties and load spectra, a Windows-style graphical user interface has been developed. Features to quickly change the input and rerun the problem as well as examine the output are incorporated. NASGRO has been organized into three modules, the crack-growth module being the primary one. The other two modules are the boundary element module and the material properties module. The boundary-element module provides the ability to model and analyze complex two-dimensional problems to obtain stresses and stress-intensity factors. The material properties module allows users to store and curve-fit fatigue-crack growth data. On-line help and documentation are provided for each of the modules. In addition to the popular PC windows version, a unix-based X-windows version of NASGRO is also available. A portable C++ class library called WxWindows was used to facilitate cross-platform availability of the software.
Two-window heterodyne methods to characterize light fields
NASA Astrophysics Data System (ADS)
Reil, Frank
In this dissertation, I develop a novel Two-Window heterodyne technique for measuring the time-resolved Wigner function of light fields, which allows their complete characterization. A Wigner function is a quasi-probability density that describes the transverse position and transverse momentum of a light field and is Fourier-transform related to its mutual coherence function. It obeys rigorous transport equations and therefore provides an ideal way to characterize a light field and its propagation through various media. I first present the experimental setup of our Two-Window technique, which is based on a heterodyne scheme involving two phase-coupled Local Oscillator beams we call the Dual-LO. The Dual-LO consists of a focused beam ('SLO') which sets the spatial resolution, and a collimated beam ('BLO') which sets the momental resolution. The resolution in transverse position and transverse momentum can be adjusted individually by the size of the SLO and BLO, which enables a measurement resolution surpassing the uncertainty principle associated with Fourier-transform pairs which limits the resolution when just a single LO is used. We first use our technique to determine the beam size, transverse coherence length and radius of curvature of a Gaussian-Schell beam, as well as its longitudinal characteristics, which are related to its optical spectrum. We then examine Enhanced Backscattering at various path-lengths in the turbid medium. For the first time ever, we demonstrate the phase-conjugating properties of a turbid medium by observing the change in sign of the radius of curvature for a non-collimated field incident on the medium. We also perform time-resolved measurements in the transmission regime. In tenuous media we observe two peaks in phase-space confined by a hyperbola which are due to low-order scattering. Their distance depends on the chosen path-delay. Some coherence and even spatial properties of the incident field are preserved in those peaks as measurements with our Two-Window technique show. Various other applications are presented in less detail, such as the Wigner function of the field inside a speckle produced by a piece of glass containing air bubbles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ventrillard, I.; Romanini, D.; Mondelain, D.
In spite of its importance for the evaluation of the Earth radiative budget, thus for climate change, very few measurements of the water vapor continuum are available in the near infrared atmospheric windows especially at temperature conditions relevant for our atmosphere. In addition, as a result of the difficulty to measure weak broadband absorption signals, the few available measurements show large disagreements. We report here accurate measurements of the water vapor self-continuum absorption in the 2.1 μm window by Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS) for two spectral points located at the low energy edge and at the centermore » of the 2.1 μm transparency window, at 4302 and 4723 cm{sup −1}, respectively. Self-continuum cross sections, C{sub S}, were retrieved with a few % relative uncertainty, from the quadratic dependence of the spectrum base line level measured as a function of water vapor pressure, between 0 and 16 Torr. At 296 K, the C{sub S} value at 4302 cm{sup −1} is found 40% higher than predicted by the MT-CKD V2.5 model, while at 4723 cm{sup −1}, our value is 5 times larger than the MT-CKD value. On the other hand, these OF-CEAS C{sub S} values are significantly smaller than recent measurements by Fourier transform spectroscopy at room temperature. The temperature dependence of the self-continuum cross sections was also investigated for temperatures between 296 K and 323 K (23-50 °C). The derived temperature variation is found to be similar to that derived from previous Fourier transform spectrometer (FTS) measurements performed at higher temperatures, between 350 K and 472 K. The whole set of measurements spanning the 296-472 K temperature range follows a simple exponential law in 1/T with a slope close to the dissociation energy of the water dimer, D{sub 0} ≈ 1100 cm{sup −1}.« less
The application of IR detector with windowing technique in the small and dim target detection
NASA Astrophysics Data System (ADS)
Su, Xiaofeng; Chen, Fansheng; Dong, Yucui; Cui, Kun; Huang, Sijie
2015-04-01
The performance of small and dim IR target detection is mostly affected by the signal to noise ratio(SNR) and signal to clutter ratio(SCR), for the MWIR especially LWIR array detector, because of the background radiation and the optical system radiation, the SCR cannot be unlimited increased by using a longer integral time, so the frame rate of the detector was mainly limited by the data readout time especially in a large-scale infrared detector, in this paper a new MWIR array detector with windowing technique was used to do the experiment, which can get a faster frame rate around the target by using the windowing mode, so the redundant information could be ignore, and the background subtraction was used to remove the fixed pattern noise and adjust the dynamic range of the target, then a local NUC(non uniformity correction) technique was proposed to improve the SCR of the target, the advantage between local NUC and global NUC was analyzed in detail, finally the multi local window frame accumulation was adopted to enhance the target further, and the SNR of the target was improved. The experiment showed the SCR of the target can improved from 1.3 to 36 at 30 frames accumulation, which make the target detection and tracking become very easily by using the new method.
Olshavsky, Megan E; Song, Bryan J; Powell, Daniel J; Jones, Carolyn E; Monfils, Marie-H; Lee, Hongjoo J
2013-01-01
When presented with a light cue followed by food, some rats simply approach the foodcup (Nonorienters), while others first orient to the light in addition to displaying the food-cup approach behavior (Orienters). Cue-directed orienting may reflect enhanced attentional and/or emotional processing of the cue, suggesting divergent natures of cue-information processing in Orienters and Nonorienters. The current studies investigate how differences in cue processing might manifest in appetitive memory retrieval and updating using a paradigm developed to persistently attenuate fear responses (Retrieval-extinction paradigm; Monfils et al., 2009). First, we examined whether the retrieval-extinction paradigm could attenuate appetitive responses in Orienters and Nonorienters. Next, we investigated if the appetitive memory could be updated using reversal learning (fear conditioning) during the reconsolidation window (as opposed to repeated unreinforced trials, i.e., extinction). Both extinction and new fear learning given within the reconsolidation window were effective at persistently updating the initial appetitive memory in the Orienters, but not the Nonorienters. Since conditioned orienting is mediated by the amygdala central nucleus (CeA), our final experiment examined the CeA's role in the retrieval-extinction process. Bilateral CeA lesions interfered with the retrieval-extinction paradigm-did not prevent spontaneous recovery of food-cup approach. Together, our studies demonstrate the critical role of conditioned orienting behavior and the CeA in updating appetitive memory during the reconsolidation window.
[Level of microwave radiation from mobile phone base stations built in residential districts].
Hu, Ji; Lu, Yiyang; Zhang, Huacheng; Xie, Hebing; Yang, Xinwen
2009-11-01
To investigate the condition of microwave radiation pollution from mobile phone base station built in populated area. Random selected 18 residential districts where had base station and 10 residential districts where had no base stations. A TES-92 electromagnetic radiation monitor were used to measure the intensity of microwave radiation in external and internal living environment. The intensities of microwave radiation in the exposure residential districts were more higher than those of the control residential districts (p < 0.05). There was a intensity peak at about 10 m from the station, it would gradually weaken with the increase of the distance. The level of microwave radiation in antenna main lobe region is not certainly more higher than the side lobe direction, and the side lobe direction also is not more lower. At the same district, where there were two base stations, the electromagnetic field nestification would take place in someplace. The intensities of microwave radiation outside the exposure windows in the resident room not only changed with distance but also with the height of the floor. The intensities of microwave radiation inside the aluminum alloys security net were more lower than those of outside the aluminum alloys security net (p < 0.05), but the inside or outside of glass-window appears almost no change (p > 0.05). Although all the measure dates on the ground around the base station could be below the primary standard in "environment electromagnetic wave hygienic standard" (GB9175-88), there were still a minorities of windows which exposed to the base station were higher, and the outside or inside of a few window was even higher beyond the primary safe level defined standard. The aluminum alloys security net can partly shield the microwave radiation from the mobile phone base station.
Restoration of severely weathered wood
R. Sam Williams; Mark Knaebe
2000-01-01
Severely weathered window units were used to test various restoration methods and pretreatments. Sanded and unsanded units were pretreated with a consolidant or water repellent preservative, finished with an oil- or latex-based paint system, and exposed outdoors near Madison, WI, for five years. Pretreatments were applied to both window sashes (stiles and rails) and...