An, Younghwa
2012-01-01
Recently, many biometrics-based user authentication schemes using smart cards have been proposed to improve the security weaknesses in user authentication system. In 2011, Das proposed an efficient biometric-based remote user authentication scheme using smart cards that can provide strong authentication and mutual authentication. In this paper, we analyze the security of Das's authentication scheme, and we have shown that Das's authentication scheme is still insecure against the various attacks. Also, we proposed the enhanced scheme to remove these security problems of Das's authentication scheme, even if the secret information stored in the smart card is revealed to an attacker. As a result of security analysis, we can see that the enhanced scheme is secure against the user impersonation attack, the server masquerading attack, the password guessing attack, and the insider attack and provides mutual authentication between the user and the server.
An, Younghwa
2012-01-01
Recently, many biometrics-based user authentication schemes using smart cards have been proposed to improve the security weaknesses in user authentication system. In 2011, Das proposed an efficient biometric-based remote user authentication scheme using smart cards that can provide strong authentication and mutual authentication. In this paper, we analyze the security of Das's authentication scheme, and we have shown that Das's authentication scheme is still insecure against the various attacks. Also, we proposed the enhanced scheme to remove these security problems of Das's authentication scheme, even if the secret information stored in the smart card is revealed to an attacker. As a result of security analysis, we can see that the enhanced scheme is secure against the user impersonation attack, the server masquerading attack, the password guessing attack, and the insider attack and provides mutual authentication between the user and the server. PMID:22899887
Choi, Younsung; Nam, Junghyun; Lee, Donghoon; Kim, Jiye; Jung, Jaewook; Won, Dongho
2014-01-01
An anonymous user authentication scheme allows a user, who wants to access a remote application server, to achieve mutual authentication and session key establishment with the server in an anonymous manner. To enhance the security of such authentication schemes, recent researches combined user's biometrics with a password. However, these authentication schemes are designed for single server environment. So when a user wants to access different application servers, the user has to register many times. To solve this problem, Chuang and Chen proposed an anonymous multiserver authenticated key agreement scheme using smart cards together with passwords and biometrics. Chuang and Chen claimed that their scheme not only supports multiple servers but also achieves various security requirements. However, we show that this scheme is vulnerable to a masquerade attack, a smart card attack, a user impersonation attack, and a DoS attack and does not achieve perfect forward secrecy. We also propose a security enhanced anonymous multiserver authenticated key agreement scheme which addresses all the weaknesses identified in Chuang and Chen's scheme.
Lee, Tian-Fu; Liu, Chuan-Ming
2013-06-01
A smart-card based authentication scheme for telecare medicine information systems enables patients, doctors, nurses, health visitors and the medicine information systems to establish a secure communication platform through public networks. Zhu recently presented an improved authentication scheme in order to solve the weakness of the authentication scheme of Wei et al., where the off-line password guessing attacks cannot be resisted. This investigation indicates that the improved scheme of Zhu has some faults such that the authentication scheme cannot execute correctly and is vulnerable to the attack of parallel sessions. Additionally, an enhanced authentication scheme based on the scheme of Zhu is proposed. The enhanced scheme not only avoids the weakness in the original scheme, but also provides users' anonymity and authenticated key agreements for secure data communications.
Choi, Younsung; Nam, Junghyun; Lee, Donghoon; Kim, Jiye; Jung, Jaewook; Won, Dongho
2014-01-01
An anonymous user authentication scheme allows a user, who wants to access a remote application server, to achieve mutual authentication and session key establishment with the server in an anonymous manner. To enhance the security of such authentication schemes, recent researches combined user's biometrics with a password. However, these authentication schemes are designed for single server environment. So when a user wants to access different application servers, the user has to register many times. To solve this problem, Chuang and Chen proposed an anonymous multiserver authenticated key agreement scheme using smart cards together with passwords and biometrics. Chuang and Chen claimed that their scheme not only supports multiple servers but also achieves various security requirements. However, we show that this scheme is vulnerable to a masquerade attack, a smart card attack, a user impersonation attack, and a DoS attack and does not achieve perfect forward secrecy. We also propose a security enhanced anonymous multiserver authenticated key agreement scheme which addresses all the weaknesses identified in Chuang and Chen's scheme. PMID:25276847
Li, Congcong; Zhang, Xi; Wang, Haiping; Li, Dongfeng
2018-01-11
Vehicular sensor networks have been widely applied in intelligent traffic systems in recent years. Because of the specificity of vehicular sensor networks, they require an enhanced, secure and efficient authentication scheme. Existing authentication protocols are vulnerable to some problems, such as a high computational overhead with certificate distribution and revocation, strong reliance on tamper-proof devices, limited scalability when building many secure channels, and an inability to detect hardware tampering attacks. In this paper, an improved authentication scheme using certificateless public key cryptography is proposed to address these problems. A security analysis of our scheme shows that our protocol provides an enhanced secure anonymous authentication, which is resilient against major security threats. Furthermore, the proposed scheme reduces the incidence of node compromise and replication attacks. The scheme also provides a malicious-node detection and warning mechanism, which can quickly identify compromised static nodes and immediately alert the administrative department. With performance evaluations, the scheme can obtain better trade-offs between security and efficiency than the well-known available schemes.
Enhanced smartcard-based password-authenticated key agreement using extended chaotic maps.
Lee, Tian-Fu; Hsiao, Chia-Hung; Hwang, Shi-Han; Lin, Tsung-Hung
2017-01-01
A smartcard based password-authenticated key agreement scheme enables a legal user to log in to a remote authentication server and access remote services through public networks using a weak password and a smart card. Lin recently presented an improved chaotic maps-based password-authenticated key agreement scheme that used smartcards to eliminate the weaknesses of the scheme of Guo and Chang, which does not provide strong user anonymity and violates session key security. However, the improved scheme of Lin does not exhibit the freshness property and the validity of messages so it still fails to withstand denial-of-service and privileged-insider attacks. Additionally, a single malicious participant can predetermine the session key such that the improved scheme does not exhibit the contributory property of key agreements. This investigation discusses these weaknesses and proposes an enhanced smartcard-based password-authenticated key agreement scheme that utilizes extended chaotic maps. The session security of this enhanced scheme is based on the extended chaotic map-based Diffie-Hellman problem, and is proven in the real-or-random and the sequence of games models. Moreover, the enhanced scheme ensures the freshness of communicating messages by appending timestamps, and thereby avoids the weaknesses in previous schemes.
Lu, Yanrong; Li, Lixiang; Peng, Haipeng; Yang, Yixian
2015-03-01
The telecare medical information systems (TMISs) enable patients to conveniently enjoy telecare services at home. The protection of patient's privacy is a key issue due to the openness of communication environment. Authentication as a typical approach is adopted to guarantee confidential and authorized interaction between the patient and remote server. In order to achieve the goals, numerous remote authentication schemes based on cryptography have been presented. Recently, Arshad et al. (J Med Syst 38(12): 2014) presented a secure and efficient three-factor authenticated key exchange scheme to remedy the weaknesses of Tan et al.'s scheme (J Med Syst 38(3): 2014). In this paper, we found that once a successful off-line password attack that results in an adversary could impersonate any user of the system in Arshad et al.'s scheme. In order to thwart these security attacks, an enhanced biometric and smart card based remote authentication scheme for TMISs is proposed. In addition, the BAN logic is applied to demonstrate the completeness of the enhanced scheme. Security and performance analyses show that our enhanced scheme satisfies more security properties and less computational cost compared with previously proposed schemes.
Enhanced smartcard-based password-authenticated key agreement using extended chaotic maps
Lee, Tian-Fu; Hsiao, Chia-Hung; Hwang, Shi-Han
2017-01-01
A smartcard based password-authenticated key agreement scheme enables a legal user to log in to a remote authentication server and access remote services through public networks using a weak password and a smart card. Lin recently presented an improved chaotic maps-based password-authenticated key agreement scheme that used smartcards to eliminate the weaknesses of the scheme of Guo and Chang, which does not provide strong user anonymity and violates session key security. However, the improved scheme of Lin does not exhibit the freshness property and the validity of messages so it still fails to withstand denial-of-service and privileged-insider attacks. Additionally, a single malicious participant can predetermine the session key such that the improved scheme does not exhibit the contributory property of key agreements. This investigation discusses these weaknesses and proposes an enhanced smartcard-based password-authenticated key agreement scheme that utilizes extended chaotic maps. The session security of this enhanced scheme is based on the extended chaotic map-based Diffie-Hellman problem, and is proven in the real-or-random and the sequence of games models. Moreover, the enhanced scheme ensures the freshness of communicating messages by appending timestamps, and thereby avoids the weaknesses in previous schemes. PMID:28759615
Li, Congcong; Zhang, Xi; Wang, Haiping; Li, Dongfeng
2018-01-01
Vehicular sensor networks have been widely applied in intelligent traffic systems in recent years. Because of the specificity of vehicular sensor networks, they require an enhanced, secure and efficient authentication scheme. Existing authentication protocols are vulnerable to some problems, such as a high computational overhead with certificate distribution and revocation, strong reliance on tamper-proof devices, limited scalability when building many secure channels, and an inability to detect hardware tampering attacks. In this paper, an improved authentication scheme using certificateless public key cryptography is proposed to address these problems. A security analysis of our scheme shows that our protocol provides an enhanced secure anonymous authentication, which is resilient against major security threats. Furthermore, the proposed scheme reduces the incidence of node compromise and replication attacks. The scheme also provides a malicious-node detection and warning mechanism, which can quickly identify compromised static nodes and immediately alert the administrative department. With performance evaluations, the scheme can obtain better trade-offs between security and efficiency than the well-known available schemes. PMID:29324719
Security enhanced multi-factor biometric authentication scheme using bio-hash function.
Choi, Younsung; Lee, Youngsook; Moon, Jongho; Won, Dongho
2017-01-01
With the rapid development of personal information and wireless communication technology, user authentication schemes have been crucial to ensure that wireless communications are secure. As such, various authentication schemes with multi-factor authentication have been proposed to improve the security of electronic communications. Multi-factor authentication involves the use of passwords, smart cards, and various biometrics to provide users with the utmost privacy and data protection. Cao and Ge analyzed various authentication schemes and found that Younghwa An's scheme was susceptible to a replay attack where an adversary masquerades as a legal server and a user masquerading attack where user anonymity is not provided, allowing an adversary to execute a password change process by intercepting the user's ID during login. Cao and Ge improved upon Younghwa An's scheme, but various security problems remained. This study demonstrates that Cao and Ge's scheme is susceptible to a biometric recognition error, slow wrong password detection, off-line password attack, user impersonation attack, ID guessing attack, a DoS attack, and that their scheme cannot provide session key agreement. Then, to address all weaknesses identified in Cao and Ge's scheme, this study proposes a security enhanced multi-factor biometric authentication scheme and provides a security analysis and formal analysis using Burrows-Abadi-Needham logic. Finally, the efficiency analysis reveals that the proposed scheme can protect against several possible types of attacks with only a slightly high computational cost.
Chung, Youngseok; Choi, Seokjin; Lee, Youngsook; Park, Namje; Won, Dongho
2016-10-07
More security concerns and complicated requirements arise in wireless sensor networks than in wired networks, due to the vulnerability caused by their openness. To address this vulnerability, anonymous authentication is an essential security mechanism for preserving privacy and providing security. Over recent years, various anonymous authentication schemes have been proposed. Most of them reveal both strengths and weaknesses in terms of security and efficiency. Recently, Farash et al. proposed a lightweight anonymous authentication scheme in ubiquitous networks, which remedies the security faults of previous schemes. However, their scheme still suffers from certain weaknesses. In this paper, we prove that Farash et al.'s scheme fails to provide anonymity, authentication, or password replacement. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Considering the limited capability of sensor nodes, we utilize only low-cost functions, such as one-way hash functions and bit-wise exclusive-OR operations. The security and lightness of the proposed scheme mean that it can be applied to roaming service in localized domains of wireless sensor networks, to provide anonymous authentication of sensor nodes.
Chung, Youngseok; Choi, Seokjin; Lee, Youngsook; Park, Namje; Won, Dongho
2016-01-01
More security concerns and complicated requirements arise in wireless sensor networks than in wired networks, due to the vulnerability caused by their openness. To address this vulnerability, anonymous authentication is an essential security mechanism for preserving privacy and providing security. Over recent years, various anonymous authentication schemes have been proposed. Most of them reveal both strengths and weaknesses in terms of security and efficiency. Recently, Farash et al. proposed a lightweight anonymous authentication scheme in ubiquitous networks, which remedies the security faults of previous schemes. However, their scheme still suffers from certain weaknesses. In this paper, we prove that Farash et al.’s scheme fails to provide anonymity, authentication, or password replacement. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Considering the limited capability of sensor nodes, we utilize only low-cost functions, such as one-way hash functions and bit-wise exclusive-OR operations. The security and lightness of the proposed scheme mean that it can be applied to roaming service in localized domains of wireless sensor networks, to provide anonymous authentication of sensor nodes. PMID:27739417
Security analysis and enhanced user authentication in proxy mobile IPv6 networks.
Kang, Dongwoo; Jung, Jaewook; Lee, Donghoon; Kim, Hyoungshick; Won, Dongho
2017-01-01
The Proxy Mobile IPv6 (PMIPv6) is a network-based mobility management protocol that allows a Mobile Node(MN) connected to the PMIPv6 domain to move from one network to another without changing the assigned IPv6 address. The user authentication procedure in this protocol is not standardized, but many smartcard based authentication schemes have been proposed. Recently, Alizadeh et al. proposed an authentication scheme for the PMIPv6. However, it could allow an attacker to derive an encryption key that must be securely shared between MN and the Mobile Access Gate(MAG). As a result, outsider adversary can derive MN's identity, password and session key. In this paper, we analyze Alizadeh et al.'s scheme regarding security and propose an enhanced authentication scheme that uses a dynamic identity to satisfy anonymity. Furthermore, we use BAN logic to show that our scheme can successfully generate and communicate with the inter-entity session key.
A Secure ECC-based RFID Mutual Authentication Protocol to Enhance Patient Medication Safety.
Jin, Chunhua; Xu, Chunxiang; Zhang, Xiaojun; Li, Fagen
2016-01-01
Patient medication safety is an important issue in patient medication systems. In order to prevent medication errors, integrating Radio Frequency Identification (RFID) technology into automated patient medication systems is required in hospitals. Based on RFID technology, such systems can provide medical evidence for patients' prescriptions and medicine doses, etc. Due to the mutual authentication between the medication server and the tag, RFID authentication scheme is the best choice for automated patient medication systems. In this paper, we present a RFID mutual authentication scheme based on elliptic curve cryptography (ECC) to enhance patient medication safety. Our scheme can achieve security requirements and overcome various attacks existing in other schemes. In addition, our scheme has better performance in terms of computational cost and communication overhead. Therefore, the proposed scheme is well suitable for patient medication systems.
Chang, I-Pin; Lee, Tian-Fu; Lin, Tsung-Hung; Liu, Chuan-Ming
2015-11-30
Key agreements that use only password authentication are convenient in communication networks, but these key agreement schemes often fail to resist possible attacks, and therefore provide poor security compared with some other authentication schemes. To increase security, many authentication and key agreement schemes use smartcard authentication in addition to passwords. Thus, two-factor authentication and key agreement schemes using smartcards and passwords are widely adopted in many applications. Vaidya et al. recently presented a two-factor authentication and key agreement scheme for wireless sensor networks (WSNs). Kim et al. observed that the Vaidya et al. scheme fails to resist gateway node bypassing and user impersonation attacks, and then proposed an improved scheme for WSNs. This study analyzes the weaknesses of the two-factor authentication and key agreement scheme of Kim et al., which include vulnerability to impersonation attacks, lost smartcard attacks and man-in-the-middle attacks, violation of session key security, and failure to protect user privacy. An efficient and secure authentication and key agreement scheme for WSNs based on the scheme of Kim et al. is then proposed. The proposed scheme not only solves the weaknesses of previous approaches, but also increases security requirements while maintaining low computational cost.
Security enhanced multi-factor biometric authentication scheme using bio-hash function
Lee, Youngsook; Moon, Jongho
2017-01-01
With the rapid development of personal information and wireless communication technology, user authentication schemes have been crucial to ensure that wireless communications are secure. As such, various authentication schemes with multi-factor authentication have been proposed to improve the security of electronic communications. Multi-factor authentication involves the use of passwords, smart cards, and various biometrics to provide users with the utmost privacy and data protection. Cao and Ge analyzed various authentication schemes and found that Younghwa An’s scheme was susceptible to a replay attack where an adversary masquerades as a legal server and a user masquerading attack where user anonymity is not provided, allowing an adversary to execute a password change process by intercepting the user’s ID during login. Cao and Ge improved upon Younghwa An’s scheme, but various security problems remained. This study demonstrates that Cao and Ge’s scheme is susceptible to a biometric recognition error, slow wrong password detection, off-line password attack, user impersonation attack, ID guessing attack, a DoS attack, and that their scheme cannot provide session key agreement. Then, to address all weaknesses identified in Cao and Ge’s scheme, this study proposes a security enhanced multi-factor biometric authentication scheme and provides a security analysis and formal analysis using Burrows-Abadi-Needham logic. Finally, the efficiency analysis reveals that the proposed scheme can protect against several possible types of attacks with only a slightly high computational cost. PMID:28459867
Chang, I-Pin; Lee, Tian-Fu; Lin, Tsung-Hung; Liu, Chuan-Ming
2015-01-01
Key agreements that use only password authentication are convenient in communication networks, but these key agreement schemes often fail to resist possible attacks, and therefore provide poor security compared with some other authentication schemes. To increase security, many authentication and key agreement schemes use smartcard authentication in addition to passwords. Thus, two-factor authentication and key agreement schemes using smartcards and passwords are widely adopted in many applications. Vaidya et al. recently presented a two-factor authentication and key agreement scheme for wireless sensor networks (WSNs). Kim et al. observed that the Vaidya et al. scheme fails to resist gateway node bypassing and user impersonation attacks, and then proposed an improved scheme for WSNs. This study analyzes the weaknesses of the two-factor authentication and key agreement scheme of Kim et al., which include vulnerability to impersonation attacks, lost smartcard attacks and man-in-the-middle attacks, violation of session key security, and failure to protect user privacy. An efficient and secure authentication and key agreement scheme for WSNs based on the scheme of Kim et al. is then proposed. The proposed scheme not only solves the weaknesses of previous approaches, but also increases security requirements while maintaining low computational cost. PMID:26633396
Security analysis and enhanced user authentication in proxy mobile IPv6 networks
Kang, Dongwoo; Jung, Jaewook; Lee, Donghoon; Kim, Hyoungshick
2017-01-01
The Proxy Mobile IPv6 (PMIPv6) is a network-based mobility management protocol that allows a Mobile Node(MN) connected to the PMIPv6 domain to move from one network to another without changing the assigned IPv6 address. The user authentication procedure in this protocol is not standardized, but many smartcard based authentication schemes have been proposed. Recently, Alizadeh et al. proposed an authentication scheme for the PMIPv6. However, it could allow an attacker to derive an encryption key that must be securely shared between MN and the Mobile Access Gate(MAG). As a result, outsider adversary can derive MN’s identity, password and session key. In this paper, we analyze Alizadeh et al.’s scheme regarding security and propose an enhanced authentication scheme that uses a dynamic identity to satisfy anonymity. Furthermore, we use BAN logic to show that our scheme can successfully generate and communicate with the inter-entity session key. PMID:28719621
A bilinear pairing based anonymous authentication scheme in wireless body area networks for mHealth.
Jiang, Qi; Lian, Xinxin; Yang, Chao; Ma, Jianfeng; Tian, Youliang; Yang, Yuanyuan
2016-11-01
Wireless body area networks (WBANs) have become one of the key components of mobile health (mHealth) which provides 24/7 health monitoring service and greatly improves the quality and efficiency of healthcare. However, users' concern about the security and privacy of their health information has become one of the major obstacles that impede the wide adoption of WBANs. Anonymous and unlinkable authentication is critical to protect the security and privacy of sensitive physiological information in transit from the client to the application provider. We first show that the anonymous authentication scheme of Wang and Zhang based on bilinear pairing is prone to client impersonation attack. Then, we propose an enhanced anonymous authentication scheme to remedy the flaw in Wang and Zhang's scheme. We give the security analysis to demonstrate that the enhanced scheme achieves the desired security features and withstands various known attacks.
Arshad, Hamed; Teymoori, Vahid; Nikooghadam, Morteza; Abbassi, Hassan
2015-08-01
Telecare medicine information systems (TMISs) aim to deliver appropriate healthcare services in an efficient and secure manner to patients. A secure mechanism for authentication and key agreement is required to provide proper security in these systems. Recently, Bin Muhaya demonstrated some security weaknesses of Zhu's authentication and key agreement scheme and proposed a security enhanced authentication and key agreement scheme for TMISs. However, we show that Bin Muhaya's scheme is vulnerable to off-line password guessing attacks and does not provide perfect forward secrecy. Furthermore, in order to overcome the mentioned weaknesses, we propose a new two-factor anonymous authentication and key agreement scheme using the elliptic curve cryptosystem. Security and performance analyses demonstrate that the proposed scheme not only overcomes the weaknesses of Bin Muhaya's scheme, but also is about 2.73 times faster than Bin Muhaya's scheme.
Mishra, Dheerendra; Mukhopadhyay, Sourav; Kumari, Saru; Khan, Muhammad Khurram; Chaturvedi, Ankita
2014-05-01
Telecare medicine information systems (TMIS) present the platform to deliver clinical service door to door. The technological advances in mobile computing are enhancing the quality of healthcare and a user can access these services using its mobile device. However, user and Telecare system communicate via public channels in these online services which increase the security risk. Therefore, it is required to ensure that only authorized user is accessing the system and user is interacting with the correct system. The mutual authentication provides the way to achieve this. Although existing schemes are either vulnerable to attacks or they have higher computational cost while an scalable authentication scheme for mobile devices should be secure and efficient. Recently, Awasthi and Srivastava presented a biometric based authentication scheme for TMIS with nonce. Their scheme only requires the computation of the hash and XOR functions.pagebreak Thus, this scheme fits for TMIS. However, we observe that Awasthi and Srivastava's scheme does not achieve efficient password change phase. Moreover, their scheme does not resist off-line password guessing attack. Further, we propose an improvement of Awasthi and Srivastava's scheme with the aim to remove the drawbacks of their scheme.
Chen, Hung-Ming; Lo, Jung-Wen; Yeh, Chang-Kuo
2012-12-01
The rapidly increased availability of always-on broadband telecommunication environments and lower-cost vital signs monitoring devices bring the advantages of telemedicine directly into the patient's home. Hence, the control of access to remote medical servers' resources has become a crucial challenge. A secure authentication scheme between the medical server and remote users is therefore needed to safeguard data integrity, confidentiality and to ensure availability. Recently, many authentication schemes that use low-cost mobile devices have been proposed to meet these requirements. In contrast to previous schemes, Khan et al. proposed a dynamic ID-based remote user authentication scheme that reduces computational complexity and includes features such as a provision for the revocation of lost or stolen smart cards and a time expiry check for the authentication process. However, Khan et al.'s scheme has some security drawbacks. To remedy theses, this study proposes an enhanced authentication scheme that overcomes the weaknesses inherent in Khan et al.'s scheme and demonstrated this scheme is more secure and robust for use in a telecare medical information system.
Mishra, Dheerendra
2015-03-01
Smart card based authentication and key agreement schemes for telecare medicine information systems (TMIS) enable doctors, nurses, patients and health visitors to use smart cards for secure login to medical information systems. In recent years, several authentication and key agreement schemes have been proposed to present secure and efficient solution for TMIS. Most of the existing authentication schemes for TMIS have either higher computation overhead or are vulnerable to attacks. To reduce the computational overhead and enhance the security, Lee recently proposed an authentication and key agreement scheme using chaotic maps for TMIS. Xu et al. also proposed a password based authentication and key agreement scheme for TMIS using elliptic curve cryptography. Both the schemes provide better efficiency from the conventional public key cryptography based schemes. These schemes are important as they present an efficient solution for TMIS. We analyze the security of both Lee's scheme and Xu et al.'s schemes. Unfortunately, we identify that both the schemes are vulnerable to denial of service attack. To understand the security failures of these cryptographic schemes which are the key of patching existing schemes and designing future schemes, we demonstrate the security loopholes of Lee's scheme and Xu et al.'s scheme in this paper.
Das, Ashok Kumar; Goswami, Adrijit
2014-06-01
Recently, Awasthi and Srivastava proposed a novel biometric remote user authentication scheme for the telecare medicine information system (TMIS) with nonce. Their scheme is very efficient as it is based on efficient chaotic one-way hash function and bitwise XOR operations. In this paper, we first analyze Awasthi-Srivastava's scheme and then show that their scheme has several drawbacks: (1) incorrect password change phase, (2) fails to preserve user anonymity property, (3) fails to establish a secret session key beween a legal user and the server, (4) fails to protect strong replay attack, and (5) lacks rigorous formal security analysis. We then a propose a novel and secure biometric-based remote user authentication scheme in order to withstand the security flaw found in Awasthi-Srivastava's scheme and enhance the features required for an idle user authentication scheme. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. In addition, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool and show that our scheme is secure against passive and active attacks, including the replay and man-in-the-middle attacks. Our scheme is also efficient as compared to Awasthi-Srivastava's scheme.
An Enhanced Privacy-Preserving Authentication Scheme for Vehicle Sensor Networks.
Zhou, Yousheng; Zhao, Xiaofeng; Jiang, Yi; Shang, Fengjun; Deng, Shaojiang; Wang, Xiaojun
2017-12-08
Vehicle sensor networks (VSNs) are ushering in a promising future by enabling more intelligent transportation systems and providing a more efficient driving experience. However, because of their inherent openness, VSNs are subject to a large number of potential security threats. Although various authentication schemes have been proposed for addressing security problems, they are not suitable for VSN applications because of their high computation and communication costs. Chuang and Lee have developed a trust-extended authentication mechanism (TEAM) for vehicle-to-vehicle communication using a transitive trust relationship, which they claim can resist various attacks. However, it fails to counter internal attacks because of the utilization of a shared secret key. In this paper, to eliminate the vulnerability of TEAM, an enhanced privacy-preserving authentication scheme for VSNs is constructed. The security of our proposed scheme is proven under the random oracle model based on the assumption of the computational Diffie-Hellman problem.
An Enhanced Privacy-Preserving Authentication Scheme for Vehicle Sensor Networks
Zhou, Yousheng; Zhao, Xiaofeng; Jiang, Yi; Shang, Fengjun; Deng, Shaojiang; Wang, Xiaojun
2017-01-01
Vehicle sensor networks (VSNs) are ushering in a promising future by enabling more intelligent transportation systems and providing a more efficient driving experience. However, because of their inherent openness, VSNs are subject to a large number of potential security threats. Although various authentication schemes have been proposed for addressing security problems, they are not suitable for VSN applications because of their high computation and communication costs. Chuang and Lee have developed a trust-extended authentication mechanism (TEAM) for vehicle-to-vehicle communication using a transitive trust relationship, which they claim can resist various attacks. However, it fails to counter internal attacks because of the utilization of a shared secret key. In this paper, to eliminate the vulnerability of TEAM, an enhanced privacy-preserving authentication scheme for VSNs is constructed. The security of our proposed scheme is proven under the random oracle model based on the assumption of the computational Diffie–Hellman problem. PMID:29292792
A secure biometrics-based authentication scheme for telecare medicine information systems.
Yan, Xiaopeng; Li, Weiheng; Li, Ping; Wang, Jiantao; Hao, Xinhong; Gong, Peng
2013-10-01
The telecare medicine information system (TMIS) allows patients and doctors to access medical services or medical information at remote sites. Therefore, it could bring us very big convenient. To safeguard patients' privacy, authentication schemes for the TMIS attracted wide attention. Recently, Tan proposed an efficient biometrics-based authentication scheme for the TMIS and claimed their scheme could withstand various attacks. However, in this paper, we point out that Tan's scheme is vulnerable to the Denial-of-Service attack. To enhance security, we also propose an improved scheme based on Tan's work. Security and performance analysis shows our scheme not only could overcome weakness in Tan's scheme but also has better performance.
Arshad, Hamed; Rasoolzadegan, Abbas
2016-11-01
Authentication and key agreement schemes play a very important role in enhancing the level of security of telecare medicine information systems (TMISs). Recently, Amin and Biswas demonstrated that the authentication scheme proposed by Giri et al. is vulnerable to off-line password guessing attacks and privileged insider attacks and also does not provide user anonymity. They also proposed an improved authentication scheme, claiming that it resists various security attacks. However, this paper demonstrates that Amin and Biswas's scheme is defenseless against off-line password guessing attacks and replay attacks and also does not provide perfect forward secrecy. This paper also shows that Giri et al.'s scheme not only suffers from the weaknesses pointed out by Amin and Biswas, but it also is vulnerable to replay attacks and does not provide perfect forward secrecy. Moreover, this paper proposes a novel authentication and key agreement scheme to overcome the mentioned weaknesses. Security and performance analyses show that the proposed scheme not only overcomes the mentioned security weaknesses, but also is more efficient than the previous schemes.
Jung, Jaewook; Moon, Jongho; Lee, Donghoon; Won, Dongho
2017-01-01
At present, users can utilize an authenticated key agreement protocol in a Wireless Sensor Network (WSN) to securely obtain desired information, and numerous studies have investigated authentication techniques to construct efficient, robust WSNs. Chang et al. recently presented an authenticated key agreement mechanism for WSNs and claimed that their authentication mechanism can both prevent various types of attacks, as well as preserve security properties. However, we have discovered that Chang et al’s method possesses some security weaknesses. First, their mechanism cannot guarantee protection against a password guessing attack, user impersonation attack or session key compromise. Second, the mechanism results in a high load on the gateway node because the gateway node should always maintain the verifier tables. Third, there is no session key verification process in the authentication phase. To this end, we describe how the previously-stated weaknesses occur and propose a security-enhanced version for WSNs. We present a detailed analysis of the security and performance of our authenticated key agreement mechanism, which not only enhances security compared to that of related schemes, but also takes efficiency into consideration. PMID:28335572
Jung, Jaewook; Moon, Jongho; Lee, Donghoon; Won, Dongho
2017-03-21
At present, users can utilize an authenticated key agreement protocol in a Wireless Sensor Network (WSN) to securely obtain desired information, and numerous studies have investigated authentication techniques to construct efficient, robust WSNs. Chang et al. recently presented an authenticated key agreement mechanism for WSNs and claimed that their authentication mechanism can both prevent various types of attacks, as well as preserve security properties. However, we have discovered that Chang et al's method possesses some security weaknesses. First, their mechanism cannot guarantee protection against a password guessing attack, user impersonation attack or session key compromise. Second, the mechanism results in a high load on the gateway node because the gateway node should always maintain the verifier tables. Third, there is no session key verification process in the authentication phase. To this end, we describe how the previously-stated weaknesses occur and propose a security-enhanced version for WSNs. We present a detailed analysis of the security and performance of our authenticated key agreement mechanism, which not only enhances security compared to that of related schemes, but also takes efficiency into consideration.
Park, YoHan; Park, YoungHo
2016-12-14
Secure communication is a significant issue in wireless sensor networks. User authentication and key agreement are essential for providing a secure system, especially in user-oriented mobile services. It is also necessary to protect the identity of each individual in wireless environments to avoid personal privacy concerns. Many authentication and key agreement schemes utilize a smart card in addition to a password to support security functionalities. However, these schemes often fail to provide security along with privacy. In 2015, Chang et al. analyzed the security vulnerabilities of previous schemes and presented the two-factor authentication scheme that provided user privacy by using dynamic identities. However, when we cryptanalyzed Chang et al.'s scheme, we found that it does not provide sufficient security for wireless sensor networks and fails to provide accurate password updates. This paper proposes a security-enhanced authentication and key agreement scheme to overcome these security weaknesses using biometric information and an elliptic curve cryptosystem. We analyze the security of the proposed scheme against various attacks and check its viability in the mobile environment.
A Novel Physical Layer Assisted Authentication Scheme for Mobile Wireless Sensor Networks
Wang, Qiuhua
2017-01-01
Physical-layer authentication can address physical layer vulnerabilities and security threats in wireless sensor networks, and has been considered as an effective complementary enhancement to existing upper-layer authentication mechanisms. In this paper, to advance the existing research and improve the authentication performance, we propose a novel physical layer assisted authentication scheme for mobile wireless sensor networks. In our proposed scheme, we explore the reciprocity and spatial uncorrelation of the wireless channel to verify the identities of involved transmitting users and decide whether all data frames are from the same sender. In our proposed scheme, a new method is developed for the legitimate users to compare their received signal strength (RSS) records, which avoids the information from being disclosed to the adversary. Our proposed scheme can detect the spoofing attack even in a high dynamic environment. We evaluate our scheme through experiments under indoor and outdoor environments. Experiment results show that our proposed scheme is more efficient and achieves a higher detection rate as well as keeping a lower false alarm rate. PMID:28165423
Park, YoHan; Park, YoungHo
2016-01-01
Secure communication is a significant issue in wireless sensor networks. User authentication and key agreement are essential for providing a secure system, especially in user-oriented mobile services. It is also necessary to protect the identity of each individual in wireless environments to avoid personal privacy concerns. Many authentication and key agreement schemes utilize a smart card in addition to a password to support security functionalities. However, these schemes often fail to provide security along with privacy. In 2015, Chang et al. analyzed the security vulnerabilities of previous schemes and presented the two-factor authentication scheme that provided user privacy by using dynamic identities. However, when we cryptanalyzed Chang et al.’s scheme, we found that it does not provide sufficient security for wireless sensor networks and fails to provide accurate password updates. This paper proposes a security-enhanced authentication and key agreement scheme to overcome these security weaknesses using biometric information and an elliptic curve cryptosystem. We analyze the security of the proposed scheme against various attacks and check its viability in the mobile environment. PMID:27983616
A Novel Physical Layer Assisted Authentication Scheme for Mobile Wireless Sensor Networks.
Wang, Qiuhua
2017-02-04
Physical-layer authentication can address physical layer vulnerabilities and security threats in wireless sensor networks, and has been considered as an effective complementary enhancement to existing upper-layer authentication mechanisms. In this paper, to advance the existing research and improve the authentication performance, we propose a novel physical layer assisted authentication scheme for mobile wireless sensor networks. In our proposed scheme, we explore the reciprocity and spatial uncorrelation of the wireless channel to verify the identities of involved transmitting users and decide whether all data frames are from the same sender. In our proposed scheme, a new method is developed for the legitimate users to compare their received signal strength (RSS) records, which avoids the information from being disclosed to the adversary. Our proposed scheme can detect the spoofing attack even in a high dynamic environment. We evaluate our scheme through experiments under indoor and outdoor environments. Experiment results show that our proposed scheme is more efficient and achieves a higher detection rate as well as keeping a lower false alarm rate.
Wang, Chenyu; Xu, Guoai; Sun, Jing
2017-12-19
As an essential part of Internet of Things (IoT), wireless sensor networks (WSNs) have touched every aspect of our lives, such as health monitoring, environmental monitoring and traffic monitoring. However, due to its openness, wireless sensor networks are vulnerable to various security threats. User authentication, as the first fundamental step to protect systems from various attacks, has attracted much attention. Numerous user authentication protocols armed with formal proof are springing up. Recently, two biometric-based schemes were proposed with confidence to be resistant to the known attacks including offline dictionary attack, impersonation attack and so on. However, after a scrutinization of these two schemes, we found them not secure enough as claimed, and then demonstrated that these schemes suffer from various attacks, such as offline dictionary attack, impersonation attack, no user anonymity, no forward secrecy, etc. Furthermore, we proposed an enhanced scheme to overcome the identified weaknesses, and proved its security via Burrows-Abadi-Needham (BAN) logic and the heuristic analysis. Finally, we compared our scheme with other related schemes, and the results showed the superiority of our scheme.
Xu, Guoai; Sun, Jing
2017-01-01
As an essential part of Internet of Things (IoT), wireless sensor networks (WSNs) have touched every aspect of our lives, such as health monitoring, environmental monitoring and traffic monitoring. However, due to its openness, wireless sensor networks are vulnerable to various security threats. User authentication, as the first fundamental step to protect systems from various attacks, has attracted much attention. Numerous user authentication protocols armed with formal proof are springing up. Recently, two biometric-based schemes were proposed with confidence to be resistant to the known attacks including offline dictionary attack, impersonation attack and so on. However, after a scrutinization of these two schemes, we found them not secure enough as claimed, and then demonstrated that these schemes suffer from various attacks, such as offline dictionary attack, impersonation attack, no user anonymity, no forward secrecy, etc. Furthermore, we proposed an enhanced scheme to overcome the identified weaknesses, and proved its security via Burrows–Abadi–Needham (BAN) logic and the heuristic analysis. Finally, we compared our scheme with other related schemes, and the results showed the superiority of our scheme. PMID:29257066
Alizadeh, Mojtaba; Zamani, Mazdak; Baharun, Sabariah; Abdul Manaf, Azizah; Sakurai, Kouichi; Anada, Hiroaki; Anada, Hiroki; Keshavarz, Hassan; Ashraf Chaudhry, Shehzad; Khurram Khan, Muhammad
2015-01-01
Proxy Mobile IPv6 is a network-based localized mobility management protocol that supports mobility without mobile nodes' participation in mobility signaling. The details of user authentication procedure are not specified in this standard, hence, many authentication schemes have been proposed for this standard. In 2013, Chuang et al., proposed an authentication method for PMIPv6, called SPAM. However, Chuang et al.'s Scheme protects the network against some security attacks, but it is still vulnerable to impersonation and password guessing attacks. In addition, we discuss other security drawbacks such as lack of revocation procedure in case of loss or stolen device, and anonymity issues of the Chuang et al.'s scheme. We further propose an enhanced authentication method to mitigate the security issues of SPAM method and evaluate our scheme using BAN logic.
Alizadeh, Mojtaba; Zamani, Mazdak; Baharun, Sabariah; Abdul Manaf, Azizah; Sakurai, Kouichi; Anada, Hiroki; Keshavarz, Hassan; Ashraf Chaudhry, Shehzad; Khurram Khan, Muhammad
2015-01-01
Proxy Mobile IPv6 is a network-based localized mobility management protocol that supports mobility without mobile nodes’ participation in mobility signaling. The details of user authentication procedure are not specified in this standard, hence, many authentication schemes have been proposed for this standard. In 2013, Chuang et al., proposed an authentication method for PMIPv6, called SPAM. However, Chuang et al.’s Scheme protects the network against some security attacks, but it is still vulnerable to impersonation and password guessing attacks. In addition, we discuss other security drawbacks such as lack of revocation procedure in case of loss or stolen device, and anonymity issues of the Chuang et al.’s scheme. We further propose an enhanced authentication method to mitigate the security issues of SPAM method and evaluate our scheme using BAN logic. PMID:26580963
An authentication scheme for secure access to healthcare services.
Khan, Muhammad Khurram; Kumari, Saru
2013-08-01
Last few decades have witnessed boom in the development of information and communication technologies. Health-sector has also been benefitted with this advancement. To ensure secure access to healthcare services some user authentication mechanisms have been proposed. In 2012, Wei et al. proposed a user authentication scheme for telecare medical information system (TMIS). Recently, Zhu pointed out offline password guessing attack on Wei et al.'s scheme and proposed an improved scheme. In this article, we analyze both of these schemes for their effectiveness in TMIS. We show that Wei et al.'s scheme and its improvement proposed by Zhu fail to achieve some important characteristics necessary for secure user authentication. We find that security problems of Wei et al.'s scheme stick with Zhu's scheme; like undetectable online password guessing attack, inefficacy of password change phase, traceability of user's stolen/lost smart card and denial-of-service threat. We also identify that Wei et al.'s scheme lacks forward secrecy and Zhu's scheme lacks session key between user and healthcare server. We therefore propose an authentication scheme for TMIS with forward secrecy which preserves the confidentiality of air messages even if master secret key of healthcare server is compromised. Our scheme retains advantages of Wei et al.'s scheme and Zhu's scheme, and offers additional security. The security analysis and comparison results show the enhanced suitability of our scheme for TMIS.
Jung, Jaewook; Kang, Dongwoo; Lee, Donghoon; Won, Dongho
2017-01-01
Nowadays, many hospitals and medical institutes employ an authentication protocol within electronic patient records (EPR) services in order to provide protected electronic transactions in e-medicine systems. In order to establish efficient and robust health care services, numerous studies have been carried out on authentication protocols. Recently, Li et al. proposed a user authenticated key agreement scheme according to EPR information systems, arguing that their scheme is able to resist various types of attacks and preserve diverse security properties. However, this scheme possesses critical vulnerabilities. First, the scheme cannot prevent off-line password guessing attacks and server spoofing attack, and cannot preserve user identity. Second, there is no password verification process with the failure to identify the correct password at the beginning of the login phase. Third, the mechanism of password change is incompetent, in that it induces inefficient communication in communicating with the server to change a user password. Therefore, we suggest an upgraded version of the user authenticated key agreement scheme that provides enhanced security. Our security and performance analysis shows that compared to other related schemes, our scheme not only improves the security level, but also ensures efficiency.
Kang, Dongwoo; Lee, Donghoon; Won, Dongho
2017-01-01
Nowadays, many hospitals and medical institutes employ an authentication protocol within electronic patient records (EPR) services in order to provide protected electronic transactions in e-medicine systems. In order to establish efficient and robust health care services, numerous studies have been carried out on authentication protocols. Recently, Li et al. proposed a user authenticated key agreement scheme according to EPR information systems, arguing that their scheme is able to resist various types of attacks and preserve diverse security properties. However, this scheme possesses critical vulnerabilities. First, the scheme cannot prevent off-line password guessing attacks and server spoofing attack, and cannot preserve user identity. Second, there is no password verification process with the failure to identify the correct password at the beginning of the login phase. Third, the mechanism of password change is incompetent, in that it induces inefficient communication in communicating with the server to change a user password. Therefore, we suggest an upgraded version of the user authenticated key agreement scheme that provides enhanced security. Our security and performance analysis shows that compared to other related schemes, our scheme not only improves the security level, but also ensures efficiency. PMID:28046075
Enhanced Security and Pairing-free Handover Authentication Scheme for Mobile Wireless Networks
NASA Astrophysics Data System (ADS)
Chen, Rui; Shu, Guangqiang; Chen, Peng; Zhang, Lijun
2017-10-01
With the widely deployment of mobile wireless networks, we aim to propose a secure and seamless handover authentication scheme that allows users to roam freely in wireless networks without worrying about security and privacy issues. Given the open characteristic of wireless networks, safety and efficiency should be considered seriously. Several previous protocols are designed based on a bilinear pairing mapping, which is time-consuming and inefficient work, as well as unsuitable for practical situations. To address these issues, we designed a new pairing-free handover authentication scheme for mobile wireless networks. This scheme is an effective improvement of the protocol by Xu et al., which is suffer from the mobile node impersonation attack. Security analysis and simulation experiment indicate that the proposed protocol has many excellent security properties when compared with other recent similar handover schemes, such as mutual authentication and resistance to known network threats, as well as requiring lower computation and communication cost.
A Provably Secure RFID Authentication Protocol Based on Elliptic Curve for Healthcare Environments.
Farash, Mohammad Sabzinejad; Nawaz, Omer; Mahmood, Khalid; Chaudhry, Shehzad Ashraf; Khan, Muhammad Khurram
2016-07-01
To enhance the quality of healthcare in the management of chronic disease, telecare medical information systems have increasingly been used. Very recently, Zhang and Qi (J. Med. Syst. 38(5):47, 32), and Zhao (J. Med. Syst. 38(5):46, 33) separately proposed two authentication schemes for telecare medical information systems using radio frequency identification (RFID) technology. They claimed that their protocols achieve all security requirements including forward secrecy. However, this paper demonstrates that both Zhang and Qi's scheme, and Zhao's scheme could not provide forward secrecy. To augment the security, we propose an efficient RFID authentication scheme using elliptic curves for healthcare environments. The proposed RFID scheme is secure under common random oracle model.
Qiu, Shuming; Xu, Guoai; Ahmad, Haseeb; Guo, Yanhui
2018-01-01
The Session Initiation Protocol (SIP) is an extensive and esteemed communication protocol employed to regulate signaling as well as for controlling multimedia communication sessions. Recently, Kumari et al. proposed an improved smart card based authentication scheme for SIP based on Farash's scheme. Farash claimed that his protocol is resistant against various known attacks. But, we observe some accountable flaws in Farash's protocol. We point out that Farash's protocol is prone to key-compromise impersonation attack and is unable to provide pre-verification in the smart card, efficient password change and perfect forward secrecy. To overcome these limitations, in this paper we present an enhanced authentication mechanism based on Kumari et al.'s scheme. We prove that the proposed protocol not only overcomes the issues in Farash's scheme, but it can also resist against all known attacks. We also provide the security analysis of the proposed scheme with the help of widespread AVISPA (Automated Validation of Internet Security Protocols and Applications) software. At last, comparing with the earlier proposals in terms of security and efficiency, we conclude that the proposed protocol is efficient and more secure.
Moon, Jongho; Lee, Donghoon; Lee, Youngsook; Won, Dongho
2017-04-25
User authentication in wireless sensor networks is more difficult than in traditional networks owing to sensor network characteristics such as unreliable communication, limited resources, and unattended operation. For these reasons, various authentication schemes have been proposed to provide secure and efficient communication. In 2016, Park et al. proposed a secure biometric-based authentication scheme with smart card revocation/reissue for wireless sensor networks. However, we found that their scheme was still insecure against impersonation attack, and had a problem in the smart card revocation/reissue phase. In this paper, we show how an adversary can impersonate a legitimate user or sensor node, illegal smart card revocation/reissue and prove that Park et al.'s scheme fails to provide revocation/reissue. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Finally, we provide security and performance analysis between previous schemes and the proposed scheme, and provide formal analysis based on the random oracle model. The results prove that the proposed scheme can solve the weaknesses of impersonation attack and other security flaws in the security analysis section. Furthermore, performance analysis shows that the computational cost is lower than the previous scheme.
Moon, Jongho; Lee, Donghoon; Lee, Youngsook; Won, Dongho
2017-01-01
User authentication in wireless sensor networks is more difficult than in traditional networks owing to sensor network characteristics such as unreliable communication, limited resources, and unattended operation. For these reasons, various authentication schemes have been proposed to provide secure and efficient communication. In 2016, Park et al. proposed a secure biometric-based authentication scheme with smart card revocation/reissue for wireless sensor networks. However, we found that their scheme was still insecure against impersonation attack, and had a problem in the smart card revocation/reissue phase. In this paper, we show how an adversary can impersonate a legitimate user or sensor node, illegal smart card revocation/reissue and prove that Park et al.’s scheme fails to provide revocation/reissue. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Finally, we provide security and performance analysis between previous schemes and the proposed scheme, and provide formal analysis based on the random oracle model. The results prove that the proposed scheme can solve the weaknesses of impersonation attack and other security flaws in the security analysis section. Furthermore, performance analysis shows that the computational cost is lower than the previous scheme. PMID:28441331
Jung, Jaewook; Kim, Jiye; Choi, Younsung; Won, Dongho
2016-08-16
In wireless sensor networks (WSNs), a registered user can login to the network and use a user authentication protocol to access data collected from the sensor nodes. Since WSNs are typically deployed in unattended environments and sensor nodes have limited resources, many researchers have made considerable efforts to design a secure and efficient user authentication process. Recently, Chen et al. proposed a secure user authentication scheme using symmetric key techniques for WSNs. They claim that their scheme assures high efficiency and security against different types of attacks. After careful analysis, however, we find that Chen et al.'s scheme is still vulnerable to smart card loss attack and is susceptible to denial of service attack, since it is invalid for verification to simply compare an entered ID and a stored ID in smart card. In addition, we also observe that their scheme cannot preserve user anonymity. Furthermore, their scheme cannot quickly detect an incorrect password during login phase, and this flaw wastes both communication and computational overheads. In this paper, we describe how these attacks work, and propose an enhanced anonymous user authentication and key agreement scheme based on a symmetric cryptosystem in WSNs to address all of the aforementioned vulnerabilities in Chen et al.'s scheme. Our analysis shows that the proposed scheme improves the level of security, and is also more efficient relative to other related schemes.
An Extended Chaotic Maps-Based Three-Party Password-Authenticated Key Agreement with User Anonymity
Lu, Yanrong; Li, Lixiang; Zhang, Hao; Yang, Yixian
2016-01-01
User anonymity is one of the key security features of an authenticated key agreement especially for communicating messages via an insecure network. Owing to the better properties and higher performance of chaotic theory, the chaotic maps have been introduced into the security schemes, and hence numerous key agreement schemes have been put forward under chaotic-maps. Recently, Xie et al. released an enhanced scheme under Farash et al.’s scheme and claimed their improvements could withstand the security loopholes pointed out in the scheme of Farash et al., i.e., resistance to the off-line password guessing and user impersonation attacks. Nevertheless, through our careful analysis, the improvements were released by Xie et al. still could not solve the problems troubled in Farash et al‥ Besides, Xie et al.’s improvements failed to achieve the user anonymity and the session key security. With the purpose of eliminating the security risks of the scheme of Xie et al., we design an anonymous password-based three-party authenticated key agreement under chaotic maps. Both the formal analysis and the formal security verification using AVISPA are presented. Also, BAN logic is used to show the correctness of the enhancements. Furthermore, we also demonstrate that the design thwarts most of the common attacks. We also make a comparison between the recent chaotic-maps based schemes and our enhancements in terms of performance. PMID:27101305
Kim, Daehee; Kim, Dongwan; An, Sunshin
2016-07-09
Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption.
Kim, Daehee; Kim, Dongwan; An, Sunshin
2016-01-01
Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption. PMID:27409616
NASA Astrophysics Data System (ADS)
Zeitz, Christian; Scheidat, Tobias; Dittmann, Jana; Vielhauer, Claus; González Agulla, Elisardo; Otero Muras, Enrique; García Mateo, Carmen; Alba Castro, José L.
2008-02-01
Beside the optimization of biometric error rates the overall security system performance in respect to intentional security attacks plays an important role for biometric enabled authentication schemes. As traditionally most user authentication schemes are knowledge and/or possession based, firstly in this paper we present a methodology for a security analysis of Internet-based biometric authentication systems by enhancing known methodologies such as the CERT attack-taxonomy with a more detailed view on the OSI-Model. Secondly as proof of concept, the guidelines extracted from this methodology are strictly applied to an open source Internet-based biometric authentication system (BioWebAuth). As case studies, two exemplary attacks, based on the found security leaks, are investigated and the attack performance is presented to show that during the biometric authentication schemes beside biometric error performance tuning also security issues need to be addressed. Finally, some design recommendations are given in order to ensure a minimum security level.
Islam, S K Hafizul; Khan, Muhammad Khurram; Li, Xiong
2015-01-01
Over the past few years, secure and privacy-preserving user authentication scheme has become an integral part of the applications of the healthcare systems. Recently, Wen has designed an improved user authentication system over the Lee et al.'s scheme for integrated electronic patient record (EPR) information system, which has been analyzed in this study. We have found that Wen's scheme still has the following inefficiencies: (1) the correctness of identity and password are not verified during the login and password change phases; (2) it is vulnerable to impersonation attack and privileged-insider attack; (3) it is designed without the revocation of lost/stolen smart card; (4) the explicit key confirmation and the no key control properties are absent, and (5) user cannot update his/her password without the help of server and secure channel. Then we aimed to propose an enhanced two-factor user authentication system based on the intractable assumption of the quadratic residue problem (QRP) in the multiplicative group. Our scheme bears more securities and functionalities than other schemes found in the literature.
Islam, SK Hafizul; Khan, Muhammad Khurram; Li, Xiong
2015-01-01
Over the past few years, secure and privacy-preserving user authentication scheme has become an integral part of the applications of the healthcare systems. Recently, Wen has designed an improved user authentication system over the Lee et al.’s scheme for integrated electronic patient record (EPR) information system, which has been analyzed in this study. We have found that Wen’s scheme still has the following inefficiencies: (1) the correctness of identity and password are not verified during the login and password change phases; (2) it is vulnerable to impersonation attack and privileged-insider attack; (3) it is designed without the revocation of lost/stolen smart card; (4) the explicit key confirmation and the no key control properties are absent, and (5) user cannot update his/her password without the help of server and secure channel. Then we aimed to propose an enhanced two-factor user authentication system based on the intractable assumption of the quadratic residue problem (QRP) in the multiplicative group. Our scheme bears more securities and functionalities than other schemes found in the literature. PMID:26263401
2018-01-01
The Session Initiation Protocol (SIP) is an extensive and esteemed communication protocol employed to regulate signaling as well as for controlling multimedia communication sessions. Recently, Kumari et al. proposed an improved smart card based authentication scheme for SIP based on Farash’s scheme. Farash claimed that his protocol is resistant against various known attacks. But, we observe some accountable flaws in Farash’s protocol. We point out that Farash’s protocol is prone to key-compromise impersonation attack and is unable to provide pre-verification in the smart card, efficient password change and perfect forward secrecy. To overcome these limitations, in this paper we present an enhanced authentication mechanism based on Kumari et al.’s scheme. We prove that the proposed protocol not only overcomes the issues in Farash’s scheme, but it can also resist against all known attacks. We also provide the security analysis of the proposed scheme with the help of widespread AVISPA (Automated Validation of Internet Security Protocols and Applications) software. At last, comparing with the earlier proposals in terms of security and efficiency, we conclude that the proposed protocol is efficient and more secure. PMID:29547619
Jung, Jaewook; Kim, Jiye; Choi, Younsung; Won, Dongho
2016-01-01
In wireless sensor networks (WSNs), a registered user can login to the network and use a user authentication protocol to access data collected from the sensor nodes. Since WSNs are typically deployed in unattended environments and sensor nodes have limited resources, many researchers have made considerable efforts to design a secure and efficient user authentication process. Recently, Chen et al. proposed a secure user authentication scheme using symmetric key techniques for WSNs. They claim that their scheme assures high efficiency and security against different types of attacks. After careful analysis, however, we find that Chen et al.’s scheme is still vulnerable to smart card loss attack and is susceptible to denial of service attack, since it is invalid for verification to simply compare an entered ID and a stored ID in smart card. In addition, we also observe that their scheme cannot preserve user anonymity. Furthermore, their scheme cannot quickly detect an incorrect password during login phase, and this flaw wastes both communication and computational overheads. In this paper, we describe how these attacks work, and propose an enhanced anonymous user authentication and key agreement scheme based on a symmetric cryptosystem in WSNs to address all of the aforementioned vulnerabilities in Chen et al.’s scheme. Our analysis shows that the proposed scheme improves the level of security, and is also more efficient relative to other related schemes. PMID:27537890
Amin, Ruhul; Islam, S K Hafizul; Biswas, G P; Khan, Muhammad Khurram; Li, Xiong
2015-11-01
The E-health care systems employ IT infrastructure for maximizing health care resources utilization as well as providing flexible opportunities to the remote patient. Therefore, transmission of medical data over any public networks is necessary in health care system. Note that patient authentication including secure data transmission in e-health care system is critical issue. Although several user authentication schemes for accessing remote services are available, their security analysis show that none of them are free from relevant security attacks. We reviewed Das et al.'s scheme and demonstrated their scheme lacks proper protection against several security attacks such as user anonymity, off-line password guessing attack, smart card theft attack, user impersonation attack, server impersonation attack, session key discloser attack. In order to overcome the mentioned security pitfalls, this paper proposes an anonymity preserving remote patient authentication scheme usable in E-health care systems. We then validated the security of the proposed scheme using BAN logic that ensures secure mutual authentication and session key agreement. We also presented the experimental results of the proposed scheme using AVISPA software and the results ensure that our scheme is secure under OFMC and CL-AtSe models. Moreover, resilience of relevant security attacks has been proved through both formal and informal security analysis. The performance analysis and comparison with other schemes are also made, and it has been found that the proposed scheme overcomes the security drawbacks of the Das et al.'s scheme and additionally achieves extra security requirements.
An improved anonymous authentication scheme for roaming in ubiquitous networks.
Lee, Hakjun; Lee, Donghoon; Moon, Jongho; Jung, Jaewook; Kang, Dongwoo; Kim, Hyoungshick; Won, Dongho
2018-01-01
With the evolution of communication technology and the exponential increase of mobile devices, the ubiquitous networking allows people to use our data and computing resources anytime and everywhere. However, numerous security concerns and complicated requirements arise as these ubiquitous networks are deployed throughout people's lives. To meet the challenge, the user authentication schemes in ubiquitous networks should ensure the essential security properties for the preservation of the privacy with low computational cost. In 2017, Chaudhry et al. proposed a password-based authentication scheme for the roaming in ubiquitous networks to enhance the security. Unfortunately, we found that their scheme remains insecure in its protection of the user privacy. In this paper, we prove that Chaudhry et al.'s scheme is vulnerable to the stolen-mobile device and user impersonation attacks, and its drawbacks comprise the absence of the incorrect login-input detection, the incorrectness of the password change phase, and the absence of the revocation provision. Moreover, we suggest a possible way to fix the security flaw in Chaudhry et al's scheme by using the biometric-based authentication for which the bio-hash is applied in the implementation of a three-factor authentication. We prove the security of the proposed scheme with the random oracle model and formally verify its security properties using a tool named ProVerif, and analyze it in terms of the computational and communication cost. The analysis result shows that the proposed scheme is suitable for resource-constrained ubiquitous environments.
An improved anonymous authentication scheme for roaming in ubiquitous networks
Lee, Hakjun; Lee, Donghoon; Moon, Jongho; Jung, Jaewook; Kang, Dongwoo; Kim, Hyoungshick
2018-01-01
With the evolution of communication technology and the exponential increase of mobile devices, the ubiquitous networking allows people to use our data and computing resources anytime and everywhere. However, numerous security concerns and complicated requirements arise as these ubiquitous networks are deployed throughout people’s lives. To meet the challenge, the user authentication schemes in ubiquitous networks should ensure the essential security properties for the preservation of the privacy with low computational cost. In 2017, Chaudhry et al. proposed a password-based authentication scheme for the roaming in ubiquitous networks to enhance the security. Unfortunately, we found that their scheme remains insecure in its protection of the user privacy. In this paper, we prove that Chaudhry et al.’s scheme is vulnerable to the stolen-mobile device and user impersonation attacks, and its drawbacks comprise the absence of the incorrect login-input detection, the incorrectness of the password change phase, and the absence of the revocation provision. Moreover, we suggest a possible way to fix the security flaw in Chaudhry et al’s scheme by using the biometric-based authentication for which the bio-hash is applied in the implementation of a three-factor authentication. We prove the security of the proposed scheme with the random oracle model and formally verify its security properties using a tool named ProVerif, and analyze it in terms of the computational and communication cost. The analysis result shows that the proposed scheme is suitable for resource-constrained ubiquitous environments. PMID:29505575
Location-assured, multifactor authentication on smartphones via LTE communication
NASA Astrophysics Data System (ADS)
Kuseler, Torben; Lami, Ihsan A.; Al-Assam, Hisham
2013-05-01
With the added security provided by LTE, geographical location has become an important factor for authentication to enhance the security of remote client authentication during mCommerce applications using Smartphones. Tight combination of geographical location with classic authentication factors like PINs/Biometrics in a real-time, remote verification scheme over the LTE layer connection assures the authenticator about the client itself (via PIN/biometric) as well as the client's current location, thus defines the important aspects of "who", "when", and "where" of the authentication attempt without eaves dropping or man on the middle attacks. To securely integrate location as an authentication factor into the remote authentication scheme, client's location must be verified independently, i.e. the authenticator should not solely rely on the location determined on and reported by the client's Smartphone. The latest wireless data communication technology for mobile phones (4G LTE, Long-Term Evolution), recently being rolled out in various networks, can be employed to enhance this location-factor requirement of independent location verification. LTE's Control Plane LBS provisions, when integrated with user-based authentication and independent source of localisation factors ensures secure efficient, continuous location tracking of the Smartphone. This feature can be performed during normal operation of the LTE-based communication between client and network operator resulting in the authenticator being able to verify the client's claimed location more securely and accurately. Trials and experiments show that such algorithm implementation is viable for nowadays Smartphone-based banking via LTE communication.
Mishra, Dheerendra; Srinivas, Jangirala; Mukhopadhyay, Sourav
2014-10-01
Advancement in network technology provides new ways to utilize telecare medicine information systems (TMIS) for patient care. Although TMIS usually faces various attacks as the services are provided over the public network. Recently, Jiang et al. proposed a chaotic map-based remote user authentication scheme for TMIS. Their scheme has the merits of low cost and session key agreement using Chaos theory. It enhances the security of the system by resisting various attacks. In this paper, we analyze the security of Jiang et al.'s scheme and demonstrate that their scheme is vulnerable to denial of service attack. Moreover, we demonstrate flaws in password change phase of their scheme. Further, our aim is to propose a new chaos map-based anonymous user authentication scheme for TMIS to overcome the weaknesses of Jiang et al.'s scheme, while also retaining the original merits of their scheme. We also show that our scheme is secure against various known attacks including the attacks found in Jiang et al.'s scheme. The proposed scheme is comparable in terms of the communication and computational overheads with Jiang et al.'s scheme and other related existing schemes. Moreover, we demonstrate the validity of the proposed scheme through the BAN (Burrows, Abadi, and Needham) logic.
Privacy Enhancements for Inexact Biometric Templates
NASA Astrophysics Data System (ADS)
Ratha, Nalini; Chikkerur, Sharat; Connell, Jonathan; Bolle, Ruud
Traditional authentication schemes utilize tokens or depend on some secret knowledge possessed by the user for verifying his or her identity. Although these techniques are widely used, they have several limitations. Both tokenand knowledge-based approaches cannot differentiate between an authorized user and an impersonator having access to the tokens or passwords. Biometrics-based authentication schemes overcome these limitations while offering usability advantages in the area of password management. However, despite its obvious advantages, the use of biometrics raises several security and privacy concerns.
Wu, Fan; Xu, Lili
2013-08-01
Nowadays, patients can gain many kinds of medical service on line via Telecare Medical Information Systems(TMIS) due to the fast development of computer technology. So security of communication through network between the users and the server is very significant. Authentication plays an important part to protect information from being attacked by malicious attackers. Recently, Jiang et al. proposed a privacy enhanced scheme for TMIS using smart cards and claimed their scheme was better than Chen et al.'s. However, we have showed that Jiang et al.'s scheme has the weakness of ID uselessness and is vulnerable to off-line password guessing attack and user impersonation attack if an attacker compromises the legal user's smart card. Also, it can't resist DoS attack in two cases: after a successful impersonation attack and wrong password input in Password change phase. Then we propose an improved mutual authentication scheme used for a telecare medical information system. Remote monitoring, checking patients' past medical history record and medical consultant can be applied in the system where information transmits via Internet. Finally, our analysis indicates that the suggested scheme overcomes the disadvantages of Jiang et al.'s scheme and is practical for TMIS.
Maitra, Tanmoy; Giri, Debasis
2014-12-01
The medical organizations have introduced Telecare Medical Information System (TMIS) to provide a reliable facility by which a patient who is unable to go to a doctor in critical or urgent period, can communicate to a doctor through a medical server via internet from home. An authentication mechanism is needed in TMIS to hide the secret information of both parties, namely a server and a patient. Recent research includes patient's biometric information as well as password to design a remote user authentication scheme that enhances the security level. In a single server environment, one server is responsible for providing services to all the authorized remote patients. However, the problem arises if a patient wishes to access several branch servers, he/she needs to register to the branch servers individually. In 2014, Chuang and Chen proposed an remote user authentication scheme for multi-server environment. In this paper, we have shown that in their scheme, an non-register adversary can successfully logged-in into the system as a valid patient. To resist the weaknesses, we have proposed an authentication scheme for TMIS in multi-server environment where the patients can register to a root telecare server called registration center (RC) in one time to get services from all the telecare branch servers through their registered smart card. Security analysis and comparison shows that our proposed scheme provides better security with low computational and communication cost.
NASA Astrophysics Data System (ADS)
Lee, Kijeong; Park, Byungjoo; Park, Gil-Cheol
Radio frequency identification (RFID) is a generic term that is used to describe a system that transmits the identity (in the form of a unique serial number) of an object or person wirelessly, using radio waves. However, there are security threats in the RFID system related to its technical components. For example, illegal RFID tag readers can read tag ID and recognize most RFID Readers, a security threat that needs in-depth attention. Previous studies show some ideas on how to minimize these security threats like studying the security protocols between tag, reader and Back-end DB. In this research, the team proposes an RFID Tag ID Subdivision Scheme to authenticate the permitted tag only in USN (Ubiquitous Sensor Network). Using the proposed scheme, the Back-end DB authenticates selected tags only to minimize security threats like eavesdropping and decreasing traffic in Back-end DB.
Mishra, Raghavendra; Barnwal, Amit Kumar
2015-05-01
The Telecare medical information system (TMIS) presents effective healthcare delivery services by employing information and communication technologies. The emerging privacy and security are always a matter of great concern in TMIS. Recently, Chen at al. presented a password based authentication schemes to address the privacy and security. Later on, it is proved insecure against various active and passive attacks. To erase the drawbacks of Chen et al.'s anonymous authentication scheme, several password based authentication schemes have been proposed using public key cryptosystem. However, most of them do not present pre-smart card authentication which leads to inefficient login and password change phases. To present an authentication scheme with pre-smart card authentication, we present an improved anonymous smart card based authentication scheme for TMIS. The proposed scheme protects user anonymity and satisfies all the desirable security attributes. Moreover, the proposed scheme presents efficient login and password change phases where incorrect input can be quickly detected and a user can freely change his password without server assistance. Moreover, we demonstrate the validity of the proposed scheme by utilizing the widely-accepted BAN (Burrows, Abadi, and Needham) logic. The proposed scheme is also comparable in terms of computational overheads with relevant schemes.
A new method of enhancing telecommand security: the application of GCM in TC protocol
NASA Astrophysics Data System (ADS)
Zhang, Lei; Tang, Chaojing; Zhang, Quan
2007-11-01
In recent times, security has grown to a topic of major importance for the space missions. Many space agencies have been engaged in research on the selection of proper algorithms for ensuring Telecommand security according to the space communication environment, especially in regard to the privacy and authentication. Since space missions with high security levels need to ensure both privacy and authentication, Authenticated Encryption with Associated Data schemes (AEAD) be integrated into normal Telecommand protocols. This paper provides an overview of the Galois Counter Mode (GCM) of operation, which is one of the available two-pass AEAD schemes, and some preliminary considerations and analyses about its possible application to Telecommand frames specified by CCSDS.
Yi, Faliu; Jeoung, Yousun; Moon, Inkyu
2017-05-20
In recent years, many studies have focused on authentication of two-dimensional (2D) images using double random phase encryption techniques. However, there has been little research on three-dimensional (3D) imaging systems, such as integral imaging, for 3D image authentication. We propose a 3D image authentication scheme based on a double random phase integral imaging method. All of the 2D elemental images captured through integral imaging are encrypted with a double random phase encoding algorithm and only partial phase information is reserved. All the amplitude and other miscellaneous phase information in the encrypted elemental images is discarded. Nevertheless, we demonstrate that 3D images from integral imaging can be authenticated at different depths using a nonlinear correlation method. The proposed 3D image authentication algorithm can provide enhanced information security because the decrypted 2D elemental images from the sparse phase cannot be easily observed by the naked eye. Additionally, using sparse phase images without any amplitude information can greatly reduce data storage costs and aid in image compression and data transmission.
Mutual Authentication Scheme in Secure Internet of Things Technology for Comfortable Lifestyle.
Park, Namje; Kang, Namhi
2015-12-24
The Internet of Things (IoT), which can be regarded as an enhanced version of machine-to-machine communication technology, was proposed to realize intelligent thing-to-thing communications by utilizing the Internet connectivity. In the IoT, "things" are generally heterogeneous and resource constrained. In addition, such things are connected to each other over low-power and lossy networks. In this paper, we propose an inter-device authentication and session-key distribution system for devices with only encryption modules. In the proposed system, unlike existing sensor-network environments where the key distribution center distributes the key, each sensor node is involved with the generation of session keys. In addition, in the proposed scheme, the performance is improved so that the authenticated device can calculate the session key in advance. The proposed mutual authentication and session-key distribution system can withstand replay attacks, man-in-the-middle attacks, and wiretapped secret-key attacks.
Lightweight ECC based RFID authentication integrated with an ID verifier transfer protocol.
He, Debiao; Kumar, Neeraj; Chilamkurti, Naveen; Lee, Jong-Hyouk
2014-10-01
The radio frequency identification (RFID) technology has been widely adopted and being deployed as a dominant identification technology in a health care domain such as medical information authentication, patient tracking, blood transfusion medicine, etc. With more and more stringent security and privacy requirements to RFID based authentication schemes, elliptic curve cryptography (ECC) based RFID authentication schemes have been proposed to meet the requirements. However, many recently published ECC based RFID authentication schemes have serious security weaknesses. In this paper, we propose a new ECC based RFID authentication integrated with an ID verifier transfer protocol that overcomes the weaknesses of the existing schemes. A comprehensive security analysis has been conducted to show strong security properties that are provided from the proposed authentication scheme. Moreover, the performance of the proposed authentication scheme is analyzed in terms of computational cost, communicational cost, and storage requirement.
A robust anonymous biometric-based authenticated key agreement scheme for multi-server environments
Huang, Yuanfei; Ma, Fangchao
2017-01-01
In order to improve the security in remote authentication systems, numerous biometric-based authentication schemes using smart cards have been proposed. Recently, Moon et al. presented an authentication scheme to remedy the flaws of Lu et al.’s scheme, and claimed that their improved protocol supports the required security properties. Unfortunately, we found that Moon et al.’s scheme still has weaknesses. In this paper, we show that Moon et al.’s scheme is vulnerable to insider attack, server spoofing attack, user impersonation attack and guessing attack. Furthermore, we propose a robust anonymous multi-server authentication scheme using public key encryption to remove the aforementioned problems. From the subsequent formal and informal security analysis, we demonstrate that our proposed scheme provides strong mutual authentication and satisfies the desirable security requirements. The functional and performance analysis shows that the improved scheme has the best secure functionality and is computational efficient. PMID:29121050
A robust anonymous biometric-based authenticated key agreement scheme for multi-server environments.
Guo, Hua; Wang, Pei; Zhang, Xiyong; Huang, Yuanfei; Ma, Fangchao
2017-01-01
In order to improve the security in remote authentication systems, numerous biometric-based authentication schemes using smart cards have been proposed. Recently, Moon et al. presented an authentication scheme to remedy the flaws of Lu et al.'s scheme, and claimed that their improved protocol supports the required security properties. Unfortunately, we found that Moon et al.'s scheme still has weaknesses. In this paper, we show that Moon et al.'s scheme is vulnerable to insider attack, server spoofing attack, user impersonation attack and guessing attack. Furthermore, we propose a robust anonymous multi-server authentication scheme using public key encryption to remove the aforementioned problems. From the subsequent formal and informal security analysis, we demonstrate that our proposed scheme provides strong mutual authentication and satisfies the desirable security requirements. The functional and performance analysis shows that the improved scheme has the best secure functionality and is computational efficient.
A User Authentication Scheme Based on Elliptic Curves Cryptography for Wireless Ad Hoc Networks
Chen, Huifang; Ge, Linlin; Xie, Lei
2015-01-01
The feature of non-infrastructure support in a wireless ad hoc network (WANET) makes it suffer from various attacks. Moreover, user authentication is the first safety barrier in a network. A mutual trust is achieved by a protocol which enables communicating parties to authenticate each other at the same time and to exchange session keys. For the resource-constrained WANET, an efficient and lightweight user authentication scheme is necessary. In this paper, we propose a user authentication scheme based on the self-certified public key system and elliptic curves cryptography for a WANET. Using the proposed scheme, an efficient two-way user authentication and secure session key agreement can be achieved. Security analysis shows that our proposed scheme is resilient to common known attacks. In addition, the performance analysis shows that our proposed scheme performs similar or better compared with some existing user authentication schemes. PMID:26184224
A User Authentication Scheme Based on Elliptic Curves Cryptography for Wireless Ad Hoc Networks.
Chen, Huifang; Ge, Linlin; Xie, Lei
2015-07-14
The feature of non-infrastructure support in a wireless ad hoc network (WANET) makes it suffer from various attacks. Moreover, user authentication is the first safety barrier in a network. A mutual trust is achieved by a protocol which enables communicating parties to authenticate each other at the same time and to exchange session keys. For the resource-constrained WANET, an efficient and lightweight user authentication scheme is necessary. In this paper, we propose a user authentication scheme based on the self-certified public key system and elliptic curves cryptography for a WANET. Using the proposed scheme, an efficient two-way user authentication and secure session key agreement can be achieved. Security analysis shows that our proposed scheme is resilient to common known attacks. In addition, the performance analysis shows that our proposed scheme performs similar or better compared with some existing user authentication schemes.
A user authentication scheme using physiological and behavioral biometrics for multitouch devices.
Koong, Chorng-Shiuh; Yang, Tzu-I; Tseng, Chien-Chao
2014-01-01
With the rapid growth of mobile network, tablets and smart phones have become sorts of keys to access personal secured services in our daily life. People use these devices to manage personal finances, shop on the Internet, and even pay at vending machines. Besides, it also helps us get connected with friends and business partners through social network applications, which were widely used as personal identifications in both real and virtual societies. However, these devices use inherently weak authentication mechanism, based upon passwords and PINs that is not changed all the time. Although forcing users to change password periodically can enhance the security level, it may also be considered annoyances for users. Biometric technologies are straightforward because of the simple authentication process. However, most of the traditional biometrics methodologies require diverse equipment to acquire biometric information, which may be expensive and not portable. This paper proposes a multibiometric user authentication scheme with both physiological and behavioral biometrics. Only simple rotations with fingers on multitouch devices are required to enhance the security level without annoyances for users. In addition, the user credential is replaceable to prevent from the privacy leakage.
A User Authentication Scheme Using Physiological and Behavioral Biometrics for Multitouch Devices
Koong, Chorng-Shiuh; Tseng, Chien-Chao
2014-01-01
With the rapid growth of mobile network, tablets and smart phones have become sorts of keys to access personal secured services in our daily life. People use these devices to manage personal finances, shop on the Internet, and even pay at vending machines. Besides, it also helps us get connected with friends and business partners through social network applications, which were widely used as personal identifications in both real and virtual societies. However, these devices use inherently weak authentication mechanism, based upon passwords and PINs that is not changed all the time. Although forcing users to change password periodically can enhance the security level, it may also be considered annoyances for users. Biometric technologies are straightforward because of the simple authentication process. However, most of the traditional biometrics methodologies require diverse equipment to acquire biometric information, which may be expensive and not portable. This paper proposes a multibiometric user authentication scheme with both physiological and behavioral biometrics. Only simple rotations with fingers on multitouch devices are required to enhance the security level without annoyances for users. In addition, the user credential is replaceable to prevent from the privacy leakage. PMID:25147864
Lu, Yanrong; Li, Lixiang; Yang, Xing; Yang, Yixian
2015-01-01
Biometrics authenticated schemes using smart cards have attracted much attention in multi-server environments. Several schemes of this type where proposed in the past. However, many of them were found to have some design flaws. This paper concentrates on the security weaknesses of the three-factor authentication scheme by Mishra et al. After careful analysis, we find their scheme does not really resist replay attack while failing to provide an efficient password change phase. We further propose an improvement of Mishra et al.'s scheme with the purpose of preventing the security threats of their scheme. We demonstrate the proposed scheme is given to strong authentication against several attacks including attacks shown in the original scheme. In addition, we compare the performance and functionality with other multi-server authenticated key schemes.
Lu, Yanrong; Li, Lixiang; Yang, Xing; Yang, Yixian
2015-01-01
Biometrics authenticated schemes using smart cards have attracted much attention in multi-server environments. Several schemes of this type where proposed in the past. However, many of them were found to have some design flaws. This paper concentrates on the security weaknesses of the three-factor authentication scheme by Mishra et al. After careful analysis, we find their scheme does not really resist replay attack while failing to provide an efficient password change phase. We further propose an improvement of Mishra et al.’s scheme with the purpose of preventing the security threats of their scheme. We demonstrate the proposed scheme is given to strong authentication against several attacks including attacks shown in the original scheme. In addition, we compare the performance and functionality with other multi-server authenticated key schemes. PMID:25978373
Li, Chun-Ta; Weng, Chi-Yao; Lee, Cheng-Chi; Wang, Chun-Cheng
2015-11-01
To protect patient privacy and ensure authorized access to remote medical services, many remote user authentication schemes for the integrated electronic patient record (EPR) information system have been proposed in the literature. In a recent paper, Das proposed a hash based remote user authentication scheme using passwords and smart cards for the integrated EPR information system, and claimed that the proposed scheme could resist various passive and active attacks. However, in this paper, we found that Das's authentication scheme is still vulnerable to modification and user duplication attacks. Thereafter we propose a secure and efficient authentication scheme for the integrated EPR information system based on lightweight hash function and bitwise exclusive-or (XOR) operations. The security proof and performance analysis show our new scheme is well-suited to adoption in remote medical healthcare services.
Moon, Jongho; Choi, Younsung; Jung, Jaewook; Won, Dongho
2015-01-01
In multi-server environments, user authentication is a very important issue because it provides the authorization that enables users to access their data and services; furthermore, remote user authentication schemes for multi-server environments have solved the problem that has arisen from user's management of different identities and passwords. For this reason, numerous user authentication schemes that are designed for multi-server environments have been proposed over recent years. In 2015, Lu et al. improved upon Mishra et al.'s scheme, claiming that their remote user authentication scheme is more secure and practical; however, we found that Lu et al.'s scheme is still insecure and incorrect. In this paper, we demonstrate that Lu et al.'s scheme is vulnerable to outsider attack and user impersonation attack, and we propose a new biometrics-based scheme for authentication and key agreement that can be used in multi-server environments; then, we show that our proposed scheme is more secure and supports the required security properties.
An Efficient Authenticated Key Transfer Scheme in Client-Server Networks
NASA Astrophysics Data System (ADS)
Shi, Runhua; Zhang, Shun
2017-10-01
In this paper, we presented a novel authenticated key transfer scheme in client-server networks, which can achieve two secure goals of remote user authentication and the session key establishment between the remote user and the server. Especially, the proposed scheme can subtly provide two fully different authentications: identity-base authentication and anonymous authentication, while the remote user only holds a private key. Furthermore, our scheme only needs to transmit 1-round messages from the remote user to the server, thus it is very efficient in communication complexity. In addition, the most time-consuming computation in our scheme is elliptic curve scalar point multiplication, so it is also feasible even for mobile devices.
A Continuous Identity Authentication Scheme Based on Physiological and Behavioral Characteristics.
Wu, Guannan; Wang, Jian; Zhang, Yongrong; Jiang, Shuai
2018-01-10
Wearable devices have flourished over the past ten years providing great advantages to people and, recently, they have also been used for identity authentication. Most of the authentication methods adopt a one-time authentication manner which cannot provide continuous certification. To address this issue, we present a two-step authentication method based on an own-built fingertip sensor device which can capture motion data (e.g., acceleration and angular velocity) and physiological data (e.g., a photoplethysmography (PPG) signal) simultaneously. When the device is worn on the user's fingertip, it will automatically recognize whether the wearer is a legitimate user or not. More specifically, multisensor data is collected and analyzed to extract representative and intensive features. Then, human activity recognition is applied as the first step to enhance the practicability of the authentication system. After correctly discriminating the motion state, a one-class machine learning algorithm is applied for identity authentication as the second step. When a user wears the device, the authentication process is carried on automatically at set intervals. Analyses were conducted using data from 40 individuals across various operational scenarios. Extensive experiments were executed to examine the effectiveness of the proposed approach, which achieved an average accuracy rate of 98.5% and an F1-score of 86.67%. Our results suggest that the proposed scheme provides a feasible and practical solution for authentication.
A Continuous Identity Authentication Scheme Based on Physiological and Behavioral Characteristics
Wu, Guannan; Wang, Jian; Zhang, Yongrong; Jiang, Shuai
2018-01-01
Wearable devices have flourished over the past ten years providing great advantages to people and, recently, they have also been used for identity authentication. Most of the authentication methods adopt a one-time authentication manner which cannot provide continuous certification. To address this issue, we present a two-step authentication method based on an own-built fingertip sensor device which can capture motion data (e.g., acceleration and angular velocity) and physiological data (e.g., a photoplethysmography (PPG) signal) simultaneously. When the device is worn on the user’s fingertip, it will automatically recognize whether the wearer is a legitimate user or not. More specifically, multisensor data is collected and analyzed to extract representative and intensive features. Then, human activity recognition is applied as the first step to enhance the practicability of the authentication system. After correctly discriminating the motion state, a one-class machine learning algorithm is applied for identity authentication as the second step. When a user wears the device, the authentication process is carried on automatically at set intervals. Analyses were conducted using data from 40 individuals across various operational scenarios. Extensive experiments were executed to examine the effectiveness of the proposed approach, which achieved an average accuracy rate of 98.5% and an F1-score of 86.67%. Our results suggest that the proposed scheme provides a feasible and practical solution for authentication. PMID:29320463
Study on the security of the authentication scheme with key recycling in QKD
NASA Astrophysics Data System (ADS)
Li, Qiong; Zhao, Qiang; Le, Dan; Niu, Xiamu
2016-09-01
In quantum key distribution (QKD), the information theoretically secure authentication is necessary to guarantee the integrity and authenticity of the exchanged information over the classical channel. In order to reduce the key consumption, the authentication scheme with key recycling (KR), in which a secret but fixed hash function is used for multiple messages while each tag is encrypted with a one-time pad (OTP), is preferred in QKD. Based on the assumption that the OTP key is perfect, the security of the authentication scheme has be proved. However, the OTP key of authentication in a practical QKD system is not perfect. How the imperfect OTP affects the security of authentication scheme with KR is analyzed thoroughly in this paper. In a practical QKD, the information of the OTP key resulting from QKD is partially leaked to the adversary. Although the information leakage is usually so little to be neglected, it will lead to the increasing degraded security of the authentication scheme as the system runs continuously. Both our theoretical analysis and simulation results demonstrate that the security level of authentication scheme with KR, mainly indicated by its substitution probability, degrades exponentially in the number of rounds and gradually diminishes to zero.
Moon, Jongho; Choi, Younsung; Jung, Jaewook; Won, Dongho
2015-01-01
In multi-server environments, user authentication is a very important issue because it provides the authorization that enables users to access their data and services; furthermore, remote user authentication schemes for multi-server environments have solved the problem that has arisen from user’s management of different identities and passwords. For this reason, numerous user authentication schemes that are designed for multi-server environments have been proposed over recent years. In 2015, Lu et al. improved upon Mishra et al.’s scheme, claiming that their remote user authentication scheme is more secure and practical; however, we found that Lu et al.’s scheme is still insecure and incorrect. In this paper, we demonstrate that Lu et al.’s scheme is vulnerable to outsider attack and user impersonation attack, and we propose a new biometrics-based scheme for authentication and key agreement that can be used in multi-server environments; then, we show that our proposed scheme is more secure and supports the required security properties. PMID:26709702
Mutual Authentication Scheme in Secure Internet of Things Technology for Comfortable Lifestyle
Park, Namje; Kang, Namhi
2015-01-01
The Internet of Things (IoT), which can be regarded as an enhanced version of machine-to-machine communication technology, was proposed to realize intelligent thing-to-thing communications by utilizing the Internet connectivity. In the IoT, “things” are generally heterogeneous and resource constrained. In addition, such things are connected to each other over low-power and lossy networks. In this paper, we propose an inter-device authentication and session-key distribution system for devices with only encryption modules. In the proposed system, unlike existing sensor-network environments where the key distribution center distributes the key, each sensor node is involved with the generation of session keys. In addition, in the proposed scheme, the performance is improved so that the authenticated device can calculate the session key in advance. The proposed mutual authentication and session-key distribution system can withstand replay attacks, man-in-the-middle attacks, and wiretapped secret-key attacks. PMID:26712759
Tan, Zuowen
2014-03-01
The telecare medicine information system enables the patients gain health monitoring at home and access medical services over internet or mobile networks. In recent years, the schemes based on cryptography have been proposed to address the security and privacy issues in the telecare medicine information systems. However, many schemes are insecure or they have low efficiency. Recently, Awasthi and Srivastava proposed a three-factor authentication scheme for telecare medicine information systems. In this paper, we show that their scheme is vulnerable to the reflection attacks. Furthermore, it fails to provide three-factor security and the user anonymity. We propose a new three-factor authentication scheme for the telecare medicine information systems. Detailed analysis demonstrates that the proposed scheme provides mutual authentication, server not knowing password and freedom of password, biometric update and three-factor security. Moreover, the new scheme provides the user anonymity. As compared with the previous three-factor authentication schemes, the proposed scheme is more secure and practical.
Lu, Yanrong; Li, Lixiang; Peng, Haipeng; Xie, Dong; Yang, Yixian
2015-06-01
The Telecare Medicine Information Systems (TMISs) provide an efficient communicating platform supporting the patients access health-care delivery services via internet or mobile networks. Authentication becomes an essential need when a remote patient logins into the telecare server. Recently, many extended chaotic maps based authentication schemes using smart cards for TMISs have been proposed. Li et al. proposed a secure smart cards based authentication scheme for TMISs using extended chaotic maps based on Lee's and Jiang et al.'s scheme. In this study, we show that Li et al.'s scheme has still some weaknesses such as violation the session key security, vulnerability to user impersonation attack and lack of local verification. To conquer these flaws, we propose a chaotic maps and smart cards based password authentication scheme by applying biometrics technique and hash function operations. Through the informal and formal security analyses, we demonstrate that our scheme is resilient possible known attacks including the attacks found in Li et al.'s scheme. As compared with the previous authentication schemes, the proposed scheme is more secure and efficient and hence more practical for telemedical environments.
A New Privacy-Preserving Handover Authentication Scheme for Wireless Networks
Wang, Changji; Yuan, Yuan; Wu, Jiayuan
2017-01-01
Handover authentication is a critical issue in wireless networks, which is being used to ensure mobile nodes wander over multiple access points securely and seamlessly. A variety of handover authentication schemes for wireless networks have been proposed in the literature. Unfortunately, existing handover authentication schemes are vulnerable to a few security attacks, or incur high communication and computation costs. Recently, He et al. proposed a handover authentication scheme PairHand and claimed it can resist various attacks without rigorous security proofs. In this paper, we show that PairHand does not meet forward secrecy and strong anonymity. More seriously, it is vulnerable to key compromise attack, where an adversary can recover the private key of any mobile node. Then, we propose a new efficient and provably secure handover authentication scheme for wireless networks based on elliptic curve cryptography. Compared with existing schemes, our proposed scheme can resist key compromise attack, and achieves forward secrecy and strong anonymity. Moreover, it is more efficient in terms of computation and communication. PMID:28632171
A New Privacy-Preserving Handover Authentication Scheme for Wireless Networks.
Wang, Changji; Yuan, Yuan; Wu, Jiayuan
2017-06-20
Handover authentication is a critical issue in wireless networks, which is being used to ensure mobile nodes wander over multiple access points securely and seamlessly. A variety of handover authentication schemes for wireless networks have been proposed in the literature. Unfortunately, existing handover authentication schemes are vulnerable to a few security attacks, or incur high communication and computation costs. Recently, He et al. proposed a handover authentication scheme PairHand and claimed it can resist various attacks without rigorous security proofs. In this paper, we show that PairHand does not meet forward secrecy and strong anonymity. More seriously, it is vulnerable to key compromise attack, where an adversary can recover the private key of any mobile node. Then, we propose a new efficient and provably secure handover authentication scheme for wireless networks based on elliptic curve cryptography. Compared with existing schemes, our proposed scheme can resist key compromise attack, and achieves forward secrecy and strong anonymity. Moreover, it is more efficient in terms of computation and communication.
Lu, Yanrong; Li, Lixiang; Peng, Haipeng; Yang, Yixian
2016-06-08
WSNs (Wireless sensor networks) are nowadays viewed as a vital portion of the IoTs (Internet of Things). Security is a significant issue in WSNs, especially in resource-constrained environments. AKA (Authentication and key agreement) enhances the security of WSNs against adversaries attempting to get sensitive sensor data. Various AKA schemes have been developed for verifying the legitimate users of a WSN. Firstly, we scrutinize Amin-Biswas's currently scheme and demonstrate the major security loopholes in their works. Next, we propose a lightweight AKA scheme, using symmetric key cryptography based on smart card, which is resilient against all well known security attacks. Furthermore, we prove the scheme accomplishes mutual handshake and session key agreement property securely between the participates involved under BAN (Burrows, Abadi and Needham) logic. Moreover, formal security analysis and simulations are also conducted using AVISPA(Automated Validation of Internet Security Protocols and Applications) to show that our scheme is secure against active and passive attacks. Additionally, performance analysis shows that our proposed scheme is secure and efficient to apply for resource-constrained WSNs.
Lu, Yanrong; Li, Lixiang; Peng, Haipeng; Yang, Yixian
2016-01-01
WSNs (Wireless sensor networks) are nowadays viewed as a vital portion of the IoTs (Internet of Things). Security is a significant issue in WSNs, especially in resource-constrained environments. AKA (Authentication and key agreement) enhances the security of WSNs against adversaries attempting to get sensitive sensor data. Various AKA schemes have been developed for verifying the legitimate users of a WSN. Firstly, we scrutinize Amin-Biswas’s currently scheme and demonstrate the major security loopholes in their works. Next, we propose a lightweight AKA scheme, using symmetric key cryptography based on smart card, which is resilient against all well known security attacks. Furthermore, we prove the scheme accomplishes mutual handshake and session key agreement property securely between the participates involved under BAN (Burrows, Abadi and Needham) logic. Moreover, formal security analysis and simulations are also conducted using AVISPA(Automated Validation of Internet Security Protocols and Applications) to show that our scheme is secure against active and passive attacks. Additionally, performance analysis shows that our proposed scheme is secure and efficient to apply for resource-constrained WSNs. PMID:27338382
Lee, Tian-Fu
2013-12-01
A smartcard-based authentication and key agreement scheme for telecare medicine information systems enables patients, doctors, nurses and health visitors to use smartcards for secure login to medical information systems. Authorized users can then efficiently access remote services provided by the medicine information systems through public networks. Guo and Chang recently improved the efficiency of a smartcard authentication and key agreement scheme by using chaotic maps. Later, Hao et al. reported that the scheme developed by Guo and Chang had two weaknesses: inability to provide anonymity and inefficient double secrets. Therefore, Hao et al. proposed an authentication scheme for telecare medicine information systems that solved these weaknesses and improved performance. However, a limitation in both schemes is their violation of the contributory property of key agreements. This investigation discusses these weaknesses and proposes a new smartcard-based authentication and key agreement scheme that uses chaotic maps for telecare medicine information systems. Compared to conventional schemes, the proposed scheme provides fewer weaknesses, better security, and more efficiency.
Wang, Wei; Wang, Chunqiu; Zhao, Min
2014-03-01
To ease the burdens on the hospitalization capacity, an emerging swallowable-capsule technology has evolved to serve as a remote gastrointestinal (GI) disease examination technique with the aid of the wireless body sensor network (WBSN). Secure multimedia transmission in such a swallowable-capsule-based WBSN faces critical challenges including energy efficiency and content quality guarantee. In this paper, we propose a joint resource allocation and stream authentication scheme to maintain the best possible video quality while ensuring security and energy efficiency in GI-WBSNs. The contribution of this research is twofold. First, we establish a unique signature-hash (S-H) diversity approach in the authentication domain to optimize video authentication robustness and the authentication bit rate overhead over a wireless channel. Based on the full exploration of S-H authentication diversity, we propose a new two-tier signature-hash (TTSH) stream authentication scheme to improve the video quality by reducing authentication dependence overhead while protecting its integrity. Second, we propose to combine this authentication scheme with a unique S-H oriented unequal resource allocation (URA) scheme to improve the energy-distortion-authentication performance of wireless video delivery in GI-WBSN. Our analysis and simulation results demonstrate that the proposed TTSH with URA scheme achieves considerable gain in both authenticated video quality and energy efficiency.
Optical authentication based on moiré effect of nonlinear gratings in phase space
NASA Astrophysics Data System (ADS)
Liao, Meihua; He, Wenqi; Wu, Jiachen; Lu, Dajiang; Liu, Xiaoli; Peng, Xiang
2015-12-01
An optical authentication scheme based on the moiré effect of nonlinear gratings in phase space is proposed. According to the phase function relationship of the moiré effect in phase space, an arbitrary authentication image can be encoded into two nonlinear gratings which serve as the authentication lock (AL) and the authentication key (AK). The AL is stored in the authentication system while the AK is assigned to the authorized user. The authentication procedure can be performed using an optoelectronic approach, while the design process is accomplished by a digital approach. Furthermore, this optical authentication scheme can be extended for multiple users with different security levels. The proposed scheme can not only verify the legality of a user identity, but can also discriminate and control the security levels of legal users. Theoretical analysis and simulation experiments are provided to verify the feasibility and effectiveness of the proposed scheme.
Wang, Chengqi; Zhang, Xiao; Zheng, Zhiming
2016-01-01
With the security requirements of networks, biometrics authenticated schemes which are applied in the multi-server environment come to be more crucial and widely deployed. In this paper, we propose a novel biometric-based multi-server authentication and key agreement scheme which is based on the cryptanalysis of Mishra et al.'s scheme. The informal and formal security analysis of our scheme are given, which demonstrate that our scheme satisfies the desirable security requirements. The presented scheme provides a variety of significant functionalities, in which some features are not considered in the most of existing authentication schemes, such as, user revocation or re-registration and biometric information protection. Compared with several related schemes, our scheme has more secure properties and lower computation cost. It is obviously more appropriate for practical applications in the remote distributed networks.
A more secure anonymous user authentication scheme for the integrated EPR information system.
Wen, Fengtong
2014-05-01
Secure and efficient user mutual authentication is an essential task for integrated electronic patient record (EPR) information system. Recently, several authentication schemes have been proposed to meet this requirement. In a recent paper, Lee et al. proposed an efficient and secure password-based authentication scheme used smart cards for the integrated EPR information system. This scheme is believed to have many abilities to resist a range of network attacks. Especially, they claimed that their scheme could resist lost smart card attack. However, we reanalyze the security of Lee et al.'s scheme, and show that it fails to protect off-line password guessing attack if the secret information stored in the smart card is compromised. This also renders that their scheme is insecure against user impersonation attacks. Then, we propose a new user authentication scheme for integrated EPR information systems based on the quadratic residues. The new scheme not only resists a range of network attacks but also provides user anonymity. We show that our proposed scheme can provide stronger security.
Arshad, Hamed; Nikooghadam, Morteza
2014-12-01
Nowadays, with comprehensive employment of the internet, healthcare delivery services is provided remotely by telecare medicine information systems (TMISs). A secure mechanism for authentication and key agreement is one of the most important security requirements for TMISs. Recently, Tan proposed a user anonymity preserving three-factor authentication scheme for TMIS. The present paper shows that Tan's scheme is vulnerable to replay attacks and Denial-of-Service attacks. In order to overcome these security flaws, a new and efficient three-factor anonymous authentication and key agreement scheme for TMIS is proposed. Security and performance analysis shows superiority of the proposed scheme in comparison with previously proposed schemes that are related to security of TMISs.
Wang, Chengqi; Zhang, Xiao; Zheng, Zhiming
2016-01-01
With the security requirements of networks, biometrics authenticated schemes which are applied in the multi-server environment come to be more crucial and widely deployed. In this paper, we propose a novel biometric-based multi-server authentication and key agreement scheme which is based on the cryptanalysis of Mishra et al.’s scheme. The informal and formal security analysis of our scheme are given, which demonstrate that our scheme satisfies the desirable security requirements. The presented scheme provides a variety of significant functionalities, in which some features are not considered in the most of existing authentication schemes, such as, user revocation or re-registration and biometric information protection. Compared with several related schemes, our scheme has more secure properties and lower computation cost. It is obviously more appropriate for practical applications in the remote distributed networks. PMID:26866606
SEAODV: A Security Enhanced AODV Routing Protocol for Wireless Mesh Networks
NASA Astrophysics Data System (ADS)
Li, Celia; Wang, Zhuang; Yang, Cungang
In this paper, we propose a Security Enhanced AODV routing protocol (SEAODV) for wireless mesh networks (WMN). SEAODV employs Blom's key pre-distribution scheme to compute the pairwise transient key (PTK) through the flooding of enhanced HELLO message and subsequently uses the established PTK to distribute the group transient key (GTK). PTK and GTK authenticate unicast and broadcast routing messages respectively. In WMN, a unique PTK is shared by each pair of nodes, while GTK is shared secretly between the node and all its one-hop neighbours. A message authentication code (MAC) is attached as the extension to the original AODV routing message to guarantee the message's authenticity and integrity in a hop-by-hop fashion. Security analysis and performance evaluation show that SEAODV is more effective in preventing identified routing attacks and outperforms ARAN and SAODV in terms of computation cost and route acquisition latency.
A Multiserver Biometric Authentication Scheme for TMIS using Elliptic Curve Cryptography.
Chaudhry, Shehzad Ashraf; Khan, Muhammad Tawab; Khan, Muhammad Khurram; Shon, Taeshik
2016-11-01
Recently several authentication schemes are proposed for telecare medicine information system (TMIS). Many of such schemes are proved to have weaknesses against known attacks. Furthermore, numerous such schemes cannot be used in real time scenarios. Because they assume a single server for authentication across the globe. Very recently, Amin et al. (J. Med. Syst. 39(11):180, 2015) designed an authentication scheme for secure communication between a patient and a medical practitioner using a trusted central medical server. They claimed their scheme to extend all security requirements and emphasized the efficiency of their scheme. However, the analysis in this article proves that the scheme designed by Amin et al. is vulnerable to stolen smart card and stolen verifier attacks. Furthermore, their scheme is having scalability issues along with inefficient password change and password recovery phases. Then we propose an improved scheme. The proposed scheme is more practical, secure and lightweight than Amin et al.'s scheme. The security of proposed scheme is proved using the popular automated tool ProVerif.
Lou, Der-Chyuan; Lee, Tian-Fu; Lin, Tsung-Hung
2015-05-01
Authenticated key agreements for telecare medicine information systems provide patients, doctors, nurses and health visitors with accessing medical information systems and getting remote services efficiently and conveniently through an open network. In order to have higher security, many authenticated key agreement schemes appended biometric keys to realize identification except for using passwords and smartcards. Due to too many transmissions and computational costs, these authenticated key agreement schemes are inefficient in communication and computation. This investigation develops two secure and efficient authenticated key agreement schemes for telecare medicine information systems by using biometric key and extended chaotic maps. One scheme is synchronization-based, while the other nonce-based. Compared to related approaches, the proposed schemes not only retain the same security properties with previous schemes, but also provide users with privacy protection and have fewer transmissions and lower computational cost.
Authentication Binding between SSL/TLS and HTTP
NASA Astrophysics Data System (ADS)
Saito, Takamichi; Sekiguchi, Kiyomi; Hatsugai, Ryosuke
While the Secure Socket Layer or Transport Layer Security (SSL/TLS) is assumed to provide secure communications over the Internet, many web applications utilize basic or digest authentication of Hyper Text Transport Protocol (HTTP) over SSL/TLS. Namely, in the scheme, there are two different authentication schemes in a session. Since they are separated by a layer, these are not convenient for a web application. Moreover, the scheme may also cause problems in establishing secure communication. Then we provide a scheme of authentication binding between SSL/TLS and HTTP without modifying SSL/TLS protocols and its implementation, and we show the effectiveness of our proposed scheme.
Limitations and requirements of content-based multimedia authentication systems
NASA Astrophysics Data System (ADS)
Wu, Chai W.
2001-08-01
Recently, a number of authentication schemes have been proposed for multimedia data such as images and sound data. They include both label based systems and semifragile watermarks. The main requirement for such authentication systems is that minor modifications such as lossy compression which do not alter the content of the data preserve the authenticity of the data, whereas modifications which do modify the content render the data not authentic. These schemes can be classified into two main classes depending on the model of image authentication they are based on. One of the purposes of this paper is to look at some of the advantages and disadvantages of these image authentication schemes and their relationship with fundamental limitations of the underlying model of image authentication. In particular, we study feature-based algorithms which generate an authentication tag based on some inherent features in the image such as the location of edges. The main disadvantage of most proposed feature-based algorithms is that similar images generate similar features, and therefore it is possible for a forger to generate dissimilar images that have the same features. On the other hand, the class of hash-based algorithms utilizes a cryptographic hash function or a digital signature scheme to reduce the data and generate an authentication tag. It inherits the security of digital signatures to thwart forgery attacks. The main disadvantage of hash-based algorithms is that the image needs to be modified in order to be made authenticatable. The amount of modification is on the order of the noise the image can tolerate before it is rendered inauthentic. The other purpose of this paper is to propose a multimedia authentication scheme which combines some of the best features of both classes of algorithms. The proposed scheme utilizes cryptographic hash functions and digital signature schemes and the data does not need to be modified in order to be made authenticatable. Several applications including the authentication of images on CD-ROM and handwritten documents will be discussed.
Li, Chun-Ta; Lee, Cheng-Chi; Weng, Chi-Yao; Chen, Song-Jhih
2016-11-01
Secure user authentication schemes in many e-Healthcare applications try to prevent unauthorized users from intruding the e-Healthcare systems and a remote user and a medical server can establish session keys for securing the subsequent communications. However, many schemes does not mask the users' identity information while constructing a login session between two or more parties, even though personal privacy of users is a significant topic for e-Healthcare systems. In order to preserve personal privacy of users, dynamic identity based authentication schemes are hiding user's real identity during the process of network communications and only the medical server knows login user's identity. In addition, most of the existing dynamic identity based authentication schemes ignore the inputs verification during login condition and this flaw may subject to inefficiency in the case of incorrect inputs in the login phase. Regarding the use of secure authentication mechanisms for e-Healthcare systems, this paper presents a new dynamic identity and chaotic maps based authentication scheme and a secure data protection approach is employed in every session to prevent illegal intrusions. The proposed scheme can not only quickly detect incorrect inputs during the phases of login and password change but also can invalidate the future use of a lost/stolen smart card. Compared the functionality and efficiency with other authentication schemes recently, the proposed scheme satisfies desirable security attributes and maintains acceptable efficiency in terms of the computational overheads for e-Healthcare systems.
Graph State-Based Quantum Group Authentication Scheme
NASA Astrophysics Data System (ADS)
Liao, Longxia; Peng, Xiaoqi; Shi, Jinjing; Guo, Ying
2017-02-01
Motivated by the elegant structure of the graph state, we design an ingenious quantum group authentication scheme, which is implemented by operating appropriate operations on the graph state and can solve the problem of multi-user authentication. Three entities, the group authentication server (GAS) as a verifier, multiple users as provers and the trusted third party Trent are included. GAS and Trent assist the multiple users in completing the authentication process, i.e., GAS is responsible for registering all the users while Trent prepares graph states. All the users, who request for authentication, encode their authentication keys on to the graph state by performing Pauli operators. It demonstrates that a novel authentication scheme can be achieved with the flexible use of graph state, which can synchronously authenticate a large number of users, meanwhile the provable security can be guaranteed definitely.
A Robust and Effective Smart-Card-Based Remote User Authentication Mechanism Using Hash Function
Odelu, Vanga; Goswami, Adrijit
2014-01-01
In a remote user authentication scheme, a remote server verifies whether a login user is genuine and trustworthy, and also for mutual authentication purpose a login user validates whether the remote server is genuine and trustworthy. Several remote user authentication schemes using the password, the biometrics, and the smart card have been proposed in the literature. However, most schemes proposed in the literature are either computationally expensive or insecure against several known attacks. In this paper, we aim to propose a new robust and effective password-based remote user authentication scheme using smart card. Our scheme is efficient, because our scheme uses only efficient one-way hash function and bitwise XOR operations. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. We perform the simulation for the formal security analysis using the widely accepted AVISPA (Automated Validation Internet Security Protocols and Applications) tool to ensure that our scheme is secure against passive and active attacks. Furthermore, our scheme supports efficiently the password change phase always locally without contacting the remote server and correctly. In addition, our scheme performs significantly better than other existing schemes in terms of communication, computational overheads, security, and features provided by our scheme. PMID:24892078
A robust and effective smart-card-based remote user authentication mechanism using hash function.
Das, Ashok Kumar; Odelu, Vanga; Goswami, Adrijit
2014-01-01
In a remote user authentication scheme, a remote server verifies whether a login user is genuine and trustworthy, and also for mutual authentication purpose a login user validates whether the remote server is genuine and trustworthy. Several remote user authentication schemes using the password, the biometrics, and the smart card have been proposed in the literature. However, most schemes proposed in the literature are either computationally expensive or insecure against several known attacks. In this paper, we aim to propose a new robust and effective password-based remote user authentication scheme using smart card. Our scheme is efficient, because our scheme uses only efficient one-way hash function and bitwise XOR operations. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. We perform the simulation for the formal security analysis using the widely accepted AVISPA (Automated Validation Internet Security Protocols and Applications) tool to ensure that our scheme is secure against passive and active attacks. Furthermore, our scheme supports efficiently the password change phase always locally without contacting the remote server and correctly. In addition, our scheme performs significantly better than other existing schemes in terms of communication, computational overheads, security, and features provided by our scheme.
Khan, Muhammad Khurram; Alghathbar, Khaled
2010-01-01
User authentication in wireless sensor networks (WSN) is a critical security issue due to their unattended and hostile deployment in the field. Since sensor nodes are equipped with limited computing power, storage, and communication modules; authenticating remote users in such resource-constrained environments is a paramount security concern. Recently, M.L. Das proposed a two-factor user authentication scheme in WSNs and claimed that his scheme is secure against different kinds of attack. However, in this paper, we show that the M.L. Das-scheme has some critical security pitfalls and cannot be recommended for real applications. We point out that in his scheme: users cannot change/update their passwords, it does not provide mutual authentication between gateway node and sensor node, and is vulnerable to gateway node bypassing attack and privileged-insider attack. To overcome the inherent security weaknesses of the M.L. Das-scheme, we propose improvements and security patches that attempt to fix the susceptibilities of his scheme. The proposed security improvements can be incorporated in the M.L. Das-scheme for achieving a more secure and robust two-factor user authentication in WSNs.
Yau, Wei-Chuen; Phan, Raphael C-W
2013-12-01
Many authentication schemes have been proposed for telecare medicine information systems (TMIS) to ensure the privacy, integrity, and availability of patient records. These schemes are crucial for TMIS systems because otherwise patients' medical records become susceptible to tampering thus hampering diagnosis or private medical conditions of patients could be disclosed to parties who do not have a right to access such information. Very recently, Hao et al. proposed a chaotic map-based authentication scheme for telecare medicine information systems in a recent issue of Journal of Medical Systems. They claimed that the authentication scheme can withstand various attacks and it is secure to be used in TMIS. In this paper, we show that this authentication scheme is vulnerable to key-compromise impersonation attacks, off-line password guessing attacks upon compromising of a smart card, and parallel session attacks. We also exploit weaknesses in the password change phase of the scheme to mount a denial-of-service attack. Our results show that this scheme cannot be used to provide security in a telecare medicine information system.
Das, Ashok Kumar; Goswami, Adrijit
2013-06-01
Connected health care has several applications including telecare medicine information system, personally controlled health records system, and patient monitoring. In such applications, user authentication can ensure the legality of patients. In user authentication for such applications, only the legal user/patient himself/herself is allowed to access the remote server, and no one can trace him/her according to transmitted data. Chang et al. proposed a uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care (Chang et al., J Med Syst 37:9902, 2013). Their scheme uses the user's personal biometrics along with his/her password with the help of the smart card. The user's biometrics is verified using BioHashing. Their scheme is efficient due to usage of one-way hash function and exclusive-or (XOR) operations. In this paper, we show that though their scheme is very efficient, their scheme has several security weaknesses such as (1) it has design flaws in login and authentication phases, (2) it has design flaws in password change phase, (3) it fails to protect privileged insider attack, (4) it fails to protect the man-in-the middle attack, and (5) it fails to provide proper authentication. In order to remedy these security weaknesses in Chang et al.'s scheme, we propose an improvement of their scheme while retaining the original merit of their scheme. We show that our scheme is efficient as compared to Chang et al.'s scheme. Through the security analysis, we show that our scheme is secure against possible attacks. Further, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool to ensure that our scheme is secure against passive and active attacks. In addition, after successful authentication between the user and the server, they establish a secret session key shared between them for future secure communication.
Lee, Tian-Fu; Chang, I-Pin; Lin, Tsung-Hung; Wang, Ching-Cheng
2013-06-01
The integrated EPR information system supports convenient and rapid e-medicine services. A secure and efficient authentication scheme for the integrated EPR information system provides safeguarding patients' electronic patient records (EPRs) and helps health care workers and medical personnel to rapidly making correct clinical decisions. Recently, Wu et al. proposed an efficient password-based user authentication scheme using smart cards for the integrated EPR information system, and claimed that the proposed scheme could resist various malicious attacks. However, their scheme is still vulnerable to lost smart card and stolen verifier attacks. This investigation discusses these weaknesses and proposes a secure and efficient authentication scheme for the integrated EPR information system as alternative. Compared with related approaches, the proposed scheme not only retains a lower computational cost and does not require verifier tables for storing users' secrets, but also solves the security problems in previous schemes and withstands possible attacks.
Robust anonymous authentication scheme for telecare medical information systems.
Xie, Qi; Zhang, Jun; Dong, Na
2013-04-01
Patient can obtain sorts of health-care delivery services via Telecare Medical Information Systems (TMIS). Authentication, security, patient's privacy protection and data confidentiality are important for patient or doctor accessing to Electronic Medical Records (EMR). In 2012, Chen et al. showed that Khan et al.'s dynamic ID-based authentication scheme has some weaknesses and proposed an improved scheme, and they claimed that their scheme is more suitable for TMIS. However, we show that Chen et al.'s scheme also has some weaknesses. In particular, Chen et al.'s scheme does not provide user's privacy protection and perfect forward secrecy, is vulnerable to off-line password guessing attack and impersonation attack once user's smart card is compromised. Further, we propose a secure anonymity authentication scheme to overcome their weaknesses even an adversary can know all information stored in smart card.
Li, Chun-Ta; Wu, Tsu-Yang; Chen, Chin-Ling; Lee, Cheng-Chi; Chen, Chien-Ming
2017-06-23
In recent years, with the increase in degenerative diseases and the aging population in advanced countries, demands for medical care of older or solitary people have increased continually in hospitals and healthcare institutions. Applying wireless sensor networks for the IoT-based telemedicine system enables doctors, caregivers or families to monitor patients' physiological conditions at anytime and anyplace according to the acquired information. However, transmitting physiological data through the Internet concerns the personal privacy of patients. Therefore, before users can access medical care services in IoT-based medical care system, they must be authenticated. Typically, user authentication and data encryption are most critical for securing network communications over a public channel between two or more participants. In 2016, Liu and Chung proposed a bilinear pairing-based password authentication scheme for wireless healthcare sensor networks. They claimed their authentication scheme cannot only secure sensor data transmission, but also resist various well-known security attacks. In this paper, we demonstrate that Liu-Chung's scheme has some security weaknesses, and we further present an improved secure authentication and data encryption scheme for the IoT-based medical care system, which can provide user anonymity and prevent the security threats of replay and password/sensed data disclosure attacks. Moreover, we modify the authentication process to reduce redundancy in protocol design, and the proposed scheme is more efficient in performance compared with previous related schemes. Finally, the proposed scheme is provably secure in the random oracle model under ECDHP.
How to Speak an Authentication Secret Securely from an Eavesdropper
NASA Astrophysics Data System (ADS)
O'Gorman, Lawrence; Brotman, Lynne; Sammon, Michael
When authenticating over the telephone or mobile headphone, the user cannot always assure that no eavesdropper hears the password or authentication secret. We describe an eavesdropper-resistant, challenge-response authentication scheme for spoken authentication where an attacker can hear the user’s voiced responses. This scheme entails the user to memorize a small number of plaintext-ciphertext pairs. At authentication, these are challenged in random order and interspersed with camouflage elements. It is shown that the response can be made to appear random so that no information on the memorized secret can be learned by eavesdroppers. We describe the method along with parameter value tradeoffs of security strength, authentication time, and memory effort. This scheme was designed for user authentication of wireless headsets used for hands-free communication by healthcare staff at a hospital.
Wen, Fengtong
2013-12-01
User authentication plays an important role to protect resources or services from being accessed by unauthorized users. In a recent paper, Das et al. proposed a secure and efficient uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care. This scheme uses three factors, e.g. biometrics, password, and smart card, to protect the security. It protects user privacy and is believed to have many abilities to resist a range of network attacks, even if the secret information stored in the smart card is compromised. In this paper, we analyze the security of Das et al.'s scheme, and show that the scheme is in fact insecure against the replay attack, user impersonation attacks and off-line guessing attacks. Then, we also propose a robust uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care. Compared with the existing schemes, our protocol uses a different user authentication mechanism to resist replay attack. We show that our proposed scheme can provide stronger security than previous protocols. Furthermore, we demonstrate the validity of the proposed scheme through the BAN (Burrows, Abadi, and Needham) logic.
A digital memories based user authentication scheme with privacy preservation.
Liu, JunLiang; Lyu, Qiuyun; Wang, Qiuhua; Yu, Xiangxiang
2017-01-01
The traditional username/password or PIN based authentication scheme, which still remains the most popular form of authentication, has been proved insecure, unmemorable and vulnerable to guessing, dictionary attack, key-logger, shoulder-surfing and social engineering. Based on this, a large number of new alternative methods have recently been proposed. However, most of them rely on users being able to accurately recall complex and unmemorable information or using extra hardware (such as a USB Key), which makes authentication more difficult and confusing. In this paper, we propose a Digital Memories based user authentication scheme adopting homomorphic encryption and a public key encryption design which can protect users' privacy effectively, prevent tracking and provide multi-level security in an Internet & IoT environment. Also, we prove the superior reliability and security of our scheme compared to other schemes and present a performance analysis and promising evaluation results.
A digital memories based user authentication scheme with privacy preservation
Liu, JunLiang; Lyu, Qiuyun; Wang, Qiuhua; Yu, Xiangxiang
2017-01-01
The traditional username/password or PIN based authentication scheme, which still remains the most popular form of authentication, has been proved insecure, unmemorable and vulnerable to guessing, dictionary attack, key-logger, shoulder-surfing and social engineering. Based on this, a large number of new alternative methods have recently been proposed. However, most of them rely on users being able to accurately recall complex and unmemorable information or using extra hardware (such as a USB Key), which makes authentication more difficult and confusing. In this paper, we propose a Digital Memories based user authentication scheme adopting homomorphic encryption and a public key encryption design which can protect users’ privacy effectively, prevent tracking and provide multi-level security in an Internet & IoT environment. Also, we prove the superior reliability and security of our scheme compared to other schemes and present a performance analysis and promising evaluation results. PMID:29190659
New Authentication Scheme for Wireless Body Area Networks Using the Bilinear Pairing.
Wang, Chunzhi; Zhang, Yanmei
2015-11-01
Due to the development of information technologies and network technologies, healthcare systems have been employed in many countries. As an important part of healthcare systems, the wireless body area network (WBAN) could bring convenience to both patients and physicians because it could help physicians to monitor patients' physiological values remotely. It is essential to ensure secure communication in WBANs because patients' physiological values are very sensitive. Recently, Liu et al. proposed an efficient authentication scheme for WBANs. Unfortunately, Zhao pointed out that their scheme suffered from the stolen verifier-table attack. To improve security and efficiency, Zhao proposed an anonymous authentication scheme for WBANs. However, Zhao's scheme cannot provide real anonymity because the users' pseudo identities are constant value and the attack could tract the users. In this paper, we propose a new anonymous authentication scheme for WBANs. Security analysis shows that the proposed scheme could overcome weaknesses in previous scheme. We also use the BAN logic to demonstrate the security of the proposed scheme.
An Efficient Remote Authentication Scheme for Wireless Body Area Network.
Omala, Anyembe Andrew; Kibiwott, Kittur P; Li, Fagen
2017-02-01
Wireless body area network (WBAN) provide a mechanism of transmitting a persons physiological data to application providers e.g. hospital. Given the limited range of connectivity associated with WBAN, an intermediate portable device e.g. smartphone, placed within WBAN's connectivity, forwards the data to a remote server. This data, if not protected from an unauthorized access and modification may be lead to poor diagnosis. In order to ensure security and privacy between WBAN and a server at the application provider, several authentication schemes have been proposed. Recently, Wang and Zhang proposed an authentication scheme for WBAN using bilinear pairing. However, in their scheme, an application provider could easily impersonate a client. In order to overcome this weakness, we propose an efficient remote authentication scheme for WBAN. In terms of performance, our scheme can not only provide a malicious insider security, but also reduce running time of WBAN (client) by 51 % as compared to Wang and Zhang scheme.
Wu, Tsu-Yang; Chen, Chin-Ling; Lee, Cheng-Chi; Chen, Chien-Ming
2017-01-01
In recent years, with the increase in degenerative diseases and the aging population in advanced countries, demands for medical care of older or solitary people have increased continually in hospitals and healthcare institutions. Applying wireless sensor networks for the IoT-based telemedicine system enables doctors, caregivers or families to monitor patients’ physiological conditions at anytime and anyplace according to the acquired information. However, transmitting physiological data through the Internet concerns the personal privacy of patients. Therefore, before users can access medical care services in IoT-based medical care system, they must be authenticated. Typically, user authentication and data encryption are most critical for securing network communications over a public channel between two or more participants. In 2016, Liu and Chung proposed a bilinear pairing-based password authentication scheme for wireless healthcare sensor networks. They claimed their authentication scheme cannot only secure sensor data transmission, but also resist various well-known security attacks. In this paper, we demonstrate that Liu–Chung’s scheme has some security weaknesses, and we further present an improved secure authentication and data encryption scheme for the IoT-based medical care system, which can provide user anonymity and prevent the security threats of replay and password/sensed data disclosure attacks. Moreover, we modify the authentication process to reduce redundancy in protocol design, and the proposed scheme is more efficient in performance compared with previous related schemes. Finally, the proposed scheme is provably secure in the random oracle model under ECDHP. PMID:28644381
Security Analysis and Improvement of an Anonymous Authentication Scheme for Roaming Services
Lee, Youngsook; Paik, Juryon
2014-01-01
An anonymous authentication scheme for roaming services in global mobility networks allows a mobile user visiting a foreign network to achieve mutual authentication and session key establishment with the foreign-network operator in an anonymous manner. In this work, we revisit He et al.'s anonymous authentication scheme for roaming services and present previously unpublished security weaknesses in the scheme: (1) it fails to provide user anonymity against any third party as well as the foreign agent, (2) it cannot protect the passwords of mobile users due to its vulnerability to an offline dictionary attack, and (3) it does not achieve session-key security against a man-in-the-middle attack. We also show how the security weaknesses of He et al.'s scheme can be addressed without degrading the efficiency of the scheme. PMID:25302330
Security analysis and improvement of an anonymous authentication scheme for roaming services.
Lee, Youngsook; Paik, Juryon
2014-01-01
An anonymous authentication scheme for roaming services in global mobility networks allows a mobile user visiting a foreign network to achieve mutual authentication and session key establishment with the foreign-network operator in an anonymous manner. In this work, we revisit He et al.'s anonymous authentication scheme for roaming services and present previously unpublished security weaknesses in the scheme: (1) it fails to provide user anonymity against any third party as well as the foreign agent, (2) it cannot protect the passwords of mobile users due to its vulnerability to an offline dictionary attack, and (3) it does not achieve session-key security against a man-in-the-middle attack. We also show how the security weaknesses of He et al.'s scheme can be addressed without degrading the efficiency of the scheme.
Li, Xiong; Niu, Jianwei; Karuppiah, Marimuthu; Kumari, Saru; Wu, Fan
2016-12-01
Benefited from the development of network and communication technologies, E-health care systems and telemedicine have got the fast development. By using the E-health care systems, patient can enjoy the remote medical service provided by the medical server. Medical data are important privacy information for patient, so it is an important issue to ensure the secure of transmitted medical data through public network. Authentication scheme can thwart unauthorized users from accessing services via insecure network environments, so user authentication with privacy protection is an important mechanism for the security of E-health care systems. Recently, based on three factors (password, biometric and smart card), an user authentication scheme for E-health care systems was been proposed by Amin et al., and they claimed that their scheme can withstand most of common attacks. Unfortunate, we find that their scheme cannot achieve the untraceability feature of the patient. Besides, their scheme lacks a password check mechanism such that it is inefficient to find the unauthorized login by the mistake of input a wrong password. Due to the same reason, their scheme is vulnerable to Denial of Service (DoS) attack if the patient updates the password mistakenly by using a wrong password. In order improve the security level of authentication scheme for E-health care application, a robust user authentication scheme with privacy protection is proposed for E-health care systems. Then, security prove of our scheme are analysed. Security and performance analyses show that our scheme is more powerful and secure for E-health care systems when compared with other related schemes.
A Privacy-Protecting Authentication Scheme for Roaming Services with Smart Cards
NASA Astrophysics Data System (ADS)
Son, Kyungho; Han, Dong-Guk; Won, Dongho
In this work we propose a novel smart card based privacy-protecting authentication scheme for roaming services. Our proposal achieves so-called Class 2 privacy protection, i.e., no information identifying a roaming user and also linking the user's behaviors is not revealed in a visited network. It can be used to overcome the inherent structural flaws of smart card based anonymous authentication schemes issued recently. As shown in our analysis, our scheme is computationally efficient for a mobile user.
Chaudhry, Shehzad Ashraf; Mahmood, Khalid; Naqvi, Husnain; Khan, Muhammad Khurram
2015-11-01
Telecare medicine information system (TMIS) offers the patients convenient and expedite healthcare services remotely anywhere. Patient security and privacy has emerged as key issues during remote access because of underlying open architecture. An authentication scheme can verify patient's as well as TMIS server's legitimacy during remote healthcare services. To achieve security and privacy a number of authentication schemes have been proposed. Very recently Lu et al. (J. Med. Syst. 39(3):1-8, 2015) proposed a biometric based three factor authentication scheme for TMIS to confiscate the vulnerabilities of Arshad et al.'s (J. Med. Syst. 38(12):136, 2014) scheme. Further, they emphasized the robustness of their scheme against several attacks. However, in this paper we establish that Lu et al.'s scheme is vulnerable to numerous attacks including (1) Patient anonymity violation attack, (2) Patient impersonation attack, and (3) TMIS server impersonation attack. Furthermore, their scheme does not provide patient untraceability. We then, propose an improvement of Lu et al.'s scheme. We have analyzed the security of improved scheme using popular automated tool ProVerif. The proposed scheme while retaining the plusses of Lu et al.'s scheme is also robust against known attacks.
Li, Chun-Ta; Lee, Cheng-Chi; Weng, Chi-Yao
2014-09-01
Telecare medicine information system (TMIS) is widely used for providing a convenient and efficient communicating platform between patients at home and physicians at medical centers or home health care (HHC) organizations. To ensure patient privacy, in 2013, Hao et al. proposed a chaotic map based authentication scheme with user anonymity for TMIS. Later, Lee showed that Hao et al.'s scheme is in no provision for providing fairness in session key establishment and gave an efficient user authentication and key agreement scheme using smart cards, in which only few hashing and Chebyshev chaotic map operations are required. In addition, Jiang et al. discussed that Hao et al.'s scheme can not resist stolen smart card attack and they further presented an improved scheme which attempts to repair the security pitfalls found in Hao et al.'s scheme. In this paper, we found that both Lee's and Jiang et al.'s authentication schemes have a serious security problem in that a registered user's secret parameters may be intentionally exposed to many non-registered users and this problem causing the service misuse attack. Therefore, we propose a slight modification on Lee's scheme to prevent the shortcomings. Compared with previous schemes, our improved scheme not only inherits the advantages of Lee's and Jiang et al.'s authentication schemes for TMIS but also remedies the serious security weakness of not being able to withstand service misuse attack.
Improvement of a Privacy Authentication Scheme Based on Cloud for Medical Environment.
Chiou, Shin-Yan; Ying, Zhaoqin; Liu, Junqiang
2016-04-01
Medical systems allow patients to receive care at different hospitals. However, this entails considerable inconvenience through the need to transport patients and their medical records between hospitals. The development of Telecare Medicine Information Systems (TMIS) makes it easier for patients to seek medical treatment and to store and access medical records. However, medical data stored in TMIS is not encrypted, leaving patients' private data vulnerable to external leaks. In 2014, scholars proposed a new cloud-based medical information model and authentication scheme which would not only allow patients to remotely access medical services but also protects patient privacy. However, this scheme still fails to provide patient anonymity and message authentication. Furthermore, this scheme only stores patient medical data, without allowing patients to directly access medical advice. Therefore, we propose a new authentication scheme, which provides anonymity, unlinkability, and message authentication, and allows patients to directly and remotely consult with doctors. In addition, our proposed scheme is more efficient in terms of computation cost. The proposed system was implemented in Android system to demonstrate its workability.
Secure biometric image sensor and authentication scheme based on compressed sensing.
Suzuki, Hiroyuki; Suzuki, Masamichi; Urabe, Takuya; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki
2013-11-20
It is important to ensure the security of biometric authentication information, because its leakage causes serious risks, such as replay attacks using the stolen biometric data, and also because it is almost impossible to replace raw biometric information. In this paper, we propose a secure biometric authentication scheme that protects such information by employing an optical data ciphering technique based on compressed sensing. The proposed scheme is based on two-factor authentication, the biometric information being supplemented by secret information that is used as a random seed for a cipher key. In this scheme, a biometric image is optically encrypted at the time of image capture, and a pair of restored biometric images for enrollment and verification are verified in the authentication server. If any of the biometric information is exposed to risk, it can be reenrolled by changing the secret information. Through numerical experiments, we confirm that finger vein images can be restored from the compressed sensing measurement data. We also present results that verify the accuracy of the scheme.
A provably-secure ECC-based authentication scheme for wireless sensor networks.
Nam, Junghyun; Kim, Moonseong; Paik, Juryon; Lee, Youngsook; Won, Dongho
2014-11-06
A smart-card-based user authentication scheme for wireless sensor networks (in short, a SUA-WSN scheme) is designed to restrict access to the sensor data only to users who are in possession of both a smart card and the corresponding password. While a significant number of SUA-WSN schemes have been suggested in recent years, their intended security properties lack formal definitions and proofs in a widely-accepted model. One consequence is that SUA-WSN schemes insecure against various attacks have proliferated. In this paper, we devise a security model for the analysis of SUA-WSN schemes by extending the widely-accepted model of Bellare, Pointcheval and Rogaway (2000). Our model provides formal definitions of authenticated key exchange and user anonymity while capturing side-channel attacks, as well as other common attacks. We also propose a new SUA-WSN scheme based on elliptic curve cryptography (ECC), and prove its security properties in our extended model. To the best of our knowledge, our proposed scheme is the first SUA-WSN scheme that provably achieves both authenticated key exchange and user anonymity. Our scheme is also computationally competitive with other ECC-based (non-provably secure) schemes.
A Provably-Secure ECC-Based Authentication Scheme for Wireless Sensor Networks
Nam, Junghyun; Kim, Moonseong; Paik, Juryon; Lee, Youngsook; Won, Dongho
2014-01-01
A smart-card-based user authentication scheme for wireless sensor networks (in short, a SUA-WSN scheme) is designed to restrict access to the sensor data only to users who are in possession of both a smart card and the corresponding password. While a significant number of SUA-WSN schemes have been suggested in recent years, their intended security properties lack formal definitions and proofs in a widely-accepted model. One consequence is that SUA-WSN schemes insecure against various attacks have proliferated. In this paper, we devise a security model for the analysis of SUA-WSN schemes by extending the widely-accepted model of Bellare, Pointcheval and Rogaway (2000). Our model provides formal definitions of authenticated key exchange and user anonymity while capturing side-channel attacks, as well as other common attacks. We also propose a new SUA-WSN scheme based on elliptic curve cryptography (ECC), and prove its security properties in our extended model. To the best of our knowledge, our proposed scheme is the first SUA-WSN scheme that provably achieves both authenticated key exchange and user anonymity. Our scheme is also computationally competitive with other ECC-based (non-provably secure) schemes. PMID:25384009
On the security of two remote user authentication schemes for telecare medical information systems.
Kim, Kee-Won; Lee, Jae-Dong
2014-05-01
The telecare medical information systems (TMISs) support convenient and rapid health-care services. A secure and efficient authentication scheme for TMIS provides safeguarding patients' electronic patient records (EPRs) and helps health care workers and medical personnel to rapidly making correct clinical decisions. Recently, Kumari et al. proposed a password based user authentication scheme using smart cards for TMIS, and claimed that the proposed scheme could resist various malicious attacks. However, we point out that their scheme is still vulnerable to lost smart card and cannot provide forward secrecy. Subsequently, Das and Goswami proposed a secure and efficient uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care. They simulated their scheme for the formal security verification using the widely-accepted automated validation of Internet security protocols and applications (AVISPA) tool to ensure that their scheme is secure against passive and active attacks. However, we show that their scheme is still vulnerable to smart card loss attacks and cannot provide forward secrecy property. The proposed cryptanalysis discourages any use of the two schemes under investigation in practice and reveals some subtleties and challenges in designing this type of schemes.
Efficient and Anonymous Authentication Scheme for Wireless Body Area Networks.
Wu, Libing; Zhang, Yubo; Li, Li; Shen, Jian
2016-06-01
As a significant part of the Internet of Things (IoT), Wireless Body Area Network (WBAN) has attract much attention in this years. In WBANs, sensors placed in or around the human body collect the sensitive data of the body and transmit it through an open wireless channel in which the messages may be intercepted, modified, etc. Recently, Wang et al. presented a new anonymous authentication scheme for WBANs and claimed that their scheme can solve the security problems in the previous schemes. Unfortunately, we demonstrate that their scheme cannot withstand impersonation attack. Either an adversary or a malicious legal client could impersonate another legal client to the application provider. In this paper, we give the detailed weakness analysis of Wang et al.'s scheme at first. Then we present a novel anonymous authentication scheme for WBANs and prove that it's secure under a random oracle model. At last, we demonstrate that our presented anonymous authentication scheme for WBANs is more suitable for practical application than Wang et al.'s scheme due to better security and performance. Compared with Wang et al.'s scheme, the computation cost of our scheme in WBANs has reduced by about 31.58%.
Mishra, Dheerendra; Mukhopadhyay, Sourav; Chaturvedi, Ankita; Kumari, Saru; Khan, Muhammad Khurram
2014-06-01
Remote user authentication is desirable for a Telecare Medicine Information System (TMIS) for the safety, security and integrity of transmitted data over the public channel. In 2013, Tan presented a biometric based remote user authentication scheme and claimed that his scheme is secure. Recently, Yan et al. demonstrated some drawbacks in Tan's scheme and proposed an improved scheme to erase the drawbacks of Tan's scheme. We analyze Yan et al.'s scheme and identify that their scheme is vulnerable to off-line password guessing attack, and does not protect anonymity. Moreover, in their scheme, login and password change phases are inefficient to identify the correctness of input where inefficiency in password change phase can cause denial of service attack. Further, we design an improved scheme for TMIS with the aim to eliminate the drawbacks of Yan et al.'s scheme.
A uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care.
Chang, Ya-Fen; Yu, Shih-Hui; Shiao, Ding-Rui
2013-04-01
Connected health care provides new opportunities for improving financial and clinical performance. Many connected health care applications such as telecare medicine information system, personally controlled health records system, and patient monitoring have been proposed. Correct and quality care is the goal of connected heath care, and user authentication can ensure the legality of patients. After reviewing authentication schemes for connected health care applications, we find that many of them cannot protect patient privacy such that others can trace users/patients by the transmitted data. And the verification tokens used by these authentication schemes to authenticate users or servers are only password, smart card and RFID tag. Actually, these verification tokens are not unique and easy to copy. On the other hand, biometric characteristics, such as iris, face, voiceprint, fingerprint and so on, are unique, easy to be verified, and hard to be copied. In this paper, a biometrics-based user authentication scheme will be proposed to ensure uniqueness and anonymity at the same time. With the proposed scheme, only the legal user/patient himself/herself can access the remote server, and no one can trace him/her according to transmitted data.
Efficient authentication scheme based on near-ring root extraction problem
NASA Astrophysics Data System (ADS)
Muthukumaran, V.; Ezhilmaran, D.
2017-11-01
An authentication protocolis the type of computer communication protocol or cryptography protocol specifically designed for transfer of authentication data between two entities. We have planned a two new entity authentication scheme on the basis of root extraction problem near-ring in this article. We suggest that this problem is suitably difficult to serve as a cryptographic assumption over the platform of near-ring N. The security issues also discussed.
Li, Chun-Ta; Weng, Chi-Yao; Lee, Cheng-Chi
2013-07-24
Wireless sensor networks (WSNs) can be quickly and randomly deployed in any harsh and unattended environment and only authorized users are allowed to access reliable sensor nodes in WSNs with the aid of gateways (GWNs). Secure authentication models among the users, the sensor nodes and GWN are important research issues for ensuring communication security and data privacy in WSNs. In 2013, Xue et al. proposed a temporal-credential-based mutual authentication and key agreement scheme for WSNs. However, in this paper, we point out that Xue et al.'s scheme cannot resist stolen-verifier, insider, off-line password guessing, smart card lost problem and many logged-in users' attacks and these security weaknesses make the scheme inapplicable to practical WSN applications. To tackle these problems, we suggest a simple countermeasure to prevent proposed attacks while the other merits of Xue et al.'s authentication scheme are left unchanged.
Li, Chun-Ta; Weng, Chi-Yao; Lee, Cheng-Chi
2013-01-01
Wireless sensor networks (WSNs) can be quickly and randomly deployed in any harsh and unattended environment and only authorized users are allowed to access reliable sensor nodes in WSNs with the aid of gateways (GWNs). Secure authentication models among the users, the sensor nodes and GWN are important research issues for ensuring communication security and data privacy in WSNs. In 2013, Xue et al. proposed a temporal-credential-based mutual authentication and key agreement scheme for WSNs. However, in this paper, we point out that Xue et al.'s scheme cannot resist stolen-verifier, insider, off-line password guessing, smart card lost problem and many logged-in users' attacks and these security weaknesses make the scheme inapplicable to practical WSN applications. To tackle these problems, we suggest a simple countermeasure to prevent proposed attacks while the other merits of Xue et al.'s authentication scheme are left unchanged. PMID:23887085
Moon, Jongho; Choi, Younsung; Kim, Jiye; Won, Dongho
2016-03-01
Recently, numerous extended chaotic map-based password authentication schemes that employ smart card technology were proposed for Telecare Medical Information Systems (TMISs). In 2015, Lu et al. used Li et al.'s scheme as a basis to propose a password authentication scheme for TMISs that is based on biometrics and smart card technology and employs extended chaotic maps. Lu et al. demonstrated that Li et al.'s scheme comprises some weaknesses such as those regarding a violation of the session-key security, a vulnerability to the user impersonation attack, and a lack of local verification. In this paper, however, we show that Lu et al.'s scheme is still insecure with respect to issues such as a violation of the session-key security, and that it is vulnerable to both the outsider attack and the impersonation attack. To overcome these drawbacks, we retain the useful properties of Lu et al.'s scheme to propose a new password authentication scheme that is based on smart card technology and requires the use of chaotic maps. Then, we show that our proposed scheme is more secure and efficient and supports security properties.
An improved biometrics-based authentication scheme for telecare medical information systems.
Guo, Dianli; Wen, Qiaoyan; Li, Wenmin; Zhang, Hua; Jin, Zhengping
2015-03-01
Telecare medical information system (TMIS) offers healthcare delivery services and patients can acquire their desired medical services conveniently through public networks. The protection of patients' privacy and data confidentiality are significant. Very recently, Mishra et al. proposed a biometrics-based authentication scheme for telecare medical information system. Their scheme can protect user privacy and is believed to resist a range of network attacks. In this paper, we analyze Mishra et al.'s scheme and identify that their scheme is insecure to against known session key attack and impersonation attack. Thereby, we present a modified biometrics-based authentication scheme for TMIS to eliminate the aforementioned faults. Besides, we demonstrate the completeness of the proposed scheme through BAN-logic. Compared to the related schemes, our protocol can provide stronger security and it is more practical.
Kim, Jiye; Lee, Donghoon; Jeon, Woongryul; Lee, Youngsook; Won, Dongho
2014-04-09
User authentication and key management are two important security issues in WSNs (Wireless Sensor Networks). In WSNs, for some applications, the user needs to obtain real-time data directly from sensors and several user authentication schemes have been recently proposed for this case. We found that a two-factor mutual authentication scheme with key agreement in WSNs is vulnerable to gateway node bypassing attacks and user impersonation attacks using secret data stored in sensor nodes or an attacker's own smart card. In this paper, we propose an improved scheme to overcome these security weaknesses by storing secret data in unique ciphertext form in each node. In addition, our proposed scheme should provide not only security, but also efficiency since sensors in a WSN operate with resource constraints such as limited power, computation, and storage space. Therefore, we also analyze the performance of the proposed scheme by comparing its computation and communication costs with those of other schemes.
Kim, Jiye; Lee, Donghoon; Jeon, Woongryul; Lee, Youngsook; Won, Dongho
2014-01-01
User authentication and key management are two important security issues in WSNs (Wireless Sensor Networks). In WSNs, for some applications, the user needs to obtain real-time data directly from sensors and several user authentication schemes have been recently proposed for this case. We found that a two-factor mutual authentication scheme with key agreement in WSNs is vulnerable to gateway node bypassing attacks and user impersonation attacks using secret data stored in sensor nodes or an attacker's own smart card. In this paper, we propose an improved scheme to overcome these security weaknesses by storing secret data in unique ciphertext form in each node. In addition, our proposed scheme should provide not only security, but also efficiency since sensors in a WSN operate with resource constraints such as limited power, computation, and storage space. Therefore, we also analyze the performance of the proposed scheme by comparing its computation and communication costs with those of other schemes. PMID:24721764
A Survey of Authentication Schemes in Telecare Medicine Information Systems.
Aslam, Muhammad Umair; Derhab, Abdelouahid; Saleem, Kashif; Abbas, Haider; Orgun, Mehmet; Iqbal, Waseem; Aslam, Baber
2017-01-01
E-Healthcare is an emerging field that provides mobility to its users. The protected health information of the users are stored at a remote server (Telecare Medical Information System) and can be accessed by the users at anytime. Many authentication protocols have been proposed to ensure the secure authenticated access to the Telecare Medical Information System. These protocols are designed to provide certain properties such as: anonymity, untraceability, unlinkability, privacy, confidentiality, availability and integrity. They also aim to build a key exchange mechanism, which provides security against some attacks such as: identity theft, password guessing, denial of service, impersonation and insider attacks. This paper reviews these proposed authentication protocols and discusses their strengths and weaknesses in terms of ensured security and privacy properties, and computation cost. The schemes are divided in three broad categories of one-factor, two-factor and three-factor authentication schemes. Inter-category and intra-category comparison has been performed for these schemes and based on the derived results we propose future directions and recommendations that can be very helpful to the researchers who work on the design and implementation of authentication protocols.
Security of fragile authentication watermarks with localization
NASA Astrophysics Data System (ADS)
Fridrich, Jessica
2002-04-01
In this paper, we study the security of fragile image authentication watermarks that can localize tampered areas. We start by comparing the goals, capabilities, and advantages of image authentication based on watermarking and cryptography. Then we point out some common security problems of current fragile authentication watermarks with localization and classify attacks on authentication watermarks into five categories. By investigating the attacks and vulnerabilities of current schemes, we propose a variation of the Wong scheme18 that is fast, simple, cryptographically secure, and resistant to all known attacks, including the Holliman-Memon attack9. In the new scheme, a special symmetry structure in the logo is used to authenticate the block content, while the logo itself carries information about the block origin (block index, the image index or time stamp, author ID, etc.). Because the authentication of the content and its origin are separated, it is possible to easily identify swapped blocks between images and accurately detect cropped areas, while being able to accurately localize tampered pixels.
Zhang, Liping; Zhu, Shaohui; Tang, Shanyu
2017-03-01
Telecare medicine information systems (TMIS) provide flexible and convenient e-health care. However, the medical records transmitted in TMIS are exposed to unsecured public networks, so TMIS are more vulnerable to various types of security threats and attacks. To provide privacy protection for TMIS, a secure and efficient authenticated key agreement scheme is urgently needed to protect the sensitive medical data. Recently, Mishra et al. proposed a biometrics-based authenticated key agreement scheme for TMIS by using hash function and nonce, they claimed that their scheme could eliminate the security weaknesses of Yan et al.'s scheme and provide dynamic identity protection and user anonymity. In this paper, however, we demonstrate that Mishra et al.'s scheme suffers from replay attacks, man-in-the-middle attacks and fails to provide perfect forward secrecy. To overcome the weaknesses of Mishra et al.'s scheme, we then propose a three-factor authenticated key agreement scheme to enable the patient to enjoy the remote healthcare services via TMIS with privacy protection. The chaotic map-based cryptography is employed in the proposed scheme to achieve a delicate balance of security and performance. Security analysis demonstrates that the proposed scheme resists various attacks and provides several attractive security properties. Performance evaluation shows that the proposed scheme increases efficiency in comparison with other related schemes.
Amin, Ruhul; Islam, S K Hafizul; Biswas, G P; Khan, Muhammad Khurram; Obaidat, Mohammad S
2015-11-01
In order to access remote medical server, generally the patients utilize smart card to login to the server. It has been observed that most of the user (patient) authentication protocols suffer from smart card stolen attack that means the attacker can mount several common attacks after extracting smart card information. Recently, Lu et al.'s proposes a session key agreement protocol between the patient and remote medical server and claims that the same protocol is secure against relevant security attacks. However, this paper presents several security attacks on Lu et al.'s protocol such as identity trace attack, new smart card issue attack, patient impersonation attack and medical server impersonation attack. In order to fix the mentioned security pitfalls including smart card stolen attack, this paper proposes an efficient remote mutual authentication protocol using smart card. We have then simulated the proposed protocol using widely-accepted AVISPA simulation tool whose results make certain that the same protocol is secure against active and passive attacks including replay and man-in-the-middle attacks. Moreover, the rigorous security analysis proves that the proposed protocol provides strong security protection on the relevant security attacks including smart card stolen attack. We compare the proposed scheme with several related schemes in terms of computation cost and communication cost as well as security functionalities. It has been observed that the proposed scheme is comparatively better than related existing schemes.
Secure privacy-preserving biometric authentication scheme for telecare medicine information systems.
Li, Xuelei; Wen, Qiaoyan; Li, Wenmin; Zhang, Hua; Jin, Zhengping
2014-11-01
Healthcare delivery services via telecare medicine information systems (TMIS) can help patients to obtain their desired telemedicine services conveniently. However, information security and privacy protection are important issues and crucial challenges in healthcare information systems, where only authorized patients and doctors can employ telecare medicine facilities and access electronic medical records. Therefore, a secure authentication scheme is urgently required to achieve the goals of entity authentication, data confidentiality and privacy protection. This paper investigates a new biometric authentication with key agreement scheme, which focuses on patient privacy and medical data confidentiality in TMIS. The new scheme employs hash function, fuzzy extractor, nonce and authenticated Diffie-Hellman key agreement as primitives. It provides patient privacy protection, e.g., hiding identity from being theft and tracked by unauthorized participant, and preserving password and biometric template from being compromised by trustless servers. Moreover, key agreement supports secure transmission by symmetric encryption to protect patient's medical data from being leaked. Finally, the analysis shows that our proposal provides more security and privacy protection for TMIS.
Mishra, Dheerendra
2015-01-01
Telecare medical information systems (TMIS) enable healthcare delivery services. However, access of these services via public channel raises security and privacy issues. In recent years, several smart card based authentication schemes have been introduced to ensure secure and authorized communication between remote entities over the public channel for the (TMIS). We analyze the security of some of the recently proposed authentication schemes of Lin, Xie et al., Cao and Zhai, and Wu and Xu's for TMIS. Unfortunately, we identify that these schemes failed to satisfy desirable security attributes. In this article we briefly discuss four dynamic ID-based authentication schemes and demonstrate their failure to satisfy desirable security attributes. The study is aimed to demonstrate how inefficient password change phase can lead to denial of server scenario for an authorized user, and how an inefficient login phase causes the communication and computational overhead and decrease the performance of the system. Moreover, we show the vulnerability of Cao and Zhai's scheme to known session specific temporary information attack, vulnerability of Wu and Xu's scheme to off-line password guessing attack, and vulnerability of Xie et al.'s scheme to untraceable on-line password guessing attack.
Das, Ashok Kumar
2015-03-01
Recent advanced technology enables the telecare medicine information system (TMIS) for the patients to gain the health monitoring facility at home and also to access medical services over the Internet of mobile networks. Several remote user authentication schemes have been proposed in the literature for TMIS. However, most of them are either insecure against various known attacks or they are inefficient. Recently, Tan proposed an efficient user anonymity preserving three-factor authentication scheme for TMIS. In this paper, we show that though Tan's scheme is efficient, it has several security drawbacks such as (1) it fails to provide proper authentication during the login phase, (2) it fails to provide correct updation of password and biometric of a user during the password and biometric update phase, and (3) it fails to protect against replay attack. In addition, Tan's scheme lacks the formal security analysis and verification. Later, Arshad and Nikooghadam also pointed out some security flaws in Tan's scheme and then presented an improvement on Tan's s scheme. However, we show that Arshad and Nikooghadam's scheme is still insecure against the privileged-insider attack through the stolen smart-card attack, and it also lacks the formal security analysis and verification. In order to withstand those security loopholes found in both Tan's scheme, and Arshad and Nikooghadam's scheme, we aim to propose an effective and more secure three-factor remote user authentication scheme for TMIS. Our scheme provides the user anonymity property. Through the rigorous informal and formal security analysis using random oracle models and the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool, we show that our scheme is secure against various known attacks, including the replay and man-in-the-middle attacks. Furthermore, our scheme is also efficient as compared to other related schemes.
Das, Ashok Kumar; Bruhadeshwar, Bezawada
2013-10-01
Recently Lee and Liu proposed an efficient password based authentication and key agreement scheme using smart card for the telecare medicine information system [J. Med. Syst. (2013) 37:9933]. In this paper, we show that though their scheme is efficient, their scheme still has two security weaknesses such as (1) it has design flaws in authentication phase and (2) it has design flaws in password change phase. In order to withstand these flaws found in Lee-Liu's scheme, we propose an improvement of their scheme. Our improved scheme keeps also the original merits of Lee-Liu's scheme. We show that our scheme is efficient as compared to Lee-Liu's scheme. Further, through the security analysis, we show that our scheme is secure against possible known attacks. In addition, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool to show that our scheme is secure against passive and active attacks.
Zhang, Liping; Zhu, Shaohui
2015-05-01
To protect the transmission of the sensitive medical data, a secure and efficient authenticated key agreement scheme should be deployed when the healthcare delivery session is established via Telecare Medicine Information Systems (TMIS) over the unsecure public network. Recently, Islam and Khan proposed an authenticated key agreement scheme using elliptic curve cryptography for TMIS. They claimed that their proposed scheme is provably secure against various attacks in random oracle model and enjoys some good properties such as user anonymity. In this paper, however, we point out that any legal but malicious patient can reveal other user's identity. Consequently, their scheme suffers from server spoofing attack and off-line password guessing attack. Moreover, if the malicious patient performs the same time of the registration as other users, she can further launch the impersonation attack, man-in-the-middle attack, modification attack, replay attack, and strong replay attack successfully. To eliminate these weaknesses, we propose an improved ECC-based authenticated key agreement scheme. Security analysis demonstrates that the proposed scheme can resist various attacks and enables the patient to enjoy the remote healthcare services with privacy protection. Through the performance evaluation, we show that the proposed scheme achieves a desired balance between security and performance in comparisons with other related schemes.
LMIP/AAA: Local Authentication, Authorization and Accounting (AAA) Protocol for Mobile IP
NASA Astrophysics Data System (ADS)
Chenait, Manel
Mobile IP represents a simple and scalable global mobility solution. However, it inhibits various vulnerabilities to malicious attacks and, therefore, requires the integration of appropriate security services. In this paper, we discuss two authentication schemes suggested for Mobile IP: standard authentication and Mobile IP/AAA authentication. In order to provide Mobile IP roaming services including identity verication, we propose an improvement to Mobile/AAA authentication scheme by applying a local politic key management in each domain, hence we reduce hando latency by avoiding the involvement of AAA infrastructure during mobile node roaming.
Quantum secret sharing with identity authentication based on Bell states
NASA Astrophysics Data System (ADS)
Abulkasim, Hussein; Hamad, Safwat; Khalifa, Amal; El Bahnasy, Khalid
Quantum secret sharing techniques allow two parties or more to securely share a key, while the same number of parties or less can efficiently deduce the secret key. In this paper, we propose an authenticated quantum secret sharing protocol, where a quantum dialogue protocol is adopted to authenticate the identity of the parties. The participants simultaneously authenticate the identity of each other based on parts of a prior shared key. Moreover, the whole prior shared key can be reused for deducing the secret data. Although the proposed scheme does not significantly improve the efficiency performance, it is more secure compared to some existing quantum secret sharing scheme due to the identity authentication process. In addition, the proposed scheme can stand against participant attack, man-in-the-middle attack, impersonation attack, Trojan-horse attack as well as information leaks.
Amin, Ruhul; Islam, S K Hafizul; Biswas, G P; Khan, Muhammad Khurram; Kumar, Neeraj
2015-11-01
In the last few years, numerous remote user authentication and session key agreement schemes have been put forwarded for Telecare Medical Information System, where the patient and medical server exchange medical information using Internet. We have found that most of the schemes are not usable for practical applications due to known security weaknesses. It is also worth to note that unrestricted number of patients login to the single medical server across the globe. Therefore, the computation and maintenance overhead would be high and the server may fail to provide services. In this article, we have designed a medical system architecture and a standard mutual authentication scheme for single medical server, where the patient can securely exchange medical data with the doctor(s) via trusted central medical server over any insecure network. We then explored the security of the scheme with its resilience to attacks. Moreover, we formally validated the proposed scheme through the simulation using Automated Validation of Internet Security Schemes and Applications software whose outcomes confirm that the scheme is protected against active and passive attacks. The performance comparison demonstrated that the proposed scheme has lower communication cost than the existing schemes in literature. In addition, the computation cost of the proposed scheme is nearly equal to the exiting schemes. The proposed scheme not only efficient in terms of different security attacks, but it also provides an efficient login, mutual authentication, session key agreement and verification and password update phases along with password recovery.
Yang, Li; Zheng, Zhiming
2018-01-01
According to advancements in the wireless technologies, study of biometrics-based multi-server authenticated key agreement schemes has acquired a lot of momentum. Recently, Wang et al. presented a three-factor authentication protocol with key agreement and claimed that their scheme was resistant to several prominent attacks. Unfortunately, this paper indicates that their protocol is still vulnerable to the user impersonation attack, privileged insider attack and server spoofing attack. Furthermore, their protocol cannot provide the perfect forward secrecy. As a remedy of these aforementioned problems, we propose a biometrics-based authentication and key agreement scheme for multi-server environments. Compared with various related schemes, our protocol achieves the stronger security and provides more functionality properties. Besides, the proposed protocol shows the satisfactory performances in respect of storage requirement, communication overhead and computational cost. Thus, our protocol is suitable for expert systems and other multi-server architectures. Consequently, the proposed protocol is more appropriate in the distributed networks.
Zheng, Zhiming
2018-01-01
According to advancements in the wireless technologies, study of biometrics-based multi-server authenticated key agreement schemes has acquired a lot of momentum. Recently, Wang et al. presented a three-factor authentication protocol with key agreement and claimed that their scheme was resistant to several prominent attacks. Unfortunately, this paper indicates that their protocol is still vulnerable to the user impersonation attack, privileged insider attack and server spoofing attack. Furthermore, their protocol cannot provide the perfect forward secrecy. As a remedy of these aforementioned problems, we propose a biometrics-based authentication and key agreement scheme for multi-server environments. Compared with various related schemes, our protocol achieves the stronger security and provides more functionality properties. Besides, the proposed protocol shows the satisfactory performances in respect of storage requirement, communication overhead and computational cost. Thus, our protocol is suitable for expert systems and other multi-server architectures. Consequently, the proposed protocol is more appropriate in the distributed networks. PMID:29534085
Sutrala, Anil Kumar; Das, Ashok Kumar; Odelu, Vanga; Wazid, Mohammad; Kumari, Saru
2016-10-01
Information and communication and technology (ICT) has changed the entire paradigm of society. ICT facilitates people to use medical services over the Internet, thereby reducing the travel cost, hospitalization cost and time to a greater extent. Recent advancements in Telecare Medicine Information System (TMIS) facilitate users/patients to access medical services over the Internet by gaining health monitoring facilities at home. Amin and Biswas recently proposed a RSA-based user authentication and session key agreement protocol usable for TMIS, which is an improvement over Giri et al.'s RSA-based user authentication scheme for TMIS. In this paper, we show that though Amin-Biswas's scheme considerably improves the security drawbacks of Giri et al.'s scheme, their scheme has security weaknesses as it suffers from attacks such as privileged insider attack, user impersonation attack, replay attack and also offline password guessing attack. A new RSA-based user authentication scheme for TMIS is proposed, which overcomes the security pitfalls of Amin-Biswas's scheme and also preserves user anonymity property. The careful formal security analysis using the two widely accepted Burrows-Abadi-Needham (BAN) logic and the random oracle models is done. Moreover, the informal security analysis of the scheme is also done. These security analyses show the robustness of our new scheme against the various known attacks as well as attacks found in Amin-Biswas's scheme. The simulation of the proposed scheme using the widely accepted Automated Validation of Internet Security Protocols and Applications (AVISPA) tool is also done. We present a new user authentication and session key agreement scheme for TMIS, which fixes the mentioned security pitfalls found in Amin-Biswas's scheme, and we also show that the proposed scheme provides better security than other existing schemes through the rigorous security analysis and verification tool. Furthermore, we present the formal security verification of our scheme using the widely accepted AVISPA tool. High security and extra functionality features allow our proposed scheme to be applicable for telecare medicine information systems which is used for e-health care medical applications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Xie, Qi; Liu, Wenhao; Wang, Shengbao; Han, Lidong; Hu, Bin; Wu, Ting
2014-09-01
Patient's privacy-preserving, security and mutual authentication between patient and the medical server are the important mechanism in connected health care applications, such as telecare medical information systems and personally controlled health records systems. In 2013, Wen showed that Das et al.'s scheme is vulnerable to the replay attack, user impersonation attacks and off-line guessing attacks, and then proposed an improved scheme using biometrics, password and smart card to overcome these weaknesses. However, we show that Wen's scheme is still vulnerable to off-line password guessing attacks, does not provide user's anonymity and perfect forward secrecy. Further, we propose an improved scheme to fix these weaknesses, and use the applied pi calculus based formal verification tool ProVerif to prove the security and authentication.
An Improved Biometrics-Based Remote User Authentication Scheme with User Anonymity
Kumari, Saru
2013-01-01
The authors review the biometrics-based user authentication scheme proposed by An in 2012. The authors show that there exist loopholes in the scheme which are detrimental for its security. Therefore the authors propose an improved scheme eradicating the flaws of An's scheme. Then a detailed security analysis of the proposed scheme is presented followed by its efficiency comparison. The proposed scheme not only withstands security problems found in An's scheme but also provides some extra features with mere addition of only two hash operations. The proposed scheme allows user to freely change his password and also provides user anonymity with untraceability. PMID:24350272
An improved biometrics-based remote user authentication scheme with user anonymity.
Khan, Muhammad Khurram; Kumari, Saru
2013-01-01
The authors review the biometrics-based user authentication scheme proposed by An in 2012. The authors show that there exist loopholes in the scheme which are detrimental for its security. Therefore the authors propose an improved scheme eradicating the flaws of An's scheme. Then a detailed security analysis of the proposed scheme is presented followed by its efficiency comparison. The proposed scheme not only withstands security problems found in An's scheme but also provides some extra features with mere addition of only two hash operations. The proposed scheme allows user to freely change his password and also provides user anonymity with untraceability.
Comment on ‘Authenticated quantum secret sharing with quantum dialogue based on Bell states’
NASA Astrophysics Data System (ADS)
Gao, Gan; Wang, Yue; Wang, Dong; Ye, Liu
2018-02-01
In the paper (2016 Phys. Scr. 91 085101), Abulkasim et al proposed a authenticated quantum secret sharing scheme. We study the security of the multiparty case in the proposed scheme and find that it is not secure.
A lightweight and secure two factor anonymous authentication protocol for Global Mobility Networks.
Baig, Ahmed Fraz; Hassan, Khwaja Mansoor Ul; Ghani, Anwar; Chaudhry, Shehzad Ashraf; Khan, Imran; Ashraf, Muhammad Usman
2018-01-01
Global Mobility Networks(GLOMONETs) in wireless communication permits the global roaming services that enable a user to leverage the mobile services in any foreign country. Technological growth in wireless communication is also accompanied by new security threats and challenges. A threat-proof authentication protocol in wireless communication may overcome the security flaws by allowing only legitimate users to access a particular service. Recently, Lee et al. found Mun et al. scheme vulnerable to different attacks and proposed an advanced secure scheme to overcome the security flaws. However, this article points out that Lee et al. scheme lacks user anonymity, inefficient user authentication, vulnerable to replay and DoS attacks and Lack of local password verification. Furthermore, this article presents a more robust anonymous authentication scheme to handle the threats and challenges found in Lee et al.'s protocol. The proposed protocol is formally verified with an automated tool(ProVerif). The proposed protocol has superior efficiency in comparison to the existing protocols.
A lightweight and secure two factor anonymous authentication protocol for Global Mobility Networks
2018-01-01
Global Mobility Networks(GLOMONETs) in wireless communication permits the global roaming services that enable a user to leverage the mobile services in any foreign country. Technological growth in wireless communication is also accompanied by new security threats and challenges. A threat-proof authentication protocol in wireless communication may overcome the security flaws by allowing only legitimate users to access a particular service. Recently, Lee et al. found Mun et al. scheme vulnerable to different attacks and proposed an advanced secure scheme to overcome the security flaws. However, this article points out that Lee et al. scheme lacks user anonymity, inefficient user authentication, vulnerable to replay and DoS attacks and Lack of local password verification. Furthermore, this article presents a more robust anonymous authentication scheme to handle the threats and challenges found in Lee et al.’s protocol. The proposed protocol is formally verified with an automated tool(ProVerif). The proposed protocol has superior efficiency in comparison to the existing protocols. PMID:29702675
Zhang, Ruisheng; Liu, Qidong
2017-01-01
Wireless sensor networks (WSNs), which consist of a large number of sensor nodes, have become among the most important technologies in numerous fields, such as environmental monitoring, military surveillance, control systems in nuclear reactors, vehicle safety systems, and medical monitoring. The most serious drawback for the widespread application of WSNs is the lack of security. Given the resource limitation of WSNs, traditional security schemes are unsuitable. Approaches toward withstanding related attacks with small overhead have thus recently been studied by many researchers. Numerous studies have focused on the authentication scheme for WSNs, but most of these works cannot achieve the security performance and overhead perfectly. Nam et al. proposed a two-factor authentication scheme with lightweight sensor computation for WSNs. In this paper, we review this scheme, emphasize its drawbacks, and propose a temporal credential-based mutual authentication with a multiple-password scheme for WSNs. Our scheme uses multiple passwords to achieve three-factor security performance and generate a session key between user and sensor nodes. The security analysis phase shows that our scheme can withstand related attacks, including a lost password threat, and the comparison phase shows that our scheme involves a relatively small overhead. In the comparison of the overhead phase, the result indicates that more than 95% of the overhead is composed of communication and not computation overhead. Therefore, the result motivates us to pay further attention to communication overhead than computation overhead in future research. PMID:28135288
Liu, Xin; Zhang, Ruisheng; Liu, Qidong
2017-01-01
Wireless sensor networks (WSNs), which consist of a large number of sensor nodes, have become among the most important technologies in numerous fields, such as environmental monitoring, military surveillance, control systems in nuclear reactors, vehicle safety systems, and medical monitoring. The most serious drawback for the widespread application of WSNs is the lack of security. Given the resource limitation of WSNs, traditional security schemes are unsuitable. Approaches toward withstanding related attacks with small overhead have thus recently been studied by many researchers. Numerous studies have focused on the authentication scheme for WSNs, but most of these works cannot achieve the security performance and overhead perfectly. Nam et al. proposed a two-factor authentication scheme with lightweight sensor computation for WSNs. In this paper, we review this scheme, emphasize its drawbacks, and propose a temporal credential-based mutual authentication with a multiple-password scheme for WSNs. Our scheme uses multiple passwords to achieve three-factor security performance and generate a session key between user and sensor nodes. The security analysis phase shows that our scheme can withstand related attacks, including a lost password threat, and the comparison phase shows that our scheme involves a relatively small overhead. In the comparison of the overhead phase, the result indicates that more than 95% of the overhead is composed of communication and not computation overhead. Therefore, the result motivates us to pay further attention to communication overhead than computation overhead in future research.
A Selective Group Authentication Scheme for IoT-Based Medical Information System.
Park, YoHan; Park, YoungHo
2017-04-01
The technology of IoT combined with medical systems is expected to support advanced medical services. However, unsolved security problems, such as misuse of medical devices, illegal access to the medical server and so on, make IoT-based medical systems not be applied widely. In addition, users have a high burden of computation to access Things for the explosive growth of IoT devices. Because medical information is critical and important, but users have a restricted computing power, IoT-based medical systems are required to provide secure and efficient authentication for users. In this paper, we propose a selective group authentication scheme using Shamir's threshold technique. The property of selectivity gives the right of choice to users to form a group which consists of things users select and access. And users can get an access authority for those Things at a time. Thus, our scheme provides an efficient user authentication for multiple Things and conditional access authority for safe IoT-based medical information system. To the best of our knowledge, our proposed scheme is the first in which selectivity is combined with group authentication in IoT environments.
Biometrics based authentication scheme for session initiation protocol.
Xie, Qi; Tang, Zhixiong
2016-01-01
Many two-factor challenge-response based session initiation protocol (SIP) has been proposed, but most of them are vulnerable to smart card stolen attacks and password guessing attacks. In this paper, we propose a novel three-factor SIP authentication scheme using biometrics, password and smart card, and utilize the pi calculus-based formal verification tool ProVerif to prove that the proposed protocol achieves security and authentication. Furthermore, our protocol is highly efficient when compared to other related protocols.
BossPro: a biometrics-based obfuscation scheme for software protection
NASA Astrophysics Data System (ADS)
Kuseler, Torben; Lami, Ihsan A.; Al-Assam, Hisham
2013-05-01
This paper proposes to integrate biometric-based key generation into an obfuscated interpretation algorithm to protect authentication application software from illegitimate use or reverse-engineering. This is especially necessary for mCommerce because application programmes on mobile devices, such as Smartphones and Tablet-PCs are typically open for misuse by hackers. Therefore, the scheme proposed in this paper ensures that a correct interpretation / execution of the obfuscated program code of the authentication application requires a valid biometric generated key of the actual person to be authenticated, in real-time. Without this key, the real semantics of the program cannot be understood by an attacker even if he/she gains access to this application code. Furthermore, the security provided by this scheme can be a vital aspect in protecting any application running on mobile devices that are increasingly used to perform business/financial or other security related applications, but are easily lost or stolen. The scheme starts by creating a personalised copy of any application based on the biometric key generated during an enrolment process with the authenticator as well as a nuance created at the time of communication between the client and the authenticator. The obfuscated code is then shipped to the client's mobile devise and integrated with real-time biometric extracted data of the client to form the unlocking key during execution. The novelty of this scheme is achieved by the close binding of this application program to the biometric key of the client, thus making this application unusable for others. Trials and experimental results on biometric key generation, based on client's faces, and an implemented scheme prototype, based on the Android emulator, prove the concept and novelty of this proposed scheme.
Access and accounting schemes of wireless broadband
NASA Astrophysics Data System (ADS)
Zhang, Jian; Huang, Benxiong; Wang, Yan; Yu, Xing
2004-04-01
In this paper, two wireless broadband access and accounting schemes were introduced. There are some differences in the client and the access router module between them. In one scheme, Secure Shell (SSH) protocol is used in the access system. The SSH server makes the authentication based on private key cryptography. The advantage of this scheme is the security of the user's information, and we have sophisticated access control. In the other scheme, Secure Sockets Layer (SSL) protocol is used the access system. It uses the technology of public privacy key. Nowadays, web browser generally combines HTTP and SSL protocol and we use the SSL protocol to implement the encryption of the data between the clients and the access route. The schemes are same in the radius sever part. Remote Authentication Dial in User Service (RADIUS), as a security protocol in the form of Client/Sever, is becoming an authentication/accounting protocol for standard access to the Internet. It will be explained in a flow chart. In our scheme, the access router serves as the client to the radius server.
Continuous-variable quantum authentication of physical unclonable keys
NASA Astrophysics Data System (ADS)
Nikolopoulos, Georgios M.; Diamanti, Eleni
2017-04-01
We propose a scheme for authentication of physical keys that are materialized by optical multiple-scattering media. The authentication relies on the optical response of the key when probed by randomly selected coherent states of light, and the use of standard wavefront-shaping techniques that direct the scattered photons coherently to a specific target mode at the output. The quadratures of the electromagnetic field of the scattered light at the target mode are analysed using a homodyne detection scheme, and the acceptance or rejection of the key is decided upon the outcomes of the measurements. The proposed scheme can be implemented with current technology and offers collision resistance and robustness against key cloning.
A QR Code Based Zero-Watermarking Scheme for Authentication of Medical Images in Teleradiology Cloud
Seenivasagam, V.; Velumani, R.
2013-01-01
Healthcare institutions adapt cloud based archiving of medical images and patient records to share them efficiently. Controlled access to these records and authentication of images must be enforced to mitigate fraudulent activities and medical errors. This paper presents a zero-watermarking scheme implemented in the composite Contourlet Transform (CT)—Singular Value Decomposition (SVD) domain for unambiguous authentication of medical images. Further, a framework is proposed for accessing patient records based on the watermarking scheme. The patient identification details and a link to patient data encoded into a Quick Response (QR) code serves as the watermark. In the proposed scheme, the medical image is not subjected to degradations due to watermarking. Patient authentication and authorized access to patient data are realized on combining a Secret Share with the Master Share constructed from invariant features of the medical image. The Hu's invariant image moments are exploited in creating the Master Share. The proposed system is evaluated with Checkmark software and is found to be robust to both geometric and non geometric attacks. PMID:23970943
Seenivasagam, V; Velumani, R
2013-01-01
Healthcare institutions adapt cloud based archiving of medical images and patient records to share them efficiently. Controlled access to these records and authentication of images must be enforced to mitigate fraudulent activities and medical errors. This paper presents a zero-watermarking scheme implemented in the composite Contourlet Transform (CT)-Singular Value Decomposition (SVD) domain for unambiguous authentication of medical images. Further, a framework is proposed for accessing patient records based on the watermarking scheme. The patient identification details and a link to patient data encoded into a Quick Response (QR) code serves as the watermark. In the proposed scheme, the medical image is not subjected to degradations due to watermarking. Patient authentication and authorized access to patient data are realized on combining a Secret Share with the Master Share constructed from invariant features of the medical image. The Hu's invariant image moments are exploited in creating the Master Share. The proposed system is evaluated with Checkmark software and is found to be robust to both geometric and non geometric attacks.
RUASN: a robust user authentication framework for wireless sensor networks.
Kumar, Pardeep; Choudhury, Amlan Jyoti; Sain, Mangal; Lee, Sang-Gon; Lee, Hoon-Jae
2011-01-01
In recent years, wireless sensor networks (WSNs) have been considered as a potential solution for real-time monitoring applications and these WSNs have potential practical impact on next generation technology too. However, WSNs could become a threat if suitable security is not considered before the deployment and if there are any loopholes in their security, which might open the door for an attacker and hence, endanger the application. User authentication is one of the most important security services to protect WSN data access from unauthorized users; it should provide both mutual authentication and session key establishment services. This paper proposes a robust user authentication framework for wireless sensor networks, based on a two-factor (password and smart card) concept. This scheme facilitates many services to the users such as user anonymity, mutual authentication, secure session key establishment and it allows users to choose/update their password regularly, whenever needed. Furthermore, we have provided the formal verification using Rubin logic and compare RUASN with many existing schemes. As a result, we found that the proposed scheme possesses many advantages against popular attacks, and achieves better efficiency at low computation cost.
Kerberos authentication: The security answer for unsecured networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engert, D.E.
1995-06-01
Traditional authentication schemes do not properly address the problems encountered with today`s unsecured networks. Kerbmm developed by MIT, on the other hand is designed to operate in an open unsecured network, yet provide good authentication and security including encrypted session traffic. Basic Kerberos principles as well as experiences of the ESnet Authentication Pilot Project with Cross Realm. Authentication between four National Laboratories will also be described.
Lee, Tian-Fu
2014-12-01
Telecare medicine information systems provide a communicating platform for accessing remote medical resources through public networks, and help health care workers and medical personnel to rapidly making correct clinical decisions and treatments. An authentication scheme for data exchange in telecare medicine information systems enables legal users in hospitals and medical institutes to establish a secure channel and exchange electronic medical records or electronic health records securely and efficiently. This investigation develops an efficient and secure verified-based three-party authentication scheme by using extended chaotic maps for data exchange in telecare medicine information systems. The proposed scheme does not require server's public keys and avoids time-consuming modular exponential computations and scalar multiplications on elliptic curve used in previous related approaches. Additionally, the proposed scheme is proven secure in the random oracle model, and realizes the lower bounds of messages and rounds in communications. Compared to related verified-based approaches, the proposed scheme not only possesses higher security, but also has lower computational cost and fewer transmissions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Privacy-Preserving Authentication of Users with Smart Cards Using One-Time Credentials
NASA Astrophysics Data System (ADS)
Park, Jun-Cheol
User privacy preservation is critical to prevent many sophisticated attacks that are based on the user's server access patterns and ID-related information. We propose a password-based user authentication scheme that provides strong privacy protection using one-time credentials. It eliminates the possibility of tracing a user's authentication history and hides the user's ID and password even from servers. In addition, it is resistant against user impersonation even if both a server's verification database and a user's smart card storage are disclosed. We also provide a revocation scheme for a user to promptly invalidate the user's credentials on a server when the user's smart card is compromised. The schemes use lightweight operations only such as computing hashes and bitwise XORs.
Dual domain watermarking for authentication and compression of cultural heritage images.
Zhao, Yang; Campisi, Patrizio; Kundur, Deepa
2004-03-01
This paper proposes an approach for the combined image authentication and compression of color images by making use of a digital watermarking and data hiding framework. The digital watermark is comprised of two components: a soft-authenticator watermark for authentication and tamper assessment of the given image, and a chrominance watermark employed to improve the efficiency of compression. The multipurpose watermark is designed by exploiting the orthogonality of various domains used for authentication, color decomposition and watermark insertion. The approach is implemented as a DCT-DWT dual domain algorithm and is applied for the protection and compression of cultural heritage imagery. Analysis is provided to characterize the behavior of the scheme under ideal conditions. Simulations and comparisons of the proposed approach with state-of-the-art existing work demonstrate the potential of the overall scheme.
Privacy-Preserving Authentication Using a Double Pseudonym for Internet of Vehicles
Xu, Wenyu; Zhang, Jing; Xu, Yan; Liu, Lu
2018-01-01
The Internet of Vehicles (IoV) plays an important role in smart transportation to reduce the drivers’s risk of having an accident and help them manage small emergencies. Therefore, security and privacy issues of the message in the tamper proof device (TPD) broadcasted to other vehicles and roadside units (RSUs) have become an important research subject in the field of smart transportation. Many authentication schemes are proposed to tackle the challenges above and most of them are heavy in computation and communication. In this paper, we propose a novel authentication scheme that utilizes the double pseudonym method to hide the real identity of vehicles and adopts the dynamic update technology to periodically update the information (such as member secret, authentication key, internal pseudo-identity) stored in the tamper-proof device to prevent the side-channel attack. Because of not using bilinear pairing, our scheme yields a better performance in terms of computation overhead and communication overhead, and is more suitable to be applied in the Internet of Vehicles. PMID:29735941
Privacy-Preserving Authentication Using a Double Pseudonym for Internet of Vehicles.
Cui, Jie; Xu, Wenyu; Zhong, Hong; Zhang, Jing; Xu, Yan; Liu, Lu
2018-05-07
The Internet of Vehicles (IoV) plays an important role in smart transportation to reduce the drivers’s risk of having an accident and help them manage small emergencies. Therefore, security and privacy issues of the message in the tamper proof device (TPD) broadcasted to other vehicles and roadside units (RSUs) have become an important research subject in the field of smart transportation. Many authentication schemes are proposed to tackle the challenges above and most of them are heavy in computation and communication. In this paper, we propose a novel authentication scheme that utilizes the double pseudonym method to hide the real identity of vehicles and adopts the dynamic update technology to periodically update the information (such as member secret, authentication key, internal pseudo-identity) stored in the tamper-proof device to prevent the side-channel attack. Because of not using bilinear pairing, our scheme yields a better performance in terms of computation overhead and communication overhead, and is more suitable to be applied in the Internet of Vehicles.
Security Enhancement Using Cache Based Reauthentication in WiMAX Based E-Learning System
Rajagopal, Chithra; Bhuvaneshwaran, Kalaavathi
2015-01-01
WiMAX networks are the most suitable for E-Learning through their Broadcast and Multicast Services at rural areas. Authentication of users is carried out by AAA server in WiMAX. In E-Learning systems the users must be forced to perform reauthentication to overcome the session hijacking problem. The reauthentication of users introduces frequent delay in the data access which is crucial in delaying sensitive applications such as E-Learning. In order to perform fast reauthentication caching mechanism known as Key Caching Based Authentication scheme is introduced in this paper. Even though the cache mechanism requires extra storage to keep the user credentials, this type of mechanism reduces the 50% of the delay occurring during reauthentication. PMID:26351658
Security Enhancement Using Cache Based Reauthentication in WiMAX Based E-Learning System.
Rajagopal, Chithra; Bhuvaneshwaran, Kalaavathi
2015-01-01
WiMAX networks are the most suitable for E-Learning through their Broadcast and Multicast Services at rural areas. Authentication of users is carried out by AAA server in WiMAX. In E-Learning systems the users must be forced to perform reauthentication to overcome the session hijacking problem. The reauthentication of users introduces frequent delay in the data access which is crucial in delaying sensitive applications such as E-Learning. In order to perform fast reauthentication caching mechanism known as Key Caching Based Authentication scheme is introduced in this paper. Even though the cache mechanism requires extra storage to keep the user credentials, this type of mechanism reduces the 50% of the delay occurring during reauthentication.
RUASN: A Robust User Authentication Framework for Wireless Sensor Networks
Kumar, Pardeep; Choudhury, Amlan Jyoti; Sain, Mangal; Lee, Sang-Gon; Lee, Hoon-Jae
2011-01-01
In recent years, wireless sensor networks (WSNs) have been considered as a potential solution for real-time monitoring applications and these WSNs have potential practical impact on next generation technology too. However, WSNs could become a threat if suitable security is not considered before the deployment and if there are any loopholes in their security, which might open the door for an attacker and hence, endanger the application. User authentication is one of the most important security services to protect WSN data access from unauthorized users; it should provide both mutual authentication and session key establishment services. This paper proposes a robust user authentication framework for wireless sensor networks, based on a two-factor (password and smart card) concept. This scheme facilitates many services to the users such as user anonymity, mutual authentication, secure session key establishment and it allows users to choose/update their password regularly, whenever needed. Furthermore, we have provided the formal verification using Rubin logic and compare RUASN with many existing schemes. As a result, we found that the proposed scheme possesses many advantages against popular attacks, and achieves better efficiency at low computation cost. PMID:22163888
Watermarking protocols for authentication and ownership protection based on timestamps and holograms
NASA Astrophysics Data System (ADS)
Dittmann, Jana; Steinebach, Martin; Croce Ferri, Lucilla
2002-04-01
Digital watermarking has become an accepted technology for enabling multimedia protection schemes. One problem here is the security of these schemes. Without a suitable framework, watermarks can be replaced and manipulated. We discuss different protocols providing security against rightful ownership attacks and other fraud attempts. We compare the characteristics of existing protocols for different media like direct embedding or seed based and required attributes of the watermarking technology like robustness or payload. We introduce two new media independent protocol schemes for rightful ownership authentication. With the first scheme we ensure security of digital watermarks used for ownership protection with a combination of two watermarks: first watermark of the copyright holder and a second watermark from a Trusted Third Party (TTP). It is based on hologram embedding and the watermark consists of e.g. a company logo. As an example we use digital images and specify the properties of the embedded additional security information. We identify components necessary for the security protocol like timestamp, PKI and cryptographic algorithms. The second scheme is used for authentication. It is designed for invertible watermarking applications which require high data integrity. We combine digital signature schemes and digital watermarking to provide a public verifiable integrity. The original data can only be reproduced with a secret key. Both approaches provide solutions for copyright and authentication watermarking and are introduced for image data but can be easily adopted for video and audio data as well.
Applications of Multi-Channel Safety Authentication Protocols in Wireless Networks.
Chen, Young-Long; Liau, Ren-Hau; Chang, Liang-Yu
2016-01-01
People can use their web browser or mobile devices to access web services and applications which are built into these servers. Users have to input their identity and password to login the server. The identity and password may be appropriated by hackers when the network environment is not safe. The multiple secure authentication protocol can improve the security of the network environment. Mobile devices can be used to pass the authentication messages through Wi-Fi or 3G networks to serve as a second communication channel. The content of the message number is not considered in a multiple secure authentication protocol. The more excessive transmission of messages would be easier to collect and decode by hackers. In this paper, we propose two schemes which allow the server to validate the user and reduce the number of messages using the XOR operation. Our schemes can improve the security of the authentication protocol. The experimental results show that our proposed authentication protocols are more secure and effective. In regard to applications of second authentication communication channels for a smart access control system, identity identification and E-wallet, our proposed authentication protocols can ensure the safety of person and property, and achieve more effective security management mechanisms.
User Authentication and Authorization Challenges in a Networked Library Environment.
ERIC Educational Resources Information Center
Machovec, George S.
1997-01-01
Discusses computer user authentication and authorization issues when libraries need to let valid users access databases and information services without making the process too difficult for either party. Common solutions are explained, including filtering, passwords, and kerberos (cryptographic authentication scheme for secure use over public…
A Fingerprint Encryption Scheme Based on Irreversible Function and Secure Authentication
Yu, Jianping; Zhang, Peng; Wang, Shulan
2015-01-01
A fingerprint encryption scheme based on irreversible function has been designed in this paper. Since the fingerprint template includes almost the entire information of users' fingerprints, the personal authentication can be determined only by the fingerprint features. This paper proposes an irreversible transforming function (using the improved SHA1 algorithm) to transform the original minutiae which are extracted from the thinned fingerprint image. Then, Chinese remainder theorem is used to obtain the biokey from the integration of the transformed minutiae and the private key. The result shows that the scheme has better performance on security and efficiency comparing with other irreversible function schemes. PMID:25873989
A fingerprint encryption scheme based on irreversible function and secure authentication.
Yang, Yijun; Yu, Jianping; Zhang, Peng; Wang, Shulan
2015-01-01
A fingerprint encryption scheme based on irreversible function has been designed in this paper. Since the fingerprint template includes almost the entire information of users' fingerprints, the personal authentication can be determined only by the fingerprint features. This paper proposes an irreversible transforming function (using the improved SHA1 algorithm) to transform the original minutiae which are extracted from the thinned fingerprint image. Then, Chinese remainder theorem is used to obtain the biokey from the integration of the transformed minutiae and the private key. The result shows that the scheme has better performance on security and efficiency comparing with other irreversible function schemes.
Design of Secure and Lightweight Authentication Protocol for Wearable Devices Environment.
Das, Ashok Kumar; Wazid, Mohammad; Kumar, Neeraj; Khan, Muhammad Khurram; Choo, Kim-Kwang Raymond; Park, YoungHo
2017-09-18
Wearable devices are used in various applications to collect information including step information, sleeping cycles, workout statistics, and health related information. Due to the nature and richness of the data collected by such devices, it is important to ensure the security of the collected data. This paper presents a new lightweight authentication scheme suitable for wearable device deployment. The scheme allows a user to mutually authenticate his/her wearable device(s) and the mobile terminal (e.g., Android and iOS device) and establish a session key among these devices (worn and carried by the same user) for secure communication between the wearable device and the mobile terminal. The security of the proposed scheme is then demonstrated through the broadly-accepted Real-Or-Random model, as well as using the popular formal security verification tool, known as the Automated Validation of Internet Security Protocols and Applications (AVISPA). Finally, we present a comparative summary of the proposed scheme in terms of the overheads such as computation and communication costs, security and functionality features of the proposed scheme and related schemes, and also the evaluation findings from the NS2 simulation.
Lin, Tsung-Hung; Tsung, Chen-Kun; Lee, Tian-Fu; Wang, Zeng-Bo
2017-12-03
The security is a critical issue for business purposes. For example, the cloud meeting must consider strong security to maintain the communication privacy. Considering the scenario with cloud meeting, we apply extended chaotic map to present passwordless group authentication key agreement, termed as Passwordless Group Authentication Key Agreement (PL-GAKA). PL-GAKA improves the computation efficiency for the simple group password-based authenticated key agreement (SGPAKE) proposed by Lee et al. in terms of computing the session key. Since the extended chaotic map has equivalent security level to the Diffie-Hellman key exchange scheme applied by SGPAKE, the security of PL-GAKA is not sacrificed when improving the computation efficiency. Moreover, PL-GAKA is a passwordless scheme, so the password maintenance is not necessary. Short-term authentication is considered, hence the communication security is stronger than other protocols by dynamically generating session key in each cloud meeting. In our analysis, we first prove that each meeting member can get the correct information during the meeting. We analyze common security issues for the proposed PL-GAKA in terms of session key security, mutual authentication, perfect forward security, and data integrity. Moreover, we also demonstrate that communicating in PL-GAKA is secure when suffering replay attacks, impersonation attacks, privileged insider attacks, and stolen-verifier attacks. Eventually, an overall comparison is given to show the performance between PL-GAKA, SGPAKE and related solutions.
A privacy-strengthened scheme for E-Healthcare monitoring system.
Huang, Chanying; Lee, Hwaseong; Lee, Dong Hoon
2012-10-01
Recent Advances in Wireless Body Area Networks (WBANs) offer unprecedented opportunities and challenges to the development of pervasive electronic healthcare (E-Healthcare) monitoring system. In E-Healthcare system, the processed data are patients' sensitive health data that are directly related to individuals' privacy. For this reason, privacy concern is of great importance for E-Healthcare system. Current existing systems for E-Healthcare services, however, have not yet provided sufficient privacy protection for patients. In order to offer adequate security and privacy, in this paper, we propose a privacy-enhanced scheme for patients' physical condition monitoring, which achieves dual effects: (1) providing unlinkability of health records and individual identity, and (2) supporting anonymous authentication and authorized data access. We also conduct a simulation experiment to evaluate the performance of the proposed scheme. The experimental results demonstrate that the proposed scheme achieves better performance in terms of computational complexity, communication overheads and querying efficiency compared with previous results.
Multi-factor challenge/response approach for remote biometric authentication
NASA Astrophysics Data System (ADS)
Al-Assam, Hisham; Jassim, Sabah A.
2011-06-01
Although biometric authentication is perceived to be more reliable than traditional authentication schemes, it becomes vulnerable to many attacks when it comes to remote authentication over open networks and raises serious privacy concerns. This paper proposes a biometric-based challenge-response approach to be used for remote authentication between two parties A and B over open networks. In the proposed approach, a remote authenticator system B (e.g. a bank) challenges its client A who wants to authenticate his/her self to the system by sending a one-time public random challenge. The client A responds by employing the random challenge along with secret information obtained from a password and a token to produce a one-time cancellable representation of his freshly captured biometric sample. The one-time biometric representation, which is based on multi-factor, is then sent back to B for matching. Here, we argue that eavesdropping of the one-time random challenge and/or the resulting one-time biometric representation does not compromise the security of the system, and no information about the original biometric data is leaked. In addition to securing biometric templates, the proposed protocol offers a practical solution for the replay attack on biometric systems. Moreover, we propose a new scheme for generating a password-based pseudo random numbers/permutation to be used as a building block in the proposed approach. The proposed scheme is also designed to provide protection against repudiation. We illustrate the viability and effectiveness of the proposed approach by experimental results based on two biometric modalities: fingerprint and face biometrics.
Nam, Junghyun; Choo, Kim-Kwang Raymond; Han, Sangchul; Kim, Moonseong; Paik, Juryon; Won, Dongho
2015-01-01
A smart-card-based user authentication scheme for wireless sensor networks (hereafter referred to as a SCA-WSN scheme) is designed to ensure that only users who possess both a smart card and the corresponding password are allowed to gain access to sensor data and their transmissions. Despite many research efforts in recent years, it remains a challenging task to design an efficient SCA-WSN scheme that achieves user anonymity. The majority of published SCA-WSN schemes use only lightweight cryptographic techniques (rather than public-key cryptographic techniques) for the sake of efficiency, and have been demonstrated to suffer from the inability to provide user anonymity. Some schemes employ elliptic curve cryptography for better security but require sensors with strict resource constraints to perform computationally expensive scalar-point multiplications; despite the increased computational requirements, these schemes do not provide user anonymity. In this paper, we present a new SCA-WSN scheme that not only achieves user anonymity but also is efficient in terms of the computation loads for sensors. Our scheme employs elliptic curve cryptography but restricts its use only to anonymous user-to-gateway authentication, thereby allowing sensors to perform only lightweight cryptographic operations. Our scheme also enjoys provable security in a formal model extended from the widely accepted Bellare-Pointcheval-Rogaway (2000) model to capture the user anonymity property and various SCA-WSN specific attacks (e.g., stolen smart card attacks, node capture attacks, privileged insider attacks, and stolen verifier attacks).
Nam, Junghyun; Choo, Kim-Kwang Raymond; Han, Sangchul; Kim, Moonseong; Paik, Juryon; Won, Dongho
2015-01-01
A smart-card-based user authentication scheme for wireless sensor networks (hereafter referred to as a SCA-WSN scheme) is designed to ensure that only users who possess both a smart card and the corresponding password are allowed to gain access to sensor data and their transmissions. Despite many research efforts in recent years, it remains a challenging task to design an efficient SCA-WSN scheme that achieves user anonymity. The majority of published SCA-WSN schemes use only lightweight cryptographic techniques (rather than public-key cryptographic techniques) for the sake of efficiency, and have been demonstrated to suffer from the inability to provide user anonymity. Some schemes employ elliptic curve cryptography for better security but require sensors with strict resource constraints to perform computationally expensive scalar-point multiplications; despite the increased computational requirements, these schemes do not provide user anonymity. In this paper, we present a new SCA-WSN scheme that not only achieves user anonymity but also is efficient in terms of the computation loads for sensors. Our scheme employs elliptic curve cryptography but restricts its use only to anonymous user-to-gateway authentication, thereby allowing sensors to perform only lightweight cryptographic operations. Our scheme also enjoys provable security in a formal model extended from the widely accepted Bellare-Pointcheval-Rogaway (2000) model to capture the user anonymity property and various SCA-WSN specific attacks (e.g., stolen smart card attacks, node capture attacks, privileged insider attacks, and stolen verifier attacks). PMID:25849359
Lee, Tian-Fu; Wang, Zeng-Bo
2017-01-01
The security is a critical issue for business purposes. For example, the cloud meeting must consider strong security to maintain the communication privacy. Considering the scenario with cloud meeting, we apply extended chaotic map to present passwordless group authentication key agreement, termed as Passwordless Group Authentication Key Agreement (PL-GAKA). PL-GAKA improves the computation efficiency for the simple group password-based authenticated key agreement (SGPAKE) proposed by Lee et al. in terms of computing the session key. Since the extended chaotic map has equivalent security level to the Diffie–Hellman key exchange scheme applied by SGPAKE, the security of PL-GAKA is not sacrificed when improving the computation efficiency. Moreover, PL-GAKA is a passwordless scheme, so the password maintenance is not necessary. Short-term authentication is considered, hence the communication security is stronger than other protocols by dynamically generating session key in each cloud meeting. In our analysis, we first prove that each meeting member can get the correct information during the meeting. We analyze common security issues for the proposed PL-GAKA in terms of session key security, mutual authentication, perfect forward security, and data integrity. Moreover, we also demonstrate that communicating in PL-GAKA is secure when suffering replay attacks, impersonation attacks, privileged insider attacks, and stolen-verifier attacks. Eventually, an overall comparison is given to show the performance between PL-GAKA, SGPAKE and related solutions. PMID:29207509
An improved authenticated key agreement protocol for telecare medicine information system.
Liu, Wenhao; Xie, Qi; Wang, Shengbao; Hu, Bin
2016-01-01
In telecare medicine information systems (TMIS), identity authentication of patients plays an important role and has been widely studied in the research field. Generally, it is realized by an authenticated key agreement protocol, and many such protocols were proposed in the literature. Recently, Zhang et al. pointed out that Islam et al.'s protocol suffers from the following security weaknesses: (1) Any legal but malicious patient can reveal other user's identity; (2) An attacker can launch off-line password guessing attack and the impersonation attack if the patient's identity is compromised. Zhang et al. also proposed an improved authenticated key agreement scheme with privacy protection for TMIS. However, in this paper, we point out that Zhang et al.'s scheme cannot resist off-line password guessing attack, and it fails to provide the revocation of lost/stolen smartcard. In order to overcome these weaknesses, we propose an improved protocol, the security and authentication of which can be proven using applied pi calculus based formal verification tool ProVerif.
Rajagopalan, S. P.
2017-01-01
Certificateless-based signcryption overcomes inherent shortcomings in traditional Public Key Infrastructure (PKI) and Key Escrow problem. It imparts efficient methods to design PKIs with public verifiability and cipher text authenticity with minimum dependency. As a classic primitive in public key cryptography, signcryption performs validity of cipher text without decryption by combining authentication, confidentiality, public verifiability and cipher text authenticity much more efficiently than the traditional approach. In this paper, we first define a security model for certificateless-based signcryption called, Complex Conjugate Differential Integrated Factor (CC-DIF) scheme by introducing complex conjugates through introduction of the security parameter and improving secured message distribution rate. However, both partial private key and secret value changes with respect to time. To overcome this weakness, a new certificateless-based signcryption scheme is proposed by setting the private key through Differential (Diff) Equation using an Integration Factor (DiffEIF), minimizing computational cost and communication overhead. The scheme is therefore said to be proven secure (i.e. improving the secured message distributing rate) against certificateless access control and signcryption-based scheme. In addition, compared with the three other existing schemes, the CC-DIF scheme has the least computational cost and communication overhead for secured message communication in mobile network. PMID:29040290
Alagarsamy, Sumithra; Rajagopalan, S P
2017-01-01
Certificateless-based signcryption overcomes inherent shortcomings in traditional Public Key Infrastructure (PKI) and Key Escrow problem. It imparts efficient methods to design PKIs with public verifiability and cipher text authenticity with minimum dependency. As a classic primitive in public key cryptography, signcryption performs validity of cipher text without decryption by combining authentication, confidentiality, public verifiability and cipher text authenticity much more efficiently than the traditional approach. In this paper, we first define a security model for certificateless-based signcryption called, Complex Conjugate Differential Integrated Factor (CC-DIF) scheme by introducing complex conjugates through introduction of the security parameter and improving secured message distribution rate. However, both partial private key and secret value changes with respect to time. To overcome this weakness, a new certificateless-based signcryption scheme is proposed by setting the private key through Differential (Diff) Equation using an Integration Factor (DiffEIF), minimizing computational cost and communication overhead. The scheme is therefore said to be proven secure (i.e. improving the secured message distributing rate) against certificateless access control and signcryption-based scheme. In addition, compared with the three other existing schemes, the CC-DIF scheme has the least computational cost and communication overhead for secured message communication in mobile network.
Authentication Based on Non-Interactive Zero-Knowledge Proofs for the Internet of Things.
Martín-Fernández, Francisco; Caballero-Gil, Pino; Caballero-Gil, Cándido
2016-01-07
This paper describes the design and analysis of a new scheme for the authenticated exchange of confidential information in insecure environments within the Internet of Things, which allows a receiver of a message to authenticate the sender and compute a secret key shared with it. The proposal is based on the concept of a non-interactive zero-knowledge proof, so that in a single communication, relevant data may be inferred to verify the legitimacy of the sender. Besides, the new scheme uses the idea under the Diffie-Hellman protocol for the establishment of a shared secret key. The proposal has been fully developed for platforms built on the Android Open Source Project, so it can be used in any device or sensor with this operating system. This work provides a performance study of the implementation and a comparison between its promising results and others obtained with similar schemes.
Authentication Based on Non-Interactive Zero-Knowledge Proofs for the Internet of Things
Martín-Fernández, Francisco; Caballero-Gil, Pino; Caballero-Gil, Cándido
2016-01-01
This paper describes the design and analysis of a new scheme for the authenticated exchange of confidential information in insecure environments within the Internet of Things, which allows a receiver of a message to authenticate the sender and compute a secret key shared with it. The proposal is based on the concept of a non-interactive zero-knowledge proof, so that in a single communication, relevant data may be inferred to verify the legitimacy of the sender. Besides, the new scheme uses the idea under the Diffie–Hellman protocol for the establishment of a shared secret key. The proposal has been fully developed for platforms built on the Android Open Source Project, so it can be used in any device or sensor with this operating system. This work provides a performance study of the implementation and a comparison between its promising results and others obtained with similar schemes. PMID:26751454
A RONI Based Visible Watermarking Approach for Medical Image Authentication.
Thanki, Rohit; Borra, Surekha; Dwivedi, Vedvyas; Borisagar, Komal
2017-08-09
Nowadays medical data in terms of image files are often exchanged between different hospitals for use in telemedicine and diagnosis. Visible watermarking being extensively used for Intellectual Property identification of such medical images, leads to serious issues if failed to identify proper regions for watermark insertion. In this paper, the Region of Non-Interest (RONI) based visible watermarking for medical image authentication is proposed. In this technique, to RONI of the cover medical image is first identified using Human Visual System (HVS) model. Later, watermark logo is visibly inserted into RONI of the cover medical image to get watermarked medical image. Finally, the watermarked medical image is compared with the original medical image for measurement of imperceptibility and authenticity of proposed scheme. The experimental results showed that this proposed scheme reduces the computational complexity and improves the PSNR when compared to many existing schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davida, G.I.; Frankel, Y.; Matt, B.J.
In developing secure applications and systems, the designers often must incorporate secure user identification in the design specification. In this paper, the authors study secure off line authenticated user identification schemes based on a biometric system that can measure a user`s biometric accurately (up to some Hamming distance). The schemes presented here enhance identification and authorization in secure applications by binding a biometric template with authorization information on a token such as a magnetic strip. Also developed here are schemes specifically designed to minimize the compromise of a user`s private biometrics data, encapsulated in the authorization information, without requiring securemore » hardware tokens. In this paper the authors furthermore study the feasibility of biometrics performing as an enabling technology for secure system and application design. The authors investigate a new technology which allows a user`s biometrics to facilitate cryptographic mechanisms.« less
Das, Ashok Kumar
2015-03-01
An integrated EPR (Electronic Patient Record) information system of all the patients provides the medical institutions and the academia with most of the patients' information in details for them to make corrective decisions and clinical decisions in order to maintain and analyze patients' health. In such system, the illegal access must be restricted and the information from theft during transmission over the insecure Internet must be prevented. Lee et al. proposed an efficient password-based remote user authentication scheme using smart card for the integrated EPR information system. Their scheme is very efficient due to usage of one-way hash function and bitwise exclusive-or (XOR) operations. However, in this paper, we show that though their scheme is very efficient, their scheme has three security weaknesses such as (1) it has design flaws in password change phase, (2) it fails to protect privileged insider attack and (3) it lacks the formal security verification. We also find that another recently proposed Wen's scheme has the same security drawbacks as in Lee at al.'s scheme. In order to remedy these security weaknesses found in Lee et al.'s scheme and Wen's scheme, we propose a secure and efficient password-based remote user authentication scheme using smart cards for the integrated EPR information system. We show that our scheme is also efficient as compared to Lee et al.'s scheme and Wen's scheme as our scheme only uses one-way hash function and bitwise exclusive-or (XOR) operations. Through the security analysis, we show that our scheme is secure against possible known attacks. Furthermore, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool and show that our scheme is secure against passive and active attacks.
A privacy authentication scheme based on cloud for medical environment.
Chen, Chin-Ling; Yang, Tsai-Tung; Chiang, Mao-Lun; Shih, Tzay-Farn
2014-11-01
With the rapid development of the information technology, the health care technologies already became matured. Such as electronic medical records that can be easily stored. However, how to get medical resources more convenient is currently concerning issue. In spite of many literatures discussed about medical systems, these literatures should face many security challenges. The most important issue is patients' privacy. Therefore, we propose a privacy authentication scheme based on cloud environment. In our scheme, we use mobile device's characteristics, allowing peoples to use medical resources on the cloud environment to find medical advice conveniently. The digital signature is used to ensure the security of the medical information that is certified by the medical department in our proposed scheme.
On securing wireless sensor network--novel authentication scheme against DOS attacks.
Raja, K Nirmal; Beno, M Marsaline
2014-10-01
Wireless sensor networks are generally deployed for collecting data from various environments. Several applications specific sensor network cryptography algorithms have been proposed in research. However WSN's has many constrictions, including low computation capability, less memory, limited energy resources, vulnerability to physical capture, which enforce unique security challenges needs to make a lot of improvements. This paper presents a novel security mechanism and algorithm for wireless sensor network security and also an application of this algorithm. The proposed scheme is given to strong authentication against Denial of Service Attacks (DOS). The scheme is simulated using network simulator2 (NS2). Then this scheme is analyzed based on the network packet delivery ratio and found that throughput has improved.
An Authentication Protocol for Future Sensor Networks.
Bilal, Muhammad; Kang, Shin-Gak
2017-04-28
Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections. Moreover, to establish multiple data sessions, it is essential that a protocol participant have the capability of running multiple instances of the protocol run, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. Hence, ensuring a lightweight and efficient authentication protocol has become more crucial. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis (including formal analysis using the BAN-logic) and simulated the SMSN and previously proposed schemes in an automated protocol verifier tool. Finally, we compared the computational complexity and communication cost against well-known authentication protocols.
An Authentication Protocol for Future Sensor Networks
Bilal, Muhammad; Kang, Shin-Gak
2017-01-01
Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections. Moreover, to establish multiple data sessions, it is essential that a protocol participant have the capability of running multiple instances of the protocol run, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. Hence, ensuring a lightweight and efficient authentication protocol has become more crucial. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis (including formal analysis using the BAN-logic) and simulated the SMSN and previously proposed schemes in an automated protocol verifier tool. Finally, we compared the computational complexity and communication cost against well-known authentication protocols. PMID:28452937
Enhancing LoRaWAN Security through a Lightweight and Authenticated Key Management Approach.
Sanchez-Iborra, Ramon; Sánchez-Gómez, Jesús; Pérez, Salvador; Fernández, Pedro J; Santa, José; Hernández-Ramos, José L; Skarmeta, Antonio F
2018-06-05
Luckily, new communication technologies and protocols are nowadays designed considering security issues. A clear example of this can be found in the Internet of Things (IoT) field, a quite recent area where communication technologies such as ZigBee or IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) already include security features to guarantee authentication, confidentiality and integrity. More recent technologies are Low-Power Wide-Area Networks (LP-WAN), which also consider security, but present initial approaches that can be further improved. An example of this can be found in Long Range (LoRa) and its layer-two supporter LoRa Wide Area Network (LoRaWAN), which include a security scheme based on pre-shared cryptographic material lacking flexibility when a key update is necessary. Because of this, in this work, we evaluate the security vulnerabilities of LoRaWAN in the area of key management and propose different alternative schemes. Concretely, the application of an approach based on the recently specified Ephemeral Diffie⁻Hellman Over COSE (EDHOC) is found as a convenient solution, given its flexibility in the update of session keys, its low computational cost and the limited message exchanges needed. A comparative conceptual analysis considering the overhead of different security schemes for LoRaWAN is carried out in order to evaluate their benefits in the challenging area of LP-WAN.
Lin, Han-Yu
2013-04-01
Telecare medical information systems (TMISs) are increasingly popular technologies for healthcare applications. Using TMISs, physicians and caregivers can monitor the vital signs of patients remotely. Since the database of TMISs stores patients' electronic medical records (EMRs), only authorized users should be granted the access to this information for the privacy concern. To keep the user anonymity, recently, Chen et al. proposed a dynamic ID-based authentication scheme for telecare medical information system. They claimed that their scheme is more secure and robust for use in a TMIS. However, we will demonstrate that their scheme fails to satisfy the user anonymity due to the dictionary attacks. It is also possible to derive a user password in case of smart card loss attacks. Additionally, an improved scheme eliminating these weaknesses is also presented.
Medical Image Authentication Using DPT Watermarking: A Preliminary Attempt
NASA Astrophysics Data System (ADS)
Wong, M. L. Dennis; Goh, Antionette W.-T.; Chua, Hong Siang
Secure authentication of digital medical image content provides great value to the e-Health community and medical insurance industries. Fragile Watermarking has been proposed to provide the mechanism to authenticate digital medical image securely. Transform Domain based Watermarking are typically slower than spatial domain watermarking owing to the overhead in calculation of coefficients. In this paper, we propose a new Discrete Pascal Transform based watermarking technique. Preliminary experiment result shows authentication capability. Possible improvements on the proposed scheme are also presented before conclusions.
Ranak, M S A Noman; Azad, Saiful; Nor, Nur Nadiah Hanim Binti Mohd; Zamli, Kamal Z
2017-01-01
Due to recent advancements and appealing applications, the purchase rate of smart devices is increasing at a higher rate. Parallely, the security related threats and attacks are also increasing at a greater ratio on these devices. As a result, a considerable number of attacks have been noted in the recent past. To resist these attacks, many password-based authentication schemes are proposed. However, most of these schemes are not screen size independent; whereas, smart devices come in different sizes. Specifically, they are not suitable for miniature smart devices due to the small screen size and/or lack of full sized keyboards. In this paper, we propose a new screen size independent password-based authentication scheme, which also offers an affordable defense against shoulder surfing, brute force, and smudge attacks. In the proposed scheme, the Press Touch (PT)-a.k.a., Force Touch in Apple's MacBook, Apple Watch, ZTE's Axon 7 phone; 3D Touch in iPhone 6 and 7; and so on-is transformed into a new type of code, named Press Touch Code (PTC). We design and implement three variants of it, namely mono-PTC, multi-PTC, and multi-PTC with Grid, on the Android Operating System. An in-lab experiment and a comprehensive survey have been conducted on 105 participants to demonstrate the effectiveness of the proposed scheme.
Ranak, M. S. A. Noman; Nor, Nur Nadiah Hanim Binti Mohd; Zamli, Kamal Z.
2017-01-01
Due to recent advancements and appealing applications, the purchase rate of smart devices is increasing at a higher rate. Parallely, the security related threats and attacks are also increasing at a greater ratio on these devices. As a result, a considerable number of attacks have been noted in the recent past. To resist these attacks, many password-based authentication schemes are proposed. However, most of these schemes are not screen size independent; whereas, smart devices come in different sizes. Specifically, they are not suitable for miniature smart devices due to the small screen size and/or lack of full sized keyboards. In this paper, we propose a new screen size independent password-based authentication scheme, which also offers an affordable defense against shoulder surfing, brute force, and smudge attacks. In the proposed scheme, the Press Touch (PT)—a.k.a., Force Touch in Apple’s MacBook, Apple Watch, ZTE’s Axon 7 phone; 3D Touch in iPhone 6 and 7; and so on—is transformed into a new type of code, named Press Touch Code (PTC). We design and implement three variants of it, namely mono-PTC, multi-PTC, and multi-PTC with Grid, on the Android Operating System. An in-lab experiment and a comprehensive survey have been conducted on 105 participants to demonstrate the effectiveness of the proposed scheme. PMID:29084262
Optical image encryption system using nonlinear approach based on biometric authentication
NASA Astrophysics Data System (ADS)
Verma, Gaurav; Sinha, Aloka
2017-07-01
A nonlinear image encryption scheme using phase-truncated Fourier transform (PTFT) and natural logarithms is proposed in this paper. With the help of the PTFT, the input image is truncated into phase and amplitude parts at the Fourier plane. The phase-only information is kept as the secret key for the decryption, and the amplitude distribution is modulated by adding an undercover amplitude random mask in the encryption process. Furthermore, the encrypted data is kept hidden inside the face biometric-based phase mask key using the base changing rule of logarithms for secure transmission. This phase mask is generated through principal component analysis. Numerical experiments show the feasibility and the validity of the proposed nonlinear scheme. The performance of the proposed scheme has been studied against the brute force attacks and the amplitude-phase retrieval attack. Simulation results are presented to illustrate the enhanced system performance with desired advantages in comparison to the linear cryptosystem.
Xu, Xin; Zhu, Ping; Wen, Qiaoyan; Jin, Zhengping; Zhang, Hua; He, Lian
2014-01-01
In the field of the Telecare Medicine Information System, recent researches have focused on consummating more convenient and secure healthcare delivery services for patients. In order to protect the sensitive information, various attempts such as access control have been proposed to safeguard patients' privacy in this system. However, these schemes suffered from some certain security defects and had costly consumption, which were not suitable for the telecare medicine information system. In this paper, based on the elliptic curve cryptography, we propose a secure and efficient two-factor mutual authentication and key agreement scheme to reduce the computational cost. Such a scheme enables to provide the patient anonymity by employing the dynamic identity. Compared with other related protocols, the security analysis and performance evaluation show that our scheme overcomes some well-known attacks and has a better performance in the telecare medicine information system.
Xiong, Ling; Peng, Daiyuan; Peng, Tu; Liang, Hongbin; Liu, Zhicai
2017-11-21
Due to their frequent use in unattended and hostile deployment environments, the security in wireless sensor networks (WSNs) has attracted much interest in the past two decades. However, it remains a challenge to design a lightweight authentication protocol for WSNs because the designers are confronted with a series of desirable security requirements, e.g., user anonymity, perfect forward secrecy, resistance to de-synchronization attack. Recently, the authors presented two authentication schemes that attempt to provide user anonymity and to resist various known attacks. Unfortunately, in this work we shall show that user anonymity of the two schemes is achieved at the price of an impractical search operation-the gateway node may search for every possible value. Besides this defect, they are also prone to smart card loss attacks and have no provision for perfect forward secrecy. As our main contribution, a lightweight anonymous authentication scheme with perfect forward secrecy is designed, and what we believe the most interesting feature is that user anonymity, perfect forward secrecy, and resistance to de-synchronization attack can be achieved at the same time. As far as we know, it is extremely difficult to meet these security features simultaneously only using the lightweight operations, such as symmetric encryption/decryption and hash functions.
Peng, Daiyuan; Peng, Tu; Liang, Hongbin; Liu, Zhicai
2017-01-01
Due to their frequent use in unattended and hostile deployment environments, the security in wireless sensor networks (WSNs) has attracted much interest in the past two decades. However, it remains a challenge to design a lightweight authentication protocol for WSNs because the designers are confronted with a series of desirable security requirements, e.g., user anonymity, perfect forward secrecy, resistance to de-synchronization attack. Recently, the authors presented two authentication schemes that attempt to provide user anonymity and to resist various known attacks. Unfortunately, in this work we shall show that user anonymity of the two schemes is achieved at the price of an impractical search operation—the gateway node may search for every possible value. Besides this defect, they are also prone to smart card loss attacks and have no provision for perfect forward secrecy. As our main contribution, a lightweight anonymous authentication scheme with perfect forward secrecy is designed, and what we believe the most interesting feature is that user anonymity, perfect forward secrecy, and resistance to de-synchronization attack can be achieved at the same time. As far as we know, it is extremely difficult to meet these security features simultaneously only using the lightweight operations, such as symmetric encryption/decryption and hash functions. PMID:29160861
Khalil, Mohammed S.; Khan, Muhammad Khurram; Alginahi, Yasser M.
2014-01-01
This paper presents a novel watermarking method to facilitate the authentication and detection of the image forgery on the Quran images. Two layers of embedding scheme on wavelet and spatial domain are introduced to enhance the sensitivity of fragile watermarking and defend the attacks. Discrete wavelet transforms are applied to decompose the host image into wavelet prior to embedding the watermark in the wavelet domain. The watermarked wavelet coefficient is inverted back to spatial domain then the least significant bits is utilized to hide another watermark. A chaotic map is utilized to blur the watermark to make it secure against the local attack. The proposed method allows high watermark payloads, while preserving good image quality. Experiment results confirm that the proposed methods are fragile and have superior tampering detection even though the tampered area is very small. PMID:25028681
Khalil, Mohammed S; Kurniawan, Fajri; Khan, Muhammad Khurram; Alginahi, Yasser M
2014-01-01
This paper presents a novel watermarking method to facilitate the authentication and detection of the image forgery on the Quran images. Two layers of embedding scheme on wavelet and spatial domain are introduced to enhance the sensitivity of fragile watermarking and defend the attacks. Discrete wavelet transforms are applied to decompose the host image into wavelet prior to embedding the watermark in the wavelet domain. The watermarked wavelet coefficient is inverted back to spatial domain then the least significant bits is utilized to hide another watermark. A chaotic map is utilized to blur the watermark to make it secure against the local attack. The proposed method allows high watermark payloads, while preserving good image quality. Experiment results confirm that the proposed methods are fragile and have superior tampering detection even though the tampered area is very small.
NASA Astrophysics Data System (ADS)
Karabat, Cagatay; Kiraz, Mehmet Sabir; Erdogan, Hakan; Savas, Erkay
2015-12-01
In this paper, we introduce a new biometric verification and template protection system which we call THRIVE. The system includes novel enrollment and authentication protocols based on threshold homomorphic encryption where a private key is shared between a user and a verifier. In the THRIVE system, only encrypted binary biometric templates are stored in a database and verification is performed via homomorphically randomized templates, thus, original templates are never revealed during authentication. Due to the underlying threshold homomorphic encryption scheme, a malicious database owner cannot perform full decryption on encrypted templates of the users in the database. In addition, security of the THRIVE system is enhanced using a two-factor authentication scheme involving user's private key and biometric data. Using simulation-based techniques, the proposed system is proven secure in the malicious model. The proposed system is suitable for applications where the user does not want to reveal her biometrics to the verifier in plain form, but needs to prove her identity by using biometrics. The system can be used with any biometric modality where a feature extraction method yields a fixed size binary template and a query template is verified when its Hamming distance to the database template is less than a threshold. The overall connection time for the proposed THRIVE system is estimated to be 336 ms on average for 256-bit biometric templates on a desktop PC running with quad core 3.2 GHz CPUs at 10 Mbit/s up/down link connection speed. Consequently, the proposed system can be efficiently used in real-life applications.
An Identity-Based Anti-Quantum Privacy-Preserving Blind Authentication in Wireless Sensor Networks.
Zhu, Hongfei; Tan, Yu-An; Zhu, Liehuang; Wang, Xianmin; Zhang, Quanxin; Li, Yuanzhang
2018-05-22
With the development of wireless sensor networks, IoT devices are crucial for the Smart City; these devices change people's lives such as e-payment and e-voting systems. However, in these two systems, the state-of-art authentication protocols based on traditional number theory cannot defeat a quantum computer attack. In order to protect user privacy and guarantee trustworthy of big data, we propose a new identity-based blind signature scheme based on number theorem research unit lattice, this scheme mainly uses a rejection sampling theorem instead of constructing a trapdoor. Meanwhile, this scheme does not depend on complex public key infrastructure and can resist quantum computer attack. Then we design an e-payment protocol using the proposed scheme. Furthermore, we prove our scheme is secure in the random oracle, and satisfies confidentiality, integrity, and non-repudiation. Finally, we demonstrate that the proposed scheme outperforms the other traditional existing identity-based blind signature schemes in signing speed and verification speed, outperforms the other lattice-based blind signature in signing speed, verification speed, and signing secret key size.
An Identity-Based Anti-Quantum Privacy-Preserving Blind Authentication in Wireless Sensor Networks
Zhu, Hongfei; Tan, Yu-an; Zhu, Liehuang; Wang, Xianmin; Zhang, Quanxin; Li, Yuanzhang
2018-01-01
With the development of wireless sensor networks, IoT devices are crucial for the Smart City; these devices change people’s lives such as e-payment and e-voting systems. However, in these two systems, the state-of-art authentication protocols based on traditional number theory cannot defeat a quantum computer attack. In order to protect user privacy and guarantee trustworthy of big data, we propose a new identity-based blind signature scheme based on number theorem research unit lattice, this scheme mainly uses a rejection sampling theorem instead of constructing a trapdoor. Meanwhile, this scheme does not depend on complex public key infrastructure and can resist quantum computer attack. Then we design an e-payment protocol using the proposed scheme. Furthermore, we prove our scheme is secure in the random oracle, and satisfies confidentiality, integrity, and non-repudiation. Finally, we demonstrate that the proposed scheme outperforms the other traditional existing identity-based blind signature schemes in signing speed and verification speed, outperforms the other lattice-based blind signature in signing speed, verification speed, and signing secret key size. PMID:29789475
Huang, Qinlong; Yang, Yixian; Shi, Yuxiang
2018-02-24
With the growing number of vehicles and popularity of various services in vehicular cloud computing (VCC), message exchanging among vehicles under traffic conditions and in emergency situations is one of the most pressing demands, and has attracted significant attention. However, it is an important challenge to authenticate the legitimate sources of broadcast messages and achieve fine-grained message access control. In this work, we propose SmartVeh, a secure and efficient message access control and authentication scheme in VCC. A hierarchical, attribute-based encryption technique is utilized to achieve fine-grained and flexible message sharing, which ensures that vehicles whose persistent or dynamic attributes satisfy the access policies can access the broadcast message with equipped on-board units (OBUs). Message authentication is enforced by integrating an attribute-based signature, which achieves message authentication and maintains the anonymity of the vehicles. In order to reduce the computations of the OBUs in the vehicles, we outsource the heavy computations of encryption, decryption and signing to a cloud server and road-side units. The theoretical analysis and simulation results reveal that our secure and efficient scheme is suitable for VCC.
Yang, Yixian; Shi, Yuxiang
2018-01-01
With the growing number of vehicles and popularity of various services in vehicular cloud computing (VCC), message exchanging among vehicles under traffic conditions and in emergency situations is one of the most pressing demands, and has attracted significant attention. However, it is an important challenge to authenticate the legitimate sources of broadcast messages and achieve fine-grained message access control. In this work, we propose SmartVeh, a secure and efficient message access control and authentication scheme in VCC. A hierarchical, attribute-based encryption technique is utilized to achieve fine-grained and flexible message sharing, which ensures that vehicles whose persistent or dynamic attributes satisfy the access policies can access the broadcast message with equipped on-board units (OBUs). Message authentication is enforced by integrating an attribute-based signature, which achieves message authentication and maintains the anonymity of the vehicles. In order to reduce the computations of the OBUs in the vehicles, we outsource the heavy computations of encryption, decryption and signing to a cloud server and road-side units. The theoretical analysis and simulation results reveal that our secure and efficient scheme is suitable for VCC. PMID:29495269
Das, Ashok Kumar; Odelu, Vanga; Goswami, Adrijit
2015-09-01
The telecare medicine information system (TMIS) helps the patients to gain the health monitoring facility at home and access medical services over the Internet of mobile networks. Recently, Amin and Biswas presented a smart card based user authentication and key agreement security protocol usable for TMIS system using the cryptographic one-way hash function and biohashing function, and claimed that their scheme is secure against all possible attacks. Though their scheme is efficient due to usage of one-way hash function, we show that their scheme has several security pitfalls and design flaws, such as (1) it fails to protect privileged-insider attack, (2) it fails to protect strong replay attack, (3) it fails to protect strong man-in-the-middle attack, (4) it has design flaw in user registration phase, (5) it has design flaw in login phase, (6) it has design flaw in password change phase, (7) it lacks of supporting biometric update phase, and (8) it has flaws in formal security analysis. In order to withstand these security pitfalls and design flaws, we aim to propose a secure and robust user authenticated key agreement scheme for the hierarchical multi-server environment suitable in TMIS using the cryptographic one-way hash function and fuzzy extractor. Through the rigorous security analysis including the formal security analysis using the widely-accepted Burrows-Abadi-Needham (BAN) logic, the formal security analysis under the random oracle model and the informal security analysis, we show that our scheme is secure against possible known attacks. Furthermore, we simulate our scheme using the most-widely accepted and used Automated Validation of Internet Security Protocols and Applications (AVISPA) tool. The simulation results show that our scheme is also secure. Our scheme is more efficient in computation and communication as compared to Amin-Biswas's scheme and other related schemes. In addition, our scheme supports extra functionality features as compared to other related schemes. As a result, our scheme is very appropriate for practical applications in TMIS.
NASA Astrophysics Data System (ADS)
Liu, Xiyao; Lou, Jieting; Wang, Yifan; Du, Jingyu; Zou, Beiji; Chen, Yan
2018-03-01
Authentication and copyright identification are two critical security issues for medical images. Although zerowatermarking schemes can provide durable, reliable and distortion-free protection for medical images, the existing zerowatermarking schemes for medical images still face two problems. On one hand, they rarely considered the distinguishability for medical images, which is critical because different medical images are sometimes similar to each other. On the other hand, their robustness against geometric attacks, such as cropping, rotation and flipping, is insufficient. In this study, a novel discriminative and robust zero-watermarking (DRZW) is proposed to address these two problems. In DRZW, content-based features of medical images are first extracted based on completed local binary pattern (CLBP) operator to ensure the distinguishability and robustness, especially against geometric attacks. Then, master shares and ownership shares are generated from the content-based features and watermark according to (2,2) visual cryptography. Finally, the ownership shares are stored for authentication and copyright identification. For queried medical images, their content-based features are extracted and master shares are generated. Their watermarks for authentication and copyright identification are recovered by stacking the generated master shares and stored ownership shares. 200 different medical images of 5 types are collected as the testing data and our experimental results demonstrate that DRZW ensures both the accuracy and reliability of authentication and copyright identification. When fixing the false positive rate to 1.00%, the average value of false negative rates by using DRZW is only 1.75% under 20 common attacks with different parameters.
NASA Astrophysics Data System (ADS)
Kuseler, Torben; Lami, Ihsan A.
2012-06-01
This paper proposes a new technique to obfuscate an authentication-challenge program (named LocProg) using randomly generated data together with a client's current location in real-time. LocProg can be used to enable any handsetapplication on mobile-devices (e.g. mCommerce on Smartphones) that requires authentication with a remote authenticator (e.g. bank). The motivation of this novel technique is to a) enhance the security against replay attacks, which is currently based on using real-time nonce(s), and b) add a new security factor, which is location verified by two independent sources, to challenge / response methods for authentication. To assure a secure-live transaction, thus reducing the possibility of replay and other remote attacks, the authors have devised a novel technique to obtain the client's location from two independent sources of GPS on the client's side and the cellular network on authenticator's side. The algorithm of LocProg is based on obfuscating "random elements plus a client's data" with a location-based key, generated on the bank side. LocProg is then sent to the client and is designed so it will automatically integrate into the target application on the client's handset. The client can then de-obfuscate LocProg if s/he is within a certain range around the location calculated by the bank and if the correct personal data is supplied. LocProg also has features to protect against trial/error attacks. Analysis of LocAuth's security (trust, threat and system models) and trials based on a prototype implementation (on Android platform) prove the viability and novelty of LocAuth.
Nirmal Raja, K; Maraline Beno, M
2017-07-01
In the wireless sensor network(WSN) security is a major issue. There are several network security schemes proposed in research. In the network, malicious nodes obstruct the performance of the network. The network can be vulnerable by Sybil attack. When a node illicitly assertions multiple identities or claims fake IDs, the WSN grieves from an attack named Sybil attack. This attack threatens wireless sensor network in data aggregation, synchronizing system, routing, fair resource allocation and misbehavior detection. Henceforth, the research is carried out to prevent the Sybil attack and increase the performance of the network. This paper presents the novel security mechanism and Fujisaki Okamoto algorithm and also application of the work. The Fujisaki-Okamoto (FO) algorithm is ID based cryptographic scheme and gives strong authentication against Sybil attack. By using Network simulator2 (NS2) the scheme is simulated. In this proposed scheme broadcasting key, time taken for different key sizes, energy consumption, Packet delivery ratio, Throughput were analyzed.
Guo, Rui; Wen, Qiaoyan; Jin, Zhengping; Zhang, Hua
2013-01-01
Sensor networks have opened up new opportunities in healthcare systems, which can transmit patient's condition to health professional's hand-held devices in time. The patient's physiological signals are very sensitive and the networks are extremely vulnerable to many attacks. It must be ensured that patient's privacy is not exposed to unauthorized entities. Therefore, the control of access to healthcare systems has become a crucial challenge. An efficient and secure authentication protocol will thus be needed in wireless medical sensor networks. In this paper, we propose a certificateless authentication scheme without bilinear pairing while providing patient anonymity. Compared with other related protocols, the proposed scheme needs less computation and communication cost and preserves stronger security. Our performance evaluations show that this protocol is more practical for healthcare system in wireless medical sensor networks.
Guo, Rui; Wen, Qiaoyan; Jin, Zhengping; Zhang, Hua
2013-01-01
Sensor networks have opened up new opportunities in healthcare systems, which can transmit patient's condition to health professional's hand-held devices in time. The patient's physiological signals are very sensitive and the networks are extremely vulnerable to many attacks. It must be ensured that patient's privacy is not exposed to unauthorized entities. Therefore, the control of access to healthcare systems has become a crucial challenge. An efficient and secure authentication protocol will thus be needed in wireless medical sensor networks. In this paper, we propose a certificateless authentication scheme without bilinear pairing while providing patient anonymity. Compared with other related protocols, the proposed scheme needs less computation and communication cost and preserves stronger security. Our performance evaluations show that this protocol is more practical for healthcare system in wireless medical sensor networks. PMID:23710147
Localized lossless authentication watermark (LAW)
NASA Astrophysics Data System (ADS)
Celik, Mehmet U.; Sharma, Gaurav; Tekalp, A. Murat; Saber, Eli S.
2003-06-01
A novel framework is proposed for lossless authentication watermarking of images which allows authentication and recovery of original images without any distortions. This overcomes a significant limitation of traditional authentication watermarks that irreversibly alter image data in the process of watermarking and authenticate the watermarked image rather than the original. In particular, authenticity is verified before full reconstruction of the original image, whose integrity is inferred from the reversibility of the watermarking procedure. This reduces computational requirements in situations when either the verification step fails or the zero-distortion reconstruction is not required. A particular instantiation of the framework is implemented using a hierarchical authentication scheme and the lossless generalized-LSB data embedding mechanism. The resulting algorithm, called localized lossless authentication watermark (LAW), can localize tampered regions of the image; has a low embedding distortion, which can be removed entirely if necessary; and supports public/private key authentication and recovery options. The effectiveness of the framework and the instantiation is demonstrated through examples.
Unconditionally Secure Credit/Debit Card Chip Scheme and Physical Unclonable Function
NASA Astrophysics Data System (ADS)
Kish, Laszlo B.; Entesari, Kamran; Granqvist, Claes-Göran; Kwan, Chiman
The statistical-physics-based Kirchhoff-law-Johnson-noise (KLJN) key exchange offers a new and simple unclonable system for credit/debit card chip authentication and payment. The key exchange, the authentication and the communication are unconditionally secure so that neither mathematics- nor statistics-based attacks are able to crack the scheme. The ohmic connection and the short wiring lengths between the chips in the card and the terminal constitute an ideal setting for the KLJN protocol, and even its simplest versions offer unprecedented security and privacy for credit/debit card chips and applications of physical unclonable functions (PUFs).
Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae
2014-01-01
Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications. PMID:24521942
Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae
2014-02-11
Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications.
A Scenario-Based Protocol Checker for Public-Key Authentication Scheme
NASA Astrophysics Data System (ADS)
Saito, Takamichi
Security protocol provides communication security for the internet. One of the important features of it is authentication with key exchange. Its correctness is a requirement of the whole of the communication security. In this paper, we introduce three attack models realized as their attack scenarios, and provide an authentication-protocol checker for applying three attack-scenarios based on the models. We also utilize it to check two popular security protocols: Secure SHell (SSH) and Secure Socket Layer/Transport Layer Security (SSL/TLS).
Patients’ Data Management System Protected by Identity-Based Authentication and Key Exchange
Rivero-García, Alexandra; Santos-González, Iván; Hernández-Goya, Candelaria; Caballero-Gil, Pino; Yung, Moti
2017-01-01
A secure and distributed framework for the management of patients’ information in emergency and hospitalization services is proposed here in order to seek improvements in efficiency and security in this important area. In particular, confidentiality protection, mutual authentication, and automatic identification of patients are provided. The proposed system is based on two types of devices: Near Field Communication (NFC) wristbands assigned to patients, and mobile devices assigned to medical staff. Two other main elements of the system are an intermediate server to manage the involved data, and a second server with a private key generator to define the information required to protect communications. An identity-based authentication and key exchange scheme is essential to provide confidential communication and mutual authentication between the medical staff and the private key generator through an intermediate server. The identification of patients is carried out through a keyed-hash message authentication code. Thanks to the combination of the aforementioned tools, a secure alternative mobile health (mHealth) scheme for managing patients’ data is defined for emergency and hospitalization services. Different parts of the proposed system have been implemented, including mobile application, intermediate server, private key generator and communication channels. Apart from that, several simulations have been performed, and, compared with the current system, significant improvements in efficiency have been observed. PMID:28362328
Patients' Data Management System Protected by Identity-Based Authentication and Key Exchange.
Rivero-García, Alexandra; Santos-González, Iván; Hernández-Goya, Candelaria; Caballero-Gil, Pino; Yung, Moti
2017-03-31
A secure and distributed framework for the management of patients' information in emergency and hospitalization services is proposed here in order to seek improvements in efficiency and security in this important area. In particular, confidentiality protection, mutual authentication, and automatic identification of patients are provided. The proposed system is based on two types of devices: Near Field Communication (NFC) wristbands assigned to patients, and mobile devices assigned to medical staff. Two other main elements of the system are an intermediate server to manage the involved data, and a second server with a private key generator to define the information required to protect communications. An identity-based authentication and key exchange scheme is essential to provide confidential communication and mutual authentication between the medical staff and the private key generator through an intermediate server. The identification of patients is carried out through a keyed-hash message authentication code. Thanks to the combination of the aforementioned tools, a secure alternative mobile health (mHealth) scheme for managing patients' data is defined for emergency and hospitalization services. Different parts of the proposed system have been implemented, including mobile application, intermediate server, private key generator and communication channels. Apart from that, several simulations have been performed, and, compared with the current system, significant improvements in efficiency have been observed.
Optical identity authentication technique based on compressive ghost imaging with QR code
NASA Astrophysics Data System (ADS)
Wenjie, Zhan; Leihong, Zhang; Xi, Zeng; Yi, Kang
2018-04-01
With the rapid development of computer technology, information security has attracted more and more attention. It is not only related to the information and property security of individuals and enterprises, but also to the security and social stability of a country. Identity authentication is the first line of defense in information security. In authentication systems, response time and security are the most important factors. An optical authentication technology based on compressive ghost imaging with QR codes is proposed in this paper. The scheme can be authenticated with a small number of samples. Therefore, the response time of the algorithm is short. At the same time, the algorithm can resist certain noise attacks, so it offers good security.
Crypto-Watermarking of Transmitted Medical Images.
Al-Haj, Ali; Mohammad, Ahmad; Amer, Alaa'
2017-02-01
Telemedicine is a booming healthcare practice that has facilitated the exchange of medical data and expertise between healthcare entities. However, the widespread use of telemedicine applications requires a secured scheme to guarantee confidentiality and verify authenticity and integrity of exchanged medical data. In this paper, we describe a region-based, crypto-watermarking algorithm capable of providing confidentiality, authenticity, and integrity for medical images of different modalities. The proposed algorithm provides authenticity by embedding robust watermarks in images' region of non-interest using SVD in the DWT domain. Integrity is provided in two levels: strict integrity implemented by a cryptographic hash watermark, and content-based integrity implemented by a symmetric encryption-based tamper localization scheme. Confidentiality is achieved as a byproduct of hiding patient's data in the image. Performance of the algorithm was evaluated with respect to imperceptibility, robustness, capacity, and tamper localization, using different medical images. The results showed the effectiveness of the algorithm in providing security for telemedicine applications.
BFT replication resistant to MAC attacks
NASA Astrophysics Data System (ADS)
Zbierski, Maciej
2016-09-01
Over the last decade numerous Byzantine fault-tolerant (BFT) replication protocols have been proposed in the literature. However, the vast majority of these solutions reuse the same authentication scheme, which makes them susceptible to a so called MAC attack. Such vulnerability enables malicious clients to undetectably prevent the replicated service from processing incoming client requests, and consequently making it permanently unavailable. While some BFT protocols attempted to address this issue by using different authentication mechanisms, they at the same time significantly degraded the performance achieved in correct environments. This article presents a novel adaptive authentication mechanism which can be combined with practically any Byzantine fault-tolerant replication protocol. Unlike previous solutions, the proposed scheme dynamically switches between two operation modes to combine high performance in correct environments and liveness during MAC attacks. The experiment results presented in the article demonstrate that the proposed mechanism can sufficiently tolerate MAC attacks without introducing any observable overhead whenever no faults are present.
Comparative Study on Various Authentication Protocols in Wireless Sensor Networks.
Rajeswari, S Raja; Seenivasagam, V
2016-01-01
Wireless sensor networks (WSNs) consist of lightweight devices with low cost, low power, and short-ranged wireless communication. The sensors can communicate with each other to form a network. In WSNs, broadcast transmission is widely used along with the maximum usage of wireless networks and their applications. Hence, it has become crucial to authenticate broadcast messages. Key management is also an active research topic in WSNs. Several key management schemes have been introduced, and their benefits are not recognized in a specific WSN application. Security services are vital for ensuring the integrity, authenticity, and confidentiality of the critical information. Therefore, the authentication mechanisms are required to support these security services and to be resilient to distinct attacks. Various authentication protocols such as key management protocols, lightweight authentication protocols, and broadcast authentication protocols are compared and analyzed for all secure transmission applications. The major goal of this survey is to compare and find out the appropriate protocol for further research. Moreover, the comparisons between various authentication techniques are also illustrated.
Comparative Study on Various Authentication Protocols in Wireless Sensor Networks
Rajeswari, S. Raja; Seenivasagam, V.
2016-01-01
Wireless sensor networks (WSNs) consist of lightweight devices with low cost, low power, and short-ranged wireless communication. The sensors can communicate with each other to form a network. In WSNs, broadcast transmission is widely used along with the maximum usage of wireless networks and their applications. Hence, it has become crucial to authenticate broadcast messages. Key management is also an active research topic in WSNs. Several key management schemes have been introduced, and their benefits are not recognized in a specific WSN application. Security services are vital for ensuring the integrity, authenticity, and confidentiality of the critical information. Therefore, the authentication mechanisms are required to support these security services and to be resilient to distinct attacks. Various authentication protocols such as key management protocols, lightweight authentication protocols, and broadcast authentication protocols are compared and analyzed for all secure transmission applications. The major goal of this survey is to compare and find out the appropriate protocol for further research. Moreover, the comparisons between various authentication techniques are also illustrated. PMID:26881272
Exploring the Use of Discrete Gestures for Authentication
NASA Astrophysics Data System (ADS)
Chong, Ming Ki; Marsden, Gary
Research in user authentication has been a growing field in HCI. Previous studies have shown that peoples’ graphical memory can be used to increase password memorability. On the other hand, with the increasing number of devices with built-in motion sensors, kinesthetic memory (or muscle memory) can also be exploited for authentication. This paper presents a novel knowledge-based authentication scheme, called gesture password, which uses discrete gestures as password elements. The research presents a study of multiple password retention using PINs and gesture passwords. The study reports that although participants could use kinesthetic memory to remember gesture passwords, retention of PINs is far superior to retention of gesture passwords.
Trust recovery model of Ad Hoc network based on identity authentication scheme
NASA Astrophysics Data System (ADS)
Liu, Jie; Huan, Shuiyuan
2017-05-01
Mobile Ad Hoc network trust model is widely used to solve mobile Ad Hoc network security issues. Aiming at the problem of reducing the network availability caused by the processing of malicious nodes and selfish nodes in mobile Ad Hoc network routing based on trust model, an authentication mechanism based on identity authentication mobile Ad Hoc network is proposed, which uses identity authentication to identify malicious nodes, And trust the recovery of selfish nodes in order to achieve the purpose of reducing network congestion and improving network quality. The simulation results show that the implementation of the mechanism can effectively improve the network availability and security.
NASA Astrophysics Data System (ADS)
Yin, Aihan; Ding, Yisheng
2014-11-01
Identity-related security issues inherently present in passive optical networks (PON) still exist in the current (1G) and next-generation (10G) Ethernet-based passive optical network (EPON) systems. We propose a mutual authentication scheme that integrates an NTRUsign digital signature algorithm with inherent multipoint control protocol (MPCP) frames over an EPON system between the optical line terminal (OLT) and optical network unit (ONU). Here, a primitive NTRUsign algorithm is significantly modified through the use of a new perturbation so that it can be effectively used for simultaneously completing signature and authentication functions on the OLT and the ONU sides. Also, in order to transmit their individual sensitive messages, which include public key, signature, and random value and so forth, to each other, we redefine three unique frames according to MPCP format frame. These generated messages can be added into the frames and delivered to each other, allowing the OLT and the ONU to go ahead with a mutual identity authentication process to verify their legal identities. Our simulation results show that this proposed scheme performs very well in resisting security attacks and has low influence on the registration efficiency to to-be-registered ONUs. A performance comparison with traditional authentication algorithms is also presented. To the best of our knowledge, no detailed design of mutual authentication in EPON can be found in the literature up to now.
Fujiwara, M.; Waseda, A.; Nojima, R.; Moriai, S.; Ogata, W.; Sasaki, M.
2016-01-01
Distributed storage plays an essential role in realizing robust and secure data storage in a network over long periods of time. A distributed storage system consists of a data owner machine, multiple storage servers and channels to link them. In such a system, secret sharing scheme is widely adopted, in which secret data are split into multiple pieces and stored in each server. To reconstruct them, the data owner should gather plural pieces. Shamir’s (k, n)-threshold scheme, in which the data are split into n pieces (shares) for storage and at least k pieces of them must be gathered for reconstruction, furnishes information theoretic security, that is, even if attackers could collect shares of less than the threshold k, they cannot get any information about the data, even with unlimited computing power. Behind this scenario, however, assumed is that data transmission and authentication must be perfectly secure, which is not trivial in practice. Here we propose a totally information theoretically secure distributed storage system based on a user-friendly single-password-authenticated secret sharing scheme and secure transmission using quantum key distribution, and demonstrate it in the Tokyo metropolitan area (≤90 km). PMID:27363566
Fujiwara, M; Waseda, A; Nojima, R; Moriai, S; Ogata, W; Sasaki, M
2016-07-01
Distributed storage plays an essential role in realizing robust and secure data storage in a network over long periods of time. A distributed storage system consists of a data owner machine, multiple storage servers and channels to link them. In such a system, secret sharing scheme is widely adopted, in which secret data are split into multiple pieces and stored in each server. To reconstruct them, the data owner should gather plural pieces. Shamir's (k, n)-threshold scheme, in which the data are split into n pieces (shares) for storage and at least k pieces of them must be gathered for reconstruction, furnishes information theoretic security, that is, even if attackers could collect shares of less than the threshold k, they cannot get any information about the data, even with unlimited computing power. Behind this scenario, however, assumed is that data transmission and authentication must be perfectly secure, which is not trivial in practice. Here we propose a totally information theoretically secure distributed storage system based on a user-friendly single-password-authenticated secret sharing scheme and secure transmission using quantum key distribution, and demonstrate it in the Tokyo metropolitan area (≤90 km).
R2NA: Received Signal Strength (RSS) Ratio-Based Node Authentication for Body Area Network
Wu, Yang; Wang, Kai; Sun, Yongmei; Ji, Yuefeng
2013-01-01
The body area network (BAN) is an emerging branch of wireless sensor networks for personalized applications. The services in BAN usually have a high requirement on security, especially for the medical diagnosis. One of the fundamental directions to ensure security in BAN is how to provide node authentication. Traditional research using cryptography relies on prior secrets shared among nodes, which leads to high resource cost. In addition, most existing non-cryptographic solutions exploit out-of-band (OOB) channels, but they need the help of additional hardware support or significant modifications to the system software. To avoid the above problems, this paper presents a proximity-based node authentication scheme, which only uses wireless modules equipped on sensors. With only one sensor and one control unit (CU) in BAN, we could detect a unique physical layer characteristic, namely, the difference between the received signal strength (RSS) measured on different devices in BAN. Through the above-mentioned particular difference, we can tell whether the sender is close enough to be legitimate. We validate our scheme through both theoretical analysis and experiments, which are conducted on the real Shimmer nodes. The results demonstrate that our proposed scheme has a good security performance.
Keystroke Dynamics-Based Credential Hardening Systems
NASA Astrophysics Data System (ADS)
Bartlow, Nick; Cukic, Bojan
abstract Keystroke dynamics are becoming a well-known method for strengthening username- and password-based credential sets. The familiarity and ease of use of these traditional authentication schemes combined with the increased trustworthiness associated with biometrics makes them prime candidates for application in many web-based scenarios. Our keystroke dynamics system uses Breiman’s random forests algorithm to classify keystroke input sequences as genuine or imposter. The system is capable of operating at various points on a traditional ROC curve depending on application-specific security needs. As a username/password authentication scheme, our approach decreases the system penetration rate associated with compromised passwords up to 99.15%. Beyond presenting results demonstrating the credential hardening effect of our scheme, we look into the notion that a user’s familiarity to components of a credential set can non-trivially impact error rates.
An authenticated image encryption scheme based on chaotic maps and memory cellular automata
NASA Astrophysics Data System (ADS)
Bakhshandeh, Atieh; Eslami, Ziba
2013-06-01
This paper introduces a new image encryption scheme based on chaotic maps, cellular automata and permutation-diffusion architecture. In the permutation phase, a piecewise linear chaotic map is utilized to confuse the plain-image and in the diffusion phase, we employ the Logistic map as well as a reversible memory cellular automata to obtain an efficient and secure cryptosystem. The proposed method admits advantages such as highly secure diffusion mechanism, computational efficiency and ease of implementation. A novel property of the proposed scheme is its authentication ability which can detect whether the image is tampered during the transmission or not. This is particularly important in applications where image data or part of it contains highly sensitive information. Results of various analyses manifest high security of this new method and its capability for practical image encryption.
Identity-Based Authentication for Cloud Computing
NASA Astrophysics Data System (ADS)
Li, Hongwei; Dai, Yuanshun; Tian, Ling; Yang, Haomiao
Cloud computing is a recently developed new technology for complex systems with massive-scale services sharing among numerous users. Therefore, authentication of both users and services is a significant issue for the trust and security of the cloud computing. SSL Authentication Protocol (SAP), once applied in cloud computing, will become so complicated that users will undergo a heavily loaded point both in computation and communication. This paper, based on the identity-based hierarchical model for cloud computing (IBHMCC) and its corresponding encryption and signature schemes, presented a new identity-based authentication protocol for cloud computing and services. Through simulation testing, it is shown that the authentication protocol is more lightweight and efficient than SAP, specially the more lightweight user side. Such merit of our model with great scalability is very suited to the massive-scale cloud.
Reversible watermarking for authentication of DICOM images.
Zain, J M; Baldwin, L P; Clarke, M
2004-01-01
We propose a watermarking scheme that can recover the original image from the watermarked one. The purpose is to verify the integrity and authenticity of DICOM images. We used 800x600x8 bits ultrasound (US) images in our experiment. SHA-256 of the whole image is embedded in the least significant bits of the RONI (Region of Non-Interest). If the image has not been altered, the watermark will be extracted and the original image will be recovered. SHA-256 of the recovered image will be compared with the extracted watermark for authentication.
Kabir, Muhammad N.; Alginahi, Yasser M.
2014-01-01
This paper addresses the problems and threats associated with verification of integrity, proof of authenticity, tamper detection, and copyright protection for digital-text content. Such issues were largely addressed in the literature for images, audio, and video, with only a few papers addressing the challenge of sensitive plain-text media under known constraints. Specifically, with text as the predominant online communication medium, it becomes crucial that techniques are deployed to protect such information. A number of digital-signature, hashing, and watermarking schemes have been proposed that essentially bind source data or embed invisible data in a cover media to achieve its goal. While many such complex schemes with resource redundancies are sufficient in offline and less-sensitive texts, this paper proposes a hybrid approach based on zero-watermarking and digital-signature-like manipulations for sensitive text documents in order to achieve content originality and integrity verification without physically modifying the cover text in anyway. The proposed algorithm was implemented and shown to be robust against undetected content modifications and is capable of confirming proof of originality whilst detecting and locating deliberate/nondeliberate tampering. Additionally, enhancements in resource utilisation and reduced redundancies were achieved in comparison to traditional encryption-based approaches. Finally, analysis and remarks are made about the current state of the art, and future research issues are discussed under the given constraints. PMID:25254247
Verified by Visa and MasterCard SecureCode: Or, How Not to Design Authentication
NASA Astrophysics Data System (ADS)
Murdoch, Steven J.; Anderson, Ross
Banks worldwide are starting to authenticate online card transactions using the '3-D Secure' protocol, which is branded as Verified by Visa and MasterCard SecureCode. This has been partly driven by the sharp increase in online fraud that followed the deployment of EMV smart cards for cardholder-present payments in Europe and elsewhere. 3-D Secure has so far escaped academic scrutiny; yet it might be a textbook example of how not to design an authentication protocol. It ignores good design principles and has significant vulnerabilities, some of which are already being exploited. Also, it provides a fascinating lesson in security economics. While other single sign-on schemes such as OpenID, InfoCard and Liberty came up with decent technology they got the economics wrong, and their schemes have not been adopted. 3-D Secure has lousy technology, but got the economics right (at least for banks and merchants); it now boasts hundreds of millions of accounts. We suggest a path towards more robust authentication that is technologically sound and where the economics would work for banks, merchants and customers - given a gentle regulatory nudge.
Zhao, Zhenguo; Shi, Wenbo
2014-01-01
Probabilistic signature scheme has been widely used in modern electronic commerce since it could provide integrity, authenticity, and nonrepudiation. Recently, Wu and Lin proposed a novel probabilistic signature (PS) scheme using the bilinear square Diffie-Hellman (BSDH) problem. They also extended it to a universal designated verifier signature (UDVS) scheme. In this paper, we analyze the security of Wu et al.'s PS scheme and UDVS scheme. Through concrete attacks, we demonstrate both of their schemes are not unforgeable. The security analysis shows that their schemes are not suitable for practical applications.
A novel secret sharing with two users based on joint transform correlator and compressive sensing
NASA Astrophysics Data System (ADS)
Zhao, Tieyu; Chi, Yingying
2018-05-01
Recently, joint transform correlator (JTC) has been widely applied to image encryption and authentication. This paper presents a novel secret sharing scheme with two users based on JTC. Two users must be present during the decryption that the system has high security and reliability. In the scheme, two users use their fingerprints to encrypt plaintext, and they can decrypt only if both of them provide the fingerprints which are successfully authenticated. The linear relationship between the plaintext and ciphertext is broken using the compressive sensing, which can resist existing attacks on JTC. The results of the theoretical analysis and numerical simulation confirm the validity of the system.
Multiple Object Based RFID System Using Security Level
NASA Astrophysics Data System (ADS)
Kim, Jiyeon; Jung, Jongjin; Ryu, Ukjae; Ko, Hoon; Joe, Susan; Lee, Yongjun; Kim, Boyeon; Chang, Yunseok; Lee, Kyoonha
2007-12-01
RFID systems are increasingly applied for operational convenience in wide range of industries and individual life. However, it is uneasy for a person to control many tags because common RFID systems have the restriction that a tag used to identify just a single object. In addition, RFID systems can make some serious problems in violation of privacy and security because of their radio frequency communication. In this paper, we propose a multiple object RFID tag which can keep multiple object identifiers for different applications in a same tag. The proposed tag allows simultaneous access for their pair applications. We also propose an authentication protocol for multiple object tag to prevent serious problems of security and privacy in RFID applications. Especially, we focus on efficiency of the authentication protocol by considering security levels of applications. In the proposed protocol, the applications go through different authentication procedures according to security level of the object identifier stored in the tag. We implemented the proposed RFID scheme and made experimental results about efficiency and stability for the scheme.
A multispectral photon-counting double random phase encoding scheme for image authentication.
Yi, Faliu; Moon, Inkyu; Lee, Yeon H
2014-05-20
In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI) and double random phase encoding (DRPE) schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color) in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.
Zhang, Xudong
2002-10-01
This work describes a new approach that allows an angle-domain human movement model to generate, via forward kinematics, Cartesian-space human movement representation with otherwise inevitable end-point offset nullified but much of the kinematic authenticity retained. The approach incorporates a rectification procedure that determines the minimum postural angle change at the final frame to correct the end-point offset, and a deformation procedure that deforms the angle profile accordingly to preserve maximum original kinematic authenticity. Two alternative deformation schemes, named amplitude-proportional (AP) and time-proportional (TP) schemes, are proposed and formulated. As an illustration and empirical evaluation, the proposed approach, along with two deformation schemes, was applied to a set of target-directed right-hand reaching movements that had been previously measured and modeled. The evaluation showed that both deformation schemes nullified the final frame end-point offset and significantly reduced time-averaged position errors for the end-point as well as the most distal intermediate joint while causing essentially no change in the remaining joints. A comparison between the two schemes based on time-averaged joint and end-point position errors indicated that overall the TP scheme outperformed the AP scheme. In addition, no statistically significant difference in time-averaged angle error was identified between the raw prediction and either of the deformation schemes, nor between the two schemes themselves, suggesting minimal angle-domain distortion incurred by the deformation.
A Mutual Authentication Framework for Wireless Medical Sensor Networks.
Srinivas, Jangirala; Mishra, Dheerendra; Mukhopadhyay, Sourav
2017-05-01
Wireless medical sensor networks (WMSN) comprise of distributed sensors, which can sense human physiological signs and monitor the health condition of the patient. It is observed that providing privacy to the patient's data is an important issue and can be challenging. The information passing is done via the public channel in WMSN. Thus, the patient, sensitive information can be obtained by eavesdropping or by unauthorized use of handheld devices which the health professionals use in monitoring the patient. Therefore, there is an essential need of restricting the unauthorized access to the patient's medical information. Hence, the efficient authentication scheme for the healthcare applications is needed to preserve the privacy of the patients' vital signs. To ensure secure and authorized communication in WMSN, we design a symmetric key based authentication protocol for WMSN environment. The proposed protocol uses only computationally efficient operations to achieve lightweight attribute. We analyze the security of the proposed protocol. We use a formal security proof algorithm to show the scheme security against known attacks. We also use the Automated Validation of Internet Security Protocols and Applications (AVISPA) simulator to show protocol secure against man-in-the-middle attack and replay attack. Additionally, we adopt an informal analysis to discuss the key attributes of the proposed scheme. From the formal proof of security, we can see that an attacker has a negligible probability of breaking the protocol security. AVISPA simulator also demonstrates the proposed scheme security against active attacks, namely, man-in-the-middle attack and replay attack. Additionally, through the comparison of computational efficiency and security attributes with several recent results, proposed scheme seems to be battered.
Zhao, Zhenguo; Shi, Wenbo
2014-01-01
Probabilistic signature scheme has been widely used in modern electronic commerce since it could provide integrity, authenticity, and nonrepudiation. Recently, Wu and Lin proposed a novel probabilistic signature (PS) scheme using the bilinear square Diffie-Hellman (BSDH) problem. They also extended it to a universal designated verifier signature (UDVS) scheme. In this paper, we analyze the security of Wu et al.'s PS scheme and UDVS scheme. Through concrete attacks, we demonstrate both of their schemes are not unforgeable. The security analysis shows that their schemes are not suitable for practical applications. PMID:25025083
Lister, Jamey J; Wohl, Michael J A; Davis, Christopher G
2015-09-01
Engaging in activities that make people feel authentic or real is typically associated with a host of positive psychological and physiological outcomes (i.e., being authentic serves to increase well-being). In the current study, we tested the idea that authenticity might have a dark side among people engaged in an addictive or risky behavior (gambling). To test this possibility, we assessed gamblers (N = 61) who were betting on the National Hockey League playoff games at a sports bar. As predicted, people who felt authentic when gambling reported behavior associated with problem gambling (high frequency of betting) as well as problematic play (a big monetary loss and a big monetary win). Moreover, such behavior and gambling outcomes were particularly high among people who were motivated to gamble for the purpose of enhancement. The interaction of feeling authentic when betting and gambling for purposes of enhancing positive emotions proved especially troublesome for problematic forms of play. Implications of authenticity as a potential vulnerability factor for sports betting and other types of gambling are discussed.
NASA Astrophysics Data System (ADS)
Lu, Dajiang; He, Wenqi; Liao, Meihua; Peng, Xiang
2017-02-01
A new method to eliminate the security risk of the well-known interference-based optical cryptosystem is proposed. In this method, which is suitable for security authentication application, two phase-only masks are separately placed at different distances from the output plane, where a certification image (public image) can be obtained. To further increase the security and flexibility of this authentication system, we employ one more validation image (secret image), which can be observed at another output plane, for confirming the identity of the user. Only if the two correct masks are properly settled at their positions one could obtain two significant images. Besides, even if the legal users exchange their masks (keys), the authentication process will fail and the authentication results will not reveal any information. Numerical simulations are performed to demonstrate the validity and security of the proposed method.
Distinguishing attack and second-preimage attack on encrypted message authentication codes (EMAC)
NASA Astrophysics Data System (ADS)
Ariwibowo, Sigit; Windarta, Susila
2016-02-01
In this paper we show that distinguisher on CBC-MAC can be applied to Encrypted Message Authentication Code (EMAC) scheme. EMAC scheme in general is vulnerable to distinguishing attack and second preimage attack. Distinguishing attack simulation on AES-EMAC using 225 message modifications, no collision have been found. According to second preimage attack simulation on AES-EMAC no collision found between EMAC value of S1 and S2, i.e. no second preimage found for messages that have been tested. Based on distinguishing attack simulation on truncated AES-EMAC we found collision in every message therefore we cannot distinguish truncated AES-EMAC with random function. Second-preimage attack is successfully performed on truncated AES-EMAC.
Authenticity Anyone? The Enhancement of Emotions via Neuro-Psychopharmacology.
Kraemer, Felicitas
2011-04-01
This article will examine how the notion of emotional authenticity is intertwined with the notions of naturalness and artificiality in the context of the recent debates about 'neuro-enhancement' and 'neuro-psychopharmacology.' In the philosophy of mind, the concept of authenticity plays a key role in the discussion of the emotions. There is a widely held intuition that an artificial means will always lead to an inauthentic result. This article, however, proposes that artificial substances do not necessarily result in inauthentic emotions. The literature provided by the philosophy of mind on this subject usually resorts to thought experiments. On the other hand, the recent literature in applied ethics on 'enhancement' provides good reasons to include real world examples. Such case studies reveal that some psychotropic drugs such as antidepressants actually cause people to undergo experiences of authenticity, making them feel 'like themselves' for the first time in their lives. Beginning with these accounts, this article suggests three non-naturalist standards for emotions: the authenticity standard, the rationality standard, and the coherence standard. It argues that the authenticity standard is not always the only valid one, but that the other two ways of assessing emotions are also valid, and that they can even have repercussions on the felt authenticity of emotions. In conclusion, it sketches some of the normative implications if not ethical intricacies that accompany the enhancement of emotions.
Choi, Younsung; Lee, Donghoon; Kim, Jiye; Jung, Jaewook; Nam, Junghyun; Won, Dongho
2014-01-01
Wireless sensor networks (WSNs) consist of sensors, gateways and users. Sensors are widely distributed to monitor various conditions, such as temperature, sound, speed and pressure but they have limited computational ability and energy. To reduce the resource use of sensors and enhance the security of WSNs, various user authentication protocols have been proposed. In 2011, Yeh et al. first proposed a user authentication protocol based on elliptic curve cryptography (ECC) for WSNs. However, it turned out that Yeh et al.'s protocol does not provide mutual authentication, perfect forward secrecy, and key agreement between the user and sensor. Later in 2013, Shi et al. proposed a new user authentication protocol that improves both security and efficiency of Yeh et al.'s protocol. However, Shi et al.'s improvement introduces other security weaknesses. In this paper, we show that Shi et al.'s improved protocol is vulnerable to session key attack, stolen smart card attack, and sensor energy exhausting attack. In addition, we propose a new, security-enhanced user authentication protocol using ECC for WSNs. PMID:24919012
Choi, Younsung; Lee, Donghoon; Kim, Jiye; Jung, Jaewook; Nam, Junghyun; Won, Dongho
2014-06-10
Wireless sensor networks (WSNs) consist of sensors, gateways and users. Sensors are widely distributed to monitor various conditions, such as temperature, sound, speed and pressure but they have limited computational ability and energy. To reduce the resource use of sensors and enhance the security of WSNs, various user authentication protocols have been proposed. In 2011, Yeh et al. first proposed a user authentication protocol based on elliptic curve cryptography (ECC) for WSNs. However, it turned out that Yeh et al.'s protocol does not provide mutual authentication, perfect forward secrecy, and key agreement between the user and sensor. Later in 2013, Shi et al. proposed a new user authentication protocol that improves both security and efficiency of Yeh et al.'s protocol. However, Shi et al.'s improvement introduces other security weaknesses. In this paper, we show that Shi et al.'s improved protocol is vulnerable to session key attack, stolen smart card attack, and sensor energy exhausting attack. In addition, we propose a new, security-enhanced user authentication protocol using ECC for WSNs.
A Routing Path Construction Method for Key Dissemination Messages in Sensor Networks
Moon, Soo Young; Cho, Tae Ho
2014-01-01
Authentication is an important security mechanism for detecting forged messages in a sensor network. Each cluster head (CH) in dynamic key distribution schemes forwards a key dissemination message that contains encrypted authentication keys within its cluster to next-hop nodes for the purpose of authentication. The forwarding path of the key dissemination message strongly affects the number of nodes to which the authentication keys in the message are actually distributed. We propose a routing method for the key dissemination messages to increase the number of nodes that obtain the authentication keys. In the proposed method, each node selects next-hop nodes to which the key dissemination message will be forwarded based on secret key indexes, the distance to the sink node, and the energy consumption of its neighbor nodes. The experimental results show that the proposed method can increase by 50–70% the number of nodes to which authentication keys in each cluster are distributed compared to geographic and energy-aware routing (GEAR). In addition, the proposed method can detect false reports earlier by using the distributed authentication keys, and it consumes less energy than GEAR when the false traffic ratio (FTR) is ≥10%. PMID:25136649
Wang, Xiaogang; Chen, Wen; Chen, Xudong
2015-03-09
In this paper, we develop a new optical information authentication system based on compressed double-random-phase-encoded images and quick-response (QR) codes, where the parameters of optical lightwave are used as keys for optical decryption and the QR code is a key for verification. An input image attached with QR code is first optically encoded in a simplified double random phase encoding (DRPE) scheme without using interferometric setup. From the single encoded intensity pattern recorded by a CCD camera, a compressed double-random-phase-encoded image, i.e., the sparse phase distribution used for optical decryption, is generated by using an iterative phase retrieval technique with QR code. We compare this technique to the other two methods proposed in literature, i.e., Fresnel domain information authentication based on the classical DRPE with holographic technique and information authentication based on DRPE and phase retrieval algorithm. Simulation results show that QR codes are effective on improving the security and data sparsity of optical information encryption and authentication system.
A Hybrid Authentication and Authorization Process for Control System Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manz, David O.; Edgar, Thomas W.; Fink, Glenn A.
2010-08-25
Convergence of control system and IT networks require that security, privacy, and trust be addressed. Trust management continues to plague traditional IT managers and is even more complex when extended into control system networks, with potentially millions of entities, a mission that requires 100% availability. Yet these very networks necessitate a trusted secure environment where controllers and managers can be assured that the systems are secure and functioning properly. We propose a hybrid authentication management protocol that addresses the unique issues inherent within control system networks, while leveraging the considerable research and momentum in existing IT authentication schemes. Our hybridmore » authentication protocol for control systems provides end device to end device authentication within a remote station and between remote stations and control centers. Additionally, the hybrid protocol is failsafe and will not interrupt communication or control of vital systems in a network partition or device failure. Finally, the hybrid protocol is resilient to transitory link loss and can operate in an island mode until connectivity is reestablished.« less
Lee, Jaekwon; Moon, Seunghwan; Lim, Juhun; Gwak, Min-Joo; Kim, Jae Gwan; Chung, Euiheon; Lee, Jong-Hyun
2017-04-22
A new authentication method employing a laser and a scanner is proposed to improve image contrast of the finger vein and to extract blood flow pattern for liveness detection. A micromirror reflects a laser beam and performs a uniform raster scan. Transmissive vein images were obtained, and compared with those of an LED. Blood flow patterns were also obtained based on speckle images in perfusion and occlusion. Curvature ratios of the finger vein and blood flow intensities were found to be nearly constant, regardless of the vein size, which validated the high repeatability of this scheme for identity authentication with anti-spoofing.
Lee, Jaekwon; Moon, Seunghwan; Lim, Juhun; Gwak, Min-Joo; Kim, Jae Gwan; Chung, Euiheon; Lee, Jong-Hyun
2017-01-01
A new authentication method employing a laser and a scanner is proposed to improve image contrast of the finger vein and to extract blood flow pattern for liveness detection. A micromirror reflects a laser beam and performs a uniform raster scan. Transmissive vein images were obtained, and compared with those of an LED. Blood flow patterns were also obtained based on speckle images in perfusion and occlusion. Curvature ratios of the finger vein and blood flow intensities were found to be nearly constant, regardless of the vein size, which validated the high repeatability of this scheme for identity authentication with anti-spoofing. PMID:28441728
Spectroscopically Enhanced Method and System for Multi-Factor Biometric Authentication
NASA Astrophysics Data System (ADS)
Pishva, Davar
This paper proposes a spectroscopic method and system for preventing spoofing of biometric authentication. One of its focus is to enhance biometrics authentication with a spectroscopic method in a multifactor manner such that a person's unique ‘spectral signatures’ or ‘spectral factors’ are recorded and compared in addition to a non-spectroscopic biometric signature to reduce the likelihood of imposter getting authenticated. By using the ‘spectral factors’ extracted from reflectance spectra of real fingers and employing cluster analysis, it shows how the authentic fingerprint image presented by a real finger can be distinguished from an authentic fingerprint image embossed on an artificial finger, or molded on a fingertip cover worn by an imposter. This paper also shows how to augment two widely used biometrics systems (fingerprint and iris recognition devices) with spectral biometrics capabilities in a practical manner and without creating much overhead or inconveniencing their users.
A Framework for Determining the Authenticity of Assessment Tasks: Applied to an Example in Law
ERIC Educational Resources Information Center
Burton, Kelley
2011-01-01
Authentic assessment tasks enhance engagement, retention and the aspirations of students. This paper explores the discipline-generic features of authentic assessment, which reflect what students need to achieve in the real world. Some assessment tasks are more authentic than others and this paper designs a proposed framework supported by the…
ERIC Educational Resources Information Center
Hardre, Patricia L.
2013-01-01
Authenticity is a key to using technology for instruction in ways that enhance learning and support learning transfer. Simply put, a representation is authentic when it shows learners clearly what a task, context, or experience will be like in real practice. More authentic representations help people learn and understand better. They support…
Authentication based on gestures with smartphone in hand
NASA Astrophysics Data System (ADS)
Varga, Juraj; Švanda, Dominik; Varchola, Marek; Zajac, Pavol
2017-08-01
We propose a new method of authentication for smartphones and similar devices based on gestures made by user with the device itself. The main advantage of our method is that it combines subtle biometric properties of the gesture (something you are) with a secret information that can be freely chosen by the user (something you know). Our prototype implementation shows that the scheme is feasible in practice. Further development, testing and fine tuning of parameters is required for deployment in the real world.
Regan, Sandra; Laschinger, Heather K S; Wong, Carol A
2016-01-01
The aim of this study was to examine the influence of structural empowerment, authentic leadership and professional nursing practice environments on experienced nurses' perceptions of interprofessional collaboration. Enhanced interprofessional collaboration (IPC) is seen as one means of transforming the health-care system and addressing concerns about shortages of health-care workers. Organizational supports and resources are suggested as key to promoting IPC. A predictive non-experimental design was used to test the effects of structural empowerment, authentic leadership and professional nursing practice environments on perceived interprofessional collaboration. A random sample of experienced registered nurses (n = 220) in Ontario, Canada completed a mailed questionnaire. Hierarchical multiple regression analysis was used. Higher perceived structural empowerment, authentic leadership, and professional practice environments explained 45% of the variance in perceived IPC (Adj. R² = 0.452, F = 59.40, P < 0.001). Results suggest that structural empowerment, authentic leadership and a professional nursing practice environment may enhance IPC. Nurse leaders who ensure access to resources such as knowledge of IPC, embody authenticity and build trust among nurses, and support the presence of a professional nursing practice environment can contribute to enhanced IPC. © 2015 John Wiley & Sons Ltd.
A Secure and Efficient Threshold Group Signature Scheme
NASA Astrophysics Data System (ADS)
Zhang, Yansheng; Wang, Xueming; Qiu, Gege
The paper presents a secure and efficient threshold group signature scheme aiming at two problems of current threshold group signature schemes: conspiracy attack and inefficiency. Scheme proposed in this paper takes strategy of separating designed clerk who is responsible for collecting and authenticating each individual signature from group, the designed clerk don't participate in distribution of group secret key and has his own public key and private key, designed clerk needs to sign part information of threshold group signature after collecting signatures. Thus verifier has to verify signature of the group after validating signature of the designed clerk. This scheme is proved to be secure against conspiracy attack at last and is more efficient by comparing with other schemes.
ECG-cryptography and authentication in body area networks.
Zhang, Zhaoyang; Wang, Honggang; Vasilakos, Athanasios V; Fang, Hua
2012-11-01
Wireless body area networks (BANs) have drawn much attention from research community and industry in recent years. Multimedia healthcare services provided by BANs can be available to anyone, anywhere, and anytime seamlessly. A critical issue in BANs is how to preserve the integrity and privacy of a person's medical data over wireless environments in a resource efficient manner. This paper presents a novel key agreement scheme that allows neighboring nodes in BANs to share a common key generated by electrocardiogram (ECG) signals. The improved Jules Sudan (IJS) algorithm is proposed to set up the key agreement for the message authentication. The proposed ECG-IJS key agreement can secure data communications over BANs in a plug-n-play manner without any key distribution overheads. Both the simulation and experimental results are presented, which demonstrate that the proposed ECG-IJS scheme can achieve better security performance in terms of serval performance metrics such as false acceptance rate (FAR) and false rejection rate (FRR) than other existing approaches. In addition, the power consumption analysis also shows that the proposed ECG-IJS scheme can achieve energy efficiency for BANs.
Quantum tagging for tags containing secret classical data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kent, Adrian
Various authors have considered schemes for quantum tagging, that is, authenticating the classical location of a classical tagging device by sending and receiving quantum signals from suitably located distant sites, in an environment controlled by an adversary whose quantum information processing and transmitting power is potentially unbounded. All of the schemes proposed elsewhere in the literature assume that the adversary is able to inspect the interior of the tagging device. All of these schemes have been shown to be breakable if the adversary has unbounded predistributed entanglement. We consider here the case in which the tagging device contains a finitemore » key string shared with distant sites but kept secret from the adversary, and show this allows the location of the tagging device to be authenticated securely and indefinitely. Our protocol relies on quantum key distribution between the tagging device and at least one distant site, and demonstrates a new practical application of quantum key distribution. It also illustrates that the attainable security in position-based cryptography can depend crucially on apparently subtle details in the security scenario considered.« less
Towards secure quantum key distribution protocol for wireless LANs: a hybrid approach
NASA Astrophysics Data System (ADS)
Naik, R. Lalu; Reddy, P. Chenna
2015-12-01
The primary goals of security such as authentication, confidentiality, integrity and non-repudiation in communication networks can be achieved with secure key distribution. Quantum mechanisms are highly secure means of distributing secret keys as they are unconditionally secure. Quantum key distribution protocols can effectively prevent various attacks in the quantum channel, while classical cryptography is efficient in authentication and verification of secret keys. By combining both quantum cryptography and classical cryptography, security of communications over networks can be leveraged. Hwang, Lee and Li exploited the merits of both cryptographic paradigms for provably secure communications to prevent replay, man-in-the-middle, and passive attacks. In this paper, we propose a new scheme with the combination of quantum cryptography and classical cryptography for 802.11i wireless LANs. Since quantum cryptography is premature in wireless networks, our work is a significant step forward toward securing communications in wireless networks. Our scheme is known as hybrid quantum key distribution protocol. Our analytical results revealed that the proposed scheme is provably secure for wireless networks.
2018-01-01
Vehicle ad hoc networks (VANETs) is a promising network scenario for greatly improving traffic efficiency and safety, in which smart vehicles can communicate with other vehicles or roadside units. For the availability of VANETs, it is very important to deal with the security and privacy problems for VANETs. In this paper, based on certificateless cryptography and elliptic curve cryptography, we present a certificateless signature with message recovery (CLS-MR), which we believe are of independent interest. Then, a practical certificateless conditional privacy preserving authentication (PCPA) scheme is proposed by incorporating the proposed CLS-MR scheme. Furthermore, the security analysis shows that PCPA satisfies all security and privacy requirements. The evaluation results indicate that PCPA achieves low computation and communication costs because there is no need to use the bilinear pairing and map-to-point hash operations. Moreover, extensive simulations show that PCPA is feasible and achieves prominent performances in terms of message delay and message loss ratio, and thus is more suitable for the deployment and adoption of VANETs. PMID:29762511
Time and Space Efficient Algorithms for Two-Party Authenticated Data Structures
NASA Astrophysics Data System (ADS)
Papamanthou, Charalampos; Tamassia, Roberto
Authentication is increasingly relevant to data management. Data is being outsourced to untrusted servers and clients want to securely update and query their data. For example, in database outsourcing, a client's database is stored and maintained by an untrusted server. Also, in simple storage systems, clients can store very large amounts of data but at the same time, they want to assure their integrity when they retrieve them. In this paper, we present a model and protocol for two-party authentication of data structures. Namely, a client outsources its data structure and verifies that the answers to the queries have not been tampered with. We provide efficient algorithms to securely outsource a skip list with logarithmic time overhead at the server and client and logarithmic communication cost, thus providing an efficient authentication primitive for outsourced data, both structured (e.g., relational databases) and semi-structured (e.g., XML documents). In our technique, the client stores only a constant amount of space, which is optimal. Our two-party authentication framework can be deployed on top of existing storage applications, thus providing an efficient authentication service. Finally, we present experimental results that demonstrate the practical efficiency and scalability of our scheme.
NASA Astrophysics Data System (ADS)
Farouk, Ahmed; Batle, J.; Elhoseny, M.; Naseri, Mosayeb; Lone, Muzaffar; Fedorov, Alex; Alkhambashi, Majid; Ahmed, Syed Hassan; Abdel-Aty, M.
2018-04-01
Quantum communication provides an enormous advantage over its classical counterpart: security of communications based on the very principles of quantum mechanics. Researchers have proposed several approaches for user identity authentication via entanglement. Unfortunately, these protocols fail because an attacker can capture some of the particles in a transmitted sequence and send what is left to the receiver through a quantum channel. Subsequently, the attacker can restore some of the confidential messages, giving rise to the possibility of information leakage. Here we present a new robust General N user authentication protocol based on N-particle Greenberger-Horne-Zeilinger (GHZ) states, which makes eavesdropping detection more effective and secure, as compared to some current authentication protocols. The security analysis of our protocol for various kinds of attacks verifies that it is unconditionally secure, and that an attacker will not obtain any information about the transmitted key. Moreover, as the number of transferred key bits N becomes larger, while the number of users for transmitting the information is increased, the probability of effectively obtaining the transmitted authentication keys is reduced to zero.
A Secure Mobile-Based Authentication System for e-Banking
NASA Astrophysics Data System (ADS)
Rifà-Pous, Helena
Financial information is extremely sensitive. Hence, electronic banking must provide a robust system to authenticate its customers and let them access their data remotely. On the other hand, such system must be usable, affordable, and portable. We propose a challenge-response based one-time password (OTP) scheme that uses symmetric cryptography in combination with a hardware security module. The proposed protocol safeguards passwords from keyloggers and phishing attacks. Besides, this solution provides convenient mobility for users who want to bank online anytime and anywhere, not just from their own trusted computers.
Choi, Han Gyo; Ahn, Sung Hee
2016-02-01
The aim of this study was to examine the mediating effect of empowerment in the relationship of nurse managers' authentic leadership, with nurses' organizational commitment and job satisfaction. The participants in this study were 273 registered nurses working in five University hospitals located in Seoul and Gyeonggi Province. The measurements included the Authentic Leadership Questionnaire, Condition of Work Effectiveness Questionnaire-II, Organizational Commitment Questionnaire and Korea-Minnesota Satisfaction Questionnaire. Data were analyzed using t-test, ANOVA, Scheffé test, Pearson correlation coefficients, simple and multiple regression techniques with the SPSS 18.0 program. Mediation analysis was performed according to the Baron and Kenny method and Sobel test. There were significant correlations among authentic leadership, empowerment, organizational commitment and job satisfaction. Empowerment showed perfect mediating effects in the relationship between authentic leadership and organizational commitment. It had partial mediating effects in the relationship between authentic leadership and job satisfaction. In this study, nurse managers' authentic leadership had significant influences on nurses organizational commitment and job satisfaction via empowerment. Therefore, to enhance nurses' organizational commitment and job satisfaction, it is necessary to build effective strategies to enhance nurse manager's authentic leadership and to develop empowering education programs for nurses.
Protection of Health Imagery by Region Based Lossless Reversible Watermarking Scheme
Priya, R. Lakshmi; Sadasivam, V.
2015-01-01
Providing authentication and integrity in medical images is a problem and this work proposes a new blind fragile region based lossless reversible watermarking technique to improve trustworthiness of medical images. The proposed technique embeds the watermark using a reversible least significant bit embedding scheme. The scheme combines hashing, compression, and digital signature techniques to create a content dependent watermark making use of compressed region of interest (ROI) for recovery of ROI as reported in literature. The experiments were carried out to prove the performance of the scheme and its assessment reveals that ROI is extracted in an intact manner and PSNR values obtained lead to realization that the presented scheme offers greater protection for health imageries. PMID:26649328
Secure Biometric E-Voting Scheme
NASA Astrophysics Data System (ADS)
Ahmed, Taha Kh.; Aborizka, Mohamed
The implementation of the e-voting becomes more substantial with the rapid increase of e-government development. The recent growth in communications and cryptographic techniques facilitate the implementation of e-voting. Many countries introduced e-voting systems; unfortunately most of these systems are not fully functional. In this paper we will present an e-voting scheme that covers most of the e-voting requirements, smart card and biometric recognition technology were implemented to guarantee voter's privacy and authentication.
SPECS: Secure and Privacy Enhancing Communications Schemes for VANETs
NASA Astrophysics Data System (ADS)
Chim, T. W.; Yiu, S. M.; Hui, L. C. K.; Jiang, Zoe L.; Li, Victor O. K.
Vehicular ad hoc network (VANET) is an emerging type of networks which facilitates vehicles on roads to communicate for driving safety. The basic idea is to allow arbitrary vehicles to broadcast ad hoc messages (e.g. traffic accidents) to other vehicles. However, this raises the concern of security and privacy. Messages should be signed and verified before they are trusted while the real identity of vehicles should not be revealed, but traceable by authorized party. Existing solutions either rely heavily on a tamper-proof hardware device, or cannot satisfy the privacy requirement and do not have an effective message verification scheme. In this paper, we provide a software-based solution which makes use of only two shared secrets to satisfy the privacy requirement and gives lower message overhead and at least 45% higher successful rate than previous solutions in the message verification phase using the bloom filter and the binary search techniques. We also provide the first group communication protocol to allow vehicles to authenticate and securely communicate with others in a group of known vehicles.
Filtering methods for broadcast authentication against PKC-based denial of service in WSN: a survey
NASA Astrophysics Data System (ADS)
Afianti, Farah; Wirawan, Iwan; Suryani, Titiek
2017-11-01
Broadcast authentication is used to determine legitimate packet from authorized user. The received packet can be forwarded or used for the further purpose. The use of digital signature is one of the compromising methods but it is followed by high complexity especially in the verification process. That phenomenon is used by the adversary to force the user to verify a lot of false packet data. Kind of Denial of Service (DoS) which attacks the main signature can be mitigated by using pre-authentication methods as the first layer to filter false packet data. The objective of the filter is not replacing the main signature but as an addition to actual verification in the sensor node. This paper contributes in comparing the cost of computation, storage, and communication among several filters. The result shows Pre- Authenticator and Dos Attack-Resistant scheme have the lower overhead than the others. Thus followed by needing powerful sender. Moreover, the key chain is promising methods because of efficiency and effectiveness.
Learning Authentic Leadership in New Zealand: A Learner-Centred Methodology and Evaluation
ERIC Educational Resources Information Center
Roche, Maree
2010-01-01
This study provides preliminary examination of the efficacy of the "Best Authentic Leadership Self" exercise. A field quasi-experimental design was conducted with a dual purpose: (1) to ascertain the value of interventions aimed at triggering events to enhance the learning (c.f. teaching) of "authentic leadership? and how this…
Tajeddine, Ayman; Kayssi, Ayman; Chehab, Ali; Elhajj, Imad; Itani, Wassim
2015-01-01
In this paper, we present CENTERA, a CENtralized Trust-based Efficient Routing protocol with an appropriate authentication scheme for wireless sensor networks (WSN). CENTERA utilizes the more powerful base station (BS) to gather minimal neighbor trust information from nodes and calculate the best routes after isolating different types of “bad” nodes. By periodically accumulating these simple local observations and approximating the nodes' battery lives, the BS draws a global view of the network, calculates three quality metrics—maliciousness, cooperation, and compatibility—and evaluates the Data Trust and Forwarding Trust values of each node. Based on these metrics, the BS isolates “bad”, “misbehaving” or malicious nodes for a certain period, and put some nodes on probation. CENTERA increases the node's bad/probation level with repeated “bad” behavior, and decreases it otherwise. Then it uses a very efficient method to distribute the routing information to “good” nodes. Based on its target environment, and if required, CENTERA uses an authentication scheme suitable for severely constrained nodes, ranging from the symmetric RC5 for safe environments under close administration, to pairing-based cryptography (PBC) for hostile environments with a strong attacker model. We simulate CENTERA using TOSSIM and verify its correctness and show some energy calculations. PMID:25648712
Tajeddine, Ayman; Kayssi, Ayman; Chehab, Ali; Elhajj, Imad; Itani, Wassim
2015-02-02
In this paper, we present CENTERA, a CENtralized Trust-based Efficient Routing protocol with an appropriate authentication scheme for wireless sensor networks (WSN). CENTERA utilizes the more powerful base station (BS) to gather minimal neighbor trust information from nodes and calculate the best routes after isolating different types of "bad" nodes. By periodically accumulating these simple local observations and approximating the nodes' battery lives, the BS draws a global view of the network, calculates three quality metrics-maliciousness, cooperation, and compatibility-and evaluates the Data Trust and Forwarding Trust values of each node. Based on these metrics, the BS isolates "bad", "misbehaving" or malicious nodes for a certain period, and put some nodes on probation. CENTERA increases the node's bad/probation level with repeated "bad" behavior, and decreases it otherwise. Then it uses a very efficient method to distribute the routing information to "good" nodes. Based on its target environment, and if required, CENTERA uses an authentication scheme suitable for severely constrained nodes, ranging from the symmetric RC5 for safe environments under close administration, to pairing-based cryptography (PBC) for hostile environments with a strong attacker model. We simulate CENTERA using TOSSIM and verify its correctness and show some energy calculations.
Multi-image encryption based on synchronization of chaotic lasers and iris authentication
NASA Astrophysics Data System (ADS)
Banerjee, Santo; Mukhopadhyay, Sumona; Rondoni, Lamberto
2012-07-01
A new technique of transmitting encrypted combinations of gray scaled and chromatic images using chaotic lasers derived from Maxwell-Bloch's equations has been proposed. This novel scheme utilizes the general method of solution of a set of linear equations to transmit similar sized heterogeneous images which are a combination of monochrome and chromatic images. The chaos encrypted gray scaled images are concatenated along the three color planes resulting in color images. These are then transmitted over a secure channel along with a cover image which is an iris scan. The entire cryptology is augmented with an iris-based authentication scheme. The secret messages are retrieved once the authentication is successful. The objective of our work is briefly outlined as (a) the biometric information is the iris which is encrypted before transmission, (b) the iris is used for personal identification and verifying for message integrity, (c) the information is transmitted securely which are colored images resulting from a combination of gray images, (d) each of the images transmitted are encrypted through chaos based cryptography, (e) these encrypted multiple images are then coupled with the iris through linear combination of images before being communicated over the network. The several layers of encryption together with the ergodicity and randomness of chaos render enough confusion and diffusion properties which guarantee a fool-proof approach in achieving secure communication as demonstrated by exhaustive statistical methods. The result is vital from the perspective of opening a fundamental new dimension in multiplexing and simultaneous transmission of several monochromatic and chromatic images along with biometry based authentication and cryptography.
ERIC Educational Resources Information Center
Hillis, Peter
2010-01-01
Much of the current focus on maximizing the potential of ICT to enhance teaching and learning is on learning tasks rather than the technology. These learning tasks increasingly employ a constructivist, problem-based methodology especially one based around authentic learning. The problem-based nature of history provides fertile ground for this…
Authenticated IGMP for Controlling Access to Multicast Distribution Tree
NASA Astrophysics Data System (ADS)
Park, Chang-Seop; Kang, Hyun-Sun
A receiver access control scheme is proposed to protect the multicast distribution tree from DoS attack induced by unauthorized use of IGMP, by extending the security-related functionality of IGMP. Based on a specific network and business model adopted for commercial deployment of IP multicast applications, a key management scheme is also presented for bootstrapping the proposed access control as well as accounting and billing for CP (Content Provider), NSP (Network Service Provider), and group members.
Li, Mengxing; Zhao, Jian; Yang, Mei; Kang, Lijun; Wu, Lili
2014-01-01
Biometrics plays an important role in authentication applications since they are strongly linked to holders. With an increasing growth of e-commerce and e-government, one can expect that biometric-based authentication systems are possibly deployed over the open networks in the near future. However, due to its openness, the Internet poses a great challenge to the security and privacy of biometric authentication. Biometric data cannot be revoked, so it is of paramount importance that biometric data should be handled in a secure way. In this paper we present a scheme achieving privacy-preserving fingerprint authentication between two parties, in which fingerprint minutiae matching algorithm is completed in the encrypted domain. To improve the efficiency, we exploit homomorphic encryption as well as garbled circuits to design the protocol. Our goal is to provide protection for the security of template in storage and data privacy of two parties in transaction. The experimental results show that the proposed authentication protocol runs efficiently. Therefore, the protocol can run over open networks and help to alleviate the concerns on security and privacy of biometric applications over the open networks. PMID:24711729
Li, Mengxing; Feng, Quan; Zhao, Jian; Yang, Mei; Kang, Lijun; Wu, Lili
2014-01-01
Biometrics plays an important role in authentication applications since they are strongly linked to holders. With an increasing growth of e-commerce and e-government, one can expect that biometric-based authentication systems are possibly deployed over the open networks in the near future. However, due to its openness, the Internet poses a great challenge to the security and privacy of biometric authentication. Biometric data cannot be revoked, so it is of paramount importance that biometric data should be handled in a secure way. In this paper we present a scheme achieving privacy-preserving fingerprint authentication between two parties, in which fingerprint minutiae matching algorithm is completed in the encrypted domain. To improve the efficiency, we exploit homomorphic encryption as well as garbled circuits to design the protocol. Our goal is to provide protection for the security of template in storage and data privacy of two parties in transaction. The experimental results show that the proposed authentication protocol runs efficiently. Therefore, the protocol can run over open networks and help to alleviate the concerns on security and privacy of biometric applications over the open networks.
ERIC Educational Resources Information Center
Bahrani, Taher; Sim, Tam Shu
2012-01-01
In today's audiovisually driven world, various audiovisual programs can be incorporated as authentic sources of potential language input for second language acquisition. In line with this view, the present research aimed at discovering the effectiveness of exposure to news, cartoons, and films as three different types of authentic audiovisual…
Comment on "Cheating prevention in visual cryptography".
Chen, Yu-Chi; Horng, Gwoboa; Tsai, Du-Shiau
2012-07-01
Visual cryptography (VC), proposed by Naor and Shamir, has numerous applications, including visual authentication and identification, steganography, and image encryption. In 2006, Horng showed that cheating is possible in VC, where some participants can deceive the remaining participants by forged transparencies. Since then, designing cheating-prevention visual secret-sharing (CPVSS) schemes has been studied by many researchers. In this paper, we cryptanalyze the Hu-Tzeng CPVSS scheme and show that it is not cheating immune. We also outline an improvement that helps to overcome the problem.
The Combination of RSA And Block Chiper Algorithms To Maintain Message Authentication
NASA Astrophysics Data System (ADS)
Yanti Tarigan, Sepri; Sartika Ginting, Dewi; Lumban Gaol, Melva; Lorensi Sitompul, Kristin
2017-12-01
RSA algorithm is public key algorithm using prime number and even still used today. The strength of this algorithm lies in the exponential process, and the factorial number into 2 prime numbers which until now difficult to do factoring. The RSA scheme itself adopts the block cipher scheme, where prior to encryption, the existing plaintext is divide in several block of the same length, where the plaintext and ciphertext are integers between 1 to n, where n is typically 1024 bit, and the block length itself is smaller or equal to log(n)+1 with base 2. With the combination of RSA algorithm and block chiper it is expected that the authentication of plaintext is secure. The secured message will be encrypted with RSA algorithm first and will be encrypted again using block chiper. And conversely, the chipertext will be decrypted with the block chiper first and decrypted again with the RSA algorithm. This paper suggests a combination of RSA algorithms and block chiper to secure data.
J-PAKE: Authenticated Key Exchange without PKI
NASA Astrophysics Data System (ADS)
Hao, Feng; Ryan, Peter
Password Authenticated Key Exchange (PAKE) is one of the important topics in cryptography. It aims to address a practical security problem: how to establish secure communication between two parties solely based on a shared password without requiring a Public Key Infrastructure (PKI). After more than a decade of extensive research in this field, there have been several PAKE protocols available. The EKE and SPEKE schemes are perhaps the two most notable examples. Both techniques are however patented. In this paper, we review these techniques in detail and summarize various theoretical and practical weaknesses. In addition, we present a new PAKE solution called J-PAKE. Our strategy is to depend on well-established primitives such as the Zero-Knowledge Proof (ZKP). So far, almost all of the past solutions have avoided using ZKP for the concern on efficiency. We demonstrate how to effectively integrate the ZKP into the protocol design and meanwhile achieve good efficiency. Our protocol has comparable computational efficiency to the EKE and SPEKE schemes with clear advantages on security.
K-Anonymous Multi-party Secret Handshakes
NASA Astrophysics Data System (ADS)
Xu, Shouhuai; Yung, Moti
Anonymity-protection techniques are crucial for various commercial and financial transactions, where participants are worried about their privacy. On the other hand, authentication methods are also crucial for such interactions. Secret handshake is a relatively recent mechanism that facilitates privacy-preserving mutual authentication between communicating peers. In recent years, researchers have proposed a set of secret handshake schemes based on different assumptions about the credentials used: from one-time credentials to the more general PKI-like credentials. In this paper, we concentrate on k-anonymous secret handshake schemes based on PKI-like infrastructures. More specifically, we deal with the k-anonymous m-party (m > 2) secret handshake problem, which is significantly more involved than its two-party counterpart due to the following: When an honest user hand-shakes with m - 1 parties, it must be assured that these parties are distinct; otherwise, under the mask of anonymity a dishonest participant may clone itself in a single handshake session (i.e., assuming multiple personalities).
PEM public key certificate cache server
NASA Astrophysics Data System (ADS)
Cheung, T.
1993-12-01
Privacy Enhanced Mail (PEM) provides privacy enhancement services to users of Internet electronic mail. Confidentiality, authentication, message integrity, and non-repudiation of origin are provided by applying cryptographic measures to messages transferred between end systems by the Message Transfer System. PEM supports both symmetric and asymmetric key distribution. However, the prevalent implementation uses a public key certificate-based strategy, modeled after the X.509 directory authentication framework. This scheme provides an infrastructure compatible with X.509. According to RFC 1422, public key certificates can be stored in directory servers, transmitted via non-secure message exchanges, or distributed via other means. Directory services provide a specialized distributed database for OSI applications. The directory contains information about objects and then provides structured mechanisms for accessing that information. Since directory services are not widely available now, a good approach is to manage certificates in a centralized certificate server. This document describes the detailed design of a centralized certificate cache serve. This server manages a cache of certificates and a cache of Certificate Revocation Lists (CRL's) for PEM applications. PEMapplications contact the server to obtain/store certificates and CRL's. The server software is programmed in C and ELROS. To use this server, ISODE has to be configured and installed properly. The ISODE library 'libisode.a' has to be linked together with this library because ELROS uses the transport layer functions provided by 'libisode.a.' The X.500 DAP library that is included with the ELROS distribution has to be linked in also, since the server uses the DAP library functions to communicate with directory servers.
ERIC Educational Resources Information Center
Gratch, Jonathan
2012-01-01
Project-based learning has long been used in the educational realm as it emphasis a student-centered strategy which promotes meaning, enriched learning that enhances inquiry and problem-solving skills in a rich, authentic environment. The relevance and authentic design of projects may further be enhanced by the use of technology in the classroom.…
Secure Wake-Up Scheme for WBANs
NASA Astrophysics Data System (ADS)
Liu, Jing-Wei; Ameen, Moshaddique Al; Kwak, Kyung-Sup
Network life time and hence device life time is one of the fundamental metrics in wireless body area networks (WBAN). To prolong it, especially those of implanted sensors, each node must conserve its energy as much as possible. While a variety of wake-up/sleep mechanisms have been proposed, the wake-up radio potentially serves as a vehicle to introduce vulnerabilities and attacks to WBAN, eventually resulting in its malfunctions. In this paper, we propose a novel secure wake-up scheme, in which a wake-up authentication code (WAC) is employed to ensure that a BAN Node (BN) is woken up by the correct BAN Network Controller (BNC) rather than unintended users or malicious attackers. The scheme is thus particularly implemented by a two-radio architecture. We show that our scheme provides higher security while consuming less energy than the existing schemes.
Smartphone-based secure authenticated session sharing in Internet of Personal Things
NASA Astrophysics Data System (ADS)
Krishnan, Ram; Ninglekhu, Jiwan
2015-03-01
In the context of password-based authentication, a user can only memorize limited number of usernames and passwords. They are generally referred to as user-credentials. Longer character length of passwords further adds complication in mastering them. The expansion of the Internet and our growing dependency on it, has made it almost impossible for us to handle the big pool of user-credentials. Using simple, same or similar passwords is considered a poor practice, as it can easily be compromised by password cracking tools and social engineering attacks. Therefore, a robust and painless technique to manage personal credentials for websites is desirable. In this paper, a novel technique for user-credentials management via a smart mobile device such as a smartphone in a local network is proposed. We present a secure user-credential management scheme in which user's account login (username) and password associated with websites domain name is saved into the mobile device's database using a mobile application. We develop a custom browser extension application for client and use it to import user's credentials linked with the corresponding website from the mobile device via the local Wi-Fi network connection. The browser extension imports and identifies the authentication credentials and pushes them into the target TextBox locations in the webpage, ready for the user to execute. This scheme is suitably demonstrated between two personal devices in a local network.
Authenticity preservation with histogram-based reversible data hiding and quadtree concepts.
Huang, Hsiang-Cheh; Fang, Wai-Chi
2011-01-01
With the widespread use of identification systems, establishing authenticity with sensors has become an important research issue. Among the schemes for making authenticity verification based on information security possible, reversible data hiding has attracted much attention during the past few years. With its characteristics of reversibility, the scheme is required to fulfill the goals from two aspects. On the one hand, at the encoder, the secret information needs to be embedded into the original image by some algorithms, such that the output image will resemble the input one as much as possible. On the other hand, at the decoder, both the secret information and the original image must be correctly extracted and recovered, and they should be identical to their embedding counterparts. Under the requirement of reversibility, for evaluating the performance of the data hiding algorithm, the output image quality, named imperceptibility, and the number of bits for embedding, called capacity, are the two key factors to access the effectiveness of the algorithm. Besides, the size of side information for making decoding possible should also be evaluated. Here we consider using the characteristics of original images for developing our method with better performance. In this paper, we propose an algorithm that has the ability to provide more capacity than conventional algorithms, with similar output image quality after embedding, and comparable side information produced. Simulation results demonstrate the applicability and better performance of our algorithm.
Dynamic sample size detection in learning command line sequence for continuous authentication.
Traore, Issa; Woungang, Isaac; Nakkabi, Youssef; Obaidat, Mohammad S; Ahmed, Ahmed Awad E; Khalilian, Bijan
2012-10-01
Continuous authentication (CA) consists of authenticating the user repetitively throughout a session with the goal of detecting and protecting against session hijacking attacks. While the accuracy of the detector is central to the success of CA, the detection delay or length of an individual authentication period is important as well since it is a measure of the window of vulnerability of the system. However, high accuracy and small detection delay are conflicting requirements that need to be balanced for optimum detection. In this paper, we propose the use of sequential sampling technique to achieve optimum detection by trading off adequately between detection delay and accuracy in the CA process. We illustrate our approach through CA based on user command line sequence and naïve Bayes classification scheme. Experimental evaluation using the Greenberg data set yields encouraging results consisting of a false acceptance rate (FAR) of 11.78% and a false rejection rate (FRR) of 1.33%, with an average command sequence length (i.e., detection delay) of 37 commands. When using the Schonlau (SEA) data set, we obtain FAR = 4.28% and FRR = 12%.
Zhang, Zezhong; Qi, Qingqing
2014-05-01
Medication errors are very dangerous even fatal since it could cause serious even fatal harm to patients. In order to reduce medication errors, automated patient medication systems using the Radio Frequency Identification (RFID) technology have been used in many hospitals. The data transmitted in those medication systems is very important and sensitive. In the past decade, many security protocols have been proposed to ensure its secure transition attracted wide attention. Due to providing mutual authentication between the medication server and the tag, the RFID authentication protocol is considered as the most important security protocols in those systems. In this paper, we propose a RFID authentication protocol to enhance patient medication safety using elliptic curve cryptography (ECC). The analysis shows the proposed protocol could overcome security weaknesses in previous protocols and has better performance. Therefore, the proposed protocol is very suitable for automated patient medication systems.
A multimodal biometric authentication system based on 2D and 3D palmprint features
NASA Astrophysics Data System (ADS)
Aggithaya, Vivek K.; Zhang, David; Luo, Nan
2008-03-01
This paper presents a new personal authentication system that simultaneously exploits 2D and 3D palmprint features. Here, we aim to improve the accuracy and robustness of existing palmprint authentication systems using 3D palmprint features. The proposed system uses an active stereo technique, structured light, to capture 3D image or range data of the palm and a registered intensity image simultaneously. The surface curvature based method is employed to extract features from 3D palmprint and Gabor feature based competitive coding scheme is used for 2D representation. We individually analyze these representations and attempt to combine them with score level fusion technique. Our experiments on a database of 108 subjects achieve significant improvement in performance (Equal Error Rate) with the integration of 3D features as compared to the case when 2D palmprint features alone are employed.
Clone-preventive technique that features magnetic microfibers and cryptography
NASA Astrophysics Data System (ADS)
Matsumoto, Hiroyuki; Suzuki, Keiichi; Matsumoto, Tsutomu
1998-04-01
We have used the term 'clone' to refer to those things which are produced by methods such as counterfeiting, alteration, duplication or simulation. To satisfy the requirements of secure and low-cost techniques for preventing card fraud, we have recently developed a clone preventive system called 'FibeCrypt (Fiber Cryptosystem)' which utilizes physical characteristics. Each card has a canonical domain (i.e. a distinctive part), similar to fingerprints as the biometric measurement, made up of magnetic micro-fibers scattered randomly inside. We have applied cryptosystems to the system. FibeCrypt examines and authenticates the unique pattern of the canonical domain using pre-stored reference data and a digital signature. In our paper, the schemes and the features of this system are described in detail. The results of our examinations show the accuracy of authentication of the system. We conclude that this authentication technique which utilizes physical characteristics can be very effective for clone prevention in various fields.
NASA Astrophysics Data System (ADS)
Guzzomi, Andrew L.; Male, Sally A.; Miller, Karol
2017-05-01
Engineering educators should motivate and support students in developing not only technical competence but also professional competence including commitment to excellence. We developed an authentic assessment to improve students' understanding of the importance of 'perfection' in engineering - whereby 50% good enough will not be acceptable in industry. Subsequently we aimed to motivate them to practise performing at their best when they practice engineering. Students in a third-year mechanical and mechatronic engineering unit completed a team design project designed with authentic assessment features to replicate industry expectations and a novel marking scheme to encourage the pursuit of excellence. We report mixed responses from students. Students' ratings of their levels of effort on this assessment indicate that many perceived a positive influence on their effort. However, students' comments included several that were consistent with students experiencing the assessment as alienating.
Secure and Privacy Enhanced Gait Authentication on Smart Phone
Choi, Deokjai
2014-01-01
Smart environments established by the development of mobile technology have brought vast benefits to human being. However, authentication mechanisms on portable smart devices, particularly conventional biometric based approaches, still remain security and privacy concerns. These traditional systems are mostly based on pattern recognition and machine learning algorithms, wherein original biometric templates or extracted features are stored under unconcealed form for performing matching with a new biometric sample in the authentication phase. In this paper, we propose a novel gait based authentication using biometric cryptosystem to enhance the system security and user privacy on the smart phone. Extracted gait features are merely used to biometrically encrypt a cryptographic key which is acted as the authentication factor. Gait signals are acquired by using an inertial sensor named accelerometer in the mobile device and error correcting codes are adopted to deal with the natural variation of gait measurements. We evaluate our proposed system on a dataset consisting of gait samples of 34 volunteers. We achieved the lowest false acceptance rate (FAR) and false rejection rate (FRR) of 3.92% and 11.76%, respectively, in terms of key length of 50 bits. PMID:24955403
A Secure Three-Factor User Authentication and Key Agreement Protocol for TMIS With User Anonymity.
Amin, Ruhul; Biswas, G P
2015-08-01
Telecare medical information system (TMIS) makes an efficient and convenient connection between patient(s)/user(s) and doctor(s) over the insecure internet. Therefore, data security, privacy and user authentication are enormously important for accessing important medical data over insecure communication. Recently, many user authentication protocols for TMIS have been proposed in the literature and it has been observed that most of the protocols cannot achieve complete security requirements. In this paper, we have scrutinized two (Mishra et al., Xu et al.) remote user authentication protocols using smart card and explained that both the protocols are suffering against several security weaknesses. We have then presented three-factor user authentication and key agreement protocol usable for TMIS, which fix the security pitfalls of the above mentioned schemes. The informal cryptanalysis makes certain that the proposed protocol provides well security protection on the relevant security attacks. Furthermore, the simulator AVISPA tool confirms that the protocol is secure against active and passive attacks including replay and man-in-the-middle attacks. The security functionalities and performance comparison analysis confirm that our protocol not only provide strong protection on security attacks, but it also achieves better complexities along with efficient login and password change phase as well as session key verification property.
Content fragile watermarking for H.264/AVC video authentication
NASA Astrophysics Data System (ADS)
Ait Sadi, K.; Guessoum, A.; Bouridane, A.; Khelifi, F.
2017-04-01
Discrete cosine transform is exploited in this work to generate the authentication data that are treated as a fragile watermark. This watermark is embedded in the motion vectors. The advances in multimedia technologies and digital processing tools have brought with them new challenges for the source and content authentication. To ensure the integrity of the H.264/AVC video stream, we introduce an approach based on a content fragile video watermarking method using an independent authentication of each group of pictures (GOPs) within the video. This technique uses robust visual features extracted from the video pertaining to the set of selected macroblocs (MBs) which hold the best partition mode in a tree-structured motion compensation process. An additional security degree is offered by the proposed method through using a more secured keyed function HMAC-SHA-256 and randomly choosing candidates from already selected MBs. In here, the watermark detection and verification processes are blind, whereas the tampered frames detection is not since it needs the original frames within the tampered GOPs. The proposed scheme achieves an accurate authentication technique with a high fragility and fidelity whilst maintaining the original bitrate and the perceptual quality. Furthermore, its ability to detect the tampered frames in case of spatial, temporal and colour manipulations is confirmed.
A robust trust establishment scheme for wireless sensor networks.
Ishmanov, Farruh; Kim, Sung Won; Nam, Seung Yeob
2015-03-23
Security techniques like cryptography and authentication can fail to protect a network once a node is compromised. Hence, trust establishment continuously monitors and evaluates node behavior to detect malicious and compromised nodes. However, just like other security schemes, trust establishment is also vulnerable to attack. Moreover, malicious nodes might misbehave intelligently to trick trust establishment schemes. Unfortunately, attack-resistance and robustness issues with trust establishment schemes have not received much attention from the research community. Considering the vulnerability of trust establishment to different attacks and the unique features of sensor nodes in wireless sensor networks, we propose a lightweight and robust trust establishment scheme. The proposed trust scheme is lightweight thanks to a simple trust estimation method. The comprehensiveness and flexibility of the proposed trust estimation scheme make it robust against different types of attack and misbehavior. Performance evaluation under different types of misbehavior and on-off attacks shows that the detection rate of the proposed trust mechanism is higher and more stable compared to other trust mechanisms.
Research on Signature Verification Method Based on Discrete Fréchet Distance
NASA Astrophysics Data System (ADS)
Fang, J. L.; Wu, W.
2018-05-01
This paper proposes a multi-feature signature template based on discrete Fréchet distance, which breaks through the limitation of traditional signature authentication using a single signature feature. It solves the online handwritten signature authentication signature global feature template extraction calculation workload, signature feature selection unreasonable problem. In this experiment, the false recognition rate (FAR) and false rejection rate (FRR) of the statistical signature are calculated and the average equal error rate (AEER) is calculated. The feasibility of the combined template scheme is verified by comparing the average equal error rate of the combination template and the original template.
NASA Astrophysics Data System (ADS)
Kuseler, Torben; Lami, Ihsan; Jassim, Sabah; Sellahewa, Harin
2010-04-01
The use of mobile communication devices with advance sensors is growing rapidly. These sensors are enabling functions such as Image capture, Location applications, and Biometric authentication such as Fingerprint verification and Face & Handwritten signature recognition. Such ubiquitous devices are essential tools in today's global economic activities enabling anywhere-anytime financial and business transactions. Cryptographic functions and biometric-based authentication can enhance the security and confidentiality of mobile transactions. Using Biometric template security techniques in real-time biometric-based authentication are key factors for successful identity verification solutions, but are venerable to determined attacks by both fraudulent software and hardware. The EU-funded SecurePhone project has designed and implemented a multimodal biometric user authentication system on a prototype mobile communication device. However, various implementations of this project have resulted in long verification times or reduced accuracy and/or security. This paper proposes to use built-in-self-test techniques to ensure no tampering has taken place on the verification process prior to performing the actual biometric authentication. These techniques utilises the user personal identification number as a seed to generate a unique signature. This signature is then used to test the integrity of the verification process. Also, this study proposes the use of a combination of biometric modalities to provide application specific authentication in a secure environment, thus achieving optimum security level with effective processing time. I.e. to ensure that the necessary authentication steps and algorithms running on the mobile device application processor can not be undermined or modified by an imposter to get unauthorized access to the secure system.
Secure FAST: Security Enhancement in the NATO Time Sensitive Targeting Tool
2010-11-01
designed to aid in the tracking and prosecuting of Time Sensitive Targets. The FAST tool provides user level authentication and authorisation in terms...level authentication and authorisation in terms of security. It uses operating system level security but does not provide application level security for...and collaboration tool, designed to aid in the tracking and prosecuting of Time Sensitive Targets. The FAST tool provides user level authentication and
Secure E-Business applications based on the European Citizen Card
NASA Astrophysics Data System (ADS)
Zipfel, Christian; Daum, Henning; Meister, Gisela
The introduction of ID cards enhanced with electronic authentication services opens up the possibility to use these for identification and authentication in e-business applications. To avoid incompatible national solutions, the specification of the European Citizen Card aims at defining interoperable services for such use cases. Especially the given device authentication methods can help to eliminate security problems with current e-business and online banking applications.
Anonymous Transactions in Computer Networks
NASA Astrophysics Data System (ADS)
Dolev, Shlomi; Kopeetsky, Marina
We present schemes for providing anonymous transactions while privacy and anonymity are preserved, providing user anonymous authentication in distributed networks such as the Internet. We first present a practical scheme for anonymous transactions while the transaction resolution is assisted by a Trusted Authority. This practical scheme is extended to a theoretical scheme where a Trusted Authority is not involved in the transaction resolution. Given an authority that generates for each player hard to produce evidence EVID (e. g., problem instance with or without a solution) to each player, the identity of a user U is defined by the ability to prove possession of said evidence. We use Zero-Knowledge proof techniques to repeatedly identify U by providing a proof that U has evidence EVID, without revealing EVID, therefore avoiding identity theft.
Position-based quantum cryptography over untrusted networks
NASA Astrophysics Data System (ADS)
Nadeem, Muhammad
2014-08-01
In this article, we propose quantum position verification (QPV) schemes where all the channels are untrusted except the position of the prover and distant reference stations of verifiers. We review and analyze the existing QPV schemes containing some pre-shared data between the prover and verifiers. Most of these schemes are based on non-cryptographic assumptions, i.e. quantum/classical channels between the verifiers are secure. It seems impractical in an environment fully controlled by adversaries and would lead to security compromise in practical implementations. However, our proposed formula for QPV is more robust, secure and according to the standard assumptions of cryptography. Furthermore, once the position of the prover is verified, our schemes establish secret keys in parallel and can be used for authentication and secret communication between the prover and verifiers.
Chong, Edmund Jun Meng; Lim, Jessica Shih Wei; Liu, Yuchan; Lau, Yvonne Yen Lin; Wu, Vivien Xi
2016-09-01
With evolving healthcare demands, nursing educators need to constantly review their teaching methodologies in order to enhance learners' knowledge and competency of skills in the clinical settings. Learning is an active process in which meaning is accomplished on the basis of experience and that authentic assessment pedagogy will enable nursing students to play an active part in their learning. The study was conducted with an aim to examine nursing students' learning domains through the introduction of the authentic assessment pedagogy during their clinical practice. A quasi-experimental study (n = 54) was conducted over a period of 10 weeks at a local tertiary hospital. The experimental group was exposed to the authentic assessment pedagogy and were taught to use the assessment rubrics as an instrument to help enhance their learning. Students were assessed and scored according to the assessment rubrics, which were categorized into four domains; cognitive, psychomotor, affective and critical thinking abilities. The findings indicated that an overall score for the four domains between the experimental and control groups were significant, with p value of <0.05. Critical thinking scores were indicative of consistent improvement within the experimental group. The findings confirmed that learning outcomes of the nursing students were enhanced through the early introduction of the authentic assessment pedagogy in the clinical setting. Copyright © 2016 Elsevier Ltd. All rights reserved.
An Identity Based Key Exchange Protocol in Cloud Computing
NASA Astrophysics Data System (ADS)
Molli, Venkateswara Rao; Tiwary, Omkar Nath
2012-10-01
Workflow systems often use delegation to enhance the flexibility of authorization; delegation transfers privileges among users across different administrative domains and facilitates information sharing. We present an independently verifiable delegation mechanism, where a delegation credential can be verified without the participation of domain administrators. This protocol, called role-based cascaded delegation (RBCD), supports simple and efficient cross-domain delegation of authority. RBCD enables a role member to create delegations based on the dynamic needs of collaboration; in the meantime, a delegation chain canbe verified by anyone without the participation of role administrators. We also propose the Measurable Risk Adaptive decentralized Role-based Delegation framework to address this problem. Describe an efficient realization of RBCD by using aggregate signatures, where the authentication information for an arbitrarily long role-based delegation chain is captured by one short signature of constant size. RBCD enables a role member to create delegations based on the need of collaboration; in the meantime anyone can verify a delegation chain without the participation of role administrators. The protocol is general and can be realized by any signature scheme. We have described a specific realization with a hierarchical certificate-based encryption scheme that gives delegation compact credentials.
Supervised Multi-Authority Scheme with Blind Signature for IoT with Attribute Based Encryption
NASA Astrophysics Data System (ADS)
Nissenbaum, O. V.; Ponomarov, K. Y.; Zaharov, A. A.
2018-04-01
This article proposes a three-side cryptographic scheme for verifying device attributes with a Supervisor and a Certification Authority (CA) for attribute-based encryption. Two options are suggested: using a message authentication code and using a digital signature. The first version is suitable for networks with one CA, and the second one for networks with several CAs, including dynamic systems. Also, the addition of this scheme with a blind signature is proposed to preserve the confidentiality of the device attributes from the CA. The introduction gives a definition and a brief historical overview of attribute-based encryption (ABE), addresses the use of ABE in the Internet of Things.
Field trial of the enhanced data authentication system (EDAS)
Thomas, Maikael A.; Hymel, Ross W.; Baldwin, George; ...
2016-11-01
The Enhanced Data Authentication System (EDAS) is means to securely branch information from an existing measurement system or data stream to a secondary observer. In an international nuclear safeguards context, the EDAS connects to operator instrumentation, and provides a cryptographically secure copy of the information for a safeguards inspectorate. However, this novel capability could be a valuable complement to inspector-owned safeguards instrumentation, offering context that is valuable for anomaly resolution and contingency.
Using Authentic Science in the Classroom: NASA's Coordinated Efforts to Enhance STEM Education
NASA Astrophysics Data System (ADS)
Lawton, B.; Schwerin, T.; Low, R.
2015-11-01
A key NASA education goal is to attract and retain students in science, technology engineering, and mathematics (STEM) disciplines. When teachers engage students in the examination of authentic data derived from NASA satellite missions, they simultaneously build 21st century technology skills as well as core content knowledge about the Earth and space. In this session, we highlight coordinated efforts by NASA Science Mission Directorate (SMD) Education and Public Outreach (EPO) programs to enhance educator accessibility to data resources, distribute state-of -the-art data tools and expand pathways for educators to find and use data resources. The group discussion explores how NASA SMD EPO efforts can further improve teacher access to authentic NASA data, identifies the types of tools and lessons most requested by the community, and explores how communication and collaboration between product developers and classroom educators using data tools and products can be enhanced.
The Case for Authentic Materials on Videodisc.
ERIC Educational Resources Information Center
Saint-Leon, Claire Brandicourt
1988-01-01
Foreign language video is invaluable for enhancing foreign language instruction, particularly when combined with laser videodisc technology, which allows learners to study minute details. Authentic materials should be made available on videodisks to fully exploit the resources of foreign language video. (Author/CB)
Li, Chun-Ta; Shih, Dong-Her; Wang, Chun-Cheng
2018-04-01
With the rapid development of wireless communication technologies and the growing prevalence of smart devices, telecare medical information system (TMIS) allows patients to receive medical treatments from the doctors via Internet technology without visiting hospitals in person. By adopting mobile device, cloud-assisted platform and wireless body area network, the patients can collect their physiological conditions and upload them to medical cloud via their mobile devices, enabling caregivers or doctors to provide patients with appropriate treatments at anytime and anywhere. In order to protect the medical privacy of the patient and guarantee reliability of the system, before accessing the TMIS, all system participants must be authenticated. Mohit et al. recently suggested a lightweight authentication protocol for cloud-based health care system. They claimed their protocol ensures resilience of all well-known security attacks and has several important features such as mutual authentication and patient anonymity. In this paper, we demonstrate that Mohit et al.'s authentication protocol has various security flaws and we further introduce an enhanced version of their protocol for cloud-assisted TMIS, which can ensure patient anonymity and patient unlinkability and prevent the security threats of report revelation and report forgery attacks. The security analysis proves that our enhanced protocol is secure against various known attacks as well as found in Mohit et al.'s protocol. Compared with existing related protocols, our enhanced protocol keeps the merits of all desirable security requirements and also maintains the efficiency in terms of computation costs for cloud-assisted TMIS. We propose a more secure mutual authentication and privacy preservation protocol for cloud-assisted TMIS, which fixes the mentioned security weaknesses found in Mohit et al.'s protocol. According to our analysis, our authentication protocol satisfies most functionality features for privacy preservation and effectively cope with cloud-assisted TMIS with better efficiency. Copyright © 2018 Elsevier B.V. All rights reserved.
Unconditionally secure commitment in position-based quantum cryptography.
Nadeem, Muhammad
2014-10-27
A new commitment scheme based on position-verification and non-local quantum correlations is presented here for the first time in literature. The only credential for unconditional security is the position of committer and non-local correlations generated; neither receiver has any pre-shared data with the committer nor does receiver require trusted and authenticated quantum/classical channels between him and the committer. In the proposed scheme, receiver trusts the commitment only if the scheme itself verifies position of the committer and validates her commitment through non-local quantum correlations in a single round. The position-based commitment scheme bounds committer to reveal valid commitment within allocated time and guarantees that the receiver will not be able to get information about commitment unless committer reveals. The scheme works for the commitment of both bits and qubits and is equally secure against committer/receiver as well as against any third party who may have interests in destroying the commitment. Our proposed scheme is unconditionally secure in general and evades Mayers and Lo-Chau attacks in particular.
Efficient bit sifting scheme of post-processing in quantum key distribution
NASA Astrophysics Data System (ADS)
Li, Qiong; Le, Dan; Wu, Xianyan; Niu, Xiamu; Guo, Hong
2015-10-01
Bit sifting is an important step in the post-processing of quantum key distribution (QKD). Its function is to sift out the undetected original keys. The communication traffic of bit sifting has essential impact on the net secure key rate of a practical QKD system. In this paper, an efficient bit sifting scheme is presented, of which the core is a lossless source coding algorithm. Both theoretical analysis and experimental results demonstrate that the performance of the scheme is approaching the Shannon limit. The proposed scheme can greatly decrease the communication traffic of the post-processing of a QKD system, which means the proposed scheme can decrease the secure key consumption for classical channel authentication and increase the net secure key rate of the QKD system, as demonstrated by analyzing the improvement on the net secure key rate. Meanwhile, some recommendations on the application of the proposed scheme to some representative practical QKD systems are also provided.
A broadcast-based key agreement scheme using set reconciliation for wireless body area networks.
Ali, Aftab; Khan, Farrukh Aslam
2014-05-01
Information and communication technologies have thrived over the last few years. Healthcare systems have also benefited from this progression. A wireless body area network (WBAN) consists of small, low-power sensors used to monitor human physiological values remotely, which enables physicians to remotely monitor the health of patients. Communication security in WBANs is essential because it involves human physiological data. Key agreement and authentication are the primary issues in the security of WBANs. To agree upon a common key, the nodes exchange information with each other using wireless communication. This information exchange process must be secure enough or the information exchange should be minimized to a certain level so that if information leak occurs, it does not affect the overall system. Most of the existing solutions for this problem exchange too much information for the sake of key agreement; getting this information is sufficient for an attacker to reproduce the key. Set reconciliation is a technique used to reconcile two similar sets held by two different hosts with minimal communication complexity. This paper presents a broadcast-based key agreement scheme using set reconciliation for secure communication in WBANs. The proposed scheme allows the neighboring nodes to agree upon a common key with the personal server (PS), generated from the electrocardiogram (EKG) feature set of the host body. Minimal information is exchanged in a broadcast manner, and even if every node is missing a different subset, by reconciling these feature sets, the whole network will still agree upon a single common key. Because of the limited information exchange, if an attacker gets the information in any way, he/she will not be able to reproduce the key. The proposed scheme mitigates replay, selective forwarding, and denial of service attacks using a challenge-response authentication mechanism. The simulation results show that the proposed scheme has a great deal of adoptability in terms of security, communication overhead, and running time complexity, as compared to the existing EKG-based key agreement scheme.
78 FR 38240 - Authentication of Electronic Signatures on Electronically Filed Statements of Account
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-26
... up by any trick, scheme, or device a material fact; (2) makes any materially false, fictitious, or fraudulent statement or representation; or (3) makes or uses any false writing or document knowing the same to contain any materially false, fictitious, or fraudulent statement or entry; shall be fined under...
Cryptography Would Reveal Alterations In Photographs
NASA Technical Reports Server (NTRS)
Friedman, Gary L.
1995-01-01
Public-key decryption method proposed to guarantee authenticity of photographic images represented in form of digital files. In method, digital camera generates original data from image in standard public format; also produces coded signature to verify standard-format image data. Scheme also helps protect against other forms of lying, such as attaching false captions.
Practical and Secure Recovery of Disk Encryption Key Using Smart Cards
NASA Astrophysics Data System (ADS)
Omote, Kazumasa; Kato, Kazuhiko
In key-recovery methods using smart cards, a user can recover the disk encryption key in cooperation with the system administrator, even if the user has lost the smart card including the disk encryption key. However, the disk encryption key is known to the system administrator in advance in most key-recovery methods. Hence user's disk data may be read by the system administrator. Furthermore, if the disk encryption key is not known to the system administrator in advance, it is difficult to achieve a key authentication. In this paper, we propose a scheme which enables to recover the disk encryption key when the user's smart card is lost. In our scheme, the disk encryption key is not preserved anywhere and then the system administrator cannot know the key before key-recovery phase. Only someone who has a user's smart card and knows the user's password can decrypt that user's disk data. Furthermore, we measured the processing time required for user authentication in an experimental environment using a virtual machine monitor. As a result, we found that this processing time is short enough to be practical.
Watermarking of ultrasound medical images in teleradiology using compressed watermark
Badshah, Gran; Liew, Siau-Chuin; Zain, Jasni Mohamad; Ali, Mushtaq
2016-01-01
Abstract. The open accessibility of Internet-based medical images in teleradialogy face security threats due to the nonsecured communication media. This paper discusses the spatial domain watermarking of ultrasound medical images for content authentication, tamper detection, and lossless recovery. For this purpose, the image is divided into two main parts, the region of interest (ROI) and region of noninterest (RONI). The defined ROI and its hash value are combined as watermark, lossless compressed, and embedded into the RONI part of images at pixel’s least significant bits (LSBs). The watermark lossless compression and embedding at pixel’s LSBs preserve image diagnostic and perceptual qualities. Different lossless compression techniques including Lempel-Ziv-Welch (LZW) were tested for watermark compression. The performances of these techniques were compared based on more bit reduction and compression ratio. LZW was found better than others and used in tamper detection and recovery watermarking of medical images (TDARWMI) scheme development to be used for ROI authentication, tamper detection, localization, and lossless recovery. TDARWMI performance was compared and found to be better than other watermarking schemes. PMID:26839914
Wu, Zhen-Yu; Tseng, Yi-Ju; Chung, Yufang; Chen, Yee-Chun; Lai, Feipei
2012-08-01
With the rapid development of the Internet, both digitization and electronic orientation are required on various applications in the daily life. For hospital-acquired infection control, a Web-based Hospital-acquired Infection Surveillance System was implemented. Clinical data from different hospitals and systems were collected and analyzed. The hospital-acquired infection screening rules in this system utilized this information to detect different patterns of defined hospital-acquired infection. Moreover, these data were integrated into the user interface of a signal entry point to assist physicians and healthcare providers in making decisions. Based on Service-Oriented Architecture, web-service techniques which were suitable for integrating heterogeneous platforms, protocols, and applications, were used. In summary, this system simplifies the workflow of hospital infection control and improves the healthcare quality. However, it is probable for attackers to intercept the process of data transmission or access to the user interface. To tackle the illegal access and to prevent the information from being stolen during transmission over the insecure Internet, a password-based user authentication scheme is proposed for information integrity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solis, John Hector
In this paper, we present a modular framework for constructing a secure and efficient program obfuscation scheme. Our approach, inspired by the obfuscation with respect to oracle machines model of [4], retains an interactive online protocol with an oracle, but relaxes the original computational and storage restrictions. We argue this is reasonable given the computational resources of modern personal devices. Furthermore, we relax the information-theoretic security requirement for computational security to utilize established cryptographic primitives. With this additional flexibility we are free to explore different cryptographic buildingblocks. Our approach combines authenticated encryption with private information retrieval to construct a securemore » program obfuscation framework. We give a formal specification of our framework, based on desired functionality and security properties, and provide an example instantiation. In particular, we implement AES in Galois/Counter Mode for authenticated encryption and the Gentry-Ramzan [13]constant communication-rate private information retrieval scheme. We present our implementation results and show that non-trivial sized programs can be realized, but scalability is quickly limited by computational overhead. Finally, we include a discussion on security considerations when instantiating specific modules.« less
Reddy, Alavalapati Goutham; Das, Ashok Kumar; Odelu, Vanga; Yoo, Kee-Young
2016-01-01
Biometric based authentication protocols for multi-server architectures have gained momentum in recent times due to advancements in wireless technologies and associated constraints. Lu et al. recently proposed a robust biometric based authentication with key agreement protocol for a multi-server environment using smart cards. They claimed that their protocol is efficient and resistant to prominent security attacks. The careful investigation of this paper proves that Lu et al.'s protocol does not provide user anonymity, perfect forward secrecy and is susceptible to server and user impersonation attacks, man-in-middle attacks and clock synchronization problems. In addition, this paper proposes an enhanced biometric based authentication with key-agreement protocol for multi-server architecture based on elliptic curve cryptography using smartcards. We proved that the proposed protocol achieves mutual authentication using Burrows-Abadi-Needham (BAN) logic. The formal security of the proposed protocol is verified using the AVISPA (Automated Validation of Internet Security Protocols and Applications) tool to show that our protocol can withstand active and passive attacks. The formal and informal security analyses and performance analysis demonstrates that the proposed protocol is robust and efficient compared to Lu et al.'s protocol and existing similar protocols.
Authentic Listening Materials for Business English.
ERIC Educational Resources Information Center
Grosse, Christine Uber
Authentic listening materials are appropriate and desirable for instruction in English as a second language (ESL) for business purposes for several reasons: they have high interest, leading to enhanced motivation and increased opportunity for learning; they contain many natural redundancies and repetitions that facilitate comprehension; and they…
Tan, Chun Kiat; Ng, Jason Changwei; Xu, Xiaotian; Poh, Chueh Loo; Guan, Yong Liang; Sheah, Kenneth
2011-06-01
Teleradiology applications and universal availability of patient records using web-based technology are rapidly gaining importance. Consequently, digital medical image security has become an important issue when images and their pertinent patient information are transmitted across public networks, such as the Internet. Health mandates such as the Health Insurance Portability and Accountability Act require healthcare providers to adhere to security measures in order to protect sensitive patient information. This paper presents a fully reversible, dual-layer watermarking scheme with tamper detection capability for medical images. The scheme utilizes concepts of public-key cryptography and reversible data-hiding technique. The scheme was tested using medical images in DICOM format. The results show that the scheme is able to ensure image authenticity and integrity, and to locate tampered regions in the images.
Unobtrusive Multimodal Biometric Authentication: The HUMABIO Project Concept
NASA Astrophysics Data System (ADS)
Damousis, Ioannis G.; Tzovaras, Dimitrios; Bekiaris, Evangelos
2008-12-01
Human Monitoring and Authentication using Biodynamic Indicators and Behavioural Analysis (HUMABIO) (2007) is an EU Specific Targeted Research Project (STREP) where new types of biometrics are combined with state of the art sensorial technologies in order to enhance security in a wide spectrum of applications. The project aims to develop a modular, robust, multimodal biometrics security authentication and monitoring system which utilizes a biodynamic physiological profile, unique for each individual, and advancements of the state-of-the art in behavioural and other biometrics, such as face, speech, gait recognition, and seat-based anthropometrics. Several shortcomings in biometric authentication will be addressed in the course of HUMABIO which will provide the basis for improving existing sensors, develop new algorithms, and design applications, towards creating new, unobtrusive biometric authentication procedures in security sensitive, controlled environments. This paper presents the concept of this project, describes its unobtrusive authentication demonstrator, and reports some preliminary results.
Authenticity and Relationship Satisfaction: Two Distinct Ways of Directing Power to Self-Esteem.
Wang, Yi Nan
2015-01-01
Possessing power contributes to high self-esteem, but how power enhances self-esteem is still unknown. As power is associated with both self-oriented goals and social-responsibility goals, we proposed that power predicts self-esteem through two positive personal and interpersonal results: authenticity and relationship satisfaction. Three studies were carried out with a total of 505 Chinese participants, including college students and adults, who completed surveys that assessed personal power, self-esteem, authenticity, relationship satisfaction, communal orientation, and social desirability. Hierarchical multiple regression analyses demonstrated that power, authenticity, and relationship satisfaction each uniquely contributed to self-esteem. More importantly, multiple mediation analysis showed that authenticity and relationship satisfaction both mediated the effects of power on self-esteem, even when controlling for participants' communal orientation and social desirability. Our findings demonstrate that authenticity and relationship satisfaction represent two key mechanisms by which power is associated with self-esteem.
Authenticity and Relationship Satisfaction: Two Distinct Ways of Directing Power to Self-Esteem
Wang, Yi Nan
2015-01-01
Possessing power contributes to high self-esteem, but how power enhances self-esteem is still unknown. As power is associated with both self-oriented goals and social-responsibility goals, we proposed that power predicts self-esteem through two positive personal and interpersonal results: authenticity and relationship satisfaction. Three studies were carried out with a total of 505 Chinese participants, including college students and adults, who completed surveys that assessed personal power, self-esteem, authenticity, relationship satisfaction, communal orientation, and social desirability. Hierarchical multiple regression analyses demonstrated that power, authenticity, and relationship satisfaction each uniquely contributed to self-esteem. More importantly, multiple mediation analysis showed that authenticity and relationship satisfaction both mediated the effects of power on self-esteem, even when controlling for participants’ communal orientation and social desirability. Our findings demonstrate that authenticity and relationship satisfaction represent two key mechanisms by which power is associated with self-esteem. PMID:26720814
Discussion and a new method of optical cryptosystem based on interference
NASA Astrophysics Data System (ADS)
Lu, Dajiang; He, Wenqi; Liao, Meihua; Peng, Xiang
2017-02-01
A discussion and an objective security analysis of the well-known optical image encryption based on interference are presented in this paper. A new method is also proposed to eliminate the security risk of the original cryptosystem. For a possible practical application, we expand this new method into a hierarchical authentication scheme. In this authentication system, with a pre-generated and fixed random phase lock, different target images indicating different authentication levels are analytically encoded into corresponding phase-only masks (phase keys) and amplitude-only masks (amplitude keys). For the authentication process, a legal user can obtain a specified target image at the output plane if his/her phase key, and amplitude key, which should be settled close against the fixed internal phase lock, are respectively illuminated by two coherent beams. By comparing the target image with all the standard certification images in the database, the system can thus verify the user's legality even his/her identity level. Moreover, in despite of the internal phase lock of this system being fixed, the crosstalk between different pairs of keys held by different users is low. Theoretical analysis and numerical simulation are both provided to demonstrate the validity of this method.
A DRM based on renewable broadcast encryption
NASA Astrophysics Data System (ADS)
Ramkumar, Mahalingam; Memon, Nasir
2005-07-01
We propose an architecture for digital rights management based on a renewable, random key pre-distribution (KPD) scheme, HARPS (hashed random preloaded subsets). The proposed architecture caters for broadcast encryption by a trusted authority (TA) and by "parent" devices (devices used by vendors who manufacture compliant devices) for periodic revocation of devices. The KPD also facilitates broadcast encryption by peer devices, which permits peers to distribute content, and efficiently control access to the content encryption secret using subscription secrets. The underlying KPD also caters for broadcast authentication and mutual authentication of any two devices, irrespective of the vendors manufacturing the device, and thus provides a comprehensive solution for securing interactions between devices taking part in a DRM system.
Meat species identification and Halal authentication analysis using mitochondrial DNA.
Murugaiah, Chandrika; Noor, Zainon Mohd; Mastakim, Maimunah; Bilung, Lesley Maurice; Selamat, Jinap; Radu, Son
2009-09-01
A method utilizing PCR-restriction fragment length polymorphism (RFLP) in the mitochondrial genes was developed for beef (Bos taurus), pork (Sus scrofa), buffalo (Bubalus bubali), quail (Coturnix coturnix), chicken (Gallus gallus), goat (Capra hircus), rabbit (Oryctolagus cuniculus) species identification and Halal authentication. PCR products of 359-bp were successfully obtained from the cyt b gene of these six meats. AluI, BsaJI, RsaI, MseI, and BstUI enzymes were identified as potential restriction endonucleases to differentiate the meats. The genetic differences within the cyt b gene among the meat were successfully confirmed by PCR-RFLP. A reliable typing scheme of species which revealed the genetic differences among the species was developed.
Efficient security mechanisms for mHealth applications using wireless body sensor networks.
Sahoo, Prasan Kumar
2012-01-01
Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth) applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme.
An authentication scheme to healthcare security under wireless sensor networks.
Hsiao, Tsung-Chih; Liao, Yu-Ting; Huang, Jen-Yan; Chen, Tzer-Shyong; Horng, Gwo-Boa
2012-12-01
In recent years, Taiwan has been seeing an extension of the average life expectancy and a drop in overall fertility rate, initiating our country into an aged society. Due to this phenomenon, how to provide the elderly and patients with chronic diseases a suitable healthcare environment has become a critical issue presently. Therefore, we propose a new scheme that integrates healthcare services with wireless sensor technology in which sensor nodes are employed to measure patients' vital signs. Data collected from these sensor nodes are then transmitted to mobile devices of the medical staff and system administrator, promptly enabling them to understand the patients' condition in real time, which will significantly improve patients' healthcare quality. As per the personal data protection act, patients' vital signs can only be accessed by authorized medical staff. In order to protect patients', the system administrator will verify the medical staff's identity through the mobile device using a smart card and password mechanism. Accordingly, only the verified medical staff can obtain patients' vital signs data such as their blood pressure, pulsation, and body temperature, etc.. Besides, the scheme includes a time-bounded characteristic that allows the verified staff access to data without having to have to re-authenticate and re-login into the system within a set period of time. Consequently, the time-bounded property also increases the work efficiency of the system administrator and user.
Efficient Security Mechanisms for mHealth Applications Using Wireless Body Sensor Networks
Sahoo, Prasan Kumar
2012-01-01
Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth) applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme. PMID:23112734
A Provably-Secure Transmission Scheme for Wireless Body Area Networks.
Omala, Anyembe Andrew; Robert, Niyifasha; Li, Fagen
2016-11-01
Wireless body area network (WBANs) is composed of sensors that collect and transmit a person's physiological data to health-care providers in real-time. In order to guarantee security of this data over open networks, a secure data transmission mechanism between WBAN and application provider's servers is of necessity. Modified medical data does not provide a true reflection of an individuals state of health and its subsequent use for diagnosis could lead to an irreversible medical condition. In this paper, we propose a lightweight certificateless signcryption scheme for secure transmission of data between WBAN and servers. Our proposed scheme not only provides confidentiality of data and authentication in a single logical step, it is lightweight and resistant to key escrow attacks. We further provide security proof that our scheme provides indistinguishability against adaptive chosen ciphertext attack and unforgeability against adaptive chosen message attack in random oracle model. Compared with two other Diffie-Hellman based signcryption schemes proposed by Barbosa and Farshim (BF) and another by Yin and Liang (YL), our scheme consumes 46 % and 8 % less energy during signcryption than BF and YL scheme respectively.
Juang, Kevin; Greenstein, Joel
2018-04-01
We developed a new authentication system based on passphrases instead of passwords. Our new system incorporates a user-generated mnemonic picture displayed during login, definition tooltips, error correction to reduce typographical errors, a decoy-based input masking technique, and random passphrase generation using either a specialized wordlist or a sentence template. Passphrases exhibit a greater level of security than traditional passwords, but their wider adoption has been hindered by human factors issues. Our assertion is that the added features of our system work particularly well with passphrases and help address these shortcomings. We conducted a study to evaluate our new system with a customized 1,450-word list and our new system with a 6-word sentence structure against the control conditions of a user-created passphrase of at least 24 characters and a system-generated passphrase using a 10,326-word list. Fifty participants completed two sessions so that we could measure the usability and security of the authentication schemes. With the new system conditions, memorability was improved, and security was equivalent to or better than the control conditions. Usability and overall ratings also favored the new system conditions over the control conditions. Our research presents a new authentication system using innovative techniques that improve on the usability and security of existing password and passphrase authentication systems. In computer security, drastic changes should never happen overnight, but we recommend that our contributions be incorporated into current authentication systems to help facilitate a transition from passwords to usable passphrases.
A Lightweight Continuous Authentication Protocol for the Internet of Things.
Chuang, Yo-Hsuan; Lo, Nai-Wei; Yang, Cheng-Ying; Tang, Ssu-Wei
2018-04-05
Modern societies are moving toward an information-oriented environment. To gather and utilize information around people's modern life, tiny devices with all kinds of sensing devices and various sizes of gateways need to be deployed and connected with each other through the Internet or proxy-based wireless sensor networks (WSNs). Within this kind of Internet of Things (IoT) environment, how to authenticate each other between two communicating devices is a fundamental security issue. As a lot of IoT devices are powered by batteries and they need to transmit sensed data periodically, it is necessary for IoT devices to adopt a lightweight authentication protocol to reduce their energy consumption when a device wants to authenticate and transmit data to its targeted peer. In this paper, a lightweight continuous authentication protocol for sensing devices and gateway devices in general IoT environments is introduced. The concept of valid authentication time period is proposed to enhance robustness of authentication between IoT devices. To construct the proposed lightweight continuous authentication protocol, token technique and dynamic features of IoT devices are adopted in order to reach the design goals: the reduction of time consumption for consecutive authentications and energy saving for authenticating devices through by reducing the computation complexity during session establishment of continuous authentication. Security analysis is conducted to evaluate security strength of the proposed protocol. In addition, performance analysis has shown the proposed protocol is a strong competitor among existing protocols for device-to-device authentication in IoT environments.
TESOL in Context: Authentic Workplace Learning for Pre-Service Teachers
ERIC Educational Resources Information Center
Thomsett, Janeen; Leggett, Bridget; Ainsworth, Sharon
2011-01-01
The action research project entitled "Engaging pre-service TESOL teachers in authentic workplace learning" aimed to enhance the TESOL practicum experience of pre-service teachers in the Graduate Diploma of Education at Edith Cowan University in Perth, Western Australia. Integrated into the relevant TESOL curriculum unit was the…
Enhancing Authentic Language Learning Experiences through Internet Technology. ERIC Digest.
ERIC Educational Resources Information Center
LeLoup, Jean W.; Ponterio, Robert
Foreign language teachers are continually searching for better ways of accessing authentic materials and providing experiences that will improve their students' knowledge and skills. The Internet has transformed communication around the world and can play a major role in the foreign language classroom. This digest illustrates how Internet software…
Virtual Field Sites: Losses and Gains in Authenticity with Semantic Technologies
ERIC Educational Resources Information Center
Litherland, Kate; Stott, Tim A.
2012-01-01
The authors investigate the potential of semantic web technologies to enhance "Virtual Fieldwork" resources and learning activities in the Geosciences. They consider the difficulties inherent in the concept of Virtual Fieldwork and how these might be reconciled with the desire to provide students with "authentic" tools for…
Building Authenticity in Social Media Tools to Recruit Postsecondary Students
ERIC Educational Resources Information Center
Sandlin, Jean Kelso; Peña, Edlyn Vallejo
2014-01-01
An increasing number of institutions utilize social media tools, including student-written blogs, on their admission websites in an effort to enhance authenticity in their recruitment marketing materials. This study offers a framework for understanding what contributes to prospective college students' perceptions of social media authenticity…
Riedl, Janet; Esslinger, Susanne; Fauhl-Hassek, Carsten
2015-07-23
Food fingerprinting approaches are expected to become a very potent tool in authentication processes aiming at a comprehensive characterization of complex food matrices. By non-targeted spectrometric or spectroscopic chemical analysis with a subsequent (multivariate) statistical evaluation of acquired data, food matrices can be investigated in terms of their geographical origin, species variety or possible adulterations. Although many successful research projects have already demonstrated the feasibility of non-targeted fingerprinting approaches, their uptake and implementation into routine analysis and food surveillance is still limited. In many proof-of-principle studies, the prediction ability of only one data set was explored, measured within a limited period of time using one instrument within one laboratory. Thorough validation strategies that guarantee reliability of the respective data basis and that allow conclusion on the applicability of the respective approaches for its fit-for-purpose have not yet been proposed. Within this review, critical steps of the fingerprinting workflow were explored to develop a generic scheme for multivariate model validation. As a result, a proposed scheme for "good practice" shall guide users through validation and reporting of non-targeted fingerprinting results. Furthermore, food fingerprinting studies were selected by a systematic search approach and reviewed with regard to (a) transparency of data processing and (b) validity of study results. Subsequently, the studies were inspected for measures of statistical model validation, analytical method validation and quality assurance measures. In this context, issues and recommendations were found that might be considered as an actual starting point for developing validation standards of non-targeted metabolomics approaches for food authentication in the future. Hence, this review intends to contribute to the harmonization and standardization of food fingerprinting, both required as a prior condition for the authentication of food in routine analysis and official control. Copyright © 2015 Elsevier B.V. All rights reserved.
Qin, Zhongyuan; Zhang, Xinshuai; Feng, Kerong; Zhang, Qunfang; Huang, Jie
2014-01-01
With the rapid development and widespread adoption of wireless sensor networks (WSNs), security has become an increasingly prominent problem. How to establish a session key in node communication is a challenging task for WSNs. Considering the limitations in WSNs, such as low computing capacity, small memory, power supply limitations and price, we propose an efficient identity-based key management (IBKM) scheme, which exploits the Bloom filter to authenticate the communication sensor node with storage efficiency. The security analysis shows that IBKM can prevent several attacks effectively with acceptable computation and communication overhead. PMID:25264955
The influence of authentic leadership on safety climate in nursing.
Dirik, Hasan Fehmi; Seren Intepeler, Seyda
2017-07-01
This study analysed nurses' perceptions of authentic leadership and safety climate and examined the contribution of authentic leadership to the safety climate. It has been suggested and emphasised that authentic leadership should be used as a guidance to ensure quality care and the safety of patients and health-care personnel. This predictive study was conducted with 350 nurses in three Turkish hospitals. The data were collected using the Authentic Leadership Questionnaire and the Safety Climate Survey and analysed using hierarchical regression analysis. The mean authentic leadership perception and the safety climate scores of the nurses were 2.92 and 3.50, respectively. The percentage of problematic responses was found to be less than 10% for only four safety climate items. Hierarchical regression analysis revealed that authentic leadership significantly predicted the safety climate. Procedural and political improvements are required in terms of the safety climate in institutions, where the study was conducted, and authentic leadership increases positive perceptions of safety climate. Exhibiting the characteristics of authentic leadership, or improving them and reflecting them on to personnel can enhance the safety climate. Planning information sharing meetings to raise the personnel's awareness of safety climate and systemic improvements can contribute to creating safe care climates. © 2017 John Wiley & Sons Ltd.
Efficient Secure and Privacy-Preserving Route Reporting Scheme for VANETs
NASA Astrophysics Data System (ADS)
Zhang, Yuanfei; Pei, Qianwen; Dai, Feifei; Zhang, Lei
2017-10-01
Vehicular ad-hoc network (VANET) is a core component of intelligent traffic management system which could provide various of applications such as accident prediction, route reporting, etc. Due to the problems caused by traffic congestion, route reporting becomes a prospective application which can help a driver to get optimal route to save her travel time. Before enjoying the convenience of route reporting, security and privacy-preserving issues need to be concerned. In this paper, we propose a new secure and privacy-preserving route reporting scheme for VANETs. In our scheme, only an authenticated vehicle can use the route reporting service provided by the traffic management center. Further, a vehicle may receive the response from the traffic management center with low latency and without violating the privacy of the vehicle. Experiment results show that our scheme is much more efficiency than the existing one.
Zhang, Lei; Zhang, Jing
2017-08-07
A Smart Grid (SG) facilitates bidirectional demand-response communication between individual users and power providers with high computation and communication performance but also brings about the risk of leaking users' private information. Therefore, improving the individual power requirement and distribution efficiency to ensure communication reliability while preserving user privacy is a new challenge for SG. Based on this issue, we propose an efficient and privacy-preserving power requirement and distribution aggregation scheme (EPPRD) based on a hierarchical communication architecture. In the proposed scheme, an efficient encryption and authentication mechanism is proposed for better fit to each individual demand-response situation. Through extensive analysis and experiment, we demonstrate how the EPPRD resists various security threats and preserves user privacy while satisfying the individual requirement in a semi-honest model; it involves less communication overhead and computation time than the existing competing schemes.
Zhang, Lei; Zhang, Jing
2017-01-01
A Smart Grid (SG) facilitates bidirectional demand-response communication between individual users and power providers with high computation and communication performance but also brings about the risk of leaking users’ private information. Therefore, improving the individual power requirement and distribution efficiency to ensure communication reliability while preserving user privacy is a new challenge for SG. Based on this issue, we propose an efficient and privacy-preserving power requirement and distribution aggregation scheme (EPPRD) based on a hierarchical communication architecture. In the proposed scheme, an efficient encryption and authentication mechanism is proposed for better fit to each individual demand-response situation. Through extensive analysis and experiment, we demonstrate how the EPPRD resists various security threats and preserves user privacy while satisfying the individual requirement in a semi-honest model; it involves less communication overhead and computation time than the existing competing schemes. PMID:28783122
Reddy, Alavalapati Goutham; Das, Ashok Kumar; Odelu, Vanga; Yoo, Kee-Young
2016-01-01
Biometric based authentication protocols for multi-server architectures have gained momentum in recent times due to advancements in wireless technologies and associated constraints. Lu et al. recently proposed a robust biometric based authentication with key agreement protocol for a multi-server environment using smart cards. They claimed that their protocol is efficient and resistant to prominent security attacks. The careful investigation of this paper proves that Lu et al.’s protocol does not provide user anonymity, perfect forward secrecy and is susceptible to server and user impersonation attacks, man-in-middle attacks and clock synchronization problems. In addition, this paper proposes an enhanced biometric based authentication with key-agreement protocol for multi-server architecture based on elliptic curve cryptography using smartcards. We proved that the proposed protocol achieves mutual authentication using Burrows-Abadi-Needham (BAN) logic. The formal security of the proposed protocol is verified using the AVISPA (Automated Validation of Internet Security Protocols and Applications) tool to show that our protocol can withstand active and passive attacks. The formal and informal security analyses and performance analysis demonstrates that the proposed protocol is robust and efficient compared to Lu et al.’s protocol and existing similar protocols. PMID:27163786
Authentication techniques for smart cards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, R.A.
1994-02-01
Smart card systems are most cost efficient when implemented as a distributed system, which is a system without central host interaction or a local database of card numbers for verifying transaction approval. A distributed system, as such, presents special card and user authentication problems. Fortunately, smart cards offer processing capabilities that provide solutions to authentication problems, provided the system is designed with proper data integrity measures. Smart card systems maintain data integrity through a security design that controls data sources and limits data changes. A good security design is usually a result of a system analysis that provides a thoroughmore » understanding of the application needs. Once designers understand the application, they may specify authentication techniques that mitigate the risk of system compromise or failure. Current authentication techniques include cryptography, passwords, challenge/response protocols, and biometrics. The security design includes these techniques to help prevent counterfeit cards, unauthorized use, or information compromise. This paper discusses card authentication and user identity techniques that enhance security for microprocessor card systems. It also describes the analysis process used for determining proper authentication techniques for a system.« less
Butterfly Encryption Scheme for Resource-Constrained Wireless Networks †
Sampangi, Raghav V.; Sampalli, Srinivas
2015-01-01
Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis. PMID:26389899
Butterfly Encryption Scheme for Resource-Constrained Wireless Networks.
Sampangi, Raghav V; Sampalli, Srinivas
2015-09-15
Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis.
Combining image-processing and image compression schemes
NASA Technical Reports Server (NTRS)
Greenspan, H.; Lee, M.-C.
1995-01-01
An investigation into the combining of image-processing schemes, specifically an image enhancement scheme, with existing compression schemes is discussed. Results are presented on the pyramid coding scheme, the subband coding scheme, and progressive transmission. Encouraging results are demonstrated for the combination of image enhancement and pyramid image coding schemes, especially at low bit rates. Adding the enhancement scheme to progressive image transmission allows enhanced visual perception at low resolutions. In addition, further progressing of the transmitted images, such as edge detection schemes, can gain from the added image resolution via the enhancement.
A Lightweight Continuous Authentication Protocol for the Internet of Things
Chuang, Yo-Hsuan; Yang, Cheng-Ying; Tang, Ssu-Wei
2018-01-01
Modern societies are moving toward an information-oriented environment. To gather and utilize information around people’s modern life, tiny devices with all kinds of sensing devices and various sizes of gateways need to be deployed and connected with each other through the Internet or proxy-based wireless sensor networks (WSNs). Within this kind of Internet of Things (IoT) environment, how to authenticate each other between two communicating devices is a fundamental security issue. As a lot of IoT devices are powered by batteries and they need to transmit sensed data periodically, it is necessary for IoT devices to adopt a lightweight authentication protocol to reduce their energy consumption when a device wants to authenticate and transmit data to its targeted peer. In this paper, a lightweight continuous authentication protocol for sensing devices and gateway devices in general IoT environments is introduced. The concept of valid authentication time period is proposed to enhance robustness of authentication between IoT devices. To construct the proposed lightweight continuous authentication protocol, token technique and dynamic features of IoT devices are adopted in order to reach the design goals: the reduction of time consumption for consecutive authentications and energy saving for authenticating devices through by reducing the computation complexity during session establishment of continuous authentication. Security analysis is conducted to evaluate security strength of the proposed protocol. In addition, performance analysis has shown the proposed protocol is a strong competitor among existing protocols for device-to-device authentication in IoT environments. PMID:29621168
An Evaluation of Authentic Learning in an Electronic Medical Records System
ERIC Educational Resources Information Center
Stuart, Sandra L.
2013-01-01
This study examined participants' perceptions of the effectiveness of a new job-training program designed to enhance the authentic learning in adult learners using an electronic medical records system at a naval health clinic. This job-training program lacked data about participants' perceptions of this learning process by which to gauge its…
ERIC Educational Resources Information Center
Chase, A. M.; Clancy, H. A.; Lachance, R. P.; Mathison, B. M.; Chiu, M. M.; Weaver, G. C.
2017-01-01
Course-based undergraduate research experiences (CUREs) can introduce many students to authentic research activities in a cost-effective manner. Past studies have shown that students who participated in CUREs report greater interest in chemistry, better data collection and analysis skills, and enhanced scientific reasoning compared to traditional…
ERIC Educational Resources Information Center
Hsu, Pei-Ling; van Eijck, Michiel; Roth, Wolff-Michael
2010-01-01
Working at scientists' elbows is one suggestion that educators make to improve science education, because such "authentic experiences" provide students with various types of science knowledge. However, there is an ongoing debate in the literature about the assumption that authentic science activities can enhance students' understandings…
Social Justice Lenses and Authentic Student Voices: Enhancing Leadership for Educational Justice
ERIC Educational Resources Information Center
Lalas, Jose; Valle, Eva
2007-01-01
In addressing the issue of educational inequality and achievement gap, this research article demonstrates that critical implications could be gleaned from listening to the authentic voices of students by using a social justice lens. A social justice perspective in educational leadership is essential in evaluating the impact of race, ethnicity,…
Enhancing the authenticity of assessments through grounding in first impressions.
Humă, Bogdana
2015-09-01
This article examines first impressions through a discursive and interactional lens. Until now, social psychologists have studied first impressions in laboratory conditions, in isolation from their natural environment, thus overseeing their discursive roles as devices for managing situated interactional concerns. I examine fragments of text and talk in which individuals spontaneously invoke first impressions of other persons as part of assessment activities in settings where the authenticity of speakers' stances might be threatened: (1) in activities with inbuilt evaluative components and (2) in sequential contexts where recipients have been withholding affiliation to speakers' actions. I discuss the relationship between authenticity, as a type of credibility issue related to intersubjective trouble, and the characteristics of first impression assessments, which render them useful for dealing with this specific credibility concern. I identify four features of first impression assessments which make them effective in enhancing authenticity: witness positioning (Potter, 1996, Representing reality: Discourse, rhetoric and social construction, Sage, London), (dis)location in time and space, automaticity, and extreme formulations (Edwards, 2003, Analyzing race talk: Multidisciplinary perspectives on the research interview, Cambridge University Press, New York). © 2014 The British Psychological Society.
Caranguian, Luther Paul R; Pancho-Festin, Susan; Sison, Luis G
2012-01-01
In this study, we focused on the interoperability and authentication of medical devices in the context of telemedical systems. A recent standard called the ISO/IEEE 11073 Personal Health Device (X73-PHD) Standards addresses the device interoperability problem by defining common protocols for agent (medical device) and manager (appliance) interface. The X73-PHD standard however has not addressed security and authentication of medical devices which is important in establishing integrity of a telemedical system. We have designed and implemented a security policy within the X73-PHD standards. The policy will enable device authentication using Asymmetric-Key Cryptography and the RSA algorithm as the digital signature scheme. We used two approaches for performing the digital signatures: direct software implementation and use of embedded security modules (ESM). The two approaches were evaluated and compared in terms of execution time and memory requirement. For the standard 2048-bit RSA, ESM calculates digital signatures only 12% of the total time for the direct implementation. Moreover, analysis shows that ESM offers more security advantage such as secure storage of keys compared to using direct implementation. Interoperability with other systems was verified by testing the system with LNI Healthlink, a manager software that implements the X73-PHD standard. Lastly, security analysis was done and the system's response to common attacks on authentication systems was analyzed and several measures were implemented to protect the system against them.
An Efficient Semi-fragile Watermarking Scheme for Tamper Localization and Recovery
NASA Astrophysics Data System (ADS)
Hou, Xiang; Yang, Hui; Min, Lianquan
2018-03-01
To solve the problem that remote sensing images are vulnerable to be tampered, a semi-fragile watermarking scheme was proposed. Binary random matrix was used as the authentication watermark, which was embedded by quantizing the maximum absolute value of directional sub-bands coefficients. The average gray level of every non-overlapping 4×4 block was adopted as the recovery watermark, which was embedded in the least significant bit. Watermarking detection could be done directly without resorting to the original images. Experimental results showed our method was robust against rational distortions to a certain extent. At the same time, it was fragile to malicious manipulation, and realized accurate localization and approximate recovery of the tampered regions. Therefore, this scheme can protect the security of remote sensing image effectively.
NASA Astrophysics Data System (ADS)
Xie, Qi; Hu, Bin; Chen, Ke-Fei; Liu, Wen-Hao; Tan, Xiao
2015-11-01
In three-party password authenticated key exchange (AKE) protocol, since two users use their passwords to establish a secure session key over an insecure communication channel with the help of the trusted server, such a protocol may suffer the password guessing attacks and the server has to maintain the password table. To eliminate the shortages of password-based AKE protocol, very recently, according to chaotic maps, Lee et al. [2015 Nonlinear Dyn. 79 2485] proposed a first three-party-authenticated key exchange scheme without using passwords, and claimed its security by providing a well-organized BAN logic test. Unfortunately, their protocol cannot resist impersonation attack, which is demonstrated in the present paper. To overcome their security weakness, by using chaotic maps, we propose a biometrics-based anonymous three-party AKE protocol with the same advantages. Further, we use the pi calculus-based formal verification tool ProVerif to show that our AKE protocol achieves authentication, security and anonymity, and an acceptable efficiency. Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ12F02005), the Major State Basic Research Development Program of China (Grant No. 2013CB834205), and the National Natural Science Foundation of China (Grant No. 61070153).
Self-Assembled Resonance Energy Transfer Keys for Secure Communication over Classical Channels.
Nellore, Vishwa; Xi, Sam; Dwyer, Chris
2015-12-22
Modern authentication and communication protocols increasingly use physical keys in lieu of conventional software-based keys for security. This shift is primarily driven by the ability to derive a unique, unforgeable signature from a physical key. The sole demonstration of an unforgeable key, thus far, has been through quantum key distribution, which suffers from limited communication distances and expensive infrastructure requirements. Here, we show a method for creating unclonable keys by molecular self-assembly of resonance energy transfer (RET) devices. It is infeasible to clone the RET-key due to the inability to characterize the key using current technology, the large number of input-output combinations per key, and the variation of the key's response with time. However, the manufacturer can produce multiple identical devices, which enables inexpensive, secure authentication and communication over classical channels, and thus any distance. Through a detailed experimental survey of the nanoscale keys, we demonstrate that legitimate users are successfully authenticated 99.48% of the time and the false-positives are only 0.39%, over two attempts. We estimate that a legitimate user would have a computational advantage of more than 10(340) years over an attacker. Our method enables the discovery of physical key based multiparty authentication and communication schemes that are both practical and possess unprecedented security.
Robust Self-Authenticating Network Coding
2008-11-30
efficient as traditional point-to-point coding schemes 3m*b*c*ts»tt a«2b»c*dt4g »4.0»C* 3d *Sh Number of symbols that an intermediate node has to...Institute of Technology This work was partly supported by the Fundacao para a Ciencia e Tecnologia (Portuguese foundation lor Science and Technology
Zhang, Ying; Chen, Wei; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming
2015-01-01
It is expected that in the near future wireless sensor network (WSNs) will be more widely used in the mobile environment, in applications such as Autonomous Underwater Vehicles (AUVs) for marine monitoring and mobile robots for environmental investigation. The sensor nodes’ mobility can easily cause changes to the structure of a network topology, and lead to the decline in the amount of transmitted data, excessive energy consumption, and lack of security. To solve these problems, a kind of efficient Topology Control algorithm for node Mobility (TCM) is proposed. In the topology construction stage, an efficient clustering algorithm is adopted, which supports sensor node movement. It can ensure the balance of clustering, and reduce the energy consumption. In the topology maintenance stage, the digital signature authentication based on Error Correction Code (ECC) and the communication mechanism of soft handover are adopted. After verifying the legal identity of the mobile nodes, secure communications can be established, and this can increase the amount of data transmitted. Compared to some existing schemes, the proposed scheme has significant advantages regarding network topology stability, amounts of data transferred, lifetime and safety performance of the network. PMID:26633405
Zhang, Ying; Chen, Wei; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming
2015-12-01
It is expected that in the near future wireless sensor network (WSNs) will be more widely used in the mobile environment, in applications such as Autonomous Underwater Vehicles (AUVs) for marine monitoring and mobile robots for environmental investigation. The sensor nodes' mobility can easily cause changes to the structure of a network topology, and lead to the decline in the amount of transmitted data, excessive energy consumption, and lack of security. To solve these problems, a kind of efficient Topology Control algorithm for node Mobility (TCM) is proposed. In the topology construction stage, an efficient clustering algorithm is adopted, which supports sensor node movement. It can ensure the balance of clustering, and reduce the energy consumption. In the topology maintenance stage, the digital signature authentication based on Error Correction Code (ECC) and the communication mechanism of soft handover are adopted. After verifying the legal identity of the mobile nodes, secure communications can be established, and this can increase the amount of data transmitted. Compared to some existing schemes, the proposed scheme has significant advantages regarding network topology stability, amounts of data transferred, lifetime and safety performance of the network.
Dhamodharan, Udaya Suriya Raj Kumar; Vayanaperumal, Rajamani
2015-01-01
Wireless sensor networks are highly indispensable for securing network protection. Highly critical attacks of various kinds have been documented in wireless sensor network till now by many researchers. The Sybil attack is a massive destructive attack against the sensor network where numerous genuine identities with forged identities are used for getting an illegal entry into a network. Discerning the Sybil attack, sinkhole, and wormhole attack while multicasting is a tremendous job in wireless sensor network. Basically a Sybil attack means a node which pretends its identity to other nodes. Communication to an illegal node results in data loss and becomes dangerous in the network. The existing method Random Password Comparison has only a scheme which just verifies the node identities by analyzing the neighbors. A survey was done on a Sybil attack with the objective of resolving this problem. The survey has proposed a combined CAM-PVM (compare and match-position verification method) with MAP (message authentication and passing) for detecting, eliminating, and eventually preventing the entry of Sybil nodes in the network. We propose a scheme of assuring security for wireless sensor network, to deal with attacks of these kinds in unicasting and multicasting.
Dhamodharan, Udaya Suriya Raj Kumar; Vayanaperumal, Rajamani
2015-01-01
Wireless sensor networks are highly indispensable for securing network protection. Highly critical attacks of various kinds have been documented in wireless sensor network till now by many researchers. The Sybil attack is a massive destructive attack against the sensor network where numerous genuine identities with forged identities are used for getting an illegal entry into a network. Discerning the Sybil attack, sinkhole, and wormhole attack while multicasting is a tremendous job in wireless sensor network. Basically a Sybil attack means a node which pretends its identity to other nodes. Communication to an illegal node results in data loss and becomes dangerous in the network. The existing method Random Password Comparison has only a scheme which just verifies the node identities by analyzing the neighbors. A survey was done on a Sybil attack with the objective of resolving this problem. The survey has proposed a combined CAM-PVM (compare and match-position verification method) with MAP (message authentication and passing) for detecting, eliminating, and eventually preventing the entry of Sybil nodes in the network. We propose a scheme of assuring security for wireless sensor network, to deal with attacks of these kinds in unicasting and multicasting. PMID:26236773
Deng, Yong-Yuan; Chen, Chin-Ling; Tsaur, Woei-Jiunn; Tang, Yung-Wen; Chen, Jung-Hsuan
2017-12-15
As sensor networks and cloud computation technologies have rapidly developed over recent years, many services and applications integrating these technologies into daily life have come together as an Internet of Things (IoT). At the same time, aging populations have increased the need for expanded and more efficient elderly care services. Fortunately, elderly people can now wear sensing devices which relay data to a personal wireless device, forming a body area network (BAN). These personal wireless devices collect and integrate patients' personal physiological data, and then transmit the data to the backend of the network for related diagnostics. However, a great deal of the information transmitted by such systems is sensitive data, and must therefore be subject to stringent security protocols. Protecting this data from unauthorized access is thus an important issue in IoT-related research. In regard to a cloud healthcare environment, scholars have proposed a secure mechanism to protect sensitive patient information. Their schemes provide a general architecture; however, these previous schemes still have some vulnerability, and thus cannot guarantee complete security. This paper proposes a secure and lightweight body-sensor network based on the Internet of Things for cloud healthcare environments, in order to address the vulnerabilities discovered in previous schemes. The proposed authentication mechanism is applied to a medical reader to provide a more comprehensive architecture while also providing mutual authentication, and guaranteeing data integrity, user untraceability, and forward and backward secrecy, in addition to being resistant to replay attack.
Peer Sharing Facilitates the Effect of Inquiry-Based Projects on Science Learning
ERIC Educational Resources Information Center
Chung, Hui-Min; Behan, Kristina Jackson
2010-01-01
Authentic assessment exercises are similar to real-world tasks that would be expected by a professional. An authentic assessment in combination with an inquiry-based learning activity enhances students' learning and rehearses them for their future roles, whether as scientists or as informed citizens. Over a period of 2 years, we experimented with…
Representing Authentic Learning Designs Supporting the Development of Online Communities of Learners
ERIC Educational Resources Information Center
Oliver, Ron; Herrington, Anthony; Herrington, Jan; Reeves, Thomas C.
2007-01-01
Authentic learning designs have been explored for some time now and have frequently been shown to provide learning settings that provide many meaningful contexts for learning. These meaningful contexts provide not only encouragement for students to learn but also a raft of learning enhancements including higher-order learning and forms of learning…
Privacy preservation and authentication on secure geographical routing in VANET
NASA Astrophysics Data System (ADS)
Punitha, A.; Manickam, J. Martin Leo
2017-05-01
Vehicular Ad hoc Networks (VANETs) play an important role in vehicle-to-vehicle communication as it offers a high level of safety and convenience to drivers. In order to increase the level of security and safety in VANETs, in this paper, we propose a Privacy Preservation and Authentication on Secure Geographical Routing Protocol (PPASGR) for VANET. It provides security by detecting and preventing malicious nodes through two directional antennas such as forward (f-antenna) and backward (b-antenna). The malicious nodes are detected by direction detection, consistency detection and conflict detection. The location of the trusted neighbour is identified using TNT-based location verification scheme after the implementation of the Vehicle Tamper Proof Device (VTPD), Trusted Authority (TA) is generated that produces the anonymous credentials. Finally, VTPD generates pseudo-identity using TA which retrieves the real identity of the sender. Through this approach, the authentication, integrity and confidentiality for routing packets can be achieved. The simulation results show that the proposed approach reduces the packet drop due to attack and improves the packet delivery ratio.
NASA Astrophysics Data System (ADS)
Zhong, Shenlu; Li, Mengjiao; Tang, Xiajie; He, Weiqing; Wang, Xiaogang
2017-01-01
A novel optical information verification and encryption method is proposed based on inference principle and phase retrieval with sparsity constraints. In this method, a target image is encrypted into two phase-only masks (POMs), which comprise sparse phase data used for verification. Both of the two POMs need to be authenticated before being applied for decrypting. The target image can be optically reconstructed when the two authenticated POMs are Fourier transformed and convolved by the correct decryption key, which is also generated in encryption process. No holographic scheme is involved in the proposed optical verification and encryption system and there is also no problem of information disclosure in the two authenticable POMs. Numerical simulation results demonstrate the validity and good performance of this new proposed method.
Design and implementation of a secure wireless mote-based medical sensor network.
Malasri, Kriangsiri; Wang, Lan
2009-01-01
A medical sensor network can wirelessly monitor vital signs of humans, making it useful for long-term health care without sacrificing patient comfort and mobility. For such a network to be viable, its design must protect data privacy and authenticity given that medical data are highly sensitive. We identify the unique security challenges of such a sensor network and propose a set of resource-efficient mechanisms to address these challenges. Our solution includes (1) a novel two-tier scheme for verifying the authenticity of patient data, (2) a secure key agreement protocol to set up shared keys between sensor nodes and base stations, and (3) symmetric encryption/decryption for protecting data confidentiality and integrity. We have implemented the proposed mechanisms on a wireless mote platform, and our results confirm their feasibility.
A secure RFID authentication protocol for healthcare environments using elliptic curve cryptosystem.
Zhao, Zhenguo
2014-05-01
With the fast advancement of the wireless communication technology and the widespread use of medical systems, the radio frequency identification (RFID) technology has been widely used in healthcare environments. As the first important protocol for ensuring secure communication in healthcare environment, the RFID authentication protocols derive more and more attentions. Most of RFID authentication protocols are based on hash function or symmetric cryptography. To get more security properties, elliptic curve cryptosystem (ECC) has been used in the design of RFID authentication protocol. Recently, Liao and Hsiao proposed a new RFID authentication protocol using ECC and claimed their protocol could withstand various attacks. In this paper, we will show that their protocol suffers from the key compromise problem, i.e. an adversary could get the private key stored in the tag. To enhance the security, we propose a new RFID authentication protocol using ECC. Detailed analysis shows the proposed protocol not only could overcome weaknesses in Liao and Hsiao's protocol but also has the same performance. Therefore, it is more suitable for healthcare environments.
ERIC Educational Resources Information Center
Huang, Yueh-Min; Shadiev, Rustam; Sun, Ai; Hwang, Wu-Yuin; Liu, Tzu-Yu
2017-01-01
For this study the researchers designed learning activities to enhance students' high level cognitive processes. Students learned new information in a classroom setting and then applied and analyzed their new knowledge in familiar authentic contexts by taking pictures of objects found there, describing them, and sharing their homework with peers.…
Lepp, Margret; Zorn, CeCelia R; Duffy, Patricia R; Dickson, Rana J
2003-01-01
Reflection, a process grounded in distancing from the self to enhance self-awareness, can be used as a pedagogic activity to promote students' transition to a greater authenticity and professionalism and, therefore, improve patient care and nursing practice. In this international educational project (implemented in 2001) using interactive videoconferencing technology (IVC), Swedish and U.S. nursing students and faculty incorporated reflective journaling, drama in education, photolanguage, and off-air meeting discussions to enhance personal and professional development. Highlights from the literature, a description of the project, and student and faculty appraisals are presented.
Applying Authentic Data Analysis in Learning Earth Atmosphere
NASA Astrophysics Data System (ADS)
Johan, H.; Suhandi, A.; Samsudin, A.; Wulan, A. R.
2017-09-01
The aim of this research was to develop earth science learning material especially earth atmosphere supported by science research with authentic data analysis to enhance reasoning through. Various earth and space science phenomenon require reasoning. This research used experimental research with one group pre test-post test design. 23 pre-service physics teacher participated in this research. Essay test was conducted to get data about reason ability. Essay test was analyzed quantitatively. Observation sheet was used to capture phenomena during learning process. The results showed that student’s reasoning ability improved from unidentified and no reasoning to evidence based reasoning and inductive/deductive rule-based reasoning. Authentic data was considered using Grid Analysis Display System (GrADS). Visualization from GrADS facilitated students to correlate the concepts and bring out real condition of nature in classroom activity. It also helped student to reason the phenomena related to earth and space science concept. It can be concluded that applying authentic data analysis in learning process can help to enhance students reasoning. This study is expected to help lecture to bring out result of geoscience research in learning process and facilitate student understand concepts.
Secure anonymous mutual authentication for star two-tier wireless body area networks.
Ibrahim, Maged Hamada; Kumari, Saru; Das, Ashok Kumar; Wazid, Mohammad; Odelu, Vanga
2016-10-01
Mutual authentication is a very important service that must be established between sensor nodes in wireless body area network (WBAN) to ensure the originality and integrity of the patient's data sent by sensors distributed on different parts of the body. However, mutual authentication service is not enough. An adversary can benefit from monitoring the traffic and knowing which sensor is in transmission of patient's data. Observing the traffic (even without disclosing the context) and knowing its origin, it can reveal to the adversary information about the patient's medical conditions. Therefore, anonymity of the communicating sensors is an important service as well. Few works have been conducted in the area of mutual authentication among sensor nodes in WBAN. However, none of them has considered anonymity among body sensor nodes. Up to our knowledge, our protocol is the first attempt to consider this service in a two-tier WBAN. We propose a new secure protocol to realize anonymous mutual authentication and confidential transmission for star two-tier WBAN topology. The proposed protocol uses simple cryptographic primitives. We prove the security of the proposed protocol using the widely-accepted Burrows-Abadi-Needham (BAN) logic, and also through rigorous informal security analysis. In addition, to demonstrate the practicality of our protocol, we evaluate it using NS-2 simulator. BAN logic and informal security analysis prove that our proposed protocol achieves the necessary security requirements and goals of an authentication service. The simulation results show the impact on the various network parameters, such as end-to-end delay and throughput. The nodes in the network require to store few hundred bits. Nodes require to perform very few hash invocations, which are computationally very efficient. The communication cost of the proposed protocol is few hundred bits in one round of communication. Due to the low computation cost, the energy consumed by the nodes is also low. Our proposed protocol is a lightweight anonymous mutually authentication protocol to mutually authenticate the sensor nodes with the controller node (hub) in a star two-tier WBAN topology. Results show that our protocol proves efficiency over previously proposed protocols and at the same time, achieves the necessary security requirements for a secure anonymous mutual authentication scheme. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Elgenaidi, Walid; Newe, Thomas; O'Connell, Eoin; Toal, Daniel; Dooly, Gerard
2016-12-21
There has been a significant increase in the proliferation and implementation of Wireless Sensor Networks (WSNs) in different disciplines, including the monitoring of maritime environments, healthcare systems, and industrial sectors. It has now become critical to address the security issues of data communication while considering sensor node constraints. There are many proposed schemes, including the scheme being proposed in this paper, to ensure that there is a high level of security in WSNs. This paper presents a symmetric security scheme for a maritime coastal environment monitoring WSN. The scheme provides security for travelling packets via individually encrypted links between authenticated neighbors, thus avoiding a reiteration of a global rekeying process. Furthermore, this scheme proposes a dynamic update key based on a trusted node configuration, called a leader node, which works as a trusted third party. The technique has been implemented in real time on a Waspmote test bed sensor platform and the results from both field testing and indoor bench testing environments are discussed in this paper.
Elgenaidi, Walid; Newe, Thomas; O’Connell, Eoin; Toal, Daniel; Dooly, Gerard
2016-01-01
There has been a significant increase in the proliferation and implementation of Wireless Sensor Networks (WSNs) in different disciplines, including the monitoring of maritime environments, healthcare systems, and industrial sectors. It has now become critical to address the security issues of data communication while considering sensor node constraints. There are many proposed schemes, including the scheme being proposed in this paper, to ensure that there is a high level of security in WSNs. This paper presents a symmetric security scheme for a maritime coastal environment monitoring WSN. The scheme provides security for travelling packets via individually encrypted links between authenticated neighbors, thus avoiding a reiteration of a global rekeying process. Furthermore, this scheme proposes a dynamic update key based on a trusted node configuration, called a leader node, which works as a trusted third party. The technique has been implemented in real time on a Waspmote test bed sensor platform and the results from both field testing and indoor bench testing environments are discussed in this paper. PMID:28009834
A Secure and Privacy-Preserving Navigation Scheme Using Spatial Crowdsourcing in Fog-Based VANETs
Wang, Lingling; Liu, Guozhu; Sun, Lijun
2017-01-01
Fog-based VANETs (Vehicular ad hoc networks) is a new paradigm of vehicular ad hoc networks with the advantages of both vehicular cloud and fog computing. Real-time navigation schemes based on fog-based VANETs can promote the scheme performance efficiently. In this paper, we propose a secure and privacy-preserving navigation scheme by using vehicular spatial crowdsourcing based on fog-based VANETs. Fog nodes are used to generate and release the crowdsourcing tasks, and cooperatively find the optimal route according to the real-time traffic information collected by vehicles in their coverage areas. Meanwhile, the vehicle performing the crowdsourcing task can get a reasonable reward. The querying vehicle can retrieve the navigation results from each fog node successively when entering its coverage area, and follow the optimal route to the next fog node until it reaches the desired destination. Our scheme fulfills the security and privacy requirements of authentication, confidentiality and conditional privacy preservation. Some cryptographic primitives, including the Elgamal encryption algorithm, AES, randomized anonymous credentials and group signatures, are adopted to achieve this goal. Finally, we analyze the security and the efficiency of the proposed scheme. PMID:28338620
A Secure and Privacy-Preserving Navigation Scheme Using Spatial Crowdsourcing in Fog-Based VANETs.
Wang, Lingling; Liu, Guozhu; Sun, Lijun
2017-03-24
Fog-based VANETs (Vehicular ad hoc networks) is a new paradigm of vehicular ad hoc networks with the advantages of both vehicular cloud and fog computing. Real-time navigation schemes based on fog-based VANETs can promote the scheme performance efficiently. In this paper, we propose a secure and privacy-preserving navigation scheme by using vehicular spatial crowdsourcing based on fog-based VANETs. Fog nodes are used to generate and release the crowdsourcing tasks, and cooperatively find the optimal route according to the real-time traffic information collected by vehicles in their coverage areas. Meanwhile, the vehicle performing the crowdsourcing task can get a reasonable reward. The querying vehicle can retrieve the navigation results from each fog node successively when entering its coverage area, and follow the optimal route to the next fog node until it reaches the desired destination. Our scheme fulfills the security and privacy requirements of authentication, confidentiality and conditional privacy preservation. Some cryptographic primitives, including the Elgamal encryption algorithm, AES, randomized anonymous credentials and group signatures, are adopted to achieve this goal. Finally, we analyze the security and the efficiency of the proposed scheme.
Drosou, A.; Ioannidis, D.; Moustakas, K.; Tzovaras, D.
2011-01-01
Unobtrusive Authentication Using ACTIvity-Related and Soft BIOmetrics (ACTIBIO) is an EU Specific Targeted Research Project (STREP) where new types of biometrics are combined with state-of-the-art unobtrusive technologies in order to enhance security in a wide spectrum of applications. The project aims to develop a modular, robust, multimodal biometrics security authentication and monitoring system, which uses a biodynamic physiological profile, unique for each individual, and advancements of the state of the art in unobtrusive behavioral and other biometrics, such as face, gait recognition, and seat-based anthropometrics. Several shortcomings of existing biometric recognition systems are addressed within this project, which have helped in improving existing sensors, in developing new algorithms, and in designing applications, towards creating new, unobtrusive, biometric authentication procedures in security-sensitive, Ambient Intelligence environments. This paper presents the concept of the ACTIBIO project and describes its unobtrusive authentication demonstrator in a real scenario by focusing on the vision-based biometric recognition modalities. PMID:21380485
Authentic leadership and thriving among nurses: the mediating role of empathy.
Mortier, Anneleen Viona; Vlerick, Peter; Clays, Els
2016-04-01
To examine the relationship between perceived authentic leadership and two dimensions of thriving (learning and vitality) among nurses, and to study the mediating role of empathy in this relationship. Nurses' thriving is a key asset for health care organisations, and its significant role warrants the need to identify the underlying key determinants and psychological mechanisms. A cross-sectional design was carried out in a large hospital in September 2013. Self-administered questionnaires were distributed to 360 nurses. The main hypotheses were tested through hierarchical regression analyses. The significant positive relationship between perceived authentic leadership and vitality was mediated by perceived empathy. This mediation, however, was not confirmed in relation to learning. Nurse managers' authentic leadership enhances nurses' thriving at work. Furthermore, empathic nurse managers seem to increase the vitality of their nurses. Training nurse managers in authentic leadership skills is important for the nursing field, as those skills help nurse managers to better express empathy and consequently foster thriving in nursing. © 2015 John Wiley & Sons Ltd.
Drosou, A; Ioannidis, D; Moustakas, K; Tzovaras, D
2011-03-01
Unobtrusive Authentication Using ACTIvity-Related and Soft BIOmetrics (ACTIBIO) is an EU Specific Targeted Research Project (STREP) where new types of biometrics are combined with state-of-the-art unobtrusive technologies in order to enhance security in a wide spectrum of applications. The project aims to develop a modular, robust, multimodal biometrics security authentication and monitoring system, which uses a biodynamic physiological profile, unique for each individual, and advancements of the state of the art in unobtrusive behavioral and other biometrics, such as face, gait recognition, and seat-based anthropometrics. Several shortcomings of existing biometric recognition systems are addressed within this project, which have helped in improving existing sensors, in developing new algorithms, and in designing applications, towards creating new, unobtrusive, biometric authentication procedures in security-sensitive, Ambient Intelligence environments. This paper presents the concept of the ACTIBIO project and describes its unobtrusive authentication demonstrator in a real scenario by focusing on the vision-based biometric recognition modalities.
Xu, Qian; Tan, Chengxiang; Fan, Zhijie; Zhu, Wenye; Xiao, Ya; Cheng, Fujia
2018-05-17
Nowadays, fog computing provides computation, storage, and application services to end users in the Internet of Things. One of the major concerns in fog computing systems is how fine-grained access control can be imposed. As a logical combination of attribute-based encryption and attribute-based signature, Attribute-based Signcryption (ABSC) can provide confidentiality and anonymous authentication for sensitive data and is more efficient than traditional "encrypt-then-sign" or "sign-then-encrypt" strategy. Thus, ABSC is suitable for fine-grained access control in a semi-trusted cloud environment and is gaining more and more attention recently. However, in many existing ABSC systems, the computation cost required for the end users in signcryption and designcryption is linear with the complexity of signing and encryption access policy. Moreover, only a single authority that is responsible for attribute management and key generation exists in the previous proposed ABSC schemes, whereas in reality, mostly, different authorities monitor different attributes of the user. In this paper, we propose OMDAC-ABSC, a novel data access control scheme based on Ciphertext-Policy ABSC, to provide data confidentiality, fine-grained control, and anonymous authentication in a multi-authority fog computing system. The signcryption and designcryption overhead for the user is significantly reduced by outsourcing the undesirable computation operations to fog nodes. The proposed scheme is proven to be secure in the standard model and can provide attribute revocation and public verifiability. The security analysis, asymptotic complexity comparison, and implementation results indicate that our construction can balance the security goals with practical efficiency in computation.
Deng, Yong-Yuan; Chen, Chin-Ling; Tsaur, Woei-Jiunn; Tang, Yung-Wen; Chen, Jung-Hsuan
2017-01-01
As sensor networks and cloud computation technologies have rapidly developed over recent years, many services and applications integrating these technologies into daily life have come together as an Internet of Things (IoT). At the same time, aging populations have increased the need for expanded and more efficient elderly care services. Fortunately, elderly people can now wear sensing devices which relay data to a personal wireless device, forming a body area network (BAN). These personal wireless devices collect and integrate patients’ personal physiological data, and then transmit the data to the backend of the network for related diagnostics. However, a great deal of the information transmitted by such systems is sensitive data, and must therefore be subject to stringent security protocols. Protecting this data from unauthorized access is thus an important issue in IoT-related research. In regard to a cloud healthcare environment, scholars have proposed a secure mechanism to protect sensitive patient information. Their schemes provide a general architecture; however, these previous schemes still have some vulnerability, and thus cannot guarantee complete security. This paper proposes a secure and lightweight body-sensor network based on the Internet of Things for cloud healthcare environments, in order to address the vulnerabilities discovered in previous schemes. The proposed authentication mechanism is applied to a medical reader to provide a more comprehensive architecture while also providing mutual authentication, and guaranteeing data integrity, user untraceability, and forward and backward secrecy, in addition to being resistant to replay attack. PMID:29244776
ERIC Educational Resources Information Center
Iowa Department of Education, 2012
2012-01-01
Case studies of Authentic Intellectual Work (AIW) in the Iowa project included four high schools that have been practicing this professional development model for the last five years. The schools, AHST Secondary School, Cedar Falls High School, Spencer High and Middle Schools and Valley High School were visited in April, 2011. The visits included…
Authentic leadership in a health sciences university.
Al-Moamary, Mohamed S; Al-Kadri, Hanan M; Tamim, Hani M
2016-01-01
To study authentic leadership characteristics between academic leaders in a health sciences university. Cross-sectional study at a health sciences university in Saudi Arabia. The Authentic Leadership Questionnaire (ALQ) was utilized to assess authentic leadership. Out of 84 ALQs that were distributed, 75 (89.3%) were eligible. The ALQ scores showed consistency in the dimensions of self-awareness (3.45 ± 0.43), internalized moral prospective (3.46 ± 0.33) and balanced processing (3.42 ± 0.36). The relational transparency dimension had a mean of 3.24 ± 0.31 which was significantly lower than other domains. Academic leaders with medical background represented 57.3%, compared to 42.7% from other professions. Academic leaders from other professions had better ALQ scores that reached statistical significance in the internalized moral perspective and relational transparency dimensions with p values of 0.006 and 0.049, respectively. In reference to the impact of hierarchy, there were no significant differences in relation to ALQ scores. Almost one-third of academic leaders (34.7%) had Qualifications in medical education that did not show significant impact on ALQ scores. There was less-relational transparency among academic leaders that was not consistent with other ALQ domains. Being of medical background may enhance leaders' opportunity to be at a higher hierarchy status but it did not enhance their ALQ scores when compared to those from other professions. Moreover, holding a master in medical education did not impact leadership authenticity.
NASA Astrophysics Data System (ADS)
Al-Mansoori, Saeed; Kunhu, Alavi
2013-10-01
This paper proposes a blind multi-watermarking scheme based on designing two back-to-back encoders. The first encoder is implemented to embed a robust watermark into remote sensing imagery by applying a Discrete Cosine Transform (DCT) approach. Such watermark is used in many applications to protect the copyright of the image. However, the second encoder embeds a fragile watermark using `SHA-1' hash function. The purpose behind embedding a fragile watermark is to prove the authenticity of the image (i.e. tamper-proof). Thus, the proposed technique was developed as a result of new challenges with piracy of remote sensing imagery ownership. This led researchers to look for different means to secure the ownership of satellite imagery and prevent the illegal use of these resources. Therefore, Emirates Institution for Advanced Science and Technology (EIAST) proposed utilizing existing data security concept by embedding a digital signature, "watermark", into DubaiSat-1 satellite imagery. In this study, DubaiSat-1 images with 2.5 meter resolution are used as a cover and a colored EIAST logo is used as a watermark. In order to evaluate the robustness of the proposed technique, a couple of attacks are applied such as JPEG compression, rotation and synchronization attacks. Furthermore, tampering attacks are applied to prove image authenticity.
Design and Implementation of a Secure Wireless Mote-Based Medical Sensor Network
Malasri, Kriangsiri; Wang, Lan
2009-01-01
A medical sensor network can wirelessly monitor vital signs of humans, making it useful for long-term health care without sacrificing patient comfort and mobility. For such a network to be viable, its design must protect data privacy and authenticity given that medical data are highly sensitive. We identify the unique security challenges of such a sensor network and propose a set of resource-efficient mechanisms to address these challenges. Our solution includes (1) a novel two-tier scheme for verifying the authenticity of patient data, (2) a secure key agreement protocol to set up shared keys between sensor nodes and base stations, and (3) symmetric encryption/decryption for protecting data confidentiality and integrity. We have implemented the proposed mechanisms on a wireless mote platform, and our results confirm their feasibility. PMID:22454585
Consensus-Based Cooperative Spectrum Sensing with Improved Robustness Against SSDF Attacks
NASA Astrophysics Data System (ADS)
Liu, Quan; Gao, Jun; Guo, Yunwei; Liu, Siyang
2011-05-01
Based on the consensus algorithm, an attack-proof cooperative spectrum sensing (CSS) scheme is presented for decentralized cognitive radio networks (CRNs), where a common fusion center is not available and some malicious users may launch attacks with spectrum sensing data falsification (SSDF). Local energy detection is firstly performed by each secondary user (SU), and then, utilizing the consensus notions, each SU can make its own decision individually only by local information exchange with its neighbors rather than any centralized fusion used in most existing schemes. With the help of some anti-attack tricks, each authentic SU can generally identify and exclude those malicious reports during the interactions within the neighborhood. Compared with the existing solutions, the proposed scheme is proved to have much better robustness against three categories of SSDF attack, without requiring any a priori knowledge of the whole network.
Watermarking scheme for authentication of compressed image
NASA Astrophysics Data System (ADS)
Hsieh, Tsung-Han; Li, Chang-Tsun; Wang, Shuo
2003-11-01
As images are commonly transmitted or stored in compressed form such as JPEG, to extend the applicability of our previous work, a new scheme for embedding watermark in compressed domain without resorting to cryptography is proposed. In this work, a target image is first DCT transformed and quantised. Then, all the coefficients are implicitly watermarked in order to minimize the risk of being attacked on the unwatermarked coefficients. The watermarking is done through registering/blending the zero-valued coefficients with a binary sequence to create the watermark and involving the unembedded coefficients during the process of embedding the selected coefficients. The second-order neighbors and the block itself are considered in the process of the watermark embedding in order to thwart different attacks such as cover-up, vector quantisation, and transplantation. The experiments demonstrate the capability of the proposed scheme in thwarting local tampering, geometric transformation such as cropping, and common signal operations such as lowpass filtering.
ERIC Educational Resources Information Center
Castillo Losada, César Augusto; Insuasty, Edgar Alirio; Jaime Osorio, María Fernanda
2017-01-01
This article reports on a study carried out in a foreign language school at a Colombian public university. Its main purpose was to analyze the extent to which the use of authentic materials and tasks contributes to the enhancement of the communicative competence on an A2 level English course. A mixed study composed of a quasi-experimental and a…
Employers' views of promoting walking to work: a qualitative study.
Audrey, Suzanne; Procter, Sunita
2015-02-11
Physical inactivity increases the risk of many chronic diseases including coronary heart disease, type 2 diabetes, obesity and some cancers. It is currently recommended that adults should undertake at least 150 minutes of moderate physical activity in bouts of 10 minutes or more throughout the week. One way for adults in employment to incorporate exercise into their daily routine is to walk during the commute to and from work. Schemes to promote active travel require the support of employers and managers but there is a lack of research focusing on their views and experiences of promoting walk to work schemes. This study presents the findings from in-depth, digitally recorded interviews with 29 employers from a range of small, medium and large workplaces who participated in a feasibility study to develop and test an employer-led scheme to promote walking to work. All recordings were fully transcribed. The Framework approach for data management was used to aid qualitative analysis. Interview transcripts were read and reread, and textual data were placed in charts focusing on facilitators, barriers, and possibilities for employers to promote walking to work. A range of perspectives were identified, from active support through uncertainty and cynicism to resistance. The majority of employers who took part in the study were unclear about how to give practical support for employees who walk to work, but appeared more confident about ideas to promote cycling. Some employers were concerned about how their attempts to promote walking might be perceived by employees. Furthermore, the main business of their organisation took priority over other activities. It is clear that employers need more evidence of the effectiveness of walk to work schemes, and the benefits to employers of committing resources to them. Furthermore, employers need support in creating an authentic, health promoting ethos within the workplace to enhance positive relationships and reduce tensions that may arise when promoting active travel initiatives.
Cryptographically secure biometrics
NASA Astrophysics Data System (ADS)
Stoianov, A.
2010-04-01
Biometric systems usually do not possess a cryptographic level of security: it has been deemed impossible to perform a biometric authentication in the encrypted domain because of the natural variability of biometric samples and of the cryptographic intolerance even to a single bite error. Encrypted biometric data need to be decrypted on authentication, which creates privacy and security risks. On the other hand, the known solutions called "Biometric Encryption (BE)" or "Fuzzy Extractors" can be cracked by various attacks, for example, by running offline a database of images against the stored helper data in order to obtain a false match. In this paper, we present a novel approach which combines Biometric Encryption with classical Blum-Goldwasser cryptosystem. In the "Client - Service Provider (SP)" or in the "Client - Database - SP" architecture it is possible to keep the biometric data encrypted on all the stages of the storage and authentication, so that SP never has an access to unencrypted biometric data. It is shown that this approach is suitable for two of the most popular BE schemes, Fuzzy Commitment and Quantized Index Modulation (QIM). The approach has clear practical advantages over biometric systems using "homomorphic encryption". Future work will deal with the application of the proposed solution to one-to-many biometric systems.
Chaudhry, Shehzad Ashraf; Naqvi, Husnain; Shon, Taeshik; Sher, Muhammad; Farash, Mohammad Sabzinejad
2015-06-01
Telecare medical information systems (TMIS) provides rapid and convenient health care services remotely. Efficient authentication is a prerequisite to guarantee the security and privacy of patients in TMIS. Authentication is used to verify the legality of the patients and TMIS server during remote access. Very recently Islam et al. (J. Med. Syst. 38(10):135, 2014) proposed a two factor authentication protocol for TMIS using elliptic curve cryptography (ECC) to improve Xu et al.'s (J. Med. Syst. 38(1):9994, 2014) protocol. They claimed their improved protocol to be efficient and provides all security requirements. However our analysis reveals that Islam et al.'s protocol suffers from user impersonation and server impersonation attacks. Furthermore we proposed an enhanced protocol. The proposed protocol while delivering all the virtues of Islam et al.'s protocol resists all known attacks.
Lavan, Nadine; McGettigan, Carolyn
2017-10-01
We present an investigation of the perception of authenticity in audiovisual laughter, in which we contrast spontaneous and volitional samples and examine the contributions of unimodal affective information to multimodal percepts. In a pilot study, we demonstrate that listeners perceive spontaneous laughs as more authentic than volitional ones, both in unimodal (audio-only, visual-only) and multimodal contexts (audiovisual). In the main experiment, we show that the discriminability of volitional and spontaneous laughter is enhanced for multimodal laughter. Analyses of relationships between affective ratings and the perception of authenticity show that, while both unimodal percepts significantly predict evaluations of audiovisual laughter, it is auditory affective cues that have the greater influence on multimodal percepts. We discuss differences and potential mismatches in emotion signalling through voices and faces, in the context of spontaneous and volitional behaviour, and highlight issues that should be addressed in future studies of dynamic multimodal emotion processing.
Supporting Secure, AD HOC Joins for Tactical Networks
2002-05-07
ftp.isi.edu/in-notes/ rfc2501.txt (20SEP01). [4] Deitel , Harvery M. and Paul J. Deitel . Java: How to Program 3rd Edition. (Prentice Hall: New...produce a complete product, to include the construction of TTNT hardware. The TTNT program is concerned with frequency hopping schemes, error correcting...Configuration To create the digital certificates needed for the client authentication, we modified a hybrid file encryption program that used a Rivest-Shamir
One Time Passwords in Everything (OPIE): Experiences with Building and Using Stringer Authentication
1995-01-01
opiepasswd(1). The name change brings it more in line with its UNIX counterpart passwd (1), which should make both programs easier to remember for users. This...char * passwd ) int opiehash(char *x, unsigned algorithm) The one-time password schemes implemented in OPIE, as rst described in [Hal94], compute a...seed, passwd ); while (sequence-- != 0) opiehash(result, algorithm); opiebtoe(result,words); Send words. : : : 6 Deployment Every machine that has
Gurevich, Maria; Leedham, Usra; Brown-Bowers, Amy; Cormier, Nicole; Mercer, Zara
2017-04-01
Contemporary social theorists emphasise the cultural quest for authenticity under conditions of increasing artificiality. Within this context, the body is commonly treated as an 'unfinished' surface requiring ongoing transformation to fulfil identity obligations. In this paper, we examine one such identity authentication project in the form of marketing of men's sexuopharmaceuticals. We use online pharmaceutical advertising for four approved sexuopharmaceuticals (Viagra, Cialis, STAXYN and Stendra) to describe the ideal neoliberal consumer. These campaigns underscore the robust role of pharmaceuticals in sexual authentication projects undergirded by neoliberal consumerist and aspirationalist ideals. Penile dependability as a luxury consumerist project reinvigorates traditional sexual (masculine) authentication as yoked to phallic control, by repackaging sexual enhancement medication use as a neoliberal beacon of aspirational achievements. The ideal targeted user is increasingly younger, and consumption of sexuopharmaceuticals is represented as achieving elite status and exclusive pleasures; masculine authenticity and choice; progressive relationships and a contemporary urban, fast-paced life; and a prepared yet spontaneous romantic sexuality. Women are also increasingly used in promotional materials directed at men; their responsibility centres on coaching and coaxing potential users.
Personal Identification Using Fingernail Image Based on Correlation of Density Block
NASA Astrophysics Data System (ADS)
Noda, Mayumi; Saitoh, Fumihiko
This paper proposes an authentication using fingernail images by using the block segmentation matching. A fingernail is assumed to be a new physical character that is used for biometrics authentication. The proposed system is more effective than fingerprint authentication where psychological resistance and conformability are required. Since the block segmentation matching is useful for occlusion of an object, it is assumed to be robust to a partial change of fingernail. It is expected to enhance the difference of fingernails between persons. The experimental images of various lengths of fingernail and painted manicure were used for evaluation of system performance. The experimental results show that the proposed system obtains the sufficient accuracy to certificate individuals.
Cryptographic framework for document-objects resulting from multiparty collaborative transactions.
Goh, A
2000-01-01
Multiparty transactional frameworks--i.e. Electronic Data Interchange (EDI) or Health Level (HL) 7--often result in composite documents which can be accurately modelled using hyperlinked document-objects. The structural complexity arising from multiauthor involvement and transaction-specific sequencing would be poorly handled by conventional digital signature schemes based on a single evaluation of a one-way hash function and asymmetric cryptography. In this paper we outline the generation of structure-specific authentication hash-trees for the the authentication of transactional document-objects, followed by asymmetric signature generation on the hash-tree value. Server-side multi-client signature verification would probably constitute the single most compute-intensive task, hence the motivation for our usage of the Rabin signature protocol which results in significantly reduced verification workloads compared to the more commonly applied Rivest-Shamir-Adleman (RSA) protocol. Data privacy is handled via symmetric encryption of message traffic using session-specific keys obtained through key-negotiation mechanisms based on discrete-logarithm cryptography. Individual client-to-server channels can be secured using a double key-pair variation of Diffie-Hellman (DH) key negotiation, usage of which also enables bidirectional node authentication. The reciprocal server-to-client multicast channel is secured through Burmester-Desmedt (BD) key-negotiation which enjoys significant advantages over the usual multiparty extensions to the DH protocol. The implementation of hash-tree signatures and bi/multidirectional key negotiation results in a comprehensive cryptographic framework for multiparty document-objects satisfying both authentication and data privacy requirements.
Chica, Manuel
2012-11-01
A novel method for authenticating pollen grains in bright-field microscopic images is presented in this work. The usage of this new method is clear in many application fields such as bee-keeping sector, where laboratory experts need to identify fraudulent bee pollen samples against local known pollen types. Our system is based on image processing and one-class classification to reject unknown pollen grain objects. The latter classification technique allows us to tackle the major difficulty of the problem, the existence of many possible fraudulent pollen types, and the impossibility of modeling all of them. Different one-class classification paradigms are compared to study the most suitable technique for solving the problem. In addition, feature selection algorithms are applied to reduce the complexity and increase the accuracy of the models. For each local pollen type, a one-class classifier is trained and aggregated into a multiclassifier model. This multiclassification scheme combines the output of all the one-class classifiers in a unique final response. The proposed method is validated by authenticating pollen grains belonging to different Spanish bee pollen types. The overall accuracy of the system on classifying fraudulent microscopic pollen grain objects is 92.3%. The system is able to rapidly reject pollen grains, which belong to nonlocal pollen types, reducing the laboratory work and effort. The number of possible applications of this authentication method in the microscopy research field is unlimited. Copyright © 2012 Wiley Periodicals, Inc.
Xu, Qian; Tan, Chengxiang; Fan, Zhijie; Zhu, Wenye; Xiao, Ya; Cheng, Fujia
2018-01-01
Nowadays, fog computing provides computation, storage, and application services to end users in the Internet of Things. One of the major concerns in fog computing systems is how fine-grained access control can be imposed. As a logical combination of attribute-based encryption and attribute-based signature, Attribute-based Signcryption (ABSC) can provide confidentiality and anonymous authentication for sensitive data and is more efficient than traditional “encrypt-then-sign” or “sign-then-encrypt” strategy. Thus, ABSC is suitable for fine-grained access control in a semi-trusted cloud environment and is gaining more and more attention recently. However, in many existing ABSC systems, the computation cost required for the end users in signcryption and designcryption is linear with the complexity of signing and encryption access policy. Moreover, only a single authority that is responsible for attribute management and key generation exists in the previous proposed ABSC schemes, whereas in reality, mostly, different authorities monitor different attributes of the user. In this paper, we propose OMDAC-ABSC, a novel data access control scheme based on Ciphertext-Policy ABSC, to provide data confidentiality, fine-grained control, and anonymous authentication in a multi-authority fog computing system. The signcryption and designcryption overhead for the user is significantly reduced by outsourcing the undesirable computation operations to fog nodes. The proposed scheme is proven to be secure in the standard model and can provide attribute revocation and public verifiability. The security analysis, asymptotic complexity comparison, and implementation results indicate that our construction can balance the security goals with practical efficiency in computation. PMID:29772840
Restricted Authentication and Encryption for Cyber-physical Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, Michael S; Bertino, Elisa; Sheldon, Frederick T
2009-01-01
Cyber-physical systems (CPS) are characterized by the close linkage of computational resources and physical devices. These systems can be deployed in a number of critical infrastructure settings. As a result, the security requirements of CPS are different than traditional computing architectures. For example, critical functions must be identified and isolated from interference by other functions. Similarly, lightweight schemes may be required, as CPS can include devices with limited computing power. One approach that offers promise for CPS security is the use of lightweight, hardware-based authentication. Specifically, we consider the use of Physically Unclonable Functions (PUFs) to bind an access requestmore » to specific hardware with device-specific keys. PUFs are implemented in hardware, such as SRAM, and can be used to uniquely identify the device. This technology could be used in CPS to ensure location-based access control and encryption, both of which would be desirable for CPS implementations.« less
NASA Astrophysics Data System (ADS)
Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing
2015-09-01
In this paper, a novel image encryption system with fingerprint used as a secret key is proposed based on the phase retrieval algorithm and RSA public key algorithm. In the system, the encryption keys include the fingerprint and the public key of RSA algorithm, while the decryption keys are the fingerprint and the private key of RSA algorithm. If the users share the fingerprint, then the system will meet the basic agreement of asymmetric cryptography. The system is also applicable for the information authentication. The fingerprint as secret key is used in both the encryption and decryption processes so that the receiver can identify the authenticity of the ciphertext by using the fingerprint in decryption process. Finally, the simulation results show the validity of the encryption scheme and the high robustness against attacks based on the phase retrieval technique.
Integrating Iris and Signature Traits for Personal Authentication Using User-Specific Weighting
Viriri, Serestina; Tapamo, Jules R.
2012-01-01
Biometric systems based on uni-modal traits are characterized by noisy sensor data, restricted degrees of freedom, non-universality and are susceptible to spoof attacks. Multi-modal biometric systems seek to alleviate some of these drawbacks by providing multiple evidences of the same identity. In this paper, a user-score-based weighting technique for integrating the iris and signature traits is presented. This user-specific weighting technique has proved to be an efficient and effective fusion scheme which increases the authentication accuracy rate of multi-modal biometric systems. The weights are used to indicate the importance of matching scores output by each biometrics trait. The experimental results show that our biometric system based on the integration of iris and signature traits achieve a false rejection rate (FRR) of 0.08% and a false acceptance rate (FAR) of 0.01%. PMID:22666032
Experiencing authenticity - the core of student learning in clinical practice.
Manninen, Katri
2016-10-01
Learning in clinical practice is challenging regarding organizational and pedagogical issues. Clinical education wards are one way to meet these challenges by focusing on both patient care and student learning. However, more knowledge is needed about how students' learning can be enhanced and about patients' and supervisors' roles in these settings. The aim was to explore nursing students' learning on a clinical education ward with an explicit pedagogical framework. Semi-structured interviews of students were analyzed using qualitative content analysis and an ethnographic study including observations and follow-up interviews of students, patients and supervisors was conducted. The core of student meaningful learning experiences both external and internal authenticity. Students in early stages immediately created mutual relationships, experienced both external and internal authenticity, and patients became active participants in student learning. Without a mutual relationship, patients passively let students practice on their bodies. Students nearing graduation experienced only external authenticity, creating uncertainty as a threshold for learning. Caring for patients with complex needs helped students overcome the threshold and experience internal authenticity. Supervisors' challenges were to balance patient care and student learning by working as a team. They supported students coping with the complex challenges on the ward. Students need to experience external and internal authenticity to make learning meaningful. Experiencing authenticity, involving meaning-making processes and knowledge construction, is linked to transformative learning and overcoming thresholds. Therefore, an explicit pedagogical framework, based on patient-centredness, peer learning and the supervisory team, creates the prerequisites for experiencing external and internal authenticity.
Fallatah, Fatmah; Laschinger, Heather K S; Read, Emily A
Nurses' turnover has a costly impact on organizations, patients, and nurses. Numerous studies have highlighted the critical role of nursing leadership in enhancing new nurses' retention. To examine the influence of authentic leadership on new nurses' job turnover intentions through their personal identification with the leader, organizational identification, and occupational coping self-efficacy. Secondary data analysis of a cross-sectional national study of Canadian new graduate nurses was conducted using structural equation modeling. Authentic leadership had a significant positive effect on nurses' personal identification with their leader and their organization. Personal identification mediated the relationship between authentic leadership and organizational identification. Organizational identification had a significant positive effect on occupational coping self-efficacy, which, in turn, had a negative effect on new graduate nurses' job turnover intentions. The findings demonstrate the vital role authentic leadership plays in retaining new graduate nurses. Authentic leaders foster personal and organizational identification among new graduate nurses, leading to increase in the confidence in their ability to manage work-related challenges, which subsequently results in positive outcomes in both new graduate nurses and the organization. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Abulkasim, Hussein; Hamad, Safwat; Elhadad, Ahmed
2018-02-01
In the Comment made by Gao (2018 Phys. Scr. 93 027002), it has been shown that the multiparty case in our proposed scheme in Abulkasim et al (2016 Phys. Scr. 91 085101) is not secure, where Bob and Charlie can deduce Alice’s unitary operations without being detected. This reply shows a simple modification of the multiparty case to prevent the dishonest agents from performing this kind of attack.
A rhythm-based authentication scheme for smart media devices.
Lee, Jae Dong; Jeong, Young-Sik; Park, Jong Hyuk
2014-01-01
In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience.
A Rhythm-Based Authentication Scheme for Smart Media Devices
Lee, Jae Dong; Park, Jong Hyuk
2014-01-01
In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience. PMID:25110743
NASA Astrophysics Data System (ADS)
Festiyed; Djamas, D.; Pilendia, D.
2018-04-01
The purpose of this study is to enhance the problem solving and self-management abilities of student teachers through individual and group authentic task. Preliminary results showed that the learning outcomes in high category, nevertheless problem solving and self-management abilities are still low and average categories (scattered at interval 40 ≤ N ≤ 65). Initiative to improve this condition is needed. Action research is the alternative solution for that condition through planning, acting, evaluating, and reflecting. This study is allowed in 4 cycles. The acting step result with integrated discuss method, case study, and presentation including self-assessment for individual and group. This method was effective to enhance problem solving and self-management abilities. The final learning outcomes seen from the correlation between student self-assessment and lecture-assessment (r=0.19). Its means there are unidirectional relationship between the result of self-assessment and lecture-assessment. The Conclusion of the research was effective to enhance problem solving and self-management ability.
A novel design of optical CDMA system based on TCM and FFH
NASA Astrophysics Data System (ADS)
Fang, Jun-Bin; Xu, Zhi-Hai; Huang, Hong-bin; Zheng, Liming; Chen, Shun-er; Liu, Wei-ping
2005-02-01
For the application in Passive Optical Network (PON), a novel design of OCDMA system scheme is proposed in this paper. There are two key components included in this scheme: a new kind of OCDMA encoder/decoder system based on TCM and FFH and an improved Optical Line Terminal (OLT) receiving system with improved anti-interference performance by the use of Long Period Fiber Grating (LPFG). In the encoder/decoder system, Trellis Coded Modulation (TCM) encoder is applied in front of the FFH modulator. Original signal firstly is encoded through TCM encoder, and then the redundant code out of the TCM encoder will be mapped into one of the FFH modulation signal subsets for transmission. On the receiver (decoder) side, transmitting signal is demodulated through FFH and decoded by trellis decoder. Owing to the fact that high coding gain can be acquired by TCM without adding transmitting band and reducing transmitting speed, TCM is utilized to ameliorate bit error performance and reduce multi-user interference. In the OLT receiving system, EDFA and LPFG are placed in front of decoder to get excellent gain flatness on a large bandwidth, and Optical Hard Limiter (OHL) is also deployed to improve detection performance, through which the anti-interference performance of receiving system can be greatly enhanced. At the same time, some software is used to simulate the system performance for further analysis and authentication. The related work in this paper provides a valuable reference to the research.
Performance of an optical identification and interrogation system
NASA Astrophysics Data System (ADS)
Venugopalan, A.; Ghosh, A. K.; Verma, P.; Cheng, S.
2008-04-01
A free space optics based identification and interrogation system has been designed. The applications of the proposed system lie primarily in areas which require a secure means of mutual identification and information exchange between optical readers and tags. Conventional RFIDs raise issues regarding security threats, electromagnetic interference and health safety. The security of RF-ID chips is low due to the wide spatial spread of radio waves. Malicious nodes can read data being transmitted on the network, if they are in the receiving range. The proposed system provides an alternative which utilizes the narrow paraxial beams of lasers and an RSA-based authentication scheme. These provide enhanced security to communication between a tag and the base station or reader. The optical reader can also perform remote identification and the tag can be read from a far off distance, given line of sight. The free space optical identification and interrogation system can be used for inventory management, security systems at airports, port security, communication with high security systems, etc. to name a few. The proposed system was implemented with low-cost, off-the-shelf components and its performance in terms of throughput and bit error rate has been measured and analyzed. The range of operation with a bit-error-rate lower than 10-9 was measured to be about 4.5 m. The security of the system is based on the strengths of the RSA encryption scheme implemented using more than 1024 bits.
Use of NTRIP for optimizing the decoding algorithm for real-time data streams.
He, Zhanke; Tang, Wenda; Yang, Xuhai; Wang, Liming; Liu, Jihua
2014-10-10
As a network transmission protocol, Networked Transport of RTCM via Internet Protocol (NTRIP) is widely used in GPS and Global Orbiting Navigational Satellite System (GLONASS) Augmentation systems, such as Continuous Operational Reference System (CORS), Wide Area Augmentation System (WAAS) and Satellite Based Augmentation Systems (SBAS). With the deployment of BeiDou Navigation Satellite system(BDS) to serve the Asia-Pacific region, there are increasing needs for ground monitoring of the BeiDou Navigation Satellite system and the development of the high-precision real-time BeiDou products. This paper aims to optimize the decoding algorithm of NTRIP Client data streams and the user authentication strategies of the NTRIP Caster based on NTRIP. The proposed method greatly enhances the handling efficiency and significantly reduces the data transmission delay compared with the Federal Agency for Cartography and Geodesy (BKG) NTRIP. Meanwhile, a transcoding method is proposed to facilitate the data transformation from the BINary EXchange (BINEX) format to the RTCM format. The transformation scheme thus solves the problem of handing real-time data streams from Trimble receivers in the BeiDou Navigation Satellite System indigenously developed by China.
Secure and Efficient Signature Scheme Based on NTRU for Mobile Payment
NASA Astrophysics Data System (ADS)
Xia, Yunhao; You, Lirong; Sun, Zhe; Sun, Zhixin
2017-10-01
Mobile payment becomes more and more popular, however the traditional public-key encryption algorithm has higher requirements for hardware which is not suitable for mobile terminals of limited computing resources. In addition, these public-key encryption algorithms do not have the ability of anti-quantum computing. This paper researches public-key encryption algorithm NTRU for quantum computation through analyzing the influence of parameter q and k on the probability of generating reasonable signature value. Two methods are proposed to improve the probability of generating reasonable signature value. Firstly, increase the value of parameter q. Secondly, add the authentication condition that meet the reasonable signature requirements during the signature phase. Experimental results show that the proposed signature scheme can realize the zero leakage of the private key information of the signature value, and increase the probability of generating the reasonable signature value. It also improve rate of the signature, and avoid the invalid signature propagation in the network, but the scheme for parameter selection has certain restrictions.
A Theoretical Analysis: Physical Unclonable Functions and The Software Protection Problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nithyanand, Rishab; Solis, John H.
2011-09-01
Physical Unclonable Functions (PUFs) or Physical One Way Functions (P-OWFs) are physical systems whose responses to input stimuli (i.e., challenges) are easy to measure (within reasonable error bounds) but hard to clone. This property of unclonability is due to the accepted hardness of replicating the multitude of uncontrollable manufacturing characteristics and makes PUFs useful in solving problems such as device authentication, software protection, licensing, and certified execution. In this paper, we focus on the effectiveness of PUFs for software protection and show that traditional non-computational (black-box) PUFs cannot solve the problem against real world adversaries in offline settings. Our contributionsmore » are the following: We provide two real world adversary models (weak and strong variants) and present definitions for security against the adversaries. We continue by proposing schemes secure against the weak adversary and show that no scheme is secure against a strong adversary without the use of trusted hardware. Finally, we present a protection scheme secure against strong adversaries based on trusted hardware.« less
Preserving anonymity in e-voting system using voter non-repudiation oriented scheme
NASA Astrophysics Data System (ADS)
Hamid, Isredza Rahmi A.; Radzi, Siti Nafishah Md; Rahman, Nurul Hidayah Ab; Wen, Chuah Chai; Abdullah, Nurul Azma
2017-10-01
The voting system has been developed from traditional paper ballot to electronic voting (e-voting). The e-voting system has high potential to be widely used in election event. However, the e-voting system still does not meet the most important security properties which are voter's authenticity and non-repudiation. This is because voters can simply vote again by entering other people's identification number. In this project, an electronic voting using voter non-repudiation oriented scheme will be developed. This system contains ten modules which are log in, vote session, voter, candidate, open session, voting results, user account, initial score, logs and reset vote count. In order to ensure there would be no non-repudiation issue, a voter non-repudiation oriented scheme concept will be adapted and implemented in the system. This system will be built using Microsoft Visual Studio 2013 which only can be accessed using personal computers at the voting center. This project will be beneficial for future use in order to overcome non-repudiation issue.
NASA Astrophysics Data System (ADS)
Gallagher, J. H. R.; Potter, N.; Evans, B. J. K.
2016-12-01
OPeNDAP, in conjunction with the Australian National University, documented the installation process needed to add authentication to OPeNDAP-enabled data servers (Hyrax, TDS, etc.) and examined 13 OPeNDAP clients to determine how best to add authentication using LDAP, Shibboleth and OAuth2 (we used NASA's URS). We settled on a server configuration (architecture) that uses the Apache web server and a collection of open-source modules to perform the authentication and authorization actions. This is not the only way to accomplish those goals, but using Apache represents a good balance between functionality, leveraging existing work that has been well vetted and includes support for a wide variety of web services, include those that depend on a servlet engine such as tomcat (which both Hyrax and TDS do). Or work shows how LDAP, OAuth2 and Shibboleth can all be accommodated using this readily available software stack. Also important is that the Apache software is very widely used and is fairly robust - extremely important for security software components. In order to make use of a server requiring authentication, clients must support the authentication process. Because HTTP has included authentication for well over a decade, and because HTTP/HTTPS can be used by simply linking programs with a library, both the LDAP and OAuth2/URS authentication schemes have almost universal support within the OPeNDAP client base. The clients, i.e. the HTTP client libraries they employ, understand how to submit the credentials to the correct server when confronted by an HTTP/S Unauthorized (401) response. Interestingly OAuth2 can achieve it's SSO objectives while relying entirely on normative HTTP transport. All 13 of the clients examined worked.The situation with Shibboleth is different. While Shibboleth does use HTTP, it also requires the client to either scrape a web page or support the SAML2.0 ECP profile, which, for programmatic clients, means using SOAP messages. Since working with SOAP is outside the scope of HTTP, support for Shibboleth must be added explicitly into the client software. Some of the potential burden of enabling OPeNDAP clients to work with Shibboleth may be mitigated by getting both NetCDF-C and NetCDF-Java libraries to use the Shibboleth ECP profile. If done, this would get 9 of the 13 clients we examined working.
NASA Astrophysics Data System (ADS)
Hsu, Pei-Ling; van Eijck, Michiel; Roth, Wolff-Michael
2010-06-01
Working at scientists' elbows is one suggestion that educators make to improve science education, because such "authentic experiences" provide students with various types of science knowledge. However, there is an ongoing debate in the literature about the assumption that authentic science activities can enhance students' understandings of scientific practice. The purpose of the study is to further address the debate in terms of the ethnographic data collected during an internship programme for high school students right through to their public presentations at the end. Drawing on activity theory to analyse these presentations, we found that students presented scientific practice as accomplished by individual personnel without collaboration in the laboratory. However, our ethnographic data of their internship interaction show that students have had conversations about the complex collaborations within and outside the laboratory. This phenomenon leads us to claim that students experienced authentic science in their internships, but their subsequent representations of authentic science are incomplete. That is, participating in authentic science internships and reporting scientific practice are embedded activities that constitute different goals and conditions rather than unrefracted reflections of one another. The debate on the influence on students' understanding of science practice is not simply related to situating students in authentic science contexts, but also related to students' values and ideology of reporting their understanding of and about science. To help students see these "invisible" moments of science practice is therefore crucial. We make suggestions for how the invisible in and of authentic science may be made visible.
Enhancing the Spiritual Development of Adolescent Girls
ERIC Educational Resources Information Center
Bruce, Mary Alice; Cockreham, Debbie
2004-01-01
Spirituality is an important force during a period when institutional religion seems to be losing its hold on adolescents. To enhance the spiritual development of adolescent girls in the school setting, the group experience described addresses authentic identity, relationships and boundaries, managing pain experienced in life, and discovering and…
Using Computer-Assisted Instruction to Enhance Achievement of English Language Learners
ERIC Educational Resources Information Center
Keengwe, Jared; Hussein, Farhan
2014-01-01
Computer-assisted instruction (CAI) in English-Language environments offer practice time, motivates students, enhance student learning, increase authentic materials that students can study, and has the potential to encourage teamwork between students. The findings from this particular study suggested that students who used computer assisted…
Wu, Qunjian; Yan, Bin; Zeng, Ying; Zhang, Chi; Tong, Li
2018-05-03
The electroencephalogram (EEG) signal represents a subject's specific brain activity patterns and is considered as an ideal biometric given its superior invisibility, non-clonality, and non-coercion. In order to enhance its applicability in identity authentication, a novel EEG-based identity authentication method is proposed based on self- or non-self-face rapid serial visual presentation. In contrast to previous studies that extracted EEG features from rest state or motor imagery, the designed paradigm could obtain a distinct and stable biometric trait with a lower time cost. Channel selection was applied to select specific channels for each user to enhance system portability and improve discriminability between users and imposters. Two different imposter scenarios were designed to test system security, which demonstrate the capability of anti-deception. Fifteen users and thirty imposters participated in the experiment. The mean authentication accuracy values for the two scenarios were 91.31 and 91.61%, with 6 s time cost, which illustrated the precision and real-time capability of the system. Furthermore, in order to estimate the repeatability and stability of our paradigm, another data acquisition session is conducted for each user. Using the classification models generated from the previous sessions, a mean false rejected rate of 7.27% has been achieved, which demonstrates the robustness of our paradigm. Experimental results reveal that the proposed paradigm and methods are effective for EEG-based identity authentication.
Secure quantum signatures: a practical quantum technology (Conference Presentation)
NASA Astrophysics Data System (ADS)
Andersson, Erika
2016-10-01
Modern cryptography encompasses much more than encryption of secret messages. Signature schemes are widely used to guarantee that messages cannot be forged or tampered with, for example in e-mail, software updates and electronic commerce. Messages are also transferrable, which distinguishes digital signatures from message authentication. Transferability means that messages can be forwarded; in other words, that a sender is unlikely to be able to make one recipient accept a message which is subsequently rejected by another recipient if the message is forwarded. Similar to public-key encryption, the security of commonly used signature schemes relies on the assumed computational difficulty of problems such as finding discrete logarithms or factoring large primes. With quantum computers, such assumptions would no longer be valid. Partly for this reason, it is desirable to develop signature schemes with unconditional or information-theoretic security. Quantum signature schemes are one possible solution. Similar to quantum key distribution (QKD), their unconditional security relies only on the laws of quantum mechanics. Quantum signatures can be realized with the same system components as QKD, but are so far less investigated. This talk aims to provide an introduction to quantum signatures and to review theoretical and experimental progress so far.
Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara
2009-01-01
The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines. PMID:18927105
Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara
2009-01-01
The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.
McGettigan, C.; Walsh, E.; Jessop, R.; Agnew, Z. K.; Sauter, D. A.; Warren, J. E.; Scott, S. K.
2015-01-01
Humans express laughter differently depending on the context: polite titters of agreement are very different from explosions of mirth. Using functional MRI, we explored the neural responses during passive listening to authentic amusement laughter and controlled, voluntary laughter. We found greater activity in anterior medial prefrontal cortex (amPFC) to the deliberate, Emitted Laughs, suggesting an obligatory attempt to determine others' mental states when laughter is perceived as less genuine. In contrast, passive perception of authentic Evoked Laughs was associated with greater activity in bilateral superior temporal gyri. An individual differences analysis found that greater accuracy on a post hoc test of authenticity judgments of laughter predicted the magnitude of passive listening responses to laughter in amPFC, as well as several regions in sensorimotor cortex (in line with simulation accounts of emotion perception). These medial prefrontal and sensorimotor sites showed enhanced positive connectivity with cortical and subcortical regions during listening to involuntary laughter, indicating a complex set of interacting systems supporting the automatic emotional evaluation of heard vocalizations. PMID:23968840
McGettigan, C; Walsh, E; Jessop, R; Agnew, Z K; Sauter, D A; Warren, J E; Scott, S K
2015-01-01
Humans express laughter differently depending on the context: polite titters of agreement are very different from explosions of mirth. Using functional MRI, we explored the neural responses during passive listening to authentic amusement laughter and controlled, voluntary laughter. We found greater activity in anterior medial prefrontal cortex (amPFC) to the deliberate, Emitted Laughs, suggesting an obligatory attempt to determine others' mental states when laughter is perceived as less genuine. In contrast, passive perception of authentic Evoked Laughs was associated with greater activity in bilateral superior temporal gyri. An individual differences analysis found that greater accuracy on a post hoc test of authenticity judgments of laughter predicted the magnitude of passive listening responses to laughter in amPFC, as well as several regions in sensorimotor cortex (in line with simulation accounts of emotion perception). These medial prefrontal and sensorimotor sites showed enhanced positive connectivity with cortical and subcortical regions during listening to involuntary laughter, indicating a complex set of interacting systems supporting the automatic emotional evaluation of heard vocalizations. © The Author 2013. Published by Oxford University Press.
USign--a security enhanced electronic consent model.
Li, Yanyan; Xie, Mengjun; Bian, Jiang
2014-01-01
Electronic consent becomes increasingly popular in the healthcare sector given the many benefits it provides. However, security concerns, e.g., how to verify the identity of a person who is remotely accessing the electronic consent system in a secure and user-friendly manner, also arise along with the popularity of electronic consent. Unfortunately, existing electronic consent systems do not pay sufficient attention to those issues. They mainly rely on conventional password based authentication to verify the identity of an electronic consent user, which is far from being sufficient given that identity theft threat is real and significant in reality. In this paper, we present a security enhanced electronic consent model called USign. USign enhances the identity protection and authentication for electronic consent systems by leveraging handwritten signatures everyone is familiar with and mobile computing technologies that are becoming ubiquitous. We developed a prototype of USign and conducted preliminary evaluation on accuracy and usability of signature verification. Our experimental results show the feasibility of the proposed model.
Wang, Liangmin
2018-01-01
Today IoT integrate thousands of inter networks and sensing devices e.g., vehicular networks, which are considered to be challenging due to its high speed and network dynamics. The goal of future vehicular networks is to improve road safety, promote commercial or infotainment products and to reduce the traffic accidents. All these applications are based on the information exchange among nodes, so not only reliable data delivery but also the authenticity and credibility of the data itself are prerequisite. To cope with the aforementioned problem, trust management come up as promising candidate to conduct node’s transaction and interaction management, which requires distributed mobile nodes cooperation for achieving design goals. In this paper, we propose a trust-based routing protocol i.e., 3VSR (Three Valued Secure Routing), which extends the widely used AODV (Ad hoc On-demand Distance Vector) routing protocol and employs the idea of Sensing Logic-based trust model to enhance the security solution of VANET (Vehicular Ad-Hoc Network). The existing routing protocol are mostly based on key or signature-based schemes, which off course increases computation overhead. In our proposed 3VSR, trust among entities is updated frequently by means of opinion derived from sensing logic due to vehicles random topologies. In 3VSR the theoretical capabilities are based on Dirichlet distribution by considering prior and posterior uncertainty of the said event. Also by using trust recommendation message exchange, nodes are able to reduce computation and routing overhead. The simulated results shows that the proposed scheme is secure and practical. PMID:29538314
Sohail, Muhammad; Wang, Liangmin
2018-03-14
Today IoT integrate thousands of inter networks and sensing devices e.g., vehicular networks, which are considered to be challenging due to its high speed and network dynamics. The goal of future vehicular networks is to improve road safety, promote commercial or infotainment products and to reduce the traffic accidents. All these applications are based on the information exchange among nodes, so not only reliable data delivery but also the authenticity and credibility of the data itself are prerequisite. To cope with the aforementioned problem, trust management come up as promising candidate to conduct node's transaction and interaction management, which requires distributed mobile nodes cooperation for achieving design goals. In this paper, we propose a trust-based routing protocol i.e., 3VSR (Three Valued Secure Routing), which extends the widely used AODV (Ad hoc On-demand Distance Vector) routing protocol and employs the idea of Sensing Logic-based trust model to enhance the security solution of VANET (Vehicular Ad-Hoc Network). The existing routing protocol are mostly based on key or signature-based schemes, which off course increases computation overhead. In our proposed 3VSR, trust among entities is updated frequently by means of opinion derived from sensing logic due to vehicles random topologies. In 3VSR the theoretical capabilities are based on Dirichlet distribution by considering prior and posterior uncertainty of the said event. Also by using trust recommendation message exchange, nodes are able to reduce computation and routing overhead. The simulated results shows that the proposed scheme is secure and practical.
Strict integrity control of biomedical images
NASA Astrophysics Data System (ADS)
Coatrieux, Gouenou; Maitre, Henri; Sankur, Bulent
2001-08-01
The control of the integrity and authentication of medical images is becoming ever more important within the Medical Information Systems (MIS). The intra- and interhospital exchange of images, such as in the PACS (Picture Archiving and Communication Systems), and the ease of copying, manipulation and distribution of images have brought forth the security aspects. In this paper we focus on the role of watermarking for MIS security and address the problem of integrity control of medical images. We discuss alternative schemes to extract verification signatures and compare their tamper detection performance.
Multicollision attack on CBC-MAC, EMAC, and XCBC-MAC of AES-128 algorithm
NASA Astrophysics Data System (ADS)
Brolin Sihite, Alfonso; Hayat Susanti, Bety
2017-10-01
A Message Authentication Codes (MAC) can be constructed based on a block cipher algorithm. CBC-MAC, EMAC, and XCBC-MAC constructions are some of MAC schemes that used in the hash function. In this paper, we do multicollision attack on CBC-MAC, EMAC, and XCBC-MAC construction which uses AES-128 block cipher algorithm as basic construction. The method of multicollision attack utilizes the concept of existential forgery on CBC-MAC. The results show that the multicollision can be obtained easily in CBC-MAC, EMAC, and XCBC-MAC construction.
Spatial-frequency composite watermarking for digital image copyright protection
NASA Astrophysics Data System (ADS)
Su, Po-Chyi; Kuo, C.-C. Jay
2000-05-01
Digital watermarks can be classified into two categories according to the embedding and retrieval domain, i.e. spatial- and frequency-domain watermarks. Because the two watermarks have different characteristics and limitations, combination of them can have various interesting properties when applied to different applications. In this research, we examine two spatial-frequency composite watermarking schemes. In both cases, a frequency-domain watermarking technique is applied as a baseline structure in the system. The embedded frequency- domain watermark is robust against filtering and compression. A spatial-domain watermarking scheme is then built to compensate some deficiency of the frequency-domain scheme. The first composite scheme is to embed a robust watermark in images to convey copyright or author information. The frequency-domain watermark contains owner's identification number while the spatial-domain watermark is embedded for image registration to resist cropping attack. The second composite scheme is to embed fragile watermark for image authentication. The spatial-domain watermark helps in locating the tampered part of the image while the frequency-domain watermark indicates the source of the image and prevents double watermarking attack. Experimental results show that the two watermarks do not interfere with each other and different functionalities can be achieved. Watermarks in both domains are detected without resorting to the original image. Furthermore, the resulting watermarked image can still preserve high fidelity without serious visual degradation.
Kang, Jungho; Kim, Mansik; Park, Jong Hyuk
2016-01-01
With the ICT technology making great progress in the smart home environment, the ubiquitous environment is rapidly emerging all over the world, but problems are also increasing proportionally to the rapid growth of the smart home market such as multiplatform heterogeneity and new security threats. In addition, the smart home sensors have so low computing resources that they cannot process complicated computation tasks, which is required to create a proper security environment. A service provider also faces overhead in processing data from a rapidly increasing number of sensors. This paper aimed to propose a scheme to build infrastructure in which communication entities can securely authenticate and design security channel with physically unclonable PUFs and the TTP that smart home communication entities can rely on. In addition, we analyze and evaluate the proposed scheme for security and performance and prove that it can build secure channels with low resources. Finally, we expect that the proposed scheme can be helpful for secure communication with low resources in future smart home multiplatforms. PMID:27399699
Kang, Jungho; Kim, Mansik; Park, Jong Hyuk
2016-07-05
With the ICT technology making great progress in the smart home environment, the ubiquitous environment is rapidly emerging all over the world, but problems are also increasing proportionally to the rapid growth of the smart home market such as multiplatform heterogeneity and new security threats. In addition, the smart home sensors have so low computing resources that they cannot process complicated computation tasks, which is required to create a proper security environment. A service provider also faces overhead in processing data from a rapidly increasing number of sensors. This paper aimed to propose a scheme to build infrastructure in which communication entities can securely authenticate and design security channel with physically unclonable PUFs and the TTP that smart home communication entities can rely on. In addition, we analyze and evaluate the proposed scheme for security and performance and prove that it can build secure channels with low resources. Finally, we expect that the proposed scheme can be helpful for secure communication with low resources in future smart home multiplatforms.
Role-Play Game-Enhanced English for a Specific-Purpose Vocabulary-Acquisition Framework
ERIC Educational Resources Information Center
Lu, Fang-Chen; Chang, Ben
2016-01-01
With the advantages of an engaged and authentic role-play game (RPG), this study aims to develop an RPG-enhanced English for specific purposes (ESP) vocabulary-acquisition framework, providing teachers and students a systematic way to incorporate RPG into ESP learning. The framework is composed of five parts: goal, three-level vocabulary sets, RPG…
Open the VALT™: Creation and application of a visually authentic learning tool.
Ackland-Tilbrook, Vanessa; Warland, Jane
2015-05-01
This paper describes the process of creating and applying a Visually Authentic Learning Tool (VALT™) in an undergraduate midwifery program. The VALT was developed to facilitate learning in the topic "bleeding in pregnancy". The VALTs objective is to open the mind of the student to facilitate learning via the visual representation of authentic real life simulations designed to enhance and bring to life the written scenario. Students were asked for their feedback of the VALTs. A descriptive analysis was performed on the collated results to determine how the students rated the VALTS in terms of satisfaction and meeting their learning needs. Overall the students seemed to value the VALTs as they present an engaging and unique opportunity to promote learning whilst acknowledging and valuing different learning style within the student group. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
A nuclear method to authenticate Buddha images
NASA Astrophysics Data System (ADS)
Khaweerat, S.; Ratanatongchai, W.; Channuie, J.; Wonglee, S.; Picha, R.; Promping, J.; Silva, K.; Liamsuwan, T.
2015-05-01
The value of Buddha images in Thailand varies dramatically depending on authentication and provenance. In general, people use their individual skills to make the justification which frequently leads to obscurity, deception and illegal activities. Here, we propose two non-destructive techniques of neutron radiography (NR) and neutron activation autoradiography (NAAR) to reveal respectively structural and elemental profiles of small Buddha images. For NR, a thermal neutron flux of 105 n cm-2s-1 was applied. NAAR needed a higher neutron flux of 1012 n cm-2 s-1 to activate the samples. Results from NR and NAAR revealed unique characteristic of the samples. Similarity of the profile played a key role in the classification of the samples. The results provided visual evidence to enhance the reliability of authenticity approval. The method can be further developed for routine practice which impact thousands of customers in Thailand.
Joint forensics and watermarking approach for video authentication
NASA Astrophysics Data System (ADS)
Thiemert, Stefan; Liu, Huajian; Steinebach, Martin; Croce-Ferri, Lucilla
2007-02-01
In our paper we discuss and compare the possibilities and shortcomings of both content-fragile watermarking and digital forensics and analyze if the combination of both techniques allows the identification of more than the sum of all manipulations identified by both techniques on their own due to synergetic effects. The first part of the paper discusses the theoretical possibilities offered by a combined approach, in which forensics and watermarking are considered as complementary tools for data authentication or deeply combined together, in order to reduce their error rate and to enhance the detection efficiency. After this conceptual discussion the paper proposes some concrete examples in which the joint approach is applied to video authentication. Some specific forensics techniques are analyzed and expanded to handle efficiently video data. The examples show possible extensions of passive-blind image forgery detection to video data, where the motion and time related characteristics of video are efficiently exploited.
Dunbar-Reid, Kylie; Sinclair, Peter M; Hudson, Denis
2015-06-01
Simulation is a well-established and proven teaching method, yet its use in renal education is not widely reported. Criticisms of simulation-based teaching include limited realism and a lack of authentic patient interaction. This paper discusses the benefits and challenges of high-fidelity simulation and suggests hybrid simulation as a complementary model to existing simulation programmes. Through the use of a simulated patient, hybrid simulation can improve the authenticity of renal simulation-based education while simultaneously teaching and assessing technologically enframed caring. © 2015 European Dialysis and Transplant Nurses Association/European Renal Care Association.
Biometrics based key management of double random phase encoding scheme using error control codes
NASA Astrophysics Data System (ADS)
Saini, Nirmala; Sinha, Aloka
2013-08-01
In this paper, an optical security system has been proposed in which key of the double random phase encoding technique is linked to the biometrics of the user to make it user specific. The error in recognition due to the biometric variation is corrected by encoding the key using the BCH code. A user specific shuffling key is used to increase the separation between genuine and impostor Hamming distance distribution. This shuffling key is then further secured using the RSA public key encryption to enhance the security of the system. XOR operation is performed between the encoded key and the feature vector obtained from the biometrics. The RSA encoded shuffling key and the data obtained from the XOR operation are stored into a token. The main advantage of the present technique is that the key retrieval is possible only in the simultaneous presence of the token and the biometrics of the user which not only authenticates the presence of the original input but also secures the key of the system. Computational experiments showed the effectiveness of the proposed technique for key retrieval in the decryption process by using the live biometrics of the user.
Experimental investigation of practical unforgeable quantum money
NASA Astrophysics Data System (ADS)
Bozzio, Mathieu; Orieux, Adeline; Trigo Vidarte, Luis; Zaquine, Isabelle; Kerenidis, Iordanis; Diamanti, Eleni
2018-01-01
Wiesner's unforgeable quantum money scheme is widely celebrated as the first quantum information application. Based on the no-cloning property of quantum mechanics, this scheme allows for the creation of credit cards used in authenticated transactions offering security guarantees impossible to achieve by classical means. However, despite its central role in quantum cryptography, its experimental implementation has remained elusive because of the lack of quantum memories and of practical verification techniques. Here, we experimentally implement a quantum money protocol relying on classical verification that rigorously satisfies the security condition for unforgeability. Our system exploits polarization encoding of weak coherent states of light and operates under conditions that ensure compatibility with state-of-the-art quantum memories. We derive working regimes for our system using a security analysis taking into account all practical imperfections. Our results constitute a major step towards a real-world realization of this milestone protocol.
NASA Astrophysics Data System (ADS)
Kim, Kyung-Su; Lee, Hae-Yeoun; Im, Dong-Hyuck; Lee, Heung-Kyu
Commercial markets employ digital right management (DRM) systems to protect valuable high-definition (HD) quality videos. DRM system uses watermarking to provide copyright protection and ownership authentication of multimedia contents. We propose a real-time video watermarking scheme for HD video in the uncompressed domain. Especially, our approach is in aspect of practical perspectives to satisfy perceptual quality, real-time processing, and robustness requirements. We simplify and optimize human visual system mask for real-time performance and also apply dithering technique for invisibility. Extensive experiments are performed to prove that the proposed scheme satisfies the invisibility, real-time processing, and robustness requirements against video processing attacks. We concentrate upon video processing attacks that commonly occur in HD quality videos to display on portable devices. These attacks include not only scaling and low bit-rate encoding, but also malicious attacks such as format conversion and frame rate change.
Classification of Palmprint Using Principal Line
NASA Astrophysics Data System (ADS)
Prasad, Munaga V. N. K.; Kumar, M. K. Pramod; Sharma, Kuldeep
In this paper, a new classification scheme for palmprint is proposed. Palmprint is one of the reliable physiological characteristics that can be used to authenticate an individual. Palmprint classification provides an important indexing mechanism in a very large palmprint database. Here, the palmprint database is initially categorized into two groups, right hand group and left hand group. Then, each group is further classified based on the distance traveled by principal line i.e. Heart Line During pre processing, a rectangular Region of Interest (ROI) in which only heart line is present, is extracted. Further, ROI is divided into 6 regions and depending upon the regions in which the heart line traverses the palmprint is classified accordingly. Consequently, our scheme allows 64 categories for each group forming a total number of 128 possible categories. The technique proposed in this paper includes only 15 such categories and it classifies not more than 20.96% of the images into a single category.
A Weak Quantum Blind Signature with Entanglement Permutation
NASA Astrophysics Data System (ADS)
Lou, Xiaoping; Chen, Zhigang; Guo, Ying
2015-09-01
Motivated by the permutation encryption algorithm, a weak quantum blind signature (QBS) scheme is proposed. It involves three participants, including the sender Alice, the signatory Bob and the trusted entity Charlie, in four phases, i.e., initializing phase, blinding phase, signing phase and verifying phase. In a small-scale quantum computation network, Alice blinds the message based on a quantum entanglement permutation encryption algorithm that embraces the chaotic position string. Bob signs the blinded message with private parameters shared beforehand while Charlie verifies the signature's validity and recovers the original message. Analysis shows that the proposed scheme achieves the secure blindness for the signer and traceability for the message owner with the aid of the authentic arbitrator who plays a crucial role when a dispute arises. In addition, the signature can neither be forged nor disavowed by the malicious attackers. It has a wide application to E-voting and E-payment system, etc.
Hughes, Richard John; Thrasher, James Thomas; Nordholt, Jane Elizabeth
2016-11-29
Innovations for quantum key management harness quantum communications to form a cryptography system within a public key infrastructure framework. In example implementations, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a Merkle signature scheme (using Winternitz one-time digital signatures or other one-time digital signatures, and Merkle hash trees) to constitute a cryptography system. More generally, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a hash-based signature scheme. This provides a secure way to identify, authenticate, verify, and exchange secret cryptographic keys. Features of the quantum key management innovations further include secure enrollment of users with a registration authority, as well as credential checking and revocation with a certificate authority, where the registration authority and/or certificate authority can be part of the same system as a trusted authority for quantum key distribution.
NASA Astrophysics Data System (ADS)
Ahi, Kiarash; Shahbazmohamadi, Sina; Asadizanjani, Navid
2018-05-01
In this paper, a comprehensive set of techniques for quality control and authentication of packaged integrated circuits (IC) using terahertz (THz) time-domain spectroscopy (TDS) is developed. By material characterization, the presence of unexpected materials in counterfeit components is revealed. Blacktopping layers are detected using THz time-of-flight tomography, and thickness of hidden layers is measured. Sanded and contaminated components are detected by THz reflection-mode imaging. Differences between inside structures of counterfeit and authentic components are revealed through developing THz transmission imaging. For enabling accurate measurement of features by THz transmission imaging, a novel resolution enhancement technique (RET) has been developed. This RET is based on deconvolution of the THz image and the THz point spread function (PSF). The THz PSF is mathematically modeled through incorporating the spectrum of the THz imaging system, the axis of propagation of the beam, and the intensity extinction coefficient of the object into a Gaussian beam distribution. As a result of implementing this RET, the accuracy of the measurements on THz images has been improved from 2.4 mm to 0.1 mm and bond wires as small as 550 μm inside the packaging of the ICs are imaged.
Wang, Jianji; Zheng, Nanning
2013-09-01
Fractal image compression (FIC) is an image coding technology based on the local similarity of image structure. It is widely used in many fields such as image retrieval, image denoising, image authentication, and encryption. FIC, however, suffers from the high computational complexity in encoding. Although many schemes are published to speed up encoding, they do not easily satisfy the encoding time or the reconstructed image quality requirements. In this paper, a new FIC scheme is proposed based on the fact that the affine similarity between two blocks in FIC is equivalent to the absolute value of Pearson's correlation coefficient (APCC) between them. First, all blocks in the range and domain pools are chosen and classified using an APCC-based block classification method to increase the matching probability. Second, by sorting the domain blocks with respect to APCCs between these domain blocks and a preset block in each class, the matching domain block for a range block can be searched in the selected domain set in which these APCCs are closer to APCC between the range block and the preset block. Experimental results show that the proposed scheme can significantly speed up the encoding process in FIC while preserving the reconstructed image quality well.
ERIC Educational Resources Information Center
Asghar, Mandy; Rowe, Nick
2018-01-01
Service learning is an experiential pedagogic approach that is predicated on students learning in authentic situations. It is often problem-orientated and provides opportunities for community engagement in ways that enhance a student's capacity as a socially aware individual. There is evidence that such learning opportunities can enhance personal…
Tennant, Michele R; Edwards, Mary; Miyamoto, Michael M
2012-04-01
How can the library-based research project of a genetics course be reinvigorated and made sustainable without sacrificing educational integrity? The University of Florida's Health Science Center Library provides the case study. Since 1996, the librarian has codeveloped, supported, and graded all components of the project. In 2009, the project evolved from a single-authored paper to a group-work poster, with graded presentations hosted by the library. In 2010, students were surveyed regarding class enhancements. Responses indicated a preference for collaborative work and the poster format and suggested the changes facilitated learning. Instructors reported that the poster format more clearly documented students' understanding of genetics. Results suggest project enhancements contributed to greater appreciation, understanding, and application of classroom material and offered a unique and authentic learning experience, without compromising educational integrity. The library benefitted through increased visibility as a partner in the educational mission and development of a sustainable instructional collaboration.
Teachers doing science: An authentic geology research experience for teachers
Hemler, D.; Repine, T.
2006-01-01
Fairmont State University (FSU) and the West Virginia Geological and Economic Survey (WVGES) provided a small pilot group of West Virginia science teachers with a professional development session designed to mimic experiences obtained by geology majors during a typical summer field camp. Called GEOTECH, the program served as a research capstone event complimenting the participants' multi-year association with the RockCamp professional development program. GEOTECH was funded through a Improving Teacher Quality Grant administered by West Virginia Higher Education Policy Commission. Over the course of three weeks, eight GEOTEACH participants learned field measurement and field data collection techniques which they then applied to the construction of a surficial geologic map. The program exposed participants to authentic scientific processes by emphasizing the authentic scientific application of content knowledge. As a secondary product, it also enhanced their appreciation of the true nature of science in general and geology particular. After the session, a new appreciation of the effort involved in making a geologic map emerged as tacit knowledge ready to be transferred to their students. The program was assessed using pre/post instruments, cup interviews, journals, artifacts (including geologic maps, field books, and described sections), performance assessments, and constructed response items. Evaluation of the accumulated data revealed an increase in participants demonstrated use of science content knowledge, an enhanced awareness and understanding of the processes and nature of geologic mapping, positive dispositions toward geologic research and a high satisfaction rating for the program. These findings support the efficacy of the experience and document future programmatic enhancements.
Using Quantum Confinement to Uniquely Identify Devices
Roberts, J.; Bagci, I. E.; Zawawi, M. A. M.; Sexton, J.; Hulbert, N.; Noori, Y. J.; Young, M. P.; Woodhead, C. S.; Missous, M.; Migliorato, M. A.; Roedig, U.; Young, R. J.
2015-01-01
Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give a unique output in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with minimal resources in simple electronic structures above room temperature. PMID:26553435
Jacobs, A C; van Jaarsveldt, D E
2016-04-01
WHAT IS KNOWN ON THE SUBJECT?: Standardized patient (SP) simulation is an internationally recognized learning strategy that has proven effective in enhancing nursing students' competencies necessary for mental health practice. WHAT DOES THIS PAPER ADD TO EXISTING KNOWLEDGE?: A deeper exploration of the process from the perspective of SPs and more particularly drama students, revealed the complexity they need to navigate and the personal vulnerability they are exposed to when creating an authentic learning opportunity for nursing students. WHAT ARE THE IMPLICATIONS FOR PRACTICE?: Their vulnerability justifies deeper consideration of support, as well as research on the ethical implications of SP simulation. Nursing students need to be well grounded in therapeutic communication before engaging with mental health users. This should include opportunities to question personal frames of reference that could hinder therapeutic engagement with diverse others. In future, the drama students can be involved in scenario development to enhance the authenticity of simulations. Introduction The effectiveness of Standardized patient (SP) simulation in enhancing students' mental health nursing competencies is well published. Nevertheless, the believable and accurate portrayal of a patient with a mental health issue during SP simulation is complex. Though vital to the creation of safe authentic learning experiences, the perspectives of SPs and particularly of drama students involved in SP simulation are unknown. Aim The aim of this paper is therefore to explore and describe the experiences of 11 drama students engaged in mental health simulations for nursing students. Method A qualitative approach was taken and data were gathered using various techniques. Findings The content analysis revealed that these SPs negotiated three roles during this interdisciplinary learning experience, namely of a facilitator of learning, a drama student and the person within. Discussion The study provided valuable insight into the world of an SP, including the complexities they navigate and the vulnerability they experience. Implications for Practice Nurse educators are alerted to SP's need for support and the necessity of establishing good interpersonal skills before nursing students enter the practice setting. Involvement of SPs in scenario development could enhance the authenticity of future simulations. The ethical implications of SP simulation requires further exploration. © 2016 The Authors. Journal of Psychiatric and Mental Health Nursing Published by John Wiley & Sons Ltd.
Detection-enhanced steady state entanglement with ions.
Bentley, C D B; Carvalho, A R R; Kielpinski, D; Hope, J J
2014-07-25
Driven dissipative steady state entanglement schemes take advantage of coupling to the environment to robustly prepare highly entangled states. We present a scheme for two trapped ions to generate a maximally entangled steady state with fidelity above 0.99, appropriate for use in quantum protocols. Furthermore, we extend the scheme by introducing detection of our dissipation process, significantly enhancing the fidelity. Our scheme is robust to anomalous heating and requires no sympathetic cooling.
ECC-based grouping-proof RFID for inpatient medication safety.
Lin, Qiping; Zhang, Fangguo
2012-12-01
Several papers were proposed in which symmetric cryptography was used to design RFID grouping-proof for medication safety in the Journal of Medical Systems. However, if we want to ensure privacy, authentication and protection against the tracking of RFID-tags without losing system scalability, we must design an asymmetric cryptography-based RFID. This paper will propose a new ECC-based grouping-proof for RFID. Our ECC-based grouping-proof reduces the computation of tags and prevents timeout problems from occurring in n-party grouping-proof protocol. Based on asymmetric cryptography, the proposed scheme is practical, secure and efficient for medication applications.
Interoperable PKI Data Distribution in Computational Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pala, Massimiliano; Cholia, Shreyas; Rea, Scott A.
One of the most successful working examples of virtual organizations, computational grids need authentication mechanisms that inter-operate across domain boundaries. Public Key Infrastructures(PKIs) provide sufficient flexibility to allow resource managers to securely grant access to their systems in such distributed environments. However, as PKIs grow and services are added to enhance both security and usability, users and applications must struggle to discover available resources-particularly when the Certification Authority (CA) is alien to the relying party. This article presents how to overcome these limitations of the current grid authentication model by integrating the PKI Resource Query Protocol (PRQP) into the Gridmore » Security Infrastructure (GSI).« less
Enhanced Data Authentication System v. 2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Maikael A.; Tolsch, Brandon Jeffrey; Schwartz, Steven Robert
EDAS is a system, comprised on hardware and software, that plugs in to an existing data stream, and branches all data for transmission to a secondary observer computer. The EDAS Junction box, which inserts into the data stream, has Java software that forms these data into packets, digitally signs, encrypts, and sends these packets to a safeguards inspector computer. Further, there is a second Java program running on the secondary observer computer that receives data from the EDAS Junction Box to decrypt, authenticate, and store incoming packets. Also, there is a stand-alone Java program that is used to configure themore » EDAS Junction Box.« less
NASA Technical Reports Server (NTRS)
Graffi, Paige Valderrama; Stefanov, William; Willis, Kim; Runco, Sue
2009-01-01
Teachers in today s classrooms are bound by state required skills, education standards, and high stakes testing. How can they gain skills and confidence to replace units or individual activities with curriculum that incorporates project and inquiry-based learning and promotes authentic research in the classroom? The key to promoting classroom authentic research experiences lies in educator professional development that is structured around teacher needs. The Expedition Earth and Beyond Program is a new geosciences program based at the NASA Johnson Space Center designed to engage, inspire and educate teachers and students in grades 5-14. The program promotes authentic research experiences for classrooms and uses strategies that will help NASA reach its education goals while still allowing educators to teach required standards. Teachers will have access to experts in terrestrial and planetary remote sensing and geoscience; this will enhance their use of content, structure, and relevant experiences to gain the confidence and skills they need to actively engage students in authentic research experiences. Integrated and powerful educational strategies are used to build skills and confidence in teachers. The strategies are as follows: 1) creating Standards-aligned, inquiry-based curricular resources as ready-to-use materials that can be modified by teachers to fit their unique classroom situation; 2) providing ongoing professional development opportunities that focus on active experiences using curricular materials, inquiry-based techniques and expanding content knowledge; 3) connecting science experts to classrooms to deepen content knowledge and provide relevance to classroom activities and real world applications; 4) facilitating students sharing research with their peers and scientists reinforcing their active participation and contributions to research. These components of the Expedition Earth and Beyond Education Program will be enhanced by providing exciting and diverse research opportunities that are inspired by views of Earth from space taken by astronauts on board the International Space Station. The interest and connection to viewing our home planet from space will inevitably spark questions that will drive students to pursue their research investigations, as well as forming a basis for comparisons to the exploration of other planetary bodies in our solar system.
NASA Astrophysics Data System (ADS)
Graff, P. V.; Stefanov, W.; Willis, K.; Runco, S.
2009-12-01
Teachers in today’s classrooms are bound by state required skills, education standards, and high stakes testing. How can they gain skills and confidence to replace units or individual activities with curriculum that incorporates project and inquiry-based learning and promotes authentic research in the classroom? The key to promoting classroom authentic research experiences lies in educator professional development that is structured around teacher needs. The Expedition Earth and Beyond Program is a new geosciences program based at the NASA Johnson Space Center designed to engage, inspire and educate teachers and students in grades 5-14. The program promotes authentic research experiences for classrooms and uses strategies that will help NASA reach its education goals while still allowing educators to teach required standards. Teachers will have access to experts in terrestrial and planetary remote sensing and geoscience; this will enhance their use of content, structure, and relevant experiences to gain the confidence and skills they need to actively engage students in authentic research experiences. Integrated and powerful educational strategies are used to build skills and confidence in teachers. The strategies are as follows: 1) creating Standards-aligned, inquiry-based curricular resources as ready-to-use materials that can be modified by teachers to fit their unique classroom situation; 2) providing ongoing professional development opportunities that focus on active experiences using curricular materials, inquiry-based techniques and expanding content knowledge; 3) connecting science experts to classrooms to deepen content knowledge and provide relevance to classroom activities and real world applications; 4) facilitating students sharing research with their peers and scientists reinforcing their active participation and contributions to research. These components of the Expedition Earth and Beyond Education Program will be enhanced by providing exciting and diverse research opportunities that are inspired by views of Earth from space taken by astronauts on board the International Space Station. The interest and connection to viewing our home planet from space will inevitably spark questions that will drive students to pursue their research investigations, as well as forming a basis for comparisons to the exploration of other planetary bodies in our solar system.
Le, Tuan-Anh; Amin, Faiz Ul; Kim, Myeong Ok
2017-01-01
The blood–brain barrier (BBB) hinders drug delivery to the brain. Despite various efforts to develop preprogramed actuation schemes for magnetic drug delivery, the unmodeled aggregation phenomenon limits drug delivery performance. This paper proposes a novel scheme with an aggregation model for a feed-forward magnetic actuation design. A simulation platform for aggregated particle delivery is developed and an actuation scheme is proposed to deliver aggregated magnetic nanoparticles (MNPs) using a discontinuous asymmetrical magnetic actuation. The experimental results with a Y-shaped channel indicated the success of the proposed scheme in steering and disaggregation. The delivery performance of the developed scheme was examined using a realistic, three-dimensional (3D) vessel simulation. Furthermore, the proposed scheme enhanced the transport and uptake of MNPs across the BBB in mice. The scheme presented here facilitates the passage of particles across the BBB to the brain using an electromagnetic actuation scheme. PMID:29271927
Hoshiar, Ali Kafash; Le, Tuan-Anh; Amin, Faiz Ul; Kim, Myeong Ok; Yoon, Jungwon
2017-12-22
The blood-brain barrier (BBB) hinders drug delivery to the brain. Despite various efforts to develop preprogramed actuation schemes for magnetic drug delivery, the unmodeled aggregation phenomenon limits drug delivery performance. This paper proposes a novel scheme with an aggregation model for a feed-forward magnetic actuation design. A simulation platform for aggregated particle delivery is developed and an actuation scheme is proposed to deliver aggregated magnetic nanoparticles (MNPs) using a discontinuous asymmetrical magnetic actuation. The experimental results with a Y-shaped channel indicated the success of the proposed scheme in steering and disaggregation. The delivery performance of the developed scheme was examined using a realistic, three-dimensional (3D) vessel simulation. Furthermore, the proposed scheme enhanced the transport and uptake of MNPs across the BBB in mice. The scheme presented here facilitates the passage of particles across the BBB to the brain using an electromagnetic actuation scheme.
Chung, Ill-Min; Kim, Jae-Kwang; Lee, Kyoung-Jin; Park, Sung-Kyu; Lee, Ji-Hee; Son, Na-Young; Jin, Yong-Ik; Kim, Seung-Hyun
2018-02-01
Rice (Oryza sativa L.) is the world's third largest food crop after wheat and corn. Geographic authentication of rice has recently emerged asan important issue for enhancing human health via food safety and quality assurance. Here, we aimed to discriminate rice of six Asian countries through geographic authentication using combinations of elemental/isotopic composition analysis and chemometric techniques. Principal components analysis could distinguish samples cultivated from most countries, except for those cultivated in the Philippines and Japan. Furthermore, orthogonal projection to latent structure-discriminant analysis provided clear discrimination between rice cultivated in Korea and other countries. The major common variables responsible for differentiation in these models were δ 34 S, Mn, and Mg. Our findings contribute to understanding the variations of elemental and isotopic compositions in rice depending on geographic origins, and offer valuable insight into the control of fraudulent labeling regarding the geographic origins of rice traded among Asian countries. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Efficient Mutual Authentication Framework for Healthcare System in Cloud Computing.
Kumar, Vinod; Jangirala, Srinivas; Ahmad, Musheer
2018-06-28
The increasing role of Telecare Medicine Information Systems (TMIS) makes its accessibility for patients to explore medical treatment, accumulate and approach medical data through internet connectivity. Security and privacy preservation is necessary for medical data of the patient in TMIS because of the very perceptive purpose. Recently, Mohit et al.'s proposed a mutual authentication protocol for TMIS in the cloud computing environment. In this work, we reviewed their protocol and found that it is not secure against stolen verifier attack, many logged in patient attack, patient anonymity, impersonation attack, and fails to protect session key. For enhancement of security level, we proposed a new mutual authentication protocol for the similar environment. The presented framework is also more capable in terms of computation cost. In addition, the security evaluation of the protocol protects resilience of all possible security attributes, and we also explored formal security evaluation based on random oracle model. The performance of the proposed protocol is much better in comparison to the existing protocol.
Blanchard, Andrea Katryn; Sangha, Chaitanya AIDS Tadegattuva Mahila; Nair, Sapna G.; Thalinja, Raghavendra; Srikantamurthy, H.S.; Ramanaik, Satyanaryana; Javalkar, Prakash; Pillai, Priya; Isac, Shajy; Collumbien, Martine; Heise, Lori; Bhattacharjee, Parinita; Bruce, Sharon Gail
2016-01-01
Community-based participatory research has been seen to hold great promise by researchers aiming to bridge research and action in global health programs and practice. However, there is still much debate around whether achieving authenticity in terms of in-depth collaboration between community and academic partners is possible while pursuing academic expectations for quality. This article describes the community-based methodology for a qualitative study to explore intimate partner violence and HIV/AIDS among women in sex work, or female sex workers, and their male partners in Karnataka, South India. Developed through collaborative processes, the study methodology followed an interpretive approach to qualitative inquiry, with three key components including long-term partnerships, knowledge exchange, and orientation toward action. We then discuss lessons learned on how to pursue authenticity in terms of truly collaborative processes with inherent value that also contribute to, rather than hinder, the instrumental goal of enhancing the quality and relevance of the research outcomes. PMID:27378133
A patient privacy protection scheme for medical information system.
Lu, Chenglang; Wu, Zongda; Liu, Mingyong; Chen, Wei; Guo, Junfang
2013-12-01
In medical information systems, there are a lot of confidential information about patient privacy. It is therefore an important problem how to prevent patient's personal privacy information from being disclosed. Although traditional security protection strategies (such as identity authentication and authorization access control) can well ensure data integrity, they cannot prevent system's internal staff (such as administrators) from accessing and disclosing patient privacy information. In this paper, we present an effective scheme to protect patients' personal privacy for a medical information system. In the scheme, privacy data before being stored in the database of the server of a medical information system would be encrypted using traditional encryption algorithms, so that the data even if being disclosed are also difficult to be decrypted and understood. However, to execute various kinds of query operations over the encrypted data efficiently, we would also augment the encrypted data with additional index, so as to process as much of the query as possible at the server side, without the need to decrypt the data. Thus, in this paper, we mainly explore how the index of privacy data is constructed, and how a query operation over privacy data is translated into a new query over the corresponding index so that it can be executed at the server side immediately. Finally, both theoretical analysis and experimental evaluation validate the practicality and effectiveness of our proposed scheme.
A novel, privacy-preserving cryptographic approach for sharing sequencing data
Cassa, Christopher A; Miller, Rachel A; Mandl, Kenneth D
2013-01-01
Objective DNA samples are often processed and sequenced in facilities external to the point of collection. These samples are routinely labeled with patient identifiers or pseudonyms, allowing for potential linkage to identity and private clinical information if intercepted during transmission. We present a cryptographic scheme to securely transmit externally generated sequence data which does not require any patient identifiers, public key infrastructure, or the transmission of passwords. Materials and methods This novel encryption scheme cryptographically protects participant sequence data using a shared secret key that is derived from a unique subset of an individual’s genetic sequence. This scheme requires access to a subset of an individual’s genetic sequence to acquire full access to the transmitted sequence data, which helps to prevent sample mismatch. Results We validate that the proposed encryption scheme is robust to sequencing errors, population uniqueness, and sibling disambiguation, and provides sufficient cryptographic key space. Discussion Access to a set of an individual’s genotypes and a mutually agreed cryptographic seed is needed to unlock the full sequence, which provides additional sample authentication and authorization security. We present modest fixed and marginal costs to implement this transmission architecture. Conclusions It is possible for genomics researchers who sequence participant samples externally to protect the transmission of sequence data using unique features of an individual’s genetic sequence. PMID:23125421
Security Analysis and Improvements of Authentication and Access Control in the Internet of Things
Ndibanje, Bruce; Lee, Hoon-Jae; Lee, Sang-Gon
2014-01-01
Internet of Things is a ubiquitous concept where physical objects are connected over the internet and are provided with unique identifiers to enable their self-identification to other devices and the ability to continuously generate data and transmit it over a network. Hence, the security of the network, data and sensor devices is a paramount concern in the IoT network as it grows very fast in terms of exchanged data and interconnected sensor nodes. This paper analyses the authentication and access control method using in the Internet of Things presented by Jing et al (Authentication and Access Control in the Internet of Things. In Proceedings of the 2012 32nd International Conference on Distributed Computing Systems Workshops, Macau, China, 18–21 June 2012, pp. 588–592). According to our analysis, Jing et al.'s protocol is costly in the message exchange and the security assessment is not strong enough for such a protocol. Therefore, we propose improvements to the protocol to fill the discovered weakness gaps. The protocol enhancements facilitate many services to the users such as user anonymity, mutual authentication, and secure session key establishment. Finally, the performance and security analysis show that the improved protocol possesses many advantages against popular attacks, and achieves better efficiency at low communication cost. PMID:25123464
Security analysis and improvements of authentication and access control in the Internet of Things.
Ndibanje, Bruce; Lee, Hoon-Jae; Lee, Sang-Gon
2014-08-13
Internet of Things is a ubiquitous concept where physical objects are connected over the internet and are provided with unique identifiers to enable their self-identification to other devices and the ability to continuously generate data and transmit it over a network. Hence, the security of the network, data and sensor devices is a paramount concern in the IoT network as it grows very fast in terms of exchanged data and interconnected sensor nodes. This paper analyses the authentication and access control method using in the Internet of Things presented by Jing et al. (Authentication and Access Control in the Internet of Things. In Proceedings of the 2012 32nd International Conference on Distributed Computing Systems Workshops, Macau, China, 18-21 June 2012, pp. 588-592). According to our analysis, Jing et al.'s protocol is costly in the message exchange and the security assessment is not strong enough for such a protocol. Therefore, we propose improvements to the protocol to fill the discovered weakness gaps. The protocol enhancements facilitate many services to the users such as user anonymity, mutual authentication, and secure session key establishment. Finally, the performance and security analysis show that the improved protocol possesses many advantages against popular attacks, and achieves better efficiency at low communication cost.
ERIC Educational Resources Information Center
Kutnick, Peter; Berdondini, Lucia
2009-01-01
This quasi-experimental study was part of the SPRinG project (Social Pedagogy Research into Group Work). The review notes group work in "authentic" classrooms rarely fulfils its interactive or attainment potential. SPRinG classes undertook a programme of relational training to enhance children's group working skills while control classes…
ERIC Educational Resources Information Center
Richards, Cameron
2015-01-01
The challenge of better reconciling individual and collective aspects of innovative problem-solving can be productively addressed to enhance the role of PBL as a key focus of the creative process in future higher education. This should involve "active learning" approaches supported by related processes of teaching, assessment and…
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kaneko, Masahiro; Kakinuma, Ryutaru; Moriyama, Noriyuki
2011-03-01
We have developed the teleradiology network system with a new information security solution that provided with web medical image conference system. In the teleradiology network system, the security of information network is very important subjects. We are studying the secret sharing scheme as a method safely to store or to transmit the confidential medical information used with the teleradiology network system. The confidential medical information is exposed to the risk of the damage and intercept. Secret sharing scheme is a method of dividing the confidential medical information into two or more tallies. Individual medical information cannot be decoded by using one tally at all. Our method has the function of RAID. With RAID technology, if there is a failure in a single tally, there is redundant data already copied to other tally. Confidential information is preserved at an individual Data Center connected through internet because individual medical information cannot be decoded by using one tally at all. Therefore, even if one of the Data Centers is struck and information is damaged, the confidential medical information can be decoded by using the tallies preserved at the data center to which it escapes damage. We can safely share the screen of workstation to which the medical image of Data Center is displayed from two or more web conference terminals at the same time. Moreover, Real time biometric face authentication system is connected with Data Center. Real time biometric face authentication system analyzes the feature of the face image of which it takes a picture in 20 seconds with the camera and defends the safety of the medical information. We propose a new information transmission method and a new information storage method with a new information security solution.
Chen, Sheng; Yao, Liping; Chen, Bao
2016-11-01
The enhancement of lung nodules in chest radiographs (CXRs) plays an important role in the manual as well as computer-aided detection (CADe) lung cancer. In this paper, we proposed a parameterized logarithmic image processing (PLIP) method combined with the Laplacian of a Gaussian (LoG) filter to enhance lung nodules in CXRs. We first applied several LoG filters with varying parameters to an original CXR to enhance the nodule-like structures as well as the edges in the image. We then applied the PLIP model, which can enhance lung nodule images with high contrast and was beneficial in extracting effective features for nodule detection in the CADe scheme. Our method combined the advantages of both the PLIP algorithm and the LoG algorithm, which can enhance lung nodules in chest radiographs with high contrast. To test our nodule enhancement method, we tested a CADe scheme, with a relatively high performance in nodule detection, using a publically available database containing 140 nodules in 140 CXRs enhanced through our nodule enhancement method. The CADe scheme attained a sensitivity of 81 and 70 % with an average of 5.0 frame rate (FP) and 2.0 FP, respectively, in a leave-one-out cross-validation test. By contrast, the CADe scheme based on the original image recorded a sensitivity of 77 and 63 % at 5.0 FP and 2.0 FP, respectively. We introduced the measurement of enhancement by entropy evaluation to objectively assess our method. Experimental results show that the proposed method obtains an effective enhancement of lung nodules in CXRs for both radiologists and CADe schemes.
System and method for authentication
Duerksen, Gary L.; Miller, Seth A.
2015-12-29
Described are methods and systems for determining authenticity. For example, the method may include providing an object of authentication, capturing characteristic data from the object of authentication, deriving authentication data from the characteristic data of the object of authentication, and comparing the authentication data with an electronic database comprising reference authentication data to provide an authenticity score for the object of authentication. The reference authentication data may correspond to one or more reference objects of authentication other than the object of authentication.
Field Trial of the Enhanced Data Authentication System (EDAS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Maikael A.; Baldwin, George T.; Hymel, Ross W.
2016-05-01
The goal of the field trial of EDAS was to demonstrate the utility of secure branching of operator instrumentation for nuclear safeguards, identify any unforeseen implementation and application issues with EDAS, and confirm whether the approach is compatible with operator concerns and constraints.
Models as Relational Categories
ERIC Educational Resources Information Center
Kokkonen, Tommi
2017-01-01
Model-based learning (MBL) has an established position within science education. It has been found to enhance conceptual understanding and provide a way for engaging students in authentic scientific activity. Despite ample research, few studies have examined the cognitive processes regarding learning scientific concepts within MBL. On the other…
Tennant, Michele R; Edwards, Mary; Miyamoto, Michael M
2012-01-01
Question: How can the library-based research project of a genetics course be reinvigorated and made sustainable without sacrificing educational integrity? Setting: The University of Florida's Health Science Center Library provides the case study. Methods: Since 1996, the librarian has codeveloped, supported, and graded all components of the project. In 2009, the project evolved from a single-authored paper to a group-work poster, with graded presentations hosted by the library. In 2010, students were surveyed regarding class enhancements. Results: Responses indicated a preference for collaborative work and the poster format and suggested the changes facilitated learning. Instructors reported that the poster format more clearly documented students' understanding of genetics. Conclusion: Results suggest project enhancements contributed to greater appreciation, understanding, and application of classroom material and offered a unique and authentic learning experience, without compromising educational integrity. The library benefitted through increased visibility as a partner in the educational mission and development of a sustainable instructional collaboration. PMID:22514504
Authentic Teachers: Student Criteria Perceiving Authenticity of Teachers
ERIC Educational Resources Information Center
De Bruyckere, Pedro; Kirschner, Paul A.
2016-01-01
Authenticity is seen by many as a key for good learning and education. There is talk of authentic instruction, authentic learning, authentic problems, authentic assessment, authentic tools and authentic teachers. The problem is that while authenticity is an often-used adjective describing almost all aspects of teaching and learning, the concept…
DMP: Detouring Using Multiple Paths against Jamming Attack for Ubiquitous Networking System
Kim, Mihui; Chae, Kijoon
2010-01-01
To successfully realize the ubiquitous network environment including home automation or industrial control systems, it is important to be able to resist a jamming attack. This has recently been considered as an extremely threatening attack because it can collapse the entire network, despite the existence of basic security protocols such as encryption and authentication. In this paper, we present a method of jamming attack tolerant routing using multiple paths based on zones. The proposed scheme divides the network into zones, and manages the candidate forward nodes of neighbor zones. After detecting an attack, detour nodes decide zones for rerouting, and detour packets destined for victim nodes through forward nodes in the decided zones. Simulation results show that our scheme increases the PDR (Packet Delivery Ratio) and decreases the delay significantly in comparison with rerouting by a general routing protocol on sensor networks, AODV (Ad hoc On Demand Distance Vector), and a conventional JAM (Jammed Area Mapping) service with one reroute. PMID:22319316
Edgar Buchanan: dentist and popular character actor in movies and television.
Christen, A G; Christen, J A
2001-07-01
Edgar Buchanan, D.D.S., pursued a diverse mix of careers during his lifetime: as he practiced dentistry, he also worked as a popular film and television actor. Although he eventually relinquished a full-time dental practice for acting, he continued his commitment to clinical dentistry. Acting in 100 films and four television series across a 35-year span (1939-1975). He personified a scheming, yet well-meaning rustic who specialized in "cracker-barrel" philosophy. Typically, he was cast in classic western movies as a bewhiskered character actor. In several films he played a frontier dentist who was always portrayed in a sympathetic and authentic manner. His unique gravelly voice, subtle facial expressions, folksy mannerisms and portly build enabled Buchanan to step into a wide variety of character roles. His most memorable television role was in the classic situation comedy, "Petticoat Junction," (1963-1970), where he played Uncle Joe, a folksy, lovable, free-loader whose many entertaining schemes created chaos.
DMP: detouring using multiple paths against jamming attack for ubiquitous networking system.
Kim, Mihui; Chae, Kijoon
2010-01-01
To successfully realize the ubiquitous network environment including home automation or industrial control systems, it is important to be able to resist a jamming attack. This has recently been considered as an extremely threatening attack because it can collapse the entire network, despite the existence of basic security protocols such as encryption and authentication. In this paper, we present a method of jamming attack tolerant routing using multiple paths based on zones. The proposed scheme divides the network into zones, and manages the candidate forward nodes of neighbor zones. After detecting an attack, detour nodes decide zones for rerouting, and detour packets destined for victim nodes through forward nodes in the decided zones. Simulation results show that our scheme increases the PDR (Packet Delivery Ratio) and decreases the delay significantly in comparison with rerouting by a general routing protocol on sensor networks, AODV (Ad hoc On Demand Distance Vector), and a conventional JAM (Jammed Area Mapping) service with one reroute.
A security architecture for interconnecting health information systems.
Gritzalis, Dimitris; Lambrinoudakis, Costas
2004-03-31
Several hereditary and other chronic diseases necessitate continuous and complicated health care procedures, typically offered in different, often distant, health care units. Inevitably, the medical records of patients suffering from such diseases become complex, grow in size very fast and are scattered all over the units involved in the care process, hindering communication of information between health care professionals. Web-based electronic medical records have been recently proposed as the solution to the above problem, facilitating the interconnection of the health care units in the sense that health care professionals can now access the complete medical record of the patient, even if it is distributed in several remote units. However, by allowing users to access information from virtually anywhere, the universe of ineligible people who may attempt to harm the system is dramatically expanded, thus severely complicating the design and implementation of a secure environment. This paper presents a security architecture that has been mainly designed for providing authentication and authorization services in web-based distributed systems. The architecture has been based on a role-based access scheme and on the implementation of an intelligent security agent per site (i.e. health care unit). This intelligent security agent: (a). authenticates the users, local or remote, that can access the local resources; (b). assigns, through temporary certificates, access privileges to the authenticated users in accordance to their role; and (c). communicates to other sites (through the respective security agents) information about the local users that may need to access information stored in other sites, as well as about local resources that can be accessed remotely.
NASA Astrophysics Data System (ADS)
Knobler, Ron; Scheffel, Peter; Jackson, Scott; Gaj, Kris; Kaps, Jens Peter
2013-05-01
Various embedded systems, such as unattended ground sensors (UGS), are deployed in dangerous areas, where they are subject to compromise. Since numerous systems contain a network of devices that communicate with each other (often times with commercial off the shelf [COTS] radios), an adversary is able to intercept messages between system devices, which jeopardizes sensitive information transmitted by the system (e.g. location of system devices). Secret key algorithms such as AES are a very common means to encrypt all system messages to a sufficient security level, for which lightweight implementations exist for even very resource constrained devices. However, all system devices must use the appropriate key to encrypt and decrypt messages from each other. While traditional public key algorithms (PKAs), such as RSA and Elliptic Curve Cryptography (ECC), provide a sufficiently secure means to provide authentication and a means to exchange keys, these traditional PKAs are not suitable for very resource constrained embedded systems or systems which contain low reliability communication links (e.g. mesh networks), especially as the size of the network increases. Therefore, most UGS and other embedded systems resort to pre-placed keys (PPKs) or other naïve schemes which greatly reduce the security and effectiveness of the overall cryptographic approach. McQ has teamed with the Cryptographic Engineering Research Group (CERG) at George Mason University (GMU) to develop an approach using revolutionary cryptographic techniques that provides both authentication and encryption, but on resource constrained embedded devices, without the burden of large amounts of key distribution or storage.