DOE Office of Scientific and Technical Information (OSTI.GOV)
Oumano, M; University of Massachusetts Lowell, Lowell, MA; Ngwa, W
Purpose: To measure the increase in in vitro radiosensitivity for A549 lung carcinoma cells due to gold nanoparticle (GNP) radiation dose enhancement in both traditional monolayer and three dimensional (3D) cell culture models. Methods: A γH2AX immunofluorescence assay is performed on monolayer A549 cell culture and quantitatively analyzed to measure the increase in double strand breaks (DSBs) resulting from GNP dose enhancement. A clonogenic survival assay (CSA) is then performed on monolayer A549 cell culture to assess true viability after treatment. And lastly, another γH2AX assay is performed on 3D A549 multicellular nodules overlaid on a bed of growth factormore » reduced matrigel to measure dose response in a model that better recapitulates treatment response to actual tumors in vivo. Results: The first γH2AX assay performed on the monolayer cell culture shows a significant increase in DSBs due to GNP dose enhancement. The maximum average observed increase in normalized fluorescent intensity for monolayer cell culture is 171% for the 6Gy-treatment groups incubated in 0.556 mg Au/ml solution. The CSA performed on monolayer cell culture also shows considerable GNP dose enhancement. The maximum decrease in the normalized surviving fraction is 12% for the 4Gy-treatment group incubated in 0.556 mg Au/ml. And lastly, the GNP dose enhancement is confirmed to be mitigated in three dimensional cell culture models as compared to the traditional monolayer model. The maximum average observed dose enhancement for 3D cell culture is 19% for the 6Gy-treatment groups and incubated in 0.556 mg Au/ml. Conclusion: A marked increase in radiosensitivity is observed for A549 lung carcinoma cells when treated with GNPs plus radiation as opposed to radiation alone. Traditional monolayer cell culture also shows a much more pronounced radiation dose enhancement than 3D cell culture.« less
2013-08-13
performance in bulk- heterojunction (BHJ) organic photovoltaic (OPV) cells, the glass/tin-doped indium oxide (ITO) anodes are modified with a series of...anode in bulk- heterojunction (BHJ) organic photovoltaic cells (OPVs) plays a vital role in enhancing device performance. Appropriately tailored IFLs...unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT With the goal of investigating and enhancing anode performance in bulk- heterojunction (BHJ) organic
Enhanced photovoltaic performance of an inclined nanowire array solar cell.
Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin
2015-11-30
An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays.
Lu, Luyao; Luo, Zhiqiang; Xu, Tao; Yu, Luping
2013-01-09
This article describes a cooperative plasmonic effect on improving the performance of polymer bulk heterojunction solar cells. When mixed Ag and Au nanoparticles are incorporated into the anode buffer layer, dual nanoparticles show superior behavior on enhancing light absorption in comparison with single nanoparticles, which led to the realization of a polymer solar cell with a power conversion efficiency of 8.67%, accounting for a 20% enhancement. The cooperative plasmonic effect aroused from dual resonance enhancement of two different nanoparticles. The idea was further unraveled by comparing Au nanorods with Au nanoparticles for solar cell application. Detailed studies shed light into the influence of plasmonic nanostructures on exciton generation, dissociation, and charge recombination and transport inside thin film devices.
Kim, Sang Moon; Ahn, Chi-Yeong; Cho, Yong-Hun; Kim, Sungjun; Hwang, Wonchan; Jang, Segeun; Shin, Sungsoo; Lee, Gunhee; Sung, Yung-Eun; Choi, Mansoo
2016-05-23
We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.
Enhancement of the inverted polymer solar cells via ZnO doped with CTAB
NASA Astrophysics Data System (ADS)
Sivashnamugan, Kundan; Guo, Tzung-Fang; Hsu, Yao-Jane; Wen, Ten-Chin
2018-02-01
A facile approach enhancing electron extraction in zinc oxide (ZnO) electron transfer interlayer and improving performance of bulk-heterojunction (BHJ) polymer solar cells (PSCs) by adding cetyltrimethylammonium bromide (CTAB) into sol-gel ZnO precursor solution was demonstrated in this work. The power conversion efficiency (PCE) has a 24.1% increment after modification. Our results show that CTAB can dramatically influence optical, electrical and morphological properties of ZnO electron transfer layer, and work as effective additive to enhance the performance of bulk- heterojunction polymer solar cells.
Spectrum-enhanced Au@ZnO plasmonic nanoparticles for boosting dye-sensitized solar cell performance
NASA Astrophysics Data System (ADS)
Liu, Qisheng; Wei, Yunwei; Shahid, Malik Zeeshan; Yao, Mingming; Xu, Bo; Liu, Guangning; Jiang, Kejian; Li, Cuncheng
2018-03-01
Spectrum-enhanced Au@ZnO plasmonic nanoparticles (NPs) are developed for fabrication of the dye-sensitized solar cells (DSSCs), and their remarkable enhanced performances are achieved due to Surface Plasmon Resonance (SPR) effects. When being doped different blended amounts of the Au@ZnO NPs within the photoanode layers, various enhanced effects in the SPR-based DSSCs are exhibited. Compared with the power conversion efficiency (PCE, 7.50%) achieved for bare DSSC, device with doped Au@ZnO NPs of 1.93% delivers the top PCE of 8.91%, exhibiting about 20% enhancement. To elaborate the charge transfer process in the Au@ZnO NPs blended DSSCs, the photoluminescence (PL), electrochemical impedance spectra (EIS), etc are performed. We find that both the enhanced SPR absorption properties and the suppressed recombination process of charges contribute much to the improved performance of Au@ZnO-incorporated DSSCs.
Kim, Sang Moon; Ahn, Chi-Yeong; Cho, Yong-Hun; Kim, Sungjun; Hwang, Wonchan; Jang, Segeun; Shin, Sungsoo; Lee, Gunhee; Sung, Yung-Eun; Choi, Mansoo
2016-01-01
We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance. PMID:27210793
NASA Astrophysics Data System (ADS)
Chen, Guo; Si, Changfeng; Zhang, Pengpeng; Guo, Kunping; Pan, Saihu; Zhu, Wenqing; Wei, Bin
2017-09-01
We have improved the photovoltaic performance of 2,4-bis[4-(N,Ndiisobutylamino)- 2,6-dihydroxyphenyl] squaraine:[6,6]-phenyl C71-butyric acid methyl ester (DIBSQ:PC71BM) organic photovoltaic (OPV) cells via incorporating Liq-doped Bphen (Bphen-Liq) as a cathode buffer layer (CBL). Based on the Bphen-Liq CBL, a DIBSQ:PC71BM OPV cell possessed an optimal power conversion efficiency of 4.90%, which was 13% and 60% higher than those of the devices with neat Bphen as CBL and without CBL, respectively. The enhancement of the device performance could be attributed to the enhanced electron mobility and improved electrode/active layer contact and thus the improved photocurrent extraction by incorporating the Bphen-Liq CBL. Light-intensity dependent device performance analysis indicates that the incorporating of the Bphen-Liq CBL can remarkably improve the charge transport of the DIBSQ:PC71BM OPV cell and thus decrease the recombination losses of the device, resulting in enhanced device performance. Our finding indicates that the doped Bphen-Liq CBL has great potential for high-performance solution-processed small-molecule OPVs.
Liang, Po-Wei; Chueh, Chu-Chen; Williams, Spencer T.; ...
2015-02-27
Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells are elucidated. By studying various fullerenes, a clear correlation between the electron mobility of fullerenes and the resulting performance of derived devices is determined. The metallic characteristics of the bilayer perovskite/fullerene field-effect transistor indicates an effective charge redistribution occurring at the corresponding interface. Lastly, a conventional perovskite thin-film solar cell derived from the C 60 electron-transporting layer (ETL) affords a high power conversion efficiency of 15.4%.
Lu, Heng; Zhang, Xuejuan; Li, Cuihong; Wei, Hedi; Liu, Qian; Li, Weiwei; Bo, Zhishan
2015-07-01
Performance enhancement of polymer solar cells (PSCs) is achieved by expanding the absorption of the active layer of devices. To better match the spectrum of solar radiation, two polymers with different band gaps are used as the donor material to fabricate ternary polymer cells. Ternary blend PSCs exhibit an enhanced short-circuit current density and open-circuit voltage in comparison with the corresponding HD-PDFC-DTBT (HD)- and DT-PDPPTPT (DPP)-based binary polymer solar cells, respectively. Ternary PSCs show a power conversion efficiency (PCE) of 6.71%, surpassing the corresponding binary PSCs. This work demonstrates that the fabrication of ternary PSCs by using two polymers with complementary absorption is an effective way to improve the device performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tavakoli, Mohammad Mahdi; Simchi, Abdolreza; Fan, Zhiyong; Aashuri, Hossein
2016-01-07
We present a novel chemical procedure to prepare three-dimensional graphene networks (3DGNs) as a transparent conductive film to enhance the photovoltaic performance of PbS quantum-dot (QD) solar cells. It is shown that 3DGN electrodes enhance electron extraction, yielding a 30% improvement in performance compared with the conventional device.
Enhancing the Efficiency of Silicon-Based Solar Cells by the Piezo-Phototronic Effect.
Zhu, Laipan; Wang, Longfei; Pan, Caofeng; Chen, Libo; Xue, Fei; Chen, Baodong; Yang, Leijing; Su, Li; Wang, Zhong Lin
2017-02-28
Although there are numerous approaches for fabricating solar cells, the silicon-based photovoltaics are still the most widely used in industry and around the world. A small increase in the efficiency of silicon-based solar cells has a huge economic impact and practical importance. We fabricate a silicon-based nanoheterostructure (p + -Si/p-Si/n + -Si (and n-Si)/n-ZnO nanowire (NW) array) photovoltaic device and demonstrate the enhanced device performance through significantly enhanced light absorption by NW array and effective charge carrier separation by the piezo-phototronic effect. The strain-induced piezoelectric polarization charges created at n-doped Si-ZnO interfaces can effectively modulate the corresponding band structure and electron gas trapped in the n + -Si/n-ZnO NW nanoheterostructure and thus enhance the transport process of local charge carriers. The efficiency of the solar cell was improved from 8.97% to 9.51% by simply applying a static compress strain. This study indicates that the piezo-phototronic effect can enhance the performance of a large-scale silicon-based solar cell, with great potential for industrial applications.
Metal-air cell with performance enhancing additive
Friesen, Cody A; Buttry, Daniel
2015-11-10
Systems and methods drawn to an electrochemical cell comprising a low temperature ionic liquid comprising positive ions and negative ions and a performance enhancing additive added to the low temperature ionic liquid. The additive dissolves in the ionic liquid to form cations, which are coordinated with one or more negative ions forming ion complexes. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. The ion complexes improve oxygen reduction thermodynamics and/or kinetics relative to the ionic liquid without the additive.
Development of a 10 Ah, Prismatic, Lithium-Ion Cell for NASA/GSFC
NASA Technical Reports Server (NTRS)
Stein, Brian; Baker, John W.; George, Douglas S.; Isaacs, Nathan D.; Shah, Pinakin M.; Rao, Gopalakrishna M.; Day, John H. (Technical Monitor)
2001-01-01
MSA's 10 Ah Li-ion cell is a rugged design suitable for the stringent requirements of aerospace applications. Eighteen cells demonstrate consistent cycling performance over a wide range of rates and temperatures. The cell passes qualification requirements for vibration survivability technology improvements at MSA continue to enhance cell performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H. Y.; Peng, Y., E-mail: gdyuan@semi.ac.cn, E-mail: py@usst.edu.cn; Hong, M.
2014-05-12
We report an enhanced conversion efficiency of femtosecond-laser treated silicon solar cells by surface modification of anisotropic-etching. The etching improves minority carrier lifetime inside modified black silicon area substantially; moreover, after the etching, an inverted pyramids/upright pyramids mixed texture surface is obtained, which shows better photon capturing capability than that of conventional pyramid texture. Combing of these two merits, the reformed solar cells show higher conversion efficiency than that of conventional pyramid textured cells. This work presents a way for fabricating high performance silicon solar cells, which can be easily applied to mass-production.
Performance enhancement of hybrid solar cells through chemical vapor annealing.
Wu, Yue; Zhang, Genqiang
2010-05-12
Improvement in power conversion efficiency has been observed in cadmium selenide nanorods/poly(3-hexylthiophene) hybrid solar cells through benzene-1,3-dithiol chemical vapor annealing. Phosphor NMR studies of the nanorods and TEM/AFM characterizations of the morphology of the blended film showed that the ligand exchange reaction and related phase separation happening during the chemical vapor annealing are responsible for the performance enhancement.
Application of 3A molecular sieve layer in dye-sensitized solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Yuan; Wang, Jinzhong, E-mail: jinzhong-wang@hit.edu.cn, E-mail: qingjiang.yu@hit.edu.cn; Yu, Qingjiang, E-mail: jinzhong-wang@hit.edu.cn, E-mail: qingjiang.yu@hit.edu.cn
2014-08-25
3A molecular sieve layer was used as dehydration and electronic-insulation layer on the TiO{sub 2} electrode of dye-sensitized solar cells. This layer diminished the effect of water in electrolyte efficiently and enhanced the performance of cells. The conversion efficiency increased from 9.58% to 10.2%. The good moisture resistance of cells was attributed to the three-dimensional interconnecting structure of 3A molecular sieve with strong adsorption of water molecule. While the performance enhancement benefited from the suppression of the charge recombination of electronic-insulation layer and scattering effect of large particles.
Zhang, Xiaomin; Liu, Li; Zhao, Zhe; Tu, Baofeng; Ou, Dingrong; Cui, Daan; Wei, Xuming; Chen, Xiaobo; Cheng, Mojie
2015-03-11
Reluctant oxygen-reduction-reaction (ORR) activity has been a long-standing challenge limiting cell performance for solid oxide fuel cells (SOFCs) in both centralized and distributed power applications. We report here that this challenge has been tackled with coloading of (La,Sr)MnO3 (LSM) and Y2O3 stabilized zirconia (YSZ) nanoparticles within a porous YSZ framework. This design dramatically improves ORR activity, enhances fuel cell output (200-300% power improvement), and enables superior stability (no observed degradation within 500 h of operation) from 600 to 800 °C. The improved performance is attributed to the intimate contacts between nanoparticulate YSZ and LSM particles in the three-phase boundaries in the cathode.
Improved performance of flexible amorphous silicon solar cells with silver nanowires
NASA Astrophysics Data System (ADS)
Chen, Y. R.; Li, Z. Q.; Chen, X. H.; Liu, C.; Ye, X. J.; Wang, Z. B.; Sun, Z.; Huang, S. M.
2012-12-01
A novel hybrid electrode structure using Ag nanowires (NWs) to create surface plasmons to enhance light trapping is designed and applied on the front surface of hydrogenated amorphous silicon (a-Si:H) solar cells on steel substrates, targeting broad-band absorption enhancements. Ag NWs were synthesized using a soft and self-seeding process. The produced Ag NWs were deposited on indium tin oxide (ITO) glass substrates or the ITO layers of the as-prepared flexible a-Si:H solar cells to form Ag NW-ITO hybrid electrodes. The Ag NW-ITO hybrid electrodes were optimized to achieve maximum optical enhancement using surface plasmons and obtain good electrical contacts in cells. Finite-element electromagnetic simulations confirmed that the presence of the Ag NWs resulted in increased electromagnetic fields within the a-Si:H layer. Compared to the cell with conventional ITO electrode, the measured quantum efficiency of the best performing a-Si:H cell shows an obvious enhancement in the wavelength range from 330 nm to 600 nm. The cell based on the optimized Ag NW-ITO demonstrates an increase about 4% in short-circuit current density and over 6% in power conversion efficiency under AM 1.5 illumination.
Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping
2018-07-06
The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS 2 film was deposited on TiO 2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO 2 nanorod arrays were treated with hydrogen plasma(H:TiO 2 ) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.
NASA Astrophysics Data System (ADS)
Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping
2018-07-01
The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS2 film was deposited on TiO2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO2 nanorod arrays were treated with hydrogen plasma(H:TiO2) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.
A mathematical model for the iron/chromium redox battery
NASA Technical Reports Server (NTRS)
Fedkiw, P. S.; Watts, R. W.
1984-01-01
A mathematical model has been developed to describe the isothermal operation of a single anode-separator-cathode unit cell in a redox-flow battery and has been applied to the NASA iron/chromium system. The model, based on porous electrode theory, incorporates redox kinetics, mass transfer, and ohmic effects as well as the parasitic hydrogen reaction which occurs in the chromium electrode. A numerical parameter study was carried out to predict cell performance to aid in the rational design, scale-up, and operation of the flow battery. The calculations demonstrate: (1) an optimum electrode thickness and electrolyte flow rate exist; (2) the amount of hydrogen evolved and, hence, cycle faradaic efficiency, can be affected by cell geometry, flow rate, and charging procedure; (3) countercurrent flow results in enhanced cell performance over cocurrent flow; and (4) elevated temperature operation enhances cell performance.
The Impact of parasitic loss on solar cells with plasmonic nano-textured rear reflectors.
Disney, Claire E R; Pillai, Supriya; Green, Martin A
2017-10-09
Significant photocurrent enhancement has been demonstrated using plasmonic light-trapping structures comprising nanostructured metallic features at the rear of the cell. These structures have conversely been identified as suffering heightened parasitic absorption into the metal at certain resonant wavelengths severely mitigating benefits of light trapping. In this study, we undertook simulations exploring the relationship between enhanced absorption into the solar cell, and parasitic losses in the metal. These simulations reveal that resonant wavelengths associated with high parasitic losses in the metal could also be associated with high absorption enhancement in the solar cell. We identify mechanisms linking these parasitic losses and absorption enhancements, but found that by ensuring correct design, the light trapping structures will have a positive impact on the overall solar cell performance. Our results clearly show that the large angle scattering provided by the plasmonic nanostructures is the reason for the enhanced absorption observed in the solar cells.
Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.
Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin
2018-02-23
An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.
Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell
NASA Astrophysics Data System (ADS)
Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin
2018-02-01
An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.
Improving Si solar cell performance using Mn:ZnSe quantum dot-doped PLMA thin film
2013-01-01
Poly(lauryl methacrylate) (PLMA) thin film doped with Mn:ZnSe quantum dots (QDs) was spin-deposited on the front surface of Si solar cell for enhancing the solar cell efficiency via photoluminescence (PL) conversion. Significant solar cell efficiency enhancements (approximately 5% to 10%) under all-solar-spectrum (AM0) condition were observed after QD-doped PLMA coatings. Furthermore, the real contribution of the PL conversion was precisely assessed by investigating the photovoltaic responses of the QD-doped PLMA to monochromatic and AM0 light sources as functions of QD concentration, combined with reflectance and external quantum efficiency measurements. At a QD concentration of 1.6 mg/ml for example, among the efficiency enhancement of 5.96%, about 1.04% was due to the PL conversion, and the rest came from antireflection. Our work indicates that for the practical use of PL conversion in solar cell performance improvement, cautions are to be taken, as the achieved efficiency enhancement might not be wholly due to the PL conversion. PMID:23787125
Zhu, Ye-Hua; Wang, Xun; Zhang, Jin; Chen, Yong-Hui; Kong, Wen; Huang, Yi-Ran
2014-09-01
The purpose of this study was to assess the relation between tumor enhancement on multiphase contrast-enhanced CT images and Fuhrman grade of clear cell renal cell carcinoma. A single-institution retrospective review was conducted on the records of 255 patients who underwent radical or partial nephrectomy and received a histologic diagnosis of clear cell renal cell carcinoma. Two radiologists recorded the radiographic features of each patient, including the attenuation value of the lesion, lesion size, calcification within the lesion, cystic versus solid appearance, and margin regularity. Parameters representing the extent of tumor enhancement were defined and calculated. The association between tumor enhancement and Fuhrman grade was analyzed, and multivariate analysis was performed to find independent predictors of high tumor grade. Significant differences existed in tumor enhancement among different Fuhrman grades (p < 0.001). High-grade tumors had significantly lower enhancement (p < 0.001). The enhancement parameter had a sensitivity of 0.84 and specificity of 0.93 in prediction of high tumor grade. In the multivariate analysis, more advanced age, irregular margin, and low tumor enhancement were the three independent predictors of high tumor grade. Tumor enhancement of clear cell renal cell carcinoma on multiphase contrast-enhanced CT images is associated with Fuhrman grade. Low tumor enhancement in the corticomedullary phase is an independent predictor of high tumor grade. This system may be helpful in clinical decision making about the care of patients treated by nonsurgical approaches.
NASA Astrophysics Data System (ADS)
Li, Bo; Zhang, Yanan; Zhang, Luyuan; Yin, Longwei
2017-08-01
Inorganic CsPbBr3 perovskite is arousing great interest following after organic-inorganic hybrid halide perovskites, and is found as a good candidate for photovoltaic devices for its prominent photoelectric property and stability. Herein, we for the first time report on PbCl2-tuned inorganic Cl-doped CsPbBr3(Cl) perovskite solar cells with adjustable crystal structure and Cl doping for enhanced carrier lifetime, extraction rate and photovoltaic performance. The effect of PbCl2 on the morphologies, structures, optical, and photovoltaic performance of CsPbBr3 perovskite solar cells is investigated systemically. Compared with orthorhombic CsPbBr3, cubic CsPbBr3 demonstrates a significant improvement for electron lifetime (from 6.7 ns to 12.3 ns) and diffusion length (from 69 nm to 197 nm), as well as the enhanced electron extraction rate from CsPbBr3 to TiO2. More importantly, Cl doping benefits the further enhancement of carrier lifetime (14.3 ns) and diffusion length (208 nm). The Cl doped cubic CsPbBr3(Cl) perovskite solar cell exhibits a Jsc of 8.47 mA cm-2 and a PCE of 6.21%, superior to that of pure orthorhombic CsPbBr3 (6.22 mA cm-2 and 3.78%). The improvement of photovoltaic performance can be attributed to enhanced carrier lifetime, diffusion length and extraction rates, as well as suppressed nonradiative recombination.
Pak, Malk Eun; Kim, Yu Ri; Kim, Ha Neui; Ahn, Sung Min; Shin, Hwa Kyoung; Baek, Jin Ung; Choi, Byung Tae
2016-02-17
In literature on Korean medicine, Dongeuibogam (Treasured Mirror of Eastern Medicine), published in 1613, represents the overall results of the traditional medicines of North-East Asia based on prior medicinal literature of this region. We utilized this medicinal literature by text mining to establish a list of candidate herbs for cognitive enhancement in the elderly and then performed an evaluation of their effects. Text mining was performed for selection of candidate herbs. Cell viability was determined in HT22 hippocampal cells and immunohistochemistry and behavioral analysis was performed in a kainic acid (KA) mice model in order to observe alterations of hippocampal cells and cognition. Twenty four herbs for cognitive enhancement in the elderly were selected by text mining of Dongeuibogam. In HT22 cells, pretreatment with 3 candidate herbs resulted in significantly reduced glutamate-induced cell death. Panax ginseng was the most neuroprotective herb against glutamate-induced cell death. In the hippocampus of a KA mice model, pretreatment with 11 candidate herbs resulted in suppression of caspase-3 expression. Treatment with 7 candidate herbs resulted in significantly enhanced expression levels of phosphorylated cAMP response element binding protein. Number of proliferated cells indicated by BrdU labeling was increased by treatment with 10 candidate herbs. Schisandra chinensis was the most effective herb against cell death and proliferation of progenitor cells and Rehmannia glutinosa in neuroprotection in the hippocampus of a KA mice model. In a KA mice model, we confirmed improved spatial and short memory by treatment with the 3 most effective candidate herbs and these recovered functions were involved in a higher number of newly formed neurons from progenitor cells in the hippocampus. These established herbs and their combinations identified by text-mining technique and evaluation for effectiveness may have value in further experimental and clinical applications for cognitive enhancement in the elderly. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Enhancement of photovoltaic cell performance using periodic triangular gratings
NASA Astrophysics Data System (ADS)
Bordatchev, Evgueni; Tauhiduzzaman, Mohammed; Dey, Rajat
2014-01-01
The solar energy industry strives to produce more efficient and yet cost effective solar panels each consisting of an array of photovoltaic (PV) cells. The goal of this study was to enhance the performance of PV cells through increasing the cells' optical efficiency defined as a percentage of surface incident light that reaches the PV material. This was achieved through the reduction of waveguide decoupling loss and Fresnel reflection losses by integrating specific nonimaging micro-optical structures on the top surface of existing PV cells. Due to this integration, optical efficiency and performance were increased through the enhancement of light trapping, light guiding, and in-coupling functionalities. Periodic triangular gratings (PTGs) were designed, nonsequentially modeled, optimized, and fabricated in polydimethylsiloxane as proposed micro-optical structures. Then the performance of PV cells with and without integrated PTGs was evaluated and compared. Initial optical simulation results show that an original PV cell (without PTG) exhibits an average optical efficiency of 32.7% over a range of incident light angles between 15 and 90 deg. Integration of the PTG allows the capture of incoming sunlight by total internal reflection (TIR), whence it is reflected back onto the PV cell for multiple consecutive chances for absorption and PV conversion. Geometry of the PTG was optimized with respect to an angle of light incidence of {15, 30, 45, 60, 75, 90} deg. Optical efficiency of the geometrically optimized PTGs was then analyzed under the same set of incident light angles and a maximum optical efficiency of 54.1% was observed for a PV cell with integrated PTG optimized at 90 deg. This is a 53.3% relative improvement in optical performance when compared to an original PV cell. Functional PTG prototypes were then fabricated with optical surface quality (below 10 nm Ra) and integrated with PV cells demonstrating an increase in maximum power by 1.08 mW/cm (7.6% improvement in PV performance) and in short circuit current by 2.39 mA/cm (6.4% improvement).
Yoon, Seok Min; Lou, Sylvia J; Loser, Stephen; Smith, Jeremy; Chen, Lin X; Facchetti, Antonio; Marks, Tobin J; Marks, Tobin
2012-12-12
Zinc oxide is a promising candidate as an interfacial layer (IFL) in inverted organic photovoltaic (OPV) cells due to the n-type semiconducting properties as well as chemical and environmental stability. Such ZnO layers collect electrons at the transparent electrode, typically indium tin oxide (ITO). However, the significant resistivity of ZnO IFLs and an energetic mismatch between the ZnO and the ITO layers hinder optimum charge collection. Here we report that inserting nanoscopic copper hexadecafluorophthalocyanine (F(16)CuPc) layers, as thin films or nanowires, between the ITO anode and the ZnO IFL increases OPV performance by enhancing interfacial electron transport. In inverted P3HT:PC(61)BM cells, insertion of F(16)CuPc nanowires increases the short circuit current density (J(sc)) versus cells with only ZnO layers, yielding an enhanced power conversion efficiency (PCE) of ∼3.6% vs ∼3.0% for a control without the nanowire layer. Similar effects are observed for inverted PTB7:PC(71)BM cells where the PCE is increased from 8.1% to 8.6%. X-ray scattering, optical, and electrical measurements indicate that the performance enhancement is ascribable to both favorable alignment of the nanowire π-π stacking axes parallel to the photocurrent flow and to the increased interfacial layer-active layer contact area. These findings identify a promising strategy to enhance inverted OPV performance by inserting anisotropic nanostructures with π-π stacking aligned in the photocurrent flow direction.
Akitake, Reiko; Kimura, Hiroyuki; Sekoguchi, Satoru; Nakamura, Hideki; Seno, Hiroshi; Chiba, Tsutomu; Fujimoto, Sotaro
2009-01-01
Perivascular epithelioid cell (PEC) is a unique cell which expresses both myogenic and melanocytic markers, and forms PEComa. A 36-year-old woman presented with a 35 mm-diameter liver tumor. MRI showed poor fat component in the tumor. Contrast-enhanced ultrasonography using the newly developed enhancing reagent, Sonazoid, clearly demonstrated early-phase enhancement of the tumor and rapid drainage of the reagent to veins, suggesting a PEComa. Lateral segmentectomy of the liver was performed. Histologically, epithelioid tumor cells around the vessels were immunostained with both HMB-45 and alpha-smooth muscle actin, confirming the diagnosis of PEComa. No recurrence has been found for 18 months following the operation.
Plasmon Enhanced Hetero-Junction Solar Cell
NASA Astrophysics Data System (ADS)
Long, Gen; Ching, Levine; Sadoqi, Mostafa; Xu, Huizhong
2015-03-01
Here we report a systematic study of plasmon-enhanced hetero-junction solar cells made of colloidal quantum dots (PbS) and nanowires (ZnO), with/without metal nanoparticles (Au). The structure of solar cell devices was characterized by AFM, SEM and profilometer, etc. The power conversion efficiencies of solar cell devices were characterized by solar simulator (OAI TriSOL, AM1.5G Class AAA). The enhancement in the photocurrent due to introduction of metal nanoparticles was obvious. We believe this is due to the plasmonic effect from the metal nanoparticles. The correlation between surface roughness, film uniformity and device performance was also studied.
Kang, Zhe; Tan, Xinyu; Li, Xiao; Xiao, Ting; Zhang, Li; Lao, Junchao; Li, Xinming; Cheng, Shan; Xie, Dan; Zhu, Hongwei
2016-01-21
In this study, we demonstrated a self-deposition method to deposit Pt nanoparticles (NPs) on graphene woven fabrics (GWF) to improve the performance of graphene-on-silicon solar cells. The deposition of Pt NPs increased the work function of GWF and reduced the sheet resistance of GWF, thereby improving the power conversion efficiency (PCE) of graphene-on-silicon solar cells. The PCE (>10%) was further enhanced via solid electrolyte coating of the hybrid Schottky junction in the photoelectrochemical solar cells. These results suggest that the combination of self-deposition of Pt NPs and solid-state electrolyte coating of graphene-on-silicon is a promising way to produce high performance graphene-on-semiconductor solar cells.
NASA Astrophysics Data System (ADS)
Jeong, Du Won; Jung, Jongjin; Kim, Gook Hwa; Yang, Cheol-Soo; Kim, Ju Jin; Jung, Sang Don; Lee, Jeong-O.
2015-08-01
In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV-ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions.
Jeong, Du Won; Jung, Jongjin; Kim, Gook Hwa; Yang, Cheol-Soo; Kim, Ju Jin; Jung, Sang Don; Lee, Jeong-O
2015-08-21
In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV-ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions.
NASA Astrophysics Data System (ADS)
Trask, Stephen E.; Li, Yan; Kubal, Joseph J.; Bettge, Martin; Polzin, Bryant J.; Zhu, Ye; Jansen, Andrew N.; Abraham, Daniel P.
2014-08-01
In this article we describe efforts to improve performance and cycle life of cells containing Li1.2Ni0.15Mn0.55Co0.1O2-based positive and graphite-based negative electrodes. Initial work to identify high-performing materials, compositions, fabrication variables, and cycling conditions is conducted in coin cells. The resulting information is then used for the preparation of double-sided electrodes, assembly of pouch cells, and electrochemical testing. We report the cycling performance of cells with electrodes prepared under various conditions. Our data indicate that cells with positive electrodes containing 92 wt.% Li1.2Ni0.15Mn0.55Co0.1O2, 4 wt.% carbons (no graphite), and 4 wt.% PVdF (92-4-4) show ∼20% capacity fade after 1000 cycles in the 2.5-4.4 V range, significantly better than our baseline cells that show the same fade after only 450 cycles. Our analyses indicate that the major contributors to cell energy fade are capacity loss and impedance rise. Therefore incorporating approaches that minimize capacity fade and impedance rise, such as electrode coatings and electrolyte additives, can significantly enhance calendar and cycle life of this promising cell chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trask, Stephen E.; Li, Yan; Kubal, Joseph J.
2014-08-01
In this article we describe efforts to improve performance and cycle life of cells containing Li1.2Ni0.15Mn0.55Co0.1O2-based positive and graphite-based negative electrodes. Initial work to identify high-performing materials, compositions, fabrication variables, and cycling conditions is conducted in coin cells. The resulting information is then used for the preparation of double-sided electrodes, assembly of pouch cells, and electrochemical testing. We report the cycling performance of cells with electrodes prepared under various conditions. Our data indicate that cells with positive electrodes containing 92 wt% Li1.2Ni0.15Mn0.55Co0.1O2, 4 wt% carbons (no graphite), and 4 wt% PVdF (92-4-4) show ~20% capacity fade after 1000 cycles inmore » the 2.5-4.4V range, significantly better than our baseline cells that show the same fade after only 450 cycles. Our analyses indicate that the major contributors to cell energy fade are capacity loss and impedance rise. Therefore incorporating approaches that minimize capacity fade and impedance rise, such as electrode coatings and electrolyte additives, can significantly enhance calendar and cycle life of this promising cell chemistry.« less
Chlapek, Petr; Redova, Martina; Zitterbart, Karel; Hermanova, Marketa; Sterba, Jaroslav; Veselska, Renata
2010-05-11
We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2) and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA) and inhibitors of lipoxygenases (LOX) and cyclooxygenases (COX). This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells. Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes. Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX) in combination with ATRA in both cell lines. Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.
NASA Astrophysics Data System (ADS)
Yang, Huan; Ding, Qiuyu; Li, Ben Q.; Jiang, Xinbing; Zhang, Manman
2018-02-01
Though noble metal nanoparticles have been explored to enhance the performance of the organic solar cell, effect of dielectric nanoparticles, and coupled effect of dielectric and metal nanoparticles, have rarely been reported, if at all, on organic solar cell. This work reports an experimental study on synergetic scattering of SiO2 and Ag nanoparticles in a bulk organic heterojunction for the broadband light absorption enhancement. The wavelength scale SiO2 particles were arranged as a monolayer on the surface of the solar cell to guide incident light into the active layer and prolong the effective optical length of the entered energy. This is achieved by the excitation of whispering gallery modes in SiO2 nanoparticles and by leaky mode radiation. When small size Ag particles were incorporated into the transport layer of the solar cell, synergetic scattering of SiO2 and Ag nanoparticles is formed by coupling of the whispering gallery mode of closely arranged SiO2 particles atop and collaborative localized surface plasma resonance scattering of Ag nanoparticles dispersed in the transport layer. As a result, the performance of the organic solar cell is greatly enhanced and the short-circuit current density has an improvement of 42.47%. Therefore, the organic solar cell incorporated with SiO2 and Ag particles presents a meaningful strategy to achieve high energy-harvesting performance. [Figure not available: see fulltext.
Enhancing charge transfer kinetics by nanoscale catalytic cermet interlayer.
An, Jihwan; Kim, Young-Beom; Gür, Turgut M; Prinz, Fritz B
2012-12-01
Enhancing the density of catalytic sites is crucial for improving the performance of energy conversion devices. This work demonstrates the kinetic role of 2 nm thin YSZ/Pt cermet layers on enhancing the oxygen reduction kinetics for low temperature solid oxide fuel cells. Cermet layers were deposited between the porous Pt cathode and the dense YSZ electrolyte wafer using atomic layer deposition (ALD). Not only the catalytic role of the cermet layer itself but the mixing effect in the cermet was explored. For cells with unmixed and fully mixed cermet interlayers, the maximum power density was enhanced by a factor of 1.5 and 1.8 at 400 °C, and by 2.3 and 2.7 at 450 °C, respectively, when compared to control cells with no cermet interlayer. The observed enhancement in cell performance is believed to be due to the increased triple phase boundary (TPB) density in the cermet interlayer. We also believe that the sustained kinetics for the fully mixed cermet layer sample stems from better thermal stability of Pt islands separated by the ALD YSZ matrix, which helped to maintain the high-density TPBs even at elevated temperature.
Study of enhanced photogalvanic effect of Naphthol Green B in natural sunlight
NASA Astrophysics Data System (ADS)
Koli, Pooran
2015-07-01
The photogalvanic cells based on Naphthol Green B sensitizer-Fructose reductant-Sodium Lauryl Sulphate surfactant has been studied in natural sunlight. The cell has been found workable in natural sunlight with greatly enhanced optimum cell performance. The 1159.2 μW power, 4500 μA short-circuit current, 1070 mV open-circuit potential, 14.49% efficiency and 240 min storage capacity (as half change time) has been observed in optimum cell fabrication conditions.
Kim, Ok-Hee; Cho, Yoon-Hwan; Jeon, Tae-Yeol; Kim, Jung Won; Cho, Yong-Hun; Sung, Yung-Eun
2015-07-01
Core-shell structure nanoparticles have been the subject of many studies over the past few years and continue to be studied as electrocatalysts for fuel cells. Therefore, many excellent core-shell catalysts have been fabricated, but few studies have reported the real application of these catalysts in a practical device actual application. In this paper, we demonstrate the use of platinum (Pt)-exoskeleton structure nanoparticles as cathode catalysts with high stability and remarkable Pt mass activity and report the outstanding performance of these materials when used in membrane-electrode assemblies (MEAs) within a polymer electrolyte membrane fuel cell. The stability and degradation characteristics of these materials were also investigated in single cells in an accelerated degradation test using load cycling, which is similar to the drive cycle of a polymer electrolyte membrane fuel cell used in vehicles. The MEAs with Pt-exoskeleton structure catalysts showed enhanced performance throughout the single cell test and exhibited improved degradation ability that differed from that of a commercial Pt/C catalyst.
Direct hydrothermal growth of GDC nanorods for low temperature solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Hong, Soonwook; Lee, Dohaeng; Yang, Hwichul; Kim, Young-Beom
2018-06-01
We report a novel synthesis technique of gadolinia-doped ceria (GDC) nano-rod (NRs) via direct hydrothermal process to enhance performance of low temperature solid oxide fuel cell by increasing active reaction area and ionic conductivity at interface between cathode and electrolyte. The cerium nitrate hexahydrate, gadolinium nitrate hexahydrate and urea were used to synthesis GDC NRs for growth on diverse substrate. The directly grown GDC NRs on substrate had a width from 819 to 490 nm and height about 2200 nm with a varied urea concentration. Under the optimized urea concentration of 40 mMol, we confirmed that GDC NRs able to fully cover the substrate by enlarging active reaction area. To maximize ionic conductivity of GDC NRs, we synthesis varied GDC NRs with different ratio of gadolinium and cerium precursor. Electrochemical analysis revealed a significant enhanced performance of fuel cells applying synthesized GDC NRs with a ratio of 2:8 gadolinium and cerium precursor by reducing polarization resistance, which was chiefly attributed to the enlarged active reaction area and enhanced ionic conductivity of GDC NRs. This method of direct hydrothermal growth of GDC NRs enhancing fuel cell performance was considered to apply other types of catalyzing application using nano-structure such as gas sensing and electrolysis fields.
Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping
2015-06-04
The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.
Enhanced light absorption in an ultrathin silicon solar cell utilizing plasmonic nanostructures
NASA Astrophysics Data System (ADS)
Xiao, Sanshui; Mortensen, Niels A.
2012-10-01
Nowadays, bringing photovoltaics to the market is mainly limited by high cost of electricity produced by the photovoltaic solar cell. Thin-film photovoltaics offers the potential for a significant cost reduction compared to traditional photovoltaics. However, the performance of thin-film solar cells is generally limited by poor light absorption. We propose an ultrathin-film silicon solar cell configuration based on SOI structure, where the light absorption is enhanced by use of plasmonic nanostructures. By placing a one-dimensional plasmonic nanograting on the bottom of the solar cell, the generated photocurrent for a 200 nm-thickness crystalline silicon solar cell can be enhanced by 90% in the considered wavelength range. These results are paving a promising way for the realization of high-efficiency thin-film solar cells.
Recent Progress Towards Quantum Dot Solar Cells with Enhanced Optical Absorption.
Zheng, Zerui; Ji, Haining; Yu, Peng; Wang, Zhiming
2016-12-01
Quantum dot solar cells, as a promising candidate for the next generation solar cell technology, have received tremendous attention in the last 10 years. Some recent developments in epitaxy growth and device structures have opened up new avenues for practical quantum dot solar cells. Unfortunately, the performance of quantum dot solar cells is often plagued by marginal photon absorption. In this review, we focus on the recent progress made in enhancing optical absorption in quantum dot solar cells, including optimization of quantum dot growth, improving the solar cells structure, and engineering light trapping techniques.
NASA Astrophysics Data System (ADS)
Li, Yaqin; Jian, Guoshu; Wu, Shifa
2006-11-01
The rational design of the sample cell may improve the sensitivity of surface-enhanced Raman scattering (SERS) detection in a high degree. Finite difference time domain (FDTD) simulations of the configuration of Ag film-Ag particles illuminated by plane wave and evanescent wave are performed to provide physical insight for design of the sample cell. Numerical solutions indicate that the sample cell can provide more "hot spots' and the massive field intensity enhancement occurs in these "hot spots'. More information on the nanometer character of the sample can be got because of gradient-field Raman (GFR) of evanescent wave.
NASA Astrophysics Data System (ADS)
Rasouli, H. R.; Ghobadi, A.; Ulusoy Ghobadi, T. G.; Ates, H.; Topalli, K.; Okyay, A. K.
2017-10-01
In this paper, we demonstrate the enhancement of photovoltaic (PV) solar cell efficiency using luminescent silicon nanoparticles (Si-NPs). Sub-10 nm Si-NPs are synthesized via pulsed laser ablation technique. These ultra-small Si nanoparticles exhibit photoluminescence (PL) character tics at 425 and 517 nm upon excitation by ultra-violet (UV) light. Therefore, they can act as secondary light sources that convert high energetic photons to ones at visible range. This down-shifting property can be a promising approach to enhance PV performance of the solar cell, regardless of its type. As proof-of-concept, polycrystalline commercial solar cells with an efficiency of ca 10% are coated with these luminescent Si-NPs. The nanoparticle-decorated solar cells exhibit up to 1.64% increase in the external quantum efficiency with respect to the uncoated reference cells. According to spectral photo-responsivity characterizations, the efficiency enhancement is stronger in wavelengths below 550 nm. As expected, this is attributed to down-shifting via Si-NPs, which is verified by their PL characteristics. The results presented here can serve as a beacon for future performance enhanced devices in a wide range of applications based on Si-NPs including PVs and LED applications.
NASA Technical Reports Server (NTRS)
1992-01-01
Exogene Corporation uses advanced technologies to enhance production of bio-processed substances like proteins, antibiotics and amino acids. Among them are genetic modification and a genetic switch. They originated in research for Jet Propulsion Laboratory. Extensive experiments in cell growth through production of hemoglobin to improve oxygen supply to cells were performed. By improving efficiency of oxygen use by cells, major operational expenses can be reduced. Greater product yields result in decreased raw material costs and more efficient use of equipment. A broad range of applications is cited.
Enhanced performance of perovskite solar cells by ultraviolet-ozone treatment of mesoporous TiO2
NASA Astrophysics Data System (ADS)
Wang, Zengze; Fang, Jin; Mi, Yang; Zhu, Xiaoyang; Ren, He; Liu, Xinfeng; Yan, Yong
2018-04-01
The performance of a semiconductor electronic or photonic device depends greatly on the properties of the interface. In a typical perovskite solar cell (PSC), the interface between electron transport layer (ETL) and perovskites is found to significantly influence the power conversion efficiency (PCE). Herein, Ultraviolet-ozone (UVO) treatment, a technique commonly used to clean a device substrate, is applied on ETL, specially, mesoporous/compact TiO2 layer. This treatment increases the conductivity of ETL and removes the residual organics at the surface. Consequently, an improved interface between mesoporous TiO2 and perovskite is achieved to enhance the performance of PSC. For example, the fill factor (FF) increases by ∼13%, the short-circuit current density (Jsc) and open-circuit voltage (Voc) increase by ∼2%, and the PCE finally enhances by ∼20% with 15 min of UVO treatment. With this method, the PCE of the best cell reaches to 20.43% under the illumination of AM 1.5 (100 mW cm-2) simulated sunlight.
Enhancement of discharge performance of Li/CF x cell by thermal treatment of CF x cathode material
NASA Astrophysics Data System (ADS)
Zhang, Sheng S.; Foster, Donald; Read, Jeffrey
In this work we demonstrate that the thermal treatment of CF x cathode material just below the decomposition temperature can enhance discharge performance of Li/CF x cells. The performance enhancement becomes more effective when heating a mixture of CF x and citric acid (CA) since CA serves as an extra carbon source. Discharge experiments show that the thermal treatment not only reduces initial voltage delay, but also raises discharge voltage. Whereas the measurement of powder impedance indicates the thermal treatment does not increase electronic conductivity of CF x material. Based on these facts, we propose that the thermal treatment results in a limited decomposition of CF x, which yields a subfluorinated carbon (CF x- δ), instead of a highly conductive carbon. In the case of CF x/AC mixture, the AC provides extra carbon that reacts with F 2 and fluorocarbon radicals generated by the thermal decomposition of CF x to form subfluorinated carbon. The process of thermal treatment is studied by thermogravimetric analysis and X-ray diffraction, and the effect of treatment conditions such as heating temperature, heating time and CF x/CA ratio on the discharge performance of CF x cathode is discussed. As an example, a Li/CF x cell using CF x treated with CA at 500 °C under nitrogen for 2 h achieved theretical specific capacity when being discharged at C/5. Impedance analysis indicates that the enhanced performance is attributed to a significant reduction in the cell reaction resistance.
NASA Astrophysics Data System (ADS)
Ho, Wen-Jeng; Li, Guan-Yi; Liu, Jheng-Jie; Lin, Zong-Xian; You, Bang-Jin; Ho, Chun-Hung
2018-04-01
This study employed a two-step multi-cycle spin-coating method for the application of MAPbBr3 perovskite nanophosphors on textured silicon solar cells with the aim of enhancing photovoltaic performance through luminescent down-shifting (LDS). The surface morphology and dimensions of the MAPbBr3 perovskite nanophosphors were examined using scanning electron microscopy in conjunction with ImageJ software. The LDS effects of the nanophosphors were revealed by measuring photo-luminance, optical reflectance, and external quantum efficiency. The photovoltaic performance of cells with and without MAPbBr3 perovskite nanophosphors was evaluated according to photovoltaic current density-voltage (J-V) under AM 1.5 G solar illumination. Compared to uncoated cells, two-layer and one-layer coatings of MAPbBr3 perovskite nanophosphors were shown to enhance conversion efficiency by 4.56% and 3.38%, respectively.
Lee, Pil Hyong; Hwang, Sang Soon
2009-01-01
In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0–100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane. PMID:22291556
Lee, Pil Hyong; Hwang, Sang Soon
2009-01-01
In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0-100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.
Suresh, S; Unni, Gautam E; Satyanarayana, M; Sreekumaran Nair, A; Mahadevan Pillai, V P
2018-08-15
Guiding and capturing photons at the nanoscale by means of metal nanoparticles and interfacial engineering for preventing back-electron transfer are well documented techniques for performance enhancement in excitonic solar cells. Drifting from the conventional route, we propose a simple one-step process to integrate both metal nanoparticles and surface passivation layer in the porous photoanode matrix of a dye-sensitized solar cell. Silver nanoparticles and Nb 2 O 5 surface passivation layer are simultaneously deposited on the surface of a highly porous nanocrystalline TiO 2 photoanode, facilitating an absorption enhancement in the 465 nm and 570 nm wavelength region and a reduction in back-electron transfer in the fabricated dye-sensitized solar cells together. The TiO 2 photoanodes were prepared by spray pyrolysis deposition method from a colloidal solution of TiO 2 nanoparticles. An impressive 43% enhancement in device performance was accomplished in photoanodes having an Ag-incorporated Nb 2 O 5 passivation layer as against a cell without Ag nanoparticles. By introducing this idea, we were able to record two benefits - the metal nanoparticles function as the absorption enhancement agent, and the Nb 2 O 5 layer as surface passivation for TiO 2 nanoparticles and as an energy barrier layer for preventing back-electron transfer - in a single step. Copyright © 2018 Elsevier Inc. All rights reserved.
Du, Lili; Lv, Runxiao; Yang, Xiaoyi; Cheng, Shaohang; Xu, Jing; Ma, Tingxian
2016-06-01
To explore the effect of placenta-derived mesenchymal stem cells on scar formation as well as the underlying mechanism. The isolated placenta-derived mesenchymal stem cells from mice were distributed in the wounded areas of scalded mouse models, attenuated inflammatory responses and decreased the deposition of collagens, thus performing a beneficial effect against scar formation. Hypoxia enhanced the protective effect of placenta-derived mesenchymal stem cells and hypoxia-inducible factor-1α was involved in the protective effect of placenta-derived mesenchymal stem cells in hypoxic condition. Hypoxia enhanced the protective effect of placenta-derived mesenchymal stem cells through hypoxia-inducible factor-1α and PMSCs may have a potential application in the treatment of wound.
Chen, Hong-Yan; Lu, Hong-Liang; Ren, Qing-Hua; Zhang, Yuan; Yang, Xiao-Feng; Ding, Shi-Jin; Zhang, David Wei
2015-10-07
Inverted pyramid-based nanostructured black-silicon (BS) solar cells with an Al2O3 passivation layer grown by atomic layer deposition (ALD) have been demonstrated. A multi-scale textured BS surface combining silicon nanowires (SiNWs) and inverted pyramids was obtained for the first time by lithography and metal catalyzed wet etching. The reflectance of the as-prepared BS surface was about 2% lower than that of the more commonly reported upright pyramid-based SiNW BS surface over the whole of the visible light spectrum, which led to a 1.7 mA cm(-2) increase in short circuit current density. Moreover, the as-prepared solar cells were further passivated by an ALD-Al2O3 layer. The effect of annealing temperature on the photovoltaic performance of the solar cells was investigated. It was found that the values of all solar cell parameters including short circuit current, open circuit voltage, and fill factor exhibit a further increase under an optimized annealing temperature. Minority carrier lifetime measurements indicate that the enhanced cell performance is due to the improved passivation quality of the Al2O3 layer after thermal annealing treatments. By combining these two refinements, the optimized SiNW BS solar cells achieved a maximum conversion efficiency enhancement of 7.6% compared to the cells with an upright pyramid-based SiNWs surface and conventional SiNx passivation.
Role of Copper in the Performance of CdS/CdTe Solar Cells (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demtsu, S.; Albin, D.; Sites, J.
2006-05-01
The performance of CdS/CdTe solar cells made with evaporated Cu as a primary back contact was studied through current-voltage (JV) at different intensities, quantum efficiency (QE) under light and voltage bias, capacitance-voltage (CV), and drive-level capacitance profiling (DLCP) measurements. The results show that while modest amounts of Cu enhance cell performance, excessive amounts degrade device quality and reduce performance. The analysis is supported with numerical simulations to reproduce and explain some of the experimental results.
Numerical characterization of micro-cell UO2sbnd Mo pellet for enhanced thermal performance
NASA Astrophysics Data System (ADS)
Lee, Heung Soo; Kim, Dong-Joo; Kim, Sun Woo; Yang, Jae Ho; Koo, Yang-Hyun; Kim, Dong Rip
2016-08-01
Metallic micro-cell UO2 pellet with high thermal conductivity has received attention as a promising accident-tolerant fuel. Although experimental demonstrations have been successful, studies on the potency of current metallic micro-cell UO2 fuels for further enhancement of thermal performance are lacking. Here, we numerically investigated the thermal conductivities of micro-cell UO2sbnd Mo pellets in terms of the amount of Mo content, the unit cell size, and the aspect ratio of the micro-cells. The results showed good agreement with experimental measurements, and more importantly, indicated the importance of optimizing the unit cell geometries of the micro-cell pellets for greater increases in thermal conductivity. Consequently, the micro-cell UO2sbnd Mo pellets (5 vol% Mo) with modified geometries increased the thermal conductivity of the current UO2 pellets by about 2.5 times, and lowered the temperature gradient within the pellets by 62.9% under a linear heat generation rate of 200 W/cm.
Enhancement of the photoproperties of solid-state TiO2|dye|CuI cells by coupling of two dyes
NASA Astrophysics Data System (ADS)
Sirimanne, P. M.; Senevirathna, M. K. I.; Premalal, E. V. A.; Pitigala, P. K. D. D. P.
2006-06-01
The electronic coupling of a natural pigment extracted from pomegranate fruits (rich with cyanin and exist as flavylium at natural PH) with an organic dye mercurochrome enhanced the performance of solid-state TiO2|dye|CuI-type photovoltaic cells sensitized from pomegranate pigments or mercurochrome individually.
Chochos, Christos L; Singh, Ranbir; Gregoriou, Vasilis G; Kim, Min; Katsouras, Athanasios; Serpetzoglou, Efthymis; Konidakis, Ioannis; Stratakis, Emmanuel; Cho, Kilwon; Avgeropoulos, Apostolos
2018-03-28
We report on the photovoltaic parameters, photophysical properties, optoelectronic properties, self-assembly, and morphology variations in a series of high-performance donor-acceptor (D-A) π-conjugated polymers based on indacenodithiophene and quinoxaline moieties as a function of the number-average molecular weight ([Formula: see text]), the nature of aryl substituents, and the enlargement of the polymer backbone. One of the most important outcome is that from the three optimization approaches followed to tune the chemical structure toward enhanced photovoltaic performance in bulk heterojunction solar cell devices with the fullerene derivative [6,6]-phenyl-C 71 -butyric acid methyl ester as the electron acceptor, the choice of the aryl substituent is the most efficient rational design strategy. Incorporation of thienyl rings as substituents versus phenyl rings accelerates the electron-hole extraction process to the respective electrode, despite the slightly lower recombination lifetime and, thus, improves the electrical performance of the device. Single-junction solar cells based on ThIDT-TQxT feature a maximum power-conversion efficiency of 7.26%. This study provides significant insights toward understanding of the structure-properties-performance relationship for D-A π-conjugated polymers in solid state, which provide helpful inputs for the design of next-generation polymeric semiconductors for organic solar cells with enhanced performance.
Kim, Tae-Hyung; El-Said, Waleed Ahmed; An, Jeung Hee; Choi, Jeong-Woo
2013-04-01
A cell chip composed of ITO, gold nanoparticles (GNP) and RGD-MAP-C peptide composites was fabricated to enhance the electrochemical signals and proliferation of undifferentiated human neural stem cells (HB1.F3). The structural characteristics of the fabricated surfaces were confirmed by both scanning electron microscopy and surface-enhanced Raman spectroscopy. HB1.F3 cells were allowed to attach to various composites electrodes in the cell chip and the material-dependent effects on electrochemical signals and cell proliferation were analyzed. The ITO/60 nm GNP/RGD-MAP-C composite electrode was found to be the best material in regards to enhancing the voltammetric signals of HB1.F3 cells when exposed to cyclic voltammetry, as well as for increasing cell proliferation. Differential pulse voltammetry was performed to evaluate the adverse effects of doxorubicin on HB1.F3 cells. In these experiments, negative correlations between cell viability and chemical concentrations were obseved, which were more sensitive than MTT viability assay especially at low concentrations (<0.1 μg/mL). In this basic science study, a cell chip composed of ITO, gold nanoparticles and RGD-MAP-C peptide composites was fabricated to enhance electrochemical signals and proliferation of undifferentiated human neural stem cells (HB1.F3). The ITO/60 nm GNP/RGD-MAP-C composite electrode was found to best enhance the voltammetric signals of the studied cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Enhancement in c-Si solar cells using 16 nm InN nanoparticles
NASA Astrophysics Data System (ADS)
Imtiaz Chowdhury, Farsad; Alnuaimi, Aaesha; Alkis, Sabri; Ortaç, Bülend; Aktürk, Selçuk; Alevli, Mustafa; Dietz, Nikolaus; Kemal Okyay, Ali; Nayfeh, Ammar
2016-05-01
In this work, 16 nm indium nitride (InN) nanoparticles (NPs) are used to increase the performance of thin-film c-Si HIT solar cells. InN NPs were spin-coated on top of an ITO layer of c-Si HIT solar cells. The c-Si HIT cell is a stack of 2 μm p type c-Si, 4-5 nm n type a-Si, 15 nm n+ type a-Si and 80 nm ITO grown on a p+ type Si substrate. On average, short circuit current density (Jsc) increases from 19.64 mA cm-2 to 21.54 mA cm-2 with a relative improvement of 9.67% and efficiency increases from 6.09% to 7.09% with a relative improvement of 16.42% due to the presence of InN NPs. Reflectance and internal/external quantum efficiency (IQE/EQE) of the devices were also measured. Peak EQE was found to increase from 74.1% to 81.3% and peak IQE increased from 93% to 98.6% for InN NPs coated c-Si HIT cells. Lower reflection of light due to light scattering is responsible for performance enhancement between 400-620 nm while downshifted photons are responsible for performance enhancement from 620 nm onwards.
NASA Astrophysics Data System (ADS)
Jin, Fangming; Su, Zisheng; Chu, Bei; Cheng, Pengfei; Wang, Junbo; Zhao, Haifeng; Gao, Yuan; Yan, Xingwu; Li, Wenlian
2016-05-01
In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59 mA/cm2, an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5 G solar illumination at 100 mW/cm2. Device performance was substantially enhanced by simply inserting thin organic hole transport material into the interface of MoOx and SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V was observed. We found that the improvement is due to the exciton and electron blocking effect of the interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also investigated the requirements of the interface material for Schottky barrier modification.
Jin, Fangming; Su, Zisheng; Chu, Bei; Cheng, Pengfei; Wang, Junbo; Zhao, Haifeng; Gao, Yuan; Yan, Xingwu; Li, Wenlian
2016-05-17
In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59 mA/cm(2), an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5 G solar illumination at 100 mW/cm(2). Device performance was substantially enhanced by simply inserting thin organic hole transport material into the interface of MoOx and SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V was observed. We found that the improvement is due to the exciton and electron blocking effect of the interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also investigated the requirements of the interface material for Schottky barrier modification.
NASA Astrophysics Data System (ADS)
Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.
2014-12-01
The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.
Alkyl Pyrocarbonate Electrolyte Additives for Performance Enhancement of Li Ion Cells
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Surampudi, S.
2000-01-01
Lithium ion rechargeable batteries are being developed for various aerospace applications under a NASA-DoD Interagency program. These applications require further improvements in several areas, specifically in the cycle life for LEO and GEO satellites and in the low temperature performance for the Mars Lander and Rover missions. Accordingly, we have been pursuing research studies to achieve improvement in the low temperature performance, long cycle life and active life of Li ion cells. The studies are mainly focused on electrolytes, to identify newer formulations of new electrolyte additives to enhance Li permeability (at low temperatures) and stability towards the electrode. The latter approach is particularly aimed at the formation suitable SEI (solid electrolyte interphase) on carbon electrodes. In this paper, we report the beneficial effect of using alkyl pyrocarbonates as electrolyte additives to improve the low temperature performance of Li ion cells.
NASA Astrophysics Data System (ADS)
Ando, Jun; Sekiya, Takumasa; Ka, Den; Yamakoshi, Hiroyuki; Dodo, Kosuke; Sodeoka, Mikiko; Kawata, Satoshi; Fujita, Katsumasa
2017-02-01
We propose the combination of alkyne-tag and surface-enhanced Raman scattering (SERS) spectroscopy to perform highly-sensitive and selective drug imaging in live cells. Gold nanoparticles are introduced in lysosomes through endocytosis as SERS agents, and the alkyne-tagged drugs are subsequently administered in cells. Raman microscopic observation reveals the arrival of drug in lysosome through enhanced Raman signal of alkyne. Since the peak of alkyne appears in Raman-silent region of biomolecules, selective detection of drugs is possible without background signal of endogenous molecules. From endocytosed gold nanoparticles in living HeLa cells, we observed distinct Raman signal from alkyne-tagged inhibitor of lysosomal enzyme.
NASA Astrophysics Data System (ADS)
Oh, Ki-Yong; Epureanu, Bogdan I.
2017-10-01
A 1-D phenomenological force model of a Li-ion battery pack is proposed to enhance the control performance of Li-ion battery cells in pack conditions for efficient performance and health management. The force model accounts for multiple swelling sources under the operational environment of electric vehicles to predict swelling-induced forces in pack conditions, i.e. mechanically constrained. The proposed force model not only incorporates structural nonlinearities due to Li-ion intercalation swelling, but also separates the overall range of states of charge into three ranges to account for phase transitions. Moreover, an approach to study cell-to-cell variations in pack conditions is proposed with serial and parallel combinations of linear and nonlinear stiffness, which account for battery cells and other components in the battery pack. The model is shown not only to accurately estimate the reaction force caused by swelling as a function of the state of charge, battery temperature and environmental temperature, but also to account for cell-to-cell variations due to temperature variations, SOC differences, and local degradation in a wide range of operational conditions of electric vehicles. Considering that the force model of Li-ion battery packs can account for many possible situations in actual operation, the proposed approach and model offer potential utility for the enhancement of current battery management systems and power management strategies.
Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells.
Zheng, Weiqing; Wang, Liang; Deng, Fei; Giles, Stephen A; Prasad, Ajay K; Advani, Suresh G; Yan, Yushan; Vlachos, Dionisios G
2017-09-04
Proton conductivity of the polymer electrolyte membranes in fuel cells dictates their performance and requires sufficient water management. Here, we report a simple, scalable method to produce well-dispersed transition metal carbide nanoparticles. We demonstrate that these, when added as an additive to the proton exchange Nafion membrane, provide significant enhancement in power density and durability over 100 hours, surpassing both the baseline Nafion and platinum-containing recast Nafion membranes. Focused ion beam/scanning electron microscope tomography reveals the key membrane degradation mechanism. Density functional theory exposes that OH• and H• radicals adsorb more strongly from solution and reactions producing OH• are significantly more endergonic on tungsten carbide than on platinum. Consequently, tungsten carbide may be a promising catalyst in self-hydrating crossover gases while retarding desorption of and capturing free radicals formed at the cathode, resulting in enhanced membrane durability.The proton conductivity of polymer electrolyte membranes in fuel cells dictates their performance, but requires sufficient water management. Here, the authors report a simple method to produce well-dispersed transition metal carbide nanoparticles as additives to enhance the performance of Nafion membranes in fuel cells.
Gamma-ray imaging and holdup assays of 235-F PuFF cells 1 & 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aucott, T.
Savannah River National Laboratory (SRNL) Nuclear Measurements (L4120) was tasked with performing enhanced characterization of the holdup in the PuFF shielded cells. Assays were performed in accordance with L16.1-ADS-2460 using two high-resolution gamma-ray detectors. The first detector, an In Situ Object Counting System (ISOCS)-characterized detector, was used in conjunction with the ISOCS Geometry Composer software to quantify grams of holdup. The second detector, a Germanium Gamma-ray Imager (GeGI), was used to visualize the location and relative intensity of the holdup in the cells. Carts and collimators were specially designed to perform optimum assays of the cells. Thick, pencil-beam tungsten collimatorsmore » were fabricated to allow for extremely precise targeting of items of interest inside the cells. Carts were designed with a wide range of motion to position and align the detectors. A total of 24 measurements were made, each typically 24 hours or longer to provide sufficient statistical precision. This report presents the results of the enhanced characterization for cells 1 and 2. The measured gram values agree very well with results from the 2014 study. In addition, images were created using both the 2014 data and the new GeGI data. The GeGI images of the cells walls reveal significant Pu-238 holdup on the surface of the walls in cells 1 and 2. Additionally, holdup is visible in the two pass-throughs from cell 1 to the wing cabinets. This report documents the final element (exterior measurements coupled with gamma-ray imaging and modeling) of the enhanced characterization of cells 1-5 (East Cell Line).« less
NASA Astrophysics Data System (ADS)
Gray, Zachary R.
This thesis investigates ways to enhance the efficiency of thin film solar cells through the application of both novel nano-element array light trapping architectures and nickel oxide hole transport/electron blocking layers. Experimental results independently demonstrate a 22% enhancement in short circuit current density (JSC) resulting from a nano-element array light trapping architecture and a ˜23% enhancement in fill factor (FF) and ˜16% enhancement in open circuit voltage (VOC) resulting from a nickel oxide transport layer. In each case, the overall efficiency of the device employing the light trapping or transport layer was superior to that of the corresponding control device. Since the efficiency of a solar cell scales with the product of JSC, FF, and VOC, it follows that the results of this thesis suggest high performance thin film solar cells can be realized in the event light trapping architectures and transport layers can be simultaneously optimized. The realizations of these performance enhancements stem from extensive process optimization for numerous light trapping and transport layer fabrication approaches. These approaches were guided by numerical modeling techniques which will also be discussed. Key developments in this thesis include (1) the fabrication of nano-element topographies conducive to light trapping using various fabrication approaches, (2) the deposition of defect free nc-Si:H onto structured topographies by switching from SiH4 to SiF 4 PECVD gas chemistry, and (3) the development of the atomic layer deposition (ALD) growth conditions for NiO. Keywords: light trapping, nano-element array, hole transport layer, electron blocking layer, nickel oxide, nanocrystalline silicon, aluminum doped zinc oxide, atomic layer deposition, plasma enhanced chemical vapor deposition, electron beam lithography, ANSYS HFSS.
NASA Astrophysics Data System (ADS)
Park, Sun-Young; Ji, Ho-Il; Kim, Hae-Ryoung; Yoon, Kyung Joong; Son, Ji-Won; Lee, Hae-Weon; Lee, Jong-Ho
2013-07-01
We applied screen-printed (La,Sr)CoO3 as a current-collecting layer of planar type unit-cell for lower temperature operation of SOFCs. In this study the effects of the cathode current-collecting layer on the performance of unit cell and symmetric half cell were investigated via AC and DC polarization experiments. According to our investigation, appropriately controlled current collecting layer was very effective to enhance the unit cell performance by reducing not only the ohmic resistance but also the polarization losses of SOFC cathode.
Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS₂ thin film.
Tsuboi, Yuka; Wang, Feijiu; Kozawa, Daichi; Funahashi, Kazuma; Mouri, Shinichiro; Miyauchi, Yuhei; Takenobu, Taishi; Matsuda, Kazunari
2015-09-14
Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.
Shen, Deli; Pang, Aiying; Li, Yafeng; Dou, Jie; Wei, Mingdeng
2018-01-31
In this study, metal-organic frameworks, as an interfacial layer, were introduced into perovskite solar cells (PSCs) for the first time. An interface modified with the metal-organic framework ZIF-8 efficiently enhanced perovskite crystallinity and grain sizes, and the photovoltaic performance of the PSCs was significantly improved, resulting in a maximum PCE of 16.99%.
Enhanced performance of a structured cyclo olefin copolymer-based amorphous silicon solar cell
NASA Astrophysics Data System (ADS)
Zhan, Xinghua; Chen, Fei; Gao, Mengyu; Tie, Shengnian; Gao, Wei
2017-07-01
The submicron array was fabricated onto a cyclo olefin copolymer (COC) film by a hot embossing method. An amorphous silicon p-i-n junction and transparent conductive layers were then deposited onto it through a plasma enhanced chemical vapor deposition (PECVD) and magnetron sputtering. The efficiency of the fabricated COC-based solar cell was measured and the result demonstrated 18.6% increase of the solar cell efficiency when compared to the sample without array structure. The imprinted polymer solar cells with submicron array indeed increase their efficiency.
Sakuma, Shinji; Suita, Masaya; Yamamoto, Takafumi; Masaoka, Yoshie; Kataoka, Makoto; Yamashita, Shinji; Nakajima, Noriko; Shinkai, Norihiro; Yamauchi, Hitoshi; Hiwatari, Ken-Ichiro; Hashizume, Akio; Tachikawa, Hiroyuki; Kimura, Ryoji; Ishimaru, Yuki; Kasai, Atsushi; Maeda, Sadaaki
2012-05-01
We are investigating a new class of penetration enhancers that enable poorly membrane-permeable molecules physically mixed with them to effectively penetrate cell membranes without their concomitant cellular uptake. Since we previously revealed that poly(N-vinylacetamide-co-acrylic acid) modified with d-octaarginine, which is a typical cell-penetrating peptide, significantly enhanced the nasal absorption of insulin, we examined the performance of the polymers on cell membranes. When Caco-2 cells were incubated with 5(6)-carboxyfluorescein (CF) for 30 min, approximately 0.1% of applied CF was internalized into the cells. This poor membrane permeability was dramatically enhanced by d-octaarginine-linked polymers; a 25-fold increase in the cellular uptake of CF was observed when the polymer concentration was adjusted to 0.2mg/mL. None of the individual components, for example, d-octaarginine, had any influence on CF uptake, demonstrating that only d-octaarginine anchored chemically to the polymeric platform enhanced the membrane permeation of CF. The polymer-induced CF uptake was consistently high even when the incubation time was extended to 120 min. Confocal laser scanning microphotographs of cells incubated with d-octaarginine-linked polymers bearing rhodamine red demonstrated that the cell outline was stained with red fluorescence. The polymer-induced CF uptake was significantly suppressed by 5-(N-ethyl-N-isopropyl)amiloride, which is an inhibitor of macropinocytosis. Results indicated that d-octaarginine-linked polymers remained on the cell membrane and poorly membrane-permeable CF was continuously internalized into cells mainly via macropinocytosis repeated for the individual peptidyl branches in the polymer backbone. Copyright © 2012 Elsevier B.V. All rights reserved.
Tan, Yan; Xiao, En-hua
2012-10-01
To evaluate the dynamic CT, MRI, ultrasonography, and pathologic features of hepatic perivascular epithelioid cell tumor (PEComa), improving the understanding and diagnosis of the tumor. A retrospective analysis of CT, MRI, ultrasonography, and pathologic features of 7 hepatic PEComas diagnosed by pathology during 1st January 2005 to 1st September 2011 in our hospital. The performance of dynamic CT, MRI, and ultrasonography revealed that lesions were regular masses with well-defined borders, the maximum diameters were 2.5-8.5 cm (mean = 4 cm), density was homogeneous, contrast-enhanced CT and MRI showed the lesions were significantly and heterogeneously enhanced on arterial phase, less enhanced on portal venous phase, and slightly hypodense on delayed phase. One patient had multiple hepatic lesions and had delayed enhancement. There were no backgrounds of hepatitis and cirrhosis, enlarged lymph nodes, or distant metastases. Pathology showed the gross appearance of the tumor was smooth. Tumor cells were round or polygonal, with clear boundaries and clear membranes, and had abundant translucent cytoplasm. Nuclei were round, with medium size. Tumor cells were epithelial-like cells and arranged in dense sheets. Immunohistochemistry showed that most of them were positive in HMB45 and MelanA, S-100, SMA, while negative in CgA, Syn, CK, CD117, CD10, and CD34. Dynamic CT, MRI, ultrasonography, and pathology of PEComa had some characteristics of benign tumor's performance. Enhanced scan showed PEComa quickly enhanced on arterial phase and enhanced less on portal venous phase. Knowing these characteristics could help to improve the understanding and diagnosis of hepatic PEComa.
Xue, Xiao-yan; Zhou, Ying; Chen, Ying-ying; Meng, Jing-ru; Jia, Min; Hou, Zheng; Bai, Hui; Mao, Xing-gang; Luo, Xiao-xing
2012-04-01
To find potential enhancers for facilitating the buccal delivery of insulin, a TR146 cell-culture model of buccal epithelium, cultured on commercially available insert plates, was used to evaluate the permeability-enhancing effects of several traditional and new types of chemical enhancers, including N-acetyl-L-cysteine (NAC), sodium deoxycholate (SDC), sodium nitroprusside (SNP), reduced glutathione (GSH), glutamine (Gln), chitosan (CS), L-arginine (Arg), 1-dodecylazacycloheptan-2-one (Azone), and soybean lecithin (SPC) (50 and 10 μg/mL respectively). Permeability studies were performed to determine the enhancing effects of these compounds on insulin permeation across the cell-culture model. The enhancing effects of the enhancers were assessed by calculating the apparent permeability coefficients and enhancement ratio. Cytotoxicity of the permeation enhancers at different concentrations was investigated by using the methylthiazolydiphenyl-tetrazolium bromide (MTT) assay. Results showed that 50 μg/mL of NAC, SDC, GSH, CS, Arg, Azone, SPC, SNP, and 10 μg/mL of SNP had a significant enhancing effect on promoting the transport of insulin across the TR146 cell model. MTT assays showed that 50 μg/mL of Gln, Azone, SDC, SNP, Arg, 10 μg/mL SDC, and Arg had obvious toxic effects on TR146 cells. Therefore, NAC, GSH, CS, SPC, and SNP appear to be safe, effective permeability enhancers that promote the transport of insulin across the TR146 cell-culture model of buccal epithelium and may be potential enhancers for buccal delivery of insulin with both low toxicity and high efficiency.
Lu, Luyao; Chen, Wei; Xu, Tao; ...
2015-06-04
The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increasedmore » hole extraction, efficient energy transfer and better morphology. As a result, the working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.« less
Broadband enhancement of dielectric light trapping nanostructure used in ultra-thin solar cells
NASA Astrophysics Data System (ADS)
Yang, Dong; Xu, Zhaopeng; Bian, Fei; Wang, Haiyan; Wang, Jiazhuang; Sun, Lu
2018-03-01
A dielectric fishnet nanostructure is designed to increase the light trapping capability of ultra-thin solar cells. The complex performance of ultra-thin cells such as the optical response and electrical response are fully quantified in simulation through a complete optoelectronic investigation. The results show that the optimized light trapping nanostructure can enhances the electromagnetic resonance in active layer then lead to extraordinary enhancement of both absorption and light-conversion capabilities in the solar cell. The short-circuit current density increases by 49.46% from 9.40 mA/cm2 to 14.05 mA/cm2 and light-conversion efficiency increases by 51.84% from 9.51% to 14.44% compared to the benchmark, a solar cell with an ITO-GaAs-Ag structure.
Development of enhancing agglutination reaction using gold nanoparticle for pre-transfusion testing.
Choktaweesak, N; Krasathong, P; Ammaranond, P
2016-10-01
To explore an alternative way for antibody detection testing, the examination of gold nanoparticle solution for enhancing unexpected antibodies for pre-transfusion testing was investigated. Exposure of foreign antigens on red blood cells from transfusion can trigger the immune system to produce unexpected antibodies. This immunological response may cause the complication to future transfusion. For detection of unexpected antibodies, the antibody screening test is performed approximately 30-60 min. To reduce turnaround time, enhancing reagent, low-ionic strength solution (LISS), is widely used. However, cost of enhancing reagent is an issue which has concerned in resource limited countries. Gold nanoparticle solution can increase red blood cells agglutination reaction. To solve this issue, study of gold nanoparticle solution was investigated. Samples were performed comparing between LISS and gold nanoparticle solution at antiglobulin phase. After reading the agglutination reaction, supernatants were collected and measured at the optical density at 760 nm by spectrophotometer. The optical density in the tube of gold nanoparticle solution was higher than in the tube of 2-5% cell suspension and monoclonal antibody. It has been observed that gold nanoparticle solution enhanced the reaction of agglutination 98% while LISS enhanced the agglutination only 60·8%. Employing a commercially available enhancing reagent, parallel samples confirmed results providing validation of the assay. It approximately costs $1 US dollars compared to $30 for a commercially available reagent. The low cost and yet effective time-consuming test for antibody screening is a practical and viable solution alternative way for performing in antibody screening test in resource limited countries. © 2016 British Blood Transfusion Society.
Lee, Sung-Min; Dhar, Purnim; Chen, Huandong; Montenegro, Angelo; Liaw, Lauren; Kang, Dongseok; Gai, Boju; Benderskii, Alexander V; Yoon, Jongseung
2017-04-25
Ultrathin silicon solar cells fabricated by anisotropic wet chemical etching of single-crystalline wafer materials represent an attractive materials platform that could provide many advantages for realizing high-performance, low-cost photovoltaics. However, their intrinsically limited photovoltaic performance arising from insufficient absorption of low-energy photons demands careful design of light management to maximize the efficiency and preserve the cost-effectiveness of solar cells. Herein we present an integrated flexible solar module of ultrathin, nanostructured silicon solar cells capable of simultaneously exploiting spectral upconversion and downshifting in conjunction with multispectral luminescent waveguides and a nanostructured plasmonic reflector to compensate for their weak optical absorption and enhance their performance. The 8 μm-thick silicon solar cells incorporating a hexagonally periodic nanostructured surface relief are surface-embedded in layered multispectral luminescent media containing organic dyes and NaYF 4 :Yb 3+ ,Er 3+ nanocrystals as downshifting and upconverting luminophores, respectively, via printing-enabled deterministic materials assembly. The ultrathin nanostructured silicon microcells in the composite luminescent waveguide exhibit strongly augmented photocurrent (∼40.1 mA/cm 2 ) and energy conversion efficiency (∼12.8%) than devices with only a single type of luminescent species, owing to the synergistic contributions from optical downshifting, plasmonically enhanced upconversion, and waveguided photon flux for optical concentration, where the short-circuit current density increased by ∼13.6 mA/cm 2 compared with microcells in a nonluminescent medium on a plain silver reflector under a confined illumination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sung-Min; Dhar, Purnim; Chen, Huandong
Ultrathin silicon solar cells fabricated by anisotropic wet chemical etching of single-crystalline wafer materials represent an attractive materials platform that could provide many advantages for realizing high-performance, low-cost photovoltaics. However, their intrinsically limited photovoltaic performance arising from insufficient absorption of low-energy photons demands careful design of light management to maximize the efficiency and preserve the cost-effectiveness of solar cells. Herein we present an integrated flexible solar module of ultrathin, nanostructured silicon solar cells capable of simultaneously exploiting spectral upconversion and downshifting in conjunction with multispectral luminescent waveguides and a nanostructured plasmonic reflector to compensate for their weak optical absorption andmore » enhance their performance. The 8 μm-thick silicon solar cells incorporating a hexagonally periodic nanostructured surface relief are surface-embedded in layered multispectral luminescent media containing organic dyes and NaYF4:Yb3+,Er3+ nanocrystals as downshifting and upconverting luminophores, respectively, via printing-enabled deterministic materials assembly. The ultrathin nanostructured silicon microcells in the composite luminescent waveguide exhibit strongly augmented photocurrent (~40.1 mA/cm2) and energy conversion efficiency (~12.8%) than devices with only a single type of luminescent species, owing to the synergistic contributions from optical downshifting, plasmonically enhanced upconversion, and waveguided photon flux for optical concentration, where the short-circuit current density increased by ~13.6 mA/cm2 compared with microcells in a nonluminescent medium on a plain silver reflector under a confined illumination.« less
EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm.
Kim, Seong Gon; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali
2016-12-08
We present EP-DNN, a protocol for predicting enhancers based on chromatin features, in different cell types. Specifically, we use a deep neural network (DNN)-based architecture to extract enhancer signatures in a representative human embryonic stem cell type (H1) and a differentiated lung cell type (IMR90). We train EP-DNN using p300 binding sites, as enhancers, and TSS and random non-DHS sites, as non-enhancers. We perform same-cell and cross-cell predictions to quantify the validation rate and compare against two state-of-the-art methods, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy with a validation rate of 91.6%, relative to 85.3% for DEEP-ENCODE and 85.5% for RFECS, for a given number of enhancer predictions and also scales better for a larger number of enhancer predictions. Moreover, our H1 → IMR90 predictions turn out to be more accurate than IMR90 → IMR90, potentially because H1 exhibits a richer signature set and our EP-DNN model is expressive enough to extract these subtleties. Our work shows how to leverage the full expressivity of deep learning models, using multiple hidden layers, while avoiding overfitting on the training data. We also lay the foundation for exploration of cross-cell enhancer predictions, potentially reducing the need for expensive experimentation.
EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm
NASA Astrophysics Data System (ADS)
Kim, Seong Gon; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali
2016-12-01
We present EP-DNN, a protocol for predicting enhancers based on chromatin features, in different cell types. Specifically, we use a deep neural network (DNN)-based architecture to extract enhancer signatures in a representative human embryonic stem cell type (H1) and a differentiated lung cell type (IMR90). We train EP-DNN using p300 binding sites, as enhancers, and TSS and random non-DHS sites, as non-enhancers. We perform same-cell and cross-cell predictions to quantify the validation rate and compare against two state-of-the-art methods, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy with a validation rate of 91.6%, relative to 85.3% for DEEP-ENCODE and 85.5% for RFECS, for a given number of enhancer predictions and also scales better for a larger number of enhancer predictions. Moreover, our H1 → IMR90 predictions turn out to be more accurate than IMR90 → IMR90, potentially because H1 exhibits a richer signature set and our EP-DNN model is expressive enough to extract these subtleties. Our work shows how to leverage the full expressivity of deep learning models, using multiple hidden layers, while avoiding overfitting on the training data. We also lay the foundation for exploration of cross-cell enhancer predictions, potentially reducing the need for expensive experimentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gbewonyo, K.; Wang, D.I.C.
The performance of a penicillin fermentation was assessed in a laboratory-scale bubble column fermentor, with mycelial growth confined to the pore matrix of celite beads. Final cell densities of 29 g/L and penicillin titres of 5.5 g/L were obtained in the confined cell cultures. In comparison, cultures of free mycelial cells grown in the absence of beads experienced dissolved oxygen limitations in the bubble column, giving only 17 g/L final cell concentrations with equally low penicillin titres of 2 g/L. The better performance of the confined cell cultures was attributed to enhanced gas liquid mass transfer rates, with mass transfermore » coefficients (k /SUB L/ a) two to three times higher than those determined in the free cell cultures. Furthermore, the confined cell cultures showed more efficient utilization of power input for mass transfer, providing up to 50% reduction in energy requirements for aeration.« less
Jung, Dong-Won; Kim, Jun-Ho; Kim, Se-Hoon; Kim, Jun-Bom; Oh, Eun-Suok
2013-05-01
The effect of dual-layered membrane electrode assemblies (d-MEAs) on the performance of a polymer electrolyte membrane fuel cell (PEMFC) was investigated using the following characterization techniques: single cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). It has been shown that the PEMFC with d-MEAs has better cell performance than that with typical mono-layered MEAs (m-MEAs). In particular, the d-MEA whose inner layer is composed of multi-walled carbon nanotubes (MWCNTs) showed the best fuel cell performance. This is due to the fact that the d-MEAs with MWCNTs have the highest electrochemical surface area and the lowest activation polarization, as observed from the CV and EIS test.
Gurudatt, N G; Naveen, M Halappa; Ban, Changill; Shim, Yoon-Bo
2016-12-15
Electrochemical biosensors using five anticancer drug and lipid molecules attached on the conducting polymer layer to obtain the orientation of drug molecules toward cancer cells, were evaluated as sensing materials and their performances were compared. Conjugation of the drug molecules with a lipid, phosphatidylcholine (PC) has enhanced the sensitivity towards leukemia cells and differentiates cancer cells from normal cells. The composition of each layer of sensor probe was confirmed by electrochemical and surface characterization experiments. Both impedance spectroscopy and voltammetry show the enhanced interaction of leukemia cells using the drug/lipid modified sensor probe. As the number of leukemia cells increased, the charge transfer resistance (Rct) in impedance spectra increased and the amine oxidation peak current of drug molecules in voltammograms decreased at around 0.7-1.0V. Of test drug molecules, raltitrexed (Rtx) showed the best performance for the cancer cells detection. Cancer and normal cell lines from different origins were examined to evaluate the degree of expression of folate receptors (FR) on cells surface, where cervical HeLa cell line was found to be shown the highest expression of the receptor. Impedance and chronoamperometric experiments for leukemia cell line (Jurkat E6-1) showed linear dynamic ranges of 1.0×10(3)-2.5×10(5) cells/mL and 1.0×10(3)-8.0×10(3) cells/mL with detection limits of 68±5 cells/mL and 21±3 cells/mL, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Flow-enhanced solution printing of all-polymer solar cells
Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A.; Gu, Kevin; Gu, Xiaodan; Tee, Benjamin C. K.; Pang, Changhyun; Yan, Hongping; Zhao, Dahui; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan
2015-01-01
Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility. PMID:26264528
Thermophotovoltaic energy generation
Celanovic, Ivan; Chan, Walker; Bermel, Peter; Yeng, Adrian Y. X.; Marton, Christopher; Ghebrebrhan, Michael; Araghchini, Mohammad; Jensen, Klavs F.; Soljacic, Marin; Joannopoulos, John D.; Johnson, Steven G.; Pilawa-Podgurski, Robert; Fisher, Peter
2015-08-25
Inventive systems and methods for the generation of energy using thermophotovoltaic cells are described. Also described are systems and methods for selectively emitting electromagnetic radiation from an emitter for use in thermophotovoltaic energy generation systems. In at least some of the inventive energy generation systems and methods, a voltage applied to the thermophotovoltaic cell (e.g., to enhance the power produced by the cell) can be adjusted to enhance system performance. Certain embodiments of the systems and methods described herein can be used to generate energy relatively efficiently.
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.
2013-01-01
As NASA prepares for its next era of manned spaceflight missions, advanced energy storage technologies are being developed and evaluated to address and enhance future mission needs and technical requirements. Cell-level components for advanced lithium-ion batteries possessing higher energy, more reliable performance and enhanced, inherent safety characteristics have been under development within the NASA infrastructure. A key component for safe and reliable cell performance is the cell separator, which separates the two energetic electrodes and functions to inhibit the occurrence of an internal short circuit but preserves an ionic current. Recently, a new generation of co-extruded separator films has been developed by ExxonMobil Chemical and introduced into their battery separator product portfolio. Several grades of this new separator material were evaluated with respect to dynamic mechanical properties and safety-related performance attributes, and the results of these evaluations were previously reported in "Part 1: Mechanical Properties" of this publication. This current paper presents safety-related performance results for these novel materials obtained by employing a complementary experimental methodology, which involved the analysis of separator impedance characteristics as a function of temperature. The experimental results from this study are discussed with respect to potential cell safety enhancement for future aerospace as well as for terrestrial energy storage needs, and they are compared with pertinent mechanical properties of these materials, as well as with current state-of-the practice separator materials.
Fu, Weifei; Wang, Ling; Zhang, Yanfang; Ma, Ruisong; Zuo, Lijian; Mai, Jiangquan; Lau, Tsz-Ki; Du, Shixuan; Lu, Xinhui; Shi, Minmin; Li, Hanying; Chen, Hongzheng
2014-11-12
Achieving superior solar cell performance based on the colloidal nanocrystals remains challenging due to their complex surface composition. Much attention has been devoted to the development of effective surface modification strategies to enhance electronic coupling between the nanocrystals to promote charge carrier transport. Herein, we aim to attach benzenedithiol ligands onto the surface of CdSe nanocrystals in the "face-on" geometry to minimize the nanocrystal-nanocrystal or polymer-nanocrystal distance. Furthermore, the "electroactive" π-orbitals of the benzenedithiol are expected to further enhance the electronic coupling, which facilitates charge carrier dissociation and transport. The electron mobility of CdSe QD films was improved 20 times by tuning the ligand orientation, and high performance poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT):CdSe nanocrystal hybrid solar cells were also achieved, showing a highest power conversion efficiency of 4.18%. This research could open up a new pathway to improve further the performance of colloidal nanocrystal based solar cells.
Zhu, Guang; Wang, Hongyan; Zhang, Quanxin; Zhang, Li
2015-08-01
Near infrared to visible up-conversion of light by rare earth ion-doped phosphors (NaYF4:Yb(3+), Er(3+)) that convert multiple photons of lower energy to higher energy photons offer new possibilities for improved performance of photovoltaic devices. Here, up-conversion phosphor NaYF4:Yb(3+), Er(3+) doped nanocrystalline TiO2 films are designed and used as a electrode for dye-sensitized solar cells, and the photovoltaic performance of DSSCs based on composite electrodes are investigated. The results show the cell with NaYF4:Yb(3+), Er(3+) achieves a power conversion efficiency of 7.65% under one sun illumination (AM 1.5G, 100mWcm(-2)), which is an increase of 14% compared to the cell without NaYF4:Yb(3+), Er(3+) (6.71%). The performance improvement is attributed to the dual effects of enhanced light harvesting from extended light absorption range and increased light scattering, and lower electron transfer resistance. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Guzik, Monica; Skierski, Michael
2011-01-01
As NASA prepares for its next era of manned spaceflight missions, advanced energy storage technologies are being developed and evaluated to address future mission needs and technical requirements and to provide new mission-enabling technologies. Cell-level components for advanced lithium-ion batteries possessing higher energy, more reliable performance and enhanced, inherent safety characteristics are actively under development within the NASA infrastructure. A key component for safe and reliable cell performance is the cell separator, which separates the two energetic electrodes and functions to prevent the occurrence of an internal short-circuit while enabling ionic transport. Recently, a new generation of co-extruded separator films has been developed by ExxonMobil Chemical and introduced into their battery separator product portfolio. Several grades of this new separator material have been evaluated with respect to dynamic mechanical properties and safety-related performance attributes. This paper presents the results of these evaluations in comparison to a current state-ofthe-practice separator material. The results are discussed with respect to potential opportunities to enhance the inherent safety characteristics and reliability of future, advanced lithium-ion cell chemistries.
Performance-enhanced mesenchymal stem cells via intracellular delivery of steroids
NASA Astrophysics Data System (ADS)
Ankrum, James A.; Dastidar, Riddhi G.; Ong, Joon Faii; Levy, Oren; Karp, Jeffrey M.
2014-04-01
Inadequate immunomodulatory potency of mesenchymal stem cells (MSC) may limit their therapeutic efficacy. We report glucocorticoid steroids augment MSC expression and activity of indoleamine-2,3-dioxygenase (IDO), a primary mediator of MSC immunomodulatory function. This effect depends on signaling through the glucocorticoid receptor and is mediated through up-regulation of FOXO3. Treatment of MSCs with glucocorticoids, budesonide or dexamethasone, enhanced IDO expression following IFN-γ stimulation in multiple donors and was able to restore IDO expression in over-passaged MSCs. As IDO enhancement was most notable when cells were continuously exposed to budesonide, we engineered MSC with budesonide loaded PLGA microparticles. MSC efficiently internalized budesonide microparticles and exhibited 4-fold enhanced IDO activity compared to budesonide preconditioned and naïve MSC, resulting in a 2-fold improvement in suppression of stimulated peripheral blood mononuclear cells in an IDO-dependent manner. Thus, the augmentation of MSC immune modulation may abrogate challenges associated with inadequate potency and enhance their therapeutic efficacy.
Moghimipour, Eskandar; Tabassi, Sayyed Abolghassem Sajadi; Ramezani, Mohammad; Handali, Somayeh; Löbenberg, Raimar
2016-01-01
The aim of this study was to investigate the influence of absorption enhancers in the uptake of hydrophilic compounds. The permeation of the two hydrophilic drug models gentamicin and 5 (6)-carboxyfluorescein (CF) across the brush border membrane vesicles and Caco-2 cell lines were evaluated using total saponins of Acanthophyllum squarrosum, Quillaja saponaria, sodium lauryl sulfate, sodium glycocholate, sodium taurodeoxycholate, and Tween 20 as absorption enhancers. Transepithelial electrical resistance (TEER) measurement was utilized to assess the paracellular permeability of cell lines. Confocal laser scanning microscopy (CLSM) was performed to obtain images of the distribution of CF in Caco-2 cells. These compounds were able to loosen tight junctions, thus increasing paracellular permeability. CLSM confirmed the effect of these absorption enhancers on CF transport across Caco-2 lines and increased the Caco-2 permeability via transcellular route. It was also confirmed that the decrease in TEER was transient and reversible after removal of permeation enhancers. PMID:27429925
Performance-enhanced mesenchymal stem cells via intracellular delivery of steroids
Ankrum, James A.; Dastidar, Riddhi G.; Ong, Joon Faii; Levy, Oren; Karp, Jeffrey M.
2014-01-01
Inadequate immunomodulatory potency of mesenchymal stem cells (MSC) may limit their therapeutic efficacy. We report glucocorticoid steroids augment MSC expression and activity of indoleamine-2,3-dioxygenase (IDO), a primary mediator of MSC immunomodulatory function. This effect depends on signaling through the glucocorticoid receptor and is mediated through up-regulation of FOXO3. Treatment of MSCs with glucocorticoids, budesonide or dexamethasone, enhanced IDO expression following IFN-γ stimulation in multiple donors and was able to restore IDO expression in over-passaged MSCs. As IDO enhancement was most notable when cells were continuously exposed to budesonide, we engineered MSC with budesonide loaded PLGA microparticles. MSC efficiently internalized budesonide microparticles and exhibited 4-fold enhanced IDO activity compared to budesonide preconditioned and naïve MSC, resulting in a 2-fold improvement in suppression of stimulated peripheral blood mononuclear cells in an IDO-dependent manner. Thus, the augmentation of MSC immune modulation may abrogate challenges associated with inadequate potency and enhance their therapeutic efficacy. PMID:24717973
Park, Jong Hwan; Jung, Youngsuk; Yang, Yooseong; Shin, Hyun Suk; Kwon, Soonchul
2016-10-05
For efficient solar cells based on organic semiconductors, a good mixture of photoactive materials in the bulk heterojunction on the length scale of several tens of nanometers is an important requirement to prevent exciton recombination. Herein, we demonstrate that nanoporous titanium dioxide inverse opal structures fabricated using a self-assembled monolayer method and with enhanced infiltration of electron-donating polymers is an efficient electron-extracting layer, which enhances the photovoltaic performance. A calcination process generates an inverse opal structure of titanium dioxide (<70 nm of pore diameters) providing three-dimensional (3D) electron transport pathways. Hole-transporting polymers was successfully infiltrated into the pores of the surface-modified titanium dioxide under vacuum conditions at 200 °C. The resulting geometry expands the interfacial area between hole- and electron-transport materials, increasing the thickness of the active layer. The controlled polymer-coating process over titanium dioxide materials enhanced photocurrent of the solar cell device. Density functional theory calculations show improved interfacial adhesion between the self-assembled monolayer-modified surface and polymer molecules, supporting the experimental result of enhanced polymer infiltration into the voids. These results suggest that the 3D inverse opal structure of the surface-modified titanium dioxide can serve as a favorable electron-extracting layer in further enhancing optoelectronic performance based on organic or organic-inorganic hybrid solar cell.
Electric-field enhanced performance in catalysis and solid-state devices involving gases
Blackburn, Bryan M.; Wachsman, Eric D.; Van Assche, IV, Frederick Martin
2015-05-19
Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.
Zr-doped TiO2 as a thermostabilizer in plasmon-enhanced dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Pasche, Anastasia; Grohe, Bernd; Mittler, Silvia; Charpentier, Paul A.
2017-07-01
Harvesting solar energy is a promising solution toward meeting the world's ever-growing energy demand. Dye-sensitized solar cells (DSSCs) are hybrid organic-inorganic solar cells with tremendous potential for commercial application, but they are plagued by inefficiency due to their poor sunlight absorption. Plasmonic silver nanoparticles (AgNPs) have been shown to enhance the absorptive properties of DSSCs, but their plasmonic resonance can cause thermal damage resulting in cell deterioration. Hence, the influence of Zr-doped TiO2 on the efficiency of plasmon-enhanced DSSCs was studied, showing that 5 mol.% Zr-doping of the photoactive TiO2 material can improve the photovoltaic performance of DSSCs by 44%. By examining three different DSSC designs, it became clear that the efficiency enhancing effect of Zr strongly depends on the proximity of the Zr-doped material to the plasmonic AgNPs.
Jin, Fangming; Su, Zisheng; Chu, Bei; Cheng, Pengfei; Wang, Junbo; Zhao, Haifeng; Gao, Yuan; Yan, Xingwu; Li, Wenlian
2016-01-01
In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59 mA/cm2, an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5 G solar illumination at 100 mW/cm2. Device performance was substantially enhanced by simply inserting thin organic hole transport material into the interface of MoOx and SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V was observed. We found that the improvement is due to the exciton and electron blocking effect of the interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also investigated the requirements of the interface material for Schottky barrier modification. PMID:27185635
Comprehensive design of omnidirectional high-performance perovskite solar cells
Zhang, Yutao; Xuan, Yimin
2016-01-01
The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight. PMID:27405419
Comprehensive design of omnidirectional high-performance perovskite solar cells.
Zhang, Yutao; Xuan, Yimin
2016-07-13
The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight.
Dual interface gratings design for absorption enhancement in thin crystalline silicon solar cells
NASA Astrophysics Data System (ADS)
Zhang, Jinqiannan; Yu, Zhongyuan; Liu, Yumin; Chai, Hongyu; Hao, Jing; Ye, Han
2017-09-01
We numerically study and analyze the light absorption enhancement in thin crystalline silicon solar cell with dual interface gratings. The structure combines the front dielectric nanowalls and the sinusoidal plasmonic grating at back reflector. We show that having specific interfaces with well-chosen period, fill factor and height can allow more efficient dielectric and plasmonic modes coupling into active layer and can improve the solar cell performance. For 1 μm active layer case, the optimal result for the proposed structure achieves short-circuit current of 23.6 mA/cm2, which performs over 50% better than flat solar cell structure, the short-circuit current of which is 15.5 mA/cm2. In addition, the active layer thickness and angular analysis show that the proposed structure maintains its advantage over flat structure.
NASA Astrophysics Data System (ADS)
Hu, Zhaosheng; Ma, Tingli; Hayase, Shuzi
2018-01-01
Thin perovskite solar cells are under intensive interest since they reduce the amount of absorber layer, especially toxic lead in methylammonium lead iodide (MAPbI3) devices and have wide application in semitransparent and tandem solar cells. However, due to the decrease of the layer thickness, thin perovskite devices with weak light-harvesting have poor performance. Moreover, the performance of plasmonic thin perovskite devices by incorporating noncoupling metal NPs cannot give comparable performance with normal devices. In this perspective, we discuss the implication of employing random silver-gold heterodimers in MAPbI3 solar cells with the aim of establishing some guidelines for the efficient ultrathin perovskite solar cells. This method induces an extraordinarily high light-harvesting for ultrathin perovskite film. And the underlying physical mechanism behind the enhanced absorption is deeply investigated by plasmon hybridization, dipolar-dipolar coupling method and FDTD simulation. We notice that perovskite embedded silver-gold heterodimer overcomes the vanished antibonding plasmon resononse (σ * ) in nonjunction area of gold/silver homodimer. A 150-nm perovskite film with embedded random silver-gold heterodimers with 80 nm size and 25 nm gap distance processes 28.15% absorption enhancement compared to the reference film, which is higher than the reported 10% for gold homodimers. And we also predict a realistic solution-processed, easy, and low-cost fabrication method, which provide a means to realize highly efficient ultrathin perovskite solar cell including other absorber-based photovoltaics.
The donor-supply electrode enhances performance in colloidal quantum dot solar cells.
Maraghechi, Pouya; Labelle, André J; Kirmani, Ahmad R; Lan, Xinzheng; Adachi, Michael M; Thon, Susanna M; Hoogland, Sjoerd; Lee, Anna; Ning, Zhijun; Fischer, Armin; Amassian, Aram; Sargent, Edward H
2013-07-23
Colloidal quantum dot (CQD) solar cells combine solution-processability with quantum-size-effect tunability for low-cost harvesting of the sun's broad visible and infrared spectrum. The highest-performing colloidal quantum dot solar cells have, to date, relied on a depleted-heterojunction architecture in which an n-type transparent metal oxide such as TiO2 induces a depletion region in the p-type CQD solid. These devices have, until now, been limited by a modest depletion region depth produced in the CQD solid owing to limitations in the doping available in TiO2. Herein we report a new device geometry-one based on a donor-supply electrode (DSE)-that leads to record-performing CQD photovoltaic devices. Only by employing this new charge-extracting approach do we deepen the depletion region in the CQD solid and thereby extract notably more photocarriers, the key element in achieving record photocurrent and device performance. With the use of optoelectronic modeling corroborated by experiment, we develop the guidelines for building a superior CQD solar cell based on the DSE concept. We confirm that using a shallow-work-function terminal electrode is essential to producing improved charge extraction and enhanced performance.
NASA Astrophysics Data System (ADS)
Heidarzadeh, Hamid
2018-03-01
Significant performance enhancement in an ultrathin perovskite (CH3NH3PbI3) solar cell is done using plasmonic embedded core–shell dimer nanoparticles. Three-dimensional finite difference time-domain (FDTD) method is used. A perovskite absorber with a volume of 400 × 400 × 200 nm3 is considered. At first, a cell with one embedded nanoparticle is simulated. Absorptance of CH3NH3PbI3 absorber and gold nanoparticle are obtained. An optimization is done. Then a cell with embedded dimer nanoparticles is evaluated. The results show higher photocurrent enhancement for that in compared to a cell with one embedded nanoparticle. To further photocurrent enhancement, gold-SiO2 core–shell nanoparticles are used. Photocurrents of 23.37 mA cm‑2, 23.3 mA cm‑2, 22.5 mA cm‑2 and 21.47 mA cm‑2 are obtained for a cell with two embedded core–shell nanoparticles with core radius of 60 nm and shell thickness of 2 nm, 5 nm, 10 nm and 20 nm, respectively. It is important to mention that the photocurrent is 17.9 mA cm‑2 for reference cell and 19.8 mA cm‑2 for a cell with one embedded nanoparticle. Higher photocurrent is due to the near-field plasmonic effect.
Aggregation of nanoparticles in endosomes and lysosomes produces surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Lucas, Leanne J.; Chen, Xiaoke K.; Smith, Aaron J.; Korbelik, Mladen; Zeng, Haishan; Lee, Patrick W. K.; Hewitt, Kevin Cecil
2015-01-01
The purpose of this study was to explore the use of surface-enhanced Raman spectroscopy (SERS) to image the distribution of epidermal growth factor receptor (EGFR) in cells. To accomplish this task, 30-nm gold nanoparticles (AuNPs) tagged with antibodies to EGFR (1012 per mL) were incubated with cells (106 per mL) of the A431 human epidermoid carcinoma and normal human bronchial epithelial cell lines. Using the 632.8-nm excitation line of a He-Ne laser, Raman spectroscopy measurements were performed using a point mapping scheme. Normal cells show little to no enhancement. SERS signals were observed inside the cytoplasm of A431 cells with an overall enhancement of 4 to 7 orders of magnitude. Raman intensity maps of the 1450 and 1583 cm-1 peaks correlate well with the expected distribution of EGFR and AuNPs, aggregated following uptake by endosomes and lysosomes. Spectral features from tyrosine and tryptophan residues dominate the SERS signals.
PDE5 inhibitors enhance the lethality of [pemetrexed + sorafenib
Booth, Laurence; Roberts, Jane L.; Poklepovic, Andrew; Dent, Paul
2017-01-01
The combination of pemetrexed and sorafenib has significant clinical activity against a wide variety of tumor types in patients and the present studies were performed to determine whether sildenafil enhances the killing potential of [pemetrexed + sorafenib]. In multiple genetically diverse lung cancer cell lines, sildenafil enhanced the lethality of [pemetrexed + sorafenib]. The three-drug combination reduced the activities of AKT, mTOR and STAT transcription factors; increased the activities of eIF2α and ULK-1; lowered the expression of MCL-1, BCL-XL, thioredoxin and SOD2; and increased the expression of Beclin1. Enhanced cell killing by sildenafil was blocked by inhibition of death receptor signaling and autophagosome formation. Enforced activation of STAT3 and AKT or inhibition of JNK significantly reduced cell killing. The enhanced cell killing caused by sildenafil was more reliant on increased PKG signaling than on the generation of nitric oxide. In vivo sildenafil enhanced the anti-tumor properties of [pemetrexed + sorafenib]. Based on our data we argue that additional clinical studies combining pemetrexed, sorafenib and sildenafil are warranted. PMID:28088782
Jian, Wen; Wei, Zhao; Zhiqiang, Cheng; Zheng, Fang
2009-02-01
This study was designed to test whether extremely low frequency electromagnetic field (ELF-EMF) could enhance the apoptosis-induction effect of X-ray radiotherapy on liver cancer cell line BEL-7402 in vitro. EMF exposure was performed inside an energized solenoid coil. X-ray irradiation was performed using a linear accelerator. Apoptosis rates of BEL-7402 cells were analyzed using Annexin V-Fit Apoptosis Detection kit. Apoptosis rates of EMF group and sham EMF group were compared when combined with X-ray irradiation. Our results suggested that the apoptosis rate of BEL-7402 cells exposed to low doses of X-ray irradiation could be significantly increased by EMF. More EMF exposures obtain significantly higher apoptosis rates than fewer EMF exposures when combined with 2 Gy X-ray irradiation. These findings suggested that ELF-EMF could augment the cell apoptosis effects of low doses of X-ray irradiation on BEL-7402 cells in a synergistic and cumulative way. Copyright 2008 Wiley-Liss, Inc.
Fuzzy entropy thresholding and multi-scale morphological approach for microscopic image enhancement
NASA Astrophysics Data System (ADS)
Zhou, Jiancan; Li, Yuexiang; Shen, Linlin
2017-07-01
Microscopic images provide lots of useful information for modern diagnosis and biological research. However, due to the unstable lighting condition during image capturing, two main problems, i.e., high-level noises and low image contrast, occurred in the generated cell images. In this paper, a simple but efficient enhancement framework is proposed to address the problems. The framework removes image noises using a hybrid method based on wavelet transform and fuzzy-entropy, and enhances the image contrast with an adaptive morphological approach. Experiments on real cell dataset were made to assess the performance of proposed framework. The experimental results demonstrate that our proposed enhancement framework increases the cell tracking accuracy to an average of 74.49%, which outperforms the benchmark algorithm, i.e., 46.18%.
Capó, X; Martorell, M; Busquets-Cortés, C; Sureda, A; Riera, J; Drobnic, F; Tur, J A; Pons, A
2016-12-07
Functional beverages based on almonds and olive oil and enriched with α-tocopherol and docosahexaenoic acid (DHA) could be useful in modulating oxidative stress and enhancing physical performance in sportsmen. The aim of this work was to evaluate the effects of supplementation with functional beverages on physical performance, plasma and erythrocyte fatty acids' and polyphenol handling, oxidative and nitrative damage, and antioxidant and mitochondrial gene expression in young and senior athletes. Athletes performed maximal exercise tests before and after one month of dietary supplementation and blood samples were taken immediately before and one hour after each test. The beverages did not alter performance parameters during maximal exercise. Supplementation increased polyunsaturated and reduced saturated plasma fatty acids while increasing the DHA erythrocyte content; it maintained basal plasma and blood polyphenol levels, but increased the blood cell polyphenol concentration in senior athletes. Supplementation protects against oxidative damage although it enhances nitrative damage in young athletes. The beverages enhance the gene expression of antioxidant enzymes in peripheral blood mononuclear cells after exercise in young athletes.
Performance enhancement technique of visible light communications using passive photovoltaic cell
NASA Astrophysics Data System (ADS)
Wu, Jhao-Ting; Chow, Chi-Wai; Liu, Yang; Hsu, Chin-Wei; Yeh, Chien-Hung
2017-06-01
The light emitting diode (LED) based visible light communication (VLC) system can provide lighting and communication simultaneously. It has attracted much attenuation recently. As the photovoltaic cell (also known as solar cell) is physically flexible, low cost, and easily available, it could be a good choice for the VLC receiver (Rx). Furthermore, besides acting as the VLC Rx, the solar cell can convert VLC signal into electricity for charging up the Rx devices. Hence, it could be a promising candidate for the future internet-of-thing (IoT) networks. However, using solar cell as VLC Rx is challenging, since the response of the solar cell is highly limited and it will limit the VLC data rate. In this work, we propose and demonstrate for the first time using pre-distortion Manchester coding (MC) signal to enhance the signal performance of solar cell Rx based VLC. The proposed scheme can significantly mitigate the slow response, as well as the direct-current (DC) wandering effect of the solar cell; hence 50 times increase in data rate can be experimentally achieved.
Numerical study of metal oxide hetero-junction solar cells with defects and interface states
NASA Astrophysics Data System (ADS)
Zhu, Le; Shao, Guosheng; Luo, J. K.
2013-05-01
Further to our previous work on ideal metal oxide (MO) hetero-junction solar cells, a systematic simulation has been carried out to investigate the effects of defects and interface states on the cells. Two structures of the window/absorber (WA) and window/absorber/voltage-enhancer (WAV) were modelled with defect concentration, defect energy level, interface state (ISt) density and ISt energy level as parameters. The simulation showed that the defects in the window layer and the voltage-enhancer layer have very limited effects on the performance of the cells, but those in the absorption layer have profound effects on the cell performance. The interface states at the W/A interface have a limited effect on the performance even for a density up to 1013 cm-2, while those at the A/V interface cause the solar cell to deteriorate severely even at a low density of lower than 1 × 1011 cm-2. It also showed that the back surface field (BSF) induced by band gap off-set in the WAV structure loses its function when defects with a modest concentration exist in the absorption layer and does not improve the open voltage at all.
Long term imaging of living brain cancer cells
NASA Astrophysics Data System (ADS)
Farias, Patricia M. A.; Galembeck, André; Milani, Raquel; Andrade, Arnaldo C. D. S.; Stingl, Andreas
2018-02-01
QDs synthesized in aqueous medium and functionalized with polyethylene glycol were used as fluorescent probes. They label and monitor living healthy and cancer brain glial cells in culture. Physical-chemical characterization was performed. Toxicological studies were performed by in vivo short and long-term inhalation in animal models. Healthy and cancer glial living cells were incubated in culture media with highly controlled QDs. Specific features of glial cancer cells were enhanced by QD labelling. Cytoplasmic labelling pattern was clearly distinct for healthy and cancer cells. Labelled cells kept their normal activity for same period as non-labelled control samples.
On direct and indirect methanol fuel cells for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottesfield, S.
1996-04-01
Research on direct oxidation methanol fuel cells (DMFCs) and polymer electrolyte fuel cells (PEFCs) is discussed. Systems considered for transportation applications are addressed. The use of platinum/ruthenium anode electrocatalysts and platinum cathode electrocatalysts in polymer electrolyte DMFCs has resulted in significant performance enhancements.
Das, Satyajit; Banerjee, Kaushik; Roy, Susmita; Majumder, Saikat; Chatterjee, Mitali; Majumdar, Subrata; Choudhuri, Soumitra Kumar
2014-01-01
The tumor microenvironment (TME) renders tumor cells more resistant to chemotherapy. However, effective immunomodulators for cancer therapy are still elusive. We hypothesized that Mn-N-(2-hydroxyacetophenone) glycinate (MnNG), reported to be an antitumor agent, can modulate the TME. Immunomodulatory effects of MnNG were performed through assessing Myeloid Derived Suppressor Cells (MDSCs), Interferon-γ (Ifnγ)- and Interleukin-4 (Il4)-secreting Cluster of Differentiation 4 (Cd4)(+) T-cells by annexin V-binding assay in drug-resistant TME and T-cell proliferation following in vitro co-culture assay by flow cytometry. MnNG induced infiltration of Ifnγ-secreting Cd4(+) T-cells and reduces MDSC numbers in vivo. Furthermore, it modulated differentiation of MDSCs towards dendritic cells with up-regulation of co-stimulatory molecules and reversed the suppressive function of MDSC's that enhances T-helper cell 1 (Th1) response. MnNG treatment resulted in reduced expression of IL4, but enhanced expression of Ifnγ when Cd4(+) T-cells were co-cultured with MDSCs. MnNG modulates MDSCs differentiaton towards dendritic cells and enhances Th1 response in drug-resistant TME, leading to immunomodulatory efficacy. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Yong, Xiao-Yu; Yan, Zhi-Ying; Shen, Hai-Bo; Zhou, Jun; Wu, Xia-Yuan; Zhang, Li-Juan; Zheng, Tao; Jiang, Min; Wei, Ping; Jia, Hong-Hua; Yong, Yang-Chun
2017-10-01
Microbial fuel cell (MFC) is a promising device for energy generation and organic waste treatment simultaneously by electrochemically active bacteria (EAB). In this study, an integrated aerobic-anaerobic strategy was developed to improve the performance of P. aeruginosa-inoculated MFC. With an aerobic start-up and following an anaerobic discharge process, the current density of MFC reached a maximum of 99.80µA/cm 2 , which was 91.6% higher than the MFC with conventional constant-anaerobic operation. Cyclic voltammetry and HPLC analysis showed that aerobic start-up significantly increased electron shuttle (pyocyanin) production (76% higher than the constant-anaerobic MFC). Additionally, enhanced anode biofilm formation was also observed in the integrated aerobic-anaerobic MFC. The increased pyocyanin production and biofilm formation promoted extracellular electron transfer from EAB to the anode and were the underlying mechanism for the MFC performance enhancement. This work demonstrated the integrated aerobic-anaerobic strategy would be a practical strategy to enhance the electricity generation of MFC. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kumar, Vibhor; Rayan, Nirmala Arul; Muratani, Masafumi; Lim, Stefan; Elanggovan, Bavani; Xin, Lixia; Lu, Tess; Makhija, Harshyaa; Poschmann, Jeremie; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam
2016-05-01
Although over 35 different histone acetylation marks have been described, the overwhelming majority of regulatory genomics studies focus exclusively on H3K27ac and H3K9ac. In order to identify novel epigenomic traits of regulatory elements, we constructed a benchmark set of validated enhancers by performing 140 enhancer assays in human T cells. We tested 40 chromatin signatures on this unbiased enhancer set and identified H2BK20ac, a little-studied histone modification, as the most predictive mark of active enhancers. Notably, we detected a novel class of functionally distinct enhancers enriched in H2BK20ac but lacking H3K27ac, which was present in all examined cell lines and also in embryonic forebrain tissue. H2BK20ac was also unique in highlighting cell-type-specific promoters. In contrast, other acetylation marks were present in all active promoters, regardless of cell-type specificity. In stimulated microglial cells, H2BK20ac was more correlated with cell-state-specific expression changes than H3K27ac, with TGF-beta signaling decoupling the two acetylation marks at a subset of regulatory elements. In summary, our study reveals a previously unknown connection between histone acetylation and cell-type-specific gene regulation and indicates that H2BK20ac profiling can be used to uncover new dimensions of gene regulation. © 2016 Kumar et al.; Published by Cold Spring Harbor Laboratory Press.
Kumar, Vibhor; Rayan, Nirmala Arul; Muratani, Masafumi; Lim, Stefan; Elanggovan, Bavani; Xin, Lixia; Lu, Tess; Makhija, Harshyaa; Poschmann, Jeremie; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam
2016-01-01
Although over 35 different histone acetylation marks have been described, the overwhelming majority of regulatory genomics studies focus exclusively on H3K27ac and H3K9ac. In order to identify novel epigenomic traits of regulatory elements, we constructed a benchmark set of validated enhancers by performing 140 enhancer assays in human T cells. We tested 40 chromatin signatures on this unbiased enhancer set and identified H2BK20ac, a little-studied histone modification, as the most predictive mark of active enhancers. Notably, we detected a novel class of functionally distinct enhancers enriched in H2BK20ac but lacking H3K27ac, which was present in all examined cell lines and also in embryonic forebrain tissue. H2BK20ac was also unique in highlighting cell-type-specific promoters. In contrast, other acetylation marks were present in all active promoters, regardless of cell-type specificity. In stimulated microglial cells, H2BK20ac was more correlated with cell-state-specific expression changes than H3K27ac, with TGF-beta signaling decoupling the two acetylation marks at a subset of regulatory elements. In summary, our study reveals a previously unknown connection between histone acetylation and cell-type-specific gene regulation and indicates that H2BK20ac profiling can be used to uncover new dimensions of gene regulation. PMID:26957309
NASA Astrophysics Data System (ADS)
Shukla, Ashish K.; Yadav, Vinayak M.; Kumar, Akash; Palani, I. A.; Manivannan, Anbarasu
2018-01-01
Polyimide (PI) offers promising features such as high strength and excellent thermal stability for flexible solar panels. The flexible solar cell demands maximum absorption of solar insolation through stacked layers to enhance its performance. However, the fluorescence emission (FE) in inactive polyimide substrate hinders the absorption of irradiated solar energy. In this research work, an attempt has been made to generate rippled morphology on PI substrate using laser processing that enhances the absorption and moderates the FE. These changes are confirmed by calculating the Urbach energy (Eu) of the rippled structure, which is found to be 2.5 times that of the pristine substrate. Furthermore, to reduce the FE, tungsten (W) was coated on the rippled structure of the laser-processed PI, and a significant reduction of 70% FE is achieved compared to the FE of unprocessed PI. These enhanced characteristics of PI obtained by laser processing will be highly helpful for improving the overall performance of flexible solar cells.
Multifunctional MgO Layer in Perovskite Solar Cells.
Guo, Xudong; Dong, Haopeng; Li, Wenzhe; Li, Nan; Wang, Liduo
2015-06-08
A multifunctional magnesium oxide (MgO) layer was successfully introduced into perovskite solar cells (PSCs) to enhance their performance. MgO was coated onto the surface of mesoporous TiO(2) by the decomposition of magnesium acetate and, therefore, could block contact between the perovskite and TiO(2). X-ray photoelectron spectroscopy and infrared spectroscopy showed that the amount of H(2)O/hydroxyl absorbed on the TiO(2) decreased after MgO modification. The UV/Vis absorption spectra of the perovskite with MgO modification revealed an enhanced photoelectric performance compared with that of unmodified perovskite after UV illumination. In addition to the photocurrent, the photovoltage and fill factor also showed an enhancement after modification, which resulted in an increase in the overall efficiency of the cell from 9.6 to 13.9 %. Electrochemical impedance spectroscopy (EIS) confirmed that MgO acts as an insulating layer to reduce charge recombination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez-Millan, Jaime; Goldblatt, Erin M.; Gryaznov, Sergei M.
Purpose: Telomerase is expressed in 80-90% of tumor cells, but is absent in most somatic cells. The absence of telomerase activity results in progressive telomere shortening, leading to cellular senescence or death through deoxyribonucleic acid (DNA) damage signals. In addition, a role for telomerase in DNA damage repair has also been suggested. A specific telomerase inhibitor, GRN163L that is complementary to the template region of the telomerase ribonucleic acid component (hTR). We hypothesized that exposure to GRN163L, either through immediate inhibition of telomerase activity or through eventual telomere shortening and dysfunction, may enhance radiation sensitivity. Our goal was to testmore » whether the treatment with GRN163L enhances sensitivity to irradiation (IR) in MDA-MB-231 breast cancer cells. Methods and Materials: The MDA-MB-231 breast cancer cells were treated with or without GRN163L for 2-42 days. Inhibition of telomerase activity and shortening of telomeres were confirmed. Cells were then irradiated and clonogenic assays were performed to show cell survival differences. In vivo studies using MDA-MB-231 xenografts were performed to corroborate the in vitro results. Results: We show that cells with shortened telomeres due to GRN163L enhance the effect on IR reducing survival by an additional 30% (p < 0.01). These results are confirmed in vivo, with a significant decrease in tumor growth in mice exposed to GRN163L. Conclusions: We found that GRN163L is a promising adjuvant treatment in combination with radiation therapy that may improve the therapeutic index by enhancing the radiation sensitivity. These studies prompt further investigation as to whether this combination can be applied to other cancers and the clinic.« less
NASA Technical Reports Server (NTRS)
Dunbar, P. M.; Hauser, J. R.
1976-01-01
Various mechanisms which limit the conversion efficiency of silicon solar cells were studied. The effects of changes in solar cell geometry such as layer thickness on performance were examined. The effects of various antireflecting layers were also examined. It was found that any single film antireflecting layer results in a significant surface loss of photons. The use of surface texturing techniques or low loss antireflecting layers can enhance by several percentage points the conversion efficiency of silicon cells. The basic differences between n(+)-p-p(+) and p(+)-n-n(+) cells are treated. A significant part of the study was devoted to the importance of surface region lifetime and heavy doping effects on efficiency. Heavy doping bandgap reduction effects are enhanced by low surface layer lifetimes, and conversely, the reduction in solar cell efficiency due to low surface layer lifetime is further enhanced by heavy doping effects. A series of computer studies is reported which seeks to determine the best cell structure and doping levels for maximum efficiency.
LIBS and LIFS for rapid detection of Rb traces in blood
NASA Astrophysics Data System (ADS)
Al-Jeffery, Mohammad O.; Telle, Helmut H.
2002-05-01
Tests that can quickly and efficiently detect traces of illegal performance enhancing drugs are becoming essential. Certain performance enhancing drugs lead to an increase in the count of red blood cells. The proportion of blood made up of red cells is normally around 42 percent. At least 90 percent of Rubidium measured in whole blood is located in the red blood cells. If Rubidium Chloride (RbCl) is given to an athlete around 30 minutes before competing and a sample of their blood (a drop on a filter) was subsequently tested for Rubidium content, the test will give a direct indication of the red blood cell count. In this contribution, we describe an efficient and fast test based on spectroscopic techniques that can be used to detect trace levels of Rubidium. Our experiments employed Rubidium nitride (RbNO3) and trace levels down to 0.3 percent were successfully detected.
Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells.
Rahman, Atikur; Ashraf, Ahsan; Xin, Huolin; Tong, Xiao; Sutter, Peter; Eisaman, Matthew D; Black, Charles T
2015-01-21
Materials providing broadband light antireflection have applications as highly transparent window coatings, military camouflage, and coatings for efficiently coupling light into solar cells and out of light-emitting diodes. In this work, densely packed silicon nanotextures with feature sizes smaller than 50 nm enhance the broadband antireflection compared with that predicted by their geometry alone. A significant fraction of the nanotexture volume comprises a surface layer whose optical properties differ substantially from those of the bulk, providing the key to improved performance. The nanotexture reflectivity is quantitatively well-modelled after accounting for both its profile and changes in refractive index at the surface. We employ block copolymer self-assembly for precise and tunable nanotexture design in the range of ~10-70 nm across macroscopic solar cell areas. Implementing this efficient antireflection approach in crystalline silicon solar cells significantly betters the performance gain compared with an optimized, planar antireflection coating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, TN; Park, AHA; Bantat, S
The limited permeability of the E. coli outer membrane can significantly hinder whole-cell biocatalyst performance. In this study, the SARS coronavirus small envelope protein (SCVE) was expressed in E. coli cells previously engineered for periplasmic expression of carbonic anhydrase (CA) activity. This maneuver increased small molecule uptake by the cells, resulting in increased apparent CA activity of the biocatalysts. The enhancements in activity were quantified using methods developed for traditional heterogeneous catalysis. The expression of the SCVE protein was found to significantly reduce the Thiele moduli (phi), as well as increase the effectiveness factors (eta), effective diffusivities (D-e), and permeabilitiesmore » (P) of the biocatalysts. These catalytic improvements translated into superior performance of the biocatalysts for the precipitation of calcium carbonate from solution which is an attractive strategy for long-term sequestration of captured carbon dioxide. Overall, these results demonstrate that synthetic biology approaches can be used to enhance heterogeneous catalysts incorporated into microbial whole-cell scaffolds.« less
FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED GENOTOXICITY IN MICE
Folate deficiency increases background levels of DNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary folate deficiency on arsenic induction of micronuclei (MN) in peripheral blood cells. Male C5...
Enhanced light absorption of solar cells and photodetectors by diffraction
Zaidi, Saleem H.; Gee, James M.
2005-02-22
Enhanced light absorption of solar cells and photodetectors by diffraction is described. Triangular, rectangular, and blazed subwavelength periodic structures are shown to improve performance of solar cells. Surface reflection can be tailored for either broadband, or narrow-band spectral absorption. Enhanced absorption is achieved by efficient optical coupling into obliquely propagating transmitted diffraction orders. Subwavelength one-dimensional structures are designed for polarization-dependent, wavelength-selective absorption in solar cells and photodetectors, while two-dimensional structures are designed for polarization-independent, wavelength-selective absorption therein. Suitable one and two-dimensional subwavelength periodic structures can also be designed for broadband spectral absorption in solar cells and photodetectors. If reactive ion etching (RIE) processes are used to form the grating, RIE-induced surface damage in subwavelength structures can be repaired by forming junctions using ion implantation methods. RIE-induced surface damage can also be removed by post RIE wet-chemical etching treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yan-Zhen; Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029; Ding, Haiyang
2014-07-01
Highlights: • The effect of I amount on the photovoltaic performance was investigated. • The enhancement in η of ZnO:I DSSCs was from 38% to 77% compared with ZnO DSSCs. • Appropriate I doping enhanced light harness and inhibited charge recombination. - Abstract: We prepare a series of iodine doped zinc oxide monodisperse aggregates (ZnO:I) with various iodine concentrations as the photoanodes of dye-sensitized solar cells (DSSCs) to study iodine dopant amount-dependent photovoltaic performance. The iodine-doped DSSCs achieve overall conversion efficiency (η) of 3.6–4.6%. The enhancement in η of ZnO:I DSSCs is from 38% to 77% as compared to undopedmore » ZnO DSSCs. The significantly enhanced η of DSSCs is found to be correlated with iodine dopant amount. The optimum iodine dopant amount is determined to be 2.3 wt% by X-ray photoelectron spectroscopy. Furthermore, the incident photon to current conversion efficiency and electrochemical impedance spectroscopy data reveal a systematic correlation between photovoltaic properties and the iodine dopant amount. The enhancement of open-circuit potential of ZnO:I cells is arising from negative shift of their flat-band potential, as demonstrated by Mott–Schottky measurement.« less
Surface plasmon enhanced cell microscopy with blocked random spatial activation
NASA Astrophysics Data System (ADS)
Son, Taehwang; Oh, Youngjin; Lee, Wonju; Yang, Heejin; Kim, Donghyun
2016-03-01
We present surface plasmon enhanced fluorescence microscopy with random spatial sampling using patterned block of silver nanoislands. Rigorous coupled wave analysis was performed to confirm near-field localization on nanoislands. Random nanoislands were fabricated in silver by temperature annealing. By analyzing random near-field distribution, average size of localized fields was found to be on the order of 135 nm. Randomly localized near-fields were used to spatially sample F-actin of J774 cells (mouse macrophage cell-line). Image deconvolution algorithm based on linear imaging theory was established for stochastic estimation of fluorescent molecular distribution. The alignment between near-field distribution and raw image was performed by the patterned block. The achieved resolution is dependent upon factors including the size of localized fields and estimated to be 100-150 nm.
NASA Astrophysics Data System (ADS)
Youcef, Kerkoub; Ahmed, Benzaoui; Ziari, Yasmina; Fadila, Haddad
2017-02-01
A three dimensional computational fluid dynamics model is proposed in this paper to investigate the effect of flow field design and dimensions of bipolar plates on performance of serpentine proton exchange membrane fuel cell (PEMFC). A complete fuel cell of 25 cm2 with 25 channels have been used. The aim of the work is to investigate the effect of flow channels and ribs scales on overall performance of PEM fuel cell. Therefore, geometric aspect ratio parameter defined as (width of flow channel/width of rib) is used. Influences of the ribs and openings current collector scales have been studied and analyzed in order to find the optimum ratio between them to enhance the production of courant density of PEM fuel cell. Six kind of serpentine designs have been used in this paper included different aspect ratio varying from 0.25 to 2.33 while the active surface area and number of channels are keeping constant. Aspect ratio 0.25 corresponding of (0.4 mm channel width/ 1.6mm ribs width), and Aspect ratio2.33 corresponding of (0.6 mm channel width/ 1.4mm ribs width. The results show that the best flow field designs (giving the maximum density of current) are which there dimensions of channels width is minimal and ribs width is maximal (Γ≈0.25). Also decreasing width of channels enhance the pressure drop inside the PEM fuel cell, this causes an increase of gazes velocity and enhance convection process, therefore more power generation.
Hybrid micro-scale photovoltaics for enhanced energy conversion across all irradiation conditions
NASA Astrophysics Data System (ADS)
Agrawal, Gautam
A novel hybrid photovoltaics (HPV) architecture is presented that integrates high-performance micro-optics-based concentrator photovoltaics (CPV) array technology with a 1-sun photovoltaic (PV) cell within a low-profile panel structure. The approach simultaneously captures the direct solar radiation components with arrayed high-efficiency CPV cells and the diffuse solar components with an underlying wide-area PV cell. Performance analyses predict that the hybrid approach will significantly enhance the average energy produced per unit area for the full range of diffuse/direct radiation patterns across the USA. Furthermore, cost analyses indicate that the hybrid concept may be financially attractive for a wide range of locations. Indoor and outdoor experimental evaluation of a micro-optical system designed for use in a hybrid architecture verified that a large proportion of the direct radiation component was concentrated onto emulated micro-cell regions while most of the diffuse radiation and the remaining direct radiation was collected in the 1-sun cell area.
Schmohl, Joerg U.; Felices, Martin; Todhunter, Deborah; Taras, Elizabeth; Miller, Jeffrey S.; Vallera, Daniel A.
2016-01-01
Background The design of a highly effective anti-cancer immune-engager would include targeting of highly drug refractory cancer stem cells (CSC). The design would promote effective antibody-dependent cell-mediated cytotoxicity (ADCC) and simultaneously promote costimulation to expand and self-sustain the effector NK cell population. Based on our bispecific NK cell engager platform we constructed a tetraspecific killer engager (TetraKE) comprising single-chain variable fragments (scFvs) binding FcγRIII (CD16) on NK cells, EpCAM on carcinoma cells and CD133 on cancer stem cells in order to promote ADCC. Furthermore, an Interleukin (IL)-15-crosslinker enhanced NK cell related proliferation resulting in a highly active drug termed 1615EpCAM133. Results Proliferation assays showed TetraKE promoted proliferation and enhanced NK cell survival. Drug-target binding, NK cell related degranulation, and IFN-γ production was specific for both tumor related antigens in EpCAM and CD133 bearing cancer cell lines. The TetraKE showed higher killing activity and superior dose dependent degranulation. Cytokine profiling showed a moderately enhanced IFN-γ production, enhanced GM-CSF production, but no evidence of induction of excessive cytokine release. Methods Assembly and synthesis of hybrid genes encoding the TetraKE were performed using DNA shuffling and ligation. The TetraKE was tested for efficacy, specificity, proliferation, survival, and cytokine production using carcinoma cell lines and functional assays measuring NK cell activity. Conclusion 1615EpCAM133 combines improved induction of ADCC with enhanced proliferation, limited cytokine response, and prolonged survival and proliferation of NK cells. By linking scFv-related targeting of carcinoma and CSCs with a sustaining IL-15 signal, our new construct shows great promise to target cancer and CSCs. PMID:27650544
Identification of siRNA delivery enhancers by a chemical library screen.
Gilleron, Jerome; Paramasivam, Prasath; Zeigerer, Anja; Querbes, William; Marsico, Giovanni; Andree, Cordula; Seifert, Sarah; Amaya, Pablo; Stöter, Martin; Koteliansky, Victor; Waldmann, Herbert; Fitzgerald, Kevin; Kalaidzidis, Yannis; Akinc, Akin; Maier, Martin A; Manoharan, Muthiah; Bickle, Marc; Zerial, Marino
2015-09-18
Most delivery systems for small interfering RNA therapeutics depend on endocytosis and release from endo-lysosomal compartments. One approach to improve delivery is to identify small molecules enhancing these steps. It is unclear to what extent such enhancers can be universally applied to different delivery systems and cell types. Here, we performed a compound library screen on two well-established siRNA delivery systems, lipid nanoparticles and cholesterol conjugated-siRNAs. We identified fifty-one enhancers improving gene silencing 2-5 fold. Strikingly, most enhancers displayed specificity for one delivery system only. By a combination of quantitative fluorescence and electron microscopy we found that the enhancers substantially differed in their mechanism of action, increasing either endocytic uptake or release of siRNAs from endosomes. Furthermore, they acted either on the delivery system itself or the cell, by modulating the endocytic system via distinct mechanisms. Interestingly, several compounds displayed activity on different cell types. As proof of principle, we showed that one compound enhanced siRNA delivery in primary endothelial cells in vitro and in the endocardium in the mouse heart. This study suggests that a pharmacological approach can improve the delivery of siRNAs in a system-specific fashion, by exploiting distinct mechanisms and acting upon multiple cell types. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Klatka, Janusz; Grywalska, Ewelina; Hymos, Anna; Guz, Małgorzata; Polberg, Krzysztof; Roliński, Jacek; Stepulak, Andrzej
2017-08-01
The aim of this study was to analyze whether inhibition of cyclooxygenase-2 by celecoxib and the subsequent enhancement in the proliferation of natural killer T (NKT) cells could play a role in dendritic cell (DC)-based laryngeal cancer (LC) immunotherapy. Peripheral blood mononuclear cells were obtained from 48 male patients diagnosed with LC and 30 control patients without cancer disease. Neoplastic cell lysate preparations were made from cancer tissues obtained after surgery and used for in vitro DCs generation. NKT cells proliferation assay was performed based on 3 H-thymidine incorporation assay. An increased proliferation of NKT cells was obtained from control patients compared to NKT cells obtained from LC patients regardless of the type of stimulation or treatment. In the patient group diagnosed with LC, COX-2 inhibition resulted in a significantly enhanced proliferation of NKT cells when stimulated with autologous DCs than NKT cells stimulated with DCs without COX-2 inhibition. These correlations were not present in the control group. Higher proliferation rate of NKT cells was also observed in non-metastatic and highly differentiated LC, which was independent of the type of stimulation or treatment. COX-2 inhibition could be regarded as immunotherapy-enhancing tool in patients with LC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
NASA Astrophysics Data System (ADS)
Magdi, Sara; Swillam, Mohamed A.
2017-02-01
The efficiencies of thin film amorphous silicon (a-Si) solar cells are restricted by the small thickness required for efficient carrier collection. This thickness limitations result in poor light absorption. In this work, broadband absorption enhancement is theoretically achieved in a-Si solar cells by using nanostructured back electrode along with surface texturing. The back electrode is formed of Au nanogratings and the surface texturing consists of Si nanocones. The results were then compared to random texturing surfaces. Three dimensional finite difference time domain (FDTD) simulations are used to design and optimize the structure. The Au nanogratings achieved absorption enhancement in the long wavelengths due to sunlight coupling to surface plasmon polaritons (SPP) modes. High absorption enhancement was achieved at short wavelengths due to the decreased reflection and enhanced scattering inside the a-Si absorbing layer. Optimizations have been performed to obtain the optimal geometrical parameters for both the nanogratings and the periodic texturing. In addition, an enhancement factor (i.e. absorbed power in nanostructured device/absorbed power in reference device) was calculated to evaluate the enhancement obtained due to the incorporation of each nanostructure.
NASA Astrophysics Data System (ADS)
Jeong, Heon Jae; Kim, Jun Woo; Jang, Dong Young; Shim, Joon Hyung
2015-09-01
Pt-Ru bi-metallic catalysts are synthesized by atomic layer deposition (ALD) of Ru surface-coating on sputtered Pt mesh. The catalysts are evaluated in direct ethanol solid oxide fuel cells (DESOFCs) in the temperature range of 300-500 °C. Island-growth of the ALD Ru coating is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS) analyses. The performance of the DESOFCs is evaluated based on the current-voltage output and electrochemical impedance spectroscopy. Genuine reduction of the polarization impedance, and enhanced power output with improved surface kinetics are achieved with the optimized ALD Ru surface-coating compared to bare Pt. The chemical composition of the Pt/ALD Ru electrode surface after fuel cell operation is analyzed via XPS. Enhanced cell performance is clearly achieved, attributed to the effective Pt/ALD Ru bi-metallic catalysis, including oxidation of Cdbnd O by Ru, and de-protonation of ethanol and cleavage of C-C bonds by Pt, as supported by surface morphology analysis which confirms formation of a large amount of carbon on bare Pt after the ethanol-fuel-cell test.
NASA Astrophysics Data System (ADS)
Chevalier, S.; Lavielle, N.; Hatton, B. D.; Bazylak, A.
2017-06-01
In this first of a series of two papers, we report an in-depth analysis of the impact of the gas diffusion layer (GDL) structure on the polymer electrolyte membrane (PEM) fuel cell performance through the use of custom GDLs fabricated in-house. Hydrophobic electrospun nanofibrous gas diffusion layers (eGDLs) are fabricated with controlled fibre diameter and alignment. The eGDLs are rendered hydrophobic through direct surface functionalization, and this molecular grafting is achieved in the absence of structural alteration. The fibre diameter, chemical composition, and electrical conductivity of the eGDL are characterized, and the impact of eGDL structure on fuel cell performance is analysed. We observe that the eGDL facilitates higher fuel cell power densities compared to a commercial GDL (Toray TGP-H-60) at highly humidified operating conditions. The ohmic resistance of the fuel cell is found to significantly increase with increasing inter-fiber distance. It is also observed that the addition of a hydrophobic treatment enhances membrane hydration, and fibres perpendicularly aligned to the channel direction may enhance the contact area between the catalyst layer and the GDL.
Zhao, Yong Mei; Golden, Aaron; Mar, Jessica C.; Einstein, Francine H.; Greally, John M.
2014-01-01
The mechanism and significance of epigenetic variability in the same cell type between healthy individuals are not clear. Here, we purify human CD34+ hematopoietic stem and progenitor cells (HSPCs) from different individuals and find that there is increased variability of DNA methylation at loci with properties of promoters and enhancers. The variability is especially enriched at candidate enhancers near genes transitioning between silent and expressed states, and encoding proteins with leukocyte differentiation properties. Our findings of increased variability at loci with intermediate DNA methylation values, at candidate “poised” enhancers, and at genes involved in HSPC lineage commitment suggest that CD34+ cell subtype heterogeneity between individuals is a major mechanism for the variability observed. Epigenomic studies performed on cell populations, even when purified, are testing collections of epigenomes, or meta-epigenomes. Our findings show that meta-epigenomic approaches to data analysis can provide insights into cell subpopulation structure. PMID:25327398
Li, Hao; Tao, Leiming; Huang, Feihong; Sun, Qiang; Zhao, Xiaojuan; Han, Junbo; Shen, Yan; Wang, Mingkui
2017-11-08
Perovskite solar cells have been demonstrated as promising low-cost and highly efficient next-generation solar cells. Enhancing V OC by minimization the interfacial recombination kinetics can further improve device performance. In this work, we for the first time reported on surface passivation of perovskite layers with chemical modified graphene oxides, which act as efficient interlayer to reduce interfacial recombination and enhance hole extraction as well. Our modeling points out that the passivation effect mainly comes from the interaction between functional group (4-fluorophenyl) and under-coordinated Pb ions. The resulting perovskite solar cells achieved high efficient power conversion efficiency of 18.75% with enhanced high open circuit V OC of 1.11 V. Ultrafast spectroscopy, photovoltage/photocurrent transient decay, and electronic impedance spectroscopy characterizations reveal the effective passivation effect and the energy loss mechanism. This work sheds light on the importance of interfacial engineering on the surface of perovskite layers and provides possible ways to improve device efficiency.
Enhancing performing characteristics of organic semiconducting films by improved solution processing
Bazan, Guillermo C; Moses, Daniel; Peet, Jeffrey; Heeger, Alan J
2014-05-13
Improved processing methods for enhanced properties of conjugated polymer films are disclosed, as well as the enhanced conjugated polymer films produced thereby. Addition of low molecular weight alkyl-containing molecules to solutions used to form conjugated polymer films leads to improved photoconductivity and improvements in other electronic properties. The enhanced conjugated polymer films can be used in a variety of electronic devices, such as solar cells and photodiodes.
Zheng, Wei-Chao; Xie, Rui; He, Li-Qun; Xi, Yue-Heng; Liu, Ying-Mei; Meng, Zhi-Jun; Wang, Wei; Ju, Xiao-Jie; Chen, Gang; Chu, Liang-Yin
2015-01-01
A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer. PMID:26339313
Zheng, Wei-Chao; Xie, Rui; He, Li-Qun; Xi, Yue-Heng; Liu, Ying-Mei; Meng, Zhi-Jun; Wang, Wei; Ju, Xiao-Jie; Chen, Gang; Chu, Liang-Yin
2015-07-01
A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer.
Ngwenya, Laura B.; Mazumder, Sarmistha; Porter, Zachary R.; Oswald, Duane J.
2018-01-01
Cognitive deficits after traumatic brain injury (TBI) are debilitating and contribute to the morbidity and loss of productivity of over 10 million people worldwide. Cell transplantation has been linked to enhanced cognitive function after experimental traumatic brain injury, yet the mechanism of recovery is poorly understood. Since the hippocampus is a critical structure for learning and memory, supports adult neurogenesis, and is particularly vulnerable after TBI, we hypothesized that stem cell transplantation after TBI enhances cognitive recovery by modulation of endogenous hippocampal neurogenesis. We performed lateral fluid percussion injury (LFPI) in adult mice and transplanted embryonic stem cell-derived neural progenitor cells (NPC). Our data confirm an injury-induced cognitive deficit in novel object recognition, a hippocampal-dependent learning task, which is reversed one week after NPC transplantation. While LFPI alone promotes hippocampal neurogenesis, as revealed by doublecortin immunolabeling of immature neurons, subsequent NPC transplantation prevents increased neurogenesis and is not associated with morphological maturation of endogenous injury-induced immature neurons. Thus, NPC transplantation enhances cognitive recovery early after LFPI without a concomitant increase in neuron numbers or maturation. PMID:29531536
Schendzielorz, Philipp; Vollmer, Maike; Rak, Kristen; Wiegner, Armin; Nada, Nashwa; Radeloff, Katrin; Hagen, Rudolf; Radeloff, Andreas
2017-10-01
A cochlear implant (CI) is an electronic prosthesis that can partially restore speech perception capabilities. Optimum information transfer from the cochlea to the central auditory system requires a proper functioning auditory nerve (AN) that is electrically stimulated by the device. In deafness, the lack of neurotrophic support, normally provided by the sensory cells of the inner ear, however, leads to gradual degeneration of auditory neurons with undesirable consequences for CI performance. We evaluated the potential of adipose-derived stromal cells (ASCs) that are known to produce neurotrophic factors to prevent neural degeneration in sensory hearing loss. For this, co-cultures of ASCs with auditory neurons have been studied, and autologous ASC transplantation has been performed in a guinea pig model of gentamicin-induced sensory hearing loss. In vitro ASCs were neuroprotective and considerably increased the neuritogenesis of auditory neurons. In vivo transplantation of ASCs into the scala tympani resulted in an enhanced survival of auditory neurons. Specifically, peripheral AN processes that are assumed to be the optimal activation site for CI stimulation and that are particularly vulnerable to hair cell loss showed a significantly higher survival rate in ASC-treated ears. ASC transplantation into the inner ear may restore neurotrophic support in sensory hearing loss and may help to improve CI performance by enhanced AN survival. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Han, Jianhua; Yin, Xuewen; Nan, Hui; Zhou, Yu; Yao, Zhibo; Li, Jianbao; Oron, Dan; Lin, Hong
2017-08-01
The combination of perovskite solar cells and quantum dot solar cells has significant potential due to the complementary nature of the two constituent materials. In this study, solar cells (SCs) with a hybrid CH 3 NH 3 PbI 3 /SnS quantum dots (QDs) absorber layer are fabricated by a facile and universal in situ crystallization method, enabling easy embedding of the QDs in perovskite layer. Compared with SCs based on CH 3 NH 3 PbI 3 , SCs using CH 3 NH 3 PbI 3 /SnS QDs hybrid films as absorber achieves a 25% enhancement in efficiency, giving rise to an efficiency of 16.8%. The performance improvement can be attributed to the improved crystallinity of the absorber, enhanced photo-induced carriers' separation and transport within the absorber layer, and improved incident light utilization. The generality of the methods used in this work paves a universal pathway for preparing other perovskite/QDs hybrid materials and the synthesis of entire nontoxic perovskite/QDs hybrid structure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishizuka, Toshiaki, E-mail: tishizu@ndmc.ac.jp; Goshima, Hazuki; Ozawa, Ayako
2012-03-30
Highlights: Black-Right-Pointing-Pointer Treatment with angiotensin II enhanced LIF-induced DNA synthesis of mouse iPS cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the DNA synthesis via induction of superoxide. Black-Right-Pointing-Pointer Treatment with angiotensin II significantly increased JAK/STAT3 phosphorylation. Black-Right-Pointing-Pointer Angiotensin II enhanced differentiation into mesodermal progenitor cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the differentiation via activation of p38 MAPK. -- Abstract: Previous studies suggest that angiotensin receptor stimulation may enhance not only proliferation but also differentiation of undifferentiated stem/progenitor cells. Therefore, in the present study, we determined the involvement of the angiotensin receptor in the proliferation and differentiation of mouse induced pluripotent stemmore » (iPS) cells. Stimulation with angiotensin II (Ang II) significantly increased DNA synthesis in mouse iPS cells cultured in a medium with leukemia inhibitory factor (LIF). Pretreatment of the cells with either candesartan (a selective Ang II type 1 receptor [AT{sub 1}R] antagonist) or Tempol (a cell-permeable superoxide scavenger) significantly inhibited Ang II-induced DNA synthesis. Treatment with Ang II significantly increased JAK/STAT3 phosphorylation. Pretreatment with candesartan significantly inhibited Ang II- induced JAK/STAT3 phosphorylation. In contrast, induction of mouse iPS cell differentiation into Flk-1-positive mesodermal progenitor cells was performed in type IV collagen (Col IV)- coated dishes in a differentiation medium without LIF. When Col IV-exposed iPS cells were treated with Ang II for 5 days, the expression of Flk-1 was significantly increased compared with that in the cells treated with the vehicle alone. Pretreatment of the cells with both candesartan and SB203580 (a p38 MAPK inhibitor) significantly inhibited the Ang II- induced increase in Flk-1 expression. Treatment with Ang II enhanced the phosphorylation of p38 MAPK in Col IV- exposed iPS cells. These results suggest that the stimulation of mouse iPS cells with AT{sub 1}R may enhance LIF-induced DNA synthesis, by augmenting the generation of superoxide and activating JAK/STAT3, and that AT{sub 1}R stimulation may enhance Col IV-induced differentiation into mesodermal progenitor cells via p38 MAPK activation.« less
NASA Astrophysics Data System (ADS)
Zhang, Peng; Liu, Jia; Qu, Youpeng; Zhang, Jian; Zhong, Yingjuan; Feng, Yujie
2017-09-01
The biofilm on the anode of a microbial fuel cell (MFC) is a vital component in system, and its formation and characteristic determines the performance of the system. In this study, a bacteria/Multi-Walled Carbon Nanotube (MWCNT) hybrid biofilm is fabricated by effectively inserting the MWCNTs into the anode biofilm via an adsorption-filtration method. This hybrid biofilm has been demonstrated to be an efficient structure for improving an anode biofilm performance. Electrochemical impedance spectroscopy (EIS) results show that the hybrid biofilm takes advantage of the conductivity and structure of MWCNT to enhance the electron transfer and substrate diffusion of the biofilm. With this hybrid biofilm, the current density, power density and coulombic efficiency are increased by 46.2%, 58.8% and 84.6%, respectively, relative to naturally grown biofilm. Furthermore, the start-up time is reduced by 53.8% compared with naturally grown biofilm. The perturbation test demonstrates that this type of hybrid biofilm exhibits strong adsorption ability and enhances the biofilm's resistance to a sudden change of substrate concentration. The superior performance of the hybrid biofilm with MWCNT ;nanowire; matrix compared with naturally grown biofilm demonstrates its great potential for boosting the performance of MFCs.
ENHANCED REMEDIATION DEMONSTRATIONS AT HILL AFB: INTRODUCTION
Nine enhanced aquifer remediation technologies were demonstrated side-by-side at a Hill Air Force Base Chemical Disposal Pit/Fire Training Area site. The demonstrations were performed inside 3 x 5 m cells isolated from the surrounding shallow aquifer by steel piling. The site w...
Enhancement of Y123 dye-sensitized solar cell performance using plasmonic gold nanorods.
Chandrasekhar, P S; Parashar, Piyush K; Swami, Sanjay Kumar; Dutta, Viresh; Komarala, Vamsi K
2018-04-04
The role of the surface plasmon resonance (SPR) of gold nanorods (Au NRs) on the performance of Y123 dye-sensitized solar cells (DSSC) was investigated. DSSCs were fabricated by incorporating different concentrations (0.6 to 3.0 wt%) of Au NRs into TiO2 photoanodes. With an increase in the concentration of the Au NRs, the light absorption by the Y123 dye loaded photoanodes enhanced linearly, but the charge extraction was susceptible to the concentration of the Au NRs. With optimized concentrations (∼1.8 wt%) of the Au NRs, the photocurrent of the DSSC enhanced from 12.45 to 15.74 mA cm-2, and the power conversion efficiency (PCE) improved from 5.31 to 8.86%. The DSSC performance was also verified using Au nanoparticles (the PCE was enhanced from 5.31 to 7.72%) for comparison with the Au NR DSSC performance, which demonstrated the advantage of the Au NRs' shape effect with longitudinal SPR due to the modified light interaction. To explain the experimental observations of the plasmonic DSSC, the Au NRs' extinction efficiency and spatial distribution of the near-fields in complete and porous TiO2 media were also estimated using the finite-element method.
Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Fan, Zeng; An, Jihwan; Iancu, Andrei; Prinz, Fritz B.
2012-11-01
Determining the optimal thickness range of the interlayed yttria-doped ceria (YDC) films promises to further enhance the performance of solid oxide fuel cells (SOFCs) at low operating temperatures. The YDC interlayers are fabricated by the atomic layer deposition (ALD) method with one super cycle of the YDC deposition consisting of 6 ceria deposition cycles and one yttria deposition cycle. YDC films of various numbers of ALD super cycles, ranging from 2 to 35, are interlayered into bulk fuel cells with a 200 um thick yttria-stabilized zirconia (YSZ) electrolyte. Measurements and analysis of the linear sweep voltammetry of these fuel cells reveal that the performance of the given cells is maximized at 10 super cycles. Auger elemental mapping and X-ray photoelectron spectroscopy (XPS) techniques are employed to determine the film completeness, and they verify 10 super cycles of YDC to be the critical thickness point. This optimal YDC interlayer condition (6Ce1Y × 10 super cycles) is applied to the case of micro fuel cells as well, and the average performance enhancement factor is 1.4 at operating temperatures of 400 and 450 °C. A power density of 1.04 W cm-2 at 500 °C is also achieved with the optimal YDC recipe.
2012-05-10
1% peni - cillin/streptomycin, and 50 ng/mL recombinant rat VEGF-C (Promocell, Heidelberg, Germany). The media were changed every other day for 8...various animal models that have demonstrated an enhanced osteogenic effect after treating bone allografts with adipose tissue or bone marrow-derived... enhanced 1560 CORNEJO ET AL. performance of bone allografts using osteogenic differentiated adipose derived mesenchymal stem cells. Biomaterials 32, 8880
High-performance alkaline direct methanol fuel cell using a nitrogen-postdoped anode.
Joghee, Prabhuram; Pylypenko, Svitlana; Wood, Kevin; Bender, Guido; O'Hayre, Ryan
2014-07-01
A commercial PtRu/C catalyst postdoped with nitrogen demonstrates a significantly higher performance (~10-20% improvement) in the anode of an alkaline direct methanol fuel cell than an unmodified commercial PtRu/C catalyst control. The enhanced performance shown herein is attributed at least partially to the increased electrochemical surface area of the PtRu/C after postdoping with nitrogen. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells.
Choi, Hyosung; Lee, Jung-Pil; Ko, Seo-Jin; Jung, Jae-Woo; Park, Hyungmin; Yoo, Seungmin; Park, Okji; Jeong, Jong-Ryul; Park, Soojin; Kim, Jin Young
2013-05-08
We demonstrate high-performance polymer solar cells using the plasmonic effect of multipositional silica-coated silver nanoparticles. The location of the nanoparticles is critical for increasing light absorption and scattering via enhanced electric field distribution. The device incorporating nanoparticles between the hole transport layer and the active layer achieves a power conversion efficiency of 8.92% with an external quantum efficiency of 81.5%. These device efficiencies are the highest values reported to date for plasmonic polymer solar cells using metal nanoparticles.
Fuel cell tubes and method of making same
Borglum, Brian P.
1999-11-30
A method of manufacturing porous ceramic tubes for fuel cells with improved properties and higher manufacturing yield is disclosed. The method involves extruding a closed end fuel cell tube, such as an air electrode of a solid oxide fuel cell, in which the closed end also functions as the sintering support. The resultant fuel cell tube has a superior porosity distribution which allows improved diffusion of oxygen at the closed end of the tube during operation of the fuel cell. Because this region has the highest current density, performance enhancement and improved reliability of the fuel cell tube result. Furthermore, the higher manufacturing yield associated with the present method decreases the overall fuel cell cost. A method of manufacturing porous ceramic tubes for fuel cells with improved properties and higher manufacturing yield is disclosed. The method involves extruding a closed end fuel cell tube, such as an air electrode of a solid oxide fuel cell, in which the closed end also functions as the sintering support. The resultant fuel cell tube has a superior porosity distribution which allows improved diffusion of oxygen at the closed end of the tube during operation of the fuel cell. Because this region has the highest current density, performance enhancement and improved reliability of the fuel cell tube result. Furthermore, the higher manufacturing yield associated with the present method decreases the overall fuel cell cost.
Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Shisheng, E-mail: shishenglin@zju.edu.cn; Chen, Hongsheng; State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027
2015-11-09
We report a type of solar cell based on graphene/CdTe Schottky heterostructure, which can be improved by surface engineering as graphene is atomic thin. By coating a layer of ultrathin CdSe quantum dots onto graphene/CdTe heterostructure, the power conversion efficiency is increased from 2.08% to 3.10%. Photo-induced doping is mainly accounted for this enhancement, as evidenced by field effect transport, Raman, photoluminescence, and quantum efficiency measurements. This work demonstrates a feasible way of improving the performance of graphene/semiconductor heterostructure solar cells by combining one dimensional with two dimensional materials.
Yang, Guangming; Zhou, Wei; Liu, Meilin; Shao, Zongping
2016-12-28
The successful development of low-cost, durable electrocatalysts for oxygen reduction reaction (ORR) at intermediate temperatures is critical for broad commercialization of solid oxide fuel cells. Here, we report our findings in design, fabrication, and characterization of a cobalt-free SrFe 0.85 Ti 0.1 Ni 0.05 O 3-δ cathode decorated with NiO nanoparticles. Exsolved from and well bonded to the parent electrode under well-controlled conditions, the NiO nanoparticles uniformly distributed on the surface of the parent electrode greatly enhance cathode performance, demonstrating ORR activity better than that of the benchmark cobalt-based Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ . Further, a process for regeneration of the NiO nanoparticles was also developed to mitigate potential performance degradation due to coarsening of NiO particles under practical operating conditions. As a general approach, this exsolution-dissolution of electrocatalytically active nanoparticles on an electrode surface may be applicable to the development of other high-performance cobalt-free cathodes for fuel cells and other electrochemical systems.
Enhancing Stent Effectiveness with Nanofeatures
Bassous, Nicole; Cooke, John P.; Webster, Thomas J.
2016-01-01
Drug-eluting stents are an effective therapy for symptomatic arterial obstructions, substantially reducing the incidence of restenosis by suppressing the migration and proliferation of vascular smooth muscle cells into the intima. However, current drug-eluting stents also inhibit the growth of endothelial cells, which are required to cover the vascular stent to reduce an excessive inflammatory response. As a result, the endothelial lining of the lumen is not regenerated. Since the loss of this homeostatic monolayer increases the risk of thrombosis, patients with drug-eluting stents require long-term antithrombotic therapy. Thus, there is a need for improved devices with enhanced effectiveness and physiological compatibility towards endothelial cells. Current developments in nanomaterials may enhance the function of commercially available vascular devices. In particular, modified design schemes might incorporate nanopatterns or nanoparticle-eluting features that reduce restenosis and enhance re-endothelialization. The intent of this review is to discuss emerging nanotechnologies that will improve the performance of vascular stents. PMID:27826371
Yagur-Kroll, Sharon; Belkin, Shimshon
2014-01-01
Microbial whole-cell bioreporters are genetically modified microorganisms that produce a quantifiable output in response to the presence of toxic chemicals or other stress factors. These bioreporters harbor a genetic fusion between a sensing element (usually a gene regulatory element responsive to the target) and a reporter element, the product of which may be quantitatively monitored either by its presence or by its activity. In this chapter we review genetic manipulations undertaken in order to improve bioluminescent bioreporter performance by increasing luminescent output, lowering the limit of detection, and shortening the response time. We describe molecular manipulations applied to all aspects of whole-cell bioreporters: the host strain, the expression system, the sensing element, and the reporter element. The molecular construction of whole-cell luminescent bioreporters, harboring fusions of gene promoter elements to reporter genes, has been around for over three decades; in most cases, these two genetic elements are combined "as is." This chapter outlines diverse molecular manipulations for enhancing the performance of such sensors.
Kim, Seong Gon; Theera-Ampornpunt, Nawanol; Fang, Chih-Hao; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali
2016-08-01
Gene expression is mediated by specialized cis-regulatory modules (CRMs), the most prominent of which are called enhancers. Early experiments indicated that enhancers located far from the gene promoters are often responsible for mediating gene transcription. Knowing their properties, regulatory activity, and genomic targets is crucial to the functional understanding of cellular events, ranging from cellular homeostasis to differentiation. Recent genome-wide investigation of epigenomic marks has indicated that enhancer elements could be enriched for certain epigenomic marks, such as, combinatorial patterns of histone modifications. Our efforts in this paper are motivated by these recent advances in epigenomic profiling methods, which have uncovered enhancer-associated chromatin features in different cell types and organisms. Specifically, in this paper, we use recent state-of-the-art Deep Learning methods and develop a deep neural network (DNN)-based architecture, called EP-DNN, to predict the presence and types of enhancers in the human genome. It uses as features, the expression levels of the histone modifications at the peaks of the functional sites as well as in its adjacent regions. We apply EP-DNN to four different cell types: H1, IMR90, HepG2, and HeLa S3. We train EP-DNN using p300 binding sites as enhancers, and TSS and random non-DHS sites as non-enhancers. We perform EP-DNN predictions to quantify the validation rate for different levels of confidence in the predictions and also perform comparisons against two state-of-the-art computational models for enhancer predictions, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy and takes less time to make predictions. Next, we develop methods to make EP-DNN interpretable by computing the importance of each input feature in the classification task. This analysis indicates that the important histone modifications were distinct for different cell types, with some overlaps, e.g., H3K27ac was important in cell type H1 but less so in HeLa S3, while H3K4me1 was relatively important in all four cell types. We finally use the feature importance analysis to reduce the number of input features needed to train the DNN, thus reducing training time, which is often the computational bottleneck in the use of a DNN. In this paper, we developed EP-DNN, which has high accuracy of prediction, with validation rates above 90 % for the operational region of enhancer prediction for all four cell lines that we studied, outperforming DEEP-ENCODE and RFECS. Then, we developed a method to analyze a trained DNN and determine which histone modifications are important, and within that, which features proximal or distal to the enhancer site, are important.
Jiang, Lei; You, Ting; Deng, Wei-Qiao
2013-10-18
In this work Nb-doped anatase TiO2 nanocrystals are used as the photoanode of quantum-dot-sensitized solar cells. A solar cell with CdS/CdSe quantum dots co-sensitized 2.5 mol% Nb-doped anatase TiO2 nanocrystals can achieve a photovoltaic conversion efficiency of 3.3%, which is almost twice as high as the 1.7% obtained by a cell based on undoped TiO2 nanocrystals. The incident photon-to-current conversion efficiency can reach as high as 91%, which is a record for all quantum-dot-sensitized solar cells. Detailed analysis shows that such an enhancement is due to improved lifetime and diffusion length of electrons in the solar cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, Le; Yang, Fan; Xie, Jian
2017-01-01
This work demonstrates that functionalizing annealed-Pt/Ketjen black EC300j (a-Pt/KB) and dealloyed-PtNi/Ketjen black EC300j (d-PtNi/KB) catalysts using p-phenyl sulfonic acid can effectively enhance performance in the membrane electrode assemblies (MEAs) of proton exchange membrane fuel cells (PEMFCs). The functionalization increased the size of both Pt and PtNi catalyst particles and resulted in the further leaching of Ni from the PtNi catalyst while promoting the formation of nanoporous PtNi nanoparticles. The size of the SO3H-Pt/KB and SO3H-PtNi/KB carbon-based aggregates decreased dramatically, leading to the formation of catalyst layers with narrower pore size distributions.MEA tests highlighted the benefits of the surface functionalization, inmore » which the cells with SO3H-Pt/KB and SO3H-PtNi/KB cathode catalysts showed superior high current density performance under reduced RH conditions, in comparison with cells containing annealed Pt/KB (a-Pt/KB) and de-alloyed PtNi/KB (d-PtNi/KB) catalysts. The performance improvement was particularly evident when using reactant gases with low relative humidity, indicating that the hydrophilic functional groups on the carbon improved the water retention in the cathode catalyst layer. These results show a new avenue for enhancing catalyst performance for the next generation of catalytic materials for PEMFCs.« less
NASA Astrophysics Data System (ADS)
Yang, Yao; Zhang, Jingjing; Xia, Fangfang; Zhang, Chunlei; Qian, Qirong; Zhi, Xiao; Yue, Caixia; Sun, Rongjin; Cheng, Shangli; Fang, Shan; Jin, Weilin; Yang, Yuming; Cui, Daxiang
2016-06-01
How to realize targeted photoacoustic imaging, enhanced immunotherapy, and photothermal therapy of gastric cancer has become a great challenge. Herein, we reported for the first time that human cytokine-induced killer cells (CIK) loaded with gold nanorods were used for targeted photoacoustic imaging, enhanced immunotherapy, and photothermal therapy of gastric cancer. Silica-modified gold nanorods were prepared; then incubated with human cytokine-induced killer cells (CIK), resultant human CIK cells loaded with Au nanorods were evaluated for their cytotoxicity, targeted ability of gastric cancer in vitro and in vivo, immunotherapy, and photothermal therapy efficacy. In vitro cell experiment shows that human CIK cells labeled with gold nanorods actively target gastric cancer MGC803 cells, inhibit growth of MGC803 cells by inducing cell apoptosis, and kill MGC803 cells under low power density near-infrared (NIR) laser treatment (808-nm continuous wave laser, 1.5 W/cm2, 3 min). In vivo experiment results showed that human CIK cells labeled with gold nanorods could target actively and image subcutaneous gastric cancer vessels via photoacoustic imaging at 4 h post-injection, could enhance immunotherapy efficacy by up-regulating cytokines such as IL-1, IL-12, IL-2, IL-4, IL-17, and IFN-γ, and kill gastric cancer tissues by photothermal therapy via direct injection into tumor site under near-infrared (NIR) laser irradiation. High-performance human CIK cells labeled with Au nanorods are a good novel theranostic platform to exhibit great potential in applications such as tumor-targeted photoacoustic imaging, enhanced immunotherapy, and photothermal therapy in the near future.
Babincová, M; Kontrisova, K; Durdík, S; Bergemann, C; Sourivong, P
2014-02-01
The effect of trimodality treatment consisting of hyperthermia, cisplatin and radiation was investigated in two non-small lung carcinoma cell lines with different sensitivities to cisplatin. Hyperthermia treatment was performed using heat released via Neél and Brown relaxation of magnetic nanoparticles in an alternating magnetic field. Radiation with dose 1.5 Gy was performed after 15 min electromagnetic hyperthermia and cisplatin treatment. Electromagnetic hyperthermia enhanced cisplatin-induced radiosensitization in both the cisplatin-sensitive H460 (viability 11.2 +/- 1.8 %) and cisplatin-resistant A549 (viability 14.5 +/- 2.3 %) lung carcinoma cell line. Proposed nanotechnology based trimodality cancer treatment may have therefore important clinical applications.
NASA Astrophysics Data System (ADS)
Hilali, Mohamed M.
2005-11-01
A simple cost-effective approach was proposed and successfully employed to fabricate high-quality screen-printed (SP) contacts to high sheet-resistance emitters (100 O/sq) to improve the Si solar cell efficiency. Device modeling was used to quantify the performance enhancement possible from the high sheet-resistance emitter for various cell designs. It was found that for performance enhancement from the high sheet-resistance emitter, certain cell design criteria must be satisfied. Model calculations showed that in order to achieve any performance enhancement over the conventional ˜40 O/sq emitter, the high sheet resistance emitter solar cell must have a reasonably good (<120,000 cm/s) or low front-surface recombination velocity (FSRV). Model calculations were also performed to establish requirements for high fill factors (FFs). The results showed that the series resistance should be less than 0.8 O-cm2, the shunt resistance should be greater than 1000 O-cm2, and the junction leakage current should be less than 25 nA/cm2. Analytical microscopy and surface analysis techniques were used to study the Ag-Si contact interface of different SP Ag pastes. Physical and electrical properties of SP Ag thick-film contacts were studied and correlated to understand and achieve good-quality ohmic contacts to high sheet-resistance emitters for solar cells. This information was then used to define the criteria for high-quality screen-printed contacts. The role of paste constituents and firing scheme on contact quality were investigated to tailor the high-quality screen-printed contact interface structure that results in high performance solar cells. Results indicated that small particle size, high glass transition temperature, rapid firing and less aggressive glass frit help in producing high-quality contacts. Based on these results high-quality SP contacts with high FFs > 0.78 on high sheet-resistance emitters were achieved for the first time using a simple single-step firing process. This technology was applied to different substrates (monocrystalline and multicrystalline) and surfaces (textured and planar). Cell efficiencies of ˜16.2% on low-cost EFG ribbon substrates were achieved on high sheet-resistance emitters with SP contacts. A record high-efficiency SP solar cell of 19% with textured high sheet-resistance emitter was also fabricated and modeled.
View from ... JSAP Spring meeting 2014: Strive for efficiency
NASA Astrophysics Data System (ADS)
Horiuchi, Noriaki
2014-06-01
A high energy conversion efficiency and a low fabrication cost are required to make the widespread implementation of solar cells attractive. Researchers are striving to enhance cell performance by developing heterojunction techniques, introducing photonic-crystal structures and proposing new device designs.
Rapid prototype fabrication processes for high-performance thrust cells
NASA Technical Reports Server (NTRS)
Hunt, K.; Chwiedor, T.; Diab, J.; Williams, R.
1994-01-01
The Thrust Cell Technologies Program (Air Force Phillips Laboratory Contract No. F04611-92-C-0050) is currently being performed by Rocketdyne to demonstrate advanced materials and fabrication technologies which can be utilized to produce low-cost, high-performance thrust cells for launch and space transportation rocket engines. Under Phase 2 of the Thrust Cell Technologies Program (TCTP), rapid prototyping and investment casting techniques are being employed to fabricate a 12,000-lbf thrust class combustion chamber for delivery and hot-fire testing at Phillips Lab. The integrated process of investment casting directly from rapid prototype patterns dramatically reduces design-to-delivery cycle time, and greatly enhances design flexibility over conventionally processed cast or machined parts.
Zhu, Laipan; Wang, Longfei; Xue, Fei; Chen, Libo; Fu, Jianqiang; Feng, Xiaolong; Li, Tianfeng
2016-01-01
The piezo‐phototronic effect is about the enhanced separation, transport, and recombination of the photogenerated carriers using the piezoelectric polarization charges present in piezoelectric‐semiconductor materials. Here, it is presented that the piezo‐phototronic effect can be effectively applied to improve the relative conversion efficiency of a flexible solar cell based on n‐ZnO/p‐SnS core–shell nanowire array for 37.3% under a moderate vertical pressure. The performance of the solar cell can be effectively enhanced by a gentle bending of the device, showing its potential for application in curly geometries. This study not only adds further understanding about the concept of increasing solar energy conversion efficiency via piezo‐phototronic effect, but also demonstrates the great potential of piezo‐phototronic effect in the application of large‐scale, flexible, and lightweight nanowire array solar cells. PMID:28105394
Zhu, Laipan; Wang, Longfei; Xue, Fei; Chen, Libo; Fu, Jianqiang; Feng, Xiaolong; Li, Tianfeng; Wang, Zhong Lin
2017-01-01
The piezo-phototronic effect is about the enhanced separation, transport, and recombination of the photogenerated carriers using the piezoelectric polarization charges present in piezoelectric-semiconductor materials. Here, it is presented that the piezo-phototronic effect can be effectively applied to improve the relative conversion efficiency of a flexible solar cell based on n-ZnO/p-SnS core-shell nanowire array for 37.3% under a moderate vertical pressure. The performance of the solar cell can be effectively enhanced by a gentle bending of the device, showing its potential for application in curly geometries. This study not only adds further understanding about the concept of increasing solar energy conversion efficiency via piezo-phototronic effect, but also demonstrates the great potential of piezo-phototronic effect in the application of large-scale, flexible, and lightweight nanowire array solar cells.
NASA Astrophysics Data System (ADS)
Ruankham, Pipat; Wongratanaphisan, Duangmanee; Gardchareon, Atcharawon; Phadungdhitidhada, Surachet; Choopun, Supab; Sagawa, Takashi
2017-07-01
Full coverage of perovskite layer onto ZnO nanorod substrates with less pinholes is crucial for achieving high-efficiency perovskite solar cells. In this work, a two-step sequential deposition method is modified to achieve an appropriate property of perovskite (MAPbI3) film. Surface treatment of perovskite layer and its precursor have been systematically performed and their morphologies have been investigated. By pre-wetting of lead iodide (PbI2) and letting it dry before reacting with methylammonium iodide (MAI) provide better coverage of perovskite film onto ZnO nanorod substrate than one without any treatment. An additional MAI deposition followed with toluene drop-casting technique on the perovskite film is also found to increase the coverage and enhance the transformation of PbI2 to MAPbI3. These lead to longer charge carrier lifetime, resulting in an enhanced power conversion efficiency (PCE) from 1.21% to 3.05%. The modified method could been applied to a complex ZnO nanorods/TiO2 nanoparticles substrate. The enhancement in PCE to 3.41% is observed. These imply that our introduced method provides a simple way to obtain the full coverage and better transformation to MAPbI3 phase for enhancement in performances of perovskite solar cells.
Chetia, Tridip Ranjan; Barpuzary, Dipankar; Qureshi, Mohammad
2014-05-28
A combination of 3-dimensional (3D) hollow mesoporous ZnO microspheres (ZnO HMSP) and vertically grown one-dimensional ZnO nanowires (1D ZnO NWs) on a fluorine doped tin oxide (FTO) coated glass substrate has been investigated as a photoanode for a CdS quantum dot-sensitized solar cell (QSSC). A comparative study of the photovoltaic performance of the solar cell with devices fabricated with pristine ZnO HMSPs and ZnO NWs was carried out. The proposed photovoltaic device exhibits an enhancement in power conversion efficiency (PCE) upto ∼74% and ∼35%, as compared to the 1D ZnO NW and ZnO HMSP based solar cells. The maximum incident photon-to-current conversion efficiency (IPCE) for the solar cell was observed to be ∼40%, whereas for the devices fabricated with bare ZnO HMSP and ZnO NW the IPCE were only ∼32% and ∼19%, respectively. The enhanced photovoltaic performance of the solar cell is attributed to the high Brunauer-Emmett-Teller (BET) surface area, efficient light-scattering effects and facilitated diffusion of the electrolyte for better functioning of the redox couple (S(2-)/Sn(2-)) in the hybrid photoanode. Moreover, a faster electron transport through 1D ZnO NWs provides better charge collection from the photoactive layer, which leads to an increase in the short circuit current density of the device. The present study highlights the design and development of a new hybrid photoanode for solar harvesting.
Cabillic, F; Bouet-Toussaint, F; Toutirais, O; Rioux-Leclercq, N; Fergelot, P; de la Pintière, C Thomas; Genetet, N; Patard, J-J; Catros-Quemener, V
2006-12-01
Anti-tumour T cell response requires antigen presentation via efficient immunological synapse between antigen presenting cells, e.g. dendritic cells (DC), and specific T cells in an adapted Th1 cytokine context. Nine renal cell carcinoma (RCC) primary culture cells were used as sources of tumour antigens which were loaded on DC (DC-Tu) for autologous T cell activation assays. Cytotoxic activity of lymphocytes stimulated with DC-Tu was evaluated against autologous tumour cells. Assays were performed with 75 grays irradiated tumour cells (Tu irr) and with hydrogen peroxide +/- heat shock (Tu H(2)O(2) +/- HS) treated cells. DC-Tu irr failed to enhance cytotoxic activity of autologous lymphocytes in seven of 13 assays. In all these defective assays, irradiated tumour cells displayed high interleukin (IL)-6 and vascular endothelial growth factor (VEGF) release. Conversely, when tumour cells released low IL-6 levels (n = 4), DC-Tu irr efficiently enhanced CTL activity. When assays were performed with the same RCC cells treated with H(2)O(2) + HS, DC-Tu stimulation resulted in improved CTL activity. H(2)O(2) + HS treatment induced post-apoptotic cell necrosis of tumour cells, totally abrogated their cytokine release [IL-6, VEGF, transforming growth factor (TGF)-beta1] and induced HSP70 expression. Taken together, data show that reduction in IL-6 and VEGF release in the environment of the tumour concomitantly to tumour cell HSP expression favours induction of a stronger anti-tumour CTL response.
Progress in piezo-phototronic effect modulated photovoltaics.
Que, Miaoling; Zhou, Ranran; Wang, Xiandi; Yuan, Zuqing; Hu, Guofeng; Pan, Caofeng
2016-11-02
Wurtzite structured materials, like ZnO, GaN, CdS, and InN, simultaneously possess semiconductor and piezoelectric properties. The inner-crystal piezopotential induced by external strain can effectively tune/control the carrier generation, transport and separation/combination processes at the metal-semiconductor contact or p-n junction, which is called the piezo-phototronic effect. This effect can efficiently enhance the performance of photovoltaic devices based on piezoelectric semiconductor materials by utilizing the piezo-polarization charges at the junction induced by straining, which can modulate the energy band of the piezoelectric material and then accelerate or prevent the separation process of the photon-generated electrons and vacancies. This paper introduces the fundamental physics principles of the piezo-phototronic effect, and reviews recent progress in piezo-phototronic effect enhanced solar cells, including solar cells based on semiconductor nanowire, organic/inorganic materials, quantum dots, and perovskite. The piezo-phototronic effect is suggested as a suitable basis for the development of an innovative method to enhance the performance of solar cells based on piezoelectric semiconductors by applied extrinsic strains, which might be appropriate for fundamental research and potential applications in various areas of optoelectronics.
Yuan, Yong; Shin, Hyosul; Kang, Chan; Kim, Sunghyun
2016-04-01
An osmium redox polymer, PAA-PVI-[Os(4,4'-dimethyl-2,2'-bipyridine)2Cl]+/2+ that has been used in enzymatic fuel cells and microbial sensors, was applied for the first time to the anode of single-chamber microbial fuel cells with the mixed culture inoculum aiming at enhancing performance. Functioning as a molecular wire connecting the biofilm to the anode, power density increased from 1479 mW m(-2) without modification to 2355 mW m(-2) after modification of the anode. Evidence from cyclic voltammetry showed that the catalytic activity of an anodic biofilm was greatly enhanced in the presence of an osmium redox polymer, indicating that electrons were more efficiently transferred to the anode via co-immobilized osmium complex tethered to wiring polymer chains at the potential range of -0.3 V-+0.1 V (vs. SCE). The optimum amount of the redox polymer was determined to be 0.163 mg cm(-2). Copyright © 2015 Elsevier B.V. All rights reserved.
Progress in piezo-phototronic effect modulated photovoltaics
NASA Astrophysics Data System (ADS)
Que, Miaoling; Zhou, Ranran; Wang, Xiandi; Yuan, Zuqing; Hu, Guofeng; Pan, Caofeng
2016-11-01
Wurtzite structured materials, like ZnO, GaN, CdS, and InN, simultaneously possess semiconductor and piezoelectric properties. The inner-crystal piezopotential induced by external strain can effectively tune/control the carrier generation, transport and separation/combination processes at the metal-semiconductor contact or p-n junction, which is called the piezo-phototronic effect. This effect can efficiently enhance the performance of photovoltaic devices based on piezoelectric semiconductor materials by utilizing the piezo-polarization charges at the junction induced by straining, which can modulate the energy band of the piezoelectric material and then accelerate or prevent the separation process of the photon-generated electrons and vacancies. This paper introduces the fundamental physics principles of the piezo-phototronic effect, and reviews recent progress in piezo-phototronic effect enhanced solar cells, including solar cells based on semiconductor nanowire, organic/inorganic materials, quantum dots, and perovskite. The piezo-phototronic effect is suggested as a suitable basis for the development of an innovative method to enhance the performance of solar cells based on piezoelectric semiconductors by applied extrinsic strains, which might be appropriate for fundamental research and potential applications in various areas of optoelectronics.
Fetal programming in meat production.
Du, Min; Wang, Bo; Fu, Xing; Yang, Qiyuan; Zhu, Mei-Jun
2015-11-01
Nutrient fluctuations during the fetal stage affects fetal development, which has long-term impacts on the production efficiency and quality of meat. During the early development, a pool of mesenchymal progenitor cells proliferate and then diverge into either myogenic or adipogenic/fibrogenic lineages. Myogenic progenitor cells further develop into muscle fibers and satellite cells, while adipogenic/fibrogenic lineage cells develop into adipocytes, fibroblasts and resident fibro-adipogenic progenitor cells. Enhancing the proliferation and myogenic commitment of progenitor cells during fetal development enhances muscle growth and lean production in offspring. On the other hand, promoting the adipogenic differentiation of adipogenic/fibrogenic progenitor cells inside the muscle increases intramuscular adipocytes and reduces connective tissue, which improves meat marbling and tenderness. Available studies in mammalian livestock, including cattle, sheep and pigs, clearly show the link between maternal nutrition and the quantity and quality of meat production. Similarly, chicken muscle fibers develop before hatching and, thus, egg and yolk sizes and hatching temperature affect long-term growth performance and meat production of chicken. On the contrary, because fishes are able to generate new muscle fibers lifelong, the impact of early nutrition on fish growth performance is expected to be minor, which requires further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells
Sun, Zhenhua; Sitbon, Gary; Pons, Thomas; Bakulin, Artem A.; Chen, Zhuoying
2015-01-01
Energy loss due to carrier recombination is among the major factors limiting the performance of TiO2/PbS colloidal quantum dot (QD) heterojunction solar cells. In this work, enhanced photocurrent is achieved by incorporating another type of hole-transporting QDs, Zn-doped CuInS2 (Zn-CIS) QDs into the PbS QD matrix. Binary QD solar cells exhibit a reduced charge recombination associated with the spatial charge separation between these two types of QDs. A ~30% increase in short-circuit current density and a ~20% increase in power conversion efficiency are observed in binary QD solar cells compared to cells built from PbS QDs only. In agreement with the charge transfer process identified through ultrafast pump/probe spectroscopy between these two QD components, transient photovoltage characteristics of single-component and binary QDs solar cells reveal longer carrier recombination time constants associated with the incorporation of Zn-CIS QDs. This work presents a straightforward, solution-processed method based on the incorporation of another QDs in the PbS QD matrix to control the carrier dynamics in colloidal QD materials and enhance solar cell performance. PMID:26024021
NASA Astrophysics Data System (ADS)
Abouzari-lotf, Ebrahim; Jacob, Mohan V.; Ghassemi, Hossein; Ahmad, Arshad; Nasef, Mohamed Mahmoud; Zakeri, Masoumeh; Mehdipour-Ataei, Shahram
2016-09-01
Polyoxometalate immobilized nanofiber was used to fabricate low gas permeable layer for composite membranes designed for proton exchange membrane fuel cell (PEMFC) operating at low relative humidity (RH). The composite membranes revealed enhanced proton conductivity in dry conditions compared with state-of-the-art pristine membrane (Nafion 112, N112). This was coupled with a low fuel crossover inheriting the composite membranes about 100 mV higher OCV than N112 when tested in PEMFC at 60 °C and 40% RH. A maximum power density of up to 930 mW cm-2 was also achieved which is substantially higher than the N112 under similar conditions (577 mW cm-2). Such remarkable performance enhancement along with undetectable leaching of immobilized polyoxometalate, high dimensional stability and low water uptake of the composite membranes suggest a strong potential for PEMFC under low RH operation.
NASA Astrophysics Data System (ADS)
Mashkour, Mehrdad; Rahimnejad, Mostafa; Mashkour, Mahdi
2016-09-01
Microbial fuel cells (MFCs) are one of the possible renewable energy supplies which microorganisms play an active role in bio-oxidize reactions of a substrate such as glucose. Electrode materials and surface modifications are highly effective tools in enhancing MFCs' Performance. In this study, new composite anodes are fabricated. Bacterial cellulose (BC) is used as continuous phase and polyaniline (PANI) as dispersed one which is synthesized by in situ chemical oxidative polymerization on BC's fibers. With hydrogel nature of BC as a novel feature and polyaniline conductivity there meet the favorable conditions to obtain an active microbial biofilm on anode surface. Maximum power density of 117.76 mW/m2 in current density of 617 mA/m2 is achieved for BC/PANI anode. The amounts demonstrate a considerable enhancement compared with graphite plate (1 mW/m2 and 10 mA/m2).
Xiao, W; Wang, J N; Wang, J W; Huang, G J; Cheng, L; Jiang, L J; Wang, L G
2016-04-28
The quaternary compound semiconductor Cu2ZnSnS4 (CZTS) is a promising photovoltaic absorber material for thin-film solar cell applications. Density-functional theory calculations have been performed to investigate the structural and electronic properties of the CdS/CZTS heterointerfaces in CZTS-based cells. We find that CdS favors epitaxial growth on the Cu-Zn plane of CZTS along the direction of [100], which can eliminate the effects of the wrong bonds at the interfaces and enhance the energetic barrier for charge carrier recombination across the interfaces with an increased band gap. The band alignment is calculated for the epitaxial CZTS/CdS heterointerface by employing the HSE06 functional and the results show a type-II band alignment with VBO and CBO values of 0.95 eV and -0.05 eV, respectively. Also, the experimental phenomenon of Zn segregation at CdS/CZTS interfaces is corroborated. Zn segregation can enhance the stability of the heterointerfaces, but damage the solar cell performance by decreasing the band gap when the Zn concentration is sufficiently high. We show that besides the defects and undesired phases in CZTS, the heterointerfaces between the absorption layers (CZTS) and the buffer layer (CdS) can also be an important factor that affects the performance of CZTS cells. The present work provides a theoretical base for engineering the heterointerfaces and achieving better performance of CZTS-based solar cells.
Tunable plasmon-enhanced broadband light harvesting for perovskite solar cells
NASA Astrophysics Data System (ADS)
Que, Meidan; Zhu, Liangliang; Yang, Yawei; Liu, Jie; Chen, Peng; Chen, Wei; Yin, Xingtian; Que, Wenxiu
2018-04-01
In this work, we report a reliable method for synthesizing (Au, Au/Ag core)/(TiO2 shell) nanostructures with their plasmonic wavelengths covering the visible light region for perovskite solar cells. The mono- and bi-metallic core-shell nanoparticles exhibit tunable localized surface plasmon resonance wavelength and function as "light tentacle" to improve the photo-electricity conversion efficiency. Plasmonic nanoparticles with different sizes and shapes, different thicknesses of TiO2 shell and Ag interlayer are found to have a strong influence on the localized surface plasmon resonance enhancement effect. The experimental photovoltaic performance of perovskite solar cells is significantly enhanced when the plasmonic nanoparticles are embedded inmesoporous TiO2 scaffolds. A champion photo-electricity conversion efficiency of 17.85% is achieved with nanoparticles (Au/Ag, λLSPR = 650 nm), giving a 18.7% enhancement over that of the pristine device (15.04%). Finite-difference time-domain simulations show that nanorod Au in mesoporus TiO2 scaffold induces the most intense electromagnetic coupling, and provides a novel emitter for photon flux in mesoporous perovskite solar cells. These theoretical results are consistent with the corresponding experimental those. Thus, enhancing the incident light intensities around 650 nm will be most favorable to the improvement of the photo-electricity conversion efficiency of perovskite solar cells.
Fu, Yonghong; Zhang, Sen; Wang, Dongjie; Wang, Jing
2018-05-16
Icotinib hydrochloride is a small epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that was developed by Chinese scientists. While clinical trials have revealed its efficacy in the treatment of lung cancer, very little is known about its role in enhancing radiosensitivity. In this study, we investigated the effectiveness of Icotinib in enhancing lung cancer cell radiosensitivity and have detailed its underlying molecular mechanism. The lung cancer cell line H1650 was pretreated with or without Icotinib for 24 hours before radiation, and clonogenic survival assay was performed. Cell apoptosis was also analyzed by flow cytometry, while western blotting was performed to examine the activation of EGFR and its downstream kinases in H1650 cells after Icotinib and radiation treatment. Furthermore, a xenograft animal model was established to evaluate the radiosensitivity of Icotinib in vivo and to confirm its mechanism. Our results demonstrate that pretreatment with Icotinib reduced clonogenic survival after radiation, inhibited EGFR activation, and increased radiation-induced apoptosis in H1650 cells. The phosphorylation of protein kinase B (AKT), extracellular regulated protein kinase 1/2 (ERK1/2), and EGFR was inhibited after Icotinib and radiation combination treatment in vitro and in vivo compared with individual treatments. Combination treatment also affected the expression of the DNA repair protein H2A histone family member X (γ-H2AX). In conclusion, our results reveal that Icotinib enhances radiosensitivity in lung cancers in vitro and in vivo and the mechanism of this may involve blocking the EGFR-AKT and MAPK-ERK pathways and limiting DNA repair. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Unal, Mehmet; Ozer Unal, Durisehvar
2004-01-01
Gene or cell doping is defined by the World Anti-Doping Agency (WADA) as "the non-therapeutic use of genes, genetic elements and/or cells that have the capacity to enhance athletic performance". New research in genetics and genomics will be used not only to diagnose and treat disease, but also to attempt to enhance human performance. In recent years, gene therapy has shown progress and positive results that have highlighted the potential misuse of this technology and the debate of 'gene doping'. Gene therapies developed for the treatment of diseases such as anaemia (the gene for erythropoietin), muscular dystrophy (the gene for insulin-like growth factor-1) and peripheral vascular diseases (the gene for vascular endothelial growth factor) are potential doping methods. With progress in gene technology, many other genes with this potential will be discovered. For this reason, it is important to develop timely legal regulations and to research the field of gene doping in order to develop methods of detection. To protect the health of athletes and to ensure equal competitive conditions, the International Olympic Committee, WADA and International Sports Federations have accepted performance-enhancing substances and methods as being doping, and have forbidden them. Nevertheless, the desire to win causes athletes to misuse these drugs and methods. This paper reviews the current status of gene doping and candidate performance enhancement genes, and also the use of gene therapy in sports medicine and ethics of genetic enhancement. Copyright 2004 Adis Data Information BV
Bian, Yanhong; Yang, Xufei; Liang, Peng; Jiang, Yong; Zhang, Changyong; Huang, Xia
2015-11-15
A new design of membrane capacitive deionization (MCDI) cell was constructed by packing the cell's flow chamber with granular activated carbon (GAC). The GAC packed-MCDI (GAC-MCDI) delivered higher (1.2-2.5 times) desalination rates than the regular MCDI at all test NaCl concentrations (∼ 100-1000 mg/L). The greatest performance enhancement by packed GAC was observed when treating saline water with an initial NaCl concentration of 100 mg/L. Several different GAC materials were tested and they all exhibited similar enhancement effects. Comparatively, packing the MCDI's flow chamber with glass beads (GB; non-conductive) and graphite granules (GG; conductive but with lower specific surface area than GAC) resulted in inferior desalination performance. Electrochemical impedance spectroscopy (EIS) analysis showed that the GAC-MCDI had considerably smaller internal resistance than the regular MCDI (∼ 19.2 ± 1.2 Ω versus ∼ 1222 ± 15 Ω at 100 mg/L NaCl). The packed GAC also decreased the ionic resistance across the flow chamber (∼ 1.49 ± 0.05 Ω versus ∼ 1130 ± 12 Ω at 100 mg/L NaCl). The electric double layer (EDL) formed on the GAC surface was considered to store salt ions during electrosorption, and facilitate the ion transport in the flow chamber because of the higher ion conductivity in the EDLs than in the bulk solution, thereby enhancing the MCDI's desalination rate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microalgal growth enhancement by levoglucosan isolated from the green seaweed Monostroma nitidum
Luyen, Hai Quoc; Cho, Ji-Young; Shin, Hyun-Woung; Park, Nam Gyu
2006-01-01
Microalgal growth was enhanced by the addition of levoglucosan to the culture medium. The growth-enhancing compound levoglucosan was isolated from the green seaweed Monostroma nitidum using water extraction, molecular fractionation, DEAE-cellulose column chromatography, and high-performance liquid chromatography. Yield of the compound from seaweed powder was 5 × 10−3% (w/w). At 10 mM concentration, levoglucosan enhanced cell growth and the specific growth rate of all feed microalgal species tested (Chaetoceros gracilis, Chlorella ellipsoidea, Dunaliella salina, Isochrysis galbana, Nannochloris oculata, Navicula incerta, Pavlova lutheri, Tetraselmis suecica) in most culture media by approximately 150%. Cellular fatty acid profiles and cell size differed marginally between cultures with and without levoglucosan. PMID:19396355
Creatine and Phosphocreatine: A Review of Their Use in Exercise and Sport
Clark, Joseph F.
1997-01-01
Objective: Creatine and phosphocreatine (PCr) are important compounds in the normal energy metabolism of muscle. Recently, it has been shown that dietary creatine (5 to 20 g/day) can increase muscle creatine and PCr, with enhancement in anaerobic exercise performance after two weeks of administration caused by an increase in anaerobic capacity. Data Sources: MEDLINE was searched from 1983 to 1996 using key word “creatine” along with “humans,” “muscle,” “exercise,” and “transport.” Also, APStracts, the American Physiology Society search engine for abstracts, was searched from 1994 to 1996. Data Synthesis: Creatine is transported into the muscle cell by a specific transporter, resulting in increased intracellular creatine and PCr. The PCr is capable of acting as an energy buffer, protecting the adenosine triphosphate (ATP) concentration. Maintaining muscle nucleotides therefore enhances exercise performance and recovery. There have been reports that PCr protects the cells from ischemic damage and decreases the loss of nucleotides by stabilizing cell membranes. Indeed, intravenous PCr (2-4 g/day) has been administered to cyclists, resulting in a faster recovery time between training sessions. Conclusions/Recommendations: It is becoming evident that oral creatine supplementation may yield certain benefits to enhance the athlete's performance during maximal anaerobic exercise and interval training. PMID:16558432
Inverted Silicon Nanopencil Array Solar Cells with Enhanced Contact Structures.
Liang, Xiaoguang; Shu, Lei; Lin, Hao; Fang, Ming; Zhang, Heng; Dong, Guofa; Yip, SenPo; Xiu, Fei; Ho, Johnny C
2016-09-27
Although three-dimensional nanostructured solar cells have attracted extensive research attention due to their superior broadband and omnidirectional light-harvesting properties, majority of them are still suffered from complicated fabrication processes as well as disappointed photovoltaic performances. Here, we employed our newly-developed, low-cost and simple wet anisotropic etching to fabricate hierarchical silicon nanostructured arrays with different solar cell contact design, followed by systematic investigations of their photovoltaic characteristics. Specifically, nano-arrays with the tapered tips (e.g. inverted nanopencils) are found to enable the more conformal top electrode deposition directly onto the nanostructures for better series and shunt conductance, but its insufficient film coverage at the basal plane would still restrict the charge carrier collection. In contrast, the low-platform contact design facilitates a substantial photovoltaic device performance enhancement of ~24%, as compared to the one of conventional top electrode design, due to the shortened current path and improved lateral conductance for the minimized carrier recombination and series resistance. This enhanced contact structure can not only maintain excellent photon-trapping behaviors of nanostructures, but also help to eliminate adverse impacts of these tapered nano-morphological features on the contact resistance, providing further insight into design consideration in optimizing the contact geometry for high-performance nanostructured photovoltaic devices.
NASA Astrophysics Data System (ADS)
Tajbakhsh, Mahmood; Kariminasab, Mohaddeseh; Ganji, Masoud Darvish; Alinezhad, Heshmatollah
2017-12-01
Organic solar cells, especially bulk hetero-junction polymer solar cells (PSCs), are the most successful structures for applications in renewable energy. The dramatic improvement in the performance of PSCs has increased demand for new conjugated polymer donors and fullerene derivative acceptors. In the present study, quantum chemical calculations were performed for several representative fullerene derivatives in order to determine their frontier orbital energy levels and electronic structures, thereby helping to enhance their performance in PSC devices. We found correlations between the theoretical lowest unoccupied molecular orbital levels and electrophilicity index of various fullerenes with the experimental open circuit voltage of photovoltaic devices according to the poly(3-hexylthiophene) (P3HT):fullerene blend. The correlations between the structure and descriptors may facilitate screening of the best fullerene acceptor for the P3HT donor. Thus, we considered fullerenes with new functional groups and we predicted the output factors for the corresponding P3HT:fullerene blend devices. The results showed that fullerene derivatives based on thieno-o-quinodimethane-C60 with a methoxy group will have enhanced photovoltaic properties. Our results may facilitate the design of new fullerenes and the development of favorable acceptors for use in photovoltaic applications.
Inverted Silicon Nanopencil Array Solar Cells with Enhanced Contact Structures
Liang, Xiaoguang; Shu, Lei; Lin, Hao; Fang, Ming; Zhang, Heng; Dong, Guofa; Yip, SenPo; Xiu, Fei; Ho, Johnny C.
2016-01-01
Although three-dimensional nanostructured solar cells have attracted extensive research attention due to their superior broadband and omnidirectional light-harvesting properties, majority of them are still suffered from complicated fabrication processes as well as disappointed photovoltaic performances. Here, we employed our newly-developed, low-cost and simple wet anisotropic etching to fabricate hierarchical silicon nanostructured arrays with different solar cell contact design, followed by systematic investigations of their photovoltaic characteristics. Specifically, nano-arrays with the tapered tips (e.g. inverted nanopencils) are found to enable the more conformal top electrode deposition directly onto the nanostructures for better series and shunt conductance, but its insufficient film coverage at the basal plane would still restrict the charge carrier collection. In contrast, the low-platform contact design facilitates a substantial photovoltaic device performance enhancement of ~24%, as compared to the one of conventional top electrode design, due to the shortened current path and improved lateral conductance for the minimized carrier recombination and series resistance. This enhanced contact structure can not only maintain excellent photon-trapping behaviors of nanostructures, but also help to eliminate adverse impacts of these tapered nano-morphological features on the contact resistance, providing further insight into design consideration in optimizing the contact geometry for high-performance nanostructured photovoltaic devices. PMID:27671709
RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: SINGLE CELL TESTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
X. Zhang; J. E. O'Brien; R. C. O'Brien
2012-07-01
An experimental investigation on the performance and durability of single solid oxide electrolysis cells (SOECs) is under way at the Idaho National Laboratory. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOECs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus has been developed for single cell and small stack tests from different vendors. Single cells from Ceramatec Inc. show improved durability compared to our previous stack tests. Single cells from Materials and Systems Research Inc. (MSRI) demonstrate low degradation both in fuel cellmore » and electrolysis modes. Single cells from Saint Gobain Advanced Materials (St. Gobain) show stable performance in fuel cell mode, but rapid degradation in the electrolysis mode. Electrolyte-electrode delamination is found to have significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the microstructure help to mitigate degradation. Polarization scans and AC impedance measurements are performed during the tests to characterize the cell performance and degradation.« less
Ho, Wen-Jeng; Shen, Yu-Tang; Liu, Jheng-Jie; You, Bang-Jin; Ho, Chun-Hung
2017-10-21
This paper demonstrates the application of a broadband luminescent downshifting (LDS) layer with multiple species of europium (Eu)-doped silicate phosphors using spin-on film technique to enhance the photovoltaic efficiency of crystalline silicon solar cells. The surface morphology of the deposited layer was examined using a scanning electron microscope (SEM). The chemical composition of the Eu-doped silicate phosphors was analyzed using energy-dispersive X-ray spectroscopy (EDS). The fluorescence emission of the Eu-doped silicate phosphors was characterized using photoluminescence (PL) measurements at room temperature. We also compared the optical reflectance and external quantum efficiency (EQE) response of cells with combinations of various Eu-doped phosphors species. The cell coated with two species of Eu-doped phosphors achieved a conversion efficiency enhancement (∆ η ) of 19.39%, far exceeding the ∆ η = 15.08% of the cell with one species of Eu-doped phosphors and the ∆ η = 8.51% of the reference cell with the same silicate layer without Eu-doped phosphors.
Use of a corrugated surface to enhance radiation tolerance in a GaAs solar cell
NASA Technical Reports Server (NTRS)
Leon, Rosa P.; Piszczor, Michael F., Jr.
1985-01-01
The use of a corrugated surface on a GaAs solar cell and its effects on radiation resistance were studied. A compute code was developed to determine the performance of the cell for various geometric parameters. The large optical absorption coefficient of GaAs allows grooves to be only 4-5 micrometers deep. Using accepted material parameters for GaAs solar cells the theoretical performances were compared for various corrugated cells before and after minority carrier diffusion length degradation. The total power output was maximized for both n(+)/p and p(+)/n cells. Optimum values of 1.0-1.5 and 5.0 micrometers for groove and ridge widths respectively were determined.
n-MoS2/p-Si Solar Cells with Al2O3 Passivation for Enhanced Photogeneration.
Rehman, Atteq Ur; Khan, Muhammad Farooq; Shehzad, Muhammad Arslan; Hussain, Sajjad; Bhopal, Muhammad Fahad; Lee, Sang Hee; Eom, Jonghwa; Seo, Yongho; Jung, Jongwan; Lee, Soo Hong
2016-11-02
Molybdenum disulfide (MoS 2 ) has recently emerged as a promising candidate for fabricating ultrathin-film photovoltaic devices. These devices exhibit excellent photovoltaic performance, superior flexibility, and low production cost. Layered MoS 2 deposited on p-Si establishes a built-in electric field at MoS 2 /Si interface that helps in photogenerated carrier separation for photovoltaic operation. We propose an Al 2 O 3 -based passivation at the MoS 2 surface to improve the photovoltaic performance of bulklike MoS 2 /Si solar cells. Interestingly, it was observed that Al 2 O 3 passivation enhances the built-in field by reduction of interface trap density at surface. Our device exhibits an improved power conversion efficiency (PCE) of 5.6%, which to our knowledge is the highest efficiency among all bulklike MoS 2 -based photovoltaic cells. The demonstrated results hold the promise for integration of bulklike MoS 2 films with Si-based electronics to develop highly efficient photovoltaic cells.
Levichkina, Ekaterina; Saalmann, Yuri B; Vidyasagar, Trichur R
2017-03-01
Primate posterior parietal cortex (PPC) is known to be involved in controlling spatial attention. Neurons in one part of the PPC, the lateral intraparietal area (LIP), show enhanced responses to objects at attended locations. Although many are selective for object features, such as the orientation of a visual stimulus, it is not clear how LIP circuits integrate feature-selective information when providing attentional feedback about behaviorally relevant locations to the visual cortex. We studied the relationship between object feature and spatial attention properties of LIP cells in two macaques by measuring the cells' orientation selectivity and the degree of attentional enhancement while performing a delayed match-to-sample task. Monkeys had to match both the location and orientation of two visual gratings presented separately in time. We found a wide range in orientation selectivity and degree of attentional enhancement among LIP neurons. However, cells with significant attentional enhancement had much less orientation selectivity in their response than cells which showed no significant modulation by attention. Additionally, orientation-selective cells showed working memory activity for their preferred orientation, whereas cells showing attentional enhancement also synchronized with local neuronal activity. These results are consistent with models of selective attention incorporating two stages, where an initial feature-selective process guides a second stage of focal spatial attention. We suggest that LIP contributes to both stages, where the first stage involves orientation-selective LIP cells that support working memory of the relevant feature, and the second stage involves attention-enhanced LIP cells that synchronize to provide feedback on spatial priorities. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Hsu, Li-Yueh; Wragg, Andrew; Anderson, Stasia A; Balaban, Robert S; Boehm, Manfred; Arai, Andrew E
2008-02-01
This study presents computerized automatic image analysis for quantitatively evaluating dynamic contrast-enhanced MRI in an ischemic rat hindlimb model. MRI at 7 T was performed on animals in a blinded placebo-controlled experiment comparing multipotent adult progenitor cell-derived progenitor cell (MDPC)-treated, phosphate buffered saline (PBS)-injected, and sham-operated rats. Ischemic and non-ischemic limb regions of interest were automatically segmented from time-series images for detecting changes in perfusion and late enhancement. In correlation analysis of the time-signal intensity histograms, the MDPC-treated limbs correlated well with their corresponding non-ischemic limbs. However, the correlation coefficient of the PBS control group was significantly lower than that of the MDPC-treated and sham-operated groups. In semi-quantitative parametric maps of contrast enhancement, there was no significant difference in hypo-enhanced area between the MDPC and PBS groups at early perfusion-dependent time frames. However, the late-enhancement area was significantly larger in the PBS than the MDPC group. The results of this exploratory study show that MDPC-treated rats could be objectively distinguished from PBS controls. The differences were primarily determined by late contrast enhancement of PBS-treated limbs. These computerized methods appear promising for assessing perfusion and late enhancement in dynamic contrast-enhanced MRI.
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.; Narayanan, S. R.; Alamgir, Mohamed; Yu, Ji-Sang; Plichta, Edward P.
2004-01-01
Both NASA and the U.S. Army have interest in developing secondary energy storage devices that are capable of meeting the demanding performance requirements of aerospace and man-portable applications. In order to meet these demanding requirements, gel-polymer electrolyte-based lithium-ion cells are being actively considered, due to their promise of providing high specific energy and enhanced safety aspects.
Improved regulatory element prediction based on tissue-specific local epigenomic signatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yupeng; Gorkin, David U.; Dickel, Diane E.
Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulator y element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared withmore » existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types.« less
Improved regulatory element prediction based on tissue-specific local epigenomic signatures
He, Yupeng; Gorkin, David U.; Dickel, Diane E.; ...
2017-02-13
Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulator y element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared withmore » existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types.« less
NASA Astrophysics Data System (ADS)
Umar, Akrajas Ali; Al-She'irey, Altaf Yahya Ahmed; Rahman, Mohd Yusri Abd; Salleh, Muhamad Mat; Oyama, Munetaka
2018-05-01
The structure and crystallinity of the photoactive materials in solar cell determines the exciton formation, carrier's recombination, life-time and transportation in the devices. Here, we report that enhanced charge transportation, internal quantum efficiency and the carrier life-time can be achieved by modifying the structure, morphology of the organic perovskite thin film, enabling the improvement of the solar cell performance. The thin film structure modification was achieved via a thermal annealing in vacuum. In typical procedure, the power conversion efficiency of the PSC device can be upgraded from 0.5 to 2.9%, which is approximately 6 times increment, when the surface structure disorders are limited in the organic perovskite thin film. By optimizing the organic perovskite loading on the Ga-TiO2 diatom-like nanostructures photoanode and combining with a fine control of organic perovskite thin film structure, power conversion efficiency as high as 6.58% can be generated from the device. Electrochemical impedance spectroscopy and current-voltage analysis in the dark indicated that this process has effectively augmented the carrier life-time and limited the carrier recombination, enhancing the overall performance of the solar cell device. The preparation process and mechanism of the device performance improvement will be discussed.
Using high haze (> 90%) light-trapping film to enhance the efficiency of a-Si:H solar cells
NASA Astrophysics Data System (ADS)
Chu, Wei-Ping; Lin, Jian-Shian; Lin, Tien-Chai; Tsai, Yu-Sheng; Kuo, Chen-Wei; Chung, Ming-Hua; Hsieh, Tsung-Eong; Liu, Lung-Chang; Juang, Fuh-Shyang; Chen, Nien-Po
2012-07-01
The high haze light-trapping (LT) film offers enhanced scattering of light and is applied to a-Si:H solar cells. UV glue was spin coated on glass, and then the LT pattern was imprinted. Finally, a UV lamp was used to cure the UV glue on the glass. The LT film effectively increased the Haze ratio of glass and decreased the reflectance of a-Si:H solar cells. Therefore, the photon path length was increased to obtain maximum absorption by the absorber layer. High Haze LT film is able to enhance short circuit current density and efficiency of the device, as partial composite film generates broader scattering light, thereby causing shorter wave length light to be absorbed by the P layer so that the short circuit current density decreases. In case of lab-made a-Si:H thin film solar cells with v-shaped LT films, superior optoelectronic performances have been found (Voc = 0.74 V, Jsc = 15.62 mA/cm2, F.F. = 70%, and η = 8.09%). We observed ~ 35% enhancement of the short-circuit current density and ~ 31% enhancement of the conversion efficiency.
Welkos, S; Cote, C K; Hahn, U; Shastak, O; Jedermann, J; Bozue, J; Jung, G; Ruchala, P; Pratikhya, P; Tang, T; Lehrer, R I; Beyer, W
2011-09-01
Retrocyclins are humanized versions of the -defensin peptides expressed by the leukocytes of several nonhuman primates. Previous studies, performed in serum-free media, determined that retrocyclins 1 (RC1) and RC2 could prevent successful germination of Bacillus anthracis spores, kill vegetative B. anthracis cells, and inactivate anthrax lethal factor. We now report that retrocyclins are extensively bound by components of native mouse, human, and fetal calf sera, that heat-inactivated sera show greatly enhanced retrocyclin binding, and that native and (especially) heat-inactivated sera greatly reduce the direct activities of retrocyclins against spores and vegetative cells of B. anthracis. Nevertheless, we also found that retrocyclins protected mice challenged in vivo by subcutaneous, intraperitoneal, or intranasal instillation of B. anthracis spores. Retrocyclin 1 bound extensively to B. anthracis spores and enhanced their phagocytosis and killing by murine RAW264.7 cells. Based on the assumption that spore-bound RC1 enters phagosomes by "piggyback phagocytosis," model calculations showed that the intraphagosomal concentration of RC1 would greatly exceed its extracellular concentration. Murine alveolar macrophages took up fluorescently labeled retrocyclin, suggesting that macrophages may also acquire extracellular RC1 directly. Overall, these data demonstrate that retrocyclins are effective in vivo against experimental murine anthrax infections and suggest that enhanced macrophage function contributes to this property.
Limitation of Optical Enhancement in Ultra-thin Solar Cells Imposed by Contact Selectivity.
Islam, Raisul; Saraswat, Krishna
2018-06-11
Ultra-thin crystalline silicon (c-Si) solar cell suffers both from poor light absorption and minority carrier recombination at the contacts resulting in low contact selectivity. Yet most of the research focuses on improving the light absorption by introducing novel light trapping technique. Our work shows that for ultra-thin absorber, the benefit of optical enhancement is limited by low contact selectivity. Using simulation we observe that performance enhancement from light trapping starts to saturate as the absorber scales down because of the increase in probability of the photo-generated carriers to recombine at the metal contact. Therefore, improving the carrier selectivity of the contacts, which reduces the recombination at contacts, is important to improve the performance of the solar cell beyond what is possible by enhancing light absorption only. The impact of improving contact selectivity increases as the absorber thickness scales below 20 micrometer (μm). Light trapping provides better light management and improving contact selectivity provides better photo-generated carrier management. When better light management increases the number of photo-generated carriers, better carrier management is a useful optimization knob to achieve the efficiency close to the thermodynamic limit. Our work explores a design trade-off in detail which is often overlooked by the research community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eshraghi, Ray
In September 2008, the U.S. Department of Energy and Martin County Economic Development Corporation entered into an agreement to further the advancement of a microtubular PEM fuel cell developed by Microcell Corporation. The overall focus of this project was on research and development related to high volume manufacturing of fuel cells and cost reduction in the fuel cell manufacturing process. The extrusion process used for the microfiber fuel cells in this project is inherently a low cost, high volume, high speed manufacturing process. In order to take advantage of the capabilities that the extrusion process provides, all subsequent manufacturing processesmore » must be enhanced to meet the extrusion line’s speed and output. Significant research and development was completed on these subsequent processes to ensure that power output and performance were not negatively impacted by the higher speeds, design changes and process improvements developed in this project. All tasks were successfully completed resulting in cost reductions, performance improvements and process enhancements in the areas of speed and quality. These results support the Department of Energy’s goal of fuel cell commercialization.« less
Werner, Melanie; Keller, Debora; Haass, Stefan G; Gretener, Christina; Bissig, Benjamin; Fuchs, Peter; La Mattina, Fabio; Erni, Rolf; Romanyuk, Yaroslav E; Tiwari, Ayodhya N
2015-06-10
Solution processing of Cu2ZnSn(S,Se)4 (CZTSSe)-kesterite solar cells is attractive because of easy manufacturing using readily available metal salts. The solution-processed CZTSSe absorbers, however, often suffer from poor morphology with a bilayer structure, exhibiting a dense top crust and a porous bottom layer, albeit yielding efficiencies of over 10%. To understand whether the cell performance is limited by this porous layer, a systematic compositional study using (scanning) transmission electron microscopy ((S)TEM) and energy-dispersive X-ray spectroscopy of the dimethyl sulfoxide processed CZTSSe absorbers is presented. TEM investigation revealed a thin layer of CdS that is formed around the small CZTSSe grains in the porous bottom layer during the chemical bath deposition step. This CdS passivation is found to be beneficial for the cell performance as it increases the carrier collection and facilitates the electron transport. Electron-beam-induced current measurements reveal an enhanced carrier collection for this buried region as compared to reference cells with evaporated CdS.
A polarization converting device for an interfering enhanced CPT atomic clock.
Wang, Kewei; Tian, Yuan; Yin, Yi; Wang, Yuanchao; Gu, Sihong
2017-11-01
With interfering enhanced coherent population trapping (CPT) signals, a CPT atomic clock with improved frequency stability performance can be realized. We explore an optical device that converts single-polarized bichromatic light to left and right circularly polarized superposed bichromatic light to generate interfering enhanced CPT resonance with atoms. We have experimentally studied a tabletop CPT atomic clock apparatus with a microfabricated 87 Rb atomic chip-scale cell, and the study results show that it is promising to realize a compact CPT atomic clock, even a chip-scale CPT atomic clock through microfabrication, with improved frequency stability performance.
A polarization converting device for an interfering enhanced CPT atomic clock
NASA Astrophysics Data System (ADS)
Wang, Kewei; Tian, Yuan; Yin, Yi; Wang, Yuanchao; Gu, Sihong
2017-11-01
With interfering enhanced coherent population trapping (CPT) signals, a CPT atomic clock with improved frequency stability performance can be realized. We explore an optical device that converts single-polarized bichromatic light to left and right circularly polarized superposed bichromatic light to generate interfering enhanced CPT resonance with atoms. We have experimentally studied a tabletop CPT atomic clock apparatus with a microfabricated 87Rb atomic chip-scale cell, and the study results show that it is promising to realize a compact CPT atomic clock, even a chip-scale CPT atomic clock through microfabrication, with improved frequency stability performance.
Fundamental Investigations and Rational Design of Durable High-Performance SOFC Cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yu; Ding, Dong; Wei, Tao
The main objective of this project is to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants, aiming towards the rational design of cathodes with high-performance and enhanced durability by combining a porous backbone (such as LSCF) with a thin catalyst coating. The mechanistic understanding will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance and durability. More specifically, the technical objectives include: (1) to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminantsmore » using in situ and ex situ measurements performed on specially-designed cathodes; (2) to examine the microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions; (3) to correlate the fuel cell performance instability and degradation with the microstructural and morphological evolution and surface chemistry change of the cathode under realistic operating conditions; (4) to explore new catalyst materials and electrode structures to enhance the stability of the LSCF cathode under realistic operating conditions; and (5) to validate the long term stability of the modified LSCF cathode in commercially available cells under realistic operating conditions. We have systematically evaluated LSCF cathodes in symmetrical cells and anode supported cells under realistic conditions with different types of contaminants such as humidity, CO 2, and Cr. Electrochemical models for the design of test cells and understanding of mechanisms have been developed for the exploration of fundamental properties of electrode materials. It is demonstrated that the activity and stability of LSCF cathodes can be degraded by the introduction of contaminants. The microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions has been studied. It is found that SrO readily segregated/enriched on the LSCF surface. More severe contamination conditions cause more SrO on surface. Novel catalyst coatings through particle depositions (PrOx) or continuous thin films (PNM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized PNM (dense film and particles) infiltration process, under clean air and realistic operating conditions (3% H 2O, 5% CO 2 and direct Crofer contact). Both performance and durability of single cells with PNM coating has been enhanced compared with those without coating. Raman analysis of cathodes surface indicated that the intensity of SrCrO 4 was significantly decreased.« less
Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts
NASA Astrophysics Data System (ADS)
Zhou, W. J.; Zhou, B.; Li, W. Z.; Zhou, Z. H.; Song, S. Q.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; Goula, M.; Tsiakaras, P.
Low-temperature polymer electrolyte membrane fuel cells directly fed by methanol and ethanol were investigated employing carbon supported Pt, PtSn and PtRu as anode catalysts, respectively. Employing Pt/C as anode catalyst, both direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC) showed poor performances even in presence of high Pt loading on anode. It was found that the addition of Ru or Sn to the Pt dramatically enhances the electro-oxidation of both methanol and ethanol. It was also found that the single cell adopting PtRu/C as anode shows better DMFC performance, while PtSn/C catalyst shows better DEFC performance. The single fuel cell using PtSn/C as anode catalyst at 90 °C shows similar power densities whenever fueled by methanol or ethanol. The cyclic voltammetry (CV) and single fuel cell tests indicated that PtRu is more suitable for DMFC while PtSn is more suitable for DEFC.
Xie, Yian; Shao, Feng; Wang, Yaoming; Xu, Tao; Wang, Deliang; Huang, Fuqiang
2015-06-17
Sequential deposition is a widely adopted method to prepare CH3NH3PbI3 on mesostructured TiO2 electrode for organic lead halide perovskite solar cells. However, this method often suffers from the uncontrollable crystal size, surface morphology, and residual PbI2 in the resulting CH3NH3PbI3, which are all detrimental to the device performance. We herein present an optimized sequential solution deposition method by introducing different amount of CH3NH3I in PbI2 precursor solution in the first step to prepare CH3NH3PbI3 absorber on mesoporous TiO2 substrates. The addition of CH3NH3I in PbI2 precursor solution can affect the crystallization and composition of PbI2 raw films, resulting in the variation of UV-vis absorption and surface morphology. Proper addition of CH3NH3I not only enhances the absorption but also improves the efficiency of CH3NH3PbI3 solar cells from 11.13% to 13.37%. Photoluminescence spectra suggest that the improvement of device performance is attributed to the decrease of recombination rate of carriers in CH3NH3PbI3 absorber. This current method provides a highly repeatable route for enhancing the efficiency of CH3NH3PbI3 solar cell in the sequential solution deposition method.
NASA Astrophysics Data System (ADS)
Cho, Hyesung; Moon Kim, Sang; Sik Kang, Yun; Kim, Junsoo; Jang, Segeun; Kim, Minhyoung; Park, Hyunchul; Won Bang, Jung; Seo, Soonmin; Suh, Kahp-Yang; Sung, Yung-Eun; Choi, Mansoo
2015-09-01
The production of multiscale architectures is of significant interest in materials science, and the integration of those structures could provide a breakthrough for various applications. Here we report a simple yet versatile strategy that allows for the LEGO-like integrations of microscale membranes by quantitatively controlling the oxygen inhibition effects of ultraviolet-curable materials, leading to multilevel multiscale architectures. The spatial control of oxygen concentration induces different curing contrasts in a resin allowing the selective imprinting and bonding at different sides of a membrane, which enables LEGO-like integration together with the multiscale pattern formation. Utilizing the method, the multilevel multiscale Nafion membranes are prepared and applied to polymer electrolyte membrane fuel cell. Our multiscale membrane fuel cell demonstrates significant enhancement of performance while ensuring mechanical robustness. The performance enhancement is caused by the combined effect of the decrease of membrane resistance and the increase of the electrochemical active surface area.
Li, Lin; Chu, Lisheng; Fang, Yan; Yang, Yan; Qu, Tiebing; Zhang, Jianping; Yin, Yuanjun; Gu, Jingjing
2017-05-12
Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) is one of the new therapeutic strategies for treating ischemic stroke. However, the relatively poor migratory capacity of BMSCs toward infarcted regions limited the therapeutic potential of this approach. Pharmacological preconditioning can increase the expression of CXC chemokine receptor 4 (CXCR4) in BMSCs and enhance cell migration toward the injury site. In the present study, we investigated whether tetramethylpyrazine (TMP) preconditioning could enhance BMSCs migration to the ischemic brain and improve functional recovery through upregulating CXCR4 expression. BMSCs were identified by flow cytometry analysis. BMSCs migration was evaluated in vitro by transwell migration assay, and CXCR4 expression was measured by quantitative reverse transcription-polymerase chain reaction and western blot analysis. In rats with focal cerebral ischemia, the neurological function was evaluated by the modified neurological severity score, the adhesive removal test and the corner test. The homing BMSCs and angiogenesis were detected by immunofluorescence, and expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 was measured by western blot analysis. Flow cytometry analysis demonstrated that BMSCs expressed CD29 and CD90, but not CD34 and CD45. TMP pretreatment dose-dependently induced BMSCs migration and CXCR4 expression in vitro, which was significantly inhibited by AMD3100, a CXCR4 antagonist. In rat stroke models, we found more TMP-preconditioned BMSCs homing toward the infarcted regions than nonpreconditioned cells, leading to improved neurological performance and enhanced angiogenesis. Moreover, TMP-preconditioned BMSCs significantly upregulated the protein expression of SDF-1 and CXCR4 in the ischemic boundary regions. These beneficial effects of TMP preconditioning were blocked by AMD3100. TMP preconditioning enhances the migration and homing ability of BMSCs, increases CXCR4 expression, promotes angiogenesis, and improves neurological performance. Therefore, TMP preconditioning may be an effective strategy to improve the therapeutic potency of BMSCs for ischemic stroke due to enhanced BMSCs migration to ischemic regions.
NASA Astrophysics Data System (ADS)
Kobayashi, Takayoshi; Sundaram, Durga; Nakata, Kazuaki; Tsurui, Hiromichi
2017-03-01
Qualifications of intracellular structure were performed for the first time using the gray-level co-occurrence matrix (GLCM) method for images of cells obtained by resolution-enhanced photothermal imaging. The GLCM method has been used to extract five parameters of texture features for five different types of cells in mouse brain; pyramidal neurons and glial cells in the basal nucleus (BGl), dentate gyrus granule cells, cerebellar Purkinje cells, and cerebellar granule cells. The parameters are correlation, contrast, angular second moment (ASM), inverse difference moment (IDM), and entropy for the images of cells of interest in a mouse brain. The parameters vary depending on the pixel distance taken in the analysis method. Based on the obtained results, we identified that the most suitable GLCM parameter is IDM for pyramidal neurons and BGI, granule cells in the dentate gyrus, Purkinje cells and granule cells in the cerebellum. It was also found that the ASM is the most appropriate for neurons in the basal nucleus.
NASA Astrophysics Data System (ADS)
Zhang, Di; Cherkezyan, Lusik; Li, Yue; Capoglu, Ilker; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim
2017-02-01
Our group had previously established that nanoscale three-dimensional refractive index (RI) fluctuations of a linear, dielectric, label-free medium can be sensed in the far field through spectroscopic microscopy, regardless of the diffraction limit of optical microscopy. Adopting this technique, Partial Wave Spectroscopic (PWS) Microscopy was able to sense nanoarchitectural alterations in early-stage cancers. With the success of PWS on detecting cancer from healthy clinical samples, we further investigated whether and how histological staining can enhance the performance of PWS by both finite difference time domain (FDTD) simulations and experiments. In this investigation, the dispersion models of hematoxylin and eosin were extracted from the absorption spectra of H and E stained cells. Using these models, the effect of staining were studied via FDTD simulations of unstained versus stained samples with various nanostructures. We observed that, the spectral variance was increased and the spectral variance difference between two samples with distinct nanostructures was enhanced in stained samples by over 200%. Furthermore, we investigated with FDTD whether molecule-specific staining can be used to enhance signals from a medium composing of the desired molecule. Samples with two mixed random media were created and the desired medium was either stained or unstained. Our results showed that the difference between the nanostructures of only the desired medium was enhanced in stained samples. We concluded that, with molecule-specific staining, PWS can selectively target the nanoarchitecture of a desired molecule. Lastly, these results were validated by experiments using human buccal cells from healthy or lung cancer patients. This study has significant impact in improving the performance of PWS on quantifying nanoarchitectural alterations during cancer.
Chu, Pat P. Y.; Bari, Sudipto; Fan, Xiubo; Gay, Florence P. H.; Ang, Justina M. L.; Chiu, Gigi N. C.; Lim, Sai K.; Hwang, William Y. K.
2012-01-01
Background aims. Mesenchymal stromal cells (MSC) have been observed to participate in tissue repair and to have growth-promoting effects on ex vivo co-culture with other stem cells. Methods. In order to evaluate the mechanism of MSC support on ex vivo cultures, we performed co-culture of MSC with umbilical cord blood (UCB) mononuclear cells (MNC) (UCB-MNC). Results. Significant enhancement in cell growth correlating with cell viability was noted with MSC co-culture (defined by double-negative staining for Annexin-V and 7-AAD; P<0.01). This was associated with significant enhancement of mitochondrial membrane potential (P<0.01). We postulated that intercellular transfer of cytosolic substances between MSC and UCB-MNC could be one mechanism mediating the support. Using MSC endogenously expressing green fluorescent protein (GFP) or labeled with quantum dots (QD), we performed co-culture of UCB-MNC with these MSC. Transfer of these GFP and QD was observed from MSC to UCB-MNC as early as 24 h post co-culture. Transwell experiments revealed that direct contact between MSC and UCB-MNC was necessary for both transfer and viability support. UCB-MNC tightly adherent to the MSC layer exhibited the most optimal transfer and rescue of cell viability. DNA analysis of the viable, GFP transfer-positive UCB-MNC ruled out MSC transdifferentiation or MSC-UCB fusion. In addition, there was statistical correlation between higher levels of cytosolic transfer and enhanced UCB-MNC viability (P< 0.0001). Conclusions. Collectively, the data suggest that intercellular transfer of cytosolic materials could be one novel mechanism for preventing UCB cell death in MSC co-culture. PMID:22775077
NASA Astrophysics Data System (ADS)
Chen, Rong
This thesis presents both experimental and theoretical investigations of coupled heat/mass transfer and electrochemical characteristics in the passive DMFC. Unlike active fuel cells, which can be operated under stabilized operating conditions, the discharging behavior of the passive DMFC usually varies with time, as the methanol concentration in the fuel reservoir decreases with time. This poses a difficulty in characterizing the performance of the passive DMFC under relatively stable operating conditions. In this work, we found that the performance of the passive DMFC became relatively stable as the cell operating temperature rose to a relatively stable value. This finding indicates that the performance of the passive DMFC can be characterized by collecting polarization data at the instance when the cell operating temperature under the open-circuit condition rises to a relatively stable value. With this proposed standard of passive DMFC performance characterization, the effects of two important parameters, including methanol concentration and cell orientation, on the passive DMFC performance were then investigated. It is found that the cell performance increased with methanol concentration. Unlike previous studies that attributed the improved performance as a result of increasing methanol concentration to the reduced anode mass transport polarization, our experimental results revealed that the improved cell performance was primarily due to the increased cell operating temperature as a result of the increased rate of methanol crossover with high methanol concentration operation. We also found that the performance was sensitive to the cell orientation. The vertical operation always yielded better performance than did the horizontal operation. This can be attributed to the increased operating temperature as a result of a higher rate of methanol crossover, which resulted from the stronger natural convection in the vertical orientation. These parametric studies indicated that the thermal management is a key factor for improving the performance of the passive DMFC. To enhance oxygen transport on the air-breathing cathode and to reduce the heat loss from the cathode, a porous current collector for the passive DMFC was proposed to replace conventional perforated-plate current collectors. Because of its high specific area of transport and effectiveness in removing the liquid water as a result of the capillary action in the porous structure, the porous current collector enables a significant enhancement of oxygen supply to the fuel cell. In addition, because of the lower effective thermal conductivity of the porous structure, the heat loss from the fuel cell to ambient air can be reduced. The experimental results showed that the passive DMFC having the porous current collector yielded much higher and much more stable performance than did the cell having the conventional perforated-plate current collector with high methanol concentration operation. As a following up to oxygen transport enhancement, a new design of membrane electrode assembly (MEA) was proposed, in which the conventional cathode gas diffusion layer (CGDL) is eliminated while utilizing a porous metal structure for transporting oxygen and collecting current. We show theoretically that the new MEA enables a higher mass transfer rate of oxygen and thus better performance. Moreover, the measured polarization and constant-current discharging behavior showed that the passive DMFC with the new MEA yielded higher and much more stable performance than did the cell having the conventional MEA. Besides the experimental investigations, to further theoretically study the thermal effect on the cell performance, a one-dimension single-phase model is developed by considering inherently coupled heat and mass transport along with the electrochemical reactions occurring in passive DMFCs. The analytical solutions predicting the performance of this type of fuel cell operating with different methanol concentrations are obtained. It was further revealed that the improved performance with higher methanol concentrations is due primarily to the increased operating temperature resulting from the exothermic reaction between the permeated methanol and oxygen on the cathode. In addition, to further reflect the effect of two-phase heat and mass transport on the performance of the passive DMFC, we then developed a two-phase two-dimensional thermal model. With this model, the effects of methanol concentration, open ratio and channel and rib width on cell performance were investigated. It was found that although the larger open ratio and smaller channel and rib width exhibit the lower cell operating temperature as a result of the lower heat generation rate, the cell performance is still higher as a result of the increased mass transfer rate on both the anode and cathode. Keywords: Passive Direct Methanol Fuel Cell; Cell Performance; Thermal Effect; Open-circuit Condition; Methanol Concentration; Cell Orientation; Metal Foam, Effective Thermal Conductivity; Oxygen Transport; Mass Transfer Resistance; Two-phase Transport; Open Ratio; Channel and Rib Width.
Yang, Lei; Gu, Wenxing; Hong, Ling; Mi, Yang; Liu, Feng; Liu, Ming; Yang, Yufei; Sharma, Bigyan; Liu, Xinfeng; Huang, Hui
2017-08-16
Nonradiative Förster resonance energy transfer (FRET) is an important mechanism of organic solar cells, which can improve the exciton migration over a long distance, resulting in improvement of efficiency of solar cells. However, the current observations of FRET are very limited, and the efficiencies are less than 9%. In this study, FRET effect was first observed between two nonfullerene acceptors in ternary solar cells, which improved both the absorption range and exciton harvesting, leading to the dramatic enhancement in the short circuit current and power conversion efficiency. Moreover, this strategy is proved to be a versatile platform for conjugated polymers with different bandgaps, resulting in a remarkable efficiency of 10.4%. These results demonstrated a novel method to enhance the efficiency of organic soar cells.
NASA Astrophysics Data System (ADS)
Wang, Xiu Wei; Wang, Ye Feng; Zeng, Jing Hui; Shi, Feng; Chen, Yu; Jiang, Jiaxing
2017-08-01
Sensitizer loading level is one of the key factors determined the performance of sensitized solar cells. In this work, we systemically studied the influence of photo-anode thicknesses on the performance of the quantum-dot sensitized solar cells. It is found that the photo-to-current conversion efficiency enhances with increased film thickness and peaks at around 20 μm. The optimal value is about twice as large as the dye counterparts. Here, we also uncover the underlying mechanism about the influence of film thickness over the photovoltaic performance of QDSSCs from the light harvesting and charge recombination viewpoint.
Dhabhar, Firdaus S
2018-03-26
Our group has proposed that in contrast to chronic stress that can have harmful effects, the short-term (fight-or-flight) stress response (lasting for minutes to hours) is nature's fundamental survival mechanism that enhances protection and performance under conditions involving threat/challenge/opportunity. Short-term stress enhances innate/primary, adaptive/secondary, vaccine-induced, and anti-tumor immune responses, and post-surgical recovery. Mechanisms and mediators include stress hormones, dendritic cell, neutrophil, macrophage, and lymphocyte trafficking/function and local/systemic chemokine and cytokine production. Short-term stress may also enhance mental/cognitive and physical performance through effects on brain, musculo-skeletal, and cardiovascular function, reappraisal of threat/anxiety, and training-induced stress-optimization. Therefore, short-term stress psychology/physiology could be harnessed to enhance immuno-protection, as well as mental and physical performance. This review aims to provide a conceptual framework and targets for further investigation of mechanisms and conditions under which the protective/adaptive aspects of short-term stress/exercise can be optimized/harnessed, and for developing pharmacological/biobehavioral interventions to enhance health/healing, and mental/cognitive/physical performance. Copyright © 2018 Elsevier Inc. All rights reserved.
Improved defect analysis of Gallium Arsenide solar cells using image enhancement
NASA Technical Reports Server (NTRS)
Kilmer, Louis C.; Honsberg, Christiana; Barnett, Allen M.; Phillips, James E.
1989-01-01
A new technique has been developed to capture, digitize, and enhance the image of light emission from a forward biased direct bandgap solar cell. Since the forward biased light emission from a direct bandgap solar cell has been shown to display both qualitative and quantitative information about the solar cell's performance and its defects, signal processing techniques can be applied to the light emission images to identify and analyze shunt diodes. Shunt diodes are of particular importance because they have been found to be the type of defect which is likely to cause failure in a GaAs solar cell. The presence of a shunt diode can be detected from the light emission by using a photodetector to measure the quantity of light emitted at various current densities. However, to analyze how the shunt diodes affect the quality of the solar cell the pattern of the light emission must be studied. With the use of image enhancement routines, the light emission can be studied at low light emission levels where shunt diode effects are dominant.
Dynamic Nuclear Polarization NMR in Human Cells Using Fluorescent Polarizing Agents.
Albert, Brice J; Gao, Chukun; Sesti, Erika L; Saliba, Edward P; Alaniva, Nicholas; Scott, Faith J; Sigurdsson, Snorri Th; Barnes, Alexander B
2018-06-20
Solid-state nuclear magnetic resonance (NMR) enables atomic resolution characterization of molecular structure and dynamics within complex heterogeneous samples, but it is typically insensitive. Dynamic nuclear polarization (DNP) increases NMR signal intensity by orders of magnitude and can be performed in combination with magic angle spinning (MAS) for sensitive, high-resolution spectroscopy. Here we report MAS DNP experiments, for the first time, within intact human cells with >40-fold DNP enhancement and a sample temperature below 6 K. In addition to cryogenic MAS results below 6 K, we also show in-cell DNP enhancements of 57-fold at 90 K. In-cell DNP is demonstrated using biradicals and sterically-shielded monoradicals as polarizing agents. A novel trimodal polarizing agent is introduced for DNP, which contains a nitroxide biradical, a targeting peptide for cell penetration, and a fluorophore for subcellular localization with confocal microscopy. The fluorescent polarizing agent provides in-cell DNP enhancements of 63-fold at a concentration of 2.7 mM. These experiments pave the way for structural characterization of biomolecules in an endogenous cellular context.
Adhikary, Prajwal; Venkatesan, Swaminathan; Adhikari, Nirmal; Maharjan, Purna P; Adebanjo, Olusegun; Chen, Jihua; Qiao, Qiquan
2013-10-21
In this work, the electron transport layer of PBDTTT-C-T/PC70BM polymer solar cells were subjected to UV-ozone treatment, leading to improved cell performances from 6.46% to 8.34%. The solar cell efficiency reached a maximum of 8.34% after an optimal 5 minute UV-ozone treatment, and then decreased if treated for a longer time. To the best of our knowledge, the mechanism behind the effects of UV-ozone treatment on the improvement of charge transport and cell performance is not fully understood. We have developed a fundamental understanding of the UV-ozone treatment mechanism, which explains both the enhancements in charge transport and photovoltaic performance at an optimal treatment time, and also the phenomenon whereby further treatment time leads to a drop in cell efficiency. Transient photocurrent measurements indicated that the cell charge transport times were 1370 ns, 770 ns, 832 ns, 867 ns, and 1150 ns for the 0 min, 5 min, 10 min, 15 min, and 20 min UV-ozone treatment times, respectively. Therefore the 5 min UV-ozone treatment time led to the shortest transport time and the most efficient charge transport in the cells. The 5 min UV-ozone treated sample exhibited the highest peak intensity (E2) in the Raman spectra of the treated films, at about 437 cm(-1), indicating that it possessed the best wurtzite phase crystallinity of the ZnO films. Further increasing the UV-ozone treatment time from 5 to 20 min induced the formation of p-type defects (e.g. interstitial oxygen atoms), pushing the ZnO Fermi-level further away from the vacuum level, and decreasing the wurtzite crystallinity.
Effects of Nanoimprinted Structures on the Performance of Organic Solar Cells
Gill, Hardeep Singh; Li, Lian; Ren, Haizhou; ...
2018-01-01
The effect of nanoimprinted structures on the performance of organic bulk heterojunction solar cells was investigated. The nanostructures were formed over the active layer employing the soft lithographic technique. The measured incident photon-to-current efficiency revealed that the nanostructured morphology over the active layer can efficiently enhance both light harvesting and charge carrier collection due to improvement of the absorption of incident light and the buried nanostructured cathode, respectively. The devices prepared with the imprinted nanostructures exhibited significantly higher power conversion efficiencies as compared to those of the control cells.
Effects of Nanoimprinted Structures on the Performance of Organic Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Hardeep Singh; Li, Lian; Ren, Haizhou
The effect of nanoimprinted structures on the performance of organic bulk heterojunction solar cells was investigated. The nanostructures were formed over the active layer employing the soft lithographic technique. The measured incident photon-to-current efficiency revealed that the nanostructured morphology over the active layer can efficiently enhance both light harvesting and charge carrier collection due to improvement of the absorption of incident light and the buried nanostructured cathode, respectively. The devices prepared with the imprinted nanostructures exhibited significantly higher power conversion efficiencies as compared to those of the control cells.
Yu, Li; Sun, Yifan; Li, Jingjing; Wang, Yan; Zhu, Yuxing; Shi, Yong; Fan, Xiaojun; Zhou, Jianda; Bao, Ying; Xiao, Jie; Cao, Ke; Cao, Peiguo
2017-08-15
Radiotherapy has been used increasingly to treat primary hepatocellular carcinoma. Clinically, the main cause of radiotherapy failure is cellular radioresistance, conferred via glycolytic metabolism. Our previous study demonstrated that Girdin is upregulated in primary hepatocellular carcinoma and promotes the invasion and metastasis of tumor cells. However, whether Girdin underlies the radio-sensitivity of hepatocellular carcinoma remains unclear. A short hairpin RNA (shRNA) was used to silence CCDC88A (encoding Girdin), and real-time PCR was performed to determine CCDC88A mRNA expression. Then, cell proliferation, colony formation, flow cytometric, scratch, and transwell assays were to examine the influence of Girdin silencing on cellular radiosensitivity. Glycolysis assays were conducted to exam cell glycolysis process. Western blotting was performed to explore the signaling pathway downstream of Girdin. Finally, animal experiments were performed to demonstrate the effect of CCDC88A silencing on the radiosensitivity of hepatoma in vivo. shRNA-induced Girdin silencing suppressed glycolysis and enhanced the radio-sensitivity of hepatic cell lines, HepG2 and Huh-7. Furthermore, silencing of Girdin inhibited the PI3K/AKT/HIF-1α signaling pathway, which is a central regulator of glycolysis. Girdin can regulate glycolysis in hepatocellular carcinoma cells through the PI3K/AKT/HIF-1α signaling pathway, which decreases the sensitivity of tumor cells to radiotherapy.
NASA Astrophysics Data System (ADS)
Shobukawa, Hitoshi; Alvarado, Judith; Yang, Yangyuchen; Meng, Ying Shirley
2017-08-01
Lithium ion batteries (LIBs) containing silicon (Si) as a negative electrode have gained much attention recently because they deliver high energy density. However, the commercialization of LIBs with Si anode is limited due to the unstable electrochemical performance associated with expansion and contraction during electrochemical cycling. This study investigates the electrochemical performance and degradation mechanism of a full cell containing Si composite anode and LiFePO4 (lithium iron phosphate (LFP)) cathode. Enhanced electrochemical cycling performance is observed when the full cell is cycled with fluoroethylene carbonate (FEC) additive compared to the standard electrolyte. To understand the improvement in the electrochemical performance, x-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) are used. Based on the electrochemical behavior, FEC improves the reversibility of lithium ion diffusion into the solid electrolyte interphase (SEI) on the Si composite anode. Moreover, XPS analysis demonstrates that the SEI composition generated from the addition of FEC consists of a large amount of LiF and less carbonate species, which leads to better capacity retention over 40 cycles. The effective SEI successively yields more stable capacity retention and enhances the reversibility of lithium ion diffusion through the interphase of the Si anode, even at higher discharge rate. This study contributes to a basic comprehension of electrochemical performance and SEI formation of LIB full cells with a high loading Si composite anode.
Muramyl Peptide-Enhanced Sleep: Pharmacological Optimization of Performance
1990-06-01
Dower, S . K., S . R. Kronheim, T. P. Hopp, M. Cantrell, M. Deeley, S . Gillis, C. S . Henney, and D. L. Urdal. The cell surface receptors for...sleep-promoting factor isolated from human urine. J. Biol. Chem. 259:12652-12658, 1984. 90. Martin, S . A., R. S . Rosenthal, and K. Biemann. Fast atom...AD REPORT NUMBER0 TITLE Muramyl Peptide-Enhanced Sleep: Pharmacological Optimization of Performance TYPE OF REPORT Annj~Jl AUTHOR ( s ) O I James M
NASA Astrophysics Data System (ADS)
Lee, Eun-Kyung; Park, Shin-Ae; Jung, Hyun-Woo; Kim, Yong-Tae
2018-05-01
A high overpotential in the anode of Direct Carbon Fuel Cells (DCFC) is ascribed to the sluggish kinetics of solid fuel oxidation. In this study, we demonstrate a unique approach to enhance the performance of molten-carbonate electrolyte based DCFC (MC-DCFC) by decreasing a serious polarization loss at the anode side; a simple addition of lanthanum strontium cobalt ferrite (LSCF) having a function of mixed ionic-electronic conductors (MIEC) into the Ni anode catalyst layer. Ni:LSCF = 1:1 showed markedly enhanced peak power density of 111 mW/cm2, approximately two-fold higher value than that for the anode using solely Ni and one of the best record in the literature value using carbon black fuel without any contribution of generated syngas oxidation. As can be noted from the electrochemical impedance spectroscopy data, the ohmic and the charge transfer resistance of the anode was markedly decreased owing to the high ionic-electronic conductivity of the MIECs. Furthermore, the enhanced performance can be also attributed to the maximized TPBs (triple phase boundaries) that participate in the carbon oxidation reaction. Based on the results, we suggest that the addition of MIEC materials into the Ni anode catalyst layer is a promising approach to improve the performance of MC-DCFC.
Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity.
Li, Ming; Zhou, Minghua; Tian, Xiaoyu; Tan, Chaolin; McDaniel, Cameron T; Hassett, Daniel J; Gu, Tingyue
Within the past 5 years, tremendous advances have been made to maximize the performance of microbial fuel cells (MFCs) for both "clean" bioenergy production and bioremediation. Most research efforts have focused on parameters including (i) optimizing reactor configuration, (ii) electrode construction, (iii) addition of redox-active, electron donating mediators, (iv) biofilm acclimation and feed nutrient adjustment, as well as (v) other parameters that contribute to enhanced MFC performance. To date, tremendous advances have been made, but further improvements are needed for MFCs to be economically practical. In this review, the diversity of electrogenic microorganisms and microbial community changes in mixed cultures are discussed. More importantly, different approaches including chemical/genetic modifications and gene regulation of exoelectrogens, synthetic biology approaches and bacterial community cooperation are reviewed. Advances in recent years in metagenomics and microbiomes have allowed researchers to improve bacterial electrogenicity of robust biofilms in MFCs using novel, unconventional approaches. Taken together, this review provides some important and timely information to researchers who are examining additional means to enhance power production of MFCs. Copyright © 2018 Elsevier Inc. All rights reserved.
Lim, Su Pei; Pandikumar, Alagarsamy; Lim, Hong Ngee; Ramaraj, Ramasamy; Huang, Nay Ming
2015-01-01
A silver nanoparticle-decorated N,S-co-doped TiO2 nanocomposite was successfully prepared and used as an efficient photoanode in high-performance dye-sensitized solar cells (DSSCs) with N719 dye. The DSSCs assembled with the N,S-TiO2@Ag-modified photoanode demonstrated an enhanced solar-to-electrical energy conversion efficiency of 8.22%, which was better than that of a DSSC photoanode composed of unmodified TiO2 (2.57%) under full sunlight illumination (100 mWcm−2, AM 1.5 G). This enhanced efficiency was mainly attributed to the reduced band gap energy, improved interfacial charge transfer, and retarded charge recombination process. The influence of the Ag content on the overall efficiency was also investigated, and the optimum Ag content with N,S-TiO2 was found to be 20 wt%. Because of the enhanced solar energy conversion efficiency of the N,S-TiO2@Ag nanocomposite, it should be considered as a potential photoanode for high-performance DSSCs. PMID:26146362
Antitumor Effects of Palladium-α-Lipoic Acid Complex Formulation as an Adjunct in Radiotherapy.
Veena, Ravindran Kalathil; Ajith, Thekkuttuparambil Ananthanarayanan; Janardhanan, Kainoor Krishnankutty; Antonawich, Francis
2016-01-01
Several investigations have been initiated to enhance the antitumor effect of radiation and ameliorate its adverse effects such as reducing blood cell counts and causing DNA damage in normal cells. Compounds that enhance the antitumor activity of radiation without reducing blood cell counts or damaging DNA in normal cells can be of immense use as an adjunct in radiotherapy. We evaluated the antitumor effect of a specific set of minerals, vitamins, and amino acids (Poly-MVA) (2 mL/kg, per os), with and without radiation, against Dalton's lymphoma ascites (DLA) and Ehrlich's ascites carcinoma (EAC) cell lines that were transplanted in a solid-tumor model. Whole-body γ-radiation exposure (2 Gy) was performed using 60Co. Poly-MVA enhanced the antitumor effect of radiation when administered beforehand. Furthermore, Poly-MVA administered once daily for 2 wk, immediately after 4 Gy irradiation, protected DNA damage in peripheral blood. It also rendered protection against the radiation-induced reduction of platelet count. The unique electronic and redox properties of palladium-α-lipoic acid complex in Poly-MVA appear to be responsible for the exhibited effect. The results conclude that the antitumor-enhancing and normal cell-protective effect of Poly-MVA warrants additional studies for its potential clinical application.
Long, Guankui; Wu, Bo; Yang, Xuan; Kan, Bin; Zhou, Ye-Cheng; Chen, Li-Chuan; Wan, Xiangjian; Zhang, Hao-Li; Sum, Tze Chien; Chen, Yongsheng
2015-09-30
Both solution-processed polymers and small molecule based solar cells have achieved PCEs over 9% with the conventional device structure. However, for the practical applications of photovoltaic technology, further enhancement of both device performance and stability are urgently required, particularly for the inverted structure devices, since this architecture will probably be most promising for the possible coming commercialization. In this work, we have fabricated both conventional and inverted structure devices using the same small molecular donor/acceptor materials and compared the performance of both device structures, and found that the inverted structure based device gave significantly improved performance, the highest PCE so far for inverted structure based device using small molecules as the donor. Furthermore, the inverted device shows a remarkable stability with almost no obvious degradation after three months. Systematic device physics and charge generation dynamics studies, including optical simulation, light-intensity-dependent current-voltage experiments, photocurrent density-effective voltage analyses, transient absorption measurements, and electrical simulations, indicate that the significantly enhanced performance using inverted device is ascribed to the increasing of Jsc compared to the conventional device, which in turn is mainly attributed to the increased absorption of photons in the active layers, rather than the reduced nongeminate recombination.
A new method for enhancer prediction based on deep belief network.
Bu, Hongda; Gan, Yanglan; Wang, Yang; Zhou, Shuigeng; Guan, Jihong
2017-10-16
Studies have shown that enhancers are significant regulatory elements to play crucial roles in gene expression regulation. Since enhancers are unrelated to the orientation and distance to their target genes, it is a challenging mission for scholars and researchers to accurately predicting distal enhancers. In the past years, with the high-throughout ChiP-seq technologies development, several computational techniques emerge to predict enhancers using epigenetic or genomic features. Nevertheless, the inconsistency of computational models across different cell-lines and the unsatisfactory prediction performance call for further research in this area. Here, we propose a new Deep Belief Network (DBN) based computational method for enhancer prediction, which is called EnhancerDBN. This method combines diverse features, composed of DNA sequence compositional features, DNA methylation and histone modifications. Our computational results indicate that 1) EnhancerDBN outperforms 13 existing methods in prediction, and 2) GC content and DNA methylation can serve as relevant features for enhancer prediction. Deep learning is effective in boosting the performance of enhancer prediction.
McElearney, Kyle; Ali, Amr; Gilbert, Alan; Kshirsagar, Rashmi; Zang, Li
2016-01-01
Chemically defined media have been widely used in the biopharmaceutical industry to enhance cell culture productivities and ensure process robustness. These media, which are quite complex, often contain a mixture of many components such as vitamins, amino acids, metals and other chemicals. Some of these components are known to be sensitive to various stress factors including photodegradation. Previous work has shown that small changes in impurity concentrations induced by these potential stresses can have a large impact on the cell culture process including growth and product quality attributes. Furthermore, it has been shown to be difficult to detect these modifications analytically due to the complexity of the cell culture media and the trace level of the degradant products. Here, we describe work performed to identify the specific chemical(s) in photodegraded medium that affect cell culture performance. First, we developed a model system capable of detecting changes in cell culture performance. Second, we used these data and applied an LC-MS analytical technique to characterize the cell culture media and identify degradant products which affect cell culture performance. Riboflavin limitation and N-formylkynurenine (NFK), a tryptophan oxidation catabolite, were identified as chemicals which results in a reduction in cell culture performance. © 2015 American Institute of Chemical Engineers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blattmann, Claudia, E-mail: claudia.blattmann@med.uni-heidelberg.d; Oertel, Susanne; Ehemann, Volker
2010-09-01
Purpose: Histone deacetylase inhibitors (HDACIs) can enhance the sensitivity of cells to photon radiation treatment (XRT) by altering numerous molecular pathways. We investigated the effect of pan-HDACIs such as suberoylanilide hydroxamic acid (SAHA) on radiation response in two osteosarcoma (OS) and two rhabdomyosarcoma (RMS) cell lines. Methods and Materials: Clonogenic survival, cell cycle analysis, and apoptosis were examined in OS (KHOS-24OS, SAOS2) and RMS (A-204, RD) cell lines treated with HDACI and HDACI plus XRT, respectively. Protein expression was investigated via immunoblot analysis, and cell cycle analysis and measurement of apoptosis were performed using flow cytometry. Results: SAHA induced anmore » inhibition of cell proliferation and clonogenic survival in OS and RMS cell lines and led to a significant radiosensitization of all tumor cell lines. Other HDACI such as M344 and valproate showed similar effects as investigated in one OS cell line. Furthermore, SAHA significantly increased radiation-induced apoptosis in the OS cell lines, whereas in the RMS cell lines radiation-induced apoptosis was insignificant with and without SAHA. In all investigated sarcoma cell lines, SAHA attenuated radiation-induced DNA repair protein expression (Rad51, Ku80). Conclusion: Our results show that HDACIs enhance radiation action in OS and RMS cell lines. Inhibition of DNA repair, as well as increased apoptosis induction after exposure to HDACIs, can be mechanisms of radiosensitization by HDACIs.« less
Li, Minghua; Yan, Xiaoqin; Kang, Zhuo; Huan, Yahuan; Li, Yong; Zhang, Ruxiao; Zhang, Yue
2018-06-06
The major restraint for the commercialization of the high-performance hybrid metal halide perovskite solar cells is the long-term stability, especially at the infirm interface between the perovskite film and organic charge-transfer layer. Recently, engineering the interface between the perovskite and spiro-OMeTAD becomes an effective strategy to simultaneously improve the efficiency and stability in the perovskite solar cells. In this work, we demonstrated that introducing an interfacial polystyrene layer between the perovskite film and spiro-OMeTAD layer can effectively improve the perovskite solar cells photovoltaic performance. The inserted polystyrene layer can passivate the interface traps and defects effectively and decrease the nonradiative recombination, leading to enhanced photoluminescence intensity and carrier lifetime, without compromising the carrier extraction and transfer. Under the optimized condition, the perovskite solar cells with the polystyrene layer achieve an enhanced average power efficiency of about 19.61% (20.46% of the best efficiency) from about 17.63% with negligible current density-voltage hysteresis. Moreover, the optimized perovskite solar cells with the hydrophobic polystyrene layer can maintain about 85% initial efficiency after 2 months storage in open air conditions without encapsulation.
Investigating the performance of nitrogen-doped graphene photoanode in dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Joseph, Easter; Singh, Balbir Singh Mahinder; Mohamed, Norani Muti; Kait, Chong Fai; Saheed, Mohamed Shuaib Mohamed; Khatani, Mehboob
2016-11-01
In this paper, the atmospheric pressure chemical vapor deposition (AP-CVD) is used to synthesize graphene on a copper substrate by utilizing methane as a precursor and N-doped graphene (NDG) in the presence of ammonia. The performance of pure titanium dioxide (TiO2), TiO2/graphene, and TiO2/NDG as photoanodes in dye-sensitized solar cell (DSSC) were compared. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) showed flakes of few layers with an interrupted layer in both graphene and NDG. DSSC consist of TiO2/NDG photoanode exhibits a better enhancement due to the high conductivity of donor N in graphene which enhances the electron transportation across nanoporous TiO2.
Soft shell clams Mya arenaria with disseminated neoplasia demonstrate reverse transcriptase activity
House, M.L.; Kim, C.H.; Reno, P.W.
1998-01-01
Disseminated neoplasia (DN), a proliferative cell disorder of the circulatory system of bivalves, was first reported in oysters in 1969. Since that time, the disease has been determined to be transmissible through water-borne exposure, but the etiological agent has not been unequivocally identified. In order to determine if a viral agent, possibly a retrovirus, could be the causative agent of DN, transmission experiments were performed, using both a cell-free filtrate and a sucrose gradient-purified preparation of a cell-free filtrate of DN positive materials. Additionally, a PCR-enhanced reverse transcriptase assay was used to determine if reverse transcriptase was present in tissues or hemolymph from DN positive soft shell clams Mya arenaria. DN was transmitted to healthy clams by injection with whole DN cells, but not with cell-free flitrates prepared from either tissues from DN positive clams, or DN cells. The cell-free preparations from DN-positive tissues and hemolymph having high levels of DN cells in circulation exhibited positive reactions in the PCR-enhanced reverse transcriptase assay. Cell-free preparations of hemolymph from clams having low levels of DN (<0.1% of cells abnormal), hemocytes from normal soft shell clams, and normal soft shell clam tissues did not produce a positive reaction in the PCR enhanced reverse transcriptase assay.
Development of high-efficiency solar cells on silicon web
NASA Technical Reports Server (NTRS)
Meier, D. L.; Greggi, J.; Okeeffe, T. W.; Rai-Choudhury, P.
1986-01-01
Work was performed to improve web base material with a goal of obtaining solar cell efficiencies in excess of 18% (AM1). Efforts in this program are directed toward identifying carrier loss mechanisms in web silicon, eliminating or reducing these mechanisms, designing a high efficiency cell structure with the aid of numerical models, and fabricating high efficiency web solar cells. Fabrication techniques must preserve or enhance carrier lifetime in the bulk of the cell and minimize recombination of carriers at the external surfaces. Three completed cells were viewed by cross-sectional transmission electron microscopy (TEM) in order to investigate further the relation between structural defects and electrical performance of web cells. Consistent with past TEM examinations, the cell with the highest efficiency (15.0%) had no dislocations but did have 11 twin planes.
Li, Minghua; Yan, Xiaoqin; Kang, Zhuo; Liao, Xinqin; Li, Yong; Zheng, Xin; Lin, Pei; Meng, Jingjing; Zhang, Yue
2017-03-01
The low-cost inorganic-organic lead halide perovskite materials become particularly promising for solar cells with high photovoltaic conversion efficiency. The uniform and pinhole-free perovskite films play an important role for high-performance solar cells. We demonstrate an antisolvent treatment by controlling the PbI 2 morphology to enhance the perovskite conversion and photophysical properties, including high absorption, crystallinity, and rapid carrier transfer. The fabricated perovskite solar cells show tremendous PCE improvement to about 16.1% from 12% with less hysteresis, and retain over 90% initial PCE after 30 days in ambient and dark atmosphere. In prospect, this antisolvent treatment will be a feasible route to prepare high-quality perovskite films including favorite photophysical properties.
Zhu, Huixia; Zhang, Ye; Chen, Jianfeng; Qiu, Jiangdong; Huang, Keting; Wu, Mindan; Xia, Chunlin
2017-01-01
Mutations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) gene were recently discovered in vast majority of World Health Organization (WHO) grade II/III gliomas. This study is to understand the effects of IDH1 R132H mutation in gliomagenesis and to develop new strategies to treat glioma with IDH1 R132H mutation. Over expression of IDH1 R132H in U87MG cells was done by transfecting cells with IDH1 R132H plasmid. MTT assay, scratch repair assay and western blot were performed to study effects of IDH1 R132H mutation on cell proliferation, migration, regulating AKT-mTOR signaling pathway and cell death respectively. NADP+/NADPH and GSH quantification assays were performed to evaluate effects of IDH1 R132H mutation on the production of antioxidant NADPH and GSH. We found that over expression of IDH1 R132H mutation decreased cell proliferation consistent with previous reports; however, it increased cell migration and enhanced AKT-mTOR signaling pathway activation. Mutations in isocitrate dehydrogenase (IDH) 1 also change the function of the enzymes and cause them to produce 2-hydroxyglutarate and not produce NADPH. We tested the level of NADPH and GSH and demonstrated that IDH1 R132H mutant stable cells had significantly low NADPH and GSH level compared to control or IDH1 wild type stable cells. The reduced antioxidants (NADPH and GSH) sensitized U87MG cells with IDH R132H mutant to 5-FU treatment. Our study highlights the important role of IHD1 R132H mutant in up- regulating AKT-mTOR signaling pathway and enhancing cell migration. Furthermore, we demonstrate that IDH1 R132H mutation affects cellular redox status and sensitizes gliomas cells with IDH1 R132H mutation to 5FU treatment.
High performance direct methanol fuel cell with thin electrolyte membrane
NASA Astrophysics Data System (ADS)
Wan, Nianfang
2017-06-01
A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.
NASA Astrophysics Data System (ADS)
Wang, Fei; Yang, Xiao-Yu; Niu, Meng-si; Feng, Lin; Lv, Cheng-kun; Zhang, Kang-ning; Bi, Peng-qing; Yang, Junliang; Hao, Xiao-Tao
2018-07-01
Irradiation of lanthanide-doped upconversion nanoparticles with infrared light can lead to the emission of visible light, which is subsequently absorbed by the organic photoactive layer resulting in the performance enhancement of organic solar cells (OSCs). In this work, OSCs based on poly (3-hexylthiophene) (P3HT) and Phenyl C61 butyric acid methyl ester (PC61BM) blending ytterbium(III), erbium(III) co-doped sodium yttrium fluoride (NaYF4: Yb3+, Er3+) nanoparticles were fabricated with inverted structures. The results indicated that the short current density (J sc) and fill factor were apparently enhanced from 8.60 mA cm‑2 to 9.31 mA cm‑2 and from 57.96% to 64.84%, respectively, leading to an increment of power conversion efficiency (PCE). The photocurrent improvement may have attributed to the additional absorption light generated from upconversion with 980 nm excitation. The active layers with upconversion nanoparticles were investigated to prove enhanced light harvesting, charge transport and energy transfer from upconversion nanoparticles to P3HT. A synergistic effect of broadening light harvesting, efficient energy transfer process, increased carrier mobility and enhanced exciton dissociation in the polymer bulk heterojunction may contribute to the performance enhancement.
Study on Pyroelectric Harvesters with Various Geometry
Siao, An-Shen; Chao, Ching-Kong; Hsiao, Chun-Ching
2015-01-01
Pyroelectric harvesters convert time-dependent temperature variations into electric current. The appropriate geometry of the pyroelectric cells, coupled with the optimal period of temperature fluctuations, is key to driving the optimal load resistance, which enhances the performance of pyroelectric harvesters. The induced charge increases when the thickness of the pyroelectric cells decreases. Moreover, the induced charge is extremely reduced for the thinner pyroelectric cell when not used for the optimal period. The maximum harvested power is achieved when a 100 μm-thick PZT (Lead zirconate titanate) cell is used to drive the optimal load resistance of about 40 MΩ. Moreover, the harvested power is greatly reduced when the working resistance diverges even slightly from the optimal load resistance. The stored voltage generated from the 75 μm-thick PZT cell is less than that from the 400 μm-thick PZT cell for a period longer than 64 s. Although the thinner PZT cell is advantageous in that it enhances the efficiency of the pyroelectric harvester, the much thinner 75 μm-thick PZT cell and the divergence from the optimal period further diminish the performance of the pyroelectric cell. Therefore, the designers of pyroelectric harvesters need to consider the coupling effect between the geometry of the pyroelectric cells and the optimal period of temperature fluctuations to drive the optimal load resistance. PMID:26270666
Ultrasonic enhancement of battery diffusion.
Hilton, R; Dornbusch, D; Branson, K; Tekeei, A; Suppes, G J
2014-03-01
It has been demonstrated that sonic energy can be harnessed to enhance convection in Galvanic cells during cyclic voltammetry; however, the practical value of this approach is limited due to the lack of open volumes for convection patterns to develop in most batteries. This study evaluates the ability of ultrasonic waves to enhance diffusion in membrane separators commonly used in sandwich-architecture batteries. Studies include the measuring of open-circuit performance curves to interpret performances in terms of reductions in concentration overpotentials. The use of a 40 kHz sonicator bath can consistently increase the voltage of the battery and reduce overpotential losses up to 30%. This work demonstrates and quantifies battery enhancement due to enhanced diffusion made possible with ultrasonic energy. Copyright © 2013 Elsevier B.V. All rights reserved.
Xu, Jingting; Hu, Hong; Dai, Yang
The identification of enhancers is a challenging task. Various types of epigenetic information including histone modification have been utilized in the construction of enhancer prediction models based on a diverse panel of machine learning schemes. However, DNA methylation profiles generated from the whole genome bisulfite sequencing (WGBS) have not been fully explored for their potential in enhancer prediction despite the fact that low methylated regions (LMRs) have been implied to be distal active regulatory regions. In this work, we propose a prediction framework, LMethyR-SVM, using LMRs identified from cell-type-specific WGBS DNA methylation profiles and a weighted support vector machine learning framework. In LMethyR-SVM, the set of cell-type-specific LMRs is further divided into three sets: reliable positive, like positive and likely negative, according to their resemblance to a small set of experimentally validated enhancers in the VISTA database based on an estimated non-parametric density distribution. Then, the prediction model is obtained by solving a weighted support vector machine. We demonstrate the performance of LMethyR-SVM by using the WGBS DNA methylation profiles derived from the human embryonic stem cell type (H1) and the fetal lung fibroblast cell type (IMR90). The predicted enhancers are highly conserved with a reasonable validation rate based on a set of commonly used positive markers including transcription factors, p300 binding and DNase-I hypersensitive sites. In addition, we show evidence that the large fraction of the LMethyR-SVM predicted enhancers are not predicted by ChromHMM in H1 cell type and they are more enriched for the FANTOM5 enhancers. Our work suggests that low methylated regions detected from the WGBS data are useful as complementary resources to histone modification marks in developing models for the prediction of cell-type-specific enhancers.
Method of electrode fabrication for solid oxide electrochemical cells
Jensen, R.R.
1990-11-20
A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used. 5 figs.
Method of electrode fabrication for solid oxide electrochemical cells
Jensen, Russell R.
1990-01-01
A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used.
Liu, Xinsheng; Xiao, Xun; Yang, Ye; ...
2017-05-30
Defects present in the absorber layer largely dictate photovoltaic device performance. Recently, a binary photovoltaic material, Sb 2Se 3, has drawn much attention due to its low-cost and nontoxic constituents and rapid performance promotion. So far, however, the intrinsic defects of Sb 2Se 3 remain elusive. Here in this work, through a combined theoretical and experimental investigation, we revealed that shallow acceptors, SeSb antisites, are the dominant defects in Sb 2Se 3 produced in an Se-rich environment, where deep donors, SbSe and VSe, dominate in Sb 2Se 3 produced in an Se-poor environment. We further constructed a superstrate CdS/Sb 2Semore » 3 thin-film solar cell achieving 5.76% efficiency through in situ Se compensation during Sb 2Se 3 evaporation and through careful optimization of absorber layer thickness. In conclusion, the understanding of intrinsic defects in Sb 2Se 3 film and the demonstrated success of in situ Se compensation strategy pave the way for further efficiency improvement of this very promising photovoltaic technology.« less
Microstructured Electrolyte Membranes to Improve Fuel Cell Performance
NASA Astrophysics Data System (ADS)
Wei, Xue
Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as reactant type, reagent concentration, solution pH, and reaction time. Dense apatite films were formed on palladium substrates that can serve as intermediate temperature fuel cell anodes. The novel apatite membrane structure is promising for fuel cell applications, as well as in improving the biocompatibility of orthopedic implants when coated on stainless steel or titanium substrates.
Liu, Bin; Qu, Fangshu; Chen, Wei; Liang, Heng; Wang, Tianyu; Cheng, Xiaoxiang; Yu, Huarong; Li, Guibai; Van der Bruggen, Bart
2017-11-15
In this study, the application of enhanced coagulation with persulfate/Fe(II), permanganate and ozone for Microcystis-laden water treatment was investigated. Two oxidant dosage strategies were compared in terms of the organic removal performance: a simultaneous dosing strategy (SiDS) and a successive dosing strategy (SuDS). To optimize the oxidant species, oxidant doses and oxidant dosage strategy, the zeta potential, floc size and dimension fraction, potassium release and organic removal efficiency during the coagulation of algae-laden water were systematically investigated and comprehensively discussed. Ozonation causes most severe cell lysis and reduces organic removal efficiency because it releases intracellular organics. Moreover, ozonation can cause the release of odor compounds such as 2-methylisoborneol (2-MIB) and geosmin (GSM). With increasing doses, the performance of pollutant removal by coagulation enhanced by persulfate/Fe(II) or permanganate did not noticeably improve, which suggests that a low dosage of persulfate/Fe(II) and permanganate is the optimal strategy to enhance coagulation of Microcystis-laden water. The SiDS performs better than the SuDS because more Microcystis cell lysis occurs and less DOC is removed when oxidants are added before the coagulants. Copyright © 2017 Elsevier Ltd. All rights reserved.
2012-01-01
Background Versican is detected in the interstitial tissues at the invasive margins of breast carcinoma, is predictive of relapse, and negatively impacts overall survival rates. The versican G3 domain is important in breast cancer cell growth, migration and bone metastasis. However, mechanistic studies evaluating versican G3 enhanced breast cancer bone metastasis are limited. Methods A versican G3 construct was exogenously expressed in the 66c14 and the MC3T3-E1 cell line. Cells were observed through light microscopy and viability analyzed by Coulter Counter or determined with colorimetric proliferation assays. The Annexin V-FITC apoptosis detection kit was used to detect apoptotic activity. Modified Chemotactic Boyden chamber migration invasion assays were applied to observe tumor migration and invasion to bone stromal cells and MC3T3-E1 cells. Alkaline phosphatase (ALP) staining and ALP ELISA assays were performed to observe ALP activity in MC3T3-E1 cells. Results In the four mouse breast cancer cell lines 67NR, 66c14, 4T07, and 4T1, 4T1 cells expressed higher levels of versican, and showed higher migration and invasion ability to MC3T3-E1 cells and primary bone stromal cells. 4T1 conditioned medium (CM) inhibited MC3T3-E1 cell growth, and even lead to apoptosis. Only 4T1 CM prevented MC3T3-E1 cell differentiation, noted by inhibition of alkaline phosphatase (ALP) activity. We exogenously expressed a versican G3 construct in a cell line that expresses low versican levels (66c14), and observed that the G3-expressing 66c14 cells showed enhanced cell migration and invasion to bone stromal and MC3T3-E1 cells. This observation was prevented by selective EGFR inhibitor AG1478, selective MEK inhibitor PD 98059, and selective AKT inhibitor Triciribine, but not by selective JNK inhibitor SP 600125. Versican G3 enhanced breast cancer cell invasion to bone stromal cells or osteoblast cells appears to occur through enhancing EGFR/ERK or AKT signaling. G3 expressing MC3T3-E1 cells showed inhibited cell growth and cell differentiation when cultured with TGF-β1 (1 ng/ml), and expressed enhanced cell apoptosis when cultured with TNF-α (2 ng/ml). Enhanced EGFR/JNK signaling appears to be responsible for G3 enhanced osteoblast apoptosis and inhibited osteoblast differentiation. Whereas repressed expression of GSK-3β (S9P) contributes to G3 inhibited osteoblast growth. Versican G3 functionality was dependent on its EGF-like motifs. Without the structure of EGF-like repeats, the G3 domain would not confer enhancement of tumor cell migration and invasion to bone with concordant inhibition of osteoblast differentiation and promotion of osteoblast apoptosis. Conclusions Versican enhances breast cancer bone metastasis not only through enhancing tumor cell mobility, invasion, and survival in bone tissues, but also by inhibiting pre-osteoblast cell growth, differentiation, which supply favorable microenvironments for tumor metastasis. PMID:22862967
Lankford, Miles; Behm, Carolyn Z; Yeh, James; Klibanov, Alexander L; Robinson, Peter; Lindner, Jonathan R
2006-10-01
Molecular imaging with contrast-enhanced ultrasound (CEU) relies on the detection of microbubbles retained in regions of disease. The aim of this study was to determine whether microbubble attachment to cells influences their acoustic signal generation and stability. Biotinylated microbubbles were attached to streptavidin-coated plates to derive density versus intensity relations during low- and high-power imaging. To assess damping from microbubble attachment to solid or cell surfaces, in vitro imaging was performed for microbubbles charge-coupled to methacrylate spheres and for vascular cell adhesion molecule-1-targeted microbubbles attached to endothelial cells. Signal enhancement on plates increased according to acoustic power and microbubble site density up to 300 mm. Microbubble signal was reduced by attachment to solid spheres during high- and low-power imaging but was minimally reduced by attachment to endothelial cells and only at low power. Attachment of targeted microbubbles to rigid surfaces results in damping and a reduction of their acoustic signal, which is not seen when microbubbles are attached to cells. A reliable concentration versus intensity relationship can be expected from microbubble attachment to 2-dimensional surfaces until a very high site density is reached.
Wasik, Agata M; Gandy, Michael N; McIldowie, Matthew; Holder, Michelle J; Chamba, Anita; Challa, Anita; Lewis, Katie D; Young, Stephen P; Scheel-Toellner, Dagmar; Dyer, Martin J; Barnes, Nicholas M; Piggott, Matthew J; Gordon, John
2012-08-01
While 3,4-methylenedioxymethamphetamine (MDMA/'ecstasy') is cytostatic towards lymphoma cells in vitro, the concentrations required militate against its translation directly to a therapeutic in vivo. The possibility of 'redesigning the designer drug', separating desired anti-lymphoma activity from unwanted psychoactivity and neurotoxicity, was therefore mooted. From an initial analysis of MDMA analogues synthesized with a modified α-substituent, it was found that incorporating a phenyl group increased potency against sensitive, Bcl-2-deplete, Burkitt's lymphoma (BL) cells 10-fold relative to MDMA. From this lead, related analogs were synthesized with the 'best' compounds (containing 1- and 2-naphthyl and para-biphenyl substituents) some 100-fold more potent than MDMA versus the BL target. When assessed against derived lines from a diversity of B-cell tumors MDMA analogues were seen to impact the broad spectrum of malignancy. Expressing a BCL2 transgene in BL cells afforded only scant protection against the analogues and across the malignancies no significant correlation between constitutive Bcl-2 levels and sensitivity to compounds was observed. Bcl-2-deplete cells displayed hallmarks of apoptotic death in response to the analogues while BCL2 overexpressing equivalents died in a caspase-3-independent manner. Despite lymphoma cells expressing monoamine transporters, their pharmacological blockade failed to reverse the anti-lymphoma actions of the analogues studied. Neither did reactive oxygen species account for ensuing cell death. Enhanced cytotoxic performance did however track with predicted lipophilicity amongst the designed compounds. In conclusion, MDMA analogues have been discovered with enhanced cytotoxic efficacy against lymphoma subtypes amongst which high-level Bcl-2--often a barrier to drug performance for this indication--fails to protect.
Electrochemical Performance of Glucose/Oxygen Biofuel Cells Based on Carbon Nanostructures.
Koo, Min-Hye; Das, Gautam; Yoon, Hyon Hee
2016-03-01
The electrochemical performance of glucose/oxygen biofuel cells based on carbon nanostructures was investigated in the present study. Different types of carbon nanomaterials, including multi-walled carbon nanotubes (MWCNT), functionalized MWCNT (f-MWCNT), carbon nanofibers (CNF), and functionalized CNF (f-CNF) were examined for electrode fabrications. The anode for glucose/oxygen biofuel cells were prepared by sequential coating of carbon nanomaterials, charge transfer complex (CTC), glucose oxidase (GOx) and nafion membrane. The anode was then integrated with a bilirubin oxidase-immobilized cathode for the biofuel cell test. It was found that the electrochemical performance of the enzyme electrodes was remarkably enhanced by the amalgamation of carbon nanomaterials with the CTC. The biofuel cell with anode comprising of f-CNF and the cathode with MWCNT exhibited the best electrochemical performance with a maximum power density of 210 μW/cm2 at a cell voltage of 0.44 V for 20 mM glucose concentration, which is comparable with the best power density value reported earlier.
Wu, Jihuai; Li, Yan; Tang, Qunwei; Yue, Gentian; Lin, Jianming; Huang, Miaoliang; Meng, Lijian
2014-01-01
Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its clean, low-cost, high efficiency, good durability, and easy fabrication. However, enhancing the efficiency of the DSSC still is an important issue. Here we devise a bifacial DSSC based on a transparent polyaniline (PANI) counter electrode (CE). Owing to the sunlight irradiation simultaneously from the front and the rear sides, more dye molecules are excited and more carriers are generated, which results in the enhancement of short-circuit current density and therefore overall conversion efficiency. The photoelectric properties of PANI can be improved by modifying with 4-aminothiophenol (4-ATP). The bifacial DSSC with 4-ATP/PANI CE achieves a light-to-electric energy conversion efficiency of 8.35%, which is increased by ~24.6% compared to the DSSC irradiated from the front only. This new concept along with promising results provides a new approach for enhancing the photovoltaic performances of solar cells. PMID:24504117
Luo, Jianmei; Chi, Meiling; Wang, Hongyu; He, Huanhuan; Zhou, Minghua
2013-12-01
A convenient and promising alternative to surface modification of carbon mesh anode was fulfilled by electrochemical oxidation in the electrolyte of nitric acid or ammonium nitrate at ambient temperature. It was confirmed that such an anode modification method was low cost and effective not only in improving the efficiency of power generation in microbial fuel cells (MFCs) for synthetic wastewater treatment, but also helping to reduce the period for MFCs start-up. The MFCs with anode modification in electrolyte of nitric acid performed the best, achieving a Coulombic efficiency enhancement of 71 %. As characterized, the electrochemical modification resulted in the decrease of the anode potential and internal resistance but the increase of current response and nitrogen-containing and oxygen-containing functional groups on the carbon surface, which might contribute to the enhancement on the performances of MFCs.
NASA Astrophysics Data System (ADS)
Hu, Zijun; Chen, Da; Yang, Pan; Yang, Lijun; Qin, Laishun; Huang, Yuexiang; Zhao, Xiaochong
2018-05-01
In this work, high-performance inverted planar perovskite solar cells (PSCs) using sol-gel processed Y-doped NiO thin films as hole transport layer (HTL) were demonstrated. Y-doped NiO thin films containing different Y doping concentrations were successfully prepared through a simple sol-gel process. The Y doping could significantly improve the electrical conductivity of NiO thin film, and the photovoltaic performance of Y-doped NiO HTL-based PSC devices outperformed that of the pristine NiO HTL-based device. Notably, the PSC using a 5%Y-NiO HTL exhibited the champion performance with an open-circuit voltage (Voc) of 1.00 V, a short circuit current density (Jsc) of 23.82 mA cm-2, a fill factor (FF) of 68% and a power conversion efficiency (PCE) of 16.31%, resulting in a 27.62% enhancement in PCE in comparison with the NiO device. The enhanced performance of the Y-doped NiO device could be attributed to the improved hole mobility, the high quality compact active layer morphology, the more efficient charge extraction from perovskite absorber as well as the lower recombination probability of charge carriers. Thus, this work provides a simple and effective approach to improve the electrical conductivity of p-type NiO thin films for use as a promising HTL in high performance PSCs.
Dual functions of YF3:Eu3+ for improving photovoltaic performance of dye-sensitized solar cells
Wu, Jihuai; Wang, Jiangli; Lin, Jianming; Xiao, Yaoming; Yue, Gentian; Huang, Miaoliang; Lan, Zhang; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio
2013-01-01
In order to enhance the photovoltaic performance of dye-sensitized solar cell (DSSC), a novel design is demonstrated by introducing rare-earth compound europium ion doped yttrium fluoride (YF3:Eu3+) in TiO2 film in the DSSC. As a conversion luminescence medium, YF3:Eu3+ transfers ultraviolet light to visible light via down-conversion, and increases incident harvest and photocurrent of DSSC. As a p-type dopant, Eu3+ elevates the Fermi level of TiO2 film and thus heightens photovoltage of the DSSC. The conversion luminescence and p-type doping effect are demonstrated by photoluminescence spectra and Mott-Schottky plots. When the ratio of YF3:Eu3+/TiO2 in the doping layer is optimized as 5 wt.%, the light-to-electric energy conversion efficiency of the DSSC reaches 7.74%, which is increased by 32% compared to that of the DSSC without YF3:Eu3+ doping. Double functions of doped rare-earth compound provide a new route for enhancing the photovoltaic performance of solar cells. PMID:23792787
Wang, Yalin; Jiang, Yan; Bian, Cuicui; Dong, Yi; Ma, Chao; Hu, Xiaolin; Liu, Ziling
2015-09-01
Chronic myeloid leukemia (CML) is a clonal disorder characterized by excessive accumulation of myeloid cells in the peripheral blood. In the present study, to investigate the role of Hiwi in leukemogenesis, lentivirus-mediated Hiwi overexpression was performed in a CML cell line, K562 cells. Our data revealed that Hiwi protein expression was undetectable in K562 cells, and its overexpression suppressed cell proliferation, induced cell cycle arrest at G0/G1 and G2/M phases, and promoted apoptosis in K562 cells in vitro. Expression of anti-apoptotic protein, Bcl-2, was decreased in cells expressing Hiwi, whereas that of pro-apoptotic proteins, Bax, activated caspase-3, -9, and cleaved poly (ADP-ribose) polymerase were increased. Additionally, Hiwi upregulation enhanced the chemosensitivity of CML cells to daunomycin. Our study illustrates that expression deletion of Hiwi may be involved in the pathogenesis of human CML and suggests a possible role of Hiwi in regulating the cell growth, cell cycle, and apoptosis of CML cells in vitro.
Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rieken, Stefan, E-mail: Stefan.Rieken@med.uni-heidelberg.de; Habermehl, Daniel; Wuerth, Lena
2012-05-01
Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced {alpha}{sub {nu}}{beta}{sub 3} and {alpha}{sub {nu}}{beta}{sub 5} integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration onmore » both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.« less
1989-01-01
One serum exhibited a de - 1’-917 cells, no DEN-2 infection was observed gree of infection above the mean of normal se- in cell cultures in the absence...ORGANIZATION RERORT NUMBER(S) 5 MONTORNN __ ___ ____ ___ ____ i 6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL la NAME OF MONITORING ORGANIZATION...schoolchildren in Bangkok were tested for their ability to enhance dengue 2 (DEN-2) virus growth in human monocytes in vitro . Two groups of dengue-immune
The effect of altitude on cycling performance: a challenge to traditional concepts.
Hahn, A G; Gore, C J
2001-01-01
Acute exposure to moderate altitude is likely to enhance cycling performance on flat terrain because the benefit of reduced aerodynamic drag outweighs the decrease in maximum aerobic power [maximal oxygen uptake (VO2max)]. In contrast, when the course is mountainous, cycling performance will be reduced at moderate altitude. Living and training at altitude, or living in an hypoxic environment (approximately 2500 m) but training near sea level, are popular practices among elite cyclists seeking enhanced performance at sea level. In an attempt to confirm or refute the efficacy of these practices, we reviewed studies conducted on highly-trained athletes and, where possible, on elite cyclists. To ensure relevance of the information to the conditions likely to be encountered by cyclists, we concentrated our literature survey on studies that have used 2- to 4-week exposures to moderate altitude (1500 to 3000 m). With acclimatisation there is strong evidence of decreased production or increased clearance of lactate in the muscle, moderate evidence of enhanced muscle buffering capacity (beta m) and tenuous evidence of improved mechanical efficiency (ME) of cycling. Our analysis of the relevant literature indicates that, in contrast to the existing paradigm, adaptation to natural or simulated moderate altitude does not stimulate red cell production sufficiently to increase red cell volume (RCV) and haemoglobin mass (Hb(mass)). Hypoxia does increase serum erthyropoietin levels but the next step in the erythropoietic cascade is not clearly established; there is only weak evidence of an increase in young red blood cells (reticulocytes). Moreover, the collective evidence from studies of highly-trained athletes indicates that adaptation to hypoxia is unlikely to enhance sea level VO2max. Such enhancement would be expected if RCV and Hb(mass) were elevated. The accumulated results of 5 different research groups that have used controlled study designs indicate that continuous living and training at moderate altitude does not improve sea level performance of high level athletes. However, recent studies from 3 independent laboratories have consistently shown small improvements after living in hypoxia and training near sea level. While other research groups have attributed the improved performance to increased RCV and VO2max, we cite evidence that changes at the muscle level (beta m and ME) could be the fundamental mechanism. While living at altitude but training near sea level may be optimal for enhancing the performance of competitive cyclists, much further research is required to confirm its benefit. If this benefit does exist, it probably varies between individuals and averages little more than 1%.
NASA Astrophysics Data System (ADS)
Chadel, Meriem; Chadel, Asma; Moustafa Bouzaki, Mohammed; Aillerie, Michel; Benyoucef, Boumediene; Charles, Jean-Pierre
2017-11-01
Performances of ZnO/ZnS/CZTSSe polycrystalline thin film solar cells (Copper Zinc Tin Sulphur Selenium-solar cell) were simulated for different thicknesses of the absorber and ZnS buffer layers. Simulations were performed with SCAPS (Solar Cell Capacitance Simulator) software, starting with actual parameters available from industrial data for commercial cells processing. The influences of the thickness of the various layers in the structure of the solar cell and the gap profile of the CZTSSe absorber layer on the performance of the solar cell were studied in detail. Through considerations of recent works, we discuss possible routes to enhance the performance of CZTSSe solar cells towards a higher efficiency level. Thus, we found that for one specific thickness of the absorber layer, the efficiency of the CZTSSe solar cell can be increased when a ZnS layer replaces the usual CdS buffer layer. On the other hand, the efficiency of the solar cell can be also improved when the absorber layer presents a grad-gap. In this case, the maximum efficiency for the CZTSSe cell was found equal to 13.73%.
Goldberg, Jenna D.; Yuan, Jianda; Koehne, Guenther; Lechner, Lauren; Papadopoulos, Esperanza B.; Young, James W.; Jakubowski, Ann A.; Zaidi, Bushra; Gallardo, Humilidad; Liu, Cailian; Rasalan, Teresa; Wolchok, Jedd D.; Croughs, Therese; Morre, Michel; Devlin, Sean M.; van den Brink, Marcel R. M.
2012-01-01
Delays in immune recovery after allogeneic hematopoietic stem cell transplantation (allo-HSCT) are associated with increased risks of infection and relapse. IL-7 has a central role in T-cell development and survival and enhances immune recovery in murine models of allo-HSCT. We performed a phase 1 trial of r-hIL-7 (CYT107) in recipients of T-cell depleted allo-HSCTs. Twelve patients were treated with escalating doses of r-hIL-7 administered weekly for 3 weeks. The study drug was well tolerated with only one patient developing acute skin GVHD. At baseline, patients were profoundly lymphopenic. CYT107 induced a doubling in CD4+ and CD8+ T cells. The main effect of IL-7 was an expansion of effector memory T cells, the predominant subset identified in our patients. There was no significant effect on CD4+CD25+FoxP3+ T cells, NK, or B cells. Importantly, we not only saw quantitative increases in T cells after a short course of IL-7 but also demonstrated an increase in functional T cells, including viral-specific T cells that recognize CMV. Enhanced TCR diversity was also observed after treatment. Our results indicate that r-hIL-7 can enhance immune recovery after a T cell–depleted allo-HSCT without causing significant GVHD or other serious toxicity (www.clinicaltrials.gov; NCT00684008). PMID:23012326
Wang, Buhai; Ge, Yizhi; Gu, Xiang
2016-10-06
Assess the effects of tumor necrosis factor-α (TNF-α) in enhancing the radiosensitivity of esophageal cancer cell line in vitro. Three esophageal cancer cell line cells were exposed to X-ray with or without TNF-α treatment. MTT assay was used to evaluate the cell growth curve, and flow cytometry was performed to assess the cell apoptosis. The radiosensitizing effects of TNF-α were detected by cell colony formation assay. Western blotting was applied to observe the expression of NF-κB and caspase-3 protein in the exposed cells. Our results indicated that cellular inhibition rate increased over time, the strongest is combined group (P < 0.05). Western blotting showed that the decline expression of NF-κB protein was stated between only rhTNF-α and only X-ray radiation group and the maximum degree was manifested in combined group. Caspase-3 protein content expression just works opposite. Three kinds of cells in the NF-κB protein were similar without rhTNF-α. Then SEG1 NF-κB protein content was reduced more than other two kinds. We concluded that the cells treated with TNF-α showed significantly suppressed cell proliferation, increasing the cell apoptosis, and caspase-3 protein expression after X-ray exposure. TNF-α can enhance the radiosensitivity of esophageal cancer to enhancing the effect of the former.
NASA Astrophysics Data System (ADS)
Ran, Huili; Fan, Jiajie; Zhang, Xiaoli; Mao, Jing; Shao, Guosheng
2018-02-01
Novel double-layer films were prepared and applied to dye-sensitized solar cells (DSSCs) using commercial TiO2 nanoparticles as a bonding underlayer and noble metal (Au and Ag) nanoparticles (NP) and nanowires (NW) incorporated to hybrid TiO2 composites, consisting of 3 dimensional (3D) hierarchical microspheres, 3D hollow spheres, 2 dimensional (2D) nanosheets and commercial P25 nanoparticles, as multifunctional light scattering overlayer. The influence of Au NP, Ag NP, Au NW, and Ag NW on of microstructures of the film electrodes and the photovoltaic (PV) performances of DSSCs was investigated. The result revealed that the ranges and intensity of sunlight absorption, the photo capture ability for dye molecules of the hybrid nanocomposite film electrodes, and the photoelectric conversion efficiency (PCE) of the cells were all significantly enhanced due to the plasmonic effect of the noble metal nanostructures. All composite DSSCs with noble metal nanostructures have higher PCE than the pure TiO2 solar cell. This is attributed the improved electron transport of the noble metal nanostructures, and the improvement of light absorption because of their local surface plasmon resonance (LSPR) effect. Under optical conditions, a PCE of 5.74% was obtained in the TiO2-AgNW DSSC, representing a 25.3% enhancement compared to a reference solar cell based on pure TiO2 film (4.58%). The main reason of the advancement is the improved electron transport of AgNW, the light absorption enhancement on account of the LSPR effect of AgNW, and increased light scattering due to the incorporation of the large one dimensional AgNWs within the photo-anode.
Narayanan, Remya; Das, Amrita; Deepa, Melepurath; Srivastava, Avanish Kumar
2013-12-02
A new design for a quasi-solid-state Forster resonance energy transfer (FRET) enabled solar cell with unattached Lucifer yellow (LY) dye molecules as donors and CdS/CdSe quantum dots (QDs) tethered to titania (TiO2 ) as acceptors is presented. The Forster radius is experimentally determined to be 5.29 nm. Sequential energy transfer from the LY dye to the QDs and electron transfer from the QDs to TiO2 is followed by fluorescence quenching and electron lifetime studies. Cells with a donor-acceptor architecture (TiO2 /CdS/CdSe/ZnS-LY/S(2-)-multi-walled carbon nanotubes) show a maximum incident photon-to-current conversion efficiency of 53 % at 530 nm. This is the highest efficiency among Ru-dye free FRET-enabled quantum dot solar cells (QDSCs), and is much higher than the donor or acceptor-only cells. The FRET-enhanced solar cell performance over the majority of the visible spectrum paves the way to harnessing the untapped potential of the LY dye as an energy relay fluorophore for the entire gamut of dye sensitized, organic, or hybrid solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
KHYG-1, a model for the study of enhanced natural killer cell cytotoxicity.
Suck, Garnet; Branch, Donald R; Smyth, Mark J; Miller, Richard G; Vergidis, Joanna; Fahim, Soad; Keating, Armand
2005-10-01
To compare the cytotoxicity of KHYG-1 with other natural killer (NK)/NK T-cell lines and identify molecules that may be associated with enhanced cytotoxicity, thereby eventually leading to improved NK cell-mediated cancer immunotherapy. NK/NK T-cell lines KHYG-1, NK-92, YT, and SNT-8 were compared with a novel flow cytometric cytotoxicity assay under different culture conditions. Transcription, expression, and phosphorylation studies were performed using polymerase chain reaction sequence-specific primers, reverse transcription polymerase chain reaction, immunoblotting, and flow cytometry. KHYG-1 is a highly cytotoxic cell line, exceeding the cytolytic capacity of the other cell lines against K562. KHYG-1 is also highly cytotoxic against the leukemia cell lines EM2, EM3, and HL60. The novel activation receptor NKp44 and its adaptor, DAP12, NKG2D, and constitutively phosphorylated ERK2 may be associated with the enhanced cytotoxicity of KHYG-1. This cell line most likely mediates cytolysis by granzyme M (but not granzymes A and B) together with perforin, which is constitutively fully cleaved to the 60-kD form, in contrast to the other cell lines. KHYG-1 is a valuable model for the study of enhanced cytotoxicity by NK cells. In addition to the activation of NKp44, KHYG-1 may induce apoptosis of tumor cells by the newly described granzyme M/perforin pathway. Targeted modifications of effector molecules demonstrated in this model could generate NK cells with even greater killing ability that may be particularly attractive for clinical application. Moreover, our demonstration of greater cytotoxicity of KHYG-1 versus NK-92 cells, already in clinical trials, suggests a direct therapeutic role for KHYG-1.
Enhancement of P53-Mutant Human Colorectal Cancer Cells Radiosensitivity by Flavonoid Fisetin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Wenshu; Lee Yijang; Yu Yichu
Purpose: The aim of this study was to investigate whether fisetin is a potential radiosensitizer for human colorectal cancer cells, which are relatively resistant to radiotherapy. Methods and Materials: Cell survival was examined by clonogenic survival assay, and DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The effects of treatments on cell cycle distribution and apoptosis were examined by flow cytometry. Western blot analysis was performed to ascertain the protein levels of {gamma}-H2AX, phospho-Chk2, active caspase-3, PARP cleavage, phospho-p38, phospho-AKT, and phospho-ERK1/2. Results: Fisetin pretreatment enhanced the radiosensitivity of p53-mutant HT-29 human colorectal cancer cellsmore » but not human keratocyte HaCaT cells; it also prolonged radiation-induced G{sub 2}/M arrest, enhanced radiation-induced cell growth arrest in HT-29 cells, and suppressed radiation-induced phospho-H2AX (Ser-139) and phospho-Chk2 (Thr-68) in p53-mutant HT-29 cells. Pretreatment with fisetin enhanced radiation-induced caspase-dependent apoptosis in HT-29 cells. Fisetin pretreatment augmented radiation-induced phosphorylation of p38 mitogen-activated protein kinase, which is involved in caspase-mediated apoptosis, and SB202190 significantly reduced apoptosis and radiosensitivity in fisetin-pretreated HT-29 cells. By contrast, both phospho-AKT and phospho-ERK1/2, which are involved in cell proliferation and antiapoptotic pathways, were suppressed after irradiation combined with fisetin pretreatment. Conclusions: To our knowledge, this study is the first to provide evidence that fisetin exerts a radiosensitizing effect in p53-mutant HT-29 cells. Fisetin could potentially be developed as a novel radiosensitizer against radioresistant human cancer cells.« less
Detection of mast cell secretion by using surface enhanced Raman scattering
NASA Astrophysics Data System (ADS)
Li, Juan; Li, Ren; Zheng, Liqin; Wang, Yuhua; Xie, Shusen; Lin, Juqiang
2016-10-01
Acupuncture can cause a remarkable increase in degranulation of the mast cells, which has attracted the interest of researchers since the 1980s. Surface-enhanced Raman scattering (SERS) could obtain biochemical information with high sensitivity and specificity. In this study, SERS was used to detect the degree of degranulation of mast cells according to different incubate time. Mast cells was incubated with culture medium for 0 h, 12 h and 24 h, then centrifuge the culture medium, decant the supernatant, and discard the mast cell. SERS was performed to obtain the biochemical fingerprinting signatures of the centrifuged medium. The spectra data are then analyzed by spectral peaks attribution and the principal component analysis (PCA). The measured Raman spectra of the two groups were separated well by PCA. It indicated that mast cells had secreted some substances into cultured medium though degranulation did not happen.
Durability evaluation of reversible solid oxide cells
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyu; O'Brien, James E.; O'Brien, Robert C.; Housley, Gregory K.
2013-11-01
An experimental investigation on the performance and durability of single solid oxide cells (SOCs) is under way at the Idaho National Laboratory. Reversible operation of SOCs includes electricity generation in the fuel cell mode and hydrogen generation in the electrolysis mode. Degradation is a more significant issue when operating SOCs in the electrolysis mode. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOCs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. Cells were obtained from four industrial partners. Cells from Ceramatec Inc. and Materials and Systems Research Inc. (MSRI) showed improved durability in electrolysis mode compared to previous stack tests. Cells from Saint Gobain Advanced Materials Inc. (St. Gobain) and SOFCPower Inc. demonstrated stable performance in the fuel cell mode, but rapid degradation in the electrolysis mode, especially at high current density. Electrolyte-electrode delamination was found to have a significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the electrode microstructure helped to mitigate degradation. Polarization scans and AC impedance measurements were performed during the tests to characterize cell performance and degradation.
Jia, Tao; Sun, Chen; Xu, Rongguo; Chen, Zhiming; Yin, Qingwu; Jin, Yaocheng; Yip, Hin-Lap; Huang, Fei; Cao, Yong
2017-10-18
A series of naphthalene diimide (NDI) based n-type conjugated polymers with amino-functionalized side groups and backbones were synthesized and used as cathode interlayers (CILs) in polymer and perovskite solar cells. Because of controllable amine side groups, all the resulting polymers exhibited distinct electronic properties such as oxidation potential of side chains, charge carrier mobilities, self-doping behaviors, and interfacial dipoles. The influences of the chemical variation of amine groups on the cathode interfacial effects were further investigated in both polymer and perovskite solar cells. We found that the decreased electron-donating property and enhanced steric hindrance of amine side groups substantially weaken the capacities of altering the work function of the cathode and trap passivation of the perovskite film, which induced ineffective interfacial modifications and declining device performance. Moreover, with further improvement of the backbone design through the incorporation of a rigid acetylene spacer, the resulting polymers substantially exhibited an enhanced electron-transporting property. Upon use as CILs, high power conversion efficiencies (PCEs) of 10.1% and 15.2% were, respectively, achieved in polymer and perovskite solar cells. Importantly, these newly developed n-type polymers were allowed to be processed over a broad thickness range of CILs in photovoltaic devices, and a prominent PCE of over 8% for polymer solar cells and 13.5% for perovskite solar cells can be achieved with the thick interlayers over 100 nm, which is beneficial for roll-to-roll coating processes. Our findings contribute toward a better understanding of the structure-performance relationship between CIL material design and solar cell performance, and provide important insights and guidelines for the design of high-performance n-type CIL materials for organic and perovskite optoelectronic devices.
Demonstration of landfill gas enhancement techniques in landfill simulators
NASA Astrophysics Data System (ADS)
Walsh, J. J.; Vogt, W. G.
1982-02-01
Various techniques to enhance gas production in sanitary landfills were applied to landfill simulators. These techniques include (1) accelerated moisture addition, (2) leachate recycling, (3) buffer addition, (4) nutrient addition, and (5) combinations of the above. Results are compiled through on-going operation and monitoring of sixteen landfill simulators. These test cells contain about 380 kg of municipal solid waste. Quantities of buffer and nutrient materials were placed in selected cells at the time of loading. Water is added to all test cells on a monthly basis; leachate is withdrawn from all cells (and recycled on selected cells) also on a monthly basis. Daily monitoring of gas volumes and refuse temperatures is performed. Gas and leachate samples are collected and analyzed on a monthly basis. Leachate and gas quality and quantity reslts are presented for the first 18 months of operation.
Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D.; ...
2015-12-07
Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from themore » OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. Lastly, these results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.« less
Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D; Nykypanchuk, Dmytro; Nam, Chang-Yong
2016-03-21
Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from the OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. These results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.
Shen, Yu-Tang; Liu, Jheng-Jie; You, Bang-Jin; Ho, Chun-Hung
2017-01-01
This paper demonstrates the application of a broadband luminescent downshifting (LDS) layer with multiple species of europium (Eu)-doped silicate phosphors using spin-on film technique to enhance the photovoltaic efficiency of crystalline silicon solar cells. The surface morphology of the deposited layer was examined using a scanning electron microscope (SEM). The chemical composition of the Eu-doped silicate phosphors was analyzed using energy-dispersive X-ray spectroscopy (EDS). The fluorescence emission of the Eu-doped silicate phosphors was characterized using photoluminescence (PL) measurements at room temperature. We also compared the optical reflectance and external quantum efficiency (EQE) response of cells with combinations of various Eu-doped phosphors species. The cell coated with two species of Eu-doped phosphors achieved a conversion efficiency enhancement (∆η) of 19.39%, far exceeding the ∆η = 15.08% of the cell with one species of Eu-doped phosphors and the ∆η = 8.51% of the reference cell with the same silicate layer without Eu-doped phosphors. PMID:29065487
Cardiac Stem Cell Hybrids Enhance Myocardial Repair
Quijada, Pearl; Salunga, Hazel T.; Hariharan, Nirmala; Cubillo, Jonathan D.; El-Sayed, Farid G.; Moshref, Maryam; Bala, Kristin M.; Emathinger, Jacqueline M.; La Torre, Andrea De; Ormachea, Lucia; Alvarez, Roberto; Gude, Natalie A.; Sussman, Mark A.
2015-01-01
Rationale Dual cell transplantation of cardiac progenitor cells (CPCs) and mesenchymal stem cells (MSCs) after infarction improves myocardial repair and performance in large animal models relative to delivery of either cell population. Objective To demonstrate that CardioChimeras (CCs) formed by fusion between CPCs and MSCs have enhanced reparative potential in a mouse model of myocardial infarction relative to individual stem cells or combined cell delivery. Methods and Results Two distinct and clonally derived CCs, CC1 and CC2 were utilized for this study. CCs improved left ventricular anterior wall thickness (AWT) at 4 weeks post injury, but only CC1 treatment preserved AWT at 18 weeks. Ejection fraction was enhanced at 6 weeks in CCs, and functional improvements were maintained in CCs and CPC + MSC groups at 18 weeks. Infarct size was decreased in CCs, whereas CPC + MSC and CPC parent groups remained unchanged at 12 weeks. CCs exhibited increased persistence, engraftment, and expression of early commitment markers within the border zone relative to combinatorial and individual cell population-injected groups. CCs increased capillary density and preserved cardiomyocyte size in the infarcted regions suggesting CCs role in protective paracrine secretion. Conclusions CCs merge the application of distinct cells into a single entity for cellular therapeutic intervention in the progression of heart failure. CCs are a novel cell therapy that improves upon combinatorial cell approaches to support myocardial regeneration. PMID:26228030
Baek, Eric; Lee, Jae Seong; Lee, Gyun Min
2018-06-25
3-Methyladenine (3-MA) is a chemical additive that enhances the specific productivity (q p ) in recombinant Chinese hamster ovary (rCHO) cell lines. Different from its widely known function of inhibiting autophagy, 3-MA has instead shown to increase autophagic flux in various rCHO cell lines. Thus, the mechanism by which 3-MA enhances the q p requires investigation. To evaluate the effect of 3-MA on transcriptome dynamics in rCHO cells, RNA-seq was performed with Fc-fusion protein-producing rCHO cells treated with 3-MA. By analyzing genes that were differentially expressed following the addition of 3-MA during culture, the role of 3-MA in the biological processes of rCHO cells was identified. One pathway markedly influenced by the addition of 3-MA was the unfolded protein response (UPR). Having a close relationship with autophagy, the UPR reestablishes protein folding homeostasis under endoplasmic reticulum (ER) stress. The addition of 3-MA increased the expression of key regulators of the UPR, such as Atf4, Ddit3, and Creb3l3, further supporting the idea that the enhancement of ER capacity acts as a key in increasing the q p . Consequently, the downstream effectors of UPR, which include autophagy-promoting genes, were upregulated as well. Hence, the role of 3-MA in increasing UPR pathway could have made a salient contribution to the increased autophagic flux in rCHO cells. Taken together, transcriptome analysis improved the understanding of the role of 3-MA in gene expression dynamics in rCHO cells and its mechanism in enhancing the q p . This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
He, Yeyuan; Liu, Chunyu; Li, Jinfeng; Zhang, Xinyuan; Li, Zhiqi; Shen, Liang; Guo, Wenbin; Ruan, Shengping
2015-07-29
This Research Article describes a cooperative plasmonic effect on improving the performance of organic solar cells. When Au nanorods(NRs) are incorporated into the active layers, the designed project shows superior enhanced light absorption behavior comparing with control devices, which leads to the realization of organic solar cell with power conversion efficiency of 6.83%, accounting for 18.9% improvement. Further investigations unravel the influence of plasmonic nanostructures on light trapping, exciton generation, dissociation, and charge recombination and transport inside the thin films devices. Moreover, the introduction of high-conductivity Au NRs improves electrical conductivity of the whole device, which contributes to the enhanced fill factor.
Nanosurface design of dental implants for improved cell growth and function
NASA Astrophysics Data System (ADS)
Pan, Hsu-An; Hung, Yao-Ching; Chiou, Jin-Chern; Tai, Shih-Ming; Chen, Hsin-Hung; Huang, G. Steven
2012-08-01
A strategy was proposed for the topological design of dental implants based on an in vitro survey of optimized nanodot structures. An in vitro survey was performed using nanodot arrays with dot diameters ranging from 10 to 200 nm. MG63 osteoblasts were seeded on nanodot arrays and cultured for 3 days. Cell number, percentage undergoing apoptotic-like cell death, cell adhesion and cytoskeletal organization were evaluated. Nanodots with a diameter of approximately 50 nm enhanced cell number by 44%, minimized apoptotic-like cell death to 2.7%, promoted a 30% increase in microfilament bundles and maximized cell adhesion with a 73% increase in focal adhesions. An enhancement of about 50% in mineralization was observed, determined by von Kossa staining and by Alizarin Red S staining. Therefore, we provide a complete range of nanosurfaces for growing osteoblasts to discriminate their nanoscale environment. Nanodot arrays present an opportunity to positively and negatively modulate cell behavior and maturation. Our results suggest a topological approach which is beneficial for the design of dental implants.
Enhanced conversion efficiency in wide-bandgap GaNP solar cells
Sukrittanon, Supanee; Liu, Ren; Ro, Yun Goo; ...
2015-10-12
In this study, we demonstrate –2.05 eV dilute nitride GaNP solar cells on GaP substrates for potential use as the top junction in dual-junction integrated cells on Si. By adding a small amount of N into indirect-bandgap GaP, GaNP has several extremely important attributes: a direct-bandgap that is also tunable, and easily attained lattice-match with Si. Our best GaNP solar cell ([N] –1.8%, E g –2.05 eV) achieves an efficiency of 7.9%, even in the absence of a window layer. This GaNP solar cell's efficiency is 3× higher than the most efficient GaP solar cell to date and higher thanmore » other solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance are demonstrated.« less
NASA Technical Reports Server (NTRS)
Wirth, J. J.; Kierszenbaum, F.; Sonnenfeld, G.; Zlotnik, A.
1985-01-01
Results are reported from a study of the influence gamma interferon (GIFN) and interleukin 2 (IL2) have on the capability of P388D1 cells and mouse resident peritoneal macrophages (MPM) to attach to the blood-resident parasites Trypanosoma cruzi and kill them. Cultures of trypomastigote forms of the Tulahuen strain of T. cruzi grown in bovine serum were introduced into peritoneal cells of mice, along with P388D1 cells incubated with GIFN, IL2 and both. Control cells were also maintained. Statistical analysis were then performed on data on counts of the number of dead T. Cruzi cells. The GIFN enhanced the interaction of MPM and P388D1 cells with the surface of T. Cruzi, provided the interaction was given over 12 hr to take place. A depression of the cytotoxicity of P388D1 cells was attributed to mediation by H2O2, an effect partially offset by incubation with the lymphokine GIFN.
Efficient CsF interlayer for high and low bandgap polymer solar cell
NASA Astrophysics Data System (ADS)
Mitul, Abu Farzan; Sarker, Jith; Adhikari, Nirmal; Mohammad, Lal; Wang, Qi; Khatiwada, Devendra; Qiao, Qiquan
2018-02-01
Low bandgap polymer solar cells have a great deal of importance in flexible photovoltaic market to absorb sun light more efficiently. Efficient wide bandgap solar cells are always available in nature to absorb visible photons. The development and incorporation of infrared photovoltaics (IR PV) with wide bandgap solar cells can improve overall solar device performance. Here, we have developed an efficient low bandgap polymer solar cell with CsF as interfacial layer in regular structure. Polymer solar cell devices with CsF shows enhanced performance than Ca as interfacial layer. The power conversion efficiency of 4.5% has been obtained for PDPP3T based polymer solar cell with CsF as interlayer. Finally, an optimal thickness with CsF as interfacial layer has been found to improve the efficiency in low bandgap polymer solar cells.
Stem cells--clinical application and perspectives.
Brehm, Michael; Zeus, Tobias; Strauer, Bodo Eckehard
2002-11-01
Augmentation of myocardial performance in experimental models of therapeutic infarction and heart failure has been achieved by transplantation of exogenous cells into damaged myocardium. The quest for suitable donor cells has prompted research into the use of both embryonic stem cells and adult somatic stem cells. Recently, there has been a growing body of evidence that multipotent somatic stem cells in adult bone marrow exhibit tremendous functional plasticity and can reprogram in a new environmental tissue niche to give rise to cell lineages specific for new organ site. This phenomenon has made huge impact on myocardial biology, while multipotent adult bone marrow hematopoeitic stem cells and mesechymal stem cells can repopulate infarcted rodent myocardium and differentiate into both cardiomyocytes and new blood vessels. These data, coupled with the identification of a putative primitive cardiac stem cell population in the adult human heart, may open the way for novel therapeutic modalities for enhancing myocardial performance and treating heart failure.
Wang, Ya-Qiong; Xu, Shou-Bin; Deng, Jian-Guo
2017-01-01
The interfacial compatibility between compact TiO2 and perovskite layers is critical for the performance of planar heterojunction perovskite solar cells (PSCs). A compact TiO2 film employed as an electron-transport layer (ETL) was modified using 3-aminopropyl trimethoxy silane (APMS) hydrolysate. The power conversion efficiency (PCE) of PSCs composed of an APMS-hydrolysate-modified TiO2 layer increased from 13.45 to 15.79%, which was associated with a significant enhancement in the fill factor (FF) from 62.23 to 68.04%. The results indicate that APMS hydrolysate can enhance the wettability of γ-butyrolactone (GBL) on the TiO2 surface, form a perfect CH3NH3PbI3 film, and increase the recombination resistance at the interface. This work demonstrates a simple but efficient method to improve the TiO2/perovskite interface that can be greatly beneficial for developing high-performance PSCs. PMID:29308238
NASA Astrophysics Data System (ADS)
Wang, Ya-Qiong; Xu, Shou-Bin; Deng, Jian-Guo; Gao, Li-Zhen
2017-12-01
The interfacial compatibility between compact TiO2 and perovskite layers is critical for the performance of planar heterojunction perovskite solar cells (PSCs). A compact TiO2 film employed as an electron-transport layer (ETL) was modified using 3-aminopropyl trimethoxy silane (APMS) hydrolysate. The power conversion efficiency (PCE) of PSCs composed of an APMS-hydrolysate-modified TiO2 layer increased from 13.45 to 15.79%, which was associated with a significant enhancement in the fill factor (FF) from 62.23 to 68.04%. The results indicate that APMS hydrolysate can enhance the wettability of γ-butyrolactone (GBL) on the TiO2 surface, form a perfect CH3NH3PbI3 film, and increase the recombination resistance at the interface. This work demonstrates a simple but efficient method to improve the TiO2/perovskite interface that can be greatly beneficial for developing high-performance PSCs.
Wang, Ya-Qiong; Xu, Shou-Bin; Deng, Jian-Guo; Gao, Li-Zhen
2017-12-01
The interfacial compatibility between compact TiO 2 and perovskite layers is critical for the performance of planar heterojunction perovskite solar cells (PSCs). A compact TiO 2 film employed as an electron-transport layer (ETL) was modified using 3-aminopropyl trimethoxy silane (APMS) hydrolysate. The power conversion efficiency (PCE) of PSCs composed of an APMS-hydrolysate-modified TiO 2 layer increased from 13.45 to 15.79%, which was associated with a significant enhancement in the fill factor (FF) from 62.23 to 68.04%. The results indicate that APMS hydrolysate can enhance the wettability of γ-butyrolactone (GBL) on the TiO 2 surface, form a perfect CH 3 NH 3 PbI 3 film, and increase the recombination resistance at the interface. This work demonstrates a simple but efficient method to improve the TiO 2 /perovskite interface that can be greatly beneficial for developing high-performance PSCs.
Enhancing the Photovoltaic Performance of Perovskite Solar Cells with a Down-Conversion Eu-Complex.
Jiang, Ling; Chen, Wangchao; Zheng, Jiawei; Zhu, Liangzheng; Mo, Li'e; Li, Zhaoqian; Hu, Linhua; Hayat, Tasawar; Alsaedi, Ahmed; Zhang, Changneng; Dai, Songyuan
2017-08-16
Organometal halide perovskite solar cells (PSCs) have shown high photovoltaic performance but poor utilization of ultraviolet (UV) irradiation. Lanthanide complexes have a wide absorption range in the UV region and they can down-convert the absorbed UV light into visible light, which provides a possibility for PSCs to utilize UV light for higher photocurrent, efficiency, and stability. In this study, we use a transparent luminescent down-converting layer (LDL) of Eu-4,7-diphenyl-1,10-phenanthroline (Eu-complex) to improve the light utilization efficiency of PSCs. Compared with the uncoated PSC, the PSC coated with Eu-complex LDL on the reverse of the fluorine-doped tin oxide glass displayed an enhancement of 11.8% in short-circuit current density (J sc ) and 15.3% in efficiency due to the Eu-complex LDL re-emitting UV light (300-380 nm) in the visible range. It is indicated that the Eu-complex LDL plays the role of enhancing the power conversion efficiency as well as reducing UV degradation for PSCs.
Broadway, Paul R.; Carroll, Jeffery A.; Burdick Sanchez, Nicole C.
2015-01-01
More livestock producers are seeking natural alternatives to antibiotics and antimicrobials, and searching for supplements to enhance growth performance, and general animal health and well-being. Some of the compounds currently being utilized and studied are live yeast and yeast-based products derived from the strain Saccharomyces cerevisiae. These products have been reported to have positive effects both directly and indirectly on the immune system and its subsequent biomarkers, thereby mitigating negative effects associated with stress and disease. These yeast-based products have also been reported to simultaneously enhance growth and performance by enhancing dry matter intake (DMI) and average daily gain (ADG) perhaps through the establishment of a healthy gastrointestinal tract. These products may be especially useful in times of potential stress such as during birth, weaning, early lactation, and during the receiving period at the feedlot. Overall, yeast supplements appear to possess the ability to improve animal health and metabolism while decreasing morbidity, thereby enhancing profitability of these animals. PMID:27682097
Yoshitani, Kazuhiro; Kido, Akira; Honoki, Kanya; Akahane, Manabu; Fujii, Hiromasa; Tanaka, Yasuhito
2011-07-15
Bisphosphonates (BPs) are agents used for treating disorders of excessive bone resorption. In addition, due to their cell-killing activity, BPs were potent candidates for adjuvant cancer therapy. On the other hand, low-concentrations of BPs have been reported to increase cellular viability in several types of tumor cells. Therefore, we focused on the effect of BPs on cellular aggressiveness of malignant bone tumors at low concentrations. MTS assay was performed using osteosarcoma cell lines MG63 and HOS, fibrosarcoma cell line HT1080, and prostate cancer cell line PC3. All the cell lines showed toxicity at high concentrations. On the other hand, at lower concentrations, the cellular viabilities of HOS and MG63 were rather higher than those of untreated controls. Since this tendency was most evident, HOS was used for further assays, including cellular motility, bone resorption activity, and cathepsin K activity. The low-concentration of alendronate enhanced cellular viability and motility, which correlated with the expression of connexin 43 at the mRNA and protein levels. Interestingly, oleamide, a potent connexin 43 inhibitor, had an inhibitory effect on the enhanced proliferation. Our data suggest that alendronate may enhance the proliferation of osteoblastic cell line through connexin 43 activation. Copyright © 2011 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Shojaeifar, Mohsen; Mohajerani, Ezeddin; Fathollahi, Mohammadreza
2018-01-01
Herein, we report the application of electric field assisted sintering (EFAS) procedure in dye sensitized solar cells (DSSCs). The EFAS process improved DSSC performance by enhancing optical and electrical characteristics simultaneously. The EFAS procedure is shown to be capable of reducing the TiO2 nanoparticle aggregation leading to the higher surface area for dye molecules adsorbates. Lower nanoparticle aggregation can be evidently observed by field emission scanning electron microscopy imaging. By applying an external electric field, the current density and conversion efficiency improved significantly about 30% and 45%, respectively. UV-Visible spectra of the desorbed dye molecules on the porous nanoparticles bedding confirm a higher amount of dye loading in the presence of an external electric field. Correspondingly, comprehensive J-V characteristics modeling reveals the enhancement of the diffusion coefficient by EFAS process. The proposed method can be applied to improve the efficiency of the mesostructured hybrid perovskite solar cells, photodetectors, and quantum dot-sensitized solar cells, as well as reduction of the surface area loss in all porous media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yang; Lee, Ju Hwan; Seo, Dae-Shik, E-mail: dsseo@yonsei.ac.kr
2016-09-05
Thin ion-beam (IB)-spurted dimethyl sulfate/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (DMS/PEDOT:PSS) layers with improved electro-optic performance are presented for aligning liquid crystals. IB spurting is effective for enhancing the conductivity of such layers, as well as the anchoring energy of the liquid crystals sandwiched between them. Compared with a commercial twisted-nematic cell assembled with polyimide alignment layers, the same cell assembled with 3.0-keV IB-spurted DMS/PEDOT:PSS alignment layers shows a 38% faster switching and a 93% lower residual direct current. The improved electro-optic performance here is likely due to the enhanced electric field effect and the charge-releasing ability of thin IB-spurted DMS/PEDOT:PSS layers.
Seo, Hyunwoong; Ichida, Daiki; Hashimoto, Shinji; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu; Nam, Sang-Hun; Boo, Jin-Hyo
2016-05-01
The multiple exciton generation characteristics of quantum dots have been expected to enhance the performance of photochemical solar cells. In previous work, we first introduced Si quantum dot for sensitized solar cells. The Si quantum dots were fabricated by multi-hollow discharge plasma chemical vapor deposition, and were characterized optically and morphologically. The Si quantum dot-sensitized solar cells had poor performance due to significant electron loss by charge recombination. Although the large Si particle size resulted in the exposure of a large TiO2 surface area, there was a limit to ho much the particle size could be decreased due to the reduced absorbance of small particles. Therefore, this work focused on decreasing the internal impedance to improve charge transfer. TiO2 was electronically modified by doping with vanadium, which can improve electron transfer in the TiO2 network, and which is stable in the redox electrolyte. Photogenerated electrons can more easily arrive at the conductive electrode due to the decreased internal impedance. The dark photovoltaic properties confirmed the reduction of charge recombination, and the photon-to-current conversion efficiency reflected the improved electron transfer. Impedance analysis confirmed a decrease in internal impedance and an increased electron lifetime. Consequently, these improvements by vanadium doping enhanced the overall performance of Si quantum dot-sensitized solar cells.
How [NOT] to Measure a Solar Cell to Get the Highest Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emery, Keith
The multibillion-dollar photovoltaic (PV) industry sells products by the watt; the calibration labs measure this parameter at the cell and module level with the lowest possible uncertainty of 1-2 percent. The methods and procedures to achieve a measured 50 percent efficiency on a thin-film solar cell are discussed. This talk will describe methods that ignore procedures that increase the uncertainty. Your questions will be answered concerning 'Everything you Always Wanted to Know about Efficiency Enhancements But Were Afraid to Ask.' The talk will cover a step-by-step procedure using examples found in literature or encountered in customer samples by the Nationalmore » Renewable Energy Laboratory's (NREL's) PV Performance Characterization Group on how to artificially enhance the efficiency. The procedures will describe methods that have been used to enhance the current voltage and fill factor.« less
NASA Astrophysics Data System (ADS)
Yeh, Li-Ko; Tian, Wei-Cheng; Lai, Kun-Yu; He-Hau, Jr.
2016-12-01
GaInP/GaAs/Ge triple-junction concentrator solar cells with significant efficiency enhancement were demonstrated with antireflective ZnO nanoneedles. The novel nanostructure was attained with a Zn(NO3)2-based solution containing vitamin C. Under one sun AM 1.5G solar spectrum, conversion efficiency of the triple-junction device was improved by 23.7% via broadband improvement in short-circuit currents of 3 sub-cells after the coverage by the nanoneedles with a graded refractive index profile. The efficiency enhancement further went up to 45.8% at 100 suns. The performance boost through the nanoneedles also became increasingly pronounced in the conditions of high incident angles and the cloudy weather, e.g. 220.0% of efficiency enhancement was observed at the incident angle of 60°. These results were attributed to the exceptional broadband omnidirectionality of the antireflective nanoneedles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jiangsheng; Faculty of Materials Science and Chemical Engineering, Ningbo University, No. 818 Fenghua Road, Ningbo 315211; Jiu, Tonggang, E-mail: jiutonggang@nimte.ac.cn, E-mail: fangjf@nimte.ac.cn
2016-05-02
A thin potassium stearate (KSt) film combined with an optimized ZnO film was introduced to improve the fill factor (FF) of highly efficient inverted polymer solar cells (PSCs). Atomic force microscopy and contact angle measurements were used to show that the introduction of KSt did not change the morphology of interlayer. On the contrary, it is beneficial for the spread of the active layer on the interlayer. The origin of enhanced FF was systematically studied by the ideal current-voltage model for a single heterojunction solar cell and electrochemical impedance spectroscopy. On the basis of the data analysis, the reduced chargemore » recombination loss was responsible for this improved FF. At last, when KSt was replaced by sodium stearate (NaSt), the similar experiment phenomenon was observed. This indicates that inserting a metallic stearate modified layer is a promising strategy to enhance inverted PSCs performance.« less
Improved regulatory element prediction based on tissue-specific local epigenomic signatures
He, Yupeng; Gorkin, David U.; Dickel, Diane E.; Nery, Joseph R.; Castanon, Rosa G.; Lee, Ah Young; Shen, Yin; Visel, Axel; Pennacchio, Len A.; Ren, Bing; Ecker, Joseph R.
2017-01-01
Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulatory element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared with existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types. REPTILE is available at https://github.com/yupenghe/REPTILE/. PMID:28193886
Chang, Chi-Chih; Venø, Morten T; Chen, Li; Ditzel, Nicholas; Le, Dang Q S; Dillschneider, Philipp; Kassem, Moustapha; Kjems, Jørgen
2018-02-07
Bone remodeling and regeneration are highly regulated multistep processes involving posttranscriptional regulation by microRNAs (miRNAs). Here, we performed a global profiling of differentially expressed miRNAs in bone-marrow-derived skeletal cells (BMSCs; also known as stromal or mesenchymal stem cells) during in vitro osteoblast differentiation. We functionally validated the regulatory effects of several miRNAs on osteoblast differentiation and identified 15 miRNAs, most significantly miR-222 and miR-423, as regulators of osteoblastogenesis. In addition, we tested the possible targeting of miRNAs for enhancing bone tissue regeneration. Scaffolds functionalized with miRNA nano-carriers enhanced osteoblastogenesis in 3D culture and retained this ability at least 2 weeks after storage. Additionally, anti-miR-222 enhanced in vivo ectopic bone formation through targeting the cell-cycle inhibitor CDKN1B (cyclin-dependent kinase inhibitor 1B). A number of additional miRNAs exerted additive osteoinductive effects on BMSC differentiation, suggesting that pools of miRNAs delivered locally from an implanted scaffold can provide a promising approach for enhanced bone regeneration. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Weng, Ko-Wei; Chen, Yung-Lin; Chen, Ya-Chi; Lin, Tai-Nan
2009-02-01
Direct methanol fuel cells (DMFC) have been widely studied owing to their simple cell configuration, high volume energy density, short start-up time, high operational reliability and other favorable characteristics. However, major limitations include high production cost, poisoning of the catalyst and methanol crossover. This study adopts a simple technique for preparing Pt-Ru/C multilayer catalysts, including magnetron sputtering (MS) and metal-plasma ion implantation (MPII). The Pt catalysts were sputtered onto the gas diffusion layer (GDL), followed by the implantation of Ru catalysts using MPII (at an accelerating voltage of 20 kV and an implantation dose of 1 x 10(16) ions/cm2). Pt-Ru is repeatedly processed to prepare Pt-Ru/C multilayer catalysts. The catalyst film structure and microstructure were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electronic microscopy (SEM), respectively. The cell performance was tested using a potential stat/galvano-stat. The results reveal that the membrane electrode assembly (MEA) of four multilayer structures enhances the cell performance of DMFC. The measured power density is 2.2 mW/cm2 at a methanol concentration of 2 M, with an OCV of 0.493 V.
Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells
Pathi, Prathap; Peer, Akshit; Biswas, Rana
2017-01-01
Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping. PMID:28336851
Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells
Pathi, Prathap; Peer, Akshit; Biswas, Rana
2017-01-13
Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less
Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathi, Prathap; Peer, Akshit; Biswas, Rana
Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less
Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells.
Pathi, Prathap; Peer, Akshit; Biswas, Rana
2017-01-13
Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%-2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm² photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.
Zheng, Xiangzhen; Huang, Tao; Pan, Ying; Wang, Wenguo; Fang, Guihuang; Ding, Kaining; Wu, Maoxiang
2017-06-07
The present study demonstrates that the use of alkyl 3,3,3-trifluoropropanoate, including methyl 3,3,3-trifluoropropanoate (TFPM) and ethyl 3,3,3-trifluoropropanoate (TFPE), as new electrolyte additive can dramatically enhance the high-voltage performance of LiNi 1/3 Co 1/3 Mn 1/3 O 2 /graphite lithium-ion batteries (3.0-4.6 V, vs Li/Li + ). The capacity retention was significantly increased from 45.6% to 75.4% after 100 charge-discharge cycles due to the addition of 0.2 wt % TFPM in the electrolyte, and significantly increased from 45.6% to 76.1% after 100 charge-discharge cycles due to the addition of 0.5 wt % TFPE in the electrolyte, verifying their suitability in this application. Electrochemical impedance spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy were employed to study the effect of TFPM and TFPE on cell performance. The data indicates that the improved cycling activity can be ascribed to the participation of TFPM or TFPE in the formation of a thinner cathode/electrolyte interfacial film, thereby enhancing the cell cycling performance owing to a reduced interfacial resistance at high voltage.
Design and Optimization of Copper Indium Gallium Selenide Thin Film Solar Cells
2015-09-01
determined by the intensity of the illumination that the solar cell is exposed to. The diffusion lengths L can be further defined by n n nL D τ...absorbers with graded Ga concentrations. (3) Back Contact Model Models for back contact silicon solar cells have been created with results that closely...Radiation. New York, NY: Academic Press, 2012. [12] B. Richards, “Enhancing the performance of silicon solar cells via the application of passive
NASA Astrophysics Data System (ADS)
Lee, Jin Wook; Kjeang, Erik
2013-11-01
Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.
Stem Cells in Aggregate Form to Enhance Chondrogenesis in Hydrogels
Sridharan, BanuPriya; Lin, Staphany M.; Hwu, Alexander T.; Laflin, Amy D.; Detamore, Michael S.
2015-01-01
There are a variety of exciting hydrogel technologies being explored for cartilage regenerative medicine. Our overall goal is to explore whether using stem cells in an aggregate form may be advantageous in these applications. 3D stem cell aggregates hold great promise as they may recapitulate the in vivo skeletal tissue condensation, a property that is not typically observed in 2D culture. We considered two different stem cell sources, human umbilical cord Wharton’s jelly cells (hWJCs, currently being used in clinical trials) and rat bone marrow-derived mesenchymal stem cells (rBMSCs). The objective of the current study was to compare the influence of cell phenotype, aggregate size, and aggregate number on chondrogenic differentiation in a generic hydrogel (agarose) platform. Despite being differing cell sources, both rBMSC and hWJC aggregates were consistent in outperforming cell suspension control groups in biosynthesis and chondrogenesis. Higher cell density impacted biosynthesis favorably, and the number of aggregates positively influenced chondrogenesis. Therefore, we recommend that investigators employing hydrogels consider using cells in an aggregate form for enhanced chondrogenic performance. PMID:26719986
Wang, Huan-qin; Jin, Jian-jun; Wang, Jing
2014-01-01
Arctigenin, a dibenzylbutyrolactone lignan, enhances cisplatin-mediated cell apoptosis in cancer cells. Here, we sought to investigate the effects of arctigenin on cisplatin-treated non-small-cell lung cancer (NSCLC) H460 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and annexin-V/propidium iodide staining were performed to analyze the proliferation and apoptosis of H460 cells. Arctigenin dose-dependently suppressed cell proliferation and potentiated cell apoptosis, coupled with increased cleavage of caspase-3 and poly(ADP-ribose) polymerase. Moreover, arctigenin sensitized H460 cells to cisplatin-induced proliferation inhibition and apoptosis. Arctigenin alone or in combination with cisplatin had a significantly lower amount of survivin. Ectopic expression of survivin decreased cell apoptosis induced by arctigenin (P < 0.05) or in combination with cisplatin (P < 0.01). Moreover, arctigenin (P < 0.05) or in combination with cisplatin (P < 0.01) induced G1/G0 cell-cycle arrest. Our data provide evidence that arctigenin has a therapeutic potential in combina-tion with chemotherapeutic agents for NSLC. © 2013 Wiley Periodicals, Inc.
3D-printed external light trap for solar cells.
van Dijk, Lourens; Paetzold, Ulrich W; Blab, Gerhard A; Schropp, Ruud E I; di Vece, Marcel
2016-05-01
We present a universally applicable 3D-printed external light trap for enhanced absorption in solar cells. The macroscopic external light trap is placed at the sun-facing surface of the solar cell and retro-reflects the light that would otherwise escape. The light trap consists of a reflective parabolic concentrator placed on top of a reflective cage. Upon placement of the light trap, an improvement of 15% of both the photocurrent and the power conversion efficiency in a thin-film nanocrystalline silicon (nc-Si:H) solar cell is measured. The trapped light traverses the solar cell several times within the reflective cage thereby increasing the total absorption in the cell. Consequently, the trap reduces optical losses and enhances the absorption over the entire spectrum. The components of the light trap are 3D printed and made of smoothened, silver-coated thermoplastic. In contrast to conventional light trapping methods, external light trapping leaves the material quality and the electrical properties of the solar cell unaffected. To explain the theoretical operation of the external light trap, we introduce a model that predicts the absorption enhancement in the solar cell by the external light trap. The corresponding calculated path length enhancement shows good agreement with the empirically derived value from the opto-electrical data of the solar cell. Moreover, we analyze the influence of the angle of incidence on the parasitic absorptance to obtain full understanding of the trap performance. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons, Ltd.
Kim, Jae-Hwan; Park, Ji Sun; Yang, Han Na; Woo, Dae Gyun; Jeon, Su Yeon; Do, Hyun-Jin; Lim, Hye-Young; Kim, Jung Mo; Park, Keun-Hong
2011-01-01
In stem cell therapy, transfection of specific genes into stem cells is an important technique to induce cell differentiation. To perform gene transfection in human mesenchymal stem cells (hMSCs), we designed and fabricated a non-viral vector system for specific stem cell differentiation. Several kinds of gene carriers were evaluated with regard to their transfection efficiency and their ability to enhance hMSCs differentiation. Of these delivery vehicles, biodegradable poly (DL-lactic-co-glycolic acid) (PLGA) nanoparticles yielded the best results, as they complexed with high levels of plasmid DNA (pDNA), allowed robust gene expression in hMSCs, and induced chondrogenesis. Polyplexing with polyethylenimine (PEI) enhanced the cellular uptake of SOX9 DNA complexed with PLGA nanoparticles both in vitro and in vivo. The expression of enhanced green fluorescent protein (EGFP) and SOX9 increased up to 75% in hMSCs transfected with PEI/SOX9 complexed PLGA nanoparticles 2 days after transfection. SOX9 gene expression was evaluated by RT-PCR, real time-qPCR, glycosaminoglycan (GAG)/DNA levels, immunoblotting, histology, and immunofluorescence. Copyright © 2010 Elsevier Ltd. All rights reserved.
Enhanced photovoltaic performance of Sb2S3-sensitized solar cells through surface treatments
NASA Astrophysics Data System (ADS)
Ye, Qing; Xu, Yafeng; Chen, Wenyong; Yang, Shangfeng; Zhu, Jun; Weng, Jian
2018-05-01
Efficient antimony sulfide (Sb2S3)-sensitized solar cells were obtained by a sequential treatment with thioacetamide (TA) and 1-decylphosphonic acid (DPA). Compared with the untreated Sb2S3-sensitized solar cells, the power conversion efficiency of the treated Sb2S3 solar cells was improved by 1.80% to 3.23%. The TA treatment improved the Sb2S3 films by reducing impurities and decreasing the film's surface defects, which inhibited the emergence of recombination centers. The DPA treatment reduced the recombination between hole transport materials (HTMs) and the Sb2S3. Therefore, we have presented an efficient strategy to improve the performance of Sb2S3-sensitized solar cells.
Li, Qingduan; Yang, Jianwei; Chen, Shuangshuang; Zou, Jizhao; Xie, Weiguang; Zeng, Xierong
2017-08-23
Efficient Si/organic hybrid solar cells were fabricated with dimethyl sulfoxide (DMSO) and surfactant-doped poly(3,4-ethylenedioxythiophene): polystyrene (PEDOT:PSS). A post-treatment on PEDOT:PSS films with polar solvent was performed to increase the device performance. We found that the performance of hybrid solar cells increase with the polarity of solvent. A high conductivity of 1105 S cm - 1 of PEDOT:PSS was achieved by adopting methanol treatment, and the best efficiency of corresponding hybrid solar cells reaches 12.22%. X-ray photoelectron spectroscopy (XPS) and RAMAN spectroscopy were utilized to conform to component changes of PEDOT:PSS films after solvent treatment. It was found that the removal of the insulator PSS from the film and the conformational changes are the determinants for the device performance enhancement. Electrochemical impedance spectroscopy (EIS) was used to investigate the recombination resistance and capacitance of methanol-treated and untreated hybrid solar cells, indicating that methanol-treated devices had a larger recombination resistance and capacitance. Our findings bring a simple and efficient way for improving the performance of hybrid solar cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khateeb, Siddique; Su, Dong; Guerreo, Sandra
This article presents the performance of palladium-platinum core-shell catalysts (Pt/Pd/C) for oxygen reduction synthesized in gram-scale batches in both liquid cells and polymer-electrolyte membrane fuel cells. Core-shell catalyst synthesis and characterization, ink fabrication, and cell assembly details are discussed. The Pt mass activity of the Pt/Pd core-shell catalyst was 0.95 A mg –1 at 0.9 V measured in liquid cells (0.1 M HClO4), which was 4.8 times higher than a commercial Pt/C catalyst. The performances of Pt/Pd/C and Pt/C in large single cells (315 cm 2) were assessed under various operating conditions. The core-shell catalyst showed consistently higher performance thanmore » commercial Pt/C in fuel cell testing. A 20–60 mV improvement across the whole current density range was observed on air. Sensitivities to temperature, humidity, and gas composition were also investigated and the core-shell catalyst showed a consistent benefit over Pt under all conditions. However, the 4.8 times activity enhancement predicated by liquid cell measurements was not fully realized in fuel cells.« less
Khateeb, Siddique; Su, Dong; Guerreo, Sandra; ...
2016-05-03
This article presents the performance of palladium-platinum core-shell catalysts (Pt/Pd/C) for oxygen reduction synthesized in gram-scale batches in both liquid cells and polymer-electrolyte membrane fuel cells. Core-shell catalyst synthesis and characterization, ink fabrication, and cell assembly details are discussed. The Pt mass activity of the Pt/Pd core-shell catalyst was 0.95 A mg –1 at 0.9 V measured in liquid cells (0.1 M HClO4), which was 4.8 times higher than a commercial Pt/C catalyst. The performances of Pt/Pd/C and Pt/C in large single cells (315 cm 2) were assessed under various operating conditions. The core-shell catalyst showed consistently higher performance thanmore » commercial Pt/C in fuel cell testing. A 20–60 mV improvement across the whole current density range was observed on air. Sensitivities to temperature, humidity, and gas composition were also investigated and the core-shell catalyst showed a consistent benefit over Pt under all conditions. However, the 4.8 times activity enhancement predicated by liquid cell measurements was not fully realized in fuel cells.« less
Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell
NASA Astrophysics Data System (ADS)
Rana, Aniket; Gupta, Neeraj; Lochan, Abhiram; Sharma, G. D.; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.
2016-08-01
The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.
Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, Aniket; Lochan, Abhiram; Chand, Suresh
The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET)more » mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.« less
Venkatesan, Swaminathan; Chen, Jihua; Ngo, Evan C.; ...
2014-12-31
In this study, inverted bulk heterojunction solar cells were fabricated using poly(3-hexylthiophene) (P3HT) blended with two different fullerene derivatives namely phenyl-C61-butyric acid methyl ester (PC 60BM) and indene-C 60 bis-adduct (IC 60BA). The effects of annealing temperatures on the morphology, optical and structural properties were studied and correlated to differences in photovoltaic device performance. It was observed that annealing temperature significantly improved the performance of P3HT:IC 60BA solar cells while P3HT:PC 60BM cells showed relatively less improvement. The performance improvement is attributed to the extent of fullerene mixing with polymer domains. Energy filtered transmission electron microscopy (EFTEM) and x-ray diffractionmore » (XRD) results showed that ICBA mixes with disordered P3HT much more readily than PC 60BM which leads to lower short circuit current density and fill factor for P3HT:IC 60BA cells annealed below 120°C. Annealing above 120°C improves the crystallinity of P3HT in case of P3HT:IC 60BA whereas in P3HT:PC 60BM films, annealing above 80°C leads to negligible change in crystallinity. Crystallization of P3HT also leads to higher domain purity as seen EFTEM. Further it is seen that cells processed with additive nitrobenzene (NB) showed enhanced short circuit current density and power conversion efficiency regardless of the fullerene derivative used. Addition of NB led to nanoscale phase separation between purer polymer and fullerene domains. Kelvin probe force microscopy (KPFM) images showed that enhanced domain purity in additive casted films led to a sharper interface between polymer and fullerene. Lastly, enhanced domain purity and interfacial sharpness led to lower bimolecular recombination and higher mobility and charge carrier lifetime in NB modified devices.« less
NASA Astrophysics Data System (ADS)
Hao, Jing-Yu; Xu, Ying; Zhang, Yu-Pei; Chen, Shu-Fen; Li, Xing-Ao; Wang, Lian-Hui; Huang, Wei
2015-04-01
Au nanoparticles (NPs) mixed with a majority of bone-like, rod, and cube shapes and a minority of irregular spheres, which can generate a wide absorption spectrum of 400 nm-1000 nm and three localized surface plasmon resonance peaks, respectively, at 525, 575, and 775 nm, are introduced into the hole extraction layer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) to improve optical-to-electrical conversion performances in polymer photovoltaic cells. With the doping concentration of Au NPs optimized, the cell performance is significantly improved: the short-circuit current density and power conversion efficiency of the poly(3-hexylthiophene): [6,6]-phenyl-C60-butyric acid methyl ester cell are increased by 20.54% and 21.2%, reaching 11.15 mA·cm-2 and 4.23%. The variations of optical, electrical, and morphology with the incorporation of Au NPs in the cells are analyzed in detail, and our results demonstrate that the cell performance improvement can be attributed to a synergistic reaction, including: 1) both the localized surface plasmon resonance- and scattering-induced absorption enhancement of the active layer, 2) Au doping-induced hole transport/extraction ability enhancement, and 3) large interface roughness-induced efficient exciton dissociation and hole collection. Project supported by the National Basic Research Program of China (Grant Nos. 2015CB932202 and 2012CB933301), the National Natural Science Foundation of China (Grant Nos. 61274065, 51173081, 61136003, BZ2010043, 51372119, and 51172110), the Science Fund from the Ministry of Education of China (Grant No. IRT1148), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113223110005), the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions (Grant No. YX03001), and the National Synergistic Innovation Center for Advanced Materials and the Synergetic Innovation Center for Organic Electronics and Information Displays, China.
Huynh, Thu P.; Barwe, Sonali P.; Lee, Seung J.; McSpadden, Ryan; Franco, Omar E.; Hayward, Simon W.; Damoiseaux, Robert; Grubbs, Stephen S.; Petrelli, Nicholas J.; Rajasekaran, Ayyappan K.
2015-01-01
Glucocorticoids are commonly used as palliative or chemotherapeutic clinical agents for treatment of a variety of cancers. Although steroid treatment is beneficial, the mechanisms by which steroids improve outcome in cancer patients are not well understood. Na,K-ATPase beta-subunit isoform 1 (NaK-β1) is a cell-cell adhesion molecule, and its expression is down-regulated in cancer cells undergoing epithelial-to mesenchymal-transition (EMT), a key event associated with cancer progression to metastatic disease. In this study, we performed high-throughput screening to identify small molecules that could up-regulate NaK-β1 expression in cancer cells. Compounds related to the glucocorticoids were identified as drug candidates enhancing NaK-β1 expression. Of these compounds, triamcinolone, dexamethasone, and fluorometholone were validated to increase NaK-β1 expression at the cell surface, enhance cell-cell adhesion, attenuate motility and invasiveness and induce mesenchymal to epithelial like transition of renal cell carcinoma (RCC) cells in vitro. Treatment of NaK-β1 knockdown cells with these drug candidates confirmed that these compounds mediate their effects through up-regulating NaK-β1. Furthermore, we demonstrated that these compounds attenuate tumor growth in subcutaneous RCC xenografts and reduce local invasiveness in orthotopically-implanted tumors. Our results strongly indicate that the addition of glucocorticoids in the treatment of RCC may improve outcome for RCC patients by augmenting NaK-β1 cell-cell adhesion function. PMID:25836370
NASA Astrophysics Data System (ADS)
Aïssa, Brahim; Nedil, Mourad; Kroeger, Jens; Ali, Adnan; Isaifan, Rima J.; Essehli, Rachid; Mahmoud, Khaled A.
2018-03-01
Hybrid organic photovoltaic (OPV) cells based on conjugated polymer photoactive materials are promising candidates for flexible, high-performance and low-cost energy sources owing to their inexpensive materials, cost-effective processing and ease of fabrication by simple solution processes. However, the modest PV performance obtained to date—in particular the low power conversion efficiency (PCE)—has impeded the large scale deployment of OPV cells. The low PCE in OPV solar cells is mainly attributed to the low carrier mobility, which is closely correlated to the transport diffusion length of the charge carriers within the photoactive layers. The 2D graphene material could be an excellent candidate for assisting charge transport improvement in the active layer of OPV cells, due to its huge carrier mobility, thermal and chemical stability, and its compatibility with the solution process. In this work, we report on the improvement of the optoelectronic properties and photovoltaic performance of graphene nanoplatelet (GNP)-doped P3HT:PCBM photoactive blended layers, integrated into a bulk heterojunction (BHJ) organic-photovoltaic-based device, using PEDOT:PSS on an ITO/glass substrate. First, the light absorption capacity was observed to increase with respect to the GNP content, while the photoluminescence showed clear quenching, indicating electron transfer between the graphene sheets and the polymeric matrix. Then, the incorporation of GNP into the BHJ active layer resulted in enhanced PV performance with respect to the reference cell, and the best PV performance was obtained with 3 wt.% of GNP loading, with an open-circuit voltage of 1.24 V, a short-circuit current density value of 6.18 mA cm-2, a fill factor of 47.12%, and a power conversion efficiency of about 3.61%. We believe that the obtained results contribute to the development of organic photovoltaic devices and to the understanding of the impact of sp2-bonded carbon therein.
Aïssa, Brahim; Nedil, Mourad; Kroeger, Jens; Ali, Adnan; Isaifan, Rima J; Essehli, Rachid; Mahmoud, Khaled A
2018-01-31
Hybrid organic photovoltaic (OPV) cells based on conjugated polymer photoactive materials are promising candidates for flexible, high-performance and low-cost energy sources owing to their inexpensive materials, cost-effective processing and ease of fabrication by simple solution processes. However, the modest PV performance obtained to date-in particular the low power conversion efficiency (PCE)-has impeded the large scale deployment of OPV cells. The low PCE in OPV solar cells is mainly attributed to the low carrier mobility, which is closely correlated to the transport diffusion length of the charge carriers within the photoactive layers. The 2D graphene material could be an excellent candidate for assisting charge transport improvement in the active layer of OPV cells, due to its huge carrier mobility, thermal and chemical stability, and its compatibility with the solution process. In this work, we report on the improvement of the optoelectronic properties and photovoltaic performance of graphene nanoplatelet (GNP)-doped P3HT:PCBM photoactive blended layers, integrated into a bulk heterojunction (BHJ) organic-photovoltaic-based device, using PEDOT:PSS on an ITO/glass substrate. First, the light absorption capacity was observed to increase with respect to the GNP content, while the photoluminescence showed clear quenching, indicating electron transfer between the graphene sheets and the polymeric matrix. Then, the incorporation of GNP into the BHJ active layer resulted in enhanced PV performance with respect to the reference cell, and the best PV performance was obtained with 3 wt.% of GNP loading, with an open-circuit voltage of 1.24 V, a short-circuit current density value of 6.18 mA cm -2 , a fill factor of 47.12%, and a power conversion efficiency of about 3.61%. We believe that the obtained results contribute to the development of organic photovoltaic devices and to the understanding of the impact of sp 2 -bonded carbon therein.
Aissa, Brahim; Nedil, Mourad; Kroeger, Jens; Ali, Adnan; Isaifan, Rima J; Essehli, Rachid; Mahmoud, Khaled
2018-01-09
Hybrid organic photovoltaic (OPV) cells based on conjugated polymers photoactive materials are promising candidates for flexible, high-performance and low-cost energy sources owing to their inexpensive materials, cost-effective processing, and ease of fabrication by simple solution processes. However, the modest PV performance obtained to date -in particular the low power conversion efficiency (PCE)- has impeded the large scale deployment of OPV cells. The low PCE in OPV solar cells has been mainly attributed to low carrier mobility, which is closely correlated to the transport diffusion length of the charge carriers within the photoactive layers. The 2D graphene material can be an excellent candidate for assisting the charge transport improvement in the active layer of OPV cells due to its huge carrier mobility, thermal and chemical stability, and its compatibility with the solution process. In this work, we report on the improvement of optoelectronic properties and photovoltaic performance of graphene nanoplatelets (GNP) doped P3HT:PCBM photoactive blended layers, integrated into a bulk heterojunction (BHJ) organic photovoltaic based device, using PEDOT:PSS on ITO/glass substrate. First, the light absorption capacity was observed to increase with respect to the GNP contents while the photoluminescence showed a clear quenching, indicating electrons transfer between the graphene sheets and the polymeric matrix. Then, the incorporation of GNP into the BHJ active layer has resulted in enhanced PV performance with respect to a reference cell, and the best PV performances were obtained with 3 wt. % of GNP loading, with an open-circuit voltage of 1.24 V, a short-circuit current density value of 6.18 mA/cm2, a fill factor of 47.12 %, and a power conversion efficiency of about 3.61 %. We believe that the obtained results contribute to the development of organic photovoltaic devices and to the understanding of the impact of sp2-bonded carbon therein. © 2018 IOP Publishing Ltd.
Surface engineered biosensors for the early detection of cancer
NASA Astrophysics Data System (ADS)
Islam, Muhymin
Cancer commences in the building block of human body which is cells and in most of the cases remains silent at early stage. Diseases are only expressed at molecular and cellular level at primary stages. Recognition of diseases at this micro and nano level might reduce the mortality rate of cancer significantly. This research work aimed to introduce novel electronic biosensors for for identification of cancer at cellular level. The dissertation study focuses on 1) Label-Free Isolation of Metastatic Tumor Cells Using Filter Based Microfluidic device; 2) Nanotextured Polymer Substrates for Enhanced Cancer Cell Isolation and Cell Growth; 3) Nanotextured Microfluidic Channel for Electrical Profiling and Detection of Tumor Cells from Blood; and 4) Single Biochip for the Detection of Tumor Cells by Electrical Profile and Surface Immobilized Aptamer. Standard silicon processing techniques were followed to fabricate all of the biosensors. Nantoextruing and surface functionalizon were also incorporated to elevate the efficiency of the devices. The first approach aimed to detect cancer cells from blood based on their mechanophysical properties. Cancer cells are larger than blood cells but highly elastic in nature. These cells can squeeze through small microchannels much smaller than their size. The cross sectional area of the microchannels was optimized to isolate tumor cells from blood. Nanotextured polymer substrates, a platform inspired from the natural basement membrane was used to enhance the isolation and growth of tumor cells. Micro reactive ion etching was performed to have better control on features of nantoxtured surfaces and did not require any template. Next, electrical measurement of ionic current was performed across single microchannel to detect tumor cells from blood. Later, nanotexturing enhanced the efficiency of the device by selectively altering the translocation profile of cancer cells. Eventually aptamer functionalized nanotextured polymer surface was integrated with current measurement facilities in a single biochip to discriminate tumor cells from blood with higher efficiency and selectivity. This biochip can be an implemented as a point-of-care device for the early detection of cancer at cellular level.
Ng, Pek Leng; Rajab, Nor Fadilah; Then, Sue Mian; Mohd Yusof, Yasmin Anum; Wan Ngah, Wan Zurinah; Pin, Kar Yong; Looi, Mee Lee
2014-08-01
The combination effect of Piper betle (PB) and 5-fluorouracil (5-FU) in enhancing the cytotoxic potential of 5-FU in inhibiting the growth of colon cancer cells was investigated. HT29 and HCT116 cells were subjected to 5-FU or PB treatment. 5-FU and PB were then combined and their effects on both cell lines were observed after 24 h of treatment. PB-5-FU interaction was elucidated by isobologram analysis. Apoptosis features of the treated cells were revealed by annexin V/PI stain. High-performance liquid chromatography (HPLC) was performed to exclude any possible chemical interaction between the compounds. In the presence of PB extract, the cytotoxicity of 5-FU was observed at a lower dose (IC50 12.5 µmol/L) and a shorter time (24 h) in both cell lines. Both cell lines treated with 5-FU or PB alone induced a greater apoptosis effect compared with the combination treatment. Isobologram analysis indicated that PB and 5-FU interacted synergistically and antagonistically in inhibiting the growth of HT29 and HCT116 cells, respectively. In the presence of PB, a lower dosage of 5-FU is required to achieve the maximum drug effect in inhibiting the growth of HT29 cells. However, PB did not significantly reduce 5-FU dosage in HCT116 cells. Our result showed that this interaction may not solely contribute to the apoptosis pathway.
Yamazaki, Hiroki; Iwano, Tomomi; Otsuka, Saori; Kagawa, Yumiko; Hoshino, Yuki; Hosoya, Kenji; Okumura, Masahiro; Takagi, Satoshi
2015-04-01
Transitional cell carcinoma (TCC) in dogs is an aggressive malignant neoplasm, originating in the epithelium of the urinary bladder. The DEK nuclear protein is overexpressed in several types of human bladder cancer, where it is involved in chromatin reconstruction, gene transcription and apoptosis. Since DEK represents a potential therapeutic target for canine TCC, this study was designed to investigate DEK expression in canine TCC and to determine the effects of DEK mRNA silencing on TCC cells in vitro. The gene expression profiles of seven selected cancer-associated genes was assessed in four canine TCC cell lines and expression of DEK protein was evaluated in bladder tissue biopsies from healthy dogs and those affected with cystitis or TCC. After transfection of four canine TCC cell lines with DEK-specific or scrambled siRNA, annexin V staining was performed to evaluate apoptosis, and methylthiazole tetrazolium assays were performed to assess both cell viability and sensitivity to carboplatin. DEK mRNA expression was relatively high in canine TCC cells and expression of the DEK protein was significantly greater in TCC tumours compared with the other tissue samples. After transfection with DEK-specific siRNA, apoptosis, cell growth inhibition, and enhanced sensitivity to carboplatin were observed in all TCC cells assessed. These research findings suggest that DEK could be a potential therapeutic target for canine TCC. Copyright © 2015 Elsevier Ltd. All rights reserved.
Diketopyrrolopyrrole Polymers for Organic Solar Cells.
Li, Weiwei; Hendriks, Koen H; Wienk, Martijn M; Janssen, René A J
2016-01-19
Conjugated polymers have been extensively studied for application in organic solar cells. In designing new polymers, particular attention has been given to tuning the absorption spectrum, molecular energy levels, crystallinity, and charge carrier mobility to enhance performance. As a result, the power conversion efficiencies (PCEs) of solar cells based on conjugated polymers as electron donor and fullerene derivatives as electron acceptor have exceeded 10% in single-junction and 11% in multijunction devices. Despite these efforts, it is notoriously difficult to establish thorough structure-property relationships that will be required to further optimize existing high-performance polymers to their intrinsic limits. In this Account, we highlight progress on the development and our understanding of diketopyrrolopyrrole (DPP) based conjugated polymers for polymer solar cells. The DPP moiety is strongly electron withdrawing and its polar nature enhances the tendency of DPP-based polymers to crystallize. As a result, DPP-based conjugated polymers often exhibit an advantageously broad and tunable optical absorption, up to 1000 nm, and high mobilities for holes and electrons, which can result in high photocurrents and good fill factors in solar cells. Here we focus on the structural modifications applied to DPP polymers and rationalize and explain the relationships between chemical structure and organic photovoltaic performance. The DPP polymers can be tuned via their aromatic substituents, their alkyl side chains, and the nature of the π-conjugated segment linking the units along the polymer chain. We show that these building blocks work together in determining the molecular conformation, the optical properties, the charge carrier mobility, and the solubility of the polymer. We identify the latter as a decisive parameter for DPP-based organic solar cells because it regulates the diameter of the semicrystalline DPP polymer fibers that form in the photovoltaic blends with fullerenes via solution processing. The width of these fibers and the photon energy loss, defined as the energy difference between optical band gap and open-circuit voltage, together govern to a large extent the quantum efficiency for charge generation in these blends and thereby the power conversion efficiency of the photovoltaic devices. Lowering the photon energy loss and maintaining a high quantum yield for charge generation is identified as a major pathway to enhance the performance of organic solar cells. This can be achieved by controlling the structural purity of the materials and further control over morphology formation. We hope that this Account contributes to improved design strategies of DPP polymers that are required to realize new breakthroughs in organic solar cell performance in the future.
APSA - A new generation of photovoltaic solar arrays
NASA Technical Reports Server (NTRS)
Stella, P. M.; Kurland, R. M.
1989-01-01
This paper provides details on the Advanced Photovoltaic Solar Array (APSA) wing design, fabrication, and testing. The impact of array size change on performance and mechanical characteristics is discussed. Projections for future performance enhancements that may be expected through the use of advanced solar cells presently under development are examined.
NASA Astrophysics Data System (ADS)
Xiang, Jiayuan; Hu, Chen; Chen, Liying; Zhang, Dong; Ding, Ping; Chen, Dong; Liu, Hao; Chen, Jian; Wu, Xianzhang; Lai, Xiaokang
2016-10-01
The effect and mechanism of Zn(II) on improving the performances of lead-acid cell with electrochemical active carbon (EAC) in negative mass is investigated. The hydrogen evolution of the cell is significantly reduced due to the deposition of Zn on carbon surface and the increased porosity of negative mass. Zn(II) additives can also improve the low-temperature and high-rate capacities of the cell with EAC in negative mass, which ascribes to the formation of Zn on lead and carbon surface that constructs a conductive bridge among the active mass. Under the co-contribution of EAC and Zn(II), the partial-state-of-charge cycle life is greatly prolonged. EAC optimizes the NAM structure and porosity to enhance the charge acceptance and retard the lead sulfate accumulation. Zn(II) additive reduces the hydrogen evolution during charge process and improves the electric conductivity of the negative electrode. The cell with 0.6 wt% EAC and 0.006 wt% ZnO in negative mass exhibits 90% reversible capacity of the initial capacity after 2100 cycles. In contrast, the cell with 0.6 wt% EAC exhibits 84% reversible capacity after 2100 cycles and the control cell with no EAC and Zn(II) exhibits less than 80% reversible capacity after 1350 cycles.
Hisatomi, Toshio; Notomi, Shoji; Tachibana, Takashi; Oishi, Seiichiro; Asato, Ryo; Yamashita, Takehiro; Murakami, Yusuke; Ikeda, Yasuhiro; Enaida, Hiroshi; Sakamoto, Taiji; Ishibashi, Tatsuro
2015-02-01
Brilliant Blue G is used as a surgical adjuvant for retinal surgery. Although BBG double or multiple staining was reported, the effectiveness and safety of repeated staining is still elusive. To further examine the effectiveness and safety, we examined BBG in clinical cases in vivo, primary cell culture in vitro, and surgically resected specimen ex vivo. A retrospective interventional case series with in vitro and ex vivo studies were performed. Vitrectomy was performed in 28 cases of epiretinal membrane with BBG single to multiple staining. The surgically resected membranes were stained by BBG with or without cellular fixation. Primary cell cultures were examined with BBG and live/death cell markers, such as Calcein AM and TUNEL. Single staining provided satisfactory staining in seven cases. Double or multiple staining substantially visualized internal limiting membrane (21 cases), especially the edges of remaining internal limiting membrane (11 cases). Adverse retinal staining was not noted and the final visual acuity showed no difference with multiple staining. The live cells barely stained with BBG, while some dead cells were stained. Brilliant Blue G multiple staining substantially enhanced the visualization of internal limiting membrane. The absence of abnormal staining supports the safety of repeated BBG staining.
Li, Xiao-Li; Wang, Chong-Zhi; Mehendale, Sangeeta R; Sun, Shi; Wang, Qi; Yuan, Chun-Su
2009-11-01
Colorectal cancer is a major cause of morbidity and mortality for cancer worldwide. Although 5-fluorouracil (5-FU) is one of the most widely used chemotherapeutic agents in first-line therapy for colorectal cancer, serious side effects limit its clinical usefulness. Panaxadiol (PD) is the purified sapogenin of ginseng saponins, which exhibit anti-tumor activity. In this study, we investigated the possible synergistic anti-cancer effects of PD and 5-FU on a human colorectal cancer cell line, HCT-116. Cell viability was evaluated by an MTS cell proliferation assay. Morphological observation was performed by crystal violet cell viability staining assay. Cell cycle distribution and apoptotic effects were analyzed by flow cytometry after staining with PI/RNase or Annexin V/PI. Cell growth was markedly suppressed in HCT-116 cells treated by 5-FU (20-100 microM) for 24 or 48 h with time-dependent effects. The significant suppression on HCT-116 cell proliferation was observed after treatment with PD (25 microM) for 24 and 48 h. Panaxadiol (25 microM) markedly (P < 0.05) enhanced the anti-proliferative effects of 5-FU (5, 10, 20 microM) on HCT-116 cells compared to single treatment of 5-FU for 24 and 48 h. Flow cytometric analysis on DNA indicated that PD and 5-FU selectively arrested cell cycle progression in the G1 phase and S phase (P < 0.01), respectively, compared to the control condition. Combination use of 5-FU with PD significantly (P < 0.001) increased cell cycle arrest in the S phase compared to that treated by 5-FU alone. The combination of 5-FU and PD significantly enhanced the percentage of apoptotic cells when compared with the corresponding cell groups treated by 5-FU alone (P < 0.001). Panaxadiol enhanced the anti-cancer effects of 5-FU on human colorectal cancer cells through the regulation of cell cycle transition and the induction of apoptotic cells.
Xia, Yingdong; Pan, Yufeng; Zhang, Haijuan; Qiu, Jian; Zheng, Yiting; Chen, Yonghua; Huang, Wei
2017-08-09
The hole extraction layer has a significant impact on the achievement of high-efficiency polymer solar cells (PSCs). Here, we report an efficient approach to direct UV-ozone treatment by larger device performance enhancement employing graphene oxide (GO). The dramatic performance enhancement of PSCs with the P3HT:PCBM blend as an active layer was demonstrated by the UV-ozone treatment of GO for 30 min: best power conversion efficiency (PCE) of 4.18%, fill factor of 0.63, J sc of 10.94 mA cm -2 , and V oc of 0.61 V, which are significantly higher than those of the untreated GO (1.82%) and highly comparable PEDOT:PSS-based PSCs (3.73%). In addition, PSCs with UV-ozone-treated GO showed a longer stability than PSCs with PEDOT:PSS. The significant enhancement of PCEs of PSCs can be attributed to the fact that ozone molecules can oxidize GO into CO 2 and leave highly conductive graphene particles. We suggest that this simple UV-ozone treatment can provide an efficient method for highly efficient GO hole extraction in high-performance PSCs.
Co-sensitization of ruthenium(II) dye-sensitized solar cells by coumarin based dyes
NASA Astrophysics Data System (ADS)
Athanas, Anish Babu; Thangaraj, Shankar; Kalaiyar, Swarnalatha
2018-05-01
Co-sensitization technique has been appraised for attaining enhanced performance in dye-sensitized solar cells (DSSCs). DSSCs are fabricated with a heteroleptic Ru(II) sensitizer (RDAB1) containing 4,4‧-diamino-2,2‧-bipyridine (dabpy) ligand, co-sensitized with electron donor-acceptor type coumarin containing thiophene (CT) and indole (CI) moieties. The individual overall power conversion efficiency of the sensitizer is 5.44%. Enhanced power conversion efficiencies of 6.34% and 7.09% were observed when RDAB1 was co-sensitized with Coumarin containing CI and CT respectively. The enhanced PCE can be attributed to the presence of co-sensitizers which effectively overcome the light absorption by I-/I3-, dye aggregation and charge recombination.
The optimum titanium precursor of fabricating TiO2 compact layer for perovskite solar cells.
Qin, Jianqiang; Zhang, Zhenlong; Shi, Wenjia; Liu, Yuefeng; Gao, Huiping; Mao, Yanli
2017-12-29
Perovskite solar cells (PSCs) have attracted tremendous attentions due to its high performance and rapid efficiency promotion. Compact layer plays a crucial role in transferring electrons and blocking charge recombination between the perovskite layer and fluorine-doped tin oxide (FTO) in PSCs. In this study, compact TiO 2 layers were synthesized by spin-coating method with three different titanium precursors, titanium diisopropoxide bis (acetylacetonate) (c-TTDB), titanium isopropoxide (c-TTIP), and tetrabutyl titanate (c-TBOT), respectively. Compared with the PSCs based on the widely used c-TTDB and c-TTIP, the device based on c-TBOT has significantly enhanced performance, including open-circuit voltage, short-circuit current density, fill factor, and hysteresis. The significant enhancement is ascribed to its excellent morphology, high conductivity and optical properties, fast charge transfer, and large recombination resistance. Thus, a power conversion efficiency (PCE) of 17.03% has been achieved for the solar cells based on c-TBOT.
The optimum titanium precursor of fabricating TiO2 compact layer for perovskite solar cells
NASA Astrophysics Data System (ADS)
Qin, Jianqiang; Zhang, Zhenlong; Shi, Wenjia; Liu, Yuefeng; Gao, Huiping; Mao, Yanli
2017-12-01
Perovskite solar cells (PSCs) have attracted tremendous attentions due to its high performance and rapid efficiency promotion. Compact layer plays a crucial role in transferring electrons and blocking charge recombination between the perovskite layer and fluorine-doped tin oxide (FTO) in PSCs. In this study, compact TiO2 layers were synthesized by spin-coating method with three different titanium precursors, titanium diisopropoxide bis (acetylacetonate) (c-TTDB), titanium isopropoxide (c-TTIP), and tetrabutyl titanate (c-TBOT), respectively. Compared with the PSCs based on the widely used c-TTDB and c-TTIP, the device based on c-TBOT has significantly enhanced performance, including open-circuit voltage, short-circuit current density, fill factor, and hysteresis. The significant enhancement is ascribed to its excellent morphology, high conductivity and optical properties, fast charge transfer, and large recombination resistance. Thus, a power conversion efficiency (PCE) of 17.03% has been achieved for the solar cells based on c-TBOT.
Cho, Hyesung; Moon Kim, Sang; Sik Kang, Yun; Kim, Junsoo; Jang, Segeun; Kim, Minhyoung; Park, Hyunchul; Won Bang, Jung; Seo, Soonmin; Suh, Kahp-Yang; Sung, Yung-Eun; Choi, Mansoo
2015-01-01
The production of multiscale architectures is of significant interest in materials science, and the integration of those structures could provide a breakthrough for various applications. Here we report a simple yet versatile strategy that allows for the LEGO-like integrations of microscale membranes by quantitatively controlling the oxygen inhibition effects of ultraviolet-curable materials, leading to multilevel multiscale architectures. The spatial control of oxygen concentration induces different curing contrasts in a resin allowing the selective imprinting and bonding at different sides of a membrane, which enables LEGO-like integration together with the multiscale pattern formation. Utilizing the method, the multilevel multiscale Nafion membranes are prepared and applied to polymer electrolyte membrane fuel cell. Our multiscale membrane fuel cell demonstrates significant enhancement of performance while ensuring mechanical robustness. The performance enhancement is caused by the combined effect of the decrease of membrane resistance and the increase of the electrochemical active surface area. PMID:26412619
Performance of double -pass solar collector with CPC and fins for heat transfer enhancement
NASA Astrophysics Data System (ADS)
Alfegi, Ebrahim M. A.; Abosbaia, Alhadi A. S.; Mezughi, Khaled M. A.; Sopian, Kamaruzzaman
2013-06-01
The temperature of photovoltaic modules increases when it absorbs solar radiation, causing a decrease in efficiency. This undesirable effect can be partially avoided by applying a heat recovery unit with fluid circulation (air or water) with the photovoltaic module. Such unit is called photovoltaic / thermal collector (pv/t) or hybrid (pv/t). In this unit, photovoltaic cells were pasted directly on the flat plate absorber. An experimental study of a solar air heater with photovoltaic cell located at the absorber with fins and compound parabolic collector for heat transfer enhancement and increasing the number of reflection on the cells have been conducted. The performance of the photovoltaic, thermal, and combined pv/t collector over range of operating conditions and the results was discussed. Results at solar irradiance of 500 W/m2 show that the combined pv/t efficiency is increasing from 37.28 % to 81.41 % at mass flow rates various from 0.029 to 0.436 kg/s.
Carbon-Based Nanostructures as Advanced Contrast Agents for Magnetic Resonance Imaging
NASA Astrophysics Data System (ADS)
Ananta Narayanan, Jeyarama S.
2011-12-01
Superparamagnetic carbon-based nanostructures are presented as contrast agents (CAs) for advanced imaging applications such as cellular and molecular imaging using magnetic resonance imaging (MRI). Gadolinium-loaded, ultra-short single-walled carbon nanotubes (gadonanotubes; GNTs) are shown to have extremely high r1 relaxivities (contrast enhancement efficacy), especially at low-magnetic field strengths. The inherent lipophilicity of GNTs provides them the ability to image cells at low magnetic field strength. A carboxylated dextran-coated GNT (GadoDex) has been synthesized and proposed as a new biocompatible high-performance MRI CA. The r1 relaxivity is ca. 20 times greater than for other paramagnetic Gd-based CAs. This enhanced relaxivity for GadoDex is due to the synergistic effects of an increased molecular tumbling time (tauR) and a faster proton exchange rate (taum). GNTs also exhibit very large transverse relaxivities (r2) at high magnetic fields (≥ 3 T). The dependence of the transverse relaxation rates (especially R2*) of labeled cells on GNT concentration offers the possibility to quantify cell population in vivo using R2* mapping. The cell-labeling efficiency and high transverse relaxivities of GNTs has enabled the first non-iron oxide-based single-cell imaging using MRI. The residual metal catalyst particles of SWNT materials also have transverse relaxation properties. All of the SWNT materials exhibit superior transverse relaxation properties. However, purified SWNTs and US-tubes with less residual metal content exhibit better transverse relaxivities (r2), demonstrating the importance of the SWNT structure for enhanced MRI CA performance. A strategy to improve the r1 relaxivity of Gd-CAs by geometrically confining them within porous silicon particles (SiMPs) has been investigated. The enhancement in relaxivity is attributed to the slow diffusion of water molecules through the pores and the increase in the molecular tumbling time of the nanoconstruct. The universality of the strategy has been demonstrated for GNTs, gadofullerols and clinically-used MagnevistRTM. In summary, primary nanoscale confinement of Gd3+ ions in US-tubes has resulted in a new class of CAs which could revitalize low-field contrast-enhanced MRI, while extending and complementing current high-field MRI technology, as well. The observed boost in relaxivity upon a secondary nanoscale confinement of Gd-CAs within SiMPs suggests that additional unforeseen nanoscale effects may have the potential to further boost performance of MRI CAs.
Yancopoulos, G D; Blackwell, T K; Suh, H; Hood, L; Alt, F W
1986-01-31
We have recently proposed that a common recombinase performs all of the many variable region gene assembly events in B and T cells, and that the specificity of these joining events is mediated by regulating the "accessibility" of the involved gene segments. To test this possibility, we have introduced "accessible" T cell receptor (TCR) variable region gene segments into a pre-B cell line capable of recombining endogenous and transfected immunoglobulin (Ig) variable region gene segments. Although the corresponding "inaccessible" endogenous TCR gene segments do not rearrange in this line or in B cells in general, the introduced TCR gene segments join very frequently and, in fact, closely resemble introduced Ig gene segments in their recombination characteristics. These observations suggest a new role for conventional Ig transcriptional enhancers--recombinational enhancement. Our studies provide insight into additional aspects of the joining mechanism such as N region insertion, aberrant joining, and recombination-recognition sequence requirements for joining.
Singh, Priyanka; Kim, Yeon Ju; Singh, Hina; Ahn, Sungeun; Castro-Aceituno, Verónica; Yang, Deok Chun
2017-01-01
The present study investigates a simple and convenient one-step procedure for the preparation of bovine serum albumin (BSA)-Rh2 nanoparticles (NPs) at room temperature. In this work, ginsenoside Rh2 was entrapped within the BSA protein to form BSA-Rh2 NPs to enhance the aqueous solubility, stability, and therapeutic efficacy of Rh2. The physiochemical characterization by high-performance liquid chromatography, nuclear magnetic resonance, Fourier transform infrared spectroscopy, field emission transmission electron microscopy, dynamic light scattering, and thermogravimetric analysis confirmed that the prepared BSA-Rh2 NPs were spherical, highly monodispersed, and stable in aqueous systems. In addition, the stability of NPs in terms of different time intervals, pHs, and temperatures (20°C-700°C) was analyzed. The results obtained with different pHs showed that the synthesized BSA-Rh2 NPs were stable in the physiological buffer (pH 7.4) for up to 8 days, but degraded under acidic conditions (pH 5.0) representing the pH inside tumor cells. Furthermore, comparative analysis of the water solubility of BSA-Rh2 NPs and standard Rh2 showed that the BSA nanocarrier enhanced the water solubility of Rh2. Moreover, in vitro cytotoxicity assays including cell viability assays and morphological analyses revealed that Rh2-entrapped BSA NPs, unlike the free Rh2, demonstrated better in vitro cell viability in HaCaT skin cell lines and that BSA enhanced the anticancer effect of Rh2 in A549 lung cell and HT29 colon cancer cell lines. Additionally, anti-inflammatory assay of BSA-Rh2 NPs and standard Rh2 performed using RAW264.7 cells revealed decreased lipopolysaccharide-induced nitric oxide production by BSA-Rh2 NPs. Collectively, the present study suggests that BSA can significantly enhance the therapeutic behavior of Rh2 by improving its solubility and stability in aqueous systems, and hence, BSA-Rh2 NPs may potentially be used as a ginsenoside delivery vehicle in cancer and inflammatory cell lines.
Wu, Rong; Fan, Gao-Chao; Jiang, Li-Ping; Zhu, Jun-Jie
2018-02-07
The ability to rapidly detect apoptotic cells and accurately evaluate therapeutic effects is significant in cancer research. To address this target, a biocompatible, ultrasensitive photoelectrochemical (PEC) cytosensing platform was developed based on electrochemically reduced graphene (EG)/ZnIn 2 S 4 cosensitized TiO 2 coupled with specific recognition between apoptotic cells and phosphatidylserine-binding peptide (PSBP). In this strategy, the HL-60 cells were selected as a model and C005, nilotinib, and imatinib were selected as apoptosis inducers to show cytosensing performances. In particular, a TiO 2 photoactive substrate was designed as hollow spheres to enhance the PEC performance. Graphene was electrodeposited on the hollow TiO 2 -modified electrode to accelerate electron transfer and increase conductivity, followed by in situ growth of ZnIn 2 S 4 nanocrystals as photosensitizers via successive ionic layer adsorption and reaction method, forming a TiO 2 /EG/ZnIn 2 S 4 cosensitized structure that was used as a PEC matrix to immobilize PSBP for the recognition of early apoptotic cells. The detection of apoptotic cells was based on steric hindrance originating from apoptotic cell capture to induce an obvious decrease in the photocurrent signal. The ultrahigh sensitivity of the cytosensor resulted from enhanced PEC performance, bioactivity, and high binding affinity between PSBP and apoptotic cells. Compared with other assays, incorporate toxic elements were avoided, such as Cd, Ru, and Te, which ensured normal cell growth and are appropriate for cell analysis. The designed PEC cytosensor showed a low detection limit of apoptotic cells (as low as three cells), a wide linear range from 1 × 10 3 to 5 × 10 7 cells/mL, and an accurate evaluation of therapeutic effects. It also exhibited good specificity, reproducibility, and stability.
Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR/Cas9 or TALEN system.
Takayama, Kazuo; Igai, Keisuke; Hagihara, Yasuko; Hashimoto, Rina; Hanawa, Morifumi; Sakuma, Tetsushi; Tachibana, Masashi; Sakurai, Fuminori; Yamamoto, Takashi; Mizuguchi, Hiroyuki
2017-05-19
Genome editing research of human ES/iPS cells has been accelerated by clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) and transcription activator-like effector nucleases (TALEN) technologies. However, the efficiency of biallelic genetic engineering in transcriptionally inactive genes is still low, unlike that in transcriptionally active genes. To enhance the biallelic homologous recombination efficiency in human ES/iPS cells, we performed screenings of accessorial genes and compounds. We found that RAD51 overexpression and valproic acid treatment enhanced biallelic-targeting efficiency in human ES/iPS cells regardless of the transcriptional activity of the targeted locus. Importantly, RAD51 overexpression and valproic acid treatment synergistically increased the biallelic homologous recombination efficiency. Our findings would facilitate genome editing study using human ES/iPS cells. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Optimized Delivery System Achieves Enhanced Endomyocardial Stem Cell Retention
Behfar, Atta; Latere, Jean-Pierre; Bartunek, Jozef; Homsy, Christian; Daro, Dorothee; Crespo-Diaz, Ruben J.; Stalboerger, Paul G.; Steenwinckel, Valerie; Seron, Aymeric; Redfield, Margaret M.; Terzic, Andre
2014-01-01
Background Regenerative cell-based therapies are associated with limited myocardial retention of delivered stem cells. The objective of this study is to develop an endocardial delivery system for enhanced cell retention. Methods and Results Stem cell retention was simulated in silico using one and three-dimensional models of tissue distortion and compliance associated with delivery. Needle designs, predicted to be optimal, were accordingly engineered using nitinol – a nickel and titanium alloy displaying shape memory and super-elasticity. Biocompatibility was tested with human mesenchymal stem cells. Experimental validation was performed with species-matched cells directly delivered into Langendorff-perfused porcine hearts or administered percutaneously into the endocardium of infarcted pigs. Cell retention was quantified by flow cytometry and real time quantitative polymerase chain reaction methodology. Models, computing optimal distribution of distortion calibrated to favor tissue compliance, predicted that a 75°-curved needle featuring small-to-large graded side holes would ensure the highest cell retention profile. In isolated hearts, the nitinol curved needle catheter (C-Cath) design ensured 3-fold superior stem cell retention compared to a standard needle. In the setting of chronic infarction, percutaneous delivery of stem cells with C-Cath yielded a 37.7±7.1% versus 10.0±2.8% retention achieved with a traditional needle, without impact on biocompatibility or safety. Conclusions Modeling guided development of a nitinol-based curved needle delivery system with incremental side holes achieved enhanced myocardial stem cell retention. PMID:24326777
Applications of Photonic Crystals to Photovoltaic Devices
NASA Astrophysics Data System (ADS)
Foster, Stephen
Photonic crystals are structures that exhibit wavelength-scale spatial periodicity in their dielectric function. They are best known for their ability to exhibit complete photonic band gaps (PBGs) - spectral regions over which no light can propagate within the crystal. PBGs are specific instances of a more general phenomenon, in which the local photonic density of states can be enhanced or suppressed over different frequency ranges by tuning the properties of the crystal. This can be used to redirect, concentrate, or even trap light incident on the crystal. In this thesis, we investigate how photonic crystals can be used to enhance the efficiency of photovoltaic devices by trapping light. Due to the many different types of photovoltaic devices in existence (varying widely in materials used, modes of operation, and internal structure), there is no single light trapping architecture that can be applied to all photovoltaics. In this work we study a number of different devices: dye-sensitized solar cells, polymer solar cells, silicon-perovskite tandem cells, and single-junction silicon cells. We propose novel photonic crystal-based light trapping designs for each type of device, and evaluate these designs numerically to demonstrate their effectiveness. Full-field optical simulations of the cell are performed for each design, using either finite element method (FEM) or finite-difference time-domain (FDTD) techniques. Where appropriate, electrical modelling of the cell is also performed, through either the use of a simple one-diode model, or by obtaining full solutions to the semiconductor drift-diffusion equations within the cell. In all cases we find that the photonic crystal-based designs significantly outperform their non-nanostructured counterparts. In the case of dye-sensitized and polymer cells, enhancements in light absorption of 33% and 40% (respectively) are seen, relative to reference cells with planar geometries. In the case of silicon-perovskite tandem cells and silicon cells, projected power conversion efficiencies of over 30% are obtained, well beyond the current world record for silicon-based cells. We conclude the thesis with a discussion on the overall prospects for photonic crystal-based solar cells, with a focus on the factors that make solar cell technologies amenable to light trapping.
Zhong, Sihua; Wang, Wenjie; Tan, Miao; Zhuang, Yufeng
2017-01-01
Abstract Large‐scale (156 mm × 156 mm) quasi‐omnidirectional solar cells are successfully realized and featured by keeping high cell performance over broad incident angles (θ), via employing Si nanopyramids (SiNPs) as surface texture. SiNPs are produced by the proposed metal‐assisted alkaline etching method, which is an all‐solution‐processed method and highly simple together with cost‐effective. Interestingly, compared to the conventional Si micropyramids (SiMPs)‐textured solar cells, the SiNPs‐textured solar cells possess lower carrier recombination and thus superior electrical performances, showing notable distinctions from other Si nanostructures‐textured solar cells. Furthermore, SiNPs‐textured solar cells have very little drop of quantum efficiency with increasing θ, demonstrating the quasi‐omnidirectional characteristic. As an overall result, both the SiNPs‐textured homojunction and heterojunction solar cells possess higher daily electric energy production with a maximum relative enhancement approaching 2.5%, when compared to their SiMPs‐textured counterparts. The quasi‐omnidirectional solar cell opens a new opportunity for photovoltaics to produce more electric energy with a low cost. PMID:29201616
Zhong, Sihua; Wang, Wenjie; Tan, Miao; Zhuang, Yufeng; Shen, Wenzhong
2017-11-01
Large-scale (156 mm × 156 mm) quasi-omnidirectional solar cells are successfully realized and featured by keeping high cell performance over broad incident angles (θ), via employing Si nanopyramids (SiNPs) as surface texture. SiNPs are produced by the proposed metal-assisted alkaline etching method, which is an all-solution-processed method and highly simple together with cost-effective. Interestingly, compared to the conventional Si micropyramids (SiMPs)-textured solar cells, the SiNPs-textured solar cells possess lower carrier recombination and thus superior electrical performances, showing notable distinctions from other Si nanostructures-textured solar cells. Furthermore, SiNPs-textured solar cells have very little drop of quantum efficiency with increasing θ, demonstrating the quasi-omnidirectional characteristic. As an overall result, both the SiNPs-textured homojunction and heterojunction solar cells possess higher daily electric energy production with a maximum relative enhancement approaching 2.5%, when compared to their SiMPs-textured counterparts. The quasi-omnidirectional solar cell opens a new opportunity for photovoltaics to produce more electric energy with a low cost.
Li, Jiangsheng; Duan, Chenghao; Wang, Ning; Zhao, Chengjie; Han, Wei; Jiang, Li; Wang, Jizheng; Zhao, Yingjie; Huang, Changshui; Jiu, Tonggang
2018-05-08
The molecular structure of cathode interface modification materials can affect the surface morphology of the active layer and key electron transfer processes occurring at the interface of polymer solar cells in inverted structures mostly due to the change of molecular configuration. To investigate the effects of spatial configuration of the cathode interfacial modification layer on polymer solar cells device performances, we introduced two novel organic ionic salts (linear NS2 and three-dimensional (3D) NS4) combined with the ZnO film to fabricate highly efficient inverted solar cells. Both organic ionic salts successfully decreased the surface traps of the ZnO film and made its work function more compatible. Especially NS4 in three-dimensional configuration increased the electron mobility and extraction efficiency of the interfacial film, leading to a significant improvement of device performance. Power conversion efficiency (PCE) of 10.09% based on NS4 was achieved. Moreover, 3D interfacial modification could retain about 92% of its initial PCE over 160 days. It is proposed that 3D interfacial modification retards the element penetration-induced degradation without impeding the electron transfer from the active layer to the ZnO film, which significantly improves device stability. This indicates that inserting three-dimensional organic ionic salt is an efficient strategy to enhance device performance.
Laffleur, Flavia; Psenner, Julia; Suchaoin, Wongsakorn
2015-07-01
It was the aim of this study to evaluate the permeation-enhancing effect of synthesized thiolated hyaluronic acid (HA). HA, a naturally found polysaccharide, was chemically modified with l-cysteine ethyl ether (C) via amide bond formation. In vitro permeation enhancement was tested on Caco-2 cells with two compounds, sulforhodamine (SR) and fluorescein isothiocyanate-dextran (FD4). Cytotoxicity assays as lactate dehydrogenase and thiazolyl blue tetrazolium bromide (MTT) were performed on colon carcinoma cell line. Transepithelial electrical resistance (TEER) measurements were conducted. Ex vivo evaluation was accomplished on rat intestinal mucosa in order to predict the permeation enhancing effect with SR, sodium fluorescein (SF), and FD4, respectively. The MTT as well as lactate dehydrogenase revealed no toxicity over time periods of 3 and 12 h, respectively. The bioconjugate is biocompatible and safe to use. Furthermore, TEER measurements showed the integrity of tight junctions. The in vitro permeation studies on cell studies exhibit 1.28-fold enhancement for SR and 1.47-fold enhancement for FD4 with hyaluronic acid-cysteine ethyl ester (HAC) in comparison to unmodified one. The ex vivo transport studies exhibit 1.9-fold enhancement for SF, 1.31-fold enhancement for Rhodamine123, and 1.3-fold enhancement for FD4 with HAC in comparison to unmodified one, respectively. Thus, the promising results encourage further investigations and exploitation of this versatile polysaccharide. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Evaluation of Open Cell Foam Heat Transfer Enhancement for Liquid Rocket Engine
NASA Technical Reports Server (NTRS)
Chung, J. N.; Tully, Landon; Kim, Jung Hwan; Jones, Gregg W.; Watkins, William
2006-01-01
As NASA pursues the exploration mission, advanced propulsion for the next generation of spacecraft will be needed. These new propulsion systems will require higher performance and increased durability, despite current limitations on materials. A break-through technology is needed in the thrust chamber. In this paper the idea of using a porous metallic foam is examined for its potential cooling enhancement capabilities. The goal is to increase the chamber wall cooling without creating an additional pressure drop penalty. A feasibility study based on experiments at laboratory-scale conditions was performed and analysis at rocket conditions is underway. In the experiment, heat transfer and pressure drop data were collected using air as the coolant in a copper or nickel foam filled annular channel. The foam-channel performance was evaluated based on comparison with conventional microchannel cooling passages under equal pressure drop conditions. The heat transfer enhancement of the foam channel over the microchannel ranges from 130% to 172%. The enhancement is relatively independent of the pressure drop and increases with decreasing pore size. A direct numerical simulation model of the foam heat exchange has been built. The model is based on the actual metal foam microstructure of thin ligaments (0.2- 0.3 mm in diameter) that form a network of interconnected open-cells. The cell dimension is around 2 mm. The numerical model was built using the FLUENT CFD code. Comparison of the pressure drop results predicted by the current model with those experimental data of Leong and Jin [8] shows favorable comparisons. Pressure drop predictions have been made using hydrogen as a coolant at typical rocket conditions. Conjugate heat transfer analysis using the foam filled channel is planned for the future.
Fang, Jia; Liu, Bofei; Zhao, Ying; Zhang, Xiaodan
2014-08-22
Introducing light trapping structures into thin-film solar cells has the potential to enhance their solar energy harvesting as well as the performance of the cells; however, current strategies have been focused mainly on harvesting photons without considering the light re-escaping from cells in two-dimensional scales. The lateral out-coupled solar energy loss from the marginal areas of cells has reduced the electrical yield indeed. We therefore herein propose a lateral light trapping structure (LLTS) as a means of improving the light-harvesting capacity and performance of cells, achieving a 13.07% initial efficiency and greatly improved current output of a-Si:H single-junction solar cell based on this architecture. Given the unique transparency characteristics of thin-film solar cells, this proposed architecture has great potential for integration into the windows of buildings, microelectronics and other applications requiring transparent components.
Rolland, J.B.; Bouchard, D.; Coll, J.; Winton, J.R.
2005-01-01
Infectious salmon anemia (ISA) is a severe disease primarily affecting commercially farmed Atlantic salmon (Salmo salar) in seawater. The disease has been reported in portions of Canada, the United Kingdom, the Faroe Islands, and the United States. Infectious salmon anemia virus (ISAV), the causative agent of ISA, has also been isolated from several asymptomatic marine and salmonid fish species. Diagnostic assays for the detection of ISAV include virus isolation in cell culture, a reverse transcriptase-PCR, an enzyme-linked immunosorbent assay, and an indirect fluorescent antibody test. Virus isolation is considered the gold standard, and 5 salmonid cell lines are known to support growth of ISAV. In this study, the relative performance of the salmon head kidney 1 (SHK-1), Atlantic salmon kidney (ASK), and CHSE-214 cell lines in detecting ISAV was evaluated using samples from both experimentally and naturally infected Atlantic salmon. Interlaboratory comparisons were conducted using a quality control-quality assurance ring test. Both the ASK and SHK-1 cell lines performed well in detecting ISAV, although the SHK-1 line was more variable in its sensitivity to infection and somewhat slower in the appearance of cytopathic effect. Relative to the SHK-1 and ASK lines, the CHSE-214 cell line performed poorly. Although the ASK line appeared to represent a good alternative to the more commonly used SHK-1 line, use of a single cell line for diagnostic assays may increase the potential for false-negative results. Thus, the SHK-1 and ASK cell lines can be used in combination to provide enhanced ability to detect ISAV.
Bi-functional ion exchangers for enhanced performance of dye-sensitized solar cells.
Kong, Eui-Hyun; Chang, Yong-June; Lim, Jongchul; Kim, Back-Hyun; Lee, Jung-Hoon; Kwon, Do-Kyun; Park, Taiho; Jang, Hyun Myung
2013-07-28
Ion exchange using aerosol OT (AOT) offers dye adsorption twice as fast as known methods. Moreover, it suppresses the dye-agglomeration that may cause insufficient dye-coverage on the photoelectrode surface. Consequently, its dual function of fast dye-loading and higher dye-coverage significantly improves the power conversion efficiency of dye-sensitized solar cells.
Muramyl Peptide-Enhanced Sleep: Pharmacological Optimization of Performance
1991-06-01
assessed. Exieriment C: Effects of PGE2, PGD2, IFNa, VIP, DSIP, 5- HT , hydrocorti- sone, and MDP, on HLADR expression in HTB16 cells . HTB16 cells were...stimulatory effect of IFNy on MHCII expression in astrocytes, or the cell line we used lacks receptors for 5- HT . It is well known that glucocorticoids... Effects of ICV injection of CCK on sleep-wake activity and brain temperature 92 Fig. 7: Growth curves of glioblastoma cell lines HTBl4, HTE16, and H:0i
NASA Technical Reports Server (NTRS)
Hardage, Donna (Technical Monitor); Walters, R. J.; Morton, T. L.; Messenger, S. R.
2004-01-01
The objective is to develop an improved space solar cell radiation response analysis capability and to produce a computer modeling tool which implements the analysis. This was accomplished through analysis of solar cell flight data taken on the Microelectronics and Photonics Test Bed experiment. This effort specifically addresses issues related to rapid technological change in the area of solar cells for space applications in order to enhance system performance, decrease risk, and reduce cost for future missions.
Li-Ion Cell Development for Low Temperature Applications
NASA Technical Reports Server (NTRS)
Huang, C.-K.; Sakamoto, J. S.; Surampudi, S.; Wolfenstine, J.
2000-01-01
JPL is involved in the development of rechargeable Li-ion cells for future Mars Exploration Missions. The specific objectives are to improve the Li-ion cell cycle life performance and rate capability at low temperature (<<-20 C) in order to enhance survivability of the Mars lander and rover batteries. Poor Li-ion rate capability at low temperature has been attributed to: (1) the electrolytes becoming viscous or freezing and/or (2) reduced electrode capacity that results from decreased Li diffusivity. Our efforts focus on increasing the rate capability at low temperature for Li-ion cells. In order to improve the rate capability we evaluated the following: (1) cathode performance at low temperatures, (2) electrode active material particle size on low temperature performance and (3) Li diffusivity at room temperature and low temperatures. In this paper, we will discuss the results of our study.
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.
2010-01-01
To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.
Carpizo, Katherine H; Saran, Madeleine J; Huang, Weibiao; Ishida, Kenji; Roostaeian, Jason; Bischoff, David; Huang, Catherine K; Rudkin, George H; Yamaguchi, Dean T; Miller, Timothy A
2008-02-01
Surface topography is important in the creation of a scaffold for tissue engineering. Chemical etching of poly(l-lactide-co-glycolide) with sodium hydroxide has been shown to enhance adhesion and function of numerous cell types. The authors investigated the effects of sodium hydroxide pretreatment of three-dimensional poly(l-lactide-co-glycolide) scaffolds on the adhesion, differentiation, and proliferation of MC3T3-E1 murine preosteoblasts. MC3T3-E1 cells were seeded onto three-dimensional poly(l-lactide-co-glycolide) scaffolds with and without 1 M sodium hydroxide pretreatment. Cells were then cultured in osteogenic medium and harvested at varying time points for RNA extraction. Quantitative real-time reverse-transcriptase polymerase chain reaction was performed to measure mRNA expression of several osteogenic marker genes. In addition, cell numbers were determined at varying time points during the culture period. All experiments were performed in triplicate. Pretreatment of three-dimensional poly(l-lactide-co-glycolide) scaffolds with sodium hydroxide resulted in statistically significant up-regulation of mRNA expression of alkaline phosphatase, bone sialoprotein, osteocalcin, and vascular endothelial growth factor during the first 10 days of culture. Histologic analysis demonstrated a striking increase in mineralized cell matrix deposition in the sodium hydroxide-treated group. Cell number was statistically higher in the sodium hydroxide-treated group immediately after cell seeding, suggesting improved adhesion. During the first 24 hours of culture, cells grew faster in the control group than in the sodium hydroxide-treated group. Chemical etching of poly(l-lactide-co-glycolide) scaffolds with sodium hydroxide strongly influences the behavior of MC3T3-E1 preosteoblasts in vitro by enhancing adhesion and differentiation and slowing proliferation. Sodium hydroxide treatment may represent a simple and inexpensive way of improving scaffolds for use in bone tissue engineering.
NASA Astrophysics Data System (ADS)
Liu, Ran; Sun, Zhixia; Zhang, Yuzhuo; Xu, Lin; Li, Na
2017-10-01
In this work, we prepared for the first time the TiO2 nanotube arrays (TNAs) photoanode with polyoxometalate(POMs)-modified TiO2 electron-transport layer for improving the performance of zinc phthalocyanine(ZnPc)-sensitized solar cells. The as-prepared POMs/TNAs/ZnPc composite photoanode exhibited higher photovoltaic performances than the TNAs/ZnPc photoanode, so that the power conversion efficiency of the solar cell device based on the POMs/TNAs/ZnPc photoanode displayed a notable improvement of 45%. These results indicated that the POMs play a key role in reducing charge recombination in phthalocyanine-sensitized solar cells, together with TiO2 nanotube arrays being helpful for electron transport. The mechanism of the performance improvement was demonstrated by the measurements of electrochemical impedance spectra and open-circuit voltage decay curves. Although the resulting performance is still below that of the state-of-the-art dye-sensitized solar cells, this study presents a new insight into improving the power conversion efficiency of phthalocyanine-sensitized solar cells via polyoxometalate-modified TiO2 nanotube arrays photoanode.
NASA Astrophysics Data System (ADS)
Wang, Hao-Yu; Wu, Jhao-Ting; Chow, Chi-Wai; Liu, Yang; Yeh, Chien-Hung; Liao, Xin-Lan; Lin, Kun-Hsien; Wu, Wei-Liang; Chen, Yi-Yuan
2018-01-01
Using solar cell (or photovoltaic cell) for visible light communication (VLC) is attractive. Apart from acting as a VLC receiver (Rx), the solar cell can provide energy harvesting. This can be used in self-powered smart devices, particularly in the emerging ;Internet of Things (IoT); networks. Here, we propose and demonstrate for the first time using pre-distortion pulse-amplitude-modulation (PAM)-4 signal and parallel resistance circuit to enhance the transmission performance of solar cell Rx based VLC. Pre-distortion is a simple non-adaptive equalization technique that can significantly mitigate the slow charging and discharging of the solar cell. The equivalent circuit model of the solar cell and the operation of using parallel resistance to increase the bandwidth of the solar cell are discussed. By using the proposed schemes, the experimental results show that the data rate of the solar cell Rx based VLC can increase from 20 kbit/s to 1.25 Mbit/s (about 60 times) with the bit error-rate (BER) satisfying the 7% forward error correction (FEC) limit.
Kim, Wook Hyun; Lyu, Hong-Kun; Han, Yoon Soo; Woo, Sungho
2013-10-01
The performance of poly(3-hexylthiophen) (P3HT) and [6, 6]phenyl C61 butyric acid methyl ester ([60]PCBM)-based inverted bulk-heterojunction (BHJ) polymer solar cells (PSCs) is enhanced by the modification of zinc oxide (ZnO)/BHJ interface with carboxylic-acid-functionalized self-assembled monolayers (SAMs). Under simulated solar illumination of AM 1.5 (100 mW/cm2), the inverted devices fabricated with SAM-modified ZnO achieved an enhanced power conversion efficiency (PCE) of 3.34% due to the increased fill factor and photocurrent density as compared to unmodified cells with PCE of 2.60%. This result provides an efficient method for interface engineering in inverted BHJ PSCs.
Qiu, Jiangdong; Huang, Keting; Wu, Mindan; Xia, Chunlin
2017-01-01
Aim of study Mutations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) gene were recently discovered in vast majority of World Health Organization (WHO) grade II/III gliomas. This study is to understand the effects of IDH1 R132H mutation in gliomagenesis and to develop new strategies to treat glioma with IDH1 R132H mutation. Materials and methods Over expression of IDH1 R132H in U87MG cells was done by transfecting cells with IDH1 R132H plasmid. MTT assay, scratch repair assay and western blot were performed to study effects of IDH1 R132H mutation on cell proliferation, migration, regulating AKT-mTOR signaling pathway and cell death respectively. NADP+/NADPH and GSH quantification assays were performed to evaluate effects of IDH1 R132H mutation on the production of antioxidant NADPH and GSH. Results We found that over expression of IDH1 R132H mutation decreased cell proliferation consistent with previous reports; however, it increased cell migration and enhanced AKT-mTOR signaling pathway activation. Mutations in isocitrate dehydrogenase (IDH) 1 also change the function of the enzymes and cause them to produce 2-hydroxyglutarate and not produce NADPH. We tested the level of NADPH and GSH and demonstrated that IDH1 R132H mutant stable cells had significantly low NADPH and GSH level compared to control or IDH1 wild type stable cells. The reduced antioxidants (NADPH and GSH) sensitized U87MG cells with IDH R132H mutant to 5-FU treatment. Conclusion Our study highlights the important role of IHD1 R132H mutant in up- regulating AKT-mTOR signaling pathway and enhancing cell migration. Furthermore, we demonstrate that IDH1 R132H mutation affects cellular redox status and sensitizes gliomas cells with IDH1 R132H mutation to 5FU treatment. PMID:28052098
Wu, Yaobin; Wang, Ling; Guo, Baolin; Shao, Yongpin; Ma, Peter X
2016-05-01
Myelination of Schwann cells (SCs) is critical for the success of peripheral nerve regeneration, and biomaterials that can promote SCs' neurotrophin secretion as scaffolds are beneficial for nerve repair. Here we present a biomaterials-approach, specifically, a highly tunable conductive biodegradable flexible polyurethane by polycondensation of poly(glycerol sebacate) and aniline pentamer, to significantly enhance SCs' myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. SCs are cultured on these conductive polymer films, and the biocompatibility of these films and their ability to enhance myelin gene expressions and sustained neurotrophin secretion are successfully demonstrated. The mechanism of SCs' neurotrophin secretion on conductive films is demonstrated by investigating the relationship between intracellular Ca(2+) level and SCs' myelination. Furthermore, the neurite growth and elongation of PC12 cells are induced by adding the neurotrophin medium suspension produced from SCs-laden conductive films. These data suggest that these conductive degradable polyurethanes that enhance SCs' myelin gene expressions and sustained neurotrophin secretion perform great potential for nerve regeneration applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wei, Hairong; Gou, Jiqing; Yordanov, Yordan; Zhang, Huaxin; Thakur, Ramesh; Jones, Wendy; Burton, Andrew
2013-03-01
Aspen (Populus tremuloides) trees growing under elevated [CO(2)] at a free-air CO(2) enrichment (FACE) site produced significantly more biomass than control trees. We investigated the molecular mechanisms underlying the observed increase in biomass by producing transcriptomic profiles of the vascular cambium zone (VCZ) and leaves, and then performed a comparative study to identify significantly changed genes and pathways after 12 years exposure to elevated [CO(2)]. In leaves, elevated [CO(2)] enhanced expression of genes related to Calvin cycle activity and linked pathways. In the VCZ, the pathways involved in cell growth, cell division, hormone metabolism, and secondary cell wall formation were altered while auxin conjugation, ABA synthesis, and cytokinin glucosylation and degradation were inhibited. Similarly, the genes involved in hemicellulose and pectin biosynthesis were enhanced, but some genes that catalyze important steps in lignin biosynthesis pathway were inhibited. Evidence from systemic analysis supported the functioning of multiple molecular mechanisms that underpin the enhanced radial growth in response to elevated [CO(2)].
Enhanced size-dependent trapping of particles using microvortices
Zhou, Jian; Kasper, Susan; Papautsky, Ian
2013-01-01
Inertial microfluidics has been attracting considerable interest for size-based separation of particles and cells. The inertial forces can be manipulated by expanding the microchannel geometry, leading to formation of microvortices which selectively isolate and trap particles or cells from a mixture. In this work, we aim to enhance our understanding of particle trapping in such microvortices by developing a model of selective particle trapping. Design and operational parameters including flow conditions, size of the trapping region, and target particle concentration are explored to elucidate their influence on trapping behavior. Our results show that the size dependence of trapping is characterized by a threshold Reynolds number, which governs the selective entry of particles into microvortices from the main flow. We show that concentration enhancement on the order of 100,000× and isolation of targets at concentrations in the 1/mL is possible. Ultimately, the insights gained from our systematic investigation suggest optimization solutions that enhance device performance (efficiency, size selectivity, and yield) and are applicable to selective isolation and trapping of large rare cells as well as other applications. PMID:24187531
Enhanced radiosensitization of p53 mutant cells by oleamide.
Lee, Yoon-Jin; Chung, Da Yeon; Lee, Su-Jae; Ja Jhon, Gil; Lee, Yun-Sil
2006-04-01
Effect of oleamide, an endogenous fatty-acid primary amide, on tumor cells exposed to ionizing radiation (IR) has never before been explored. NCI H460, human lung cancer cells, and human astrocytoma cell lines, U87 and U251, were used. The cytotoxicity of oleamide alone or in combination with IR was determined by clonogenic survival assay, and induction of apoptosis was estimated by FACS analysis. Protein expressions were confirmed by Western blotting, and immunofluorescence analysis of Bax by use of confocal microscopy was also performed. The combined effect of IR and oleamide to suppress tumor growth was studied by use of xenografts in the thighs of nude mice. Oleamide in combination with IR had a synergistic effect that decreased clonogenic survival of lung-carcinoma cell lines and also sensitized xenografts in nude mice. Enhanced induction of apoptosis of the cells by the combined treatment was mediated by loss of mitochondrial membrane potential, which resulted in the activation of caspase-8, caspase-9, and caspase-3 accompanied by cytochrome c release and Bid cleavage. The synergistic effects of the combined treatment were more enhanced in p53 mutant cells than in p53 wild-type cells. In p53 wild-type cells, both oleamide and radiation induced Bax translocation to mitochondria. On the other hand, in p53 mutant cells, radiation alone slightly induced Bax translocation to mitochondria, whereas oleamide induced a larger translocation. Oleamide may exhibit synergistic radiosensitization in p53 mutant cells through p53-independent Bax translocation to mitochondria.
Graphene-Enhanced Thermal Interface Materials for Thermal Management of Solar Cells
NASA Astrophysics Data System (ADS)
Saadah, Mohammed Ahmed
The interest to photovoltaic solar cells as a source of energy for a variety of applications has been rapidly increasing in recent years. Solar cells panels that employ optical concentrators can convert more than 30% of absorbed light into electricity. Most of the remaining 70% of absorbed energy is turned into heat inside the solar cell. The increase in the photovoltaic cell temperature negatively affects its power conversion efficiency and lifetime. In this dissertation research I investigated a feasibility of using graphene fillers in thermal interface materials for improving thermal management of multi-junction concentrator solar cells. Graphene and few-layer graphene fillers, produced by a scalable environmentally-friendly liquid-phase exfoliation technique, were incorporated into conventional thermal interface materials. Characteristics of the composites have been examined with Raman spectroscopy, optical microscopy and thermal conductivity measurements. Graphene-enhanced thermal interface materials have been applied between a solar cell and heat sink to improve heat dissipation. The performance of the single and multi-junction solar cells has been tested using an industry-standard solar simulator under the light concentration of up to 2000 suns. It was found that the application of graphene-enhanced thermal interface materials allows one to reduce the solar cell temperature and increase the open-circuit voltage. We demonstrated that the use of graphene helps in recovering significant amount of the power loss due to solar cell overheating. The obtained results are important for the development of new technologies for thermal management of concentrated and multi-junction photovoltaic solar cells.
Yao, Xin; Liang, Junhui; Li, Yuelong; Luo, Jingshan; Shi, Biao; Wei, Changchun; Zhang, Dekun; Li, Baozhang; Ding, Yi; Zhao, Ying; Zhang, Xiaodan
2017-10-01
Intensive studies on low-temperature deposited electron transport materials have been performed to improve the efficiency of n-i-p type planar perovskite solar cells to extend their application on plastic and multijunction device architectures. Here, a TiO 2 film with enhanced conductivity and tailored band edge is prepared by magnetron sputtering at room temperature by hydrogen doping (HTO), which accelerates the electron extraction from perovskite photoabsorber and reduces charge transfer resistance, resulting in an improved short circuit current density and fill factor. The HTO film with upward shifted Fermi level guarantees a smaller loss on V OC and facilitates the growth of high-quality absorber with much larger grains and more uniform size, leading to devices with negligible hysteresis. In comparison with the pristine TiO 2 prepared without hydrogen doping, the HTO-based device exhibits a substantial performance enhancement leading to an efficiency of 19.30% and more stabilized photovoltaic performance maintaining 93% of its initial value after 300 min continuous illumination in the glove box. These properties permit the room-temperature magnetron sputtered HTO film as a promising electron transport material for flexible and tandem perovskite solar cell in the future.
Xie, Yulin; Lu, Kai; Duan, Jiashun; Jiang, Youyu; Hu, Lin; Liu, Tiefeng; Zhou, Yinhua; Hu, Bin
2018-04-25
Electron and hole transport layers have critical impacts on the overall performance of perovskite solar cells (PSCs). Herein, for the first time, a solution-processed cobalt (Co)-doped NiO X film was fabricated as the hole transport layer in inverted planar PSCs, and the solar cells exhibit 18.6% power conversion efficiency. It has been found that an appropriate Co-doping can significantly adjust the work function and enhance electrical conductivity of the NiO X film. Capacitance-voltage ( C- V) spectra and time-resolved photoluminescence spectra indicate clearly that the charge accumulation becomes more pronounced in the Co-doped NiO X -based photovoltaic devices; it, as a consequence, prevents the nonradiative recombination at the interface between the Co-doped NiO X and the photoactive perovskite layers. Moreover, field-dependent photoluminescence measurements indicate that Co-doped NiO X -based devices can also effectively inhibit the radiative recombination process in the perovskite layer and finally facilitate the generation of photocurrent. Our work indicates that Co-doped NiO X film is an excellent candidate for high-performance inverted planar PSCs.
Optimized Li-Ion Electrolytes Containing Fluorinated Ester Co-Solvents
NASA Technical Reports Server (NTRS)
Prakash, G. K. Surya; Smart, Marshall; Smith, Kiah; Bugga, Ratnakumar
2010-01-01
A number of experimental lithium-ion cells, consisting of MCMB (meso-carbon microbeads) carbon anodes and LiNi(0.8)Co(0.2)O2 cathodes, have been fabricated with increased safety and expanded capability. These cells serve to verify and demonstrate the reversibility, low-temperature performance, and electrochemical aspects of each electrode as determined from a number of electrochemical characterization techniques. A number of Li-ion electrolytes possessing fluorinated ester co-solvents, namely trifluoroethyl butyrate (TFEB) and trifluoroethyl propionate (TFEP), were demonstrated to deliver good performance over a wide temperature range in experimental lithium-ion cells. The general approach taken in the development of these electrolyte formulations is to optimize the type and composition of the co-solvents in ternary and quaternary solutions, focusing upon adequate stability [i.e., EC (ethylene carbonate) content needed for anode passivation, and EMC (ethyl methyl carbonate) content needed for lowering the viscosity and widening the temperature range, while still providing good stability], enhancing the inherent safety characteristics (incorporation of fluorinated esters), and widening the temperature range of operation (the use of both fluorinated and non-fluorinated esters). Further - more, the use of electrolyte additives, such as VC (vinylene carbonate) [solid electrolyte interface (SEI) promoter] and DMAc (thermal stabilizing additive), provide enhanced high-temperature life characteristics. Multi-component electrolyte formulations enhance performance over a temperature range of -60 to +60 C. With the need for more safety with the use of these batteries, flammability was a consideration. One of the solvents investigated, TFEB, had the best performance with improved low-temperature capability and high-temperature resilience. This work optimized the use of TFEB as a co-solvent by developing the multi-component electrolytes, which also contain non-halogenated esters, film forming additives, thermal stabilizing additives, and flame retardant additives. Further optimization of these electrolyte formulations is anticipated to yield improved performance. It is also anticipated that much improved performance will be demonstrated once these electrolyte solutions are incorporated into hermetically sealed, large capacity prototype cells, especially if effort is devoted to ensure that all electrolyte components are highly pure.
Friedman, Jay; Morisada, Megan; Sun, Lillian; Moore, Ellen C; Padget, Michelle; Hodge, James W; Schlom, Jeffrey; Gameiro, Sofia R; Allen, Clint T
2018-06-21
Natural killer (NK) cells recognize and lyse target tumor cells in an MHC-unrestricted fashion and complement antigen- and MHC-restricted killing by T-lymphocytes. NK cells and T-lymphocytes mediate early killing of targets through a common granzyme B-dependent mechanism. Tumor cell resistance to granzyme B and how this alters NK cell killing is not clearly defined. Tumor cell sensitivity to cultured murine KIL and human high affinity NK (haNK) cells in the presence or absence of AZD1775, a small molecule inhibitor of WEE1 kinase, was assessed via real time impedance analysis. Mechanisms of enhanced sensitivity to NK lysis were determined and in vivo validation via adoptive transfer of KIL cells into syngeneic mice was performed. Cultured murine KIL cells lyse murine oral cancer 2 (MOC2) cell targets more efficiently than freshly isolated peripheral murine NK cells. MOC2 sensitivity to granzyme B-dependent KIL cell lysis was enhanced by inhibition of WEE1 kinase, reversing G2/M cell cycle checkpoint activation and resulting in enhanced DNA damage and apoptosis. Treatment of MOC2 tumor-bearing wild-type C57BL/6 mice with AZD1775 and adoptively transferred KIL cells resulted in enhanced tumor growth control and survival over controls or either treatment alone. Validating these findings in human models, WEE1 kinase inhibition sensitized two human head and neck cancer cell lines to direct lysis by haNK cells. Further, WEE1 kinase inhibition sensitized these cell lines to antibody-dependent cell-mediated cytotoxicity when combined with the anti-PD-L1 IgG1 mAb Avelumab. Tumor cell resistance to granzyme B-induced cell death can be reversed through inhibition of WEE1 kinase as AZD1775 sensitized both murine and human head and neck cancer cells to NK lysis. These data provide the pre-clinical rationale for the combination of small molecules that reverse cell cycle checkpoint activation and NK cellular therapies.
Wang, Hui; Lai, Yue-Kun; Zheng, Ru-Yue; Bian, Ye; Zhang, Ke-Qin; Lin, Chang-Jian
2015-01-01
Biological performance of artificial implant materials is closely related to their surface characteristics, such as microtopography, and composition. Therefore, convenient fabrication of artificial implant materials with a cell-friendly surface structure and suitable composition was of great significance for current tissue engineering. In this work, titanate materials with a nanotubular structure were successfully fabricated through a simple chemical treatment. Immersion test in a simulated body fluid and in vitro cell culture were used to evaluate the biological performance of the treated samples. The results demonstrate that the titanate layer with a nanotubular structure on Ti substrates can promote the apatite-inducing ability remarkably and greatly enhance cellular responses. This highlights the potential of such titanate biomaterials with the special nanoscale structure and effective surface composition for biomedical applications such as bone implants. PMID:26089665
Integrating photonic crystals in thin film silicon photovoltaics
NASA Astrophysics Data System (ADS)
O'Brien, P. G.; Chutinan, A.; Ozin, G. A.; Kherani, N. P.; Zukotynski, S.
2010-06-01
Wave-optics analysis is performed to investigate the benefits of integrating photonic crystals into micromorph cells. Specifically, we theoretically investigate two novel micromorph cells which integrate photonic crystals and compare their optical performance with that of conventional micromorph cells. In the first innovative micromorph cell configuration the intermediate reflector is a selectively transparent and conducting photonic crystal (STCPC). In the second micromorph cell its bottom μc-Si:H cell is structured in the form of an inverted opal. Our results show that with the AM1.5 solar spectrum at normal incidence the current generated in a conventional micromorph cell is increased from 12.1 mA/cm2 to 13.0 mA/cm2 when the bottom μc-Si:H cell is structured in the form of an inverted opal. However, the current generated in the micromorph cell can be increased to as much as 13.7 mA/cm2 when an STCPC is utilized as the intermediate reflector. Furthermore, the thickness of the μc-Si:H opal must be relatively large in order to absorb a sufficient amount of the solar irradiance, which is expected to degrade the electrical performance of the device. In contrast, our results suggest that STCPC intermediate reflectors are a viable technology that could potentially enhance the performance of micromorph cells.
Nanoscale imaging of photocurrent enhancement by resonator array photovoltaic coatings.
Ha, Dongheon; Yoon, Yohan; Zhitenev, Nikolai B
2018-04-06
Nanoscale surface patterning commonly used to increase absorption of solar cells can adversely impact the open-circuit voltage due to increased surface area and recombination. Here, we demonstrate absorptivity and photocurrent enhancement using silicon dioxide (SiO 2 ) nanosphere arrays on a gallium arsenide (GaAs) solar cell that do not require direct surface patterning. Due to the combined effects of thin-film interference and whispering gallery-like resonances within nanosphere arrays, there is more than 20% enhancement in both absorptivity and photocurrent. To determine the effect of the resonance coupling between nanospheres, we perform a scanning photocurrent microscopy based on a near-field scanning optical microscopy measurement and find a substantial local photocurrent enhancement. The nanosphere-based antireflection coating (ARC), made by the Meyer rod rolling technique, is a scalable and a room-temperature process; and, can replace the conventional thin-film-based ARCs requiring expensive high-temperature vacuum deposition.
Nanoscale imaging of photocurrent enhancement by resonator array photovoltaic coatings
NASA Astrophysics Data System (ADS)
Ha, Dongheon; Yoon, Yohan; Zhitenev, Nikolai B.
2018-04-01
Nanoscale surface patterning commonly used to increase absorption of solar cells can adversely impact the open-circuit voltage due to increased surface area and recombination. Here, we demonstrate absorptivity and photocurrent enhancement using silicon dioxide (SiO2) nanosphere arrays on a gallium arsenide (GaAs) solar cell that do not require direct surface patterning. Due to the combined effects of thin-film interference and whispering gallery-like resonances within nanosphere arrays, there is more than 20% enhancement in both absorptivity and photocurrent. To determine the effect of the resonance coupling between nanospheres, we perform a scanning photocurrent microscopy based on a near-field scanning optical microscopy measurement and find a substantial local photocurrent enhancement. The nanosphere-based antireflection coating (ARC), made by the Meyer rod rolling technique, is a scalable and a room-temperature process; and, can replace the conventional thin-film-based ARCs requiring expensive high-temperature vacuum deposition.
Long, Guankui; Wan, Xiangjian; Kan, Bin; Hu, Zhicheng; Yang, Xuan; Zhang, Yi; Zhang, Mingtao; Wu, Hongbing; Huang, Fei; Su, Shijian; Cao, Yong; Chen, Yongsheng
2014-08-01
Although the performance of polymer solar cells has been improved significantly recently through careful optimization with different interlayers for the same materials, more improvement is needed in this respect for small-molecule-based solar cells, particularly for the electron-transport layers (ETLs). In this work, three different solution-processed ETLs, PFN, ZnO nanoparticles, and LiF, were investigated and compared in the performance of small-molecule-based devices, and power conversion efficiencies (PCEs) of 8.32, 7.30, and 7.38% were achieved, respectively. The mechanism for the ETL-induced enhancement has been studied, and different ETLs have a significantly different impact on the device performance. The clearly improved performance of PFN is attributed to the combination of reduced bimolecular recombination and increased effective photon absorption in the active layer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of Nanosized/Nanostructured Silicon as Advanced Anodes for Lithium-Ion Cells
NASA Technical Reports Server (NTRS)
Wu, James J.
2015-01-01
NASA is developing high energy and high capacity Li-ion cell and battery designs for future exploration missions under the NASA Advanced Space Power System (ASPS) Program. The specific energy goal is 265 Wh/kg at 10 C. center dot Part of effort for NASA advanced Li-ion cells ? Anode: Silicon (Si) as an advanced anode. ? Electrolyte: advanced electrolyte with flame-retardant additives for enhanced performance and safety (NASA JPL).
Okabe, Atsushi; Funata, Sayaka; Matsusaka, Keisuke; Namba, Hiroe; Fukuyo, Masaki; Rahmutulla, Bahityar; Oshima, Motohiko; Iwama, Atsushi; Fukayama, Masashi; Kaneda, Atsushi
2017-08-11
Epstein-Barr virus (EBV) infection is associated with tumours such as Burkitt lymphoma, nasopharyngeal carcinoma, and gastric cancer. We previously showed that EBV(+) gastric cancer presents an extremely high-methylation epigenotype and this aberrant DNA methylation causes silencing of multiple tumour suppressor genes. However, the mechanisms that drive EBV infection-mediated tumorigenesis, including other epigenomic alteration, remain unclear. We analysed epigenetic alterations induced by EBV infection especially at enhancer regions, to elucidate their contribution to tumorigenesis. We performed ChIP sequencing on H3K4me3, H3K4me1, H3K27ac, H3K27me3, and H3K9me3 in gastric epithelial cells infected or not with EBV. We showed that repressive marks were redistributed after EBV infection, resulting in aberrant enhancer activation and repression. Enhancer dysfunction led to the activation of pathways related to cancer hallmarks (e.g., resisting cell death, disrupting cellular energetics, inducing invasion, evading growth suppressors, sustaining proliferative signalling, angiogenesis, and tumour-promoting inflammation) and inactivation of tumour suppressive pathways. Deregulation of cancer-related genes in EBV-infected gastric epithelial cells was also observed in clinical EBV(+) gastric cancer specimens. Our analysis showed that epigenetic alteration associated with EBV-infection may contribute to tumorigenesis through enhancer activation and repression.
Gopi, Chandu V V M; Venkata-Haritha, M; Kim, Soo-Kyoung; Kim, Hee-Je
2015-08-07
To make quantum-dot-sensitized solar cells (QDSSCs) competitive, photovoltaic parameters comparable to those of other emerging solar cell technologies are necessary. In the present study, ZnSe was used as an alternative to ZnS, one of the most widely used passivation materials in QDSSCs. ZnSe was deposited on a TiO2-CdS-CdSe photoanode to form a core-shell structure, which was more efficient in terms of reducing the electron recombination in QDSSCs. The development of an efficient passivation layer is a requirement for preventing recombination processes in order to attain high-performance and stable QDSSCs. A layer of inorganic Mn-ZnSe was applied to a QD-sensitized photoanode to enhance the adsorption and strongly inhibit interfacial recombination processes in QDSSCs, which greatly improved the power conversion efficiency. Impedance spectroscopy revealed that the combined Mn doping with ZnSe treatment reduces interfacial recombination and increases charge collection efficiency compared with Mn-ZnS, ZnS, and ZnSe. A solar cell based on the CdS-CdSe-Mn-ZnSe photoanode yielded excellent performance with a solar power conversion efficiency of 5.67%, Voc of 0.584 V, and Jsc of 17.59 mA cm(-2). Enhanced electron transport and reduced electron recombination are responsible for the improved Jsc and Voc of the QDSSCs. The effective electron lifetime of the device with Mn-ZnSe was higher than those with Mn-ZnS, ZnSe, and ZnS, leading to more efficient electron-hole separation and slower electron recombination.
Soboleva, Tatyana; Malek, Kourosh; Xie, Zhong; Navessin, Titichai; Holdcroft, Steven
2011-06-01
The effects of carbon microstructure and ionomer loading on water vapor sorption and retention in catalyst layers (CLs) of PEM fuel cells are investigated using dynamic vapor sorption. Catalyst layers based on Ketjen Black and Vulcan XC-72 carbon blacks, which possess distinctly different surface areas, pore volumes, and microporosities, are studied. It is found that pores <20 nm diameter facilitate water uptake by capillary condensation in the intermediate range of relative humidities. A broad pore size distribution (PSD) is found to enhance water retention in Ketjen Black-based CLs whereas the narrower mesoporous PSD of Vulcan CLs is shown to have an enhanced water repelling action. Water vapor sorption and retention properties of CLs are correlated to electrochemical properties and fuel cell performance. Water sorption enhances electrochemical properties such as the electrochemically active surface area (ESA), double layer capacitance and proton conductivity, particularly when the ionomer content is very low. The hydrophilic properties of a CL on the anode and the cathode are adjusted by choosing the PSD of carbon and the ionomer content. It is shown that a reduction of ionomer content on either cathode or anode of an MEA does not necessarily have a significant detrimental effect on the MEA performance compared to the standard 30 wt % ionomer MEA. Under operation in air and high relative humidity, a cathode with a narrow pore size distribution and low ionomer content is shown to be beneficial due to its low water retention properties. In dry operating conditions, adequate ionomer content on the cathode is crucial, whereas it can be reduced on the anode without a significant impact on fuel cell performance. © 2011 American Chemical Society
Lan, Yi; Li, Hui; Chen, Yan-yan; Zhang, Ye-wen; Liu, Na; Zhang, Qing; Wu, Qing
2014-11-01
Our previous studies had confirmed that the essential oil from Zanthoxylum bungeanum Maxim. (Z. bungeanum oil) could effectively enhance the percutaneous permeation of drug molecules as a natural transdermal penetration enhancer. The aim of the present study is to investigate and compare the skin penetration enhancement effect of Z. bungeanum oil and its main components on traditional Chinese medicine (TCM) active components. Toxicities of Z. bungeanum oil and three selected terpene compounds (terpinen-4-ol, 1,8-cineole, and limonene) in epidermal keratinocytes (HaCaT) and dermal fibroblast (CCC-ESF-1) cell lines were measured using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Five model drugs in TCM external preparations, namely osthole (OT), tetramethylpyrazine (TMP), ferulic acid (FA), puerarin (PR), and geniposide (GP), which were selected based on their lipophilicity denoted by logKo/w, were tested using in vitro permeation studies in which vertical Franz diffusion cells and rat abdominal skin were employed. The secondary structure changes of skin stratum corneum (SC) and drug thermodynamic activities were investigated to understand their mechanisms of action using Fourier transform infrared (FTIR) spectroscopy and saturation solubility studies, respectively. It was found that Z. bungeanum oil showed lower toxicities in both HaCaT cells and CCC-ESF-1 cells compared with three terpene compounds used alone. The enhancement permeation capacities by all tested agents were in the following increasing order: terpinen-4-ol≈1,8-cineole
Dithienogermole as a fused electron donor in bulk heterojunction solar cells.
Amb, Chad M; Chen, Song; Graham, Kenneth R; Subbiah, Jegadesan; Small, Cephas E; So, Franky; Reynolds, John R
2011-07-06
We report the synthesis and bulk heterojunction photovoltaic performance of the first dithienogermole (DTG)-containing conjugated polymer. Stille polycondensation of a distannyl-DTG derivative with 1,3-dibromo-N-octyl-thienopyrrolodione (TPD) results in an alternating copolymer which displays light absorption extending to 735 nm, and a higher HOMO level than the analogous copolymer containing the commonly utilized dithienosilole (DTS) heterocycle. When polyDTG-TPD:PC(70)BM blends are utilized in inverted bulk heterojunction solar cells, the cells display average power conversion efficiencies of 7.3%, compared to 6.6% for the DTS-containing cells prepared in parallel under identical conditions. The performance enhancement is a result of a higher short-circuit current and fill factor in the DTG-containing cells, which comes at the cost of a slightly lower open circuit voltage than for the DTS-based cells.
NASA Astrophysics Data System (ADS)
Li, Ling; Feng, Liuliu; Yuan, Jun; Peng, Hongjian; Zou, Yingping; Li, Yongfang
2018-03-01
Two medium bandgap polymers (ffQx-TS1, ffQx-TS2) were designed and synthesized to investigate the influence of different alkylthio side chain on the morphology and photovoltaic performance of non-fullerene polymer solar cells (PSCs). Both polymers exhibit similar molecular weights and comparable the highest occupied molecular orbital (HOMO) energy level. However, the polymer with straight alkylthio chain delivers a root-mean-square (RMS) of 0.86 nm, which is slightly lower than that with branched chain (1.40 nm). The lower RMS benefits the ohmic contact between the active lay and interface layer, thus enhanced short circuit current (Jsc) (from 13.54 mA cm-1 to 15.25 mA cm-1) could be obtained. Due to the enhancement of Jsc, better power conversion efficiency (PCE) of 7.69% for ffQx-TS2 could be realized. These results indicated that alkylthio side chain engineering is a promising method to improve photovoltaic performance.
NASA Astrophysics Data System (ADS)
Wang, Minhuan; Feng, Yulin; Bian, Jiming; Liu, Hongzhu; Shi, Yantao
2018-01-01
The mesoscopic perovskite solar cells (M-PSCs) were synthesized with MAPbI3 perovskite layers as light harvesters, which were grown with one-step and two-step solution process, respectively. A comparative study was performed through the quantitative correlation of resulting device performance and the crystalline quality of perovskite layers. Comparing with the one-step counterpart, a pronounced improvement in the steady-state power conversion efficiencies (PCEs) by 56.86% was achieved with two-step process, which was mainly resulted from the significant enhancement in fill factor (FF) from 48% to 77% without sacrificing the open circuit voltage (Voc) and short circuit current (Jsc). The enhanced FF was attributed to the reduced non-radiative recombination channels due to the better crystalline quality and larger grain size with the two-step processed perovskite layer. Moreover, the superiority of two-step over one-step process was demonstrated with rather good reproducibility.
Improving Light Harvesting in Dye-Sensitized Solar Cells Using Hybrid Bimetallic Nanostructures
Zarick, Holly F.; Erwin, William R.; Boulesbaa, Abdelaziz; ...
2016-01-25
In this paper, we demonstrate improved light trapping in dye-sensitized solar cells (DSSCs) with hybrid bimetallic gold core/silver shell nanostructures. Silica-coated bimetallic nanostructures (Au/Ag/SiO 2 NSs) integrated in the active layer of DSSCs resulted in 7.51% power conversion efficiency relative to 5.97% for reference DSSCs, giving rise to 26% enhancement in device performance. DSSC efficiencies were governed by the particle density of Au/Ag/SiO 2 NSs with best performing devices utilizing only 0.44 wt % of nanostructures. We performed transient absorption spectroscopy of DSSCs with variable concentrations of Au/Ag/SiO 2 NSs and observed an increase in amplitude and decrease in lifetimemore » with increasing particle density relative to reference. Finally, we attributed this trend to plasmon resonant energy transfer and population of the singlet excited states of the sensitizer molecules at the optimum concentration of NSs promoting enhanced exciton generation and rapid charge transfer into TiO 2.« less
Tian, Haining; Oscarsson, Johan; Gabrielsson, Erik; Eriksson, Susanna K.; Lindblad, Rebecka; Xu, Bo; Hao, Yan; Boschloo, Gerrit; Johansson, Erik M. J.; Gardner, James M.; Hagfeldt, Anders; Rensmo, Håkan; Sun, Licheng
2014-01-01
Supramolecular interactions based on porphyrin and fullerene derivatives were successfully adopted to improve the photovoltaic performance of p-type dye-sensitized solar cells (DSCs). Photoelectron spectroscopy (PES) measurements suggest a change in binding configuration of ZnTCPP after co-sensitization with C60PPy, which could be ascribed to supramolecular interaction between ZnTCPP and C60PPy. The performance of the ZnTCPP/C60PPy-based p-type DSC has been increased by a factor of 4 in comparison with the DSC with the ZnTCPP alone. At 560 nm, the IPCE value of DSCs based on ZnTCPP/C60PPy was a factor of 10 greater than that generated by ZnTCPP-based DSCs. The influence of different electrolytes on charge extraction and electron lifetime was investigated and showed that the enhanced Voc from the Co2+/3+(dtbp)3-based device is due to the positive EF shift of NiO. PMID:24603319
Bertolotto, Michele; Siracusano, Salvatore; Cicero, Calogero; Iannelli, Mariano; Silvestri, Tommaso; Celia, Antonio; Guarise, Alessandro; Stacul, Fulvio
2017-02-01
To investigate whether persistent enhancement detected on contrast-enhanced sonography at postoperative day 1 (early contrast-enhanced sonography) after cryoablation of renal tumors implies the presence of residual viable tumor tissue, defined as residual enhancing tissue on reference imaging (computed tomography or magnetic resonance imaging) performed 6 months after the procedure. Seventy-four patients with percutaneous cryoablation of renal tumors had early contrast-enhanced sonography from November 2011 to August 2015. Two independent readers evaluated early contrast-enhanced sonographic findings and contrast-enhanced sonographic investigations performed 1 month after cryoablation of lesions that displayed enhancement on early contrast-enhanced sonography. They scored intralesional enhancement in 4 groups: no enhancement, few intralesional vessels, focal enhancing areas, and diffuse enhancement. Inter-reader agreement in evaluating lesion vascularity on early contrast-enhanced sonography was assessed with weighted κ statistics. Computed tomography or magnetic resonance imaging performed 6 months after the treatment was the reference procedure for assessing the absence or presence of residual disease. Inter-reader agreement in assessing intratumoral vascularization on early contrast-enhanced sonography was very good (κ = 0.90). Enhancement was absent for both readers in 33 of 74 cases; only a few intralesional vessels were visible in 21; whereas diffuse or focal enhancement was present in 13. In the remaining 7 patients, there were differences. Four lesions with focal enhancement on early contrast-enhanced sonography and 1 that was considered avascular had residual tumors on reference imaging. Ablation was successful in the remaining 69 of 74 patients (93%). After cryoablation, intratumoral enhancement on early contrast-enhanced sonography does not imply tumor cell viability. © 2016 by the American Institute of Ultrasound in Medicine.
Ge, Baochao; Li, Kexun; Fu, Zhou; Pu, Liangtao; Zhang, Xi
2015-11-01
Commercial Co3O4 and ortho-hexagon spinel nano-Co3O4 (OHSNC) were doped in the AC at a different percentage (5%, 10% and 15%) to enhance the performance of microbial fuel cell (MFC). The maximum power density of MFC with 10% OHSNC doped cathode was 1500±14 mW m(-2), which was 97.36% and 41.24% higher than that with the bare AC air cathode and commercial Co3O4 respectively. The electrocatalytic behavior for their better performance was discussed in detail with the help of various structural and electrochemical techniques. The OHSNC was characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM). The results showed that the improved performance owed to the enhancement of both kinetics activity and the number of electron transfer in the ORR, and the internal resistance was largely reduced. Therefore, OHSNC was proved to be an excellent cathodic catalyst in AC air cathode MFC. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nair, Manitha B; Bernhardt, Anne; Lode, Anja; Heinemann, Christiane; Thieme, Sebastian; Hanke, Thomas; Varma, Harikrishna; Gelinsky, Michael; John, Annie
2009-08-01
Hydroxyapatite (HA) ceramics are widely used as bone graft substitutes because of their biocompatibility and osteoconductivity. However, to enhance the success of therapeutic application, many efforts are undertaken to improve the bioactivity of HA. We have developed a triphasic, silica-containing ceramic-coated hydroxyapatite (HASi) and evaluated its performance as a scaffold for cell-based tissue engineering applications. Human bone marrow stromal cells (hBMSCs) were seeded on both HASi and HA scaffolds and cultured with and without osteogenic supplements for a period of 4 weeks. Cellular responses were determined in vitro in terms of cell adhesion, viability, proliferation, and osteogenic differentiation, where both materials exhibited excellent cytocompatibility. Nevertheless, an enhanced rate of cell proliferation and higher levels of both alkaline phosphatase expression and activity were observed for cells cultured on HASi with osteogenic supplements. These findings indicate that the bioactivity of HA endowed with a silica-containing coating has definitely influenced the cellular activity, projecting HASi as a suitable candidate material for bone regenerative therapy.
NASA Astrophysics Data System (ADS)
Gupta, Nikhil Deep; Janyani, Vijay
2016-10-01
The structure of p-i-n InGaN/GaN based solar cell having a photonic crystal (PhC)-based light trapping structure (LTS) at the top assisted by the planar metallic (aluminum) back reflector (BR) is proposed. We propose two different designs for efficiency enhancement: in one we keep the PhC structure etching depth extending from the top antireflective coating (ARC) of indium tin oxide (ITO) up to the p-GaN layer (which is beneath the ITO and above the active layer), whereas in the other design, the PhC LTS etching depth has been extended up to the InxGa1-xN absorbing layer, starting from the top ITO layer. The theoretical optical simulation studies and optimization of the required parameters of the structure, which help to investigate and demonstrate the effectiveness of the LTS in the efficiency enhancement of the structure, are presented. The work also demonstrates the Lambertian light trapping limits for the practical indium concentrations in a InxGa1-xN active layer cell. The paper also presents the comparison between the proposed designs and compares their results with that of a planar reference cell. The studies are carried out for various indium concentrations. The results indicate considerable enhancement in the efficiency due to the PhC LTS, mainly because of better coupling, low reflectance, and diffraction capability of the proposed LTS, although it is still under the Lambertian limits. The performance evaluation of the proposed structure with respect to the angle of incident light has also been done, indicating improved performance. The parameters have been optimized and calculated by means of rigorous coupled wave analysis (RCWA) method.
Li, Weizhe; Germain, Ronald N.
2017-01-01
Organ homeostasis, cellular differentiation, signal relay, and in situ function all depend on the spatial organization of cells in complex tissues. For this reason, comprehensive, high-resolution mapping of cell positioning, phenotypic identity, and functional state in the context of macroscale tissue structure is critical to a deeper understanding of diverse biological processes. Here we report an easy to use method, clearing-enhanced 3D (Ce3D), which generates excellent tissue transparency for most organs, preserves cellular morphology and protein fluorescence, and is robustly compatible with antibody-based immunolabeling. This enhanced signal quality and capacity for extensive probe multiplexing permits quantitative analysis of distinct, highly intermixed cell populations in intact Ce3D-treated tissues via 3D histo-cytometry. We use this technology to demonstrate large-volume, high-resolution microscopy of diverse cell types in lymphoid and nonlymphoid organs, as well as to perform quantitative analysis of the composition and tissue distribution of multiple cell populations in lymphoid tissues. Combined with histo-cytometry, Ce3D provides a comprehensive strategy for volumetric quantitative imaging and analysis that bridges the gap between conventional section imaging and disassociation-based techniques. PMID:28808033
Leijtens, Tomas; Giovenzana, Tommaso; Habisreutinger, Severin N; Tinkham, Jonathan S; Noel, Nakita K; Kamino, Brett A; Sadoughi, Golnaz; Sellinger, Alan; Snaith, Henry J
2016-03-09
Solar cells based on organic-inorganic perovskite semiconductor materials have recently made rapid improvements in performance, with the best cells performing at over 20% efficiency. With such rapid progress, questions such as cost and solar cell stability are becoming increasingly important to address if this new technology is to reach commercial deployment. The moisture sensitivity of commonly used organic-inorganic metal halide perovskites has especially raised concerns. Here, we demonstrate that the hygroscopic lithium salt commonly used as a dopant for the hole transport material in perovskite solar cells makes the top layer of the devices hydrophilic and causes the solar cells to rapidly degrade in the presence of moisture. By using novel, low cost, and hydrophobic hole transporters in conjunction with a doping method incorporating a preoxidized salt of the respective hole transporters, we are able to prepare efficient perovskite solar cells with greatly enhanced water resistance.
Nano-Bio-Mechanics of Neuroblastoma Cells Using AFM
NASA Astrophysics Data System (ADS)
Bastatas, Lyndon; Matthews, James; Kang, Min; Park, Soyeun
2011-10-01
We have conducted an in vitro study to determine the elastic moduli of neurobalstoma cell lines using atomic force microscopy. Using a panel of cell lines established from neuroblastoma patients at different stages of disease progress and treatment, we have investigated the differences in elastic moduli during a course of cancer progression and chemotherapy. The cells were grown on the hard substrates that are chemically functionalized to enhance adhesion. We have performed the AFM indentation experiments with different applied forces from the AFM probe. For the purpose of the comparison between cell lines, the indentations were performed only on cell centers. The obtained force-distance curves were analyzed using the Hertz model in order to extract the elastic moduli. We have found that the elastic moduli of human neuroblastoma cells significantly varied during the disease progression. We postulate that the observed difference might be affected by the treatment and chemotherapy.
Development of a lightweight fuel cell vehicle
NASA Astrophysics Data System (ADS)
Hwang, J. J.; Wang, D. Y.; Shih, N. C.
This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.
Porciani, David; Tedeschi, Lorena; Marchetti, Laura; Citti, Lorenzo; Piazza, Vincenzo; Beltram, Fabio; Signore, Giovanni
2015-01-01
Aptamers able to bind efficiently cell-surface receptors differentially expressed in tumor and in healthy cells are emerging as powerful tools to perform targeted anticancer therapy. Here, we present a novel oligonucleotide chimera, composed by an RNA aptamer and a DNA decoy. Our assembly is able to (i) target tumor cells via an antitransferrin receptor RNA aptamer and (ii) perform selective codelivery of a chemotherapeutic drug (Doxorubicin) and of an inhibitor of a cell-survival factor, the nuclear factor κB decoy oligonucleotide. Both payloads are released under conditions found in endolysosomal compartments (low pH and reductive environment). Targeting and cytotoxicity of the oligonucleotidic chimera were assessed by confocal microscopy, cell viability, and Western blot analysis. These data indicated that the nuclear factor κB decoy does inhibit nuclear factor κB activity and ultimately leads to an increased therapeutic efficacy of Doxorubicin selectively in tumor cells. PMID:25919089
2012-01-01
Introduction Acquired tamoxifen resistance involves complex signaling events that are not yet fully understood. Successful therapeutic intervention to delay the onset of hormone resistance depends critically on mechanistic elucidation of viable molecular targets associated with hormone resistance. This study was undertaken to investigate the global proteomic alterations in a tamoxifen resistant MCF-7 breast cancer cell line obtained by long term treatment of the wild type MCF-7 cell line with 4-hydroxytamoxifen (4-OH Tam). Methods We cultured MCF-7 cells with 4-OH Tam over a period of 12 months to obtain the resistant cell line. A gel-free, quantitative proteomic method was used to identify and quantify the proteome of the resistant cell line. Nano-flow high-performance liquid chromatography coupled to high resolution Fourier transform mass spectrometry was used to analyze fractionated peptide mixtures that were isobarically labeled from the resistant and control cell lysates. Real time quantitative PCR and Western blots were used to verify selected proteomic changes. Lentiviral vector transduction was used to generate MCF-7 cells stably expressing S100P. Online pathway analysis was performed to assess proteomic signatures in tamoxifen resistance. Survival analysis was done to evaluate clinical relevance of altered proteomic expressions. Results Quantitative proteomic analysis revealed a wide breadth of signaling events during transition to acquired tamoxifen resistance. A total of 629 proteins were found significantly changed with 364 up-regulated and 265 down-regulated. Collectively, these changes demonstrated the suppressed state of estrogen receptor (ER) and ER-regulated genes, activated survival signaling and increased migratory capacity of the resistant cell line. The protein S100P was found to play a critical role in conferring tamoxifen resistance and enhanced cell motility. Conclusions Our data demonstrate that the adaptive changes in the proteome of tamoxifen resistant breast cancer cells are characterized by down-regulated ER signaling, activation of alternative survival pathways, and enhanced cell motility through regulation of the actin cytoskeleton dynamics. Evidence also emerged that S100P mediates acquired tamoxifen resistance and migration capacity. PMID:22417809
Sireesha, Pedaballi; Sun, Wei-Gang; Su, Chaochin; Kathirvel, Sasipriya; Lekphet, Woranan; Akula, Suri Babu; Li, Wen-Ri
2017-01-01
The surface modification of the TiO2 photoelectrode film is one of the promising ways to improve the photovoltaic performance of dye-sensitized solar cell (DSSC). In this work for the acid treatment of TiO2 powder, fluorine containing compounds such as trifluoroacetic acid was carried out to enhance the properties of photoanode. In order to investigate the effect of trifluoroacetyl group, the TiO2 nanopowders were also treated with different acids such as acetic acid, nitric acid, hydrochloric acid, and sulfuric acid and their properties were compared. The TiO2 powders treated with both acetic acid and TFA have possessed smooth surface morphologies as well as enhanced particle dispersions with reduced particle sizes. Photoelectrodes prepared for these two kinds of TiO2 powders accommodated high amounts of dye loading and exhibited excellent light transmittance (wavelength region of 400–600 nm). Electrochemical impedance spectroscopy analysis showed the smallest radius of the semicircle which indicates the enhanced rate of electron transport for the cell based photoelectrode with trifluoroacetic acid treated TiO2 powder. The solar cell from the untreated TiO2 film showed the power conversion efficiency of 8.86% and the highest efficiency of 9.51% was achieved by the cell fabricated from trifluoroacetic acid treated TiO2 film.
DMAC and NMP as Electrolyte Additives for Li-Ion Cells
NASA Technical Reports Server (NTRS)
Smart, Marshall; Bugga, Ratnakumar; Lucht, Brett
2008-01-01
Dimethyl acetamide (DMAC) and N-methyl pyrrolidinone (NMP) have been found to be useful as high-temperature-resilience-enhancing additives to a baseline electrolyte used in rechargeable lithium-ion electrochemical cells. The baseline electrolyte, which was previously formulated to improve low-temperature performance, comprises LiPF6 dissolved at a concentration of 1.0 M in a mixture comprising equal volume proportions of ethylene carbonate, diethyl carbonate, and dimethyl carbonate. This and other electrolytes comprising lithium salts dissolved in mixtures of esters (including alkyl carbonates) have been studied in continuing research directed toward extending the lower limits of operating temperatures and, more recently, enhancing the high-temperature resilience of such cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles. Although these electrolytes provide excellent performance at low temperatures (typically as low as -40 C), when the affected Li-ion cells are subjected to high temperatures during storage and cycling, there occur irreversible losses of capacity accompanied by power fade and deterioration of low-temperature performance. The term "high-temperature resilience" signifies, loosely, the ability of a cell to resist such deterioration, retaining as much as possible of its initial charge/discharge capacity during operation or during storage in the fully charged condition at high temperature. For the purposes of the present development, a temperature is considered to be high if it equals or exceeds the upper limit (typically, 30 C) of the operating-temperature range for which the cells in question are generally designed.
Wang, Y; Zheng, Y; Wang, Z; Li, J; Wang, Z; Zhang, G; Yu, J
2013-12-01
Oestrogen has been proven to significantly enhance osteogenic potency, while oestrogen deficiency usually leads to impaired osteogenic differentiation of mesenchymal stem cells. However, little is known concerning direct effects of oestrogen on differentiation of human dental pulp stem cells (DPSCs). In this study, human DPSCs were isolated and treated with 10(-7) m 17β-oestradiol (E2). Alkaline phosphatase (ALP) assay and alizarin red staining were performed. Alkaline phosphatase and alizarin red showed that E2 treatment significantly enhanced ALP activity and mineralization ability of DPSCs, but had no effect on cell proliferation. Real-time RT-PCR and western blot assay demonstrated that odonto/osteogenic markers (ALP, RUNX2/RUNX2, OSX/OSX, OCN/OCN and DSPP/DSP) were significantly upregulated in the cells after E2 treatment. Moreover, phosphorylation of cytoplasmic IκBα/P65 and expression of nuclear P65 were enhanced in a time-dependent manner following E2 treatment, suggesting activation of NF-κB signaling. Conversely, inhibition of the NF-κB pathway suppressed E2-mediated upregulation of odonto/osteogenic markers, indicating that the NF-κB pathway was pivotal for E2-mediated differentiation. These findings provide evidence that 10(-7) m 17β-oestradiol promoted odonto/osteogenic differentiation of human DPSCs via activation of the NF-κB signaling pathway. © 2013 The Authors. Cell Proliferation published by John Wiley & Sons Ltd.
Williamson, Matthew R; Shuttleworth, Adrian; Canfield, Ann E; Black, Richard A; Kielty, Cay M
2007-12-01
The endothelium is an essential modulator of vascular tone and thrombogenicity and a critical barrier between the vessel wall and blood components. In tissue-engineered small-diameter vascular constructs, endothelial cell detachment in flow can lead to thrombosis and graft failure. The subendothelial extracellular matrix provides stable endothelial cell anchorage through interactions with cell surface receptors, and influences the proliferation, migration, and survival of both endothelial cells and smooth muscle cells. We have tested the hypothesis that these desired physiological characteristics can be conferred by surface coatings of natural vascular matrix components, focusing on the elastic fiber molecules, fibrillin-1, fibulin-5 and tropoelastin. On fibrillin-1 or fibulin-5-coated surfaces, endothelial cells exhibited strong integrin-mediated attachment in static conditions (82% and 76% attachment, respectively) and flow conditions (67% and 78% cell retention on fibrillin-1 or fibulin-5, respectively, at 25 dynes/cm2), confluent monolayer formation, and stable functional characteristics. Adhesion to these two molecules also strongly inhibited smooth muscle cell migration to the endothelial monolayer. In contrast, on elastin, endothelial cells attached poorly, did not spread, and had markedly impaired functional properties. Thus, fibrillin-1 and fibulin-5, but not elastin, can be exploited to enhance endothelial stability, and to inhibit SMC migration within vascular graft scaffolds. These findings have important implications for the design of vascular graft scaffolds, the clinical performance of which may be enhanced by exploiting natural cell-matrix biology to regulate cell attachment and function.
Transparent conductors based on microscale/nanoscale materials for high performance devices
NASA Astrophysics Data System (ADS)
Gao, Tongchuan
Transparent conductors are important as the top electrode for a variety of optoelectronic devices, including solar cells, light-emitting diodes (LEDs), at panel displays, and touch screens. Doped indium tin oxide (ITO) thin films are the predominant transparent conductor material. However, ITO thin films are brittle, making them unsuitable for the emerging flexible devices, and suffer from high material and processing cost. In my thesis, we developed a variety of transparent conductors toward a performance comparable with or superior to ITO thin films, with lower cost and potential for scalable manufacturing. Metal nanomesh (NM), hierarchical graphene/metal microgrid (MG), and hierarchical metal NM/MG materials were investigated. Simulation methods were used as a powerful tool to predict the transparency and sheet resistance of the transparent conductors by solving Maxwell's equations and Poisson's equation. Affordable and scalable fabrication processes were developed thereafter. Transparent conductors with over 90% transparency and less than 10 O/square sheet resistance were successfully fabricated on both rigid and flexible substrates. Durability tests, such as bending, heating and tape tests, were carried out to evaluate the robustness of the samples. Haze factor, which characterizes how blurry a transparent conductor appears, was also studied in-depth using analytical calculation and numerical simulation. We demonstrated a tunable haze factor for metal NM transparent conductors and analyzed the principle for tuning the haze factor. Plasmonic effects, excited by some transparent conductors, can lead to enhanced performance in photovoltaic devices. We systematically studied the effect of incorporating metal NM into ultrathin film silicon solar cells using numerical simulation, with the aid of optimization algorithms to reduce the optimization time. Mechanisms contributing to the enhanced performance were then identified and analyzed. Over 72% enhancement in short-circuit current-density was demonstrated by the optimal solar cell compared with 300-nm-thick Si solar cell with antireflection coating and silver back reflector.
van der Sanden, Sabine M. G.; Wu, Weilin; Dybdahl-Sissoko, Naomi; Weldon, William C.; Brooks, Paula; O'Donnell, Jason; Jones, Les P.; Brown, Cedric; Tompkins, S. Mark; Karpilow, Jon; Tripp, Ralph A.
2015-01-01
ABSTRACT Vaccine manufacturing costs prevent a significant portion of the world's population from accessing protection from vaccine-preventable diseases. To enhance vaccine production at reduced costs, a genome-wide RNA interference (RNAi) screen was performed to identify gene knockdown events that enhanced poliovirus replication. Primary screen hits were validated in a Vero vaccine manufacturing cell line using attenuated and wild-type poliovirus strains. Multiple single and dual gene silencing events increased poliovirus titers >20-fold and >50-fold, respectively. Host gene knockdown events did not affect virus antigenicity, and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-mediated knockout of the top candidates dramatically improved viral vaccine strain production. Interestingly, silencing of several genes that enhanced poliovirus replication also enhanced replication of enterovirus 71, a clinically relevant virus to which vaccines are being targeted. The discovery that host gene modulation can markedly increase virus vaccine production dramatically alters mammalian cell-based vaccine manufacturing possibilities and should facilitate polio eradication using the inactivated poliovirus vaccine. IMPORTANCE Using a genome-wide RNAi screen, a collection of host virus resistance genes was identified that, upon silencing, increased poliovirus and enterovirus 71 production by from 10-fold to >50-fold in a Vero vaccine manufacturing cell line. This report provides novel insights into enterovirus-host interactions and describes an approach to developing the next generation of vaccine manufacturing through engineered vaccine cell lines. The results show that specific gene silencing and knockout events can enhance viral titers of both attenuated (Sabin strain) and wild-type polioviruses, a finding that should greatly facilitate global implementation of inactivated polio vaccine as well as further reduce costs for live-attenuated oral polio vaccines. This work describes a platform-enabling technology applicable to most vaccine-preventable diseases. PMID:26581994
NASA Astrophysics Data System (ADS)
Zhang, Enren; Wang, Feng; Yu, Qingling; Scott, Keith; Wang, Xu; Diao, Guowang
2017-08-01
The performance of activated carbon catalyst in air-cathodes in microbial fuel cells was investigated over one year. A maximum power of 1722 mW m-2 was produced within the initial one-month microbial fuel cell operation. The air-cathodes produced a maximum power >1200 mW m-2 within six months, but gradually became a limiting factor for the power output in prolonged microbial fuel cell operation. The maximum power decreased by 55% when microbial fuel cells were operated over one year due to deterioration in activated carbon air-cathodes. While salt/biofilm removal from cathodes experiencing one-year operation increased a limiting performance enhancement in cathodes, a washing-drying-pressing procedure could restore the cathode performance to its original levels, although the performance restoration was temporary. Durable cathodes could be regenerated by re-pressing activated carbon catalyst, recovered from one year deteriorated air-cathodes, with new gas diffusion layer, resulting in ∼1800 mW m-2 of maximum power production. The present study indicated that activated carbon was an effective catalyst in microbial fuel cell cathodes, and could be recovered for reuse in long-term operated microbial fuel cells by simple methods.
NASA Astrophysics Data System (ADS)
Zhang, Tao; Wang, Qing-Ming
A fuel cell is a device that can convert chemical energy into electricity directly. Among various types of fuel cells, both polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) can work at low temperature (<80 °C). Therefore, they can be used to supply power for commercial portable electronics such as laptop computers, digital cameras, PDAs and cell phones. The focus of this paper is to investigate the performance of a miniaturized DMFC device using a micropump to deliver fuel. The core of this micropump is a piezoelectric ring-type bending actuator and the associated nozzle/diffuser for directing fuel flow. Based on the experimental measurements, it is found that the performance of the fuel cell can be significantly improved if enough fuel flow is induced by the micropump at anode. Three factors may contribute to the performance enhancement including replenishment of methanol, decrease of diffusion resistance and removal of carbon dioxide. In comparison with conventional mini pumps, the size of the piezoelectric micropump is much smaller and the energy consumption is much lower. Thus, it is very viable and effective to use a piezoelectric valveless micropump for fuel delivery in miniaturized DMFC power systems.
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Dobley, Arthur; Seymour, Frasier W.
2014-01-01
Lithium-air (Li-air) primary batteries have a theoretical specific capacity of 11,400 Wh/kg, the highest of any common metal-air system. NASA is developing Li-air technology for a Mobile Oxygen Concentrator for Spacecraft Emergencies, an application which requires an extremely lightweight primary battery that can discharge over 24 hours continuously. Several vendors were funded through the NASA SBIR program to develop Li-air technology to fulfill the requirements of this application. New catalysts and carbon cathode structures were developed to enhance the oxygen reduction reaction and increase surface area to improve cell performance. Techniques to stabilize the lithium metal anode surface were explored. Experimental results for prototype laboratory cells are given. Projections are made for the performance of hypothetical cells constructed from the materials that were developed.
Study on the Fabrication of Paint-Type Si Quantum Dot-Sensitized Solar Cells
NASA Astrophysics Data System (ADS)
Seo, Hyunwoong; Son, Min-Kyu; Kim, Hee-Je; Wang, Yuting; Uchida, Giichiro; Kamataki, Kunihiro; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu
2013-10-01
Quantum dots (QDs) have attracted much attention with their quantum characteristics in the research field of photochemical solar cells. Si QD was introduced as one of alternatives to conventional QD materials. However, their large particles could not penetrate inside TiO2 layer. Therefore, this work proposed the paint-type Si QD-sensitized solar cell. Its heat durability was suitable for the fabrication of paint-type solar cell. Si QDs were fabricated by multihollow discharge plasma chemical vapor deposition and characterized. The paste type, sintering temperature, and Si ratio were controlled and analyzed for better performance. Finally, its performance was enhanced by ZnS surface modification and the whole process was much simplified without sensitizing process.
de Sá Rodrigues, L C; Holmes, K E; Thompson, V; Newton, M A; Stein, T J
2017-03-01
An increased serum alkaline phosphatase concentration is known to be associated with a negative prognosis in canine and human osteosarcoma. To expand upon previous studies regarding the biological relevance of increased serum alkaline phosphatase as a negative prognostic factor, xenogeneic heterotopic transplants were performed using six canine primary osteosarcoma cell lines generated from patients with differing serum alkaline phosphatase concentrations (three normal and three increased). Three of the six cell lines were capable of generating tumours and tumour formation was independent of the serum alkaline phosphatase status of the cell line. Microarray analysis identified 379 genes as being differentially expressed between the tumourigenic and non-tumourigenic cell lines. Frizzled-6 was upregulated to the greatest extent (7.78-fold) in tumourigenic cell lines compared with non-tumourigenic cell lines. Frizzled-6, a co-receptor for Wnt ligands has been associated with enhanced tumour-initiating cells and poor prognosis for other tumours. The increased expression of frizzled-6 was confirmed by quantitative reverse transcription polymerase chain reaction (QPCR) and Western blot analysis. Additionally, the tumourigenic cell lines also had an increase in the percentage of side population cells compared with non-tumourigenic cell lines (5.89% versus 1.58%, respectively). There were no differences in tumourigenicity, frizzled-6 or percentage of side population cells noted between osteosarcoma cell lines generated from patients of differing serum alkaline phosphatase concentration. However, to our knowledge this is the first study to identified frizzled-6 as a possible marker of osteosarcoma cell populations with enhanced tumourigenicity and side population cells. Future work will focus on defining the role of frizzled-6 in osteosarcoma tumourigenesis and tumour-initiating cells. © 2015 John Wiley & Sons Ltd.
Urakawa, S; Hida, H; Masuda, T; Misumi, S; Kim, T-S; Nishino, H
2007-02-09
Rats raised in an enriched environment (enriched rats) have been reported to show less motor dysfunction following brain lesions, but the neuronal correlates of this improvement have not been well clarified. The present study aimed to elucidate the effect of chemical brain lesions and environmental enrichment on motor function and lesion-induced neurogenesis. Three week-old, recently weaned rats were divided into two groups: one group was raised in an enriched environment and the other group was raised in a standard cage for 5 weeks. Striatal damage was induced at an age of 8 weeks by injection of the neuro-toxins 6-hydroxydopamine (6-OHDA) or quinolinic acid (QA) into the striatum, or by injection of 6-OHDA into the substantia nigra (SN), which depleted nigrostriatal dopaminergic innervation. Enriched rats showed better performance on beam walking compared with those raised in standard conditions, but both groups showed similar forelimb use asymmetry in a cylinder test. The number of bromodeoxyuridine-labeled proliferating cells in the subventricular zone was increased by a severe striatal lesion induced by QA injection 1 week after the lesion, but decreased by injection of 6-OHDA into the SN. Following induction of lesions by striatal injection of 6-OHDA or QA, the number of cells positive for doublecortin (DCX) was strongly increased in the striatum; however, there was no change in the number of DCX-positive cells following 6-OHDA injection into the SN. Environmental enrichment enhanced the increase of DCX-positive cells with migrating morphology in the dorsal striatum. In enriched rats, DCX-positive cells traversed the striatal parenchyma far from the corpus callosum and lateral ventricle. DCX-positive cells co-expressed an immature neuronal marker, polysialylated neural cell adhesion molecule, but were negative for a glial marker. These data suggest that environmental enrichment improves motor performance on beam walking and enhances neuronal migration toward a lesion area in the striatum.
Heat transfer enhancement in a lithium-ion cell through improved material-level thermal transport
NASA Astrophysics Data System (ADS)
Vishwakarma, Vivek; Waghela, Chirag; Wei, Zi; Prasher, Ravi; Nagpure, Shrikant C.; Li, Jianlin; Liu, Fuqiang; Daniel, Claus; Jain, Ankur
2015-12-01
While Li-ion cells offer excellent electrochemical performance for several applications including electric vehicles, they also exhibit poor thermal transport characteristics, resulting in reduced performance, overheating and thermal runaway. Inadequate heat removal from Li-ion cells originates from poor thermal conductivity within the cell. This paper identifies the rate-limiting material-level process that dominates overall thermal conduction in a Li-ion cell. Results indicate that thermal characteristics of a Li-ion cell are largely dominated by heat transfer across the cathode-separator interface rather than heat transfer through the materials themselves. This interfacial thermal resistance contributes around 88% of total thermal resistance in the cell. Measured value of interfacial resistance is close to that obtained from theoretical models that account for weak adhesion and large acoustic mismatch between cathode and separator. Further, to address this problem, an amine-based chemical bridging of the interface is carried out. This is shown to result in in four-times lower interfacial thermal resistance without deterioration in electrochemical performance, thereby increasing effective thermal conductivity by three-fold. This improvement is expected to reduce peak temperature rise during operation by 60%. By identifying and addressing the material-level root cause of poor thermal transport in Li-ion cells, this work may contributes towards improved thermal performance of Li-ion cells.
Zhang, Feng; Leong, Wenyan; Su, Kai; Fang, Yu; Wang, Dong-An
2013-05-01
Stromal cell-derived factor-1 (SDF-1), also known as a homing factor, is a potent chemokine that activates and directs mobilization, migration, and retention of certain cell species via systemic circulation. The responding homing cells largely consist of activated stem cells, so that, in case of tissue lesions, such SDF-1-induced cell migration may execute recruitment of endogenous stem cells to perform autoreparation and compensatory regeneration in situ. In this study, a recombinant adenoviral vector carrying SDF-1 transgene was constructed and applied to transduce a novel scaffold-free living hyaline cartilage graft (SDF-t-LhCG). As an engineered transgenic living tissue, SDF-t-LhCG is capable of continuously producing and releasing SDF-1 in vitro and in vivo. The in vitro trials were examined with ELISA, while the in vivo trials were subsequently performed via a subcutaneous implantation of SDF-t-LhCG in a nude mouse model, followed by series of biochemical and biological analyses. The results indicate that transgenic SDF-1 enhanced the presence of this chemokine in mouse's circulation system; in consequence, SDF-1-induced activation and recruitment of endogenous stem cells were also augmented in both peripheral blood and SDF-t-LhCG implant per se. These results were obtained via flow cytometry analyses on mouse blood samples and implanted SDF-t-LhCG samples, indicating an upregulation of the CXCR4(+)(SDF-1 receptor) cell population, accompanied by upregulation of the CD34(+), CD44(+), and Sca-1(+) cell populations as well as a downregulation of the CD11b(+) cell population. With the supply of SDF-1-recruited endogenous stem cells, enhanced chondrogenesis was observed in SDF-t-LhCG implants in situ.
Ng, Pek Leng; Rajab, Nor Fadilah; Then, Sue Mian; Mohd Yusof, Yasmin Anum; Wan Ngah, Wan Zurinah; Pin, Kar Yong; Looi, Mee Lee
2014-01-01
Objective: The combination effect of Piper betle (PB) and 5-fluorouracil (5-FU) in enhancing the cytotoxic potential of 5-FU in inhibiting the growth of colon cancer cells was investigated. Methods: HT29 and HCT116 cells were subjected to 5-FU or PB treatment. 5-FU and PB were then combined and their effects on both cell lines were observed after 24 h of treatment. PB-5-FU interaction was elucidated by isobologram analysis. Apoptosis features of the treated cells were revealed by annexin V/PI stain. High-performance liquid chromatography (HPLC) was performed to exclude any possible chemical interaction between the compounds. Results: In the presence of PB extract, the cytotoxicity of 5-FU was observed at a lower dose (IC50 12.5 μmol/L) and a shorter time (24 h) in both cell lines. Both cell lines treated with 5-FU or PB alone induced a greater apoptosis effect compared with the combination treatment. Isobologram analysis indicated that PB and 5-FU interacted synergistically and antagonistically in inhibiting the growth of HT29 and HCT116 cells, respectively. Conclusions: In the presence of PB, a lower dosage of 5-FU is required to achieve the maximum drug effect in inhibiting the growth of HT29 cells. However, PB did not significantly reduce 5-FU dosage in HCT116 cells. Our result showed that this interaction may not solely contribute to the apoptosis pathway. PMID:25091987
NASA Astrophysics Data System (ADS)
Mierke, Claudia Tanja
2013-01-01
The process of cancer cell invasion through the extracellular matrix (ECM) of connective tissue plays a prominent role in tumor progression and is based fundamentally on biomechanics. Cancer cell invasion usually requires cell adhesion to the ECM through the cell-matrix adhesion receptors integrins. The expression of the αvβ3 integrin is increased in several tumor types and is consistently associated with increased metastasis formation in patients. The hypothesis was that the αvβ3 integrin expression increases the invasiveness of cancer cells through increased cellular stiffness, and increased cytoskeletal remodeling dynamics. Here, the invasion of cancer cells with different αvβ3 integrin expression levels into dense three-dimensional (3D) ECMs has been studied. Using a cell sorter, two subcell lines expressing either high or low amounts of αvβ3 integrins (αvβ3high or αvβ3low cells, respectively) have been isolated from parental MDA-MB-231 breast cancer cells. αvβ3high cells showed a threefold increased cell invasion compared to αvβ3low cells. Similar results were obtained for A375 melanoma, 786-O kidney and T24 bladder carcinoma cells, and cells in which the β3 integrin subunit was knocked down using specific siRNA. To investigate whether contractile forces are essential for αvβ3 integrin-mediated increased cellular stiffness and subsequently enhanced cancer cell invasion, invasion assays were performed in the presence of myosin light chain kinase inhibitor ML-7 and Rho kinase inhibitor Y27632. Indeed, cancer cell invasiveness was reduced after addition of ML-7 and Y27632 in αvβ3high cells but not in αvβ3low cells. Moreover, after addition of the contractility enhancer calyculin A, an increase in pre-stress in αvβ3low cells was observed, which enhanced cellular invasiveness. In addition, inhibition of the Src kinase, STAT3 or Rac1 strongly reduced the invasiveness of αvβ3high cells, whereas the invasiveness of β3 specific knock-down cells and αvβ3low cells was not altered. In summary, these results suggest that the αvβ3 integrin enhances cancer cell invasion through increased cellular stiffness and enhanced cytoskeletal remodeling dynamics, which enables the cells to generate and transmit contractile forces to overcome the steric hindrance of 3D ECMs.
Luo, Jianmei; Li, Ming; Zhou, Minghua; Hu, Youshuang
2015-07-15
It is certainly an important research area to discovery new exoelectrogens for microbial fuel cells (MFCs), and how to effectively manipulate its cell property to improve power performance is still a great challenge. In this study, a new electrochemically active bacterium phylogenetically related to Kocuria rhizophila was first isolated and found electrogenic in MFCs, which was identified through the combination methods of molecular biology, physiological, biochemical and morphological characteristics. The MFCs inoculated with this strain generated power from a wide variety of substrates, reached a maximum power density of 75mW/m(2) in the substrate of 1g/L glucose. And the electron transfer mechanism was confirmed to be dominantly direct biofilm mechanism. Chemical treatment with five reagents was verified to be a feasible strategy to improve the power density of MFCs, increasing approximately 1.75 fold at most after treated with lysozyme. This enhancement was contributed to the significant enhancement on cell permeability, cell membrane fluidity and Coenzyme Q10 (the electron carrier). Thus this work offered a novel Gram-positive electrogenic bacterium and proved chemical treatment was a feasible strategy to improve electron transfer for application in MFCs. Copyright © 2015 Elsevier B.V. All rights reserved.
Xiao, Liangang; Liang, Tianxiang; Gao, Ke; Lai, Tianqi; Chen, Xuebin; Liu, Feng; Russell, Thomas P; Huang, Fei; Peng, Xiaobin; Cao, Yong
2017-09-06
Ternary organic solar cells (OSCs) are very attractive for further enhancing the power conversion efficiencies (PCEs) of binary ones but still with a single active layer. However, improving the PCEs is still challenging because a ternary cell with one more component is more complicated on phase separation behavior. If the two donors or two acceptors have similar chemical structures, good miscibility can be expected to reduce the try-and-error work. Herein, we report ternary devices based on two small molecule donors with the same backbone but different substituents. Whereas both binary devices show PCEs about 9%, the PCE of the ternary cells is enhanced to 10.17% with improved fill factor and short-circuit current values and external quantum efficiencies almost in the whole absorption wavelength region from 440 to 850 nm. The same backbone enables the donors miscible at molecular level, and the donor with a higher HOMO level plays hole relay process to facilitate the charge transportation in the ternary devices. Since side-chain engineering has been well performed to tune the active materials' energy levels in OSCs, our results suggest that their ternary systems are promising for further improving the binary cells' performance although their absorptions are not complementary.
NASA Astrophysics Data System (ADS)
Liu, Daiming; Wang, Qingkang
2018-08-01
Light trapping is particularly important because of the desire to produce low-cost solar cells with the thinnest possible photoactive layers. Herein, along the research line of "optimization →fabrication →characterization →application", concave arrays were incorporated into amorphous silicon thin-film solar cell for lifting its photoelectric conversion efficiency. In advance, based on rigorous coupled wave analysis method, optics simulations were performed to obtain the optimal period of 10 μm for concave arrays. Microfabrication processes were used to etch concave arrays on glass, and nanoimprint was devoted to transfer the pattern onto polymer coatings with a high fidelity. Spectral characterizations prove that the concave-arrays coating enjoys excellent the light-trapping behaviors, by reducing the reflectance to 7.4% from 8.6% of bare glass and simultaneously allowing a high haze ratio of ∼ 70% in 350-800 nm. Compared with bare cell, the concave-arrays coating based amorphous silicon thin-film solar cell possesses the improving photovoltaic performances. Relative enhancements are 3.46% and 3.57% in short circuit current and photoelectric conversion efficiency, respectively. By the way, this light-trapping coating is facile, low-cost and large-scale, and can be straightforward introduced in other ready-made solar devices.
Hong, John; Hou, Bo; Lim, Jongchul; Pak, Sangyeon; Kim, Byung-Sung; Cho, Yuljae; Lee, Juwon; Lee, Young-Woo; Giraud, Paul; Lee, Sanghyo; Park, Jong Bae; Morris, Stephen M.; Snaith, Henry J.; Kim, Jong Min
2016-01-01
Colloidal quantum dots (CQDs) are extremely promising as photovoltaic materials. In particular, the tunability of their electronic band gap and cost effective synthetic procedures allow for the versatile fabrication of solar energy harvesting cells, resulting in optimal device performance. However, one of the main challenges in developing high performance quantum dot solar cells (QDSCs) is the improvement of the photo-generated charge transport and collection, which is mainly hindered by imperfect surface functionalization, such as the presence of surface electronic trap sites and the initial bulky surface ligands. Therefore, for these reasons, finding effective methods to efficiently decorate the surface of the as-prepared CQDs with new short molecular length chemical structures so as to enhance the performance of QDSCs is highly desirable. Here, we suggest employing hybrid halide ions along with the shortest heterocyclic molecule as a robust passivation structure to eliminate surface trap sites while decreasing the charge trapping dynamics and increasing the charge extraction efficiency in CQD active layers. This hybrid ligand treatment shows a better coordination with Pb atoms within the crystal, resulting in low trap sites and a near perfect removal of the pristine initial bulky ligands, thereby achieving better conductivity and film structure. Compared to halide ion-only treated cells, solar cells fabricated through this hybrid passivation method show an increase in the power conversion efficiency from 5.3% for the halide ion-treated cells to 6.8% for the hybrid-treated solar cells. PMID:29308200
Conjugated linoleic acid enhanced the immune function in broiler chicks.
Zhang, Haijun; Guo, Yuming; Yuan, Jianmin
2005-11-01
This study was undertaken to investigate the growth performance and immune responses of broiler chicks fed diets supplemented with conjugated linoleic acid (CLA). Two hundred and forty day-old Arbor Acre male broiler chicks were randomly allotted into four dietary treatments with different inclusion levels of CLA (0, 2.5, 5.0 or 10.0 g pure CLA/kg) for 6 weeks. Growth performance, lysozyme activity, peripheral blood mononuclear cell (PBMC) proliferation, prostaglandin E2 (PGE2) synthesis and antibody production were investigated. There were no significant differences in growth performance among treatments (P>0.05). Chicks fed 10.0 g CLA/kg diet produced 40 % and 49 % more lysozyme activity in serum and spleen than the control group at 21 d of age (P<0.05). Dietary CLA enhanced the PBMC proliferation in response to concanavalin A at the age of 21 and 42 d (P<0.05). Systemic and peripheral blood lymphocytic synthesis of PGE2 in chicks fed 10.0 g CLA/kg diet was significantly decreased by 57 % and 42 % compared to chicks fed control diet (P<0.05). Antibody production to sheep red blood cell and bovine serum albumin were elevated in either 2.5 or 10.0 g CLA/kg dietary treatments (P<0.05). The results indicated dietary CLA could enhance the immune response in broiler chicks, but did not alter the growth performance.
NASA Astrophysics Data System (ADS)
Dagger, Tim; Lürenbaum, Constantin; Schappacher, Falko M.; Winter, Martin
2017-02-01
A modified self-extinguishing time (SET) device which enhances the reproducibility of the results is presented. Pentafluoro(phenoxy)cyclotriphosphazene (FPPN) is investigated as flame retardant electrolyte additive for lithium ion batteries (LIBs) in terms of thermal stability and electrochemical performance. SET measurements and adiabatic reaction calorimetry are applied to determine the flammability and the reactivity of a standard LIB electrolyte containing 5% FPPN. The results reveal that the additive-containing electrolyte is nonflammable for 10 s whereas the commercially available reference electrolyte inflames instantaneously after 1 s of ignition. The onset temperature of the safety enhanced electrolyte is delayed by ≈ 21 °C. Compatibility tests in half cells show that the electrolyte is reductively stable while the cyclic voltammogram indicates oxidative decomposition during the first cycle. Cycling experiments in full cells show improved cycling performance and rate capability, which can be attributed to cathode passivation during the first cycle. Post-mortem analysis of the electrolyte by gas chromatography-mass spectrometry confirms the presence of the additive in high amounts after 501 cycles which ensures enhanced safety of the electrolyte. The investigations present FPPN as stable electrolyte additive that improves the intrinsic safety of the electrolyte and its cycling performance at the same time.
Applications of nano and smart materials in renewable energy production and storage devices
NASA Astrophysics Data System (ADS)
Ghasemi-Nejhad, Mehrdad N.
2015-03-01
This paper presents development of renewable energy production and storage devices employing nanomaterials and smart materials. The use of carbon nanotubes (CNTs) and graphene nanosheets (GNS) to improve the performance and durability of wind turbine and wave rotor blades will be explained. While GNS are primary used for the performance enhancement of the resin system called Nanoresin, CNT Nanoforests and Nanofilms are used to improve the performance of fiber systems in high-performance Nanocomposites. In addition, the use of CNTs and piezo-nanofibers will be explained as the health monitoring and smart systems within the composites. A self-healing mechanism will also be explained within the composites using these materials. Next the use of CNTs as gas diffusion layers and CNTs combined with in-situ generated platinum nanoparticles as catalyst layers will be explained to improve the performance, efficiency, and durability of proton exchange membrane fuel cells while reducing their costs, weight, and size. In addition, the use of CNTs and GNSs to improve the efficiency and performance of polymer solar cells will be explained. Finally, the use of CNTs and GNSs to enhance the performance, efficiency, and durability of batteries and supercapacitors while reducing their costs, weight, and size will be discussed.
Feng, Jiao; Qian, Ying; Wang, Zhen; Wang, Xin; Xu, Sheng; Chen, Kequan; Ouyang, Pingkai
2018-06-10
Microbial fuel cells (MFCs) are a renewable green energy source that uses microorganisms to catalytically convert chemical energy into electrical energy. The efficiency of extracellular electron transfer (EET) from the microbe cell to the anode electrode plays a key role in the MFC. However, the insulating properties of the cell membrane limit the efficiency of EET. Herein, EET efficiency was improved by introducing a phenazine synthesis pathway into Escherichia coli. Through the heterologous expression of phzA1B1C1D1E1F1G1, phenazine-1-carboxylic acid production increased, and the maximum power density increased from 16.7 mW/m 2 to 181.1 mW/m 2 . Furthermore, the charge transfer resistance of 6.7 Ω decreased to 4.2 Ω, which reflected the enhancement of the EET efficiency and the electricity power output. Our results imply that introducing a heterologous electron shuttle into E. coli could be an efficient approach to improving the EET efficiency and performance of an MFC. Copyright © 2018 Elsevier B.V. All rights reserved.
Noori, Parisa; Najafpour Darzi, Ghasem
2016-05-01
Development and practical application of microbial fuel cell (MFC) is restricted because of the limitations such as low power output. To overcome low power limitation, the optimization of specific parameters including electrode materials and surface area, electrode spacing, and MFC's cell shape was investigated. To the best of our knowledge, no investigation has been reported in the literature to implement an annular single-chamber microbial fuel cell (ASCMFC) using chocolate industry wastewater. ASCMFC was fabricated via optimization of the stated parameters. The aspects of ASCMFC were comprehensively examined. In this study, the optimization of electrode spacing and its impact on performance of the ASCMFC were conducted. Reduction of electrode spacing by 46.15% (1.3-0.7 cm) resulted in a decrease in internal resistance from 100 to 50 Ω, which enhanced the power density and current output to 22.898 W/m(3) and 6.42 mA, respectively. An optimum electrode spacing of 0.7 cm was determined. Through this paper, the effects of these parameters and the performance of ASCMFC are also evaluated. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Conical structures for highly efficient solar cell applications
NASA Astrophysics Data System (ADS)
Korany, Fatma M. H.; Hameed, Mohamed Farhat O.; Hussein, Mohamed; Mubarak, Roaa; Eladawy, Mohamed I.; Obayya, Salah Sabry A.
2018-01-01
Improving solar cell efficiency is a critical research topic. Nowadays, light trapping techniques are a promising way to enhance solar cell performance. A modified nanocone nanowire (NW) is proposed and analyzed for solar cell applications. The suggested NW consists of conical and truncated conical units. The geometrical parameters are studied using a three-dimensional (3-D) finite difference time-domain (FDTD) method to achieve broadband absorption through the reported design and maximize its ultimate efficiency. The analyzed parameters are absorption spectra, ultimate efficiency, and short circuit current density. The numerical results prove that the proposed structure is superior compared with cone, truncated cone, and cylindrical NWs. The reported design achieves an ultimate efficiency of 44.21% with substrate and back reflector. Further, short circuit current density of 36.17 mA / cm2 is achieved by the suggested NW. The electrical performance analysis of the proposed structure including doping concentration, junction thickness, and Shockley-Read-Hall recombination is also investigated. The electrical simulations show that a power conversion efficiency of 17.21% can be achieved using the proposed NW. The modified nanocone has advantages of broadband absorption enhancement, low cost, and fabrication feasibility.
Enhancing Performance of Large-Area Organic Solar Cells with Thick Film via Ternary Strategy.
Zhang, Jianqi; Zhao, Yifan; Fang, Jin; Yuan, Liu; Xia, Benzheng; Wang, Guodong; Wang, Zaiyu; Zhang, Yajie; Ma, Wei; Yan, Wei; Su, Wenming; Wei, Zhixiang
2017-06-01
Large-scale fabrication of organic solar cells requires an active layer with high thickness tolerability and the use of environment-friendly solvents. Thick films with high-performance can be achieved via a ternary strategy studied herein. The ternary system consists of one polymer donor, one small molecule donor, and one fullerene acceptor. The small molecule enhances the crystallinity and face-on orientation of the active layer, leading to improved thickness tolerability compared with that of a polymer-fullerene binary system. An active layer with 270 nm thickness exhibits an average power conversion efficiency (PCE) of 10.78%, while the PCE is less than 8% with such thick film for binary system. Furthermore, large-area devices are successfully fabricated using polyethylene terephthalate (PET)/Silver gride or indium tin oxide (ITO)-based transparent flexible substrates. The product shows a high PCE of 8.28% with an area of 1.25 cm 2 for a single cell and 5.18% for a 20 cm 2 module. This study demonstrates that ternary organic solar cells exhibit great potential for large-scale fabrication and future applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Potential active materials for photo-supercapacitor: A review
NASA Astrophysics Data System (ADS)
Ng, C. H.; Lim, H. N.; Hayase, S.; Harrison, I.; Pandikumar, A.; Huang, N. M.
2015-11-01
The need for an endless renewable energy supply, typically through the utilization of solar energy in most applications and systems, has driven the expansion, versatility, and diversification of marketed energy storage devices. Energy storage devices such as hybridized dye-sensitized solar cell (DSSC)-capacitors and DSSC-supercapacitors have been invented for energy reservation. The evolution and vast improvement of these devices in terms of their efficiencies and flexibilities have further sparked the invention of the photo-supercapacitor. The idea of coupling a DSSC and supercapacitor as a complete energy conversion and storage device arose because the solar energy absorbed by dye molecules can be efficiently transferred and converted to electrical energy by adopting a supercapacitor as the energy delivery system. The conversion efficiency of a photo-supercapacitor is mainly dependent on the use of active materials during its fabrication. The performances of the dye, photoactive metal oxide, counter electrode, redox electrolyte, and conducting polymer are the primary factors contributing to high-energy-efficient conversion, which enhances the performance and shelf-life of a photo-supercapacitor. Moreover, the introduction of compact layer as a primary adherent film has been earmarked as an effort in enhancing power conversion efficiency of solar cell. Additionally, the development of electrolyte-free solar cell such as the invention of hole-conductor or perovskite solar cell is currently being explored extensively. This paper reviews and analyzes the potential active materials for a photo-supercapacitor to enhance the conversion and storage efficiencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng Peiling; Division of Gastroenterology, Armed Forces Taichung Hospital, Taichung, Taiwan; Kuo, W.-H.
2008-02-01
Purpose: Radiotherapy is the most efficacious strategies for lung cancer. The radiation-enhancing effects and the underlying mechanisms of berberine were investigated both in vitro and in vivo. Methods and Materials: Clonogenic survival assays were used to evaluate the radio-sensitivity of berberine on non-small-cell lung cancer. Electron microscopic observation of the features of cell death, flow cytometry of acidic vascular organelles formation, mitochondria membrane potential and cell-cycle progression, and Western blotting of caspase 3, PARP, and LC3 were performed to identify the mechanisms underlying the enhancing effects. Lewis lung carcinoma model in mice was conducted to evaluate the possible application ofmore » berberine in synergistic treatment with irradiation. Results: Compared with radiation alone (SF2 = 0.423; D{sub 0} = 5.29 Gy), berberine at 5 and 10 {mu}M concentrations in combination with radiation showed significant enhancement on radiation-induced clonogenic inhibition (SF2 = 0.215: D{sub 0} = 2.70 Gy and SF2 = 0.099: D{sub 0} = 1.24 Gy) on A549 cells. The cellular ultrastructure showed the presence of autophagosome and an increased proportion of acridine orange stain-positive cells, demonstrating that berberine enhanced radiosensitivity via autophagy. The process involved LC3 modification and mitochondrial disruption. The animal model verified the synergistic cytotoxic effect of berberine and irradiation resulting in a substantial shrinkage of tumor volume. Conclusion: Supplement of berberine enhanced the cytotoxicity of radiation in both in vivo and in vitro models of lung cancer. The mechanisms underlying this synergistic effect involved the induction of autophagy. It suggests that berberine could be used as adjuvant therapy to treat lung cancer.« less
NASA Astrophysics Data System (ADS)
Baker, Andrew M.
Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices which generate electricity from the electrochemical reaction of hydrogen and oxygen. Currently, widespread adoption of PEM fuel cell technology is hindered by low component durability and high costs. In this work, strategies were investigated to improve the mechanical and chemical durability of the ion conducting polymer, or ionomer, which comprises the PEM, in order to directly address these limitations. Owing to their exceptional mechanical properties, carbon nanotubes (CNTs) were investigated for mechanical reinforcement of the PEM. Because of their electronic conductivity, which diminishes cell performance, two strategies were developed to enable the use of CNTs as PEM reinforcement. These systems result in enhanced mechanical properties without sacrificing performance of the PEM during operation. Further, when coated with ceria (CeO2), which scavenges radicals that are generated during operation and cause PEM chemical degradation by attacking vulnerable chemical groups in the ionomer, MWCNTs further improved PEM chemical durability. During cell fabrication, conditioning, and discharge, Ce rapidly migrates between the PEM and catalyst layers (CLs), which reduces catalyst efficiency and leaves areas of the cell defenseless against radical attacks. Therefore, in order to stabilize Ce and localize it to areas of highest radical generation, it is critical to understand and identify the relative influences of different migration mechanisms. Using a novel elemental analysis technique, Ce migration was characterized due to potential and concentration gradients, water flux, and degradation of Ce-exchanged sulfonic acid groups within the PEM. Additionally, Zr-doped ceria was employed to resist migration due to ionomer degradation which improved cell durability, without reducing performance, resulting in PEM Ce stabilization near its initial concentrations after > 1,400 hours of testing. Ce was not observed to leave the cell during stress testing, however, it does irreversibly accumulate in the CLs, which reduces its scavenging efficacy in the system. In order to model Ce migration during fuel cell operation, the relevant Ce transport coefficients were determined under a range of conditions. This knowledge enables the development of additional system control and material engineering strategies to mitigate Ce migration in order to reduce performance losses and improve cell durability.
Ye, Tao; Petrović, Miloš; Peng, Shengjie; Yoong, Jeremy Lee Kong; Vijila, Chellappan; Ramakrishna, Seeram
2017-01-25
PbI 2 -enriched mixed perovskite film [FA 0.81 MA 0.15 Pb(I 0.836 Br 0.15 ) 3 ] has been widely studied due to its great potential in perovskite solar cell (PSC) applications. Herein, a FA 0.81 MA 0.15 Pb(I 0.836 Br 0.15 ) 3 film has been fabricated with the temperature-dependent optical absorption spectra utilized to determine its exciton binding energy. A ∼13 meV exciton binding energy is estimated, and a near-unity fraction of free carriers out of the total photoexcitons has been obtained in the solar cell operating regime at equilibrium state. PSCs are fabricated with this mixed perovskite film, but a significant electron transport barrier at the TiO 2 -perovskite interface limited their performance. Cs 2 CO 3 and CsI are then utilized as functional enhancers with which to substantially balance the electron and hole transport and increase the carriers (both electrons and holes) mobilities in PSCs, resulting in much-improved solar-cell performance. The modified PSCs exhibit reproducible power conversion efficiency (PCE) values with little hysteresis effect in the J-V curves, achieving PCEs up to 19.5% for the Cs 2 CO 3 -modified PSC and 20.6% when subsequently further doped with CsI.
Merluzzi, Sonia; Frossi, Barbara; Gri, Giorgia; Parusso, Serena; Tripodo, Claudio; Pucillo, Carlo
2010-04-08
The evidence of a tight spatial interaction between mast cells (MCs) and B lymphocytes in secondary lymphoid organs, along with the data regarding the abundance of MCs in several B-cell lymphoproliferative disorders prompted us to investigate whether MCs could affect the proliferation and differentiation of B cells. To this aim, we performed coculture assays using mouse splenic B cells and bone marrow-derived MCs. Both nonsensitized and activated MCs proved able to induce a significant inhibition of cell death and an increase in proliferation of naive B cells. Such proliferation was further enhanced in activated B cells. This effect relied on cell-cell contact and MC-derived interleukin-6 (IL-6). Activated MCs could regulate CD40 surface expression on unstimulated B cells and the interaction between CD40 with CD40 ligand (CD40L) on MCs, together with MC-derived cytokines, was involved in the differentiation of B cells into CD138(+) plasma cells and in selective immunoglobulin A (IgA) secretion. These data were corroborated by in vivo evidence of infiltrating MCs in close contact with IgA-expressing plasma cells within inflamed tissues. In conclusion, we reported here a novel role for MCs in sustaining B-cell expansion and driving the development of IgA-oriented humoral immune responses.
Luck, Kyle A; Shastry, Tejas A; Loser, Stephen; Ogien, Gabriel; Marks, Tobin J; Hersam, Mark C
2013-12-28
Organic photovoltaics have the potential to serve as lightweight, low-cost, mechanically flexible solar cells. However, losses in efficiency as laboratory cells are scaled up to the module level have to date impeded large scale deployment. Here, we report that a 3-aminopropyltriethoxysilane (APTES) cathode interfacial treatment significantly enhances performance reproducibility in inverted high-efficiency PTB7:PC71BM organic photovoltaic cells, as demonstrated by the fabrication of 100 APTES-treated devices versus 100 untreated controls. The APTES-treated devices achieve a power conversion efficiency of 8.08 ± 0.12% with histogram skewness of -0.291, whereas the untreated controls achieve 7.80 ± 0.26% with histogram skewness of -1.86. By substantially suppressing the interfacial origins of underperforming cells, the APTES treatment offers a pathway for fabricating large-area modules with high spatial performance uniformity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jason Maung, K.; Hahn, H. Thomas; Ju, Y.S.
Multifunction integration of solar cells in load-bearing structures can enhance overall system performance by reducing parasitic components and material redundancy. The article describes a manufacturing strategy, named the co-curing scheme, to integrate thin-film silicon solar cells on carbon-fiber-reinforced epoxy composites and eliminate parasitic packaging layers. In this scheme, an assembly of a solar cell and a prepreg is cured to form a multifunctional composite in one processing step. The photovoltaic performance of the manufactured structures is then characterized under controlled cyclic mechanical loading. The study finds that the solar cell performance does not degrade under 0.3%-strain cyclic tension loading upmore » to 100 cycles. Significant degradation, however, is observed when the magnitude of cyclic loading is increased to 1% strain. The present study provides an initial set of data to guide and motivate further studies of multifunctional energy harvesting structures. (author)« less
NASA Astrophysics Data System (ADS)
Wei, Meng; Jiang, Min; Liu, Xiaobo; Wang, Min; Mu, Shichun
2016-09-01
A rational electrode structure can allow proton exchange membrane (PEM) fuel cells own high performance with a low noble metal loading and an optimal transport pathway for reaction species. In this study, we develop a graphene doped polyacrylonitile (PAN)/polyvinylident fluoride (PVDF) (GPP) electrospun nanofiber electrode with improved electrical conductivity and high porosity, which could enhance the triple reaction boundary and promote gas and water transport throughout the porous electrode. Thus the increased electrochemical active surface area (ECSA) of Pt catalysts and fuel cell performance can be expected. As results, the ECSA of hot-pressed electrospun electrodes with 2 wt% graphene oxide (GO) is up to 84.3 m2/g, which is greatly larger than that of the conventional electrode (59.5 m2/g). Significantly, the GPP nanofiber electrospun electrode with Pt loading of 0.2 mg/cm2 exhibits higher fuel cell voltage output and stability than the conventional electrode.
Micro-polarimeter for high performance liquid chromatography
Yeung, Edward E.; Steenhoek, Larry E.; Woodruff, Steven D.; Kuo, Jeng-Chung
1985-01-01
A micro-polarimeter interfaced with a system for high performance liquid chromatography, for quantitatively analyzing micro and trace amounts of optically active organic molecules, particularly carbohydrates. A flow cell with a narrow bore is connected to a high performance liquid chromatography system. Thin, low birefringence cell windows cover opposite ends of the bore. A focused and polarized laser beam is directed along the longitudinal axis of the bore as an eluent containing the organic molecules is pumped through the cell. The beam is modulated by air gap Faraday rotators for phase sensitive detection to enhance the signal to noise ratio. An analyzer records the beams's direction of polarization after it passes through the cell. Calibration of the liquid chromatography system allows determination of the quantity of organic molecules present from a determination of the degree to which the polarized beam is rotated when it passes through the eluent.
Lohmeyer, J; Nerreter, T; Dotterweich, J; Einsele, H; Seggewiss-Bernhardt, R
2018-03-24
Natural killer (NK) cells play a major role in host immunity against leukaemia and lymphoma. However, clinical trials applying NK cells have not been as efficient as hoped for. Patients treated with rapidly accelerated fibrosarcoma (RAF) inhibitors exhibit increased tumour infiltration by immune cells, suggesting that a combination of RAF inhibitors with immunotherapy might be beneficial. As mitogen-activated protein kinases (MAPKs) such as raf-1 proto-oncogene, serine/threonine kinase (CRAF) regulate NK cell functions, we performed an in-vitro investigation on the potential of clinically relevant short-acting tyrosine kinase inhibitors (TKIs) as potential adjuvants for NK cell therapy: NK cells from healthy human blood donors were thus treated with sorafenib, sunitinib or the pan-RAF inhibitor ZM336372 during ex-vivo expansion. Functional outcomes assessed after washout of the drugs included cytokine production, degranulation, cytotoxicity, apoptosis induction and signal transduction with/without target cell contact. Paradoxically, sorafenib enhanced NK cell effector functions in a time- and dose-dependent manner by raising the steady-state activation level. Of note, this did not lead to NK cell exhaustion, but enhanced activity against target cells such as K562 or Daudis mediated via the RAS/RAF/extracellular-regulated kinase (ERK) pathway, but not via protein kinase B (AKT). Our data will pave the path to develop a rationale for the considered use of RAF inhibitors such as sorafenib for pre-activation in NK cell-based adoptive immune therapy. © 2018 British Society for Immunology.
Yuan, Mingjian; Voznyy, Oleksandr; Zhitomirsky, David; Kanjanaboos, Pongsakorn; Sargent, Edward H
2015-02-04
The spatial location of the predominant source of performance-limiting recombination in today's best colloidal quantum dot (CQD) cells is identified, pinpointing the TiO2:CQD junction; then, a highly n-doped PCBM layer is introduced at the CQD:TiO2 heterointerface. An n-doped PCBM layer is essential to maintain the depletion region and allow for efficient current extraction, thereby producing a record 8.9% in overall power conversion efficiency. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design, characterization and modeling of biobased acoustic foams
NASA Astrophysics Data System (ADS)
Ghaffari Mosanenzadeh, Shahrzad
Polymeric open cell foams are widely used as sound absorbers in sectors such as automobile, aerospace, transportation and building industries, yet there is a need to improve sound absorption of these foams through understanding the relation between cell morphology and acoustic properties of porous material. Due to complicated microscopic structure of open cell foams, investigating the relation between foam morphology and acoustic properties is rather intricate and still an open problem in the field. The focus of this research is to design and develop biobased open cell foams for acoustic applications to replace conventional petrochemical based foams as well as investigating the link between cell morphology and macroscopic properties of open cell porous structures. To achieve these objectives, two industrially produced biomaterials, polylactide (PLA) and polyhydroxyalkanoate (PHA) and their composites were examined and highly porous biobased foams were fabricated by particulate leaching and compression molding. Acoustic absorption capability of these foams was enhanced utilizing the effect of co-continuous blends to form a bimodal porous structure. To tailor mechanical and acoustic properties of biobased foams, blends of PLA and PHA were studied to reach the desired mechanical and viscoelastic properties. To enhance acoustic properties of porous medium for having a broad band absorption effect, cell structure must be appropriately graded. Such porous structures with microstructural gradation are called Functionally Graded Materials (FGM). A novel graded foam structure was designed with superior sound absorption to demonstrate the effect of cell arrangement on performance of acoustic fixtures. Acoustic measurements were performed in a two microphone impedance tube and acoustic theory of Johnson-Champoux-Allard was applied to the fabricated foams to determine micro cellular properties such as tortuosity, viscous and thermal lengths from sound absorption impedance tube measurements using an inverse technique. As the next step towards in depth understanding of the relation between cell morphology and sound absorption of open cell foams, a semi-analytical model was developed to account for the effect of micro cellular properties such as cell wall thickness and reticulation rate on overall macroscopic and structural properties. Developed model provides the tools to optimize the porous structure and enhance sound absorption capability.
Performance of vegetative and fruits Zn/Cu based electrochemical cell
NASA Astrophysics Data System (ADS)
Khan, Md. Kamrul Alam, Prof. _., Dr.
2017-01-01
We have studied the performance of PKL, Aloe Vera, Tomato and Lemon juice electrochemical Cells without load condition for 1:1 Zn/Cu based electrodes. It was studied the variation of Open circuit voltage (Voc), Short current (Isc) and Maximum Power (Pmax) with the variation of time for PKL, Aloe Vera, Tomato and Lemon juice electrochemical Cells. It was seen from the research observation that the discharge characteristic of the PKL electrochemical cell was more efficient than the other three Aloe Vera, Tomato and Lemon juice electrochemical Cells. Because the Open circuit voltage (Voc), Short current (Isc) and Maximum Power (Pmax) are more stable and steady than the others three Aloe Vera, Tomato and Lemon juice electrochemical Cells. Furthermore, to enhance the performance we have also studied the secondary salt effect by using the NaCl as an electrolyte with the PKL, Aloe Vera and Lemon juice electrochemical Cells. Most of the results have been tabulated and graphically discussed. I am grateful to the authority of the Science and technology ministry,Bangladesh for financial support during the research work.
NASA Technical Reports Server (NTRS)
Reid, Concha M.
2011-01-01
Vehicles and stand-alone power systems that enable the next generation of human missions to the moon will require energy storage systems that are safer, lighter, and more compact than current state-of-the-art (SOA) aerospace quality lithium-ion (Li-ion) batteries. NASA is developing advanced Li-ion cells to enable or enhance future human missions to Near Earth Objects, such as asteroids, planets, moons, libration points, and orbiting structures. Advanced, high-performing materials are required to provide component-level performance that can offer the required gains at the integrated cell level. Although there is still a significant amount of work yet to be done, the present state of development activities has resulted in the synthesis of promising materials that approach the ultimate performance goals. This paper on interim progress of the development efforts will present performance of materials and cell components and will elaborate on the challenges of the development activities and proposed strategies to overcome technical issues.
NASA Technical Reports Server (NTRS)
Reid, Concha, M.; Reid, Concha M.
2011-01-01
Vehicles and stand-alone power systems that enable the next generation of human missions to the Moon will require energy storage systems that are safer, lighter, and more compact than current state-of-the- art (SOA) aerospace quality lithium-ion (Li-ion) batteries. NASA is developing advanced Li-ion cells to enable or enhance the power systems for the Altair Lunar Lander, Extravehicular Activities spacesuit, and rovers and portable utility pallets for Lunar Surface Systems. Advanced, high-performing materials are required to provide component-level performance that can offer the required gains at the integrated cell level. Although there is still a significant amount of work yet to be done, the present state of development activities has resulted in the synthesis of promising materials that approach the ultimate performance goals. This report on interim progress of the development efforts will elaborate on the challenges of the development activities, proposed strategies to overcome technical issues, and present performance of materials and cell components.
Tan, Xuebin; Wang, Zhuyuan; Yang, Jing; Song, Chunyuan; Zhang, Ruohu; Cui, Yiping
2009-11-04
A biocompatible and stable surface-enhanced Raman scattering (SERS) probe has been successfully synthesized through a simple route with silver aggregates. Polyvinylpyrrolidone (PVP), a biocompatible polymer, was utilized to control the aggregation process and improve the chemical stability of the aggregates. Extinction spectroscopy and TEM results show the aggregation degree and core-shell structure of the probe. It is found that when we employ 4-mercaptobenzoic acid (4MBA), crystal violet (CV), Rhodamine 6G (R6G) or 4,4'-bipyridine molecules as Raman reporters, the SERS signal from the proposed probe can remain at a high level under aggressive chemical environments, even after being incorporated into living cells. In comparison with the traditional probes without the PVP shell, the new ones exhibit strong surface-enhanced effects and low toxicity towards living cells. We demonstrate that the PVP-coated silver aggregates are highly SERS effective, for which the fabrication protocol is advantageous in its simplicity and reproducibility.
Photocurrent Enhancement by a Rapid Thermal Treatment of Nanodisk-Shaped SnS Photocathodes.
Patel, Malkeshkumar; Kumar, Mohit; Kim, Joondong; Kim, Yu Kwon
2017-12-21
Photocathodes made from the earth-abundant, ecofriendly mineral tin monosulfide (SnS) can be promising candidates for p/n-type photoelectrochemical cells because they meet the strict requirements of energy band edges for each individual photoelectrode. Herein we fabricated SnS-based cell that exhibited a prolonged photocurrent for 3 h at -0.3 V vs the reversible hydrogen electrode (RHE) in a 0.1 M HCl electrolyte. An enhancement of the cathodic photocurrent from 2 to 6 mA cm -2 is observed through a rapid thermal treatment. Mott-Schottky analysis of SnS samples revealed an anodic shift of 0.7 V in the flat band potential under light illumination. Incident photon-to-current conversion efficiency (IPCE) analysis indicates that an efficient charge transfer appropriate for solar hydrogen generation occurs at the -0.3 V vs RHE potential. This work shows that SnS is a promising material for photocathode in PEC cells and its performance can be enhanced via simple postannealing.
Miconazole enhances nerve regeneration and functional recovery after sciatic nerve crush injury.
Lin, Tao; Qiu, Shuai; Yan, Liwei; Zhu, Shuang; Zheng, Canbin; Zhu, Qingtang; Liu, Xiaolin
2018-05-01
Improving axonal outgrowth and remyelination is crucial for peripheral nerve regeneration. Miconazole appears to enhance remyelination in the central nervous system. In this study we assess the effect of miconazole on axonal regeneration using a sciatic nerve crush injury model in rats. Fifty Sprague-Dawley rats were divided into control and miconazole groups. Nerve regeneration and myelination were determined using histological and electrophysiological assessment. Evaluation of sensory and motor recovery was performed using the pinprick assay and sciatic functional index. The Cell Counting Kit-8 assay and Western blotting were used to assess the proliferation and neurotrophic expression of RSC 96 Schwann cells. Miconazole promoted axonal regrowth, increased myelinated nerve fibers, improved sensory recovery and walking behavior, enhanced stimulated amplitude and nerve conduction velocity, and elevated proliferation and neurotrophic expression of RSC 96 Schwann cells. Miconazole was beneficial for nerve regeneration and functional recovery after peripheral nerve injury. Muscle Nerve 57: 821-828, 2018. © 2017 Wiley Periodicals, Inc.
Broadband Solar Energy Harvesting in Single Nanowire Resonators
NASA Astrophysics Data System (ADS)
Yang, Yiming; Peng, Xingyue; Hyatt, Steven; Yu, Dong
2015-03-01
Sub-wavelength semiconductor nanowires (NWs) can have optical absorption cross sections far beyond their physical sizes at resonance frequencies, offering a powerful method to simultaneously lower the material consumption and enhance photovoltaic performance. The degree of absorption enhancement is expected to substantially increase in materials with high refractive indices, but this has not yet been experimentally demonstrated. Here, we show that the absorption efficiency can be significantly improved in high-index NWs, by a direct observation of 350% external quantum efficiency (EQE) in lead sulfide (PbS) NWs. Broadband absorption enhancement is also realized in tapered NWs, where light of different wavelength is absorbed at segments with different diameters analogous to a tandem solar cell. Our results quantitatively agree with the finite-difference-time-domain (FDTD) simulations. Overall, our single PbS NW Schottky solar cells taking advantage of optical resonance, near bandgap open circuit voltage, and long minority carrier diffusion length exhibit power conversion efficiency comparable to single Si NW coaxial p-n junction cells, while the fabrication complexity is greatly reduced.
NASA Astrophysics Data System (ADS)
Chen, Shanshan; Yang, Songwang; Sun, Hong; Zhang, Lu; Peng, Jiajun; Liang, Ziqi; Wang, Zhong-Sheng
2017-06-01
To improve the electron transfer at the interface between the perovskite film and the electron-transporting-material (ETM) layer, CoSe doped [6,6]-phenyl C61-butyric acid methyl ester (PCBM) is employed as the ETM layer for the inverted planar perovskite solar cell with NiO as the hole-transporting-material layer. Introduction of CoSe (5.8 wt%) into the PCBM layer improves the conductivity of the ETM layer and decreases the photoluminescence intensity, thus enhancing the interfacial electron extraction and reducing the electron transfer resistance at the perovskite/ETM interface. As a consequence, the power conversion efficiency is enhanced from 11.43% to 14.91% by 30% due to the noted increases in short-circuit current density from 17.95 mA cm-2 to 19.85 mA cm-2 and fill factor from 0.60 to 0.70. This work provides a new strategy to improve the performance of inverted perovskite solar cells.
Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Stonehart, P.; Baris, J.; Hochmuth, J.; Pagliaro, P.
1981-01-01
The highest performance fuel cell cathode electrocatalyst combination ever observed gives 755 mV vs hydrogen at 100 ASF on air at 180 C and shows a potential improvement to 775 mV vs hydrogen for better electrode structures. A pressurized fuel cell (UTC at 5 atm) would then give 805 mV at 320 ASF and 180 C. Another activity diagnostic is the performance of this electrocatalyst on oxygen at 900 mV vs hydrogen. The value for electrocatalyst is 44 mA per milligram of platinum and is projected to reach 60 mA per milligram of platinum with improved electrode structures. Since the electrocatalyst surface area and the electrode structure are not yet optimized there is considerable room for performance enhancement beyond these values, especially at higher temperatures.
Perera, Glen; Barthelmes, Jan; Vetter, Anja; Krieg, Christof; Uhlschmied, Cindy; Bonn, Günther K; Bernkop-Schnürch, Andreas
2011-08-01
Thiolated polyacrylates were shown to be permeation enhancers with notable potential. The aim of this study was to evaluate the permeation enhancing properties of a thiolated polycarbophil/glutathione (PCP-Cys/GSH) system for oral drug application in comparison to a well-established permeation enhancer, namely sodium caprate. In vitro permeation studies were conducted in Ussing-type chambers with sodium fluoresceine (NaFlu) and fluoresceine isothiocyanate labeled dextran (molecular mass 4 kDa; FD4) as model compounds. Bioavailability studies were carried out in Sprague Dawley rats with various formulations. Moreover, cytotoxic effects of both permeation enhancers were compared. Permeation enhancement ratios of 1% sodium caprate were found to be 3.0 (FD4) and 2.3 (NaFlu), whereas 1% PCP-Cys/0.5% GSH displayed enhancement ratios of 2.4 and 2.2. Both excipients performed at a similar level in vivo. Sodium caprate solutions increased oral bioavailability 2.2-fold (FD4) and 2.3-fold (NaFlu), while PCP-Cys hydrogels led to a 3.2-fold and 2.2-fold enhancement. Cell viability experiments revealed a significantly higher tolerance of Caco-2 cells towards 0.5% PCP-Cys (81% survival) compared to 0.5% sodium caprate (5%). As PCP-Cys is not absorbed from mucosal membranes due to its comparatively high molecular mass, systemic side-effects can be excluded. In conclusion, both systems displayed a similar potency for permeation enhancement of hydrophilic compounds. However, PCP-Cys seems to be less harmful to cultured cells.
Oyaizu, Kenichi; Hayo, Noriko; Sasada, Yoshito; Kato, Fumiaki; Nishide, Hiroyuki
2013-12-07
Electrochemical reversibility and fast bimolecular exchange reaction found for VO(salen) gave rise to a highly efficient redox mediation to enhance the photocurrent of a dye-sensitized solar cell, leading to an excellent photovoltaic performance with a conversion efficiency of 5.4%. A heterogeneous electron-transfer rate constant at an electrode (k0) and a second-order rate constant for an electron self-exchange reaction (k(ex)) were proposed as key parameters that dominate the charge transport property, which afforded a novel design concept for the mediators based on their kinetic aspects.
Calcium phosphate cements for bone engineering and their biological properties
Xu, Hockin HK; Wang, Ping; Wang, Lin; Bao, Chongyun; Chen, Qianming; Weir, Michael D; Chow, Laurence C; Zhao, Liang; Zhou, Xuedong; Reynolds, Mark A
2017-01-01
Calcium phosphate cements (CPCs) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports their increased application in bone tissue engineering. Much effort has been made to enhance the biological performance of CPCs, including their biocompatibility, osteoconductivity, osteoinductivity, biodegradability, bioactivity, and interactions with cells. This review article focuses on the major recent developments in CPCs, including 3D printing, injectability, stem cell delivery, growth factor and drug delivery, and pre-vascularization of CPC scaffolds via co-culture and tri-culture techniques to enhance angiogenesis and osteogenesis. PMID:29354304
Kilani-Jaziri, Soumaya; Mokdad-Bzeouich, Imen; Krifa, Mounira; Nasr, Nouha; Ghedira, Kamel; Chekir-Ghedira, Leila
2017-10-01
Many studies have been performed to assess the potential utility of natural products as immunomodulatory agents to enhance host responses and to reduce damage to the human body. To determine whether phenolic compounds (caffeic, ferulic, and p-coumaric acids) have immunomodulatory effects and clarify which types of immune effector cells are stimulated in vitro, we evaluated their effect on splenocyte proliferation and lysosomal enzyme activity. We also investigated the activity of natural killer (NK) cells and cytotoxic T lymphocytes (CTL). In addition, induction of the cellular antioxidant activity in splenocytes, macrophages, and red blood cells was determined by measuring the fluorescence of the DCF product. The study first results indicated that caffeic, ferulic, and p-coumaric acids significantly promote LPS-stimulated splenocyte proliferation, suggesting a potential activation of B cells, and enhanced humoral immune response in hosts treated by the tested natural products. Phenolic acids significantly enhanced the killing activity of isolated NK and CTL cells but had negligible effects on mitogen-induced proliferation of splenic T cells. We showed that caffeic acid enhances lysosomal enzyme activity in murine peritoneal macrophages, suggesting a potential role in activating such cells. Immunomodulatory activity was concomitant with the cellular antioxidant effect in macrophages and splenocytes of caffeic and ferulic acids. We conclude from this study that caffeic, ferulic, and p-coumaric acids exhibited an immunomodulatory effect which could be ascribed, in part, to their cytoprotective effect via their antioxidant capacity. Furthermore, these results suggest that these natural products could be potentially used to modulate immune cell functions in physiological and pathological conditions.
Jia, Wei; Feng, Jie; Zhang, Jing-Song; Lin, Chi-Chung; Wang, Wen-Han; Chen, Hong-Ge
2017-01-01
FVPA1, a novel polysaccharide, has been isolated from fruiting bodies of the culinary-medicinal mushroom Flammulina velutipes, a historically popular, widely cultivated and consumed functional food with an attractive taste, beneficial nutraceutical properties such as antitumor and immunomodulatory effects, and a number of essential biological activities. The average molecular weight was estimated to be ~1.8 × 104 Da based on high-performance size exclusion chromatography. Sugar analyses, methylation analyses, and 1H, 13C, and 2-dimensional nuclear magnetic resonance spectroscopy revealed the following structure of the repeating units of the FVPA1 polysaccharide Identification of this structure would conceivably lead to better understanding of the nutraceutical functions of this very important edible fungus. Bioactivity tests in vitro indicated that FVPA1 could significantly enhance natural killer cell activity against K562 tumor cells.
The enhanced efficiency of graphene-silicon solar cells by electric field doping.
Yu, Xuegong; Yang, Lifei; Lv, Qingmin; Xu, Mingsheng; Chen, Hongzheng; Yang, Deren
2015-04-28
The graphene-silicon (Gr-Si) Schottky junction solar cell has been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the low Gr-Si Schottky barrier height largely limits the power conversion efficiency of Gr-Si solar cells. Here, we demonstrate that electric field doping can be used to tune the work function of a Gr film and therefore improve the photovoltaic performance of the Gr-Si solar cell effectively. The electric field doping effects can be achieved either by connecting the Gr-Si solar cell to an external power supply or by polarizing a ferroelectric polymer layer integrated in the Gr-Si solar cell. Exploration of both of the device architecture designs showed that the power conversion efficiency of Gr-Si solar cells is more than twice of the control Gr-Si solar cells. Our study opens a new avenue for improving the performance of Gr-Si solar cells.
Li, Qi-Xiang; Zhang, Pei; Liu, Fang; Wang, Xian-Zhi; Li, Lu; Wang, Zhong-Kun; Jiang, Chen-Chen; Zheng, Hai-Lun; Liu, Hao
2017-05-20
To investigate the role of monocarboxylate transporter 1 (MCT1) in enhancing the sensitivity of breast cancer cells to 3-bromopyruvate (3-BrPA). The inhibitory effect of 3-BrPA on the proliferation of breast cancer cells was assessed with MTT assay, and brominated propidium bromide single staining flow cytometry was used for detecting the cell apoptosis. An ELISA kit was used to detect the intracellular levels of hexokinase II, lactate dehydrogenase, lactate, and adenosine triphosphate, and Western blotting was performed to detect the expression of MCT1. MDA-MB-231 cells were transiently transfected with MCT1 cDNA for over-expressing MCT1, and the effect of 3-BrPA on the cell proliferation and adenosine triphosphate level was deteced. 3-BrPA did not produce significant effects on the proliferation and apoptosis of MDA-MB-231 cells, and the cells treated with 200 µmol/L 3-BrPA for 24 h showed an inhibition rate and an apoptosis rate of only 8.72% and 7.8%, respectively. The same treatment, however, produced an inhibition rate and an apoptosis rate of 84.6% and 82.3% in MCF-7 cells, respectively. In MDA-MB-231 cells with MCT1 overexpression, 200 µmol/L 3-BrPA resulted in an inhibition rate of 72.44%, significantly higher than that in the control cells (P<0.05); treatment of the cells with 25, 50, 100, and 200 µmol/L 3-BrPA for 6 h resulted in intracellular adenosine triphosphate levels of 96.98%, 88.44%, 43.3% and 27.56% relative to the control level respectively. MCT1 can enhance the sensitivity of breast cancer cells to 3-BrPA possibly by transporting 3-BrPA into cells to inhibit cell glycolysis.
NASA Astrophysics Data System (ADS)
Chen, Wei; Darling, Seth
2012-02-01
In the last fifteen years, research efforts have led to organic photovoltaic (OPV) devices with power conversion efficiencies (PCEs) up to ˜8%, but these values are still insufficient for the devices to become widely marketable. To further improve solar cell performance a thorough understanding of the complex structure-property relationships in the OPV devices is required. In this work, we demonstrated that the OPV active layer of PTB7:fullerene bulk heterojunction (BHJ) solar cells, which set a historic record of PCE (7.4%), involves hierarchical nanomorphologies ranging from several nanometers of crystallites to tens of nanometers of nanocrystallite aggregates in PTB7-rich and fullerene-rich domains, themselves hundreds of nanometers in size. These hierarchical nanomorphologies with optimum crystallinity and intermixing of PTB7 with fullerenes are coupled to significantly enhanced exciton dissociation, which consequently contribute to photocurrent, leading to the superior performance of PTB7:fullerene BHJ solar cells. New insights of performance-related structures afforded by the current study should aid in the rational design of even higher performance polymeric solar cells.
Novel medical image enhancement algorithms
NASA Astrophysics Data System (ADS)
Agaian, Sos; McClendon, Stephen A.
2010-01-01
In this paper, we present two novel medical image enhancement algorithms. The first, a global image enhancement algorithm, utilizes an alpha-trimmed mean filter as its backbone to sharpen images. The second algorithm uses a cascaded unsharp masking technique to separate the high frequency components of an image in order for them to be enhanced using a modified adaptive contrast enhancement algorithm. Experimental results from enhancing electron microscopy, radiological, CT scan and MRI scan images, using the MATLAB environment, are then compared to the original images as well as other enhancement methods, such as histogram equalization and two forms of adaptive contrast enhancement. An image processing scheme for electron microscopy images of Purkinje cells will also be implemented and utilized as a comparison tool to evaluate the performance of our algorithm.
Hyperbranched quasi-1D TiO2 nanostructure for hybrid organic-inorganic solar cells.
Ghadirzadeh, Ali; Passoni, Luca; Grancini, Giulia; Terraneo, Giancarlo; Li Bassi, Andrea; Petrozza, Annamaria; Di Fonzo, Fabio
2015-04-15
The performance of hybrid solar cells is strongly affected by the device morphology. In this work, we demonstrate a poly(3-hexylthiophene-2,5-diyl)/TiO2 hybrid solar cell where the TiO2 photoanode comprises an array of tree-like hyperbranched quasi-1D nanostructures self-assembled from the gas phase. This advanced architecture enables us to increase the power conversion efficiency to over 1%, doubling the efficiency with respect to state of the art devices employing standard mesoporous titania photoanodes. This improvement is attributed to several peculiar features of this array of nanostructures: high interfacial area; increased optical density thanks to the enhanced light scattering; and enhanced crystallization of poly(3-hexylthiophene-2,5-diyl) inside the quasi-1D nanostructure.
Li, Zhiqi; Liu, Chunyu; Zhang, Xinyuan; Li, Shujun; Zhang, Xulin; Guo, Jiaxin; Guo, Wenbin; Zhang, Liu; Ruan, Shengping
2017-09-20
Recent advances in the interfacial modification of inverted-type polymer solar cells (PSCs) have resulted from controlling the surface energy of the cathode-modified layer (TiO 2 or ZnO) to enhance the short-circuit current (J sc ) or optimizing the contact morphology of the cathode (indium tin oxide or fluorine-doped tin oxide) and active layer to increase the fill factor. Herein, we report that the performance enhancement of PSCs is achieved by incorporating a donor macromolecule copper phthalocyanine (CuPc) as an anode modification layer. Using the approach based on orienting the microstructure evolution, uniformly dispersed island-shaped CuPc spot accumulations are built on the top of PTB7:PC 71 BM blend film, leading to an efficient spectral absorption and photogenerated exciton splitting. The best power conversion efficiency of PSCs is increased up to 9.726%. In addition to the enhanced light absorption, the tailored anode energy level alignment and optimized boundary morphology by incorporating the CuPc interlayer boost charge extraction efficiency and suppress the interfacial molecular recombination. These results demonstrate that surface morphology induction through molecular deposition is an effective method to improve the performance of PSCs, which reveals the potential implications of the interlayer between the organic active layer and the electrode buffer layer.
Ohta, Y; Yoshida, K; Kamiya, S; Kawate, N; Takahashi, M; Inaba, T; Hatoya, S; Morii, H; Takahashi, K; Ito, M; Ogawa, H; Tamada, H
2016-04-01
Although Lepidium meyenii (maca), a plant growing in Peru's central Andes, has been traditionally used for enhancing fertility and reproductive performance in domestic animals and human beings, effects of maca on reproductive organs are still unclear. This study examined whether feeding the hydroalcoholic extract powder of maca for 6 weeks affects weight of the reproductive organs, serum concentrations of testosterone and luteinising hormone (LH), number and cytoplasmic area of immunohistochemically stained Leydig cells, and steroidogenesis of cultured Leydig cells in 8-week-old male rats. Feeding the extract powder increased weight of seminal vesicles, serum testosterone level and cytoplasmic area of Leydig cells when compared with controls. Weight of prostate gland, serum LH concentration and number of Leydig cells were not affected by the maca treatment. The testosterone production by Leydig cells significantly increased when cultured with 22R-hydroxycholesterol or pregnenolone and tended to increase when cultured with hCG by feeding the extract powder. The results show that feeding the hydroalcoholic extract powder of maca for 6 weeks increases serum testosterone concentration associated with seminal vesicle stimulation in male rats, and this increase in testosterone level may be related to the enhanced ability of testosterone production by Leydig cells especially in the metabolic process following cholesterol. © 2015 Blackwell Verlag GmbH.
Chen, Yongshun; Li, Xiaohong; Guo, Leiming; Wu, Xiaoyuan; He, Chunyu; Zhang, Song; Xiao, Yanjing; Yang, Yuanyuan; Hao, Daxuan
2015-08-01
Radiotherapy is an effective treatment for esophageal cancer; however, tumor resistance to radiation remains a major biological problem. The present study aimed to investigate whether inhibition of autophagy may decrease overall tumor resistance to radiation. The effects of the autophagy inhibitor 3-methyladenine (3-MA) on radiosensitivity were tested in the EC9706 human esophageal squamous cell carcinoma cell line by colony formation assay. Furthermore, the synergistic cytotoxic effects of 3-MA and radiation were assessed in a tumor xenograft model in nude mice. Mechanistic studies were performed using flow cytometry, immunohistochemistry and western blot analysis. The results of the present study demonstrated that radiation induced an accumulation of autophagosomes and 3-MA effectively inhibited radiation-induced autophagy. Inhibition of autophagy was shown to significantly increase the radiosensitivity of the tumors in vitro and in vivo. The enhancement ratio of sensitization in EC9706 cells was 1.76 when the cells were treated with 10 mM 3-MA, alongside ionizing radiation. In addition, autophagy inhibition increased apoptosis and reduced tumor cell proliferation. The combination of radiation and autophagy inhibition resulted in a significant reduction in tumor volume and vasculature in the murine model. The present study demonstrated in vitro and in vivo that radiation-induced autophagy has a protective effect against cell death, and inhibition of autophagy is able to enhance the radiosensitivity of esophageal squamous cell carcinoma.
CHEN, YONGSHUN; LI, XIAOHONG; GUO, LEIMING; WU, XIAOYUAN; HE, CHUNYU; ZHANG, SONG; XIAO, YANJING; YANG, YUANYUAN; HAO, DAXUAN
2015-01-01
Radiotherapy is an effective treatment for esophageal cancer; however, tumor resistance to radiation remains a major biological problem. The present study aimed to investigate whether inhibition of autophagy may decrease overall tumor resistance to radiation. The effects of the autophagy inhibitor 3-methyladenine (3-MA) on radiosensitivity were tested in the EC9706 human esophageal squamous cell carcinoma cell line by colony formation assay. Furthermore, the synergistic cytotoxic effects of 3-MA and radiation were assessed in a tumor xenograft model in nude mice. Mechanistic studies were performed using flow cytometry, immunohistochemistry and western blot analysis. The results of the present study demonstrated that radiation induced an accumulation of autophagosomes and 3-MA effectively inhibited radiation-induced autophagy. Inhibition of autophagy was shown to significantly increase the radiosensitivity of the tumors in vitro and in vivo. The enhancement ratio of sensitization in EC9706 cells was 1.76 when the cells were treated with 10 mM 3-MA, alongside ionizing radiation. In addition, autophagy inhibition increased apoptosis and reduced tumor cell proliferation. The combination of radiation and autophagy inhibition resulted in a significant reduction in tumor volume and vasculature in the murine model. The present study demonstrated in vitro and in vivo that radiation-induced autophagy has a protective effect against cell death, and inhibition of autophagy is able to enhance the radiosensitivity of esophageal squamous cell carcinoma. PMID:25891159
Application of a weak magnetic field to improve microbial fuel cell performance.
Tong, Zhong-Hua; Yu, Han-Qing; Li, Wen-Wei; Wang, Yun-Kun; Sun, Min; Liu, Xian-Wei; Sheng, Guo-Ping
2015-12-01
Microbial fuel cells (MFCs) have emerged as a promising technology for wastewater treatment with concomitant energy production but the performance is usually limited by low microbial activities. This has spurred intensive research interest for microbial enhancement. This study demonstrated an interesting stimulation effect of a static magnetic field (MF) on sludge-inoculated MFCs and explored into the mechanisms. The implementation of a 100-mT MF accelerated the reactor startup and led to increased electricity generation. Under the MF exposure, the activation loss of the MFC was decreased, but there was no increased secretion of redox mediators. Thus, the MF effect was mainly due to enhanced bioelectrochemical activities of anodic microorganisms, which are likely attributed to the oxidative stress and magnetohydrodynamic effects under an MF exposure. This work implies that weak MF may be applied as a simple and effective approach to stimulate microbial activities for various bioelectrochemical energy production and decontamination applications.
Influence of diligent disintegration on anaerobic biomass and performance of microbial fuel cell.
Divyalakshmi, Palanisamy; Murugan, Devaraj; Rai, Chockalingam Lajapathi
2017-12-01
To enhance the performance of microbial fuel cells (MFC) by increasing the surface area of cathode and diligent mechanical disintegration of anaerobic biomass. Tannery effluent and anaerobic biomass were used. The increase in surface area of the cathode resulted in 78% COD removal, with the potential, current density, power density and coulombic efficiency of 675 mV, 147 mA m -2 , 33 mW m -2 and 3.5%, respectively. The work coupled with increased surface area of the cathode with diligent mechanical disintegration of the biomass, led to a further increase in COD removal of 82% with the potential, current density, power density and coulombic efficiency of 748 mV, 229 mA m -2 , 78 mW m -2 and 6% respectively. Mechanical disintegration of the biomass along with increased surface area of cathode enhances power generation in vertical MFC reactors using tannery effluent as fuel.
Long-term effects of the transient COD concentration on the performance of microbial fuel cells.
Mateo, S; Gonzalez Del Campo, A; Lobato, J; Rodrigo, M; Cañizares, P; Fernandez-Morales, F J
2016-07-08
In this work, the long-term effects of transient chemical oxygen demands (COD) concentrations over the performance of a microbial fuel cell were studied. From the obtained results, it was observed that the repetitive change in the COD loading rate during 12 h conditioned the behavior of the system during periods of up to 7 days. The main modifications were the enhancement of the COD consumption rate and the exerted current. These enhancements yielded increasing Coulombic efficiencies (CEs) when working with COD concentrations of 300 mg/L, but constant CEs when working with COD concentrations from 900 to 1800 mg/L. This effect could be explained by the higher affinity for the substrate of Geobacter than that of the nonelectrogenic organisms such as Clostridia. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:883-890, 2016. © 2016 American Institute of Chemical Engineers.
Levtchenko, Alexandra; Le Gall, Sylvain; Lachaume, Raphaël; Michallon, Jérôme; Collin, Stéphane; Alvarez, José; Djebbour, Zakaria; Kleider, Jean-Paul
2018-06-22
By coupling optical and electrical modeling, we have investigated the photovoltaic performances of p-i-n radial nanowires array based on crystalline p-type silicon (c-Si) core/hydrogenated amorphous silicon (a-Si:H) shell. By varying either the doping concentration of the c-Si core, or back contact work function we can separate and highlight the contribution to the cell's performance of the nanowires themselves (the radial cell) from the interspace between the nanowires (the planar cell). We show that the build-in potential (V bi ) in the radial and planar cells strongly depends on the doping of c-Si core and the work function of the back contact respectively. Consequently, the solar cell's performance is degraded if either the doping concentration of the c-Si core, or/and the work function of the back contact is too low. By inserting a thin (p) a-Si:H layer between both core/absorber and back contact/absorber, the performance of the solar cell can be improved by partly fixing the V bi at both interfaces due to strong electrostatic screening effect. Depositing such a buffer layer playing the role of an electrostatic screen for charge carriers is a suggested way of enhancing the performance of solar cells based on radial p-i-n or n-i-p nanowire array.
Plasmonic Light Trapping in Thin-Film Solar Cells: Impact of Modeling on Performance Prediction
Micco, Alberto; Pisco, Marco; Ricciardi, Armando; Mercaldo, Lucia V.; Usatii, Iurie; La Ferrara, Vera; Delli Veneri, Paola; Cutolo, Antonello; Cusano, Andrea
2015-01-01
We present a comparative study on numerical models used to predict the absorption enhancement in thin-film solar cells due to the presence of structured back-reflectors exciting, at specific wavelengths, hybrid plasmonic-photonic resonances. To evaluate the effectiveness of the analyzed models, they have been applied in a case study: starting from a U-shaped textured glass thin-film, µc-Si:H solar cells have been successfully fabricated. The fabricated cells, with different intrinsic layer thicknesses, have been morphologically, optically and electrically characterized. The experimental results have been successively compared with the numerical predictions. We have found that, in contrast to basic models based on the underlying schematics of the cell, numerical models taking into account the real morphology of the fabricated device, are able to effectively predict the cells performances in terms of both optical absorption and short-circuit current values.
Application of mixed-organic-cation for high performance hole-conductor-free perovskite solar cells.
Xiao, Meng; Zhao, Li; Wei, Shoubin; Li, Yanyan; Dong, Binghai; Xu, Zuxun; Wan, Li; Wang, Shimin
2018-01-15
ABX 3 -type organic lead halide perovskites have gained increasing attention as light harvester for solar cells due to their high power conversion efficiency (PCE). Recently, it has become a trend to avoid the use of expensive hole-transport materials (HTMs) and precious metals, such as Au, to be competitive in future commercial development. In this study, we fabricated mixed-cation perovskite-based solar cells through one-step spin-coating using methylammonium (CH 3 NH 3 + ) and formamidinium (HN=CHNH 3 + ) cations to extend the optical absorption range into the red region and enhance the utilization of solar light. The synthesized hole-conductor-free cells with carbon electrode and mixed cations exhibited increased short-circuit current, outperforming the cells prepared with pure methylammonium, and PCE of 10.55%. This paper proposes an efficient approach for fabricating high-performance and low-cost perovskite solar cells. Copyright © 2017 Elsevier Inc. All rights reserved.
High Performance Perovskite Solar Cells
Tong, Xin; Lin, Feng; Wu, Jiang
2015-01-01
Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long‐term stable all‐solid‐state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost‐effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole‐transporting materials (HTMs) and electron‐transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction. PMID:27774402
Primary lithium battery technology and its application to NASA missions
NASA Technical Reports Server (NTRS)
Frank, H. A.
1979-01-01
A description is given of the components, overall cell reactions, and performance characteristics of promising new ambient temperature lithium primary systems based on the Li-V205, Li-SO2, and Li-SOC12 couples. Development status of these systems is described in regard to availability and uncertainties in the areas of safety and selected performance characteristics. Studies show that use of lithium batteries would enhance a variety of missions and applications by decreasing power sytems weight and thereby increasing payload weight. In addition, the lithium batteries could enhance cost effectiveness of the missions.
Chen, Songjie; Hu, Hui; Miao, Shushu; Zheng, Jiayong; Xie, Zhijian; Zhao, Hui
2017-05-01
Oral squamous cell carcinoma is one of the most common neoplasm in the world. Despite the improvements in diagnosis and treatment, the outcome is still poor now. Thus, the development of novel therapeuticapproaches is needed. The aim of this study is to assess the synergistic anti-tumor effect of andrographolide with cisplatin (DDP) in oral squamous cell carcinoma CAL-27 cells in vitro and in vivo. We performed Cell Counting Kit-8 proliferation assay, apoptosis assay, and western blotting on CAL-27 cells treated with andrographolide, DDP or the combination in vitro. In vivo, we also treated CAL-27 xenografts with andrographolide or the combination, and performed terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay and immunohistochemical analysis of Ki-67. The results showed the combination of andrographolide and DDP synergistically inhibited CAL-27 cell proliferation in vitro and caused tumor regression in vivo in the CAL-27 xenografts. In addition, the synergistic anti-tumor effect of andrographolide with synergistic was due to an enhanced apoptosis. Moreover, the combination therapy upregulated the expression level of p-p53 in vitro and decreased Ki-67 expression in vivo. Our data indicate that the combination treatment of andrographolide and DDP results in synergistic anti-tumor growth activity against oral squamous cell carcinoma CAL-27 in vitro and in vivo. These results demonstrated that combination of andrographolide with DDP was likely to represent a potential therapeutic strategy for oral squamous cell carcinoma.
Advances in Perovskite Solar Cells
Zuo, Chuantian; Bolink, Henk J.; Han, Hongwei; Huang, Jinsong
2016-01-01
Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite‐based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non‐PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large‐scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed. PMID:27812475
Celecoxib-Induced Self-Assembly of Smart Albumin-Doxorubicin Conjugate for Enhanced Cancer Therapy.
Shi, Leilei; Xu, Li; Wu, Chenwei; Xue, Bai; Jin, Xin; Yang, Jiapei; Zhu, Xinyuan
2018-03-14
Recent years have witnessed the great contributions that drug combination therapy has made for enhanced cancer therapy. However, because of the complicated pharmacokinetics of combined drug formulations, the majority of combination strategies show severe adverse effects at high dosage and poor biodistribution in vivo. To overcome these deficiencies and achieve enhanced cancer therapy, we put forward a method to construct a smart albumin-based nanoplatform, denoted as K237-HSA-DC, for codelivery of cyclooxygenase-2 (COX-2) inhibitor (celecoxib) and chemotherapeutic agent (doxorubicin, DOX). Both in vitro and in vivo studies indicate that K237-HSA-DC exhibits the best therapeutic efficacy on tumor cells compared with all the other formulations. Moreover, K237-HSA-DC shows fewer side effects on normal organs in contrast to other formulations. To understand the reasons behind the improved drug efficacy in depth, we performed a cell metabonomics-based mechanism study and found that celecoxib could enhance the inhibitory effect of DOX on the transport of glucose into cells and then lead to subsequent significant energy metabolism inhibition. Considering the above-mentioned advantages of K237-HSA-DC, we believe the smart albumin-based nanoplatform can serve as a promising drug delivery system for enhanced cancer therapy.
Integrated microfluidic devices for combinatorial cell-based assays.
Yu, Zeta Tak For; Kamei, Ken-ichiro; Takahashi, Hiroko; Shu, Chengyi Jenny; Wang, Xiaopu; He, George Wenfu; Silverman, Robert; Radu, Caius G; Witte, Owen N; Lee, Ki-Bum; Tseng, Hsian-Rong
2009-06-01
The development of miniaturized cell culture platforms for performing parallel cultures and combinatorial assays is important in cell biology from the single-cell level to the system level. In this paper we developed an integrated microfluidic cell-culture platform, Cell-microChip (Cell-microChip), for parallel analyses of the effects of microenvironmental cues (i.e., culture scaffolds) on different mammalian cells and their cellular responses to external stimuli. As a model study, we demonstrated the ability of culturing and assaying several mammalian cells, such as NIH 3T3 fibroblast, B16 melanoma and HeLa cell lines, in a parallel way. For functional assays, first we tested drug-induced apoptotic responses from different cell lines. As a second functional assay, we performed "on-chip" transfection of a reporter gene encoding an enhanced green fluorescent protein (EGFP) followed by live-cell imaging of transcriptional activation of cyclooxygenase 2 (Cox-2) expression. Collectively, our Cell-microChip approach demonstrated the capability to carry out parallel operations and the potential to further integrate advanced functions and applications in the broader space of combinatorial chemistry and biology.
Integrated microfluidic devices for combinatorial cell-based assays
Yu, Zeta Tak For; Kamei, Ken-ichiro; Takahashi, Hiroko; Shu, Chengyi Jenny; Wang, Xiaopu; He, George Wenfu; Silverman, Robert
2010-01-01
The development of miniaturized cell culture platforms for performing parallel cultures and combinatorial assays is important in cell biology from the single-cell level to the system level. In this paper we developed an integrated microfluidic cell-culture platform, Cell-microChip (Cell-μChip), for parallel analyses of the effects of microenvir-onmental cues (i.e., culture scaffolds) on different mammalian cells and their cellular responses to external stimuli. As a model study, we demonstrated the ability of culturing and assaying several mammalian cells, such as NIH 3T3 fibro-blast, B16 melanoma and HeLa cell lines, in a parallel way. For functional assays, first we tested drug-induced apoptotic responses from different cell lines. As a second functional assay, we performed "on-chip" transfection of a reporter gene encoding an enhanced green fluorescent protein (EGFP) followed by live-cell imaging of transcriptional activation of cyclooxygenase 2 (Cox-2) expression. Collectively, our Cell-μChip approach demonstrated the capability to carry out parallel operations and the potential to further integrate advanced functions and applications in the broader space of combinatorial chemistry and biology. PMID:19130244
Improvement of adipose tissue-derived cells by low-energy extracorporeal shock wave therapy.
Priglinger, Eleni; Schuh, Christina M A P; Steffenhagen, Carolin; Wurzer, Christoph; Maier, Julia; Nuernberger, Sylvia; Holnthoner, Wolfgang; Fuchs, Christiane; Suessner, Susanne; Rünzler, Dominik; Redl, Heinz; Wolbank, Susanne
2017-09-01
Cell-based therapies with autologous adipose tissue-derived cells have shown great potential in several clinical studies in the last decades. The majority of these studies have been using the stromal vascular fraction (SVF), a heterogeneous mixture of fibroblasts, lymphocytes, monocytes/macrophages, endothelial cells, endothelial progenitor cells, pericytes and adipose-derived stromal/stem cells (ASC) among others. Although possible clinical applications of autologous adipose tissue-derived cells are manifold, they are limited by insufficient uniformity in cell identity and regenerative potency. In our experimental set-up, low-energy extracorporeal shock wave therapy (ESWT) was performed on freshly obtained human adipose tissue and isolated adipose tissue SVF cells aiming to equalize and enhance stem cell properties and functionality. After ESWT on adipose tissue we could achieve higher cellular adenosine triphosphate (ATP) levels compared with ESWT on the isolated SVF as well as the control. ESWT on adipose tissue resulted in a significantly higher expression of single mesenchymal and vascular marker compared with untreated control. Analysis of SVF protein secretome revealed a significant enhancement in insulin-like growth factor (IGF)-1 and placental growth factor (PLGF) after ESWT on adipose tissue. Summarizing we could show that ESWT on adipose tissue enhanced the cellular ATP content and modified the expression of single mesenchymal and vascular marker, and thus potentially provides a more regenerative cell population. Because the effectiveness of autologous cell therapy is dependent on the therapeutic potency of the patient's cells, this technology might raise the number of patients eligible for autologous cell transplantation. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
°Enhancing High Temperature Anode Performance with 2° Anchoring Phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Robert A.; Sofie, Stephen W.; Amendola, Roberta
2015-10-01
Project accomplishments included developing and optimizing strength testing of aluminum titanate (ALT)-doped Ni-YSZ materials and identified the dopant levels that optimized mechanical strength and enhanced electrochemical performance. We also optimized our ability to fabricate electrolyte supported button cells with anodes consisting of powders provided by Fuel Cell Energy. In several instances, those anodes were infiltrated with ALT and tested with hydrogen for 30 hours at 800°C at an applied potential of 0.4 V. Our research activities were focused in three areas: 1) mechanical strength testing on as prepared and reducced nickel-YSZ structures that were either free of a dopant ormore » prepared by mechanically mixing in ALT at various weight percents (up to 10 wt%); 2) 24-hour electrochemical testing of electroylte supported cells having anodes made from Ni/YSZ and Ni/YSZ/ALT anodes with specific attention focused on modeling degradation rates; and 3) operando EIS and optical testing of both in-house fabricated devices as well as membrane electrode assemblies that were acquired from commercial vendors.« less
NASA Astrophysics Data System (ADS)
Nourolahi, Hamzeh; Bolorizadeh, Mohammadagha A.; Dorri, Navid; Behjat, Abbas
2017-07-01
A metal-polymer nanocomposite of platinum-polyaniline (Pt/PANI) was deposited on fluorine-doped tin oxide glass substrates to function as a counter electrode for polysulfide redox reactions in cadmium sulfide quantum dot-sensitized solar cells. In addition, front-side illuminated photoelectrodes were sensitized by silver (Ag) nanoparticles (NPs) as an interfacial layer between a transparent conducting oxide substrate and a TiO2 layer. This configuration, i.e., both the Pt/PANI counter electrode and the Ag NPs in the photoanode, leads to 1.92% in the power-conversion efficiency (PCE) of the fabricated cells. A PCE enhancement of around 21% was obtained for the Ag NPs-sensitized photoanodes, as compared with the Ag NPs-free one. The improved performance can be attributed to the easier transport of excited electrons and the inhibition of charge recombination due to the application of an Ag NPs layer. Electrochemical impedance spectroscopy measurements showed that once Ag NPs are incorporated in a photoanode, electron transport time decreases in the photoanode structure.
Escherichia coli challenge and one type of smectite alter intestinal barrier of pigs
2013-01-01
An experiment was conducted to determine how an E. coli challenge and dietary clays affect the intestinal barrier of pigs. Two groups of 32 pigs (initial BW: 6.9 ± 1.0 kg) were distributed in a 2 × 4 factorial arrangement of a randomized complete block design (2 challenge treatments: sham or E. coli, and 4 dietary treatments: control, 0.3% smectite A, 0.3% smectite B and 0.3% zeolite), with 8 replicates total. Diarrhea score, growth performance, goblet cell size and number, bacterial translocation from intestinal lumen to lymph nodes, intestinal morphology, and relative amounts of sulfo and sialo mucins were measured. The E. coli challenge reduced performance, increased goblet cell size and number in the ileum, increased bacterial translocation from the intestinal lumen to the lymph nodes, and increased ileal crypt depth. One of the clays (smectite A) tended to increase goblet cell size in ileum, which may indicate enhanced protection. In conclusion, E. coli infection degrades intestinal barrier integrity but smectite A may enhance it. PMID:24359581
Escherichia coli challenge and one type of smectite alter intestinal barrier of pigs.
Almeida, Juliana Abranches Soares; Liu, Yanhong; Song, Minho; Lee, Jeong Jae; Gaskins, H Rex; Maddox, Carol Wolfgang; Osuna, Orlando; Pettigrew, James Eugene
2013-12-20
An experiment was conducted to determine how an E. coli challenge and dietary clays affect the intestinal barrier of pigs. Two groups of 32 pigs (initial BW: 6.9 ± 1.0 kg) were distributed in a 2 × 4 factorial arrangement of a randomized complete block design (2 challenge treatments: sham or E. coli, and 4 dietary treatments: control, 0.3% smectite A, 0.3% smectite B and 0.3% zeolite), with 8 replicates total. Diarrhea score, growth performance, goblet cell size and number, bacterial translocation from intestinal lumen to lymph nodes, intestinal morphology, and relative amounts of sulfo and sialo mucins were measured. The E. coli challenge reduced performance, increased goblet cell size and number in the ileum, increased bacterial translocation from the intestinal lumen to the lymph nodes, and increased ileal crypt depth. One of the clays (smectite A) tended to increase goblet cell size in ileum, which may indicate enhanced protection. In conclusion, E. coli infection degrades intestinal barrier integrity but smectite A may enhance it.
Optical design of ZnO-based antireflective layers for enhanced GaAs solar cell performance.
Lee, Hye Jin; Lee, Jae Won; Kim, Hee Jun; Jung, Dae-Han; Lee, Ki-Suk; Kim, Sang Hyeon; Geum, Dae-myeong; Kim, Chang Zoo; Choi, Won Jun; Baik, Jeong Min
2016-01-28
A series of hierarchical ZnO-based antireflection coatings with different nanostructures (nanowires and nanosheets) is prepared hydrothermally, followed by means of RF sputtering of MgF2 layers for coaxial nanostructures. Structural analysis showed that both ZnO had a highly preferred orientation along the 〈0001〉 direction with a highly crystalline MgF2 shell coated uniformly. However, a small amount of Al was present in nanosheets, originating from Al diffusion from the Al seed layer, resulting in an increase of the optical bandgap. Compared with the nanosheet-based antireflection coatings, the nanowire-based ones exhibited a significantly lower reflectance (∼2%) in ultraviolet and visible light wavelength regions. In particular, they showed perfect light absorption at wavelength less than approximately 400 nm. However, a GaAs single junction solar cell with nanosheet-based antireflection coatings showed the largest enhancement (43.9%) in power conversion efficiency. These results show that the increase of the optical bandgap of the nanosheets by the incorporation of Al atoms allows more photons enter the active region of the solar cell, improving the performance.
McCoy, Ryan J; O'Brien, Fergal J
2012-12-01
Tissue engineering approaches to developing functional substitutes are often highly complex, multivariate systems where many aspects of the biomaterials, bio-regulatory factors or cell sources may be controlled in an effort to enhance tissue formation. Furthermore, success is based on multiple performance criteria reflecting both the quantity and quality of the tissue produced. Managing the trade-offs between different performance criteria is a challenge. A "windows of operation" tool that graphically represents feasible operating spaces to achieve user-defined levels of performance has previously been described by researchers in the bio-processing industry. This paper demonstrates the value of "windows of operation" to the tissue engineering field using a perfusion-scaffold bioreactor system as a case study. In our laboratory, perfusion bioreactor systems are utilized in the context of bone tissue engineering to enhance the osteogenic differentiation of cell-seeded scaffolds. A key challenge of such perfusion bioreactor systems is to maximize the induction of osteogenesis but minimize cell detachment from the scaffold. Two key operating variables that influence these performance criteria are the mean scaffold pore size and flow-rate. Using cyclooxygenase-2 and osteopontin gene expression levels as surrogate indicators of osteogenesis, we employed the "windows of operation" methodology to rapidly identify feasible operating ranges for the mean scaffold pore size and flow-rate that achieved user-defined levels of performance for cell detachment and differentiation. Incorporation of such tools into the tissue engineer's armory will hopefully yield a greater understanding of the highly complex systems used and help aid decision making in future translation of products from the bench top to the market place. Copyright © 2012 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Sah, C. T.
1979-01-01
Numerical solutions were obtained from the exact one dimensional transmission line circuit model to study the following effects on the terrestrial performance of silicon solar cells: interband Auger recombination; surface recombination at the contact interfaces; enhanced metallic impurity solubility; diffusion profiles; and defect-impurity recombination centers. Thermal recombination parameters of titanium impurity in silicon were estimated from recent experimental data. Based on those parameters, computer model calculations showed that titanium concentration must be kept below 6x10 to the 12th power Ti/cu cm in order to achieve 16% AM1 efficiency in a silicon solar cell of 250 micrometers thick and 1.5 ohm-cm resistivity.
Watanabe, Hiroaki; Saito, Kensuke; Kokubun, Katsutoshi; Sasaki, Hodaka; Yoshinari, Masao
2012-01-01
The objectives of this study were to characterize change in surface properties of tetragonal zirconia polycrystals (TZP) after hydrophilic treatment, and to determine the effect of such changes on initial attachment of osteoblast-like cells. Roughened surfaces were produced by alumina-blasting and acid-etching. Hydrophilic treatment comprised application of immediately after blasting and acid-etching (Blast/Etch), oxygen plasma (O2-Plasma), ultraviolet light (UV). Specimens stored in air were used as a control. The water contact angle was determined and surface analysis was performed using an X-ray photoelectron spectroscopy. Blast/Etch, O2-Plasma and UV specimens showed superhydrophilicity, and these hydrophilic treatments to TZP elicited a marked decrease in carbon content and an increase in hydroxyl groups. Hydrophilic treatments enhanced initial attachment of osteoblast-like cells and a change in cell morphologies. These results indicate that Blast/Etch, O2-Plasma, or UV treatment has potential in the creation and maintenance of superhydrophilic surfaces and enhancing initial attachment of osteoblast-like cells.
Kotowski, Ulana; Kadletz, Lorenz; Schneider, Sven; Foki, Elisabeth; Schmid, Rainer; Seemann, Rudolf; Thurnher, Dietmar; Heiduschka, Gregor
2018-02-01
Ginger (Zingiber officinale Roscoe) is used for a wide array of conditions in traditional medicine in Asia, but little is known about the effect on head and neck cancer. In this study, the effect of two major pharmacologically active compounds of ginger, 6-gingerol and 6-shogaol, were studied on head and neck cancer cell lines. Furthermore, experiments in combination with established treatment methods for head and neck cancer were performed. Proliferation assays showed a dose-dependent reduction of cell viability. Flow cytometry analysis revealed the induction of apoptosis. Western blot analysis indicated that the antiapoptotic protein survivin was suppressed after treatment. Although a combination of 6-shogaol with cisplatin exhibited no synergistic effect, the combination with irradiation showed a synergistic reduction of clonogenic survival. In conclusion, ginger compounds have many noteworthy effects on head and neck cancer cell lines. In particular, the enhancement of radiosensitivity is remarkable. Copyright © 2017 John Wiley & Sons, Ltd.
An overview of crystalline silicon solar cell technology: Past, present, and future
NASA Astrophysics Data System (ADS)
Sopian, K.; Cheow, S. L.; Zaidi, S. H.
2017-09-01
Crystalline silicon (c-Si) solar cell, ever since its inception, has been identified as the only economically and environmentally sustainable renewable resource to replace fossil fuels. Performance c-Si based photovoltaic (PV) technology has been equal to the task. Its price has been reduced by a factor of 250 over last twenty years (from ˜ 76 USD to ˜ 0.3 USD); its market growth is expected to reach 100 GWP by 2020. Unfortunately, it is still 3-4 times higher than carbon-based fuels. With the matured PV manufacturing technology as it exists today, continuing price reduction poses stiff challenges. Alternate manufacturing approaches in combination with thin wafers, low (< 10 x) optical enhancement with Fresnel lenses, band-gap engineering for enhanced optical absorption, and newer, advanced solar cell configurations including partially transparent bifacial and back contact solar cells will be required. This paper will present a detailed, cost-based analysis of advanced solar cell manufacturing technologies aimed at higher (˜ 22 %) efficiency with existing equipment and processes.
Yu, Jae Choul; Hong, Ji A; Jung, Eui Dae; Kim, Da Bin; Baek, Soo-Min; Lee, Sukbin; Cho, Shinuk; Park, Sung Soo; Choi, Kyoung Jin; Song, Myoung Hoon
2018-01-18
The beneficial use of a hole transport layer (HTL) as a substitution for poly(3,4-ethlyenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is regarded as one of the most important approaches for improving the stability and efficiency of inverted perovskite solar cells. Here, we demonstrate highly efficient and stable inverted perovskite solar cells by applying a GO-doped PEDOT:PSS (PEDOT:GO) film as an HTL. The high performance of this solar cell stems from the excellent optical and electrical properties of the PEDOT:GO film, including a higher electrical conductivity, a higher work function related to the reduced contact barrier between the perovskite layer and the PEDOT:GO layer, enhanced crystallinity of the perovskite crystal, and suppressed leakage current. Moreover, the device with the PEDOT:GO layer showed excellent long-term stability in ambient air conditions. Thus, the enhancement in the efficiency and the excellent stability of inverted perovskite solar cells are promising for the eventual commercialization of perovskite optoelectronic devices.
Suzuki, Shuko; Dawson, Rebecca A.; Chirila, Traian V.; Shadforth, Audra M. A.; Hogerheyde, Thomas A.; Edwards, Grant A.; Harkin, Damien G.
2015-01-01
A silk protein, fibroin, was isolated from the cocoons of the domesticated silkworm (Bombyx mori) and cast into membranes to serve as freestanding templates for tissue-engineered corneal cell constructs to be used in ocular surface reconstruction. In this study, we sought to enhance the attachment and proliferation of corneal epithelial cells by increasing the permeability of the fibroin membranes and the topographic roughness of their surface. By mixing the fibroin solution with poly(ethylene glycol) (PEG) of molecular weight 300 Da, membranes were produced with increased permeability and with topographic patterns generated on their surface. In order to enhance their mechanical stability, some PEG-treated membranes were also crosslinked with genipin. The resulting membranes were thoroughly characterized and compared to the non-treated membranes. The PEG-treated membranes were similar in tensile strength to the non-treated ones, but their elastic modulus was higher and elongation lower, indicating enhanced rigidity. The crosslinking with genipin did not induce a significant improvement in mechanical properties. In cultures of a human-derived corneal epithelial cell line (HCE-T), the PEG treatment of the substratum did not improve the attachment of cells and it enhanced only slightly the cell proliferation in the longer term. Likewise, primary cultures of human limbal epithelial cells grew equally well on both non-treated and PEG-treated membranes, and the stratification of cultures was consistently improved in the presence of an underlying culture of irradiated 3T3 feeder cells, irrespectively of PEG-treatment. Nevertheless, the cultures grown on the PEG-treated membranes in the presence of feeder cells did display a higher nuclear-to-cytoplasmic ratio suggesting a more proliferative phenotype. We concluded that while the treatment with PEG had a significant effect on some structural properties of the B. mori silk fibroin (BMSF) membranes, there were minimal gains in the performance of these materials as a substratum for corneal epithelial cell growth. The reduced mechanical stability of freestanding PEG-treated membranes makes them a less viable choice than the non-treated membranes. PMID:26034883
Recent thymic emigrants are preferentially incorporated only into the depleted T-cell pool.
Houston, Evan G; Higdon, Lauren E; Fink, Pamela J
2011-03-29
Recent thymic emigrants (RTEs) are the youngest subset of peripheral T cells, and they differ functionally and phenotypically from the rest of the naïve T-cell pool. RTEs are present in the peripheral T-cell pool throughout life but are the most common subset of T cells in neonates and adults recovering from lymphoablation. Using a murine model to study the homeostasis of RTEs, we show that under lymphoreplete conditions, RTEs are at a competitive disadvantage to already established mature naïve (MN) T cells. This disadvantage may be caused by a defect in survival, because RTEs may transduce homeostatic signals inefficiently, and their ability to survive is enhanced with increased expression of IL-7 receptor or B-cell lymphoma 2 (Bcl-2). Conversely, under lymphopenic conditions, enhanced proliferation by RTEs allows them to out-compete their MN T-cell counterparts. These results suggest that in times of need, such as in neonates or lymphopenic adults, RTEs perform well to fill the gaps in the peripheral T-cell pool, but when the periphery already is full, many RTEs are not incorporated into the pool of recirculating lymphocytes.
Infinite Coordination Polymer Nano- and Micro-Particles
2015-06-12
Mirkin, Tobin J. Marks, Joseph T. Hupp. SiO2 Aerogel-templated, Porous TiO2 Photoanodes for Enhanced Performances in Dye-Sensitized Solar Cells ...nano-scale ICPs and their selective surface functionalization, we examined if indeed these ICP-DNA hybrid structures could enter cells and...surface functionalization. In particular, we aimed to utilize this fundamental understanding for the realization of nano-scale ICP-biomolecule hybrids
An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene).
Wu, Jihuai; Yue, Gentian; Xiao, Yaoming; Lin, Jianming; Huang, Miaoliang; Lan, Zhang; Tang, Qunwei; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio
2013-01-01
Here we present an ultraviolet responsive inorganic-organic hybrid solar cell based on titania/poly(3-hexylthiophene) (TiO(2)/P3HT) heterojuction. In this solar cell, TiO(2) is an ultraviolet light absorber and electronic conductor, P3HT is a hole conductor, the light-to-electrical conversion is realized by the cooperation for these two components. Doping ionic salt in P3HT polymer can improve the photovoltaic performance of the solar cell. Under ultraviolet light irradiation with intensity of 100 mW·cm(-2), the hybrid solar cell doped with 1.0 wt.% lithium iodide achieves an energy conversion efficiency of 1.28%, which is increased by 33.3% compared to that of the hybrid solar cell without lithium iodide doping. Our results open a novel sunlight irradiation field for solar energy utilization, demonstrate the feasibility of ultraviolet responsive solar cells, and provide a new route for enhancing the photovoltaic performance of solar cells.
An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene)
Wu, Jihuai; Yue, Gentian; Xiao, Yaoming; Lin, Jianming; Huang, Miaoliang; Lan, Zhang; Tang, Qunwei; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio
2013-01-01
Here we present an ultraviolet responsive inorganic-organic hybrid solar cell based on titania/poly(3-hexylthiophene) (TiO2/P3HT) heterojuction. In this solar cell, TiO2 is an ultraviolet light absorber and electronic conductor, P3HT is a hole conductor, the light-to-electrical conversion is realized by the cooperation for these two components. Doping ionic salt in P3HT polymer can improve the photovoltaic performance of the solar cell. Under ultraviolet light irradiation with intensity of 100 mW·cm−2, the hybrid solar cell doped with 1.0 wt.% lithium iodide achieves an energy conversion efficiency of 1.28%, which is increased by 33.3% compared to that of the hybrid solar cell without lithium iodide doping. Our results open a novel sunlight irradiation field for solar energy utilization, demonstrate the feasibility of ultraviolet responsive solar cells, and provide a new route for enhancing the photovoltaic performance of solar cells. PMID:23412470
Silva, Sérgio M C; Hu, Longsheng; Sousa, João J S; Pais, Alberto A C C; Michniak-Kohn, Bozena B
2012-04-01
The present work reports the evaluation of three nonionic ether-monohydroxyl surfactants (C(12)E(1), C(12)E(5,) and C(12)E(8)) as skin permeation enhancers in the transdermal drug delivery of two drugs: ondansetron hydrochloride and diltiazem hydrochloride, formulated as hydrogels. The enhancers are used alone, or in combination with iontophoresis (0.3 mA - 8h). After 1h of pre-treatment with 0.16 M enhancer solutions in propylene glycol (PG), passive and iontophoretic 24 h in vitro studies across dermatomed porcine skin were performed using vertical Franz diffusion cells. Data obtained showed that the nonionic surfactant C(12)E(5) was the most effective permeation enhancer, both for the passive process as well as for samples subjected to iontophoresis, resulting in cumulative amounts of ondansetron HCl after 24h of approximately 93 μg/cm(2) and 336 μg/cm(2), respectively. Data obtained using diltiazem HCl showed a similar trend. The use of the nonionic surfactant C(12)E(5) resulted in higher enhancement ratios (ER) in passive studies, but C(12)E(8) yielded slightly higher values of drug permeated (2678 μg/cm(2)) than C(12)E(5) (2530 μg/cm(2)) when iontophoresis was also employed. Skin integrity studies were performed to assess potential harmful effects on the tissues resulting from the compounds applied and/or from the methodology employed. Skin samples used in permeation studies visualized by light microscopy and Scanning Electron Microscopy (SEM) at different levels of magnification did not show significant morphological and structural changes, when compared to untreated samples. Complementary studies were performed to gain information regarding the relative cytotoxicity of the penetration enhancers on skin cells. MTS assay data using human epidermal keratinocytes (HEK) and human dermal fibroblasts (HDF) indicated that HEK are more sensitive to the presence of the enhancers than HDF and that the toxicity of these compounds is enhancer molecular weight dependent. Copyright © 2011 Elsevier B.V. All rights reserved.
Enhanced Peptide Radiotherapy of Prostate Cancer Using Targeted Adenoviral Vectors
2004-06-01
regard to binding of 64Cu - octreotide. In vitro experiments were performed with DU-145 and PC-3 human prostate cancer cells. Expression levels of SSTR2...were determined using a 64Cu -octreotide saturation binding assay on cell membrane preparations. In vivo experiments were conducted in scid mice bearing...subcutaneous DU-l45 or PC-3 cells. AdSSTR2 was injected intratumorally followed 48 h later by an i.v. injection of 64Cu -octreotide. The mice were
Annealing of Solar Cells and Other Thin Film Devices
NASA Technical Reports Server (NTRS)
Escobar, Hector; Kuhlman, Franz; Dils, D. W.; Lush, G. B.; Mackey, Willie R. (Technical Monitor)
2001-01-01
Annealing is a key step in most semiconductor fabrication processes, especially for thin films where annealing enhances performance by healing defects and increasing grain sizes. We have employed a new annealing oven for the annealing of CdTe-based solar cells and have been using this system in an attempt to grow US on top of CdTe by annealing in the presence of H2S gas. Preliminary results of this process on CdTe solar cells and other thin-film devices will be presented.
Synthetic Lethal Metabolic Targeting of Senescent Cells after Androgen Deprivation Therapy
2017-07-01
ORGANIZATION NAME(S) AND ADDRESS(ES) UNIVERSITY OF WISCONSIN, MADISON 8. PERFORMING ORGANIZATION REPORT NUMBER 21 N PARK ST STE 6401 MADISON WI 53715...Avenue, Madison, WI 53705, USA 123 Breast Cancer Res Treat (2017) 163:435–447 DOI 10.1007/s10549-017-4201-0 In an effort to enhance the activity of TRAIL...cells. (Figure 1). A dose–response experiment in MDA-MB-468 cells identi- fied 0.5 mM metformin as the minimal concentration needed to sensitize these
Enhanced proliferation of PC12 neural cells on untreated, nanotextured glass coverslips
NASA Astrophysics Data System (ADS)
Islam, Muhymin; Atmaramani, Rahul; Mukherjee, Siddhartha; Ghosh, Santaneel; Iqbal, Samir M.
2016-10-01
Traumatic injury to the central nervous system is a significant health problem. There is no effective treatment available partly because of the complexity of the system. Implementation of multifunctional micro- and nano-device based combinatorial therapeutics can provide biocompatible and tunable approaches to perform on-demand release of specific drugs. This can help the damaged cells to improve neuronal survival, regeneration of axons, and their reconnection to appropriate targets. Nano-topological features induced rapid cell growth is especially important towards the design of effective platforms to facilitate damaged neural circuit reconstruction. In this study, for the first time, feasibility of neuron-like PC12 cell growth on untreated and easy to prepare nanotextured surfaces has been carried out. The PC12 neuron-like cells were cultured on micro reactive ion etched nanotextured glass coverslips. The effect of nanotextured topology as physical cue for the growth of PC12 cells was observed exclusively, eliminating the possible influence(s) of the enhanced concentration of coated materials on the surface. The cell density was observed to increase by almost 200% on nanotextured coverslips compared to plain coverslips. The morphology study indicated that PC12 cell attachment and growth on the nanotextured substrates did not launch any apoptotic machinery of the cell. Less than 5% cells deformed and depicted condensed nuclei with apoptotic bodies on nanotextured surfaces which is typical for the normal cell handling and culture. Enhanced PC12 cell proliferation by such novel and easy to prepare substrates is not only attractive for neurite outgrowth and guidance, but may be used to increase the affinity of similar cancerous cells (ex: B35 neuroblastoma) and rapid proliferation thereafter—towards the development of combinatorial theranostics to diagnose and treat aggressive cancers like neuroblastoma.
Calcium doped MAPbI3 with better energy state alignment in perovskite solar cells
NASA Astrophysics Data System (ADS)
Lu, Chaojie; Zhang, Jing; Hou, Dagang; Gan, Xinlei; Sun, Hongrui; Zeng, Zhaobing; Chen, Renjie; Tian, Hui; Xiong, Qi; Zhang, Ying; Li, Yuanyuan; Zhu, Yuejin
2018-05-01
The organic-inorganic perovskite material with better energy alignment in the solar cell device will have a profound impact on the solar cell performance. It is valuable to tune the energy states by element substitution and doping in perovskites. Here, we present that Ca2+ is incorporated into CH3NH3PbI3, which up-shifts the valence band maximum and the conduction band minimum, leading to a difference between the bandgap and the Fermi level in the device. Consequently, Ca2+ incorporation results in an enhancement of the photovoltage and photocurrent, achieving a summit efficiency of 18.3% under standard 1 sun (AM 1.5). This work reveals the doped perovskite to improve the solar cell performance by tuning the energy state.
Photovoltaic options for solar electric propulsion
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Flood, Dennis J.
1990-01-01
During the past decade, a number of advances have occurred in solar cell and array technology. These advances have lead to performance improvement for both conventional space arrays and for advanced technology arrays. Performance enhancements have occurred in power density, specific power, and environmental capability. Both state-of-the-art and advanced development cells and array technology are discussed. Present technology will include rigid, rollout, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is also discussed based on both DOD and NASA efforts. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency, thin, radiation resistant cells is examined. This includes gallium arsenide on germaniun substrates, indium phosphide, and thin film devices such as copper indium diselenide.
Zhao, Cui-e; Chen, Jia; Ding, Yuanzhao; Wang, Victor Bochuan; Bao, Biqing; Kjelleberg, Staffan; Cao, Bin; Loo, Say Chye Joachim; Wang, Lianhui; Huang, Wei; Zhang, Qichun
2015-07-08
Water-soluble conjugated oligoelectrolyte nanoparticles (COE NPs), consisting of a cage-like polyhedral oligomeric silsesquioxanes (POSS) core equipped at each end with pendant groups (oligo(p-phenylenevinylene) electrolyte, OPVE), have been designed and demonstrated as an efficient strategy in increasing the current generation in Escherichia coli microbial fuel cells (MFCs). The as-prepared COE NPs take advantage of the structure of POSS and the optical properties of the pendant groups, OPVE. Confocal laser scanning microscopy showed strong photoluminescence of the stained cells, indicating spontaneous accumulation of COE NPs within cell membranes. Moreover, the electrochemical performance of the COE NPs is superior to that of an established membrane intercommunicating COE, DSSN+ in increasing current generation, suggesting that these COE NPs thus hold great potential to boost the performance of MFCs.
Clobenpropit enhances anti-tumor effect of gemcitabine in pancreatic cancer
Paik, Woo Hyun; Ryu, Ji Kon; Jeong, Kyoung-Sin; Park, Jin Myung; Song, Byeong Jun; Lee, Sang Hyub; Kim, Yong-Tae; Yoon, Yong Bum
2014-01-01
AIM: To evaluate the anti-tumor effect of clobenpropit, which is a specific H3 antagonist and H4 agonist, in combination with gemcitabine in a pancreatic cancer cell line. METHODS: Three kinds of human pancreatic cancer cell lines (Panc-1, MiaPaCa-2, and AsPC-1) were used in this study. Expression of H3 and H4 receptors in pancreatic cancer cells was identified with Western blotting. Effects of clobenpropit on cell proliferation, migration and apoptosis were evaluated. Alteration of epithelial and mesenchymal markers after administration of clobenpropit was analyzed. An in vivo study with a Panc-1 xenograft mouse model was also performed. RESULTS: H4 receptors were present as 2 subunits in human pancreatic cancer cells, while there was no expression of H3 receptor. Clobenpropit inhibited cell migration and increased apoptosis of pancreatic cancer cells in combination with gemcitabine. Clobenpropit up-regulated E-cadherin, but down-regulated vimentin and matrix metalloproteinase 9 in real-time polymerase chain reaction. Also, clobenpropit inhibited tumor growth (gemcitabine 294 ± 46 mg vs combination 154 ± 54 mg, P = 0.02) and enhanced apoptosis in combination with gemcitabine (control 2.5%, gemcitabine 25.8%, clobenpropit 9.7% and combination 40.9%, P = 0.001) by up-regulation of E-cadherin and down-regulation of Zeb1 in Panc-1 xenograft mouse. CONCLUSION: Clobenpropit enhanced the anti-tumor effect of gemcitabine in pancreatic cancer cells through inhibition of the epithelial-mesenchymal transition process. PMID:25024609
Izumi, Shota; Yamamura, Shohei; Hayashi, Naoko; Toma, Mana; Tawa, Keiko
2017-12-19
Surface plasmon field-enhanced fluorescence microscopic observation of a live breast cancer cell was performed with a plasmonic chip. Two cell lines, MDA-MB-231 and Michigan Cancer Foundation-7 (MCF-7), were selected as breast cancer cells, with two kinds of membrane protein, epithelial cell adhesion molecule (EpCAM) and epidermal growth factor receptor (EGFR), observed in both cells. The membrane proteins are surface markers used to differentiate and classify breast cancer cells. EGFR and EpCAM were detected with Alexa Fluor ® 488-labeled anti-EGFR antibody (488-EGFR) and allophycocyanin (APC)-labeled anti-EpCAM antibody (APC-EpCAM), respectively. In MDA-MB231 cells, three-fold plus or minus one and seven-fold plus or minus two brighter fluorescence of 488-EGFR were observed on the 480-nm pitch and the 400-nm pitch compared with that on a glass slide. Results show the 400-nm pitch is useful. Dual-color fluorescence of 488-EGFR and APC-EpCAM in MDA-MB231 was clearly observed with seven-fold plus or minus two and nine-fold plus or minus three, respectively, on the 400-nm pitch pattern of a plasmonic chip. Therefore, the 400-nm pitch contributed to the dual-color fluorescence enhancement for these wavelengths. An optimal grating pitch of a plasmonic chip improved a fluorescence image of membrane proteins with the help of the surface plasmon-enhanced field.